[image: First Edition]
Natural Language Processing with
 Python

Steven Bird

Ewan Klein

Edward Loper

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Preface

This is a book about Natural Language Processing. By “natural
 language” we mean a language that is used for everyday communication by
 humans; languages such as English, Hindi, or Portuguese. In contrast to
 artificial languages such as programming languages and mathematical
 notations, natural languages have evolved as they pass from generation to
 generation, and are hard to pin down with explicit rules. We will take
 Natural Language Processing—or NLP for short—in a wide sense to cover any
 kind of computer manipulation of natural language. At one extreme, it
 could be as simple as counting word frequencies to compare different
 writing styles. At the other extreme, NLP involves “understanding”
 complete human utterances, at least to the extent of being able to give
 useful responses to them.
Technologies based on NLP are becoming increasingly widespread. For
 example, phones and handheld computers support predictive text and
 handwriting recognition; web search engines give access to information
 locked up in unstructured text; machine translation allows us to retrieve
 texts written in Chinese and read them in Spanish. By providing more
 natural human-machine interfaces, and more sophisticated access to stored
 information, language processing has come to play a central role in the
 multilingual information society.
This book provides a highly accessible introduction to the field of
 NLP. It can be used for individual study or as the textbook for a course
 on natural language processing or computational linguistics, or as a
 supplement to courses in artificial intelligence, text mining, or corpus
 linguistics. The book is intensely practical, containing hundreds of fully
 worked examples and graded exercises.
The book is based on the Python programming language together with
 an open source library called the Natural Language
 Toolkit (NLTK). NLTK includes extensive software, data, and
 documentation, all freely downloadable from http://www.nltk.org/. Distributions are provided for
 Windows, Macintosh, and Unix platforms. We strongly encourage you to
 download Python and NLTK, and try out the examples and exercises along the
 way.
Audience

NLP is important for scientific, economic, social, and cultural
 reasons. NLP is experiencing rapid growth as its theories and methods
 are deployed in a variety of new language technologies. For this reason
 it is important for a wide range of people to have a working knowledge
 of NLP. Within industry, this includes people in human-computer
 interaction, business information analysis, and web software
 development. Within academia, it includes people in areas from
 humanities computing and corpus linguistics through to computer science
 and artificial intelligence. (To many people in academia, NLP is known
 by the name of “Computational Linguistics.”)
This book is intended for a diverse range of people who want to
 learn how to write programs that analyze written language, regardless of
 previous programming experience:
	New to programming?
	The early chapters of the book are suitable for readers with
 no prior knowledge of programming, so long as you aren’t afraid to
 tackle new concepts and develop new computing skills. The book is
 full of examples that you can copy and try for yourself, together
 with hundreds of graded exercises. If you need a more general
 introduction to Python, see the list of Python resources at http://docs.python.org/.

	New to Python?
	Experienced programmers can quickly learn enough Python
 using this book to get immersed in natural language processing.
 All relevant Python features are carefully explained and
 exemplified, and you will quickly come to appreciate Python’s
 suitability for this application area. The language index will
 help you locate relevant discussions in the book.

	Already dreaming in Python?
	Skim the Python examples and dig into the interesting
 language analysis material that starts in Chapter 1. You’ll soon be applying your skills to this
 fascinating domain.

Emphasis

This book is a practical
 introduction to NLP. You will learn by example, write real programs, and
 grasp the value of being able to test an idea through implementation. If
 you haven’t learned already, this book will teach you programming. Unlike other programming books, we
 provide extensive illustrations and exercises from NLP. The approach we
 have taken is also principled, in
 that we cover the theoretical underpinnings and don’t shy away from
 careful linguistic and computational analysis. We have tried to be
 pragmatic in striking a balance
 between theory and application, identifying the connections and the
 tensions. Finally, we recognize that you won’t get through this unless
 it is also pleasurable, so we have
 tried to include many applications and examples that are interesting and
 entertaining, and sometimes whimsical.
Note that this book is not a reference work. Its coverage of
 Python and NLP is selective, and presented in a tutorial style. For
 reference material, please consult the substantial quantity of
 searchable resources available at http://python.org/ and http://www.nltk.org/.
This book is not an advanced computer science text. The content
 ranges from introductory to intermediate, and is directed at readers who
 want to learn how to analyze text using Python and the Natural Language
 Toolkit. To learn about advanced algorithms implemented in NLTK, you can
 examine the Python code linked from http://www.nltk.org/, and consult the other materials
 cited in this book.

What You Will Learn

By digging into the material presented here, you will
 learn:
	How simple programs can help you manipulate and analyze
 language data, and how to write these programs

	How key concepts from NLP and linguistics are used to describe
 and analyze language

	How data structures and algorithms are used in NLP

	How language data is stored in standard formats, and how data
 can be used to evaluate the performance of NLP techniques

Depending on your background, and your motivation for being
 interested in NLP, you will gain different kinds of skills and knowledge
 from this book, as set out in Table 1.
Table 1. Skills and knowledge to be gained from reading this book,
 depending on readers’ goals and background
	Goals
	Background in arts and humanities
	Background in science and
 engineering

	Language analysis
	Manipulating large corpora, exploring linguistic
 models, and testing empirical claims.
	Using techniques in data modeling, data mining, and
 knowledge discovery to analyze natural language.

	Language technology
	Building robust systems to perform linguistic tasks
 with technological applications.
	Using linguistic algorithms and data structures in
 robust language processing software.

Organization

The early chapters are organized in order of conceptual
 difficulty, starting with a practical introduction to language
 processing that shows how to explore interesting bodies of text using
 tiny Python programs (Chapters 1–3). This is followed by a chapter on
 structured programming (Chapter 4) that consolidates
 the programming topics scattered across the preceding chapters. After
 this, the pace picks up, and we move on to a series of chapters covering
 fundamental topics in language processing: tagging, classification, and
 information extraction (Chapters 5–7). The next three chapters look at
 ways to parse a sentence, recognize its syntactic structure, and
 construct representations of meaning (Chapters 8–10). The final chapter is devoted to
 linguistic data and how it can be managed effectively (Chapter 11). The book concludes with an Afterword, briefly
 discussing the past and future of the field.
Within each chapter, we switch between different styles of
 presentation. In one style, natural language is the driver. We analyze
 language, explore linguistic concepts, and use programming examples to
 support the discussion. We often employ Python constructs that have not
 been introduced systematically, so you can see their purpose before
 delving into the details of how and why they work. This is just like
 learning idiomatic expressions in a foreign language: you’re able to buy
 a nice pastry without first having learned the intricacies of question
 formation. In the other style of presentation, the programming language
 will be the driver. We’ll analyze programs, explore algorithms, and the
 linguistic examples will play a supporting role.
Each chapter ends with a series of graded exercises, which are
 useful for consolidating the material. The exercises are graded
 according to the following scheme: ○ is for easy exercises that involve
 minor modifications to supplied code samples or other simple activities; [image:] is for intermediate exercises that explore an aspect of the material
 in more depth, requiring careful analysis and design; ● is for
 difficult, open-ended tasks that will challenge your understanding of
 the material and force you to think independently (readers new to
 programming should skip these).
Each chapter has a further reading section and an online “extras”
 section at http://www.nltk.org/, with pointers to
 more advanced materials and online resources. Online versions of all the
 code examples are also available there.

Why Python?

Python is a simple yet powerful programming language with
 excellent functionality for processing linguistic data. Python can be
 downloaded for free from http://www.python.org/.
 Installers are available for all platforms.
Here is a five-line Python program that processes file.txt and prints all the words ending in
 ing:
>>> for line in open("file.txt"):
... for word in line.split():
... if word.endswith('ing'):
... print word
This program illustrates some of the main features of Python.
 First, whitespace is used to nest lines of code;
 thus the line starting with if falls
 inside the scope of the previous line starting with for; this ensures that the ing test is performed for each word. Second,
 Python is object-oriented; each variable is an
 entity that has certain defined attributes and methods. For example, the
 value of the variable line is more
 than a sequence of characters. It is a string object that has a “method”
 (or operation) called split() that we
 can use to break a line into its words. To apply a method to an object,
 we write the object name, followed by a period, followed by the method
 name, i.e., line.split(). Third,
 methods have arguments expressed inside
 parentheses. For instance, in the example, word.endswith('ing') had the argument 'ing' to indicate that we wanted words ending
 with ing and not something else. Finally—and most
 importantly—Python is highly
 readable, so much so that it is fairly easy to guess what this program
 does even if you have never written a program before.
We chose Python because it has a shallow learning curve, its
 syntax and semantics are transparent, and it has good string-handling
 functionality. As an interpreted language, Python facilitates
 interactive exploration. As an object-oriented language, Python permits
 data and methods to be encapsulated and re-used easily. As a dynamic
 language, Python permits attributes to be added to objects on the fly,
 and permits variables to be typed dynamically, facilitating rapid
 development. Python comes with an extensive standard library, including
 components for graphical programming, numerical processing, and web
 connectivity.
Python is heavily used in industry, scientific research, and
 education around the world. Python is often praised for the way it
 facilitates productivity, quality, and maintainability of software. A collection of
 Python success stories is posted at http://www.python.org/about/success/.
NLTK defines an infrastructure that can be used to build NLP
 programs in Python. It provides basic classes for representing data
 relevant to natural language processing; standard interfaces for
 performing tasks such as part-of-speech tagging, syntactic parsing, and
 text classification; and standard implementations for each task that can
 be combined to solve complex problems.
NLTK comes with extensive documentation. In addition to this book,
 the website at http://www.nltk.org/ provides API
 documentation that covers every module, class, and function in the
 toolkit, specifying parameters and giving examples of usage. The website
 also provides many HOWTOs with extensive examples and test cases,
 intended for users, developers, and instructors.

Software Requirements

To get the most out of this book, you should install several free
 software packages. Current download pointers and instructions are
 available at http://www.nltk.org/.
	Python
	The material presented in this book assumes that you are
 using Python version 2.4 or 2.5. We are committed to porting NLTK
 to Python 3.0 once the libraries that NLTK depends on have been
 ported.

	NLTK
	The code examples in this book use NLTK version 2.0.
 Subsequent releases of NLTK will be backward-compatible.

	NLTK-Data
	This contains the linguistic corpora that are analyzed and
 processed in the book.

	NumPy (recommended)
	This is a scientific computing library with support for
 multidimensional arrays and linear algebra, required for certain
 probability, tagging, clustering, and classification tasks.

	Matplotlib (recommended)
	This is a 2D plotting library for data visualization, and is
 used in some of the book’s code samples that produce line graphs
 and bar charts.

	NetworkX (optional)
	This is a library for storing and manipulating network
 structures with nodes and
 edges. For visualizing semantic networks, also install the
 Graphviz library.

	Prover9 (optional)
	This is an automated theorem prover for first-order and
 equational logic, used to support inference in language
 processing.

Natural Language Toolkit (NLTK)

NLTK was originally created in 2001 as part of a computational
 linguistics course in the Department of Computer and Information Science
 at the University of Pennsylvania. Since then it has been developed and
 expanded with the help of dozens of contributors. It has now been
 adopted in courses in dozens of universities, and serves as the basis of
 many research projects. Table 2 lists the most
 important NLTK modules.
Table 2. Language processing tasks and corresponding NLTK modules with
 examples of functionality
	Language processing task
	NLTK modules
	Functionality

	Accessing corpora
	nltk.corpus
	Standardized interfaces to corpora and
 lexicons

	String processing
	nltk.tokenize, nltk.stem
	Tokenizers, sentence tokenizers,
 stemmers

	Collocation discovery
	nltk.collocations
	t-test, chi-squared, point-wise mutual
 information

	Part-of-speech tagging
	nltk.tag
	n-gram, backoff, Brill, HMM, TnT

	Classification
	nltk.classify, nltk.cluster
	Decision tree, maximum entropy, naive Bayes, EM,
 k-means

	Chunking
	nltk.chunk
	Regular expression, n-gram, named
 entity

	Parsing
	nltk.parse
	Chart, feature-based, unification, probabilistic,
 dependency

	Semantic interpretation
	nltk.sem, nltk.inference
	Lambda calculus, first-order logic, model
 checking

	Evaluation metrics
	nltk.metrics
	Precision, recall, agreement
 coefficients

	Probability and estimation
	nltk.probability
	Frequency distributions, smoothed probability
 distributions

	Applications
	nltk.app, nltk.chat
	Graphical concordancer, parsers, WordNet browser,
 chatbots

	Linguistic fieldwork
	nltk.toolbox
	Manipulate data in SIL Toolbox
 format

NLTK was designed with four primary goals in mind:
	Simplicity
	To provide an intuitive framework along with substantial
 building blocks, giving users a practical knowledge of NLP without
 getting bogged down in the tedious house-keeping usually
 associated with processing annotated language data

	Consistency
	To provide a uniform framework with consistent interfaces
 and data structures, and easily guessable method names

	Extensibility
	To provide a structure into which new software modules can
 be easily accommodated, including alternative implementations and
 competing approaches to the same task

	Modularity
	To provide components that can be used independently without
 needing to understand the rest of the toolkit

Contrasting with these goals are three
 non-requirements—potentially useful qualities that we have deliberately
 avoided. First, while the toolkit provides a wide range of functions, it
 is not encyclopedic; it is a toolkit, not a system, and it will continue
 to evolve with the field of NLP. Second, while the toolkit is efficient
 enough to support meaningful tasks, it is not highly optimized for
 runtime performance; such optimizations often involve more complex
 algorithms, or implementations in lower-level programming languages such
 as C or C++. This would make the software less readable and more
 difficult to install. Third, we have tried to avoid clever programming
 tricks, since we believe that clear implementations are preferable to
 ingenious yet indecipherable ones.

For Instructors

Natural Language Processing is often taught within the confines of
 a single-semester course at the advanced undergraduate level or
 postgraduate level. Many instructors have found that it is difficult to
 cover both the theoretical and practical sides of the subject in such a
 short span of time. Some courses focus on theory to the exclusion of
 practical exercises, and deprive students of the challenge and
 excitement of writing programs to automatically process language. Other
 courses are simply designed to teach programming for linguists, and do
 not manage to cover any significant NLP content. NLTK was originally
 developed to address this problem, making it feasible to cover a
 substantial amount of theory and practice within a single-semester
 course, even if students have no prior programming experience.
A significant fraction of any NLP syllabus deals with algorithms
 and data structures. On their own these can be rather dry, but NLTK
 brings them to life with the help of interactive graphical user
 interfaces that make it possible to view algorithms step-by-step. Most
 NLTK components include a demonstration that performs an interesting
 task without requiring any special input from the user. An effective way
 to deliver the materials is through interactive presentation of the
 examples in this book, entering them in a Python session, observing what
 they do, and modifying them to explore some empirical or theoretical
 issue.
This book contains hundreds of exercises that can be used as the
 basis for student assignments. The simplest exercises involve modifying
 a supplied program fragment in a specified way in order to answer a
 concrete question. At the other end of the spectrum, NLTK provides a
 flexible framework for graduate-level research projects, with standard
 implementations of all the basic data structures and algorithms,
 interfaces to dozens of widely used datasets (corpora), and a flexible
 and extensible architecture. Additional support for teaching using NLTK
 is available on the NLTK website.
We believe this book is unique in providing a comprehensive
 framework for students to learn about NLP in the context of learning to
 program. What sets these materials apart is the tight coupling of the
 chapters and exercises with NLTK, giving students—even those with no
 prior programming experience—a practical introduction to NLP. After
 completing these materials, students will be ready to attempt one of the
 more advanced textbooks, such as Speech and Language
 Processing, by Jurafsky and Martin (Prentice Hall,
 2008).
This book presents programming concepts in an unusual order,
 beginning with a non-trivial data type—lists of strings—then introducing
 non-trivial control structures such as comprehensions and conditionals.
 These idioms permit us to do useful language processing from the start.
 Once this motivation is in place, we return to a systematic presentation
 of fundamental concepts such as strings, loops, files, and so forth. In
 this way, we cover the same ground as more conventional approaches,
 without expecting readers to be interested in the programming language
 for its own sake.
Two possible course plans are illustrated in Table 3. The first one presumes an arts/humanities
 audience, whereas the second one presumes a science/engineering
 audience. Other course plans could cover the first five chapters, then
 devote the remaining time to a single area, such as text classification
 (Chapters 6
 and 7), syntax
 (Chapters 8
 and 9),
 semantics (Chapter 10), or linguistic data management
 (Chapter 11).
Table 3. Suggested course plans; approximate number of lectures per
 chapter
	Chapter
	Arts and Humanities
	Science and Engineering

	Chapter 1, Language Processing and Python
	2–4
	2

	Chapter 2, Accessing Text Corpora and Lexical
 Resources
	2–4
	2

	Chapter 3, Processing Raw Text
	2–4
	2

	Chapter 4, Writing Structured Programs
	2–4
	1–2

	Chapter 5, Categorizing and Tagging Words
	2–4
	2–4

	Chapter 6, Learning to Classify Text
	0–2
	2–4

	Chapter 7, Extracting Information from Text
	2
	2–4

	Chapter 8, Analyzing Sentence Structure
	2–4
	2–4

	Chapter 9, Building Feature-Based Grammars
	2–4
	1–4

	Chapter 10, Analyzing the Meaning of Sentences
	1–2
	1–4

	Chapter 11, Managing Linguistic Data
	1–2
	1–4

	Total
	18–36
	18–36

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Bold
	Indicates new terms.

	Italic
	Used within paragraphs to refer to linguistic examples, the
 names of texts, and URLs; also used for filenames and file
 extensions.

	Constant
 width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 statements, and keywords; also used for program names.

	Constant width
 italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context; also used for metavariables
 within program code examples.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You do
 not need to contact us for permission unless you’re reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from O’Reilly books does
 require permission. Answering a question by citing this book and quoting
 example code does not require permission. Incorporating a significant
 amount of example code from this book into your product’s documentation
 does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Natural Language Processing with Python, by Steven
 Bird, Ewan Klein, and Edward Loper. Copyright 2009 Steven Bird, Ewan
 Klein, and Edward Loper, 978-0-596-51649-9.”
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a
 virtual library that lets you easily search thousands of top tech books,
 cut and paste code samples, download chapters, and find quick answers
 when you need the most accurate, current information. Try it for free at
 http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9780596516499

The authors provide additional materials for each chapter via the
 NLTK website at:
	http://www.nltk.org/

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O’Reilly Network,
 see our website at:
	http://www.oreilly.com

Acknowledgments

The authors are indebted to the following people for feedback on
 earlier drafts of this book: Doug Arnold, Michaela Atterer, Greg Aumann,
 Kenneth Beesley, Steven Bethard, Ondrej Bojar, Chris Cieri, Robin
 Cooper, Grev Corbett, James Curran, Dan Garrette, Jean Mark Gawron, Doug
 Hellmann, Nitin Indurkhya, Mark Liberman, Peter Ljunglöf, Stefan Müller,
 Robin Munn, Joel Nothman, Adam Przepiorkowski, Brandon Rhodes, Stuart
 Robinson, Jussi Salmela, Kyle Schlansker, Rob Speer, and Richard Sproat.
 We are thankful to many students and colleagues for their comments on
 the class materials that evolved into these chapters, including
 participants at NLP and linguistics summer schools in Brazil, India, and
 the USA. This book would not exist without the members of the nltk-dev developer community, named on the
 NLTK website, who have given so freely of their time and expertise in
 building and extending NLTK.
We are grateful to the U.S. National Science Foundation, the
 Linguistic Data Consortium, an Edward Clarence Dyason Fellowship, and
 the Universities of Pennsylvania, Edinburgh, and Melbourne for
 supporting our work on this book.
We thank Julie Steele, Abby Fox, Loranah Dimant, and the rest of
 the O’Reilly team, for organizing comprehensive reviews of our drafts
 from people across the NLP and Python communities, for cheerfully
 customizing O’Reilly’s production tools to accommodate our needs, and
 for meticulous copyediting work.
Finally, we owe a huge debt of gratitude to our partners, Kay,
 Mimo, and Jee, for their love, patience, and support over the many years
 that we worked on this book. We hope that our children—Andrew, Alison,
 Kirsten, Leonie, and Maaike—catch our enthusiasm for language and
 computation from these pages.

Royalties

Royalties from the sale of this book are being used to support the
 development of the Natural Language Toolkit.
[image: Edward Loper, Ewan Klein, and Steven Bird, Stanford, July 2007]

Figure 1. Edward Loper, Ewan Klein, and Steven Bird, Stanford, July
 2007

Chapter 1. Language Processing and Python

It is easy to get our hands on millions of words of text. What can
 we do with it, assuming we can write some simple programs? In this
 chapter, we’ll address the following questions:
	What can we achieve by combining simple programming techniques
 with large quantities of text?

	How can we automatically extract key words and phrases that sum
 up the style and content of a text?

	What tools and techniques does the Python programming language
 provide for such work?

	What are some of the interesting challenges of natural language
 processing?

This chapter is divided into sections that skip between two quite
 different styles. In the “computing with language” sections, we will take
 on some linguistically motivated programming tasks without necessarily
 explaining how they work. In the “closer look at Python” sections we will
 systematically review key programming concepts. We’ll flag the two styles
 in the section titles, but later chapters will mix both styles without
 being so up-front about it. We hope this style of introduction gives you
 an authentic taste of what will come later, while covering a range of
 elementary concepts in linguistics and computer science. If you have basic
 familiarity with both areas, you can skip to Automatic Natural Language Understanding; we will repeat
 any important points in later chapters, and if you miss anything you can
 easily consult the online reference material at http://www.nltk.org/. If the material is completely new to
 you, this chapter will raise more questions than it answers, questions
 that are addressed in the rest of this book.
Computing with Language: Texts and Words

We’re all very familiar with text, since we read and write it
 every day. Here we will treat text as raw data for
 the programs we write, programs that manipulate and analyze it in a
 variety of interesting ways. But before we can do this, we have to get
 started with the Python interpreter.
Getting Started with Python

One of the friendly things about Python is that it allows you to
 type directly into the interactive interpreter—the program that will be running
 your Python programs. You can access the Python interpreter using a
 simple graphical interface called the Interactive DeveLopment Environment (IDLE).
 On a Mac you can find this under Applications→MacPython, and on
 Windows under All Programs→Python. Under Unix you can run Python from
 the shell by typing idle (if this
 is not installed, try typing python). The interpreter will print a blurb
 about your Python version; simply check that you are running Python
 2.4 or 2.5 (here it is 2.5.1):
Python 2.5.1 (r251:54863, Apr 15 2008, 22:57:26)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
Note
If you are unable to run the Python interpreter, you probably
 don’t have Python installed correctly. Please visit http://python.org/ for detailed instructions.

The >>> prompt
 indicates that the Python interpreter is now waiting for input. When
 copying examples from this book, don’t type the “>>>” yourself. Now, let’s begin by
 using Python as a calculator:
>>> 1 + 5 * 2 - 3
8
>>>
Once the interpreter has finished calculating the answer and
 displaying it, the prompt reappears. This means the Python interpreter
 is waiting for another instruction.
Note
Your Turn: Enter a few more
 expressions of your own. You can use asterisk (*) for multiplication and slash (/) for division, and parentheses for
 bracketing expressions. Note that division doesn’t always behave as
 you might expect—it does integer division (with rounding of
 fractions downwards) when you type 1/3 and “floating-point” (or decimal)
 division when you type 1.0/3.0.
 In order to get the expected behavior of division (standard in
 Python 3.0), you need to type: from
 __future__ import division.

The preceding examples demonstrate how you can work
 interactively with the Python interpreter, experimenting with various
 expressions in the language to see what they do. Now let’s try a
 non-sensical expression to see how the interpreter handles
 it:
>>> 1 +
 File "<stdin>", line 1
 1 +
 ^
SyntaxError: invalid syntax
>>>
This produced a syntax error.
 In Python, it doesn’t make sense to end an instruction with a plus
 sign. The Python interpreter indicates the line where the problem
 occurred (line 1 of <stdin>,
 which stands for “standard input”).
Now that we can use the Python interpreter, we’re ready to start
 working with language data.

Getting Started with NLTK

Before going further you should install NLTK, downloadable for
 free from http://www.nltk.org/. Follow the
 instructions there to download the version required for your
 platform.
Once you’ve installed NLTK, start up the Python interpreter as
 before, and install the data required for the book by typing the
 following two commands at the Python prompt, then selecting the
 book collection as shown in Figure 1-1.
>>> import nltk
>>> nltk.download()
[image: Downloading the NLTK Book Collection: Browse the available packages using nltk.download(). The Collections tab on the downloader shows how the packages are grouped into sets, and you should select the line labeled book to obtain all data required for the examples and exercises in this book. It consists of about 30 compressed files requiring about 100Mb disk space. The full collection of data (i.e., all in the downloader) is about five times this size (at the time of writing) and continues to expand.]

Figure 1-1. Downloading the NLTK Book Collection:
 Browse the available packages using nltk.download(). The Collections tab on the downloader shows how
 the packages are grouped into sets, and you should select the line
 labeled book to obtain all data
 required for the examples and exercises in this book. It consists of
 about 30 compressed files requiring about 100Mb disk space. The full
 collection of data (i.e., all in
 the downloader) is about five times this size (at the time of
 writing) and continues to expand.

Once the data is downloaded to your machine, you can load some
 of it using the Python interpreter. The first step is to type a
 special command at the Python prompt, which tells the interpreter to
 load some texts for us to explore: from
 nltk.book import *. This says “from NLTK’s book module, load all items.” The book module contains all the data you will
 need as you read this chapter. After printing a welcome message, it
 loads the text of several books (this will take a few seconds). Here’s
 the command again, together with the output that you will see. Take
 care to get spelling and punctuation right, and remember that you
 don’t type the >>>.
>>> from nltk.book import *
*** Introductory Examples for the NLTK Book ***
Loading text1, ..., text9 and sent1, ..., sent9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.
text1: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G . K . Chesterton 1908
>>>
Any time we want to find out about these texts, we just have to
 enter their names at the Python prompt:
>>> text1
<Text: Moby Dick by Herman Melville 1851>
>>> text2
<Text: Sense and Sensibility by Jane Austen 1811>
>>>
Now that we can use the Python interpreter, and have some data
 to work with, we’re ready to get started.

Searching Text

There are many ways to examine the context of a text apart from
 simply reading it. A concordance view shows us every occurrence of a
 given word, together with some context. Here we look up the word
 monstrous in Moby Dick by
 entering text1 followed by a
 period, then the term concordance, and then placing "monstrous" in parentheses:
>>> text1.concordance("monstrous")
Building index...
Displaying 11 of 11 matches:
ong the former , one was of a most monstrous size This came towards us ,
ON OF THE PSALMS . " Touching that monstrous bulk of the whale or ork we have r
ll over with a heathenish array of monstrous clubs and spears . Some were thick
d as you gazed , and wondered what monstrous cannibal and savage could ever hav
that has survived the flood ; most monstrous and most mountainous ! That Himmal
they might scout at Moby Dick as a monstrous fable , or still worse and more de
th of Radney .'" CHAPTER 55 Of the monstrous Pictures of Whales . I shall ere l
ing Scenes . In connexion with the monstrous pictures of whales , I am strongly
ere to enter upon those still more monstrous stories of them which are to be fo
ght have been rummaged out of this monstrous cabinet there is no telling . But
of Whale - Bones ; for Whales of a monstrous size are oftentimes cast up dead u
>>>
Note
Your Turn: Try searching
 for other words; to save re-typing, you might be able to use
 up-arrow, Ctrl-up-arrow, or Alt-p to access the previous command and
 modify the word being searched. You can also try searches on some of
 the other texts we have included. For example, search
 Sense and Sensibility for the word
 affection, using text2.concordance("affection"). Search the
 book of Genesis to find out how long some people lived, using:
 text3.concordance("lived"). You
 could look at text4, the
 Inaugural Address Corpus, to see examples of
 English going back to 1789, and search for words like
 nation, terror,
 god to see how these words have been used
 differently over time. We’ve also included text5, the NPS Chat
 Corpus: search this for unconventional words like
 im, ur,
 lol. (Note that this corpus is
 uncensored!)

Once you’ve spent a little while examining these texts, we hope
 you have a new sense of the richness and diversity of language. In the
 next chapter you will learn how to access a broader range of text,
 including text in languages other than English.
A concordance permits us to see words in context. For example,
 we saw that monstrous occurred in contexts such
 as the ___ pictures and the ___
 size. What other words appear in a similar range of
 contexts? We can find out by appending the term similar to the name of the text in question, then inserting the
 relevant word in parentheses:
>>> text1.similar("monstrous")
Building word-context index...
subtly impalpable pitiable curious imperial perilous trustworthy
abundant untoward singular lamentable few maddens horrible loving lazy
mystifying christian exasperate puzzled
>>> text2.similar("monstrous")
Building word-context index...
very exceedingly so heartily a great good amazingly as sweet
remarkably extremely vast
>>>
Observe that we get different results for different texts.
 Austen uses this word quite differently from Melville; for her,
 monstrous has positive connotations, and
 sometimes functions as an intensifier like the word
 very.
The term common_contexts allows us to examine just the contexts that are shared
 by two or more words, such as monstrous and
 very. We have to enclose these words by square
 brackets as well as parentheses, and separate them with a
 comma:
>>> text2.common_contexts(["monstrous", "very"])
be_glad am_glad a_pretty is_pretty a_lucky
>>>
Note
Your Turn: Pick another
 pair of words and compare their usage in two different texts, using
 the similar() and common_contexts() functions.

It is one thing to automatically detect that a particular word
 occurs in a text, and to display some words that appear in the same
 context. However, we can also determine the
 location of a word in the text: how many words
 from the beginning it appears. This positional information can be
 displayed using a dispersion plot.
 Each stripe represents an instance of a word, and each row represents
 the entire text. In Figure 1-2 we see some
 striking patterns of word usage over the last 220 years (in an
 artificial text constructed by joining the texts of the Inaugural
 Address Corpus end-to-end). You can produce this plot as shown below.
 You might like to try more words (e.g., liberty,
 constitution) and different texts. Can you
 predict the dispersion of a word before you view it? As before, take
 care to get the quotes, commas, brackets, and parentheses exactly
 right.
>>> text4.dispersion_plot(["citizens", "democracy", "freedom", "duties", "America"])
>>>
[image: Lexical dispersion plot for words in U.S. Presidential Inaugural Addresses: This can be used to investigate changes in language use over time.]

Figure 1-2. Lexical dispersion plot for words in U.S. Presidential
 Inaugural Addresses: This can be used to investigate changes in
 language use over time.

Note
Important: You need to have
 Python’s NumPy and Matplotlib packages installed in order to produce
 the graphical plots used in this book. Please see http://www.nltk.org/ for installation
 instructions.

Now, just for fun, let’s try generating some random text in the
 various styles we have just seen. To do this, we type the name of the
 text followed by the term generate. (We need to include the parentheses, but there’s
 nothing that goes between them.)
>>> text3.generate()
In the beginning of his brother is a hairy man , whose top may reach
unto heaven ; and ye shall sow the land of Egypt there was no bread in
all that he was taken out of the month , upon the earth . So shall thy
wages be ? And they made their father ; and Isaac was old , and kissed
him : and Laban with his cattle in the midst of the hands of Esau thy
first born , and Phichol the chief butler unto his son Isaac , she
>>>
Note that the first time you run this command, it is slow
 because it gathers statistics about word sequences. Each time you run
 it, you will get different output text. Now try generating random text
 in the style of an inaugural address or an Internet chat room.
 Although the text is random, it reuses common words and phrases from
 the source text and gives us a sense of its style and content. (What
 is lacking in this randomly generated text?)
Note
When generate produces its output, punctuation is split off from
 the preceding word. While this is not correct formatting for English
 text, we do it to make clear that words and punctuation are
 independent of one another. You will learn more about this in Chapter 3.

Counting Vocabulary

The most obvious fact about texts that emerges from the
 preceding examples is that they differ in the vocabulary they use. In
 this section, we will see how to use the computer to count the words
 in a text in a variety of useful ways. As before, you will jump right
 in and experiment with the Python interpreter, even though you may not
 have studied Python systematically yet. Test your understanding by
 modifying the examples, and trying the exercises at the end of the
 chapter.
Let’s begin by finding out the length of a text from start to
 finish, in terms of the words and punctuation symbols that appear. We
 use the term len to get the length
 of something, which we’ll apply here to the book of Genesis:
>>> len(text3)
44764
>>>
So Genesis has 44,764 words and punctuation symbols, or
 “tokens.” A token is the technical
 name for a sequence of characters—such as hairy, his, or :)—that we want to treat as a group. When we
 count the number of tokens in a text, say, the phrase to be
 or not to be, we are counting occurrences of these
 sequences. Thus, in our example phrase there are two occurrences of
 to, two of be, and one each
 of or and not. But there are
 only four distinct vocabulary items in this phrase. How many distinct
 words does the book of Genesis contain? To work this out in Python, we
 have to pose the question slightly differently. The vocabulary of a
 text is just the set of tokens that it uses,
 since in a set, all duplicates are collapsed together. In Python we
 can obtain the vocabulary items of text3 with the command: set(text3). When you do this, many screens
 of words will fly past. Now try the following:
>>> sorted(set(text3)) [image: 1]
['!', "'", '(', ')', ',', ',)', '.', '.)', ':', ';', ';)', '?', '?)',
'A', 'Abel', 'Abelmizraim', 'Abidah', 'Abide', 'Abimael', 'Abimelech',
'Abr', 'Abrah', 'Abraham', 'Abram', 'Accad', 'Achbor', 'Adah', ...]
>>> len(set(text3)) [image: 2]
2789
>>>
By wrapping sorted() around
 the Python expression set(text3)
 [image: 1], we obtain a sorted list of
 vocabulary items, beginning with various punctuation symbols and
 continuing with words starting with A. All
 capitalized words precede lowercase words. We discover the size of the
 vocabulary indirectly, by asking for the number of items in the set,
 and again we can use len to obtain
 this number [image: 2]. Although it has 44,764
 tokens, this book has only 2,789 distinct words, or “word types.” A
 word type is the form or spelling
 of the word independently of its specific occurrences in a text—that
 is, the word considered as a unique item of vocabulary. Our count of
 2,789 items will include punctuation symbols, so we will generally
 call these unique items types
 instead of word types.
Now, let’s calculate a measure of the lexical richness of the
 text. The next example shows us that each word is used 16 times on
 average (we need to make sure Python uses floating-point
 division):
>>> from __future__ import division
>>> len(text3) / len(set(text3))
16.050197203298673
>>>
Next, let’s focus on particular words. We can count how often a
 word occurs in a text, and compute what percentage of the text is
 taken up by a specific word:
>>> text3.count("smote")
5
>>> 100 * text4.count('a') / len(text4)
1.4643016433938312
>>>
Note
Your Turn: How many times
 does the word lol appear in text5? How much is this as a percentage of
 the total number of words in this text?

You may want to repeat such calculations on several texts, but
 it is tedious to keep retyping the formula. Instead, you can come up
 with your own name for a task, like “lexical_diversity” or
 “percentage”, and associate it with a block of code. Now you only have
 to type a short name instead of one or more complete lines of Python
 code, and you can reuse it as often as you like. The block of code
 that does a task for us is called a function, and we define a short name for our
 function with the keyword def. The
 next example shows how to define two new functions, lexical_diversity() and percentage():
>>> def lexical_diversity(text): [image: 1]
... return len(text) / len(set(text)) [image: 2]
...
>>> def percentage(count, total): [image: 3]
... return 100 * count / total
...
Caution!
The Python interpreter changes the prompt from >>> to ... after encountering the colon at the
 end of the first line. The ...
 prompt indicates that Python expects an indented code block to appear next. It is
 up to you to do the indentation, by typing four spaces or hitting
 the Tab key. To finish the indented block, just enter a blank
 line.

In the definition of lexical_diversity() [image: 1], we specify a parameter labeled text. This parameter is a “placeholder” for
 the actual text whose lexical diversity we want to compute, and
 reoccurs in the block of code that will run when the function is used,
 in line [image: 2]. Similarly, percentage() is defined to take two
 parameters, labeled count and total [image: 3].
Once Python knows that lexical_diversity() and percentage() are the names for specific
 blocks of code, we can go ahead and use these functions:
>>> lexical_diversity(text3)
16.050197203298673
>>> lexical_diversity(text5)
7.4200461589185629
>>> percentage(4, 5)
80.0
>>> percentage(text4.count('a'), len(text4))
1.4643016433938312
>>>
To recap, we use or call a
 function such as lexical_diversity() by typing its name,
 followed by an open parenthesis, the name of the text, and then a
 close parenthesis. These parentheses will show up often; their role is
 to separate the name of a task—such as lexical_diversity()—from the data that the
 task is to be performed on—such as text3. The data value that we place in the
 parentheses when we call a function is an argument to the function.
You have already encountered several functions in this chapter,
 such as len(), set(), and sorted(). By convention, we will always add
 an empty pair of parentheses after a function name, as in len(), just to make clear that what we are
 talking about is a function rather than some other kind of Python
 expression. Functions are an important concept in programming, and we
 only mention them at the outset to give newcomers a sense of the power
 and creativity of programming. Don’t worry if you find it a bit
 confusing right now.
Later we’ll see how to use functions when tabulating data, as in
 Table 1-1. Each row of the table will involve
 the same computation but with different data, and we’ll do this
 repetitive work using a function.
Table 1-1. Lexical diversity of various genres in the Brown
 Corpus
	Genre
	Tokens
	Types
	Lexical diversity

	skill and hobbies
	82345
	11935
	6.9

	humor
	21695
	5017
	4.3

	fiction: science
	14470
	3233
	4.5

	press: reportage
	100554
	14394
	7.0

	fiction: romance
	70022
	8452
	8.3

	religion
	39399
	6373
	6.2

A Closer Look at Python: Texts as Lists of Words

You’ve seen some important elements of the Python programming
 language. Let’s take a few moments to review them
 systematically.
Lists

What is a text? At one level, it is a sequence of symbols on a
 page such as this one. At another level, it is a sequence of chapters,
 made up of a sequence of sections, where each section is a sequence of
 paragraphs, and so on. However, for our purposes, we will think of a
 text as nothing more than a sequence of words and punctuation. Here’s
 how we represent text in Python, in this case the opening sentence of
 Moby Dick:
>>> sent1 = ['Call', 'me', 'Ishmael', '.']
>>>
After the prompt we’ve given a name we made up, sent1, followed by the equals sign, and then
 some quoted words, separated with commas, and surrounded with
 brackets. This bracketed material is known as a list in Python: it is how we store a text. We
 can inspect it by typing the name [image: 1].
 We can ask for its length [image: 2]. We can even
 apply our own lexical_diversity()
 function to it [image: 3].
>>> sent1 [image: 1]
['Call', 'me', 'Ishmael', '.']
>>> len(sent1) [image: 2]
4
>>> lexical_diversity(sent1) [image: 3]
1.0
>>>
Some more lists have been defined for you, one for the opening
 sentence of each of our texts, sent2 … sent9. We inspect two of them here; you can
 see the rest for yourself using the Python interpreter (if you get an
 error saying that sent2 is not
 defined, you need to first type from
 nltk.book import *).
>>> sent2
['The', 'family', 'of', 'Dashwood', 'had', 'long',
'been', 'settled', 'in', 'Sussex', '.']
>>> sent3
['In', 'the', 'beginning', 'God', 'created', 'the',
'heaven', 'and', 'the', 'earth', '.']
>>>
Note
Your Turn: Make up a few
 sentences of your own, by typing a name, equals sign, and a list of
 words, like this: ex1 = ['Monty', 'Python',
 'and', 'the', 'Holy', 'Grail']. Repeat some of the other
 Python operations we saw earlier in Computing with Language: Texts and Words, e.g.,
 sorted(ex1), len(set(ex1)), ex1.count('the').

A pleasant surprise is that we can use Python’s addition
 operator on lists. Adding two lists [image: 1] creates a new list with everything
 from the first list, followed by everything from the second
 list:
>>> ['Monty', 'Python'] + ['and', 'the', 'Holy', 'Grail'] [image: 1]
['Monty', 'Python', 'and', 'the', 'Holy', 'Grail']
Note
This special use of the addition operation is called concatenation; it combines the lists
 together into a single list. We can concatenate sentences to build
 up a text.

We don’t have to literally type the lists either; we can use
 short names that refer to pre-defined lists.
>>> sent4 + sent1
['Fellow', '-', 'Citizens', 'of', 'the', 'Senate', 'and', 'of', 'the',
'House', 'of', 'Representatives', ':', 'Call', 'me', 'Ishmael', '.']
>>>
What if we want to add a single item to a list? This is known as
 appending. When we append() to a list, the list itself is updated as a result of
 the operation.
>>> sent1.append("Some")
>>> sent1
['Call', 'me', 'Ishmael', '.', 'Some']
>>>

Indexing Lists

As we have seen, a text in Python is a list of words,
 represented using a combination of brackets and quotes. Just as with
 an ordinary page of text, we can count up the total number of words in
 text1 with len(text1), and count the occurrences in a
 text of a particular word—say, heaven—using
 text1.count('heaven').
With some patience, we can pick out the 1st, 173rd, or even
 14,278th word in a printed text. Analogously, we can identify the
 elements of a Python list by their order of occurrence in the list.
 The number that represents this position is the item’s index. We instruct Python to show us the item
 that occurs at an index such as 173
 in a text by writing the name of the text followed by the index inside
 square brackets:
>>> text4[173]
'awaken'
>>>
We can do the converse; given a word, find the index of when it
 first occurs:
>>> text4.index('awaken')
173
>>>
Indexes are a common way to access the words of a text, or, more
 generally, the elements of any list. Python permits us to access
 sublists as well, extracting manageable pieces of language from large
 texts, a technique known as slicing.
>>> text5[16715:16735]
['U86', 'thats', 'why', 'something', 'like', 'gamefly', 'is', 'so', 'good',
'because', 'you', 'can', 'actually', 'play', 'a', 'full', 'game', 'without',
'buying', 'it']
>>> text6[1600:1625]
['We', "'", 're', 'an', 'anarcho', '-', 'syndicalist', 'commune', '.', 'We',
'take', 'it', 'in', 'turns', 'to', 'act', 'as', 'a', 'sort', 'of', 'executive',
'officer', 'for', 'the', 'week']
>>>
Indexes have some subtleties, and we’ll explore these with the
 help of an artificial sentence:
>>> sent = ['word1', 'word2', 'word3', 'word4', 'word5',
... 'word6', 'word7', 'word8', 'word9', 'word10']
>>> sent[0]
'word1'
>>> sent[9]
'word10'
>>>
Notice that our indexes start from zero: sent element zero, written sent[0], is the first word, 'word1', whereas sent element 9 is 'word10'. The reason is simple: the moment
 Python accesses the content of a list from the computer’s memory, it
 is already at the first element; we have to tell it how many elements
 forward to go. Thus, zero steps forward leaves it at the first
 element.
Note
This practice of counting from zero is initially confusing,
 but typical of modern programming languages. You’ll quickly get the
 hang of it if you’ve mastered the system of counting centuries where
 19XY is a year in the 20th century, or if you live in a country
 where the floors of a building are numbered from 1, and so walking
 up n-1 flights of stairs takes you to level
 n.

Now, if we accidentally use an index that is too large, we get
 an error:
>>> sent[10]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
IndexError: list index out of range
>>>
This time it is not a syntax error, because the program fragment
 is syntactically correct. Instead, it is a runtime error, and it produces a Traceback message that shows the context of
 the error, followed by the name of the error, IndexError, and a brief explanation.
Let’s take a closer look at slicing, using our artificial
 sentence again. Here we verify that the slice 5:8 includes sent elements at indexes 5, 6, and
 7:
>>> sent[5:8]
['word6', 'word7', 'word8']
>>> sent[5]
'word6'
>>> sent[6]
'word7'
>>> sent[7]
'word8'
>>>
By convention, m:n means
 elements m…n-1. As the next
 example shows, we can omit the first number if the slice begins at the
 start of the list [image: 1], and we can omit the
 second number if the slice goes to the end [image: 2]:
>>> sent[:3] [image: 1]
['word1', 'word2', 'word3']
>>> text2[141525:] [image: 2]
['among', 'the', 'merits', 'and', 'the', 'happiness', 'of', 'Elinor', 'and', 'Marianne',
',', 'let', 'it', 'not', 'be', 'ranked', 'as', 'the', 'least', 'considerable', ',',
'that', 'though', 'sisters', ',', 'and', 'living', 'almost', 'within', 'sight', 'of',
'each', 'other', ',', 'they', 'could', 'live', 'without', 'disagreement', 'between',
'themselves', ',', 'or', 'producing', 'coolness', 'between', 'their', 'husbands', '.',
'THE', 'END']
>>>
We can modify an element of a list by assigning to one of its
 index values. In the next example, we put sent[0] on the left of the equals sign [image: 1]. We can also replace an entire slice
 with new material [image: 2]. A
 consequence of this last change is that the list only has four
 elements, and accessing a later value generates an error [image: 3].
>>> sent[0] = 'First' [image: 1]
>>> sent[9] = 'Last'
>>> len(sent)
10
>>> sent[1:9] = ['Second', 'Third'] [image: 2]
>>> sent
['First', 'Second', 'Third', 'Last']
>>> sent[9] [image: 3]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
IndexError: list index out of range
>>>
Note
Your Turn: Take a few
 minutes to define a sentence of your own and modify individual words
 and groups of words (slices) using the same methods used earlier.
 Check your understanding by trying the exercises on lists at the end
 of this chapter.

Variables

From the start of Computing with Language: Texts and Words, you have had
 access to texts called text1,
 text2, and so on. It saved a lot of
 typing to be able to refer to a 250,000-word book with a short name
 like this! In general, we can make up names for anything we care to
 calculate. We did this ourselves in the previous sections, e.g.,
 defining a variable sent1, as follows:
>>> sent1 = ['Call', 'me', 'Ishmael', '.']
>>>
Such lines have the form: variable =
 expression. Python will evaluate the expression, and save
 its result to the variable. This process is called assignment. It does not generate any output;
 you have to type the variable on a line of its own to inspect its
 contents. The equals sign is slightly misleading, since information is
 moving from the right side to the left. It might help to think of it
 as a left-arrow. The name of the variable can be anything you like,
 e.g., my_sent, sentence, xyzzy. It must start with a letter, and can
 include numbers and underscores. Here are some examples of variables
 and assignments:
>>> my_sent = ['Bravely', 'bold', 'Sir', 'Robin', ',', 'rode',
... 'forth', 'from', 'Camelot', '.']
>>> noun_phrase = my_sent[1:4]
>>> noun_phrase
['bold', 'Sir', 'Robin']
>>> wOrDs = sorted(noun_phrase)
>>> wOrDs
['Robin', 'Sir', 'bold']
>>>
Remember that capitalized words appear before lowercase words in
 sorted lists.
Note
Notice in the previous example that we split the definition of
 my_sent over two lines. Python
 expressions can be split across multiple lines, so long as this
 happens within any kind of brackets. Python uses the ... prompt to indicate that more input is
 expected. It doesn’t matter how much indentation is used in these
 continuation lines, but some indentation usually makes them easier
 to read.

It is good to choose meaningful variable names to remind you—and
 to help anyone else who reads your Python code—what your code is meant
 to do. Python does not try to make sense of the names; it blindly
 follows your instructions, and does not object if you do something
 confusing, such as one = 'two' or
 two = 3. The only restriction is
 that a variable name cannot be any of Python’s reserved words, such as
 def, if, not,
 and import. If you use a reserved
 word, Python will produce a syntax error:
>>> not = 'Camelot'
File "<stdin>", line 1
 not = 'Camelot'
 ^
SyntaxError: invalid syntax
>>>
We will often use variables to hold intermediate steps of a
 computation, especially when this makes the code easier to follow.
 Thus len(set(text1)) could also be
 written:
>>> vocab = set(text1)
>>> vocab_size = len(vocab)
>>> vocab_size
19317
>>>
Caution!
Take care with your choice of names (or identifiers) for Python variables. First,
 you should start the name with a letter, optionally followed by
 digits (0 to 9) or letters. Thus, abc23 is fine, but 23abc will cause a syntax error. Names are
 case-sensitive, which means that myVar and myvar are distinct variables. Variable
 names cannot contain whitespace, but you can separate words using an
 underscore, e.g., my_var. Be
 careful not to insert a hyphen instead of an underscore: my-var is wrong, since Python interprets
 the - as a minus sign.

Strings

Some of the methods we used to access the elements of a list
 also work with individual words, or strings. For example, we can assign a string
 to a variable [image: 1], index a string
 [image: 2], and slice a string [image: 3].
>>> name = 'Monty' [image: 1]
>>> name[0] [image: 2]
'M'
>>> name[:4] [image: 3]
'Mont'
>>>
We can also perform multiplication and addition with
 strings:
>>> name * 2
'MontyMonty'
>>> name + '!'
'Monty!'
>>>
We can join the words of a list to make a single string, or
 split a string into a list, as follows:
>>> ' '.join(['Monty', 'Python'])
'Monty Python'
>>> 'Monty Python'.split()
['Monty', 'Python']
>>>
We will come back to the topic of strings in Chapter 3. For the
 time being, we have two important building blocks—lists and
 strings—and are ready to get back to some language analysis.

Computing with Language: Simple Statistics

Let’s return to our exploration of the ways we can bring our
 computational resources to bear on large quantities of text. We began
 this discussion in Computing with Language: Texts and Words, and saw how to
 search for words in context, how to compile the vocabulary of a text,
 how to generate random text in the same style, and so on.
In this section, we pick up the question of what makes a text
 distinct, and use automatic methods to find characteristic words and
 expressions of a text. As in Computing with Language: Texts and Words, you can try
 new features of the Python language by copying them into the
 interpreter, and you’ll learn about these features systematically in the
 following section.
Before continuing further, you might like to check your
 understanding of the last section by predicting the output of the
 following code. You can use the interpreter to check whether you got it
 right. If you’re not sure how to do this task, it would be a good idea
 to review the previous section before continuing further.
>>> saying = ['After', 'all', 'is', 'said', 'and', 'done',
... 'more', 'is', 'said', 'than', 'done']
>>> tokens = set(saying)
>>> tokens = sorted(tokens)
>>> tokens[-2:]
what output do you expect here?
>>>
Frequency Distributions

How can we automatically identify the words of a text that are
 most informative about the topic and genre of the text? Imagine how
 you might go about finding the 50 most frequent words of a book. One
 method would be to keep a tally for each vocabulary item, like that
 shown in Figure 1-3. The tally would need thousands
 of rows, and it would be an exceedingly laborious process—so laborious
 that we would rather assign the task to a machine.
[image: Counting words appearing in a text (a frequency distribution).]

Figure 1-3. Counting words appearing in a text (a frequency
 distribution).

The table in Figure 1-3 is known as a
 frequency distribution , and it tells us the frequency of each vocabulary item
 in the text. (In general, it could count any kind of observable
 event.) It is a “distribution” since it tells us how the total number
 of word tokens in the text are distributed across the vocabulary
 items. Since we often need frequency distributions in language
 processing, NLTK provides built-in support for them. Let’s use a
 FreqDist to find the 50 most frequent words of Moby
 Dick. Try to work out what is going on here, then read the
 explanation that follows.
>>> fdist1 = FreqDist(text1) [image: 1]
>>> fdist1 [image: 2]
<FreqDist with 260819 outcomes>
>>> vocabulary1 = fdist1.keys() [image: 3]
>>> vocabulary1[:50] [image: 4]
[',', 'the', '.', 'of', 'and', 'a', 'to', ';', 'in', 'that', "'", '-',
'his', 'it', 'I', 's', 'is', 'he', 'with', 'was', 'as', '"', 'all', 'for',
'this', '!', 'at', 'by', 'but', 'not', '--', 'him', 'from', 'be', 'on',
'so', 'whale', 'one', 'you', 'had', 'have', 'there', 'But', 'or', 'were',
'now', 'which', '?', 'me', 'like']
>>> fdist1['whale']
906
>>>
When we first invoke FreqDist, we pass the name of the text as an argument [image: 1]. We can inspect the total number of
 words (“outcomes”) that have been counted up [image: 2]—260,819 in the case of
 Moby Dick. The expression keys() gives us a list of all the distinct types in the text
 [image: 3], and we can look at the first 50
 of these by slicing the list [image: 4].
Note
Your Turn: Try the
 preceding frequency distribution example for yourself, for text2. Be careful to use the correct
 parentheses and uppercase letters. If you get an error message
 NameError: name 'FreqDist' is not
 defined, you need to start your work with from nltk.book import *.

Do any words produced in the last example help us grasp the
 topic or genre of this text? Only one word,
 whale, is slightly informative! It occurs over
 900 times. The rest of the words tell us nothing about the text;
 they’re just English “plumbing.” What proportion of the text is taken
 up with such words? We can generate a cumulative frequency plot for
 these words, using fdist1.plot(50,
 cumulative=True), to produce the graph in Figure 1-4. These 50 words account for nearly half
 the book!
[image: Cumulative frequency plot for the 50 most frequently used words in Moby Dick, which account for nearly half of the tokens.]

Figure 1-4. Cumulative frequency plot for the 50 most frequently used
 words in Moby Dick, which account for
 nearly half of the tokens.

If the frequent words don’t help us, how about the words that
 occur once only, the so-called hapaxes? View them by typing fdist1.hapaxes(). This list contains
 lexicographer,
 cetological, contraband,
 expostulations, and about 9,000 others. It seems
 that there are too many rare words, and without seeing the context we
 probably can’t guess what half of the hapaxes mean in any case! Since
 neither frequent nor infrequent words help, we need to try something
 else.

Fine-Grained Selection of Words

Next, let’s look at the long words of a
 text; perhaps these will be more characteristic and informative. For
 this we adapt some notation from set theory. We would like to find the
 words from the vocabulary of the text that are more than 15 characters
 long. Let’s call this property P, so that
 P(w) is true if and only if
 w is more than 15 characters long. Now we can
 express the words of interest using mathematical set notation as shown
 in a. This means “the set
 of all w such that w is an
 element of V (the vocabulary) and
 w has property P.”
Example 1-1.
	{w | w ∈
 V &
 P(w)}

	[w for w in V if
 p(w)]

The corresponding Python expression is given in b. (Note that it produces a
 list, not a set, which means that duplicates are possible.) Observe
 how similar the two notations are. Let’s go one more step and write
 executable Python code:
>>> V = set(text1)
>>> long_words = [w for w in V if len(w) > 15]
>>> sorted(long_words)
['CIRCUMNAVIGATION', 'Physiognomically', 'apprehensiveness', 'cannibalistically',
'characteristically', 'circumnavigating', 'circumnavigation', 'circumnavigations',
'comprehensiveness', 'hermaphroditical', 'indiscriminately', 'indispensableness',
'irresistibleness', 'physiognomically', 'preternaturalness', 'responsibilities',
'simultaneousness', 'subterraneousness', 'supernaturalness', 'superstitiousness',
'uncomfortableness', 'uncompromisedness', 'undiscriminating', 'uninterpenetratingly']
>>>
For each word w in the
 vocabulary V, we check whether
 len(w) is greater than 15; all
 other words will be ignored. We will discuss this syntax more
 carefully later.
Note
Your Turn: Try out the
 previous statements in the Python interpreter, and experiment with
 changing the text and changing the length condition. Does it make an
 difference to your results if you change the variable names, e.g.,
 using [word for word in vocab if
 ...]?

Let’s return to our task of finding words that characterize a
 text. Notice that the long words in text4 reflect its national
 focus—constitutionally,
 transcontinental—whereas those in text5 reflect its informal content:
 boooooooooooglyyyyyy and
 yuuuuuuuuuuuummmmmmmmmmmm. Have we succeeded in
 automatically extracting words that typify a text? Well, these very
 long words are often hapaxes (i.e., unique) and perhaps it would be
 better to find frequently occurring long words.
 This seems promising since it eliminates frequent short words (e.g.,
 the) and infrequent long words (e.g.,
 antiphilosophists). Here are all words from the
 chat corpus that are longer than seven characters, that occur more
 than seven times:
>>> fdist5 = FreqDist(text5)
>>> sorted([w for w in set(text5) if len(w) > 7 and fdist5[w] > 7])
['#14-19teens', '#talkcity_adults', '((((((((((', '........', 'Question',
'actually', 'anything', 'computer', 'cute.-ass', 'everyone', 'football',
'innocent', 'listening', 'remember', 'seriously', 'something', 'together',
'tomorrow', 'watching']
>>>
Notice how we have used two conditions: len(w) > 7 ensures that the words are
 longer than seven letters, and fdist5[w] >
 7 ensures that these words occur more than seven times. At
 last we have managed to automatically identify the frequently
 occurring content-bearing words of the text. It is a modest but
 important milestone: a tiny piece of code, processing tens of
 thousands of words, produces some informative output.

Collocations and Bigrams

A collocation is a sequence
 of words that occur together unusually often. Thus red
 wine is a collocation, whereas the
 wine is not. A characteristic of collocations is that they
 are resistant to substitution with words that have similar senses; for
 example, maroon wine sounds very odd.
To get a handle on collocations, we start off by extracting from
 a text a list of word pairs, also known as bigrams. This is easily accomplished with the
 function bigrams():
>>> bigrams(['more', 'is', 'said', 'than', 'done'])
[('more', 'is'), ('is', 'said'), ('said', 'than'), ('than', 'done')]
>>>
Here we see that the pair of words
 than-done is a bigram, and we write it in Python
 as ('than', 'done'). Now,
 collocations are essentially just frequent bigrams, except that we
 want to pay more attention to the cases that involve rare words. In
 particular, we want to find bigrams that occur more often than we
 would expect based on the frequency of individual words. The collocations() function does this for us (we will see how it works
 later):
>>> text4.collocations()
Building collocations list
United States; fellow citizens; years ago; Federal Government; General
Government; American people; Vice President; Almighty God; Fellow
citizens; Chief Magistrate; Chief Justice; God bless; Indian tribes;
public debt; foreign nations; political parties; State governments;
National Government; United Nations; public money
>>> text8.collocations()
Building collocations list
medium build; social drinker; quiet nights; long term; age open;
financially secure; fun times; similar interests; Age open; poss
rship; single mum; permanent relationship; slim build; seeks lady;
Late 30s; Photo pls; Vibrant personality; European background; ASIAN
LADY; country drives
>>>
The collocations that emerge are very specific to the genre of
 the texts. In order to find red wine as a
 collocation, we would need to process a much larger body of
 text.

Counting Other Things

Counting words is useful, but we can count other things too. For
 example, we can look at the distribution of word lengths in a text, by
 creating a FreqDist out of a long list of numbers, where each number is the
 length of the corresponding word in the text:
>>> [len(w) for w in text1] [image: 1]
[1, 4, 4, 2, 6, 8, 4, 1, 9, 1, 1, 8, 2, 1, 4, 11, 5, 2, 1, 7, 6, 1, 3, 4, 5, 2, ...]
>>> fdist = FreqDist([len(w) for w in text1]) [image: 2]
>>> fdist [image: 3]
<FreqDist with 260819 outcomes>
>>> fdist.keys()
[3, 1, 4, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20]
>>>
We start by deriving a list of the lengths of words in text1 [image: 1],
 and the FreqDist then counts the number of times each of these occurs
 [image: 2]. The result [image: 3] is a distribution containing a
 quarter of a million items, each of which is a number corresponding to
 a word token in the text. But there are only 20 distinct items being
 counted, the numbers 1 through 20, because there are only 20 different
 word lengths. I.e., there are words consisting of just 1 character, 2
 characters, ..., 20 characters, but none with 21 or more characters.
 One might wonder how frequent the different lengths of words are
 (e.g., how many words of length 4 appear in the text, are there more
 words of length 5 than length 4, etc.). We can do this as
 follows:
>>> fdist.items()
[(3, 50223), (1, 47933), (4, 42345), (2, 38513), (5, 26597), (6, 17111), (7, 14399),
(8, 9966), (9, 6428), (10, 3528), (11, 1873), (12, 1053), (13, 567), (14, 177),
(15, 70), (16, 22), (17, 12), (18, 1), (20, 1)]
>>> fdist.max()
3
>>> fdist[3]
50223
>>> fdist.freq(3)
0.19255882431878046
>>>
From this we see that the most frequent word length is 3, and
 that words of length 3 account for roughly 50,000 (or 20%) of the
 words making up the book. Although we will not pursue it here, further
 analysis of word length might help us understand differences between authors, genres, or
 languages. Table 1-2 summarizes the functions defined in frequency
 distributions.
Table 1-2. Functions defined for NLTK’s frequency distributions
	Example
	Description

	fdist =
 FreqDist(samples)
	Create a frequency distribution containing the
 given samples

	fdist.inc(sample)
	Increment the count for this
 sample

	fdist['monstrous']
	Count of the number of times a given sample
 occurred

	fdist.freq('monstrous')
	Frequency of a given sample

	fdist.N()
	Total number of samples

	fdist.keys()
	The samples sorted in order of decreasing
 frequency

	for sample in
 fdist:
	Iterate over the samples, in order of decreasing
 frequency

	fdist.max()
	Sample with the greatest count

	fdist.tabulate()
	Tabulate the frequency
 distribution

	fdist.plot()
	Graphical plot of the frequency
 distribution

	fdist.plot(cumulative=True)
	Cumulative plot of the frequency
 distribution

	fdist1 <
 fdist2
	Test if samples in fdist1 occur less frequently than in
 fdist2

Our discussion of frequency distributions has introduced some
 important Python concepts, and we will look at them systematically in
 Back to Python: Making Decisions and Taking Control.

Back to Python: Making Decisions and Taking Control

So far, our little programs have had some interesting qualities:
 the ability to work with language, and the potential to save human
 effort through automation. A key feature of programming is the ability
 of machines to make decisions on our behalf, executing instructions when
 certain conditions are met, or repeatedly looping through text data
 until some condition is satisfied. This feature is known as control, and is the focus of this
 section.
Conditionals

Python supports a wide range of operators, such as < and >=, for testing the relationship between
 values. The full set of these relational
 operators are shown in Table 1-3.
Table 1-3. Numerical comparison operators
	Operator
	Relationship

	<
	Less than

	<=
	Less than or equal to

	==
	Equal to (note this is two “=”signs, not one)

	!=
	Not equal to

	>
	Greater than

	>=
	Greater than or equal to

We can use these to select different words from a sentence of
 news text. Here are some examples—notice only the operator is changed
 from one line to the next. They all use sent7, the first sentence from text7 (Wall Street
 Journal). As before, if you get an error saying that
 sent7 is undefined, you need to
 first type: from nltk.book import
 *.
>>> sent7
['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', 'will', 'join', 'the',
'board', 'as', 'a', 'nonexecutive', 'director', 'Nov.', '29', '.']
>>> [w for w in sent7 if len(w) < 4]
[',', '61', 'old', ',', 'the', 'as', 'a', '29', '.']
>>> [w for w in sent7 if len(w) <= 4]
[',', '61', 'old', ',', 'will', 'join', 'the', 'as', 'a', 'Nov.', '29', '.']
>>> [w for w in sent7 if len(w) == 4]
['will', 'join', 'Nov.']
>>> [w for w in sent7 if len(w) != 4]
['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', 'the', 'board',
'as', 'a', 'nonexecutive', 'director', '29', '.']
>>>
There is a common pattern to all of these examples: [w for w in text if
 condition], where
 condition is a Python
 “test” that yields either true or false. In the cases shown in the
 previous code example, the condition is always a numerical comparison.
 However, we can also test various properties of words, using the
 functions listed in Table 1-4.
Table 1-4. Some word comparison operators
	Function
	Meaning

	s.startswith(t)
	Test if s
 starts with t

	s.endswith(t)
	Test if s ends
 with t

	t in
 s
	Test if t is
 contained inside s

	s.islower()
	Test if all cased characters in s are lowercase

	s.isupper()
	Test if all cased characters in s are uppercase

	s.isalpha()
	Test if all characters in s are alphabetic

	s.isalnum()
	Test if all characters in s are alphanumeric

	s.isdigit()
	Test if all characters in s are digits

	s.istitle()
	Test if s is
 titlecased (all words in s
 have initial capitals)

Here are some examples of these operators being used to select
 words from our texts: words ending with
 -ableness; words containing
 gnt; words having an initial capital; and words
 consisting entirely of digits.
>>> sorted([w for w in set(text1) if w.endswith('ableness')])
['comfortableness', 'honourableness', 'immutableness', 'indispensableness', ...]
>>> sorted([term for term in set(text4) if 'gnt' in term])
['Sovereignty', 'sovereignties', 'sovereignty']
>>> sorted([item for item in set(text6) if item.istitle()])
['A', 'Aaaaaaaaah', 'Aaaaaaaah', 'Aaaaaah', 'Aaaah', 'Aaaaugh', 'Aaagh', ...]
>>> sorted([item for item in set(sent7) if item.isdigit()])
['29', '61']
>>>
We can also create more complex conditions. If
 c is a condition, then not c is also a
 condition. If we have two conditions
 c1 and
 c2, then we can combine
 them to form a new condition using conjunction and disjunction:
 c1 and
 c2,
 c1 or
 c2.
Note
Your Turn: Run the
 following examples and try to explain what is going on in each one.
 Next, try to make up some conditions of your own.
>>> sorted([w for w in set(text7) if '-' in w and 'index' in w])
>>> sorted([wd for wd in set(text3) if wd.istitle() and len(wd) > 10])
>>> sorted([w for w in set(sent7) if not w.islower()])
>>> sorted([t for t in set(text2) if 'cie' in t or 'cei' in t])

Operating on Every Element

In Computing with Language: Simple Statistics, we saw
 some examples of counting items other than words. Let’s take a closer
 look at the notation we used:
>>> [len(w) for w in text1]
[1, 4, 4, 2, 6, 8, 4, 1, 9, 1, 1, 8, 2, 1, 4, 11, 5, 2, 1, 7, 6, 1, 3, 4, 5, 2, ...]
>>> [w.upper() for w in text1]
['[', 'MOBY', 'DICK', 'BY', 'HERMAN', 'MELVILLE', '1851', ']', 'ETYMOLOGY', '.', ...]
>>>
These expressions have the form [f(w)
 for ...] or [w.f() for
 ...], where f is a
 function that operates on a word to compute its length, or to convert
 it to uppercase. For now, you don’t need to understand the difference
 between the notations f(w) and
 w.f(). Instead, simply learn this
 Python idiom which performs the same operation on every element of a
 list. In the preceding examples, it goes through each word in text1, assigning each one in turn to the
 variable w and performing the
 specified operation on the variable.
Note
The notation just described is called a “list comprehension.”
 This is our first example of a Python idiom, a fixed notation that
 we use habitually without bothering to analyze each time. Mastering
 such idioms is an important part of becoming a fluent Python
 programmer.

Let’s return to the question of vocabulary size, and apply the
 same idiom here:
>>> len(text1)
260819
>>> len(set(text1))
19317
>>> len(set([word.lower() for word in text1]))
17231
>>>
Now that we are not double-counting words like
 This and this, which differ
 only in capitalization, we’ve wiped 2,000 off the vocabulary count! We
 can go a step further and eliminate numbers and punctuation from the
 vocabulary count by filtering out any non-alphabetic items:
>>> len(set([word.lower() for word in text1 if word.isalpha()]))
16948
>>>
This example is slightly complicated: it lowercases all the
 purely alphabetic items. Perhaps it would have been simpler just to
 count the lowercase-only items, but this gives the wrong answer
 (why?).
Don’t worry if you don’t feel confident with list comprehensions
 yet, since you’ll see many more examples along with explanations in
 the following chapters.

Nested Code Blocks

Most programming languages permit us to execute a block of code
 when a conditional expression, or
 if statement, is satisfied. We
 already saw examples of conditional tests in code like [w for w in sent7 if len(w) < 4]. In the
 following program, we have created a variable called word containing the string value 'cat'. The if statement checks whether the test
 len(word) < 5 is true. It is, so
 the body of the if statement is
 invoked and the print statement is
 executed, displaying a message to the user. Remember to indent the
 print statement by typing four
 spaces.
>>> word = 'cat'
>>> if len(word) < 5:
... print 'word length is less than 5'
... [image: 1]
word length is less than 5
>>>
When we use the Python interpreter we have to add an extra blank
 line [image: 1] in order for it to detect that
 the nested block is complete.
If we change the conditional test to len(word) >= 5, to check that the length
 of word is greater than or equal to
 5, then the test will no longer be
 true. This time, the body of the if
 statement will not be executed, and no message is shown to the
 user:
>>> if len(word) >= 5:
... print 'word length is greater than or equal to 5'
...
>>>
An if statement is known as a
 control structure because it
 controls whether the code in the indented block will be run. Another
 control structure is the for loop.
 Try the following, and remember to include the colon and the four
 spaces:
>>> for word in ['Call', 'me', 'Ishmael', '.']:
... print word
...
Call
me
Ishmael
.
>>>
This is called a loop because Python executes the code in
 circular fashion. It starts by performing the assignment word = 'Call', effectively using the
 word variable to name the first
 item of the list. Then, it displays the value of word to the user. Next, it goes back to the
 for statement, and performs the
 assignment word = 'me' before
 displaying this new value to the user, and so on. It continues in this
 fashion until every item of the list has been processed.

Looping with Conditions

Now we can combine the if and
 for statements. We will loop over
 every item of the list, and print the item only if it ends with the
 letter l. We’ll pick another name for the
 variable to demonstrate that Python doesn’t try to make sense of
 variable names.
>>> sent1 = ['Call', 'me', 'Ishmael', '.']
>>> for xyzzy in sent1:
... if xyzzy.endswith('l'):
... print xyzzy
...
Call
Ishmael
>>>
You will notice that if and
 for statements have a colon at the
 end of the line, before the indentation begins. In fact, all Python
 control structures end with a colon. The colon indicates that the
 current statement relates to the indented block that
 follows.
We can also specify an action to be taken if the condition of
 the if statement is not met. Here
 we see the elif (else if)
 statement, and the else statement.
 Notice that these also have colons before the indented code.
>>> for token in sent1:
... if token.islower():
... print token, 'is a lowercase word'
... elif token.istitle():
... print token, 'is a titlecase word'
... else:
... print token, 'is punctuation'
...
Call is a titlecase word
me is a lowercase word
Ishmael is a titlecase word
. is punctuation
>>>
As you can see, even with this small amount of Python knowledge,
 you can start to build multiline Python programs. It’s important to
 develop such programs in pieces, testing that each piece does what you
 expect before combining them into a program. This is why the Python
 interactive interpreter is so invaluable, and why you should get
 comfortable using it.
Finally, let’s combine the idioms we’ve been exploring. First,
 we create a list of cie and
 cei words, then we loop over each item and print
 it. Notice the comma at the end of the print statement, which tells
 Python to produce its output on a single line.
>>> tricky = sorted([w for w in set(text2) if 'cie' in w or 'cei' in w])
>>> for word in tricky:
... print word,
ancient ceiling conceit conceited conceive conscience
conscientious conscientiously deceitful deceive ...
>>>

Automatic Natural Language Understanding

We have been exploring language bottom-up, with the help of texts
 and the Python programming language. However, we’re also interested in
 exploiting our knowledge of language and computation by building useful
 language technologies. We’ll take the opportunity now to step back from
 the nitty-gritty of code in order to paint a bigger picture of natural
 language processing.
At a purely practical level, we all need help to navigate the
 universe of information locked up in text on the Web. Search engines
 have been crucial to the growth and popularity of the Web, but have some
 shortcomings. It takes skill, knowledge, and some luck, to extract
 answers to such questions as: What tourist sites can I visit
 between Philadelphia and Pittsburgh on a limited budget?
 What do experts say about digital SLR cameras?
 What predictions about the steel market were made by credible
 commentators in the past week? Getting a computer to answer
 them automatically involves a range of language processing tasks,
 including information extraction, inference, and summarization, and
 would need to be carried out on a scale and with a level of robustness
 that is still beyond our current capabilities.
On a more philosophical level, a long-standing challenge within
 artificial intelligence has been to build intelligent machines, and a
 major part of intelligent behavior is understanding language. For many
 years this goal has been seen as too difficult. However, as NLP
 technologies become more mature, and robust methods for analyzing
 unrestricted text become more widespread, the prospect of natural
 language understanding has re-emerged as a plausible goal.
In this section we describe some language understanding
 technologies, to give you a sense of the interesting challenges that are
 waiting for you.
Word Sense Disambiguation

In word sense disambiguation
 we want to work out which sense of a word was intended in a given
 context. Consider the ambiguous words serve and
 dish:
Example 1-2.
	serve: help with food or drink; hold
 an office; put ball into play

	dish: plate; course of a meal;
 communications device

In a sentence containing the phrase: he served the
 dish, you can detect that both serve
 and dish are being used with their food meanings.
 It’s unlikely that the topic of discussion shifted from sports to
 crockery in the space of three words. This would force you to invent
 bizarre images, like a tennis pro taking out his frustrations on a
 china tea-set laid out beside the court. In other words, we
 automatically disambiguate words using context, exploiting the simple
 fact that nearby words have closely related meanings. As another
 example of this contextual effect, consider the word
 by, which has several meanings, for example,
 the book by Chesterton (agentive—Chesterton was
 the author of the book); the cup by the stove
 (locative—the stove is where the cup is); and submit by
 Friday (temporal—Friday is the time of the submitting).
 Observe in Example 1-3 that the meaning of the
 italicized word helps us interpret the meaning of
 by.
Example 1-3.
	The lost children were found by the
 searchers (agentive)

	The lost children were found by the
 mountain (locative)

	The lost children were found by the
 afternoon (temporal)

Pronoun Resolution

A deeper kind of language understanding is to work out “who did
 what to whom,” i.e., to detect the subjects and objects of verbs. You
 learned to do this in elementary school, but it’s harder than you
 might think. In the sentence the thieves stole the
 paintings, it is easy to tell who performed the stealing
 action. Consider three possible following sentences in Example 1-4, and try to determine what was sold, caught,
 and found (one case is ambiguous).
Example 1-4.
	The thieves stole the paintings. They were subsequently
 sold.

	The thieves stole the paintings. They were subsequently
 caught.

	The thieves stole the paintings. They were subsequently
 found.

Answering this question involves finding the antecedent of the pronoun
 they, either thieves or paintings. Computational
 techniques for tackling this problem include anaphora resolution—identifying what a
 pronoun or noun phrase refers to—and semantic role
 labeling—identifying how a noun phrase relates to the verb
 (as agent, patient, instrument, and so on).

Generating Language Output

If we can automatically solve such problems of language
 understanding, we will be able to move on to tasks that involve
 generating language output, such as question
 answering and
 machine translation. In the first
 case, a machine should be able to answer a user’s questions relating
 to collection of texts:
Example 1-5.
	Text: ... The thieves stole the
 paintings. They were subsequently sold. ...

	Human: Who or what was sold?

	Machine: The paintings.

The machine’s answer demonstrates that it has correctly worked
 out that they refers to paintings and not to
 thieves. In the second case, the machine should be able to translate
 the text into another language, accurately conveying the meaning of
 the original text. In translating the example text into French, we are
 forced to choose the gender of the pronoun in the second sentence:
 ils (masculine) if the thieves are sold, and
 elles (feminine) if the paintings are sold.
 Correct translation actually depends on correct understanding of the
 pronoun.
Example 1-6.
	The thieves stole the paintings. They were subsequently
 found.

	Les voleurs ont volé les peintures. Ils ont été trouvés
 plus tard. (the thieves)

	Les voleurs ont volé les peintures. Elles ont été trouvées
 plus tard. (the paintings)

In all of these examples, working out the sense of a word, the
 subject of a verb, and the antecedent of a pronoun are steps in
 establishing the meaning of a sentence, things we would expect a
 language understanding system to be able to do.

Machine Translation

For a long time now, machine translation (MT) has been the holy
 grail of language understanding, ultimately seeking to provide
 high-quality, idiomatic translation between any pair of languages. Its
 roots go back to the early days of the Cold War, when the promise of
 automatic translation led to substantial government sponsorship, and
 with it, the genesis of NLP itself.
Today, practical translation systems exist for particular pairs
 of languages, and some are integrated into web search engines.
 However, these systems have some serious shortcomings. We can explore
 them with the help of NLTK’s “babelizer” (which is automatically
 loaded when you import this chapter’s materials using from nltk.book import *). This program
 submits a sentence for translation into a specified language, then
 submits the resulting sentence for translation back into English. It
 stops after 12 iterations, or if it receives a translation that was
 produced already (indicating a loop):
>>> babelize_shell()
NLTK Babelizer: type 'help' for a list of commands.
Babel> how long before the next flight to Alice Springs?
Babel> german
Babel> run
0> how long before the next flight to Alice Springs?
1> wie lang vor dem folgenden Flug zu Alice Springs?
2> how long before the following flight to Alice jump?
3> wie lang vor dem folgenden Flug zu Alice springen Sie?
4> how long before the following flight to Alice do you jump?
5> wie lang, bevor der folgende Flug zu Alice tun, Sie springen?
6> how long, before the following flight to Alice does, do you jump?
7> wie lang bevor der folgende Flug zu Alice tut, tun Sie springen?
8> how long before the following flight to Alice does, do you jump?
9> wie lang, bevor der folgende Flug zu Alice tut, tun Sie springen?
10> how long, before the following flight does to Alice, do do you jump?
11> wie lang bevor der folgende Flug zu Alice tut, Sie tun Sprung?
12> how long before the following flight does leap to Alice, does you?
Observe that the system correctly translates Alice
 Springs from English to German (in the line starting
 1>), but on the way back to
 English, this ends up as Alice jump (line 2). The preposition
 before is initially translated into the
 corresponding German preposition vor, but later
 into the conjunction bevor (line 5). After line
 5 the sentences become non-sensical
 (but notice the various phrasings indicated by the commas, and the
 change from jump to leap).
 The translation system did not recognize when a word was part of a
 proper name, and it misinterpreted the grammatical structure. The
 grammatical problems are more obvious in the following example. Did
 John find the pig, or did the pig find John?
>>> babelize_shell()
Babel> The pig that John found looked happy
Babel> german
Babel> run
0> The pig that John found looked happy
1> Das Schwein, das John fand, schaute gl?cklich
2> The pig, which found John, looked happy
Machine translation is difficult because a given word could have
 several possible translations (depending on its meaning), and because
 word order must be changed in keeping with the grammatical structure
 of the target language. Today these difficulties are being faced by
 collecting massive quantities of parallel texts from news and
 government websites that publish documents in two or more languages.
 Given a document in German and English, and possibly a bilingual
 dictionary, we can automatically pair up the sentences, a process
 called text alignment. Once we have
 a million or more sentence pairs, we can detect corresponding words
 and phrases, and build a model that can be used for translating new
 text.

Spoken Dialogue Systems

In the history of artificial intelligence, the chief measure of
 intelligence has been a linguistic one, namely the Turing Test: can a dialogue system,
 responding to a user’s text input, perform so naturally that we cannot
 distinguish it from a human-generated response? In contrast, today’s
 commercial dialogue systems are very limited, but still perform useful
 functions in narrowly defined domains, as we see here:
	S: How may I help you?
	U: When is Saving Private Ryan playing?
	S: For what theater?
	U: The Paramount theater.
	S: Saving Private Ryan is not playing at the Paramount
 theater, but
	it’s playing at the Madison theater at 3:00, 5:30, 8:00, and
 10:30.

You could not ask this system to provide driving instructions or
 details of nearby restaurants unless the required information had
 already been stored and suitable question-answer pairs had been
 incorporated into the language processing system.
Observe that this system seems to understand the user’s goals:
 the user asks when a movie is showing and the system correctly
 determines from this that the user wants to see the movie. This
 inference seems so obvious that you probably didn’t notice it was
 made, yet a natural language system needs to be endowed with this
 capability in order to interact naturally. Without it, when asked,
 Do you know when Saving Private Ryan is
 playing?, a system might unhelpfully respond with a cold
 Yes. However, the developers of commercial dialogue systems use
 contextual assumptions and business logic to ensure that the different
 ways in which a user might express requests or provide information are
 handled in a way that makes sense for the particular application. So,
 if you type When is ..., or I want to
 know when ..., or Can you tell me when
 ..., simple rules will always yield screening times. This
 is enough for the system to provide a useful service.
Dialogue systems give us an opportunity to mention the commonly
 assumed pipeline for NLP. Figure 1-5 shows the
 architecture of a simple dialogue system. Along the top of the
 diagram, moving from left to right, is a “pipeline” of some language
 understanding components. These map
 from speech input via syntactic parsing to some kind of meaning
 representation. Along the middle, moving from right to left, is the
 reverse pipeline of components for converting concepts to speech.
 These components make up the dynamic aspects of the system. At the
 bottom of the diagram are some representative bodies of static
 information: the repositories of language-related data that the
 processing components draw on to do their work.
[image: Simple pipeline architecture for a spoken dialogue system: Spoken input (top left) is analyzed, words are recognized, sentences are parsed and interpreted in context, application-specific actions take place (top right); a response is planned, realized as a syntactic structure, then to suitably inflected words, and finally to spoken output; different types of linguistic knowledge inform each stage of the process.]

Figure 1-5. Simple pipeline architecture for a spoken dialogue system:
 Spoken input (top left) is analyzed, words are recognized, sentences
 are parsed and interpreted in context, application-specific actions
 take place (top right); a response is planned, realized as a
 syntactic structure, then to suitably inflected words, and finally
 to spoken output; different types of linguistic knowledge inform
 each stage of the process.

Note
Your Turn: For an example
 of a primitive dialogue system, try having a conversation with an
 NLTK chatbot. To see the available chatbots, run nltk.chat.chatbots(). (Remember to import
 nltk first.)

Textual Entailment

The challenge of language understanding has been brought into
 focus in recent years by a public “shared task” called Recognizing
 Textual Entailment (RTE). The basic scenario is simple. Suppose you
 want to find evidence to support the hypothesis: Sandra
 Goudie was defeated by Max Purnell, and that you have
 another short text that seems to be relevant, for example,
 Sandra Goudie was first elected to Parliament in the 2002
 elections, narrowly winning the seat of Coromandel by defeating Labour
 candidate Max Purnell and pushing incumbent Green MP Jeanette
 Fitzsimons into third place. Does the text provide enough
 evidence for you to accept the hypothesis? In this particular case,
 the answer will be “No.” You can draw this conclusion easily, but it
 is very hard to come up with automated methods for making the right
 decision. The RTE Challenges provide data that allow competitors to
 develop their systems, but not enough data for “brute force” machine
 learning techniques (a topic we will cover in Chapter 6). Consequently, some linguistic analysis is
 crucial. In the previous example, it is important for the system to
 note that Sandra Goudie names the person being
 defeated in the hypothesis, not the person doing the defeating in the
 text. As another illustration of the difficulty of the task, consider
 the following text-hypothesis pair:
Example 1-7.
	Text: David Golinkin is the editor or author of 18 books,
 and over 150 responsa, articles, sermons and books

	Hypothesis: Golinkin has written 18 books

In order to determine whether the hypothesis is supported by the
 text, the system needs the following background knowledge: (i) if
 someone is an author of a book, then he/she has written that book;
 (ii) if someone is an editor of a book, then he/she has not written
 (all of) that book; (iii) if someone is editor or author of 18 books,
 then one cannot conclude that he/she is author of 18 books.

Limitations of NLP

Despite the research-led advances in tasks such as RTE, natural
 language systems that have been deployed for real-world applications
 still cannot perform common-sense reasoning or draw on world knowledge
 in a general and robust manner. We can wait for these difficult
 artificial intelligence problems to be solved, but in the meantime it
 is necessary to live with some severe limitations on the reasoning and
 knowledge capabilities of natural language systems. Accordingly, right
 from the beginning, an important goal of NLP research has been to make
 progress on the difficult task of building technologies that
 “understand language,” using superficial yet powerful techniques
 instead of unrestricted knowledge and reasoning capabilities. Indeed,
 this is one of the goals of this book, and we hope to equip you with
 the knowledge and skills to build useful NLP systems, and to
 contribute to the long-term aspiration of building intelligent
 machines.

Summary

	Texts are represented in Python using lists: ['Monty', 'Python']. We can use indexing,
 slicing, and the len() function
 on lists.

	A word “token” is a particular appearance of a given word in a
 text; a word “type” is the unique form of the word as a particular
 sequence of letters. We count word tokens using len(text) and word types using len(set(text)).

	We obtain the vocabulary of a text t using sorted(set(t)).

	We operate on each item of a text using [f(x) for x in text].

	To derive the vocabulary, collapsing case distinctions and
 ignoring punctuation, we can write set([w.lower() for w in text if
 w.isalpha()]).

	We process each word in a text using a for statement, such as for w in t: or for word in text:. This must be followed
 by the colon character and an indented block of code, to be executed
 each time through the loop.

	We test a condition using an if statement: if
 len(word) < 5:. This must be followed by the colon
 character and an indented block of code, to be executed only if the
 condition is true.

	A frequency distribution is a collection of items along with
 their frequency counts (e.g., the words of a text and their
 frequency of appearance).

	A function is a block of code that has been assigned a name
 and can be reused. Functions are defined using the def keyword, as in def mult(x,
 y); x and y are
 parameters of the function, and act as placeholders for actual data
 values.

	A function is called by specifying its name followed by one or
 more arguments inside parentheses, like this: mult(3, 4), e.g., len(text1).

Further Reading

This chapter has introduced new concepts in programming, natural
 language processing, and linguistics, all mixed in together. Many of
 them are consolidated in the following chapters. However, you may also
 want to consult the online materials provided with this chapter (at
 http://www.nltk.org/), including links to
 additional background materials, and links to online NLP systems. You
 may also like to read up on some linguistics and NLP-related concepts in
 Wikipedia (e.g., collocations, the Turing Test, the type-token
 distinction).
You should acquaint yourself with the Python documentation
 available at http://docs.python.org/, including
 the many tutorials and comprehensive reference materials linked there. A
 Beginner’s Guide to Python is available at http://wiki.python.org/moin/BeginnersGuide. Miscellaneous
 questions about Python might be answered in the FAQ at http://www.python.org/doc/faq/general/.
As you delve into NLTK, you might want to subscribe to the mailing
 list where new releases of the toolkit are announced. There is also an
 NLTK-Users mailing list, where users help each other as they learn how
 to use Python and NLTK for language analysis work. Details of these
 lists are available at http://www.nltk.org/.
For more information on the topics covered in Automatic Natural Language Understanding, and on NLP
 more generally, you might like to consult one of the following excellent
 books:
	Indurkhya, Nitin and Fred Damerau (eds., 2010)
 Handbook of Natural Language Processing (second
 edition), Chapman & Hall/CRC.

	Jurafsky, Daniel and James Martin (2008) Speech and
 Language Processing (second edition), Prentice
 Hall.

	Mitkov, Ruslan (ed., 2002) The Oxford Handbook of
 Computational Linguistics. Oxford University Press.
 (second edition expected in 2010).

The Association for Computational Linguistics is the international
 organization that represents the field of NLP. The ACL website hosts many useful
 resources, including: information about international and regional
 conferences and workshops; the ACL Wiki with links
 to hundreds of useful resources; and the ACL
 Anthology, which contains most of the NLP research literature
 from the past 50 years, fully indexed and freely downloadable.
Some excellent introductory linguistics textbooks are: (Finegan,
 2007), (O’Grady et al., 2004), (OSU, 2007). You might like to consult
 LanguageLog, a popular linguistics blog with
 occasional posts that use the techniques described in this
 book.

Exercises

	○ Try using the Python interpreter as a calculator, and typing
 expressions like 12 / (4 +
 1).

	○ Given an alphabet of 26 letters, there are 26 to the power
 10, or 26 ** 10, 10-letter
 strings we can form. That works out to 141167095653376L (the L at the end just indicates that this is
 Python’s long-number format). How many hundred-letter strings are
 possible?

	○ The Python multiplication operation can be applied to lists.
 What happens when you type ['Monty',
 'Python'] * 20, or 3 *
 sent1?

	○ Review Computing with Language: Texts and Words on
 computing with language. How many words are there in text2? How many distinct words are
 there?

	○ Compare the lexical diversity scores for humor and romance
 fiction in Table 1-1. Which genre is more
 lexically diverse?

	○ Produce a dispersion plot of the four main protagonists in
 Sense and Sensibility: Elinor, Marianne,
 Edward, and Willoughby. What can you observe about the different roles played by the males
 and females in this novel? Can you identify the couples?

	○ Find the collocations in text5.

	○ Consider the following Python expression: len(set(text4)). State the purpose of this
 expression. Describe the two steps involved in performing this
 computation.

	○ Review A Closer Look at Python: Texts as Lists of Words on
 lists and strings.
	Define a string and assign it to a variable, e.g.,
 my_string = 'My String' (but
 put something more interesting in the string). Print the
 contents of this variable in two ways, first by simply typing
 the variable name and pressing Enter, then by using the print statement.

	Try adding the string to itself using my_string + my_string, or multiplying
 it by a number, e.g., my_string *
 3. Notice that the strings are joined together without
 any spaces. How could you fix this?

	○ Define a variable my_sent
 to be a list of words, using the syntax my_sent = ["My", "sent"] (but with your
 own words, or a favorite saying).
	Use ' '.join(my_sent)
 to convert this into a string.

	Use split() to split
 the string back into the list form you had to start with.

	○ Define several variables containing lists of words, e.g.,
 phrase1, phrase2, and so on. Join them together in
 various combinations (using the plus operator) to form whole
 sentences. What is the relationship between len(phrase1 + phrase2) and len(phrase1) + len(phrase2)?

	○ Consider the following two expressions, which have the same
 value. Which one will typically be more relevant in NLP? Why?
	"Monty
 Python"[6:12]

	["Monty",
 "Python"][1]

	○ We have seen how to represent a sentence as a list of words,
 where each word is a sequence of characters. What does sent1[2][2] do? Why? Experiment with other
 index values.

	○ The first sentence of text3 is provided to you in the variable
 sent3. The index of
 the in sent3
 is 1, because sent3[1] gives us
 'the'. What are the indexes of
 the two other occurrences of this word in sent3?

	○ Review the discussion of conditionals in Back to Python: Making Decisions and Taking Control. Find all words in the Chat Corpus
 (text5) starting with the letter
 b. Show them in alphabetical order.

	○ Type the expression range(10) at the interpreter prompt. Now
 try range(10, 20), range(10, 20, 2), and range(20, 10, -2). We will see a variety
 of uses for this built-in function in later chapters.

	[image:] Use text9.index() to find
 the index of the word sunset. You’ll need to
 insert this word as an argument between the parentheses. By a
 process of trial and error, find the slice for the complete sentence
 that contains this word.

	[image:] Using list addition, and the set and sorted operations, compute the vocabulary
 of the sentences sent1 ...
 sent8.

	[image:] What is the difference between the following two lines?
 Which one will give a larger value? Will this be the case for other
 texts?
>>> sorted(set([w.lower() for w in text1]))
>>> sorted([w.lower() for w in set(text1)])

	[image:] What is the difference between the following two tests:
 w.isupper() and not w.islower()?

	[image:] Write the slice expression that extracts the last two words
 of text2.

	[image:] Find all the four-letter words in the Chat Corpus (text5). With the help of a frequency
 distribution (FreqDist), show these words in decreasing order of
 frequency.

	[image:] Review the discussion of looping with conditions in Back to Python: Making Decisions and Taking Control. Use a combination of for and if statements to loop over the words of
 the movie script for Monty Python and the Holy
 Grail (text6) and
 print all the uppercase words,
 one per line.

	[image:] Write expressions for finding all words in text6 that meet the following conditions.
 The result should be in the form of a list of words: ['word1', 'word2', ...].
	Ending in ize

	Containing the letter z

	Containing the sequence of letters
 pt

	All lowercase letters except for an initial capital (i.e.,
 titlecase)

	[image:] Define sent to be the
 list of words ['she', 'sells', 'sea',
 'shells', 'by', 'the', 'sea', 'shore']. Now write code to
 perform the following tasks:
	Print all words beginning with
 sh.

	Print all words longer than four characters

	[image:] What does the following Python code do? sum([len(w) for w in text1]) Can you use
 it to work out the average word length of a text?

	[image:] Define a function called vocab_size(text) that has a single
 parameter for the text, and which returns the vocabulary size of the
 text.

	[image:] Define a function percent(word,
 text) that calculates how often a given word occurs in a
 text and expresses the result as a percentage.

	[image:] We have been using sets to store vocabularies. Try the
 following Python expression: set(sent3)
 < set(text1). Experiment with this using different
 arguments to set(). What does it
 do? Can you think of a practical application for this?

Chapter 2. Accessing Text Corpora and Lexical
 Resources

Practical work in Natural Language Processing typically uses large
 bodies of linguistic data, or corpora.
 The goal of this chapter is to answer the following questions:
	What are some useful text corpora and lexical resources, and how
 can we access them with Python?

	Which Python constructs are most helpful for this work?

	How do we avoid repeating ourselves when writing Python
 code?

This chapter continues to present programming concepts by example,
 in the context of a linguistic processing task. We will wait until later
 before exploring each Python construct systematically. Don’t worry if you
 see an example that contains something unfamiliar; simply try it out and
 see what it does, and—if you’re game—modify it by substituting some part
 of the code with a different text or word. This way you will associate a
 task with a programming idiom, and learn the hows and whys
 later.
Accessing Text Corpora

As just mentioned, a text corpus is a large body of text. Many
 corpora are designed to contain a careful balance of material in one or
 more genres. We examined some small text collections in Chapter 1, such as the speeches known as the US Presidential
 Inaugural Addresses. This particular corpus actually contains dozens of
 individual texts—one per address—but for convenience we glued them
 end-to-end and treated them as a single text. Chapter 1 also used various predefined texts that we
 accessed by typing from book import
 *. However, since we want to be able to work with other texts,
 this section examines a variety of text corpora. We’ll see how to select
 individual texts, and how to work with them.
Gutenberg Corpus

NLTK includes a small selection of texts from the Project
 Gutenberg electronic text archive, which contains some 25,000 free
 electronic books, hosted at http://www.gutenberg.org/. We begin by getting the
 Python interpreter to load the NLTK package, then ask to see nltk.corpus.gutenberg.fileids(), the file
 identifiers in this corpus:
>>> import nltk
>>> nltk.corpus.gutenberg.fileids()
['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', 'bible-kjv.txt',
'blake-poems.txt', 'bryant-stories.txt', 'burgess-busterbrown.txt',
'carroll-alice.txt', 'chesterton-ball.txt', 'chesterton-brown.txt',
'chesterton-thursday.txt', 'edgeworth-parents.txt', 'melville-moby_dick.txt',
'milton-paradise.txt', 'shakespeare-caesar.txt', 'shakespeare-hamlet.txt',
'shakespeare-macbeth.txt', 'whitman-leaves.txt']
Let’s pick out the first of these
 texts—Emma by Jane Austen—and give it a short
 name, emma, then find out how many
 words it contains:
>>> emma = nltk.corpus.gutenberg.words('austen-emma.txt')
>>> len(emma)
192427
Note
In Computing with Language: Texts and Words, we showed
 how you could carry out concordancing of a text such as text1 with the command text1.concordance(). However, this assumes
 that you are using one of the nine texts obtained as a result of
 doing from nltk.book import *.
 Now that you have started examining data from nltk.corpus, as in the previous example, you have to employ the
 following pair of statements to perform concordancing and other
 tasks from Computing with Language: Texts and Words:
>>> emma = nltk.Text(nltk.corpus.gutenberg.words('austen-emma.txt'))
>>> emma.concordance("surprize")

When we defined emma, we
 invoked the words() function of the
 gutenberg object in NLTK’s corpus package. But since it is cumbersome to type such long
 names all the time, Python provides another version of the import statement, as follows:
>>> from nltk.corpus import gutenberg
>>> gutenberg.fileids()
['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', ...]
>>> emma = gutenberg.words('austen-emma.txt')
Let’s write a short program to display other information about
 each text, by looping over all the values of fileid corresponding to the gutenberg file identifiers listed earlier
 and then computing statistics for each text. For a compact output
 display, we will make sure that the numbers are all integers, using
 int().
>>> for fileid in gutenberg.fileids():
... num_chars = len(gutenberg.raw(fileid)) [image: 1]
... num_words = len(gutenberg.words(fileid))
... num_sents = len(gutenberg.sents(fileid))
... num_vocab = len(set([w.lower() for w in gutenberg.words(fileid)]))
... print int(num_chars/num_words), int(num_words/num_sents), int(num_words/num_vocab),
 fileid
...
4 21 26 austen-emma.txt
4 23 16 austen-persuasion.txt
4 24 22 austen-sense.txt
4 33 79 bible-kjv.txt
4 18 5 blake-poems.txt
4 17 14 bryant-stories.txt
4 17 12 burgess-busterbrown.txt
4 16 12 carroll-alice.txt
4 17 11 chesterton-ball.txt
4 19 11 chesterton-brown.txt
4 16 10 chesterton-thursday.txt
4 18 24 edgeworth-parents.txt
4 24 15 melville-moby_dick.txt
4 52 10 milton-paradise.txt
4 12 8 shakespeare-caesar.txt
4 13 7 shakespeare-hamlet.txt
4 13 6 shakespeare-macbeth.txt
4 35 12 whitman-leaves.txt
This program displays three statistics for each text: average
 word length, average sentence length, and the number of times each
 vocabulary item appears in the text on average (our lexical diversity
 score). Observe that average word length appears to be a general
 property of English, since it has a recurrent value of
 4. (In fact, the average word length is really
 3, not 4, since the num_chars variable counts space characters.)
 By contrast average sentence length and lexical diversity appear to be
 characteristics of particular authors.
The previous example also showed how we can access the “raw”
 text of the book [image: 1], not split up into
 tokens. The raw() function gives us
 the contents of the file without any linguistic processing. So, for
 example, len(gutenberg.raw('blake-poems.txt') tells
 us how many letters occur in the text, including
 the spaces between words. The sents() function divides the text up into
 its sentences, where each sentence is a list of words:
>>> macbeth_sentences = gutenberg.sents('shakespeare-macbeth.txt')
>>> macbeth_sentences
[['[', 'The', 'Tragedie', 'of', 'Macbeth', 'by', 'William', 'Shakespeare',
'1603', ']'], ['Actus', 'Primus', '.'], ...]
>>> macbeth_sentences[1037]
['Double', ',', 'double', ',', 'toile', 'and', 'trouble', ';',
'Fire', 'burne', ',', 'and', 'Cauldron', 'bubble']
>>> longest_len = max([len(s) for s in macbeth_sentences])
>>> [s for s in macbeth_sentences if len(s) == longest_len]
[['Doubtfull', 'it', 'stood', ',', 'As', 'two', 'spent', 'Swimmers', ',', 'that',
'doe', 'cling', 'together', ',', 'And', 'choake', 'their', 'Art', ':', 'The',
'mercilesse', 'Macdonwald', ...], ...]
Note
Most NLTK corpus readers include a variety of access methods
 apart from words(), raw(), and sents(). Richer linguistic content is
 available from some corpora, such as part-of-speech tags, dialogue
 tags, syntactic trees, and so forth; we will see these in later
 chapters.

Web and Chat Text

Although Project Gutenberg
 contains thousands of books, it represents established literature. It
 is important to consider less formal language as well. NLTK’s small
 collection of web text includes content from a Firefox discussion
 forum, conversations overheard in New York, the movie script of
 Pirates of the Carribean, personal
 advertisements, and wine reviews:
>>> from nltk.corpus import webtext
>>> for fileid in webtext.fileids():
... print fileid, webtext.raw(fileid)[:65], '...'
...
firefox.txt Cookie Manager: "Don't allow sites that set removed cookies to se...
grail.txt SCENE 1: [wind] [clop clop clop] KING ARTHUR: Whoa there! [clop...
overheard.txt White guy: So, do you have any plans for this evening? Asian girl...
pirates.txt PIRATES OF THE CARRIBEAN: DEAD MAN'S CHEST, by Ted Elliott & Terr...
singles.txt 25 SEXY MALE, seeks attrac older single lady, for discreet encoun...
wine.txt Lovely delicate, fragrant Rhone wine. Polished leather and strawb...
There is also a corpus of instant messaging chat sessions,
 originally collected by the Naval Postgraduate School for research on
 automatic detection of Internet predators. The corpus contains over
 10,000 posts, anonymized by replacing usernames with generic names of the form “UserNNN”, and
 manually edited to remove any other identifying information. The
 corpus is organized into 15 files, where each file contains several
 hundred posts collected on a given date, for an age-specific chatroom
 (teens, 20s, 30s, 40s, plus a generic adults chatroom). The filename
 contains the date, chatroom, and number of posts; e.g., 10-19-20s_706posts.xml contains 706 posts
 gathered from the 20s chat room on 10/19/2006.
>>> from nltk.corpus import nps_chat
>>> chatroom = nps_chat.posts('10-19-20s_706posts.xml')
>>> chatroom[123]
['i', 'do', "n't", 'want', 'hot', 'pics', 'of', 'a', 'female', ',',
'I', 'can', 'look', 'in', 'a', 'mirror', '.']

Brown Corpus

The Brown Corpus was the first million-word electronic corpus of
 English, created in 1961 at Brown University. This corpus contains
 text from 500 sources, and the sources have been categorized by genre,
 such as news, editorial, and
 so on. Table 2-1 gives an example of each
 genre (for a complete list, see http://icame.uib.no/brown/bcm-los.html).
Table 2-1. Example document for each section of the Brown Corpus
	ID
	File
	Genre
	Description

	A16
	ca16
	news
	Chicago Tribune: Society
 Reportage

	B02
	cb02
	editorial
	Christian Science Monitor:
 Editorials

	C17
	cc17
	reviews
	Time Magazine:
 Reviews

	D12
	cd12
	religion
	Underwood: Probing the Ethics of
 Realtors

	E36
	ce36
	hobbies
	Norling: Renting a Car in
 Europe

	F25
	cf25
	lore
	Boroff: Jewish Teenage
 Culture

	G22
	cg22
	belles_lettres
	Reiner: Coping with Runaway
 Technology

	H15
	ch15
	government
	US Office of Civil and Defence Mobilization:
 The Family Fallout Shelter

	J17
	cj19
	learned
	Mosteller: Probability with Statistical
 Applications

	K04
	ck04
	fiction
	W.E.B. Du Bois: Worlds of
 Color

	L13
	cl13
	mystery
	Hitchens: Footsteps in the
 Night

	M01
	cm01
	science_fiction
	Heinlein: Stranger in a Strange
 Land

	N14
	cn15
	adventure
	Field: Rattlesnake
 Ridge

	P12
	cp12
	romance
	Callaghan: A Passion in
 Rome

	R06
	cr06
	humor
	Thurber: The Future, If Any, of
 Comedy

We can access the corpus as a list of words or a list of
 sentences (where each sentence is itself just a list of words). We can
 optionally specify particular categories or files to read:
>>> from nltk.corpus import brown
>>> brown.categories()
['adventure', 'belles_lettres', 'editorial', 'fiction', 'government', 'hobbies',
'humor', 'learned', 'lore', 'mystery', 'news', 'religion', 'reviews', 'romance',
'science_fiction']
>>> brown.words(categories='news')
['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', ...]
>>> brown.words(fileids=['cg22'])
['Does', 'our', 'society', 'have', 'a', 'runaway', ',', ...]
>>> brown.sents(categories=['news', 'editorial', 'reviews'])
[['The', 'Fulton', 'County'...], ['The', 'jury', 'further'...], ...]
The Brown Corpus is a convenient resource for studying
 systematic differences between genres, a kind of linguistic inquiry
 known as stylistics. Let’s compare
 genres in their usage of modal verbs. The first step is to produce the
 counts for a particular genre. Remember to import nltk before doing the
 following:
>>> from nltk.corpus import brown
>>> news_text = brown.words(categories='news')
>>> fdist = nltk.FreqDist([w.lower() for w in news_text])
>>> modals = ['can', 'could', 'may', 'might', 'must', 'will']
>>> for m in modals:
... print m + ':', fdist[m],
...
can: 94 could: 87 may: 93 might: 38 must: 53 will: 389
Note
Your Turn: Choose a
 different section of the Brown Corpus, and adapt the preceding
 example to count a selection of wh words, such
 as what, when,
 where, who and
 why.

Next, we need to obtain counts for each genre of interest. We’ll
 use NLTK’s support for conditional frequency distributions. These are
 presented systematically in Conditional Frequency Distributions, where we also
 unpick the following code line by line. For the moment, you can ignore
 the details and just concentrate on the output.
>>> cfd = nltk.ConditionalFreqDist(
... (genre, word)
... for genre in brown.categories()
... for word in brown.words(categories=genre))
>>> genres = ['news', 'religion', 'hobbies', 'science_fiction', 'romance', 'humor']
>>> modals = ['can', 'could', 'may', 'might', 'must', 'will']
>>> cfd.tabulate(conditions=genres, samples=modals)
 can could may might must will
 news 93 86 66 38 50 389
 religion 82 59 78 12 54 71
 hobbies 268 58 131 22 83 264
science_fiction 16 49 4 12 8 16
 romance 74 193 11 51 45 43
 humor 16 30 8 8 9 13
Observe that the most frequent modal in the news genre is
 will, while the most frequent modal in the
 romance genre is could. Would you have predicted
 this? The idea that word counts might distinguish genres will be taken
 up again in Chapter 6.

Reuters Corpus

The Reuters Corpus contains 10,788 news documents totaling 1.3
 million words. The documents have been classified into 90 topics, and
 grouped into two sets, called “training” and “test”; thus, the text
 with fileid 'test/14826' is a
 document drawn from the test set. This split is for training and
 testing algorithms that automatically detect the topic of a document,
 as we will see in Chapter 6.
>>> from nltk.corpus import reuters
>>> reuters.fileids()
['test/14826', 'test/14828', 'test/14829', 'test/14832', ...]
>>> reuters.categories()
['acq', 'alum', 'barley', 'bop', 'carcass', 'castor-oil', 'cocoa',
'coconut', 'coconut-oil', 'coffee', 'copper', 'copra-cake', 'corn',
'cotton', 'cotton-oil', 'cpi', 'cpu', 'crude', 'dfl', 'dlr', ...]
Unlike the Brown Corpus, categories in the Reuters Corpus
 overlap with each other, simply because a news story often covers
 multiple topics. We can ask for the topics covered by one or more
 documents, or for the documents included in one or more categories.
 For convenience, the corpus methods accept a single fileid or a list
 of fileids.
>>> reuters.categories('training/9865')
['barley', 'corn', 'grain', 'wheat']
>>> reuters.categories(['training/9865', 'training/9880'])
['barley', 'corn', 'grain', 'money-fx', 'wheat']
>>> reuters.fileids('barley')
['test/15618', 'test/15649', 'test/15676', 'test/15728', 'test/15871', ...]
>>> reuters.fileids(['barley', 'corn'])
['test/14832', 'test/14858', 'test/15033', 'test/15043', 'test/15106',
'test/15287', 'test/15341', 'test/15618', 'test/15618', 'test/15648', ...]
Similarly, we can specify the words or sentences we want in
 terms of files or categories. The first handful of words in each of
 these texts are the titles, which by convention are stored as
 uppercase.
>>> reuters.words('training/9865')[:14]
['FRENCH', 'FREE', 'MARKET', 'CEREAL', 'EXPORT', 'BIDS',
'DETAILED', 'French', 'operators', 'have', 'requested', 'licences', 'to', 'export']
>>> reuters.words(['training/9865', 'training/9880'])
['FRENCH', 'FREE', 'MARKET', 'CEREAL', 'EXPORT', ...]
>>> reuters.words(categories='barley')
['FRENCH', 'FREE', 'MARKET', 'CEREAL', 'EXPORT', ...]
>>> reuters.words(categories=['barley', 'corn'])
['THAI', 'TRADE', 'DEFICIT', 'WIDENS', 'IN', 'FIRST', ...]

Inaugural Address Corpus

In Computing with Language: Texts and Words, we looked at
 the Inaugural Address Corpus, but treated it as a single text. The
 graph in Figure 1-2 used “word offset” as one of
 the axes; this is the numerical index of the word in the corpus,
 counting from the first word of the first address. However, the corpus
 is actually a collection of 55 texts, one for each presidential
 address. An interesting property of this collection is its time
 dimension:
>>> from nltk.corpus import inaugural
>>> inaugural.fileids()
['1789-Washington.txt', '1793-Washington.txt', '1797-Adams.txt', ...]
>>> [fileid[:4] for fileid in inaugural.fileids()]
['1789', '1793', '1797', '1801', '1805', '1809', '1813', '1817', '1821', ...]
Notice that the year of each text appears in its filename. To
 get the year out of the filename, we extracted the first four
 characters, using fileid[:4].
Let’s look at how the words America and
 citizen are used over time. The following code
 converts the words in the Inaugural corpus to lowercase using w.lower() [image: 1], then checks whether they start
 with either of the “targets” america or citizen using startswith() [image: 1]. Thus it will count words such
 as American’s and Citizens.
 We’ll learn about conditional frequency distributions in Conditional Frequency Distributions; for now, just
 consider the output, shown in Figure 2-1.
>>> cfd = nltk.ConditionalFreqDist(
... (target, fileid[:4])
... for fileid in inaugural.fileids()
... for w in inaugural.words(fileid)
... for target in ['america', 'citizen']
... if w.lower().startswith(target)) [image: 1]
>>> cfd.plot()
[image: Plot of a conditional frequency distribution: All words in the Inaugural Address Corpus that begin with america or citizen are counted; separate counts are kept for each address; these are plotted so that trends in usage over time can be observed; counts are not normalized for document length.]

Figure 2-1. Plot of a conditional frequency distribution: All words in
 the Inaugural Address Corpus that begin with america or citizen are counted; separate counts are kept
 for each address; these are plotted so that trends in usage over
 time can be observed; counts are not normalized for document
 length.

Annotated Text Corpora

Many text corpora contain linguistic annotations, representing
 part-of-speech tags, named entities, syntactic structures, semantic
 roles, and so forth. NLTK provides convenient ways to access several of
 these corpora, and has data packages containing corpora and corpus
 samples, freely downloadable for use in teaching and research. Table 2-2 lists some of the corpora. For information about
 downloading them, see http://www.nltk.org/data. For more examples of how to access NLTK corpora,
 please consult the Corpus HOWTO at http://www.nltk.org/howto.
Table 2-2. Some of the corpora and corpus samples distributed with
 NLTK
	Corpus
	Compiler
	Contents

	Brown Corpus
	Francis, Kucera
	15 genres, 1.15M words, tagged,
 categorized

	CESS Treebanks
	CLiC-UB
	1M words, tagged and parsed (Catalan,
 Spanish)

	Chat-80 Data Files
	Pereira & Warren
	World Geographic Database

	CMU Pronouncing Dictionary
	CMU
	127k entries

	CoNLL 2000 Chunking Data
	CoNLL
	270k words, tagged and chunked

	CoNLL 2002 Named Entity
	CoNLL
	700k words, POS and named entity tagged (Dutch,
 Spanish)

	CoNLL 2007 Dependency Parsed Treebanks
 (selections)
	CoNLL
	150k words, dependency parsed (Basque,
 Catalan)

	Dependency Treebank
	Narad
	Dependency parsed version of Penn Treebank
 sample

	Floresta Treebank
	Diana Santos et al.
	9k sentences, tagged and parsed
 (Portuguese)

	Gazetteer Lists
	Various
	Lists of cities and countries

	Genesis Corpus
	Misc web sources
	6 texts, 200k words, 6 languages

	Gutenberg (selections)
	Hart, Newby, et al.
	18 texts, 2M words

	Inaugural Address Corpus
	CSpan
	U.S. Presidential Inaugural Addresses
 (1789–present)

	Indian POS Tagged Corpus
	Kumaran et al.
	60k words, tagged (Bangla, Hindi, Marathi,
 Telugu)

	MacMorpho Corpus
	NILC, USP, Brazil
	1M words, tagged (Brazilian
 Portuguese)

	Movie Reviews
	Pang, Lee
	2k movie reviews with sentiment polarity
 classification

	Names Corpus
	Kantrowitz, Ross
	8k male and female names

	NIST 1999 Info Extr (selections)
	Garofolo
	63k words, newswire and named entity SGML
 markup

	NPS Chat Corpus
	Forsyth, Martell
	10k IM chat posts, POS and dialogue-act
 tagged

	Penn Treebank (selections)	LDC	40k words, tagged and parsed
	PP Attachment Corpus
	Ratnaparkhi
	28k prepositional phrases, tagged as noun or verb
 modifiers

	Proposition Bank
	Palmer
	113k propositions, 3,300 verb
 frames

	Question Classification
	Li, Roth
	6k questions, categorized

	Reuters Corpus
	Reuters
	1.3M words, 10k news documents,
 categorized

	Roget’s Thesaurus
	Project Gutenberg
	200k words, formatted text

	RTE Textual Entailment
	Dagan et al.
	8k sentence pairs, categorized

	SEMCOR
	Rus, Mihalcea
	880k words, POS and sense tagged

	Senseval 2 Corpus
	Pedersen
	600k words, POS and sense tagged

	Shakespeare texts (selections)
	Bosak
	8 books in XML format

	State of the Union Corpus	CSpan	485k words, formatted text
	Stopwords Corpus
	Porter et al.
	2,400 stopwords for 11 languages

	Swadesh Corpus
	Wiktionary
	Comparative wordlists in 24
 languages

	Switchboard Corpus (selections)
	LDC
	36 phone calls, transcribed,
 parsed

	TIMIT Corpus (selections)	NIST/LDC	Audio files and transcripts for 16 speakers
	Univ Decl of Human Rights
	United Nations
	480k words, 300+ languages

	VerbNet 2.1
	Palmer et al.
	5k verbs, hierarchically organized, linked to
 WordNet

	Wordlist Corpus
	OpenOffice.org et al.
	960k words and 20k affixes for 8
 languages

	WordNet 3.0 (English)
	Miller, Fellbaum
	145k synonym sets

Corpora in Other Languages

NLTK comes with corpora for many languages, though in some cases
 you will need to learn how to manipulate character encodings in Python
 before using these corpora (see Text Processing with Unicode).
>>> nltk.corpus.cess_esp.words()
['El', 'grupo', 'estatal', 'Electricit\xe9_de_France', ...]
>>> nltk.corpus.floresta.words()
['Um', 'revivalismo', 'refrescante', 'O', '7_e_Meio', ...]
>>> nltk.corpus.indian.words('hindi.pos')
['\xe0\xa4\xaa\xe0\xa5\x82\xe0\xa4\xb0\xe0\xa5\x8d\xe0\xa4\xa3',
'\xe0\xa4\xaa\xe0\xa5\x8d\xe0\xa4\xb0\xe0\xa4\xa4\xe0\xa4\xbf\xe0\xa4\xac\xe0\xa4
\x82\xe0\xa4\xa7', ...]
>>> nltk.corpus.udhr.fileids()
['Abkhaz-Cyrillic+Abkh', 'Abkhaz-UTF8', 'Achehnese-Latin1', 'Achuar-Shiwiar-Latin1',
'Adja-UTF8', 'Afaan_Oromo_Oromiffa-Latin1', 'Afrikaans-Latin1', 'Aguaruna-Latin1',
'Akuapem_Twi-UTF8', 'Albanian_Shqip-Latin1', 'Amahuaca', 'Amahuaca-Latin1', ...]
>>> nltk.corpus.udhr.words('Javanese-Latin1')[11:]
[u'Saben', u'umat', u'manungsa', u'lair', u'kanthi', ...]
The last of these corpora, udhr, contains the Universal Declaration of
 Human Rights in over 300 languages. The fileids for this corpus
 include information about the character encoding used in the file,
 such as UTF8 or Latin1. Let’s use a conditional frequency
 distribution to examine the differences in word lengths for a
 selection of languages included in the udhr corpus. The output is shown in Figure 2-2 (run the program yourself to see a
 color plot). Note that True and
 False are Python’s built-in Boolean
 values.
>>> from nltk.corpus import udhr
>>> languages = ['Chickasaw', 'English', 'German_Deutsch',
... 'Greenlandic_Inuktikut', 'Hungarian_Magyar', 'Ibibio_Efik']
>>> cfd = nltk.ConditionalFreqDist(
... (lang, len(word))
... for lang in languages
... for word in udhr.words(lang + '-Latin1'))
>>> cfd.plot(cumulative=True)
[image: Cumulative word length distributions: Six translations of the Universal Declaration of Human Rights are processed; this graph shows that words having five or fewer letters account for about 80% of Ibibio text, 60% of German text, and 25% of Inuktitut text.]

Figure 2-2. Cumulative word length distributions: Six translations of the
 Universal Declaration of Human Rights are processed; this graph
 shows that words having five or fewer letters account for about 80%
 of Ibibio text, 60% of German text, and 25% of Inuktitut
 text.

Note
Your Turn: Pick a language
 of interest in udhr.fileids(),
 and define a variable raw_text =
 udhr.raw(Language-Latin1). Now
 plot a frequency distribution of the letters of the text
 using
nltk.FreqDist(raw_text).plot().

Unfortunately, for many languages, substantial corpora are not
 yet available. Often there is insufficient government or industrial
 support for developing language resources, and individual efforts are
 piecemeal and hard to discover or reuse. Some languages have no
 established writing system, or are endangered. (See Further Reading for suggestions on how to
 locate language resources.)

Text Corpus Structure

We have seen a variety of corpus structures so far; these are
 summarized in Figure 2-3. The
 simplest kind lacks any structure: it is just a collection of texts.
 Often, texts are grouped into categories that might correspond to
 genre, source, author, language, etc. Sometimes these categories
 overlap, notably in the case of topical categories, as a text can be
 relevant to more than one topic. Occasionally, text collections have
 temporal structure, news collections being the most common
 example.
NLTK’s corpus readers support efficient access to a variety of
 corpora, and can be used to work with new corpora. Table 2-3 lists functionality provided by the corpus
 readers.
[image: Common structures for text corpora: The simplest kind of corpus is a collection of isolated texts with no particular organization; some corpora are structured into categories, such as genre (Brown Corpus); some categorizations overlap, such as topic categories (Reuters Corpus); other corpora represent language use over time (Inaugural Address Corpus).]

Figure 2-3. Common structures for text corpora: The simplest kind of
 corpus is a collection of isolated texts with no particular
 organization; some corpora are structured into categories, such as
 genre (Brown Corpus); some categorizations overlap, such as topic
 categories (Reuters Corpus); other corpora represent language use
 over time (Inaugural Address Corpus).

Table 2-3. Basic corpus functionality defined in NLTK: More
 documentation can be found using help(nltk.corpus.reader) and by
 reading the online Corpus HOWTO at
 http://www.nltk.org/howto.
	Example
	Description

	fileids()
	The files of the corpus

	fileids([categories])
	The files of the corpus corresponding to these
 categories

	categories()
	The categories of the corpus

	categories([fileids])
	The categories of the corpus corresponding to
 these files

	raw()
	The raw content of the corpus

	raw(fileids=[f1,f2,f3])
	The raw content of the specified
 files

	raw(categories=[c1,c2])
	The raw content of the specified
 categories

	words()
	The words of the whole corpus

	words(fileids=[f1,f2,f3])
	The words of the specified fileids

	words(categories=[c1,c2])
	The words of the specified
 categories

	sents()
	The sentences of the specified
 categories

	sents(fileids=[f1,f2,f3])
	The sentences of the specified
 fileids

	sents(categories=[c1,c2])
	The sentences of the specified
 categories

	abspath(fileid)
	The location of the given file on
 disk

	encoding(fileid)
	The encoding of the file (if
 known)

	open(fileid)
	Open a stream for reading the given corpus
 file

	root()
	The path to the root of locally installed
 corpus

	readme()
	The contents of the README file of the
 corpus

We illustrate the difference between some of the corpus access
 methods here:
>>> raw = gutenberg.raw("burgess-busterbrown.txt")
>>> raw[1:20]
'The Adventures of B'
>>> words = gutenberg.words("burgess-busterbrown.txt")
>>> words[1:20]
['The', 'Adventures', 'of', 'Buster', 'Bear', 'by', 'Thornton', 'W', '.',
'Burgess', '1920', ']', 'I', 'BUSTER', 'BEAR', 'GOES', 'FISHING', 'Buster',
'Bear']
>>> sents = gutenberg.sents("burgess-busterbrown.txt")
>>> sents[1:20]
[['I'], ['BUSTER', 'BEAR', 'GOES', 'FISHING'], ['Buster', 'Bear', 'yawned', 'as',
'he', 'lay', 'on', 'his', 'comfortable', 'bed', 'of', 'leaves', 'and', 'watched',
'the', 'first', 'early', 'morning', 'sunbeams', 'creeping', 'through', ...], ...]

Loading Your Own Corpus

If you have a your own collection of text files that you would
 like to access using the methods discussed earlier, you can easily
 load them with the help of NLTK’s PlaintextCorpusReader. Check the location of your files on your file system;
 in the following example, we have taken this to be the directory
 /usr/share/dict. Whatever the
 location, set this to be the value of corpus_root [image: 1]. The second parameter of the
 PlaintextCorpusReader initializer [image: 2] can be
 a list of fileids, like ['a.txt',
 'test/b.txt'], or a pattern that matches all fileids, like
 '[abc]/.*\.txt' (see Regular Expressions for Detecting Word Patterns for information
 about regular expressions).
>>> from nltk.corpus import PlaintextCorpusReader
>>> corpus_root = '/usr/share/dict' [image: 1]
>>> wordlists = PlaintextCorpusReader(corpus_root, '.*') [image: 2]
>>> wordlists.fileids()
['README', 'connectives', 'propernames', 'web2', 'web2a', 'words']
>>> wordlists.words('connectives')
['the', 'of', 'and', 'to', 'a', 'in', 'that', 'is', ...]
As another example, suppose you have your own local copy of Penn
 Treebank (release 3), in C:\corpora. We can use the BracketParseCorpusReader to access this corpus. We specify the corpus_root to be the location of the parsed
 Wall Street Journal component of the corpus [image: 1], and give a file_pattern that matches the files
 contained within its subfolders [image: 2]
 (using forward slashes).
>>> from nltk.corpus import BracketParseCorpusReader
>>> corpus_root = r"C:\corpora\penntreebank\parsed\mrg\wsj" [image: 1]
>>> file_pattern = r".*/wsj_.*\.mrg" [image: 2]
>>> ptb = BracketParseCorpusReader(corpus_root, file_pattern)
>>> ptb.fileids()
['00/wsj_0001.mrg', '00/wsj_0002.mrg', '00/wsj_0003.mrg', '00/wsj_0004.mrg', ...]
>>> len(ptb.sents())
49208
>>> ptb.sents(fileids='20/wsj_2013.mrg')[19]
['The', '55-year-old', 'Mr.', 'Noriega', 'is', "n't", 'as', 'smooth', 'as', 'the',
'shah', 'of', 'Iran', ',', 'as', 'well-born', 'as', 'Nicaragua', "'s", 'Anastasio',
'Somoza', ',', 'as', 'imperial', 'as', 'Ferdinand', 'Marcos', 'of', 'the', 'Philippines',
'or', 'as', 'bloody', 'as', 'Haiti', "'s", 'Baby', Doc', 'Duvalier', '.']

Conditional Frequency Distributions

We introduced frequency distributions in Computing with Language: Simple Statistics. We saw that
 given some list mylist of words or
 other items, FreqDist(mylist) would compute the number of occurrences of each item in the list. Here
 we will generalize this idea.
When the texts of a corpus are divided into several categories (by
 genre, topic, author, etc.), we can maintain separate frequency
 distributions for each category. This will allow us to study systematic
 differences between the categories. In the previous section, we achieved
 this using NLTK’s ConditionalFreqDist data type. A conditional
 frequency distribution is a collection of frequency
 distributions, each one for a different “condition.” The condition will
 often be the category of the text. Figure 2-4 depicts
 a fragment of a conditional frequency distribution having just two
 conditions, one for news text and one for romance text.
[image: Counting words appearing in a text collection (a conditional frequency distribution).]

Figure 2-4. Counting words appearing in a text collection (a conditional
 frequency distribution).

Conditions and Events

A frequency distribution counts observable events, such as the
 appearance of words in a text. A conditional frequency distribution
 needs to pair each event with a condition. So instead of processing a
 sequence of words [image: 1], we have to process
 a sequence of pairs [image: 2]:
>>> text = ['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', ...] [image: 1]
>>> pairs = [('news', 'The'), ('news', 'Fulton'), ('news', 'County'), ...] [image: 2]
Each pair has the form (condition,
 event).
 If we were processing the entire Brown Corpus by genre, there would be
 15 conditions (one per genre) and 1,161,192 events (one per
 word).

Counting Words by Genre

In Accessing Text Corpora, we saw a
 conditional frequency distribution where the condition was the section
 of the Brown Corpus, and for each condition we counted words. Whereas
 FreqDist() takes a simple list as input, ConditionalFreqDist() takes a list of pairs.
>>> from nltk.corpus import brown
>>> cfd = nltk.ConditionalFreqDist(
... (genre, word)
... for genre in brown.categories()
... for word in brown.words(categories=genre))
Let’s break this down, and look at just two genres, news and
 romance. For each genre [image: 2], we loop over every word in the
 genre [image: 3], producing pairs consisting of
 the genre and the word [image: 1]:
>>> genre_word = [(genre, word) [image: 1]
... for genre in ['news', 'romance'] [image: 2]
... for word in brown.words(categories=genre)] [image: 3]
>>> len(genre_word)
170576
So, as we can see in the following code, pairs at the beginning
 of the list genre_word will be of
 the form ('news',
 word) [image: 1],
 whereas those at the end will be of the form ('romance', word)
 [image: 2].
>>> genre_word[:4]
[('news', 'The'), ('news', 'Fulton'), ('news', 'County'), ('news', 'Grand')] [image: 1]
>>> genre_word[-4:]
[('romance', 'afraid'), ('romance', 'not'), ('romance', "''"), ('romance', '.')] [image: 2]
We can now use this list of pairs to create a ConditionalFreqDist, and save it in a variable cfd. As usual, we can type the name of the
 variable to inspect it [image: 1], and verify
 it has two conditions [image: 2]:
>>> cfd = nltk.ConditionalFreqDist(genre_word)
>>> cfd [image: 1]
<ConditionalFreqDist with 2 conditions>
>>> cfd.conditions()
['news', 'romance'] [image: 2]
Let’s access the two conditions, and satisfy ourselves that each
 is just a frequency distribution:
>>> cfd['news']
<FreqDist with 100554 outcomes>
>>> cfd['romance']
<FreqDist with 70022 outcomes>
>>> list(cfd['romance'])
[',', '.', 'the', 'and', 'to', 'a', 'of', '``', "''", 'was', 'I', 'in', 'he', 'had',
'?', 'her', 'that', 'it', 'his', 'she', 'with', 'you', 'for', 'at', 'He', 'on', 'him',
'said', '!', '--', 'be', 'as', ';', 'have', 'but', 'not', 'would', 'She', 'The', ...]
>>> cfd['romance']['could']
193

Plotting and Tabulating Distributions

Apart from combining two or more frequency distributions, and
 being easy to initialize, a ConditionalFreqDist provides some useful methods for tabulation and
 plotting.
The plot in Figure 2-1 was based on a
 conditional frequency distribution reproduced in the following code.
 The condition is either of the words america or
 citizen [image: 2],
 and the counts being plotted are the number of times the word occurred
 in a particular speech. It exploits the fact that the filename for
 each speech—for example, 1865-Lincoln.txt—contains the year as
 the first four characters [image: 1].
 This code generates the pair ('america', '1865') for every instance
 of a word whose lowercased form starts with
 america—such as Americans—in
 the file 1865-Lincoln.txt.
>>> from nltk.corpus import inaugural
>>> cfd = nltk.ConditionalFreqDist(
... (target, fileid[:4]) [image: 1]
... for fileid in inaugural.fileids()
... for w in inaugural.words(fileid)
... for target in ['america', 'citizen'] [image: 2]
... if w.lower().startswith(target))
The plot in Figure 2-2 was also based
 on a conditional frequency distribution, reproduced in the following
 code. This time, the condition is the name of the language, and the
 counts being plotted are derived from word lengths [image: 1]. It exploits the fact that the filename
 for each language is the language name followed by '-Latin1' (the character
 encoding).
>>> from nltk.corpus import udhr
>>> languages = ['Chickasaw', 'English', 'German_Deutsch',
... 'Greenlandic_Inuktikut', 'Hungarian_Magyar', 'Ibibio_Efik']
>>> cfd = nltk.ConditionalFreqDist(
... (lang, len(word)) [image: 1]
... for lang in languages
... for word in udhr.words(lang + '-Latin1'))
In the plot() and tabulate() methods, we can optionally specify which conditions to
 display with a conditions= parameter. When we omit it, we get all the conditions.
 Similarly, we can limit the samples to display with a samples= parameter. This makes it possible to load a large
 quantity of data into a conditional frequency distribution, and then
 to explore it by plotting or tabulating selected conditions and
 samples. It also gives us full control over the order of conditions
 and samples in any displays. For example, we can tabulate the
 cumulative frequency data just for two languages, and for words less
 than 10 characters long, as shown next. We interpret the last cell on
 the top row to mean that 1,638 words of the English text have nine or
 fewer letters.
>>> cfd.tabulate(conditions=['English', 'German_Deutsch'],
... samples=range(10), cumulative=True)
 0 1 2 3 4 5 6 7 8 9
 English 0 185 525 883 997 1166 1283 1440 1558 1638
German_Deutsch 0 171 263 614 717 894 1013 1110 1213 1275
Note
Your Turn: Working with the
 news and romance genres from the Brown Corpus, find out which days
 of the week are most newsworthy, and which are most romantic. Define
 a variable called days containing
 a list of days of the week, i.e., ['Monday', ...]. Now tabulate the counts
 for these words using cfd.tabulate(samples=days). Now try the same thing using plot in place of tabulate. You may control the output order of days with the
 help of an extra parameter: conditions=['Monday', ...].

You may have noticed that the multiline expressions we have been
 using with conditional frequency distributions look like list
 comprehensions, but without the brackets. In general, when we use a
 list comprehension as a parameter to a function, like set([w.lower for w in t]), we are permitted
 to omit the square brackets and just write set(w.lower() for w in t). (See the
 discussion of “generator expressions” in Sequences for more about this.)

Generating Random Text with Bigrams

We can use a conditional frequency distribution to create a
 table of bigrams (word pairs, introduced in Computing with Language: Simple Statistics). The
 bigrams() function takes a list of words and builds a list of
 consecutive word pairs:
>>> sent = ['In', 'the', 'beginning', 'God', 'created', 'the', 'heaven',
... 'and', 'the', 'earth', '.']
>>> nltk.bigrams(sent)
[('In', 'the'), ('the', 'beginning'), ('beginning', 'God'), ('God', 'created'),
('created', 'the'), ('the', 'heaven'), ('heaven', 'and'), ('and', 'the'),
('the', 'earth'), ('earth', '.')]
In Example 2-1, we treat each word as a
 condition, and for each one we effectively create a frequency
 distribution over the following words. The function generate_model() contains a simple loop to
 generate text. When we call the function, we choose a word (such as
 'living') as our initial context.
 Then, once inside the loop, we print the current value of the variable
 word, and reset word to be the most likely token in that
 context (using max()); next time
 through the loop, we use that word as our new context. As you can see
 by inspecting the output, this simple approach to text generation
 tends to get stuck in loops. Another method would be to randomly
 choose the next word from among the available words.
Example 2-1. Generating random text: This program obtains all bigrams from
 the text of the book of Genesis, then constructs a conditional
 frequency distribution to record which words are most likely to
 follow a given word; e.g., after the word living, the most likely word is creature; the generate_model() function uses
 this data, and a seed word, to generate random text.
def generate_model(cfdist, word, num=15):
 for i in range(num):
 print word,
 word = cfdist[word].max()

text = nltk.corpus.genesis.words('english-kjv.txt')
bigrams = nltk.bigrams(text)
cfd = nltk.ConditionalFreqDist(bigrams) [image: 1]
>>> print cfd['living']
<FreqDist: 'creature': 7, 'thing': 4, 'substance': 2, ',': 1, '.': 1, 'soul': 1>
>>> generate_model(cfd, 'living')
living creature that he said , and the land of the land of the land

Conditional frequency distributions are a useful data structure
 for many NLP tasks. Their commonly used methods are summarized in
 Table 2-4.
Table 2-4. NLTK’s conditional frequency distributions: Commonly used
 methods and idioms for defining, accessing, and visualizing a
 conditional frequency distribution of counters
	Example
	Description

	cfdist =
 ConditionalFreqDist(pairs)
	Create a conditional frequency distribution from
 a list of pairs

	cfdist.conditions()
	Alphabetically sorted list of
 conditions

	cfdist[condition]
	The frequency distribution for this
 condition

	cfdist[condition][sample]
	Frequency for the given sample for this
 condition

	cfdist.tabulate()
	Tabulate the conditional frequency
 distribution

	cfdist.tabulate(samples,
 conditions)
	Tabulation limited to the specified samples and
 conditions

	cfdist.plot()
	Graphical plot of the conditional frequency
 distribution

	cfdist.plot(samples,
 conditions)
	Graphical plot limited to the specified samples
 and conditions

	cfdist1 <
 cfdist2
	Test if samples in cfdist1 occur less frequently than
 in cfdist2

More Python: Reusing Code

By this time you’ve probably typed and retyped a lot of code in
 the Python interactive interpreter. If you mess up when retyping a
 complex example, you have to enter it again. Using the arrow keys to
 access and modify previous commands is helpful but only goes so far. In
 this section, we see two important ways to reuse code: text editors and
 Python functions.
Creating Programs with a Text Editor

The Python interactive interpreter performs your instructions as
 soon as you type them. Often, it is better to compose a multiline
 program using a text editor, then ask Python to run the whole program
 at once. Using IDLE, you can do this by going to the File menu and
 opening a new window. Try this now, and enter the following one-line
 program:
print 'Monty Python'
Save this program in a file called monty.py, then go to the Run menu and
 select the command Run Module. (We’ll learn what modules are shortly.)
 The result in the main IDLE window should look like this:
>>> ================================ RESTART ================================
>>>
Monty Python
>>>
You can also type from monty import
 * and it will do the same thing.
From now on, you have a choice of using the interactive
 interpreter or a text editor to create your programs. It is often
 convenient to test your ideas using the interpreter, revising a line
 of code until it does what you expect. Once you’re ready, you can
 paste the code (minus any >>> or ... prompts) into the text editor, continue
 to expand it, and finally save the program in a file so that you don’t
 have to type it in again later. Give the file a short but descriptive
 name, using all lowercase letters and separating words with
 underscore, and using the .py
 filename extension, e.g., monty_python.py.
Note
Important: Our inline code
 examples include the >>>
 and ... prompts as if we are
 interacting directly with the interpreter. As they get more
 complicated, you should instead type them into the editor, without
 the prompts, and run them from the editor as shown earlier. When we
 provide longer programs in this book, we will leave out the prompts
 to remind you to type them into a file rather than using the
 interpreter. You can see this already in Example 2-1. Note that the example still includes
 a couple of lines with the Python prompt; this is the interactive
 part of the task where you inspect some data and invoke a function.
 Remember that all code samples like Example 2-1 are downloadable from http://www.nltk.org/.

Functions

Suppose that you work on analyzing text that involves different
 forms of the same word, and that part of your program needs to work
 out the plural form of a given singular noun. Suppose it needs to do
 this work in two places, once when it is processing some texts and
 again when it is processing user input.
Rather than repeating the same code several times over, it is
 more efficient and reliable to localize this work inside a function. A function is just a named block of
 code that performs some well-defined task, as we saw in Computing with Language: Texts and Words. A function
 is usually defined to take some inputs, using special variables known
 as parameters, and it may produce a
 result, also known as a return
 value. We define a function using the keyword def followed by the function name and any
 input parameters, followed by the body of the function. Here’s the
 function we saw in Computing with Language: Texts and Words (including
 the import statement that makes
 division behave as expected):
>>> from __future__ import division
>>> def lexical_diversity(text):
... return len(text) / len(set(text))
We use the keyword return to
 indicate the value that is produced as output by the function. In this
 example, all the work of the function is done in the return statement. Here’s an equivalent
 definition that does the same work using multiple lines of code. We’ll
 change the parameter name from text
 to my_text_data to remind you that
 this is an arbitrary choice:
>>> def lexical_diversity(my_text_data):
... word_count = len(my_text_data)
... vocab_size = len(set(my_text_data))
... diversity_score = word_count / vocab_size
... return diversity_score
Notice that we’ve created some new variables inside the body of
 the function. These are local
 variables and are not accessible outside the function. So
 now we have defined a function with the name lexical_diversity. But just defining it
 won’t produce any output! Functions do nothing until they are “called”
 (or “invoked”).
Let’s return to our earlier scenario, and actually define a
 simple function to work out English plurals. The function plural() in Example 2-2
 takes a singular noun and generates a plural form, though it is not
 always correct. (We’ll discuss functions at greater length in Functions: The Foundation of Structured Programming.)
Example 2-2. A Python function: This function tries to work out the plural
 form of any English noun; the keyword def (define) is followed by
 the function name, then a parameter inside parentheses, and a colon;
 the body of the function is the indented block of code; it tries to
 recognize patterns within the word and process the word accordingly;
 e.g., if the word ends with y, delete the y and add ies.
def plural(word):
 if word.endswith('y'):
 return word[:-1] + 'ies'
 elif word[-1] in 'sx' or word[-2:] in ['sh', 'ch']:
 return word + 'es'
 elif word.endswith('an'):
 return word[:-2] + 'en'
 else:
 return word + 's'
>>> plural('fairy')
'fairies'
>>> plural('woman')
'women'

The endswith() function is
 always associated with a string object (e.g., word in Example 2-2). To
 call such functions, we give the name of the object, a period, and
 then the name of the function. These functions are usually known as
 methods.

Modules

Over time you will find that you create a variety of useful
 little text-processing functions, and you end up copying them from old
 programs to new ones. Which file contains the latest version of the
 function you want to use? It makes life a lot easier if you can
 collect your work into a single place, and access previously defined
 functions without making copies.
To do this, save your function(s) in a file called (say)
 textproc.py. Now, you can access
 your work simply by importing it from the file:
>>> from textproc import plural
>>> plural('wish')
wishes
>>> plural('fan')
fen
Our plural function obviously has an error, since the plural of
 fan is fans. Instead of
 typing in a new version of the function, we can simply edit the
 existing one. Thus, at every stage, there is only one version of our
 plural function, and no confusion about which one is being
 used.
A collection of variable and function definitions in a file is
 called a Python module. A
 collection of related modules is called a package. NLTK’s code for processing the Brown
 Corpus is an example of a module, and its collection of code for
 processing all the different corpora is an example of a package. NLTK
 itself is a set of packages, sometimes called a library.
Caution!
If you are creating a file to contain some of your Python
 code, do not name your file nltk.py: it may get imported in place of
 the “real” NLTK package. When it imports modules, Python first looks
 in the current directory (folder).

Lexical Resources

A lexicon, or lexical resource, is a collection of words and/or
 phrases along with associated information, such as part-of-speech and
 sense definitions. Lexical resources are secondary to texts, and are
 usually created and enriched with the help of texts. For example, if we
 have defined a text my_text, then
 vocab = sorted(set(my_text)) builds
 the vocabulary of my_text, whereas
 word_freq =
 FreqDist(my_text) counts the frequency of each word in the text. Both
 vocab and word_freq are simple lexical resources.
 Similarly, a concordance like the one we saw in Computing with Language: Texts and Words gives us
 information about word usage that might help in the preparation of a
 dictionary. Standard terminology for lexicons is illustrated in Figure 2-5. A lexical
 entry consists of a headword (also known as a lemma) along with additional information, such
 as the part-of-speech and the sense definition. Two distinct words
 having the same spelling are called homonyms.
[image: Lexicon terminology: Lexical entries for two lemmas having the same spelling (homonyms), providing part-of-speech and gloss information.]

Figure 2-5. Lexicon terminology: Lexical entries for two lemmas having the
 same spelling (homonyms), providing part-of-speech and gloss
 information.

The simplest kind of lexicon is nothing more than a sorted list of
 words. Sophisticated lexicons include complex structure within and
 across the individual entries. In this section, we’ll look at some
 lexical resources included with NLTK.
Wordlist Corpora

NLTK includes some corpora that are nothing more than wordlists.
 The Words Corpus is the /usr/dict/words file from Unix, used by
 some spellcheckers. We can use it to find unusual or misspelled words
 in a text corpus, as shown in Example 2-3.
Example 2-3. Filtering a text: This program computes the vocabulary of a
 text, then removes all items that occur in an existing wordlist,
 leaving just the uncommon or misspelled words.
def unusual_words(text):
 text_vocab = set(w.lower() for w in text if w.isalpha())
 english_vocab = set(w.lower() for w in nltk.corpus.words.words())
 unusual = text_vocab.difference(english_vocab)
 return sorted(unusual)
>>> unusual_words(nltk.corpus.gutenberg.words('austen-sense.txt'))
['abbeyland', 'abhorrence', 'abominably', 'abridgement', 'accordant', 'accustomary',
'adieus', 'affability', 'affectedly', 'aggrandizement', 'alighted', 'allenham',
'amiably', 'annamaria', 'annuities', 'apologising', 'arbour', 'archness', ...]
>>> unusual_words(nltk.corpus.nps_chat.words())
['aaaaaaaaaaaaaaaaa', 'aaahhhh', 'abou', 'abourted', 'abs', 'ack', 'acros',
'actualy', 'adduser', 'addy', 'adoted', 'adreniline', 'ae', 'afe', 'affari', 'afk',
'agaibn', 'agurlwithbigguns', 'ahah', 'ahahah', 'ahahh', 'ahahha', 'ahem', 'ahh', ...]

There is also a corpus of stopwords, that is, high-frequency words such
 as the, to, and
 also that we sometimes want to filter out of a
 document before further processing. Stopwords usually have little
 lexical content, and their presence in a text fails to distinguish it
 from other texts.
>>> from nltk.corpus import stopwords
>>> stopwords.words('english')
['a', "a's", 'able', 'about', 'above', 'according', 'accordingly', 'across',
'actually', 'after', 'afterwards', 'again', 'against', "ain't", 'all', 'allow',
'allows', 'almost', 'alone', 'along', 'already', 'also', 'although', 'always', ...]
Let’s define a function to compute what fraction of words in a
 text are not in the stopwords list:
>>> def content_fraction(text):
... stopwords = nltk.corpus.stopwords.words('english')
... content = [w for w in text if w.lower() not in stopwords]
... return len(content) / len(text)
...
>>> content_fraction(nltk.corpus.reuters.words())
0.65997695393285261
Thus, with the help of stopwords, we filter out a third of the
 words of the text. Notice that we’ve combined two different kinds of
 corpus here, using a lexical resource to filter the content of a text
 corpus.
[image: A word puzzle: A grid of randomly chosen letters with rules for creating words out of the letters; this puzzle is known as “Target.”]

Figure 2-6. A word puzzle: A grid of randomly chosen letters with rules
 for creating words out of the letters; this puzzle is known as
 “Target.”

A wordlist is useful for solving word puzzles, such as the one
 in Figure 2-6. Our program iterates through every
 word and, for each one, checks whether it meets the conditions. It is
 easy to check obligatory letter [image: 2] and length [image: 1] constraints (and we’ll only look
 for words with six or more letters here). It is trickier to check that
 candidate solutions only use combinations of the supplied letters,
 especially since some of the supplied letters appear twice (here, the
 letter v). The FreqDist comparison method [image: 3] permits us to check that the
 frequency of each letter in the candidate word is
 less than or equal to the frequency of the corresponding letter in the
 puzzle.
>>> puzzle_letters = nltk.FreqDist('egivrvonl')
>>> obligatory = 'r'
>>> wordlist = nltk.corpus.words.words()
>>> [w for w in wordlist if len(w) >= 6 [image: 1]
... and obligatory in w [image: 2]
... and nltk.FreqDist(w) <= puzzle_letters] [image: 3]
['glover', 'gorlin', 'govern', 'grovel', 'ignore', 'involver', 'lienor',
'linger', 'longer', 'lovering', 'noiler', 'overling', 'region', 'renvoi',
'revolving', 'ringle', 'roving', 'violer', 'virole']
One more wordlist corpus is the Names Corpus, containing 8,000
 first names categorized by gender. The male and female names are
 stored in separate files. Let’s find names that appear in both files,
 i.e., names that are ambiguous for gender:
>>> names = nltk.corpus.names
>>> names.fileids()
['female.txt', 'male.txt']
>>> male_names = names.words('male.txt')
>>> female_names = names.words('female.txt')
>>> [w for w in male_names if w in female_names]
['Abbey', 'Abbie', 'Abby', 'Addie', 'Adrian', 'Adrien', 'Ajay', 'Alex', 'Alexis',
'Alfie', 'Ali', 'Alix', 'Allie', 'Allyn', 'Andie', 'Andrea', 'Andy', 'Angel',
'Angie', 'Ariel', 'Ashley', 'Aubrey', 'Augustine', 'Austin', 'Averil', ...]
It is well known that names ending in the letter
 a are almost always female. We can see this and
 some other patterns in the graph in Figure 2-7,
 produced by the following code. Remember that name[-1] is the last letter of name.
>>> cfd = nltk.ConditionalFreqDist(
... (fileid, name[-1])
... for fileid in names.fileids()
... for name in names.words(fileid))
>>> cfd.plot()
[image: Conditional frequency distribution: This plot shows the number of female and male names ending with each letter of the alphabet; most names ending with a, e, or i are female; names ending in h and l are equally likely to be male or female; names ending in k, o, r, s, and t are likely to be male.]

Figure 2-7. Conditional frequency distribution: This plot shows the
 number of female and male names ending with each letter of the
 alphabet; most names ending with a,
 e, or i
 are female; names ending in h and
 l are equally likely to be male or
 female; names ending in k, o, r, s, and t are
 likely to be male.

A Pronouncing Dictionary

A slightly richer kind of lexical resource is a table (or
 spreadsheet), containing a word plus some properties in each row. NLTK
 includes the CMU Pronouncing Dictionary for U.S. English, which was
 designed for use by speech synthesizers.
>>> entries = nltk.corpus.cmudict.entries()
>>> len(entries)
127012
>>> for entry in entries[39943:39951]:
... print entry
...
('fir', ['F', 'ER1'])
('fire', ['F', 'AY1', 'ER0'])
('fire', ['F', 'AY1', 'R'])
('firearm', ['F', 'AY1', 'ER0', 'AA2', 'R', 'M'])
('firearm', ['F', 'AY1', 'R', 'AA2', 'R', 'M'])
('firearms', ['F', 'AY1', 'ER0', 'AA2', 'R', 'M', 'Z'])
('firearms', ['F', 'AY1', 'R', 'AA2', 'R', 'M', 'Z'])
('fireball', ['F', 'AY1', 'ER0', 'B', 'AO2', 'L'])
For each word, this lexicon provides a list of phonetic codes—distinct labels for each contrastive
 sound—known as phones. Observe that
 fire has two pronunciations (in U.S. English):
 the one-syllable F AY1 R, and the
 two-syllable F AY1 ER0. The symbols
 in the CMU Pronouncing Dictionary are from the
 Arpabet, described in more detail at http://en.wikipedia.org/wiki/Arpabet.
Each entry consists of two parts, and we can process these
 individually using a more complex version of the for statement. Instead of writing for entry in entries:, we replace entry with two variable names, word, pron [image: 1].
 Now, each time through the loop, word is assigned the first part of the
 entry, and pron is assigned the
 second part of the entry:
>>> for word, pron in entries: [image: 1]
... if len(pron) == 3: [image: 2]
... ph1, ph2, ph3 = pron [image: 3]
... if ph1 == 'P' and ph3 == 'T':
... print word, ph2,
...
pait EY1 pat AE1 pate EY1 patt AE1 peart ER1 peat IY1 peet IY1 peete IY1 pert ER1
pet EH1 pete IY1 pett EH1 piet IY1 piette IY1 pit IH1 pitt IH1 pot AA1 pote OW1
pott AA1 pout AW1 puett UW1 purt ER1 put UH1 putt AH1
The program just shown scans the lexicon looking for entries
 whose pronunciation consists of three phones [image: 2]. If the condition is true, it assigns
 the contents of pron to three new
 variables: ph1, ph2, and ph3. Notice the unusual form of the
 statement that does that work [image: 3].
Here’s another example of the same for statement, this time used inside a list
 comprehension. This program finds all words whose pronunciation ends
 with a syllable sounding like nicks. You could
 use this method to find rhyming words.
>>> syllable = ['N', 'IH0', 'K', 'S']
>>> [word for word, pron in entries if pron[-4:] == syllable]
["atlantic's", 'audiotronics', 'avionics', 'beatniks', 'calisthenics', 'centronics',
'chetniks', "clinic's", 'clinics', 'conics', 'cynics', 'diasonics', "dominic's",
'ebonics', 'electronics', "electronics'", 'endotronics', "endotronics'", 'enix', ...]
Notice that the one pronunciation is spelled in several ways:
 nics, niks,
 nix, and even ntic’s with a
 silent t, for the word
 atlantic’s. Let’s look for some other mismatches
 between pronunciation and writing. Can you summarize the purpose of
 the following examples and explain how they work?
>>> [w for w, pron in entries if pron[-1] == 'M' and w[-1] == 'n']
['autumn', 'column', 'condemn', 'damn', 'goddamn', 'hymn', 'solemn']
>>> sorted(set(w[:2] for w, pron in entries if pron[0] == 'N' and w[0] != 'n'))
['gn', 'kn', 'mn', 'pn']
The phones contain digits to represent primary stress (1), secondary stress (2), and no stress (0). As our final example, we define a
 function to extract the stress digits and then scan our lexicon to
 find words having a particular stress pattern.
>>> def stress(pron):
... return [char for phone in pron for char in phone if char.isdigit()]
>>> [w for w, pron in entries if stress(pron) == ['0', '1', '0', '2', '0']]
['abbreviated', 'abbreviating', 'accelerated', 'accelerating', 'accelerator',
'accentuated', 'accentuating', 'accommodated', 'accommodating', 'accommodative',
'accumulated', 'accumulating', 'accumulative', 'accumulator', 'accumulators', ...]
>>> [w for w, pron in entries if stress(pron) == ['0', '2', '0', '1', '0']]
['abbreviation', 'abbreviations', 'abomination', 'abortifacient', 'abortifacients',
'academicians', 'accommodation', 'accommodations', 'accreditation', 'accreditations',
'accumulation', 'accumulations', 'acetylcholine', 'acetylcholine', 'adjudication', ...]
Note
A subtlety of this program is that our user-defined function
 stress() is invoked inside the
 condition of a list comprehension. There is also a doubly nested
 for loop. There’s a lot going on
 here, and you might want to return to this once you’ve had more
 experience using list comprehensions.

We can use a conditional frequency distribution to help us find
 minimally contrasting sets of words. Here we find all the
 p words consisting of three sounds [image: 2], and group them according to their first and
 last sounds [image: 1].
>>> p3 = [(pron[0]+'-'+pron[2], word) [image: 1]
... for (word, pron) in entries
... if pron[0] == 'P' and len(pron) == 3] [image: 2]
>>> cfd = nltk.ConditionalFreqDist(p3)
>>> for template in cfd.conditions():
... if len(cfd[template]) > 10:
... words = cfd[template].keys()
... wordlist = ' '.join(words)
... print template, wordlist[:70] + "..."
...
P-CH perch puche poche peach petsche poach pietsch putsch pautsch piche pet...
P-K pik peek pic pique paque polk perc poke perk pac pock poch purk pak pa...
P-L pil poehl pille pehl pol pall pohl pahl paul perl pale paille perle po...
P-N paine payne pon pain pin pawn pinn pun pine paign pen pyne pane penn p...
P-P pap paap pipp paup pape pup pep poop pop pipe paape popp pip peep pope...
P-R paar poor par poore pear pare pour peer pore parr por pair porr pier...
P-S pearse piece posts pasts peace perce pos pers pace puss pesce pass pur...
P-T pot puett pit pete putt pat purt pet peart pott pett pait pert pote pa...
P-Z pays p.s pao's pais paws p.'s pas pez paz pei's pose poise peas paiz p...
Rather than iterating over the whole dictionary, we can also
 access it by looking up particular words. We will use Python’s
 dictionary data structure, which we will study systematically in Mapping Words to Properties Using Python Dictionaries. We look up a dictionary by specifying
 its name, followed by a key (such
 as the word 'fire') inside square
 brackets [image: 1].
>>> prondict = nltk.corpus.cmudict.dict()
>>> prondict['fire'] [image: 1]
[['F', 'AY1', 'ER0'], ['F', 'AY1', 'R']]
>>> prondict['blog'] [image: 2]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'blog'
>>> prondict['blog'] = [['B', 'L', 'AA1', 'G']] [image: 3]
>>> prondict['blog']
[['B', 'L', 'AA1', 'G']]
If we try to look up a non-existent key [image: 2], we get a KeyError. This is similar to what happens
 when we index a list with an integer that is too large, producing an
 IndexError. The word
 blog is missing from the pronouncing dictionary,
 so we tweak our version by assigning a value for this key [image: 3] (this has no effect on the NLTK corpus;
 next time we access it, blog will still be
 absent).
We can use any lexical resource to process a text, e.g., to
 filter out words having some lexical property (like nouns), or mapping
 every word of the text. For example, the following text-to-speech
 function looks up each word of the text in the pronunciation
 dictionary:
>>> text = ['natural', 'language', 'processing']
>>> [ph for w in text for ph in prondict[w][0]]
['N', 'AE1', 'CH', 'ER0', 'AH0', 'L', 'L', 'AE1', 'NG', 'G', 'W', 'AH0', 'JH',
'P', 'R', 'AA1', 'S', 'EH0', 'S', 'IH0', 'NG']

Comparative Wordlists

Another example of a
 tabular lexicon is the comparative
 wordlist. NLTK includes so-called Swadesh wordlists, lists of about 200 common
 words in several languages. The languages are identified using an ISO
 639 two-letter code.
>>> from nltk.corpus import swadesh
>>> swadesh.fileids()
['be', 'bg', 'bs', 'ca', 'cs', 'cu', 'de', 'en', 'es', 'fr', 'hr', 'it', 'la', 'mk',
'nl', 'pl', 'pt', 'ro', 'ru', 'sk', 'sl', 'sr', 'sw', 'uk']
>>> swadesh.words('en')
['I', 'you (singular), thou', 'he', 'we', 'you (plural)', 'they', 'this', 'that',
'here', 'there', 'who', 'what', 'where', 'when', 'how', 'not', 'all', 'many', 'some',
'few', 'other', 'one', 'two', 'three', 'four', 'five', 'big', 'long', 'wide', ...]
We can access cognate words from multiple languages using the
 entries() method, specifying a list of languages. With one
 further step we can convert this into a simple dictionary (we’ll learn
 about dict() in Mapping Words to Properties Using Python Dictionaries).
>>> fr2en = swadesh.entries(['fr', 'en'])
>>> fr2en
[('je', 'I'), ('tu, vous', 'you (singular), thou'), ('il', 'he'), ...]
>>> translate = dict(fr2en)
>>> translate['chien']
'dog'
>>> translate['jeter']
'throw'
We can make our simple translator more useful by adding other
 source languages. Let’s get the German-English and Spanish-English
 pairs, convert each to a dictionary using dict(), then update our
 original translate dictionary with these additional mappings:
>>> de2en = swadesh.entries(['de', 'en']) # German-English
>>> es2en = swadesh.entries(['es', 'en']) # Spanish-English
>>> translate.update(dict(de2en))
>>> translate.update(dict(es2en))
>>> translate['Hund']
'dog'
>>> translate['perro']
'dog'
We can compare words in various Germanic and Romance
 languages:
>>> languages = ['en', 'de', 'nl', 'es', 'fr', 'pt', 'la']
>>> for i in [139, 140, 141, 142]:
... print swadesh.entries(languages)[i]
...
('say', 'sagen', 'zeggen', 'decir', 'dire', 'dizer', 'dicere')
('sing', 'singen', 'zingen', 'cantar', 'chanter', 'cantar', 'canere')
('play', 'spielen', 'spelen', 'jugar', 'jouer', 'jogar, brincar', 'ludere')
('float', 'schweben', 'zweven', 'flotar', 'flotter', 'flutuar, boiar', 'fluctuare')

Shoebox and Toolbox Lexicons

Perhaps the single most popular tool used by linguists for
 managing data is Toolbox, previously known as
 Shoebox since it replaces the field linguist’s
 traditional shoebox full of file cards. Toolbox is freely downloadable
 from http://www.sil.org/computing/toolbox/.
A Toolbox file consists of a collection of entries, where each
 entry is made up of one or more fields. Most fields are optional or
 repeatable, which means that this kind of lexical resource cannot be
 treated as a table or spreadsheet.
Here is a dictionary for the Rotokas language. We see just the
 first entry, for the word kaa, meaning “to
 gag”:
>>> from nltk.corpus import toolbox
>>> toolbox.entries('rotokas.dic')
[('kaa', [('ps', 'V'), ('pt', 'A'), ('ge', 'gag'), ('tkp', 'nek i pas'),
('dcsv', 'true'), ('vx', '1'), ('sc', '???'), ('dt', '29/Oct/2005'),
('ex', 'Apoka ira kaaroi aioa-ia reoreopaoro.'),
('xp', 'Kaikai i pas long nek bilong Apoka bikos em i kaikai na toktok.'),
('xe', 'Apoka is gagging from food while talking.')]), ...]
Entries consist of a series of attribute-value pairs, such as
 ('ps', 'V') to indicate that the
 part-of-speech is 'V' (verb), and
 ('ge', 'gag') to indicate that the
 gloss-into-English is 'gag'. The last three pairs contain an
 example sentence in Rotokas and its translations into Tok Pisin and
 English.
The loose structure of Toolbox files makes it hard for us to do
 much more with them at this stage. XML provides a powerful way to
 process this kind of corpus, and we will return to this topic in Chapter 11.
Note
The Rotokas language is spoken on the island of Bougainville,
 Papua New Guinea. This lexicon was contributed to NLTK by Stuart
 Robinson. Rotokas is notable for having an inventory of just 12
 phonemes (contrastive sounds); see http://en.wikipedia.org/wiki/Rotokas_language

WordNet

WordNet is a semantically
 oriented dictionary of English, similar to a traditional thesaurus but
 with a richer structure. NLTK includes the English WordNet, with 155,287
 words and 117,659 synonym sets. We’ll begin by looking at synonyms and
 how they are accessed in WordNet.
Senses and Synonyms

Consider the sentence in a. If we
 replace the word motorcar in a with automobile, to get
 b, the meaning of the sentence stays pretty
 much the same:
Example 2-4.
	Benz is credited with the invention of the
 motorcar.

	Benz is credited with the invention of the
 automobile.

Since everything else in the sentence has remained unchanged, we
 can conclude that the words motorcar and
 automobile have the same meaning, i.e., they are
 synonyms. We can explore these
 words with the help of WordNet:
>>> from nltk.corpus import wordnet as wn
>>> wn.synsets('motorcar')
[Synset('car.n.01')]
Thus, motorcar has just one possible
 meaning and it is identified as car.n.01, the first noun sense of
 car. The entity car.n.01 is called a synset, or “synonym set,” a collection of
 synonymous words (or “lemmas”):
>>> wn.synset('car.n.01').lemma_names
['car', 'auto', 'automobile', 'machine', 'motorcar']
Each word of a synset can have several meanings, e.g.,
 car can also signify a train carriage, a gondola,
 or an elevator car. However, we are only interested in the single
 meaning that is common to all words of this synset. Synsets also come
 with a prose definition and some example sentences:
>>> wn.synset('car.n.01').definition
'a motor vehicle with four wheels; usually propelled by an internal combustion engine'
>>> wn.synset('car.n.01').examples
['he needs a car to get to work']
Although definitions help humans to understand the intended
 meaning of a synset, the words of the synset are
 often more useful for our programs. To eliminate ambiguity, we will
 identify these words as car.n.01.automobile, car.n.01.motorcar, and so on. This pairing
 of a synset with a word is called a lemma. We can get all the lemmas
 for a given synset [image: 1], look up a
 particular lemma [image: 2], get the synset
 corresponding to a lemma [image: 3], and get
 the “name” of a lemma [image: 4]:
>>> wn.synset('car.n.01').lemmas [image: 1]
[Lemma('car.n.01.car'), Lemma('car.n.01.auto'), Lemma('car.n.01.automobile'),
Lemma('car.n.01.machine'), Lemma('car.n.01.motorcar')]
>>> wn.lemma('car.n.01.automobile') [image: 2]
Lemma('car.n.01.automobile')
>>> wn.lemma('car.n.01.automobile').synset [image: 3]
Synset('car.n.01')
>>> wn.lemma('car.n.01.automobile').name [image: 4]
'automobile'
Unlike the words automobile and
 motorcar, which are unambiguous and have one
 synset, the word car is ambiguous, having five
 synsets:
>>> wn.synsets('car')
[Synset('car.n.01'), Synset('car.n.02'), Synset('car.n.03'), Synset('car.n.04'),
Synset('cable_car.n.01')]
>>> for synset in wn.synsets('car'):
... print synset.lemma_names
...
['car', 'auto', 'automobile', 'machine', 'motorcar']
['car', 'railcar', 'railway_car', 'railroad_car']
['car', 'gondola']
['car', 'elevator_car']
['cable_car', 'car']
For convenience, we can access all the lemmas involving the word
 car as follows:
>>> wn.lemmas('car')
[Lemma('car.n.01.car'), Lemma('car.n.02.car'), Lemma('car.n.03.car'),
Lemma('car.n.04.car'), Lemma('cable_car.n.01.car')]
Note
Your Turn: Write down all
 the senses of the word dish that you can think
 of. Now, explore this word with the help of WordNet, using the same
 operations shown earlier.

The WordNet Hierarchy

WordNet synsets correspond to abstract concepts, and they don’t
 always have corresponding words in English. These concepts are linked
 together in a hierarchy. Some concepts are very general, such as
 Entity, State,
 Event; these are called unique beginners or root synsets. Others,
 such as gas guzzler and
 hatchback, are much more specific. A small
 portion of a concept hierarchy is illustrated in Figure 2-8.
[image: Fragment of WordNet concept hierarchy: Nodes correspond to synsets; edges indicate the hypernym/hyponym relation, i.e., the relation between superordinate and subordinate concepts.]

Figure 2-8. Fragment of WordNet concept hierarchy: Nodes correspond to
 synsets; edges indicate the hypernym/hyponym relation, i.e., the
 relation between superordinate and subordinate concepts.

WordNet makes it easy to navigate between concepts. For example,
 given a concept like motorcar, we can look at the
 concepts that are more specific—the (immediate) hyponyms.
>>> motorcar = wn.synset('car.n.01')
>>> types_of_motorcar = motorcar.hyponyms()
>>> types_of_motorcar[26]
Synset('ambulance.n.01')
>>> sorted([lemma.name for synset in types_of_motorcar for lemma in synset.lemmas])
['Model_T', 'S.U.V.', 'SUV', 'Stanley_Steamer', 'ambulance', 'beach_waggon',
'beach_wagon', 'bus', 'cab', 'compact', 'compact_car', 'convertible',
'coupe', 'cruiser', 'electric', 'electric_automobile', 'electric_car',
'estate_car', 'gas_guzzler', 'hack', 'hardtop', 'hatchback', 'heap',
'horseless_carriage', 'hot-rod', 'hot_rod', 'jalopy', 'jeep', 'landrover',
'limo', 'limousine', 'loaner', 'minicar', 'minivan', 'pace_car', 'patrol_car',
'phaeton', 'police_car', 'police_cruiser', 'prowl_car', 'race_car', 'racer',
'racing_car', 'roadster', 'runabout', 'saloon', 'secondhand_car', 'sedan',
'sport_car', 'sport_utility', 'sport_utility_vehicle', 'sports_car', 'squad_car',
'station_waggon', 'station_wagon', 'stock_car', 'subcompact', 'subcompact_car',
'taxi', 'taxicab', 'tourer', 'touring_car', 'two-seater', 'used-car', 'waggon',
'wagon']
We can also navigate up the hierarchy by visiting hypernyms.
 Some words have multiple paths, because they can be classified in more
 than one way. There are two paths between car.n.01 and entity.n.01 because wheeled_vehicle.n.01 can be classified as
 both a vehicle and a container.
>>> motorcar.hypernyms()
[Synset('motor_vehicle.n.01')]
>>> paths = motorcar.hypernym_paths()
>>> len(paths)
2
>>> [synset.name for synset in paths[0]]
['entity.n.01', 'physical_entity.n.01', 'object.n.01', 'whole.n.02', 'artifact.n.01',
'instrumentality.n.03', 'container.n.01', 'wheeled_vehicle.n.01',
'self-propelled_vehicle.n.01', 'motor_vehicle.n.01', 'car.n.01']
>>> [synset.name for synset in paths[1]]
['entity.n.01', 'physical_entity.n.01', 'object.n.01', 'whole.n.02', 'artifact.n.01',
'instrumentality.n.03', 'conveyance.n.03', 'vehicle.n.01', 'wheeled_vehicle.n.01',
'self-propelled_vehicle.n.01', 'motor_vehicle.n.01', 'car.n.01']
We can get the most general hypernyms (or root hypernyms) of a
 synset as follows:
>>> motorcar.root_hypernyms()
[Synset('entity.n.01')]
Note
Your Turn: Try out NLTK’s
 convenient graphical WordNet browser: nltk.app.wordnet(). Explore the WordNet
 hierarchy by following the hypernym and hyponym links.

More Lexical Relations

Hypernyms and hyponyms are called lexical relations because they relate one
 synset to another. These two relations navigate up and down the “is-a”
 hierarchy. Another important way to navigate the WordNet network is
 from items to their components (meronyms) or to the things they are contained
 in (holonyms). For example, the
 parts of a tree are its
 trunk, crown, and so on;
 these are the part_meronyms(). The substance a tree is made of
 includes heartwood and
 sapwood, i.e., the substance_meronyms(). A collection of trees forms a
 forest, i.e., the member_holonyms():
>>> wn.synset('tree.n.01').part_meronyms()
[Synset('burl.n.02'), Synset('crown.n.07'), Synset('stump.n.01'),
Synset('trunk.n.01'), Synset('limb.n.02')]
>>> wn.synset('tree.n.01').substance_meronyms()
[Synset('heartwood.n.01'), Synset('sapwood.n.01')]
>>> wn.synset('tree.n.01').member_holonyms()
[Synset('forest.n.01')]
To see just how intricate things can get, consider the word
 mint, which has several closely related senses.
 We can see that mint.n.04 is part
 of mint.n.02 and the substance from
 which mint.n.05 is made.
>>> for synset in wn.synsets('mint', wn.NOUN):
... print synset.name + ':', synset.definition
...
batch.n.02: (often followed by `of') a large number or amount or extent
mint.n.02: any north temperate plant of the genus Mentha with aromatic leaves and
 small mauve flowers
mint.n.03: any member of the mint family of plants
mint.n.04: the leaves of a mint plant used fresh or candied
mint.n.05: a candy that is flavored with a mint oil
mint.n.06: a plant where money is coined by authority of the government
>>> wn.synset('mint.n.04').part_holonyms()
[Synset('mint.n.02')]
>>> wn.synset('mint.n.04').substance_holonyms()
[Synset('mint.n.05')]
There are also relationships between verbs. For example, the act
 of walking involves the act of
 stepping, so walking entails stepping. Some verbs have multiple
 entailments:
>>> wn.synset('walk.v.01').entailments()
[Synset('step.v.01')]
>>> wn.synset('eat.v.01').entailments()
[Synset('swallow.v.01'), Synset('chew.v.01')]
>>> wn.synset('tease.v.03').entailments()
[Synset('arouse.v.07'), Synset('disappoint.v.01')]
Some lexical relationships hold between lemmas, e.g., antonymy:
>>> wn.lemma('supply.n.02.supply').antonyms()
[Lemma('demand.n.02.demand')]
>>> wn.lemma('rush.v.01.rush').antonyms()
[Lemma('linger.v.04.linger')]
>>> wn.lemma('horizontal.a.01.horizontal').antonyms()
[Lemma('vertical.a.01.vertical'), Lemma('inclined.a.02.inclined')]
>>> wn.lemma('staccato.r.01.staccato').antonyms()
[Lemma('legato.r.01.legato')]
You can see the lexical relations, and the other methods defined
 on a synset, using dir(). For
 example, try dir(wn.synset('harmony.n.02')).

Semantic Similarity

We have seen that synsets are linked by a complex network of
 lexical relations. Given a particular synset, we can traverse the
 WordNet network to find synsets with related meanings. Knowing which
 words are semantically related is useful for indexing a collection of
 texts, so that a search for a general term such as
 vehicle will match documents containing specific
 terms such as limousine.
Recall that each synset has one or more hypernym paths that link
 it to a root hypernym such as entity.n.01. Two synsets linked to the same
 root may have several hypernyms in common (see Figure 2-8). If two synsets share a very specific
 hypernym—one that is low down in the hypernym hierarchy—they must be
 closely related.
>>> right = wn.synset('right_whale.n.01')
>>> orca = wn.synset('orca.n.01')
>>> minke = wn.synset('minke_whale.n.01')
>>> tortoise = wn.synset('tortoise.n.01')
>>> novel = wn.synset('novel.n.01')
>>> right.lowest_common_hypernyms(minke)
[Synset('baleen_whale.n.01')]
>>> right.lowest_common_hypernyms(orca)
[Synset('whale.n.02')]
>>> right.lowest_common_hypernyms(tortoise)
[Synset('vertebrate.n.01')]
>>> right.lowest_common_hypernyms(novel)
[Synset('entity.n.01')]
Of course we know that whale is very
 specific (and baleen whale even more so), whereas
 vertebrate is more general and
 entity is completely general. We can quantify
 this concept of generality by looking up the depth of each
 synset:
>>> wn.synset('baleen_whale.n.01').min_depth()
14
>>> wn.synset('whale.n.02').min_depth()
13
>>> wn.synset('vertebrate.n.01').min_depth()
8
>>> wn.synset('entity.n.01').min_depth()
0
Similarity measures have been defined over
 the collection of WordNet synsets that incorporate this insight. For
 example, path_similarity assigns a score in the range 0–1 based on the shortest path that
 connects the concepts in the hypernym hierarchy (-1 is returned in those cases where a path
 cannot be found). Comparing a synset with itself will return 1. Consider the following similarity scores,
 relating right whale to minke
 whale, orca,
 tortoise, and novel.
 Although the numbers won’t mean much, they decrease as we move away
 from the semantic space of sea creatures to inanimate objects.
>>> right.path_similarity(minke)
0.25
>>> right.path_similarity(orca)
0.16666666666666666
>>> right.path_similarity(tortoise)
0.076923076923076927
>>> right.path_similarity(novel)
0.043478260869565216
Note
Several other similarity measures are available; you can type
 help(wn) for more information.
 NLTK also includes VerbNet, a hierarchical verb lexicon linked to
 WordNet. It can be accessed with nltk.corpus.verbnet.

Summary

	A text corpus is a large, structured collection of texts. NLTK
 comes with many corpora, e.g., the Brown Corpus, nltk.corpus.brown.

	Some text corpora are categorized, e.g., by genre or topic;
 sometimes the categories of a corpus overlap each other.

	A conditional frequency distribution is a collection of
 frequency distributions, each one for a different condition. They
 can be used for counting word frequencies, given a context or a
 genre.

	Python programs more than a few lines long should be entered
 using a text editor, saved to a file with a .py extension, and accessed using an
 import statement.

	Python functions permit you to associate a name with a
 particular block of code, and reuse that code as often as
 necessary.

	Some functions, known as “methods,” are associated with an
 object, and we give the object name followed by a period followed by
 the method name, like this: x.funct(y), e.g., word.isalpha().

	To find out about some variable v, type help(v) in the Python interactive
 interpreter to read the help entry for this kind of object.

	WordNet is a semantically oriented dictionary of English,
 consisting of synonym sets—or synsets—and organized into a
 network.

	Some functions are not available by default, but must be
 accessed using Python’s import
 statement.

Further Reading

Extra materials for this chapter are posted at http://www.nltk.org/, including links to freely available
 resources on the Web. The corpus methods are summarized in the Corpus
 HOWTO, at http://www.nltk.org/howto, and
 documented extensively in the online API documentation.
Significant sources of published corpora are the
 Linguistic Data Consortium (LDC) and the
 European Language Resources Agency (ELRA). Hundreds
 of annotated text and speech corpora are available in dozens of
 languages. Non-commercial licenses permit the data to be used in
 teaching and research. For some corpora, commercial licenses are also
 available (but for a higher fee).
These and many other language resources have been documented using
 OLAC Metadata, and can be searched via the OLAC home page at http://www.language-archives.org/. Corpora
 List (see http://gandalf.aksis.uib.no/corpora/sub.html) is a
 mailing list for discussions about corpora, and you can find resources
 by searching the list archives or posting to the list. The most complete
 inventory of the world’s languages is Ethnologue,
 http://www.ethnologue.com/. Of 7,000 languages,
 only a few dozen have substantial digital resources suitable for use in
 NLP.
This chapter has touched on the field of Corpus Linguistics. Other useful books in this
 area include (Biber, Conrad, & Reppen, 1998), (McEnery, 2006),
 (Meyer, 2002), (Sampson & McCarthy, 2005), and (Scott & Tribble,
 2006). Further readings in quantitative data analysis in linguistics
 are: (Baayen, 2008), (Gries, 2009), and (Woods, Fletcher, & Hughes,
 1986).
The original description of WordNet is (Fellbaum, 1998). Although
 WordNet was originally developed for research in psycholinguistics, it
 is now widely used in NLP and Information Retrieval. WordNets are being
 developed for many other languages, as documented at http://www.globalwordnet.org/. For a study of WordNet
 similarity measures, see (Budanitsky & Hirst, 2006).
Other topics touched on in this chapter were phonetics and lexical
 semantics, and we refer readers to Chapters 7 and 20 of (Jurafsky &
 Martin, 2008).

Exercises

	○ Create a variable phrase
 containing a list of words. Experiment with the operations described
 in this chapter, including addition, multiplication, indexing,
 slicing, and sorting.

	○ Use the corpus module to explore austen-persuasion.txt. How many word
 tokens does this book have?
 How many word types?

	○ Use the Brown Corpus reader nltk.corpus.brown.words() or the Web Text
 Corpus reader nltk.corpus.webtext.words() to access some
 sample text in two different genres.

	○ Read in the texts of the State of the
 Union addresses, using the state_union corpus reader. Count
 occurrences of men, women, and people in each document. What has happened
 to the usage of these words over time?

	○ Investigate the holonym-meronym relations for some nouns.
 Remember that there are three kinds of holonym-meronym relation, so
 you need to use member_meronyms(), part_meronyms(), substance_meronyms(), member_holonyms(), part_holonyms(), and substance_holonyms().

	○ In the discussion of comparative wordlists, we created an
 object called translate, which you could look up using words in both German
 and Italian in order to get corresponding words in English. What
 problem might arise with this approach? Can you suggest a way to
 avoid this problem?

	○ According to Strunk and White’s Elements of
 Style, the word however, used at the
 start of a sentence, means “in whatever way” or “to whatever
 extent,” and not “nevertheless.” They give this example of correct
 usage: However you advise him, he will probably do as he
 thinks best. (http://www.bartleby.com/141/strunk3.html) Use the
 concordance tool to study actual usage of this word in the various
 texts we have been considering. See also the
 LanguageLog posting “Fossilized prejudices
 about ‘however’” at http://itre.cis.upenn.edu/~myl/languagelog/archives/001913.html.

	[image:] Define a conditional frequency distribution over the Names
 Corpus that allows you to see which initial
 letters are more frequent for males versus females (see Figure 2-7).

	[image:] Pick a pair of texts and study the differences between them,
 in terms of vocabulary, vocabulary richness, genre, etc. Can you
 find pairs of words that have quite different meanings across the
 two texts, such as monstrous in Moby
 Dick and in Sense and
 Sensibility?

	[image:] Read the BBC News article: “UK’s Vicky Pollards ‘left
 behind’” at http://news.bbc.co.uk/1/hi/education/6173441.stm. The
 article gives the following statistic about teen language: “the top
 20 words used, including yeah, no, but and like, account for around
 a third of all words.” How many word types account for a third of
 all word tokens, for a variety of text sources? What do you conclude
 about this statistic? Read more about this on
 LanguageLog, at http://itre.cis.upenn.edu/~myl/languagelog/archives/003993.html.

	[image:] Investigate the table of modal distributions and look for
 other patterns. Try to explain them in terms of your own
 impressionistic understanding of the different genres. Can you find
 other closed classes of words that exhibit significant differences
 across different genres?

	[image:] The CMU Pronouncing Dictionary contains multiple
 pronunciations for certain words. How many distinct words does it
 contain? What fraction of words in this dictionary have more than
 one possible pronunciation?

	[image:] What percentage of noun synsets have no hyponyms? You can
 get all noun synsets using wn.all_synsets('n').

	[image:] Define a function supergloss(s) that takes a synset s as its argument and returns a string
 consisting of the concatenation of the definition of s, and the definitions of all the
 hypernyms and hyponyms of s.

	[image:] Write a program to find all words that occur at least three
 times in the Brown Corpus.

	[image:] Write a program to generate a table of lexical diversity
 scores (i.e., token/type ratios), as we saw in Table 1-1. Include the full set of Brown Corpus
 genres (nltk.corpus.brown.categories()). Which
 genre has the lowest diversity (greatest number of tokens per type)?
 Is this what you would have expected?

	[image:] Write a function that finds the 50 most frequently occurring
 words of a text that are not stopwords.

	[image:] Write a program to print the 50 most frequent bigrams (pairs
 of adjacent words) of a text, omitting bigrams that contain
 stopwords.

	[image:] Write a program to create a table of word frequencies by
 genre, like the one given in Accessing Text Corpora for modals. Choose
 your own words and try to find words whose presence (or absence) is
 typical of a genre. Discuss your findings.

	[image:] Write a function word_freq() that takes a word and the name
 of a section of the Brown Corpus as arguments, and computes the
 frequency of the word in that section of the corpus.

	[image:] Write a program to guess the number of syllables contained
 in a text, making use of the CMU Pronouncing Dictionary.

	[image:] Define a function hedge(text) that processes a text and
 produces a new version with the word 'like' between every third word.

	● Zipf’s Law: Let
 f(w) be the frequency of a
 word w in free text. Suppose that all the words
 of a text are ranked according to their frequency, with the most
 frequent word first. Zipf’s Law states that the frequency of a word
 type is inversely proportional
 to its rank (i.e., f × r =
 k, for some constant k).
 For example, the 50th most common word type should occur three times
 as frequently as the 150th most common word type.
	Write a function to process a large text and plot word
 frequency against word rank using pylab.plot. Do you confirm Zipf’s law?
 (Hint: it helps to use a logarithmic scale.) What is going on at
 the extreme ends of the plotted line?

	Generate random text, e.g., using random.choice("abcdefg "), taking care
 to include the space character. You will need to import random first. Use the string
 concatenation operator to accumulate characters into a (very)
 long string. Then tokenize this string, generate the Zipf plot
 as before, and compare the two plots. What do you make of Zipf’s
 Law in the light of this?

	● Modify the text generation program in Example 2-1 further, to do the following
 tasks:
	Store the n most likely words in a
 list words, then randomly
 choose a word from the list using random.choice(). (You will need to
 import random first.)

	Select a particular genre, such as a section of the Brown
 Corpus or a Genesis translation, one of the Gutenberg texts, or
 one of the Web texts. Train the model on this corpus and get it
 to generate random text. You may have to experiment with
 different start words. How intelligible is the text? Discuss the
 strengths and weaknesses of this method of generating random
 text.

	Now train your system using two distinct genres and
 experiment with generating text in the hybrid genre. Discuss
 your observations.

	● Define a function find_language() that takes a string as its
 argument and returns a list of languages that have that string as a
 word. Use the udhr corpus and
 limit your searches to files in the Latin-1 encoding.

	● What is the branching factor of the noun hypernym hierarchy?
 I.e., for every noun synset that has hyponyms—or children in the
 hypernym hierarchy—how many do they have on average? You can get all
 noun synsets using wn.all_synsets('n').

	● The polysemy of a word is the number of senses it has. Using
 WordNet, we can determine that the noun dog has
 seven senses with len(wn.synsets('dog',
 'n')). Compute the average polysemy of nouns, verbs,
 adjectives, and adverbs according to WordNet.

	● Use one of the predefined similarity measures to score the
 similarity of each of the following pairs of words. Rank the pairs
 in order of decreasing similarity. How close is your ranking to the
 order given here, an order that was established experimentally by
 (Miller & Charles, 1998): car-automobile, gem-jewel,
 journey-voyage, boy-lad, coast-shore, asylum-madhouse,
 magician-wizard, midday-noon, furnace-stove, food-fruit, bird-cock,
 bird-crane, tool-implement, brother-monk, lad-brother, crane-implement, journey-car,
 monk-oracle, cemetery-woodland, food-rooster, coast-hill, forest-graveyard,
 shore-woodland, monk-slave, coast-forest, lad-wizard, chord-smile,
 glass-magician, rooster-voyage, noon-string.

Chapter 3. Processing Raw Text

The most important source of texts is undoubtedly the Web. It’s
 convenient to have existing text collections to explore, such as the
 corpora we saw in the previous chapters. However, you probably have your
 own text sources in mind, and need to learn how to access them.
The goal of this chapter is to answer the following
 questions:
	How can we write programs to access text from local files and
 from the Web, in order to get hold of an unlimited range of language
 material?

	How can we split documents up into individual words and
 punctuation symbols, so we can carry out the same kinds of analysis we
 did with text corpora in earlier chapters?

	How can we write programs to produce formatted output and save
 it in a file?

In order to address these questions, we will be covering key
 concepts in NLP, including tokenization and stemming. Along the way you
 will consolidate your Python knowledge and learn about strings, files, and
 regular expressions. Since so much text on the Web is in HTML format, we
 will also see how to dispense with markup.
Note
Important: From this chapter
 onwards, our program samples will assume you begin your interactive
 session or your program with the following import statements:
>>> from __future__ import division
>>> import nltk, re, pprint

Accessing Text from the Web and from Disk

Electronic Books

A small sample of texts from Project Gutenberg appears in the
 NLTK corpus collection. However, you may be interested in analyzing
 other texts from Project Gutenberg. You can browse the catalog of
 25,000 free online books at http://www.gutenberg.org/catalog/, and obtain a URL to
 an ASCII text file. Although 90% of the texts in Project Gutenberg are
 in English, it includes material in over 50 other languages, including
 Catalan, Chinese, Dutch, Finnish, French, German, Italian, Portuguese,
 and Spanish (with more than 100 texts each).
Text number 2554 is an English translation of Crime
 and Punishment, and we can access it as follows.
>>> from urllib import urlopen
>>> url = "http://www.gutenberg.org/files/2554/2554.txt"
>>> raw = urlopen(url).read()
>>> type(raw)
<type 'str'>
>>> len(raw)
1176831
>>> raw[:75]
'The Project Gutenberg EBook of Crime and Punishment, by Fyodor Dostoevsky\r\n'
Note
The read() process will
 take a few seconds as it downloads this large book. If you’re using
 an Internet proxy that is not correctly detected by Python, you may
 need to specify the proxy manually as follows:
>>> proxies = {'http': 'http://www.someproxy.com:3128'}
>>> raw = urlopen(url, proxies=proxies).read()

The variable raw contains a
 string with 1,176,831 characters. (We can see that it is a string,
 using type(raw).) This is the raw
 content of the book, including many details we are not interested in,
 such as whitespace, line breaks, and blank lines. Notice the \r and \n
 in the opening line of the file, which is how Python displays the
 special carriage return and line-feed characters (the file must have
 been created on a Windows machine). For our language processing, we
 want to break up the string into words and punctuation, as we saw in
 Chapter 1. This step is called tokenization, and it produces our familiar
 structure, a list of words and punctuation.
>>> tokens = nltk.word_tokenize(raw)
>>> type(tokens)
<type 'list'>
>>> len(tokens)
255809
>>> tokens[:10]
['The', 'Project', 'Gutenberg', 'EBook', 'of', 'Crime', 'and', 'Punishment', ',', 'by']
Notice that NLTK was needed for tokenization, but not for any of
 the earlier tasks of opening a URL and reading it into a string. If we
 now take the further step of creating an NLTK text from this list, we
 can carry out all of the other linguistic processing we saw in Chapter
 1, along with the regular list operations, such as slicing:
>>> text = nltk.Text(tokens)
>>> type(text)
<type 'nltk.text.Text'>
>>> text[1020:1060]
['CHAPTER', 'I', 'On', 'an', 'exceptionally', 'hot', 'evening', 'early', 'in',
'July', 'a', 'young', 'man', 'came', 'out', 'of', 'the', 'garret', 'in',
'which', 'he', 'lodged', 'in', 'S', '.', 'Place', 'and', 'walked', 'slowly',
',', 'as', 'though', 'in', 'hesitation', ',', 'towards', 'K', '.', 'bridge', '.']
>>> text.collocations()
Katerina Ivanovna; Pulcheria Alexandrovna; Avdotya Romanovna; Pyotr
Petrovitch; Project Gutenberg; Marfa Petrovna; Rodion Romanovitch;
Sofya Semyonovna; Nikodim Fomitch; did not; Hay Market; Andrey
Semyonovitch; old woman; Literary Archive; Dmitri Prokofitch; great
deal; United States; Praskovya Pavlovna; Porfiry Petrovitch; ear rings
Notice that Project Gutenberg appears as a
 collocation. This is because each text downloaded from Project
 Gutenberg contains a header with the name of the text, the author, the
 names of people who scanned and corrected the text, a license, and so
 on. Sometimes this information appears in a footer at the end of the
 file. We cannot reliably detect where the content begins and ends, and
 so have to resort to manual inspection of the file, to discover unique
 strings that mark the beginning and the end, before trimming raw to be just the content and nothing
 else:
>>> raw.find("PART I")
5303
>>> raw.rfind("End of Project Gutenberg's Crime")
1157681
>>> raw = raw[5303:1157681] [image: 1]
>>> raw.find("PART I")
0
The find() and rfind() (“reverse find”) methods help us get
 the right index values to use for slicing the string [image: 1]. We overwrite raw with this slice, so now it begins with
 “PART I” and goes up to (but not including) the phrase that marks the
 end of the content.
This was our first brush with the reality of the Web: texts
 found on the Web may contain unwanted material, and there may not be
 an automatic way to remove it. But with a small amount of extra work
 we can extract the material we need.

Dealing with HTML

Much of the text on the Web is in the form of HTML documents.
 You can use a web browser to save a page as text to a local file, then
 access this as described in the later section on files. However, if
 you’re going to do this often, it’s easiest to get Python to do the
 work directly. The first step is the same as before, using urlopen. For fun we’ll pick a BBC News story
 called “Blondes to die out in 200 years,” an urban legend passed along
 by the BBC as established scientific fact:
>>> url = "http://news.bbc.co.uk/2/hi/health/2284783.stm"
>>> html = urlopen(url).read()
>>> html[:60]
'<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN'
You can type print html to
 see the HTML content in all its glory, including meta tags, an image
 map, JavaScript, forms, and tables.
Getting text out of HTML is a sufficiently common task that NLTK
 provides a helper function nltk.clean_html(), which takes an HTML
 string and returns raw text. We can then tokenize this to get our
 familiar text structure:
>>> raw = nltk.clean_html(html)
>>> tokens = nltk.word_tokenize(raw)
>>> tokens
['BBC', 'NEWS', '|', 'Health', '|', 'Blondes', "'", 'to', 'die', 'out', ...]
This still contains unwanted material concerning site navigation
 and related stories. With some trial and error you can find the start
 and end indexes of the content and select the tokens of interest, and
 initialize a text as before.
>>> tokens = tokens[96:399]
>>> text = nltk.Text(tokens)
>>> text.concordance('gene')
 they say too few people now carry the gene for blondes to last beyond the next tw
t blonde hair is caused by a recessive gene . In order for a child to have blonde
to have blonde hair , it must have the gene on both sides of the family in the gra
there is a disadvantage of having that gene or by chance . They don ' t disappear
ondes would disappear is if having the gene was a disadvantage and I do not think
Note
For more sophisticated processing of HTML, use the
 Beautiful Soup package, available at http://www.crummy.com/software/BeautifulSoup/.

Processing Search Engine Results

The Web can be thought of as a huge corpus of unannotated text.
 Web search engines provide an efficient means of searching this large
 quantity of text for relevant linguistic examples. The main advantage
 of search engines is size: since you are searching such a large set of
 documents, you are more likely to find any linguistic pattern you are
 interested in. Furthermore, you can make use of very specific
 patterns, which would match only one or two examples on a smaller
 example, but which might match tens of thousands of examples when run
 on the Web. A second advantage of web search engines is that they are
 very easy to use. Thus, they provide a very convenient tool for
 quickly checking a theory, to see if it is reasonable. See Table 3-1 for an example.
Table 3-1. Google hits for collocations: The number of hits for
 collocations involving the words absolutely or definitely, followed by one of adore, love,
 like, or prefer. (Liberman, in LanguageLog,
 2005)
	Google hits
	adore
	love
	like
	prefer

	absolutely
	289,000
	905,000
	16,200
	644

	definitely
	1,460
	51,000
	158,000
	62,600

	ratio
	198:1
	18:1
	1:10
	1:97

Unfortunately, search engines have some significant
 shortcomings. First, the allowable range of search patterns is
 severely restricted. Unlike local corpora, where you write programs to
 search for arbitrarily complex patterns, search engines generally only
 allow you to search for individual words or strings of words,
 sometimes with wildcards. Second, search engines give inconsistent
 results, and can give widely different figures when used at different
 times or in different geographical regions. When content has been
 duplicated across multiple sites, search results may be boosted.
 Finally, the markup in the result returned by a search engine may
 change unpredictably, breaking any pattern-based method of locating
 particular content (a problem which is ameliorated by the use of
 search engine APIs).
Note
Your Turn: Search the Web
 for "the of" (inside quotes).
 Based on the large count, can we conclude that the
 of is a frequent collocation in English?

Processing RSS Feeds

The blogosphere is an important source of text, in both formal
 and informal registers. With the help of a third-party Python library
 called the Universal Feed Parser, freely
 downloadable from http://feedparser.org/, we can
 access the content of a blog, as shown here:
>>> import feedparser
>>> llog = feedparser.parse("http://languagelog.ldc.upenn.edu/nll/?feed=atom")
>>> llog['feed']['title']
u'Language Log'
>>> len(llog.entries)
15
>>> post = llog.entries[2]
>>> post.title
u"He's My BF"
>>> content = post.content[0].value
>>> content[:70]
u'<p>Today I was chatting with three of our visiting graduate students f'
>>> nltk.word_tokenize(nltk.html_clean(content))
>>> nltk.word_tokenize(nltk.clean_html(llog.entries[2].content[0].value))
[u'Today', u'I', u'was', u'chatting', u'with', u'three', u'of', u'our', u'visiting',
u'graduate', u'students', u'from', u'the', u'PRC', u'.', u'Thinking', u'that', u'I',
u'was', u'being', u'au', u'courant', u',', u'I', u'mentioned', u'the', u'expression',
u'DUI4XIANG4', u'\u5c0d\u8c61', u'("', u'boy', u'/', u'girl', u'friend', u'"', ...]
Note that the resulting strings have a u prefix to indicate that they are Unicode
 strings (see Text Processing with Unicode). With some further work,
 we can write programs to create a small corpus of blog posts, and use
 this as the basis for our NLP work.

Reading Local Files

In order to read a local file, we need to use Python’s built-in
 open() function, followed by the
 read() method. Supposing you have a
 file document.txt, you can load
 its contents like this:
>>> f = open('document.txt')
>>> raw = f.read()
Note
Your Turn: Create a file
 called document.txt using a
 text editor, and type in a few lines of text, and save it as plain
 text. If you are using IDLE, select the New Window command in the
 File menu, typing the required text into this window, and then
 saving the file as document.txt
 inside the directory that IDLE offers in the pop-up dialogue box.
 Next, in the Python interpreter, open the file using f = open('document.txt'), then inspect its
 contents using print
 f.read().

Various things might have gone wrong when you tried this. If the
 interpreter couldn’t find your file, you would have seen an error like
 this:
>>> f = open('document.txt')
Traceback (most recent call last):
File "<pyshell#7>", line 1, in -toplevel-
f = open('document.txt')
IOError: [Errno 2] No such file or directory: 'document.txt'
To check that the file that you are trying to open is really in
 the right directory, use IDLE’s Open command in the File menu; this
 will display a list of all the files in the directory where IDLE is
 running. An alternative is to examine the current directory from
 within Python:
>>> import os
>>> os.listdir('.')
Another possible problem you might have encountered when
 accessing a text file is the newline conventions, which are different
 for different operating systems. The built-in open() function has a second parameter for
 controlling how the file is opened: open('document.txt', 'rU'). 'r' means to open the file for reading (the
 default), and 'U' stands for
 “Universal”, which lets us ignore the different conventions used for
 marking newlines.
Assuming that you can open the file, there are several methods
 for reading it. The read() method
 creates a string with the contents of the entire file:
>>> f.read()
'Time flies like an arrow.\nFruit flies like a banana.\n'
Recall that the '\n'
 characters are newlines; this is
 equivalent to pressing Enter on a keyboard and starting a new
 line.
We can also read a file one line at a time using a for loop:
>>> f = open('document.txt', 'rU')
>>> for line in f:
... print line.strip()
Time flies like an arrow.
Fruit flies like a banana.
Here we use the strip()
 method to remove the newline character at the end of the input
 line.
NLTK’s corpus files can also be accessed using these methods. We
 simply have to use nltk.data.find() to get the filename for any corpus item. Then we can
 open and read it in the way we just demonstrated:
>>> path = nltk.data.find('corpora/gutenberg/melville-moby_dick.txt')
>>> raw = open(path, 'rU').read()

Extracting Text from PDF, MSWord, and Other Binary
 Formats

ASCII text and HTML text are human-readable formats. Text often
 comes in binary formats—such as PDF and MSWord—that can only be opened
 using specialized software. Third-party libraries such as pypdf and pywin32 provide access to these formats.
 Extracting text from multicolumn documents is particularly
 challenging. For one-off conversion of a few documents, it is simpler
 to open the document with a suitable application, then save it as text
 to your local drive, and access it as described below. If the document
 is already on the Web, you can enter its URL in Google’s search box.
 The search result often includes a link to an HTML version of the
 document, which you can save as text.

Capturing User Input

Sometimes we want to capture the text that a user inputs when
 she is interacting with our program. To prompt the user to type a line
 of input, call the Python function raw_input(). After saving the input to a
 variable, we can manipulate it just as we have done for other
 strings.
>>> s = raw_input("Enter some text: ")
Enter some text: On an exceptionally hot evening early in July
>>> print "You typed", len(nltk.word_tokenize(s)), "words."
You typed 8 words.

The NLP Pipeline

Figure 3-1 summarizes what we have covered
 in this section, including the process of building a vocabulary that
 we saw in Chapter 1. (One step, normalization, will be discussed in
 Normalizing Text.)
[image: The processing pipeline: We open a URL and read its HTML content, remove the markup and select a slice of characters; this is then tokenized and optionally converted into an nltk.Text object; we can also lowercase all the words and extract the vocabulary.]

Figure 3-1. The processing pipeline: We open a URL and read its HTML
 content, remove the markup and select a slice of characters; this is
 then tokenized and optionally converted into an nltk.Text
 object; we can also lowercase all the words and extract the
 vocabulary.

There’s a lot going on in this pipeline. To understand it
 properly, it helps to be clear about the type of each variable that it
 mentions. We find out the type of any Python object x using type(x); e.g.,
 type(1) is <int> since 1 is an integer.
When we load the contents of a URL or file, and when we strip
 out HTML markup, we are dealing with strings, Python’s <str> data type (we will learn more
 about strings in Strings: Text Processing at the Lowest Level):
>>> raw = open('document.txt').read()
>>> type(raw)
<type 'str'>
When we tokenize a string we produce a list (of words), and this
 is Python’s <list> type.
 Normalizing and sorting lists produces other lists:
>>> tokens = nltk.word_tokenize(raw)
>>> type(tokens)
<type 'list'>
>>> words = [w.lower() for w in tokens]
>>> type(words)
<type 'list'>
>>> vocab = sorted(set(words))
>>> type(vocab)
<type 'list'>
The type of an object determines what operations you can perform
 on it. So, for example, we can append to a list but not to a
 string:
>>> vocab.append('blog')
>>> raw.append('blog')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'str' object has no attribute 'append'
Similarly, we can concatenate strings with strings, and lists
 with lists, but we cannot concatenate strings with lists:
>>> query = 'Who knows?'
>>> beatles = ['john', 'paul', 'george', 'ringo']
>>> query + beatles
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'list' objects
In the next section, we examine strings more closely and further
 explore the relationship between strings and lists.

Strings: Text Processing at the Lowest Level

It’s time to study a fundamental data type that we’ve been
 studiously avoiding so far. In earlier chapters we focused on a text as
 a list of words. We didn’t look too closely at words and how they are
 handled in the programming language. By using NLTK’s corpus interface we
 were able to ignore the files that these texts had come from. The
 contents of a word, and of a file, are represented by programming
 languages as a fundamental data type known as a string. In this section, we explore strings in
 detail, and show the connection between strings, words, texts, and
 files.
Basic Operations with Strings

Strings are specified using single quotes [image: 1] or double quotes [image: 2], as shown in the following code
 example. If a string contains a single quote, we must backslash-escape
 the quote [image: 3] so Python knows a
 literal quote character is intended, or else put the string in double
 quotes [image: 2]. Otherwise, the quote
 inside the string [image: 4] will be
 interpreted as a close quote, and the Python interpreter will report a
 syntax error:
>>> monty = 'Monty Python' [image: 1]
>>> monty
'Monty Python'
>>> circus = "Monty Python's Flying Circus" [image: 2]
>>> circus
"Monty Python's Flying Circus"
>>> circus = 'Monty Python\'s Flying Circus' [image: 3]
>>> circus
"Monty Python's Flying Circus"
>>> circus = 'Monty Python's Flying Circus' [image: 4]
 File "<stdin>", line 1
 circus = 'Monty Python's Flying Circus'
 ^
SyntaxError: invalid syntax
Sometimes strings go over several lines. Python provides us with
 various ways of entering them. In the next example, a sequence of two
 strings is joined into a single string. We need to use backslash [image: 1] or parentheses [image: 2] so that the interpreter knows that
 the statement is not complete after the first line.
>>> couplet = "Shall I compare thee to a Summer's day?"\
... "Thou are more lovely and more temperate:" [image: 1]
>>> print couplet
Shall I compare thee to a Summer's day?Thou are more lovely and more temperate:
>>> couplet = ("Rough winds do shake the darling buds of May,"
... "And Summer's lease hath all too short a date:") [image: 2]
>>> print couplet
Rough winds do shake the darling buds of May,And Summer's lease hath all too short a date:
Unfortunately these methods do not give us a newline between the
 two lines of the sonnet. Instead, we can use a triple-quoted string as
 follows:
>>> couplet = """Shall I compare thee to a Summer's day?
... Thou are more lovely and more temperate:"""
>>> print couplet
Shall I compare thee to a Summer's day?
Thou are more lovely and more temperate:
>>> couplet = '''Rough winds do shake the darling buds of May,
... And Summer's lease hath all too short a date:'''
>>> print couplet
Rough winds do shake the darling buds of May,
And Summer's lease hath all too short a date:
Now that we can define strings, we can try some simple
 operations on them. First let’s look at the + operation, known as concatenation [image: 1]. It produces a new string that
 is a copy of the two original strings pasted together end-to-end.
 Notice that concatenation doesn’t do anything clever like insert a
 space between the words. We can even multiply strings [image: 2]:
>>> 'very' + 'very' + 'very' [image: 1]
'veryveryvery'
>>> 'very' * 3 [image: 2]
'veryveryvery'
Note
Your Turn: Try running the
 following code, then try to use your understanding of the string
 + and * operations to figure out how it works.
 Be careful to distinguish between the string ' ', which is a single whitespace
 character, and '', which is the
 empty string.
>>> a = [1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1]
>>> b = [' ' * 2 * (7 - i) + 'very' * i for i in a]
>>> for line in b:
... print line

We’ve seen that the addition and multiplication operations apply
 to strings, not just numbers. However, note that we cannot use
 subtraction or division with strings:
>>> 'very' - 'y'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'
>>> 'very' / 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for /: 'str' and 'int'
These error messages are another example of Python telling us
 that we have got our data types in a muddle. In the first case, we are
 told that the operation of subtraction (i.e., -) cannot apply to objects of type str (strings), while in the second, we are
 told that division cannot take str
 and int as its two
 operands.

Printing Strings

So far, when we have wanted to look at the contents of a
 variable or see the result of a calculation, we have just typed the
 variable name into the interpreter. We can also see the contents of a
 variable using the print
 statement:
>>> print monty
Monty Python
Notice that there are no quotation marks this time. When we
 inspect a variable by typing its name in the interpreter, the
 interpreter prints the Python representation of its value. Since it’s
 a string, the result is quoted. However, when we tell the interpreter
 to print the contents of the
 variable, we don’t see quotation characters, since there are none
 inside the string.
The print statement allows us
 to display more than one item on a line in various ways, as shown
 here:
>>> grail = 'Holy Grail'
>>> print monty + grail
Monty PythonHoly Grail
>>> print monty, grail
Monty Python Holy Grail
>>> print monty, "and the", grail
Monty Python and the Holy Grail

Accessing Individual Characters

As we saw in A Closer Look at Python: Texts as Lists of Words for
 lists, strings are indexed, starting from zero. When we index a
 string, we get one of its characters (or letters). A single character
 is nothing special—it’s just a string of length 1.
>>> monty[0]
'M'
>>> monty[3]
't'
>>> monty[5]
' '
As with lists, if we try to access an index that is outside of
 the string, we get an error:
>>> monty[20]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
IndexError: string index out of range
Again as with lists, we can use negative indexes for strings,
 where -1 is the index of the last
 character [image: 1]. Positive and negative
 indexes give us two ways to refer to any position in a string. In this
 case, when the string had a length of 12, indexes 5 and -7
 both refer to the same character (a space). (Notice that 5 = len(monty) - 7.)
>>> monty[-1] [image: 1]
'n'
>>> monty[5]
' '
>>> monty[-7]
' '
We can write for loops to
 iterate over the characters in strings. This print statement ends with a trailing comma,
 which is how we tell Python not to print a newline at the
 end.
>>> sent = 'colorless green ideas sleep furiously'
>>> for char in sent:
... print char,
...
c o l o r l e s s g r e e n i d e a s s l e e p f u r i o u s l y
We can count individual characters as well. We should ignore the
 case distinction by normalizing everything to lowercase, and filter
 out non-alphabetic characters:
>>> from nltk.corpus import gutenberg
>>> raw = gutenberg.raw('melville-moby_dick.txt')
>>> fdist = nltk.FreqDist(ch.lower() for ch in raw if ch.isalpha())
>>> fdist.keys()
['e', 't', 'a', 'o', 'n', 'i', 's', 'h', 'r', 'l', 'd', 'u', 'm', 'c', 'w',
'f', 'g', 'p', 'b', 'y', 'v', 'k', 'q', 'j', 'x', 'z']
This gives us the letters of the alphabet, with the most
 frequently occurring letters listed first (this is quite complicated
 and we’ll explain it more carefully later). You might like to
 visualize the distribution using fdist.plot(). The relative character
 frequencies of a text can be used in automatically identifying the
 language of the text.

Accessing Substrings

[image: String slicing: The string Monty Python is shown along with its positive and negative indexes; two substrings are selected using “slice” notation. The slice [m,n] contains the characters from position m through n-1.]

Figure 3-2. String slicing: The string Monty
 Python is shown along with its positive and negative
 indexes; two substrings are selected using “slice” notation. The
 slice [m,n] contains the
 characters from position m through n-1.

A substring is any continuous section of a string that we want
 to pull out for further processing. We can easily access substrings
 using the same slice notation we used for lists (see Figure 3-2). For example, the following code
 accesses the substring starting at index 6, up to (but not including) index 10:
>>> monty[6:10]
'Pyth'
Here we see the characters are 'P', 'y',
 't', and 'h', which correspond to monty[6] ... monty[9] but not monty[10]. This is because a slice
 starts at the first index but finishes
 one before the end index.
We can also slice with negative indexes—the same basic rule of
 starting from the start index and stopping one before the end index
 applies; here we stop before the space character.
>>> monty[-12:-7]
'Monty'
As with list slices, if we omit the first value, the substring
 begins at the start of the string. If we omit the second value, the
 substring continues to the end of the string:
>>> monty[:5]
'Monty'
>>> monty[6:]
'Python'
We test if a string contains a particular substring using the
 in operator, as follows:
>>> phrase = 'And now for something completely different'
>>> if 'thing' in phrase:
... print 'found "thing"'
found "thing"
We can also find the position of a substring within a string,
 using find():
>>> monty.find('Python')
6
Note
Your Turn: Make up a
 sentence and assign it to a variable, e.g., sent = 'my sentence...'. Now write slice
 expressions to pull out individual words. (This is obviously not a
 convenient way to process the words of a text!)

More Operations on Strings

Python has comprehensive support for processing strings. A
 summary, including some operations we haven’t seen yet, is shown in
 Table 3-2. For more information on
 strings, type help(str) at the
 Python prompt.
Table 3-2. Useful string methods: Operations on strings in addition to
 the string tests shown in Table 1-4; all
 methods produce a new string or list
	Method
	Functionality

	s.find(t)
	Index of first instance of string t inside s (-1 if not found)

	s.rfind(t)
	Index of last instance of string t inside s (-1 if not found)

	s.index(t)
	Like s.find(t), except it raises ValueError if not
 found

	s.rindex(t)
	Like s.rfind(t), except it raises
 ValueError if not
 found

	s.join(text)
	Combine the words of the text into a string using
 s as the
 glue

	s.split(t)
	Split s into a
 list wherever a t is found
 (whitespace by default)

	s.splitlines()
	Split s into a
 list of strings, one per line

	s.lower()
	A lowercased version of the string s

	s.upper()
	An uppercased version of the string s

	s.title()
	A titlecased version of the string s

	s.strip()
	A copy of s
 without leading or trailing whitespace

	s.replace(t,
 u)
	Replace instances of t with u inside s

The Difference Between Lists and Strings

Strings and lists are both kinds of sequence. We can pull them apart by indexing
 and slicing them, and we can join them together by concatenating them.
 However, we cannot join strings and lists:
>>> query = 'Who knows?'
>>> beatles = ['John', 'Paul', 'George', 'Ringo']
>>> query[2]
'o'
>>> beatles[2]
'George'
>>> query[:2]
'Wh'
>>> beatles[:2]
['John', 'Paul']
>>> query + " I don't"
"Who knows? I don't"
>>> beatles + 'Brian'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "str") to list
>>> beatles + ['Brian']
['John', 'Paul', 'George', 'Ringo', 'Brian']
When we open a file for reading into a Python program, we get a
 string corresponding to the contents of the whole file. If we use a
 for loop to process the elements of
 this string, all we can pick out are the individual characters—we
 don’t get to choose the granularity. By contrast, the elements of a
 list can be as big or small as we like: for example, they could be
 paragraphs, sentences, phrases, words, characters. So lists have the
 advantage that we can be flexible about the elements they contain, and
 correspondingly flexible about any downstream processing.
 Consequently, one of the first things we are likely to do in a piece
 of NLP code is tokenize a string into a list of strings (Regular Expressions for Tokenizing Text). Conversely, when we want to write our
 results to a file, or to a terminal, we will usually format them as a
 string (Formatting: From Lists to Strings).
Lists and strings do not have exactly the same functionality.
 Lists have the added power that you can change their elements:
>>> beatles[0] = "John Lennon"
>>> del beatles[-1]
>>> beatles
['John Lennon', 'Paul', 'George']
On the other hand, if we try to do that with a
 string—changing the 0th character in query to 'F'—we get:
>>> query[0] = 'F'
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: object does not support item assignment
This is because strings are immutable: you can’t change a string once you
 have created it. However, lists are mutable, and their contents can be modified
 at any time. As a result, lists support operations that modify the
 original value rather than producing a new value.
Note
Your Turn: Consolidate your
 knowledge of strings by trying some of the exercises on strings at
 the end of this chapter.

Text Processing with Unicode

Our programs will often need to deal with different languages, and
 different character sets. The concept of “plain text” is a fiction. If
 you live in the English-speaking world you probably use ASCII, possibly
 without realizing it. If you live in Europe you might use one of the
 extended Latin character sets, containing such characters as
 “ø” for Danish and Norwegian, “ő” for Hungarian, “ñ”
 for Spanish and Breton, and “ň” for Czech and Slovak. In this section,
 we will give an overview of how to use Unicode for processing texts that
 use non-ASCII character sets.
What Is Unicode?

Unicode supports over a million characters. Each character is
 assigned a number, called a code
 point. In Python, code points are written in the form
 \uXXXX, where
 XXXX is the number in four-digit hexadecimal
 form.
Within a program, we can manipulate Unicode strings just like
 normal strings. However, when Unicode characters are stored in files
 or displayed on a terminal, they must be encoded as a stream of bytes.
 Some encodings (such as ASCII and Latin-2) use a single byte per code
 point, so they can support only a small subset of Unicode, enough for
 a single language. Other encodings (such as UTF-8) use multiple bytes
 and can represent the full range of Unicode characters.
Text in files will be in a particular encoding, so we need some
 mechanism for translating it into Unicode—translation into Unicode is
 called decoding. Conversely, to
 write out Unicode to a file or a terminal, we first need to translate
 it into a suitable encoding—this translation out of Unicode is called
 encoding, and is illustrated in
 Figure 3-3.
[image: Unicode decoding and encoding.]

Figure 3-3. Unicode decoding and encoding.

From a Unicode perspective, characters are abstract entities
 that can be realized as one or more glyphs. Only glyphs can appear on a screen or
 be printed on paper. A font is a mapping from characters to
 glyphs.

Extracting Encoded Text from Files

Let’s assume that we have a small text file, and that we know
 how it is encoded. For example, polish-lat2.txt, as the name suggests, is a
 snippet of Polish text (from the Polish Wikipedia; see http://pl.wikipedia.org/wiki/Biblioteka_Pruska). This
 file is encoded as Latin-2, also known as ISO-8859-2. The function
 nltk.data.find() locates the file for us.
>>> path = nltk.data.find('corpora/unicode_samples/polish-lat2.txt')
The Python codecs module
 provides functions to read encoded data into Unicode strings, and to
 write out Unicode strings in encoded form. The codecs.open() function takes an encoding
 parameter to specify the encoding of the file being read or written.
 So let’s import the codecs module,
 and call it with the encoding 'latin2' to open our Polish file as
 Unicode:
>>> import codecs
>>> f = codecs.open(path, encoding='latin2')
For a list of encoding parameters allowed by codecs, see http://docs.python.org/lib/standard-encodings.html.
 Note that we can write Unicode-encoded data to a file using f = codecs.open(path, 'w', encoding='utf-8').
Text read from the file object f will be returned in Unicode. As we pointed
 out earlier, in order to view this text on a terminal, we need to
 encode it, using a suitable encoding. The Python-specific encoding
 unicode_escape is a dummy encoding
 that converts all non-ASCII characters into their \uXXXX representations.
 Code points above the ASCII 0–127 range but below 256 are represented
 in the two-digit form \xXX.
>>> for line in f:
... line = line.strip()
... print line.encode('unicode_escape')
Pruska Biblioteka Pa\u0144stwowa. Jej dawne zbiory znane pod nazw\u0105
"Berlinka" to skarb kultury i sztuki niemieckiej. Przewiezione przez
Niemc\xf3w pod koniec II wojny \u015bwiatowej na Dolny \u015al\u0105sk, zosta\u0142y
odnalezione po 1945 r. na terytorium Polski. Trafi\u0142y do Biblioteki
Jagiello\u0144skiej w Krakowie, obejmuj\u0105 ponad 500 tys. zabytkowych
archiwali\xf3w, m.in. manuskrypty Goethego, Mozarta, Beethovena, Bacha.
The first line in this output illustrates a Unicode escape
 string preceded by the \u escape
 string, namely \u0144. The relevant
 Unicode character will be displayed on the screen as the glyph ń. In
 the third line of the preceding example, we see \xf3, which corresponds to the glyph ó, and
 is within the 128–255 range.
In Python, a Unicode string literal can be specified by
 preceding an ordinary string literal with a u, as in u'hello'. Arbitrary Unicode characters are
 defined using the \uXXXX escape sequence
 inside a Unicode string literal. We find the integer ordinal of a
 character using ord(). For
 example:
>>> ord('a')
97
The hexadecimal four-digit notation for 97 is 0061, so we can
 define a Unicode string literal with the appropriate escape
 sequence:
>>> a = u'\u0061'
>>> a
u'a'
>>> print a
a
Notice that the Python print
 statement is assuming a default encoding of the Unicode character,
 namely ASCII. However, ń is outside the ASCII range, so cannot be
 printed unless we specify an encoding. In the following example, we
 have specified that print should
 use the repr() of the string, which
 outputs the UTF-8 escape sequences (of the form \xXX) rather than
 trying to render the glyphs.
>>> nacute = u'\u0144'
>>> nacute
u'\u0144'
>>> nacute_utf = nacute.encode('utf8')
>>> print repr(nacute_utf)
'\xc5\x84'
If your operating system and locale are set up to render UTF-8
 encoded characters, you ought to be able to give the Python command
 print nacute_utf and see ń on your
 screen.
Note
There are many factors determining what glyphs are rendered on
 your screen. If you are sure that you have the correct encoding, but
 your Python code is still failing to produce the glyphs you
 expected, you should also check that you have the necessary fonts
 installed on your system.

The module unicodedata lets
 us inspect the properties of Unicode characters. In the following
 example, we select all characters in the third line of our Polish text
 outside the ASCII range and print their UTF-8 escaped value, followed
 by their code point integer using the standard Unicode convention
 (i.e., prefixing the hex digits with U+), followed by their Unicode
 name.
>>> import unicodedata
>>> lines = codecs.open(path, encoding='latin2').readlines()
>>> line = lines[2]
>>> print line.encode('unicode_escape')
Niemc\xf3w pod koniec II wojny \u015bwiatowej na Dolny \u015al\u0105sk, zosta\u0142y\n
>>> for c in line:
... if ord(c) > 127:
... print '%r U+%04x %s' % (c.encode('utf8'), ord(c), unicodedata.name(c))
'\xc3\xb3' U+00f3 LATIN SMALL LETTER O WITH ACUTE
'\xc5\x9b' U+015b LATIN SMALL LETTER S WITH ACUTE
'\xc5\x9a' U+015a LATIN CAPITAL LETTER S WITH ACUTE
'\xc4\x85' U+0105 LATIN SMALL LETTER A WITH OGONEK
'\xc5\x82' U+0142 LATIN SMALL LETTER L WITH STROKE
If you replace the %r (which
 yields the repr() value) by
 %s in the format string of the
 preceding code sample, and if your system supports UTF-8, you should
 see an output like the following:
ó U+00f3 LATIN SMALL LETTER O WITH ACUTE
ś U+015b LATIN SMALL LETTER S WITH ACUTE
Ś U+015a LATIN CAPITAL LETTER S WITH ACUTE
ą U+0105 LATIN SMALL LETTER A WITH OGONEK
ł U+0142 LATIN SMALL LETTER L WITH STROKE

Alternatively, you may need to replace the encoding 'utf8' in the example by 'latin2', again depending on the details of
 your system.
The next examples illustrate how Python string methods and the
 re module accept Unicode
 strings.
>>> line.find(u'zosta\u0142y')
54
>>> line = line.lower()
>>> print line.encode('unicode_escape')
niemc\xf3w pod koniec ii wojny \u015bwiatowej na dolny \u015bl\u0105sk, zosta\u0142y\n
>>> import re
>>> m = re.search(u'\u015b\w*', line)
>>> m.group()
u'\u015bwiatowej'
NLTK tokenizers allow Unicode strings as input, and
 correspondingly yield Unicode strings as output.
>>> nltk.word_tokenize(line)
[u'niemc\xf3w', u'pod', u'koniec', u'ii', u'wojny', u'\u015bwiatowej',
u'na', u'dolny', u'\u015bl\u0105sk', u'zosta\u0142y']

Using Your Local Encoding in Python

If you are used to working with characters in a particular local
 encoding, you probably want to be able to use your standard methods
 for inputting and editing strings in a Python file. In order to do
 this, you need to include the string '# -*-
 coding: <coding> -*-' as the first or second line of
 your file. Note that <coding>
 has to be a string like 'latin-1',
 'big5', or 'utf-8' (see Figure 3-4).
[image: Unicode and IDLE: UTF-8 encoded string literals in the IDLE editor; this requires that an appropriate font is set in IDLE’s preferences; here we have chosen Courier CE.]

Figure 3-4. Unicode and IDLE: UTF-8 encoded string literals in the IDLE
 editor; this requires that an appropriate font is set in IDLE’s
 preferences; here we have chosen Courier CE.

Figure 3-4 also illustrates how regular
 expressions can use encoded strings.

Regular Expressions for Detecting Word Patterns

Many linguistic processing tasks involve pattern matching. For
 example, we can find words ending with ed using
 endswith('ed'). We saw a variety of
 such “word tests” in Table 1-4. Regular
 expressions give us a more powerful and flexible method for describing
 the character patterns we are interested in.
Note
There are many other published introductions to regular
 expressions, organized around the syntax of regular expressions and
 applied to searching text files. Instead of doing this again, we focus
 on the use of regular expressions at different stages of linguistic
 processing. As usual, we’ll adopt a problem-based approach and present
 new features only as they are needed to solve practical problems. In
 our discussion we will mark regular expressions using chevrons like
 this: «patt».

To use regular expressions in Python, we need to import the
 re library using: import re. We also need a list of words to
 search; we’ll use the Words Corpus again (Lexical Resources). We will preprocess it to remove any
 proper names.
>>> import re
>>> wordlist = [w for w in nltk.corpus.words.words('en') if w.islower()]
Using Basic Metacharacters

Let’s find words ending with ed using the
 regular expression «ed$». We will
 use the re.search(p, s) function to
 check whether the pattern p can be
 found somewhere inside the string s. We need to specify the characters of
 interest, and use the dollar sign, which has a special behavior in the
 context of regular expressions in that it matches the end of the
 word:
>>> [w for w in wordlist if re.search('ed$', w)]
['abaissed', 'abandoned', 'abased', 'abashed', 'abatised', 'abed', 'aborted', ...]
The . wildcard symbol matches any single character.
 Suppose we have room in a crossword puzzle for an eight-letter word,
 with j as its third letter and
 t as its sixth letter. In place of each blank
 cell we use a period:
>>> [w for w in wordlist if re.search('^..j..t..$', w)]
['abjectly', 'adjuster', 'dejected', 'dejectly', 'injector', 'majestic', ...]
Note
Your Turn: The caret symbol
 ^ matches the start of a string,
 just like the $ matches the end.
 What results do we get with the example just shown if we leave out
 both of these, and search for «..j..t..»?

Finally, the ? symbol
 specifies that the previous character is optional. Thus «^e-?mail$» will match both
 email and e-mail. We could
 count the total number of occurrences of this word (in either
 spelling) in a text using sum(1 for w in text
 if re.search('^e-?mail$', w)).

Ranges and Closures

The T9 system is used for
 entering text on mobile phones (see Figure 3-5). Two or
 more words that are entered with the same sequence of keystrokes are
 known as textonyms. For example, both
 hole and golf are entered by
 pressing the sequence 4653. What other words could be produced with
 the same sequence? Here we use the regular expression «^[ghi][mno][jlk][def]$»:
>>> [w for w in wordlist if re.search('^[ghi][mno][jlk][def]$', w)]
['gold', 'golf', 'hold', 'hole']
The first part of the expression, «^[ghi]», matches the start of a word
 followed by g, h, or
 i. The next part of the expression, «[mno]», constrains the second character to
 be m, n, or
 o. The third and fourth characters are also
 constrained. Only four words satisfy all these constraints. Note that
 the order of characters inside the square brackets is not significant,
 so we could have written «^[hig][nom][ljk][fed]$» and matched the same
 words.
[image: T9: Text on 9 keys.]

Figure 3-5. T9: Text on 9 keys.

Note
Your Turn: Look for some
 “finger-twisters,” by searching for words that use only part of the
 number-pad. For example «^[ghijklmno]+$», or more concisely,
 «^[g-o]+$», will match words that
 only use keys 4, 5, 6 in the center row, and «^[a-fj-o]+$» will match words that use
 keys 2, 3, 5, 6 in the top-right corner. What do - and +
 mean?

Let’s explore the + symbol a
 bit further. Notice that it can be applied to individual letters, or
 to bracketed sets of letters:
>>> chat_words = sorted(set(w for w in nltk.corpus.nps_chat.words()))
>>> [w for w in chat_words if re.search('^m+i+n+e+$', w)]
['miiiiiiiiiiiiinnnnnnnnnnneeeeeeeeee', 'miiiiiinnnnnnnnnneeeeeeee', 'mine',
'mmmmmmmmiiiiiiiiinnnnnnnnneeeeeeee']
>>> [w for w in chat_words if re.search('^[ha]+$', w)]
['a', 'aaaaaaaaaaaaaaaaa', 'aaahhhh', 'ah', 'ahah', 'ahahah', 'ahh',
'ahhahahaha', 'ahhh', 'ahhhh', 'ahhhhhh', 'ahhhhhhhhhhhhhh', 'h', 'ha', 'haaa',
'hah', 'haha', 'hahaaa', 'hahah', 'hahaha', 'hahahaa', 'hahahah', 'hahahaha', ...]
It should be clear that +
 simply means “one or more instances of the preceding item,” which
 could be an individual character like m, a set like [fed], or a range like [d-f]. Now let’s replace + with *,
 which means “zero or more instances of the preceding item.” The
 regular expression «^m*i*n*e*$»
 will match everything that we found using «^m+i+n+e+$», but also words where some of
 the letters don’t appear at all, e.g., me,
 min, and mmmmm. Note that
 the + and * symbols are sometimes referred to as
 Kleene closures, or simply
 closures.
The ^ operator has another
 function when it appears as the first character inside square
 brackets. For example, «[^aeiouAEIOU]» matches any character other
 than a vowel. We can search the NPS Chat Corpus for words that are
 made up entirely of non-vowel characters using «^[^aeiouAEIOU]+$» to find items like these:
 :):):), grrr, cyb3r, and zzzzzzzz. Notice this includes
 non-alphabetic characters.
Here are some more examples of regular expressions being used to
 find tokens that match a particular pattern, illustrating the use of
 some new symbols: \, {}, (),
 and |.
>>> wsj = sorted(set(nltk.corpus.treebank.words()))
>>> [w for w in wsj if re.search('^[0-9]+\.[0-9]+$', w)]
['0.0085', '0.05', '0.1', '0.16', '0.2', '0.25', '0.28', '0.3', '0.4', '0.5',
'0.50', '0.54', '0.56', '0.60', '0.7', '0.82', '0.84', '0.9', '0.95', '0.99',
'1.01', '1.1', '1.125', '1.14', '1.1650', '1.17', '1.18', '1.19', '1.2', ...]
>>> [w for w in wsj if re.search('^[A-Z]+\$$', w)]
['C$', 'US$']
>>> [w for w in wsj if re.search('^[0-9]{4}$', w)]
['1614', '1637', '1787', '1901', '1903', '1917', '1925', '1929', '1933', ...]
>>> [w for w in wsj if re.search('^[0-9]+-[a-z]{3,5}$', w)]
['10-day', '10-lap', '10-year', '100-share', '12-point', '12-year', ...]
>>> [w for w in wsj if re.search('^[a-z]{5,}-[a-z]{2,3}-[a-z]{,6}$', w)]
['black-and-white', 'bread-and-butter', 'father-in-law', 'machine-gun-toting',
'savings-and-loan']
>>> [w for w in wsj if re.search('(ed|ing)$', w)]
['62%-owned', 'Absorbed', 'According', 'Adopting', 'Advanced', 'Advancing', ...]
Note
Your Turn: Study the
 previous examples and try to work out what the \, {},
 (), and | notations mean before you read
 on.

You probably worked out that a backslash means that the
 following character is deprived of its special powers and must
 literally match a specific character in the word. Thus, while . is special, \. only matches a period. The braced
 expressions, like {3,5}, specify
 the number of repeats of the previous item. The pipe character
 indicates a choice between the material on its left or its right.
 Parentheses indicate the scope of an operator, and they can be used
 together with the pipe (or disjunction) symbol like this: «w(i|e|ai|oo)t», matching
 wit, wet,
 wait, and woot. It is
 instructive to see what happens when you omit the parentheses from the
 last expression in the example, and search for «ed|ing$».
The metacharacters we have seen are summarized in Table 3-3.
Table 3-3. Basic regular expression metacharacters, including wildcards,
 ranges, and closures
	Operator
	Behavior

	.
	Wildcard, matches any character

	^abc
	Matches some pattern abc at
 the start of a string

	abc$
	Matches some pattern abc at
 the end of a string

	[abc]
	Matches one of a set of characters

	[A-Z0-9]
	Matches one of a range of
 characters

	ed|ing|s
	Matches one of the specified strings
 (disjunction)

	*
	Zero or more of previous item, e.g., a*, [a-z]* (also known as
 Kleene Closure)

	+
	One or more of previous item, e.g., a+, [a-z]+

	?
	Zero or one of the previous item (i.e.,
 optional), e.g., a?,
 [a-z]?

	{n}
	Exactly n repeats where
 n is a non-negative
 integer

	{n,}
	At least n
 repeats

	{,n}
	No more than n
 repeats

	{m,n}
	At least m and no more than
 n repeats

	a(b|c)+
	Parentheses that indicate the scope of the
 operators

To the Python interpreter, a regular expression is just like any
 other string. If the string contains a backslash followed by
 particular characters, it will interpret these specially. For example,
 \b would be interpreted as the
 backspace character. In general, when using regular expressions
 containing backslash, we should instruct the interpreter not to look
 inside the string at all, but simply to pass it directly to the
 re library for processing. We do
 this by prefixing the string with the letter r, to indicate that it is a raw string. For example, the raw string
 r'\band\b' contains two \b symbols that are interpreted by the re library as matching word boundaries
 instead of backspace characters. If you get into the habit of using
 r'...' for regular expressions—as
 we will do from now on—you will avoid having to think about these
 complications.

Useful Applications of Regular Expressions

The previous examples all involved searching for words
 w that match some regular expression
 regexp using re.search(regexp, w). Apart from checking whether a regular expression matches
 a word, we can use regular expressions to extract material from words,
 or to modify words in specific ways.
Extracting Word Pieces

The re.findall() (“find all”)
 method finds all (non-overlapping) matches of the given regular
 expression. Let’s find all the vowels in a word, then count
 them:
>>> word = 'supercalifragilisticexpialidocious'
>>> re.findall(r'[aeiou]', word)
['u', 'e', 'a', 'i', 'a', 'i', 'i', 'i', 'e', 'i', 'a', 'i', 'o', 'i', 'o', 'u']
>>> len(re.findall(r'[aeiou]', word))
16
Let’s look for all sequences of two or more vowels in some text,
 and determine their relative frequency:
>>> wsj = sorted(set(nltk.corpus.treebank.words()))
>>> fd = nltk.FreqDist(vs for word in wsj
... for vs in re.findall(r'[aeiou]{2,}', word))
>>> fd.items()
[('io', 549), ('ea', 476), ('ie', 331), ('ou', 329), ('ai', 261), ('ia', 253),
('ee', 217), ('oo', 174), ('ua', 109), ('au', 106), ('ue', 105), ('ui', 95),
('ei', 86), ('oi', 65), ('oa', 59), ('eo', 39), ('iou', 27), ('eu', 18), ...]
Note
Your Turn: In the W3C Date
 Time Format, dates are represented like this: 2009-12-31. Replace
 the ? in the following Python
 code with a regular expression, in order to convert the string
 '2009-12-31' to a list of
 integers [2009, 12, 31]:
[int(n) for n in re.findall(?,
 '2009-12-31')]

Doing More with Word Pieces

Once we can use re.findall()
 to extract material from words, there are interesting things to do
 with the pieces, such as glue them back together or plot them.
It is sometimes noted that English text is highly redundant, and
 it is still easy to read when word-internal vowels are left out. For
 example, declaration becomes
 dclrtn, and inalienable
 becomes inlnble, retaining any initial or final
 vowel sequences. The regular expression in our next example matches
 initial vowel sequences, final vowel sequences, and all consonants;
 everything else is ignored. This three-way disjunction is processed
 left-to-right, and if one of the three parts matches the word, any
 later parts of the regular expression are ignored. We use re.findall() to extract all the matching
 pieces, and ''.join() to join them
 together (see Formatting: From Lists to Strings for more about the
 join operation).
>>> regexp = r'^[AEIOUaeiou]+|[AEIOUaeiou]+$|[^AEIOUaeiou]'
>>> def compress(word):
... pieces = re.findall(regexp, word)
... return ''.join(pieces)
...
>>> english_udhr = nltk.corpus.udhr.words('English-Latin1')
>>> print nltk.tokenwrap(compress(w) for w in english_udhr[:75])
Unvrsl Dclrtn of Hmn Rghts Prmble Whrs rcgntn of the inhrnt dgnty and
of the eql and inlnble rghts of all mmbrs of the hmn fmly is the fndtn
of frdm , jstce and pce in the wrld , Whrs dsrgrd and cntmpt fr hmn
rghts hve rsltd in brbrs acts whch hve outrgd the cnscnce of mnknd ,
and the advnt of a wrld in whch hmn bngs shll enjy frdm of spch and
Next, let’s combine regular expressions with conditional
 frequency distributions. Here we will extract all consonant-vowel
 sequences from the words of Rotokas, such as ka
 and si. Since each of these is a pair, it can be
 used to initialize a conditional frequency distribution. We then
 tabulate the frequency of each pair:
>>> rotokas_words = nltk.corpus.toolbox.words('rotokas.dic')
>>> cvs = [cv for w in rotokas_words for cv in re.findall(r'[ptksvr][aeiou]', w)]
>>> cfd = nltk.ConditionalFreqDist(cvs)
>>> cfd.tabulate()
 a e i o u
k 418 148 94 420 173
p 83 31 105 34 51
r 187 63 84 89 79
s 0 0 100 2 1
t 47 8 0 148 37
v 93 27 105 48 49
Examining the rows for s and
 t, we see they are in partial “complementary
 distribution,” which is evidence that they are not distinct phonemes
 in the language. Thus, we could conceivably drop
 s from the Rotokas alphabet and simply have a
 pronunciation rule that the letter t is
 pronounced s when followed by
 i. (Note that the single entry having
 su, namely kasuari,
 ‘cassowary’ is borrowed from English).
If we want to be able to inspect the words behind the numbers in
 that table, it would be helpful to have an index, allowing us to
 quickly find the list of words that contains a given consonant-vowel
 pair. For example, cv_index['su']
 should give us all words containing su. Here’s
 how we can do this:
>>> cv_word_pairs = [(cv, w) for w in rotokas_words
... for cv in re.findall(r'[ptksvr][aeiou]', w)]
>>> cv_index = nltk.Index(cv_word_pairs)
>>> cv_index['su']
['kasuari']
>>> cv_index['po']
['kaapo', 'kaapopato', 'kaipori', 'kaiporipie', 'kaiporivira', 'kapo', 'kapoa',
'kapokao', 'kapokapo', 'kapokapo', 'kapokapoa', 'kapokapoa', 'kapokapora', ...]
This program processes each word w in turn, and for each one, finds every
 substring that matches the regular expression «[ptksvr][aeiou]». In the case of the word
 kasuari, it finds ka,
 su, and ri. Therefore, the
 cv_word_pairs list will contain
 ('ka',
 'kasuari'), ('su',
 'kasuari'), and ('ri',
 'kasuari'). One further step, using nltk.Index(), converts this into a useful
 index.

Finding Word Stems

When we use a web search engine, we usually don’t mind (or even
 notice) if the words in the document differ from our search terms in
 having different endings. A query for laptops
 finds documents containing laptop and vice versa.
 Indeed, laptop and laptops
 are just two forms of the same dictionary word (or lemma). For some
 language processing tasks we want to ignore word endings, and just
 deal with word stems.
There are various ways we can pull out the stem of a word.
 Here’s a simple-minded approach that just strips off anything that
 looks like a suffix:
>>> def stem(word):
... for suffix in ['ing', 'ly', 'ed', 'ious', 'ies', 'ive', 'es', 's', 'ment']:
... if word.endswith(suffix):
... return word[:-len(suffix)]
... return word
Although we will ultimately use NLTK’s built-in stemmers, it’s
 interesting to see how we can use regular expressions for this task.
 Our first step is to build up a disjunction of all the suffixes. We
 need to enclose it in parentheses in order to limit the scope of the
 disjunction.
>>> re.findall(r'^.*(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processing')
['ing']
Here, re.findall() just gave
 us the suffix even though the regular expression matched the entire
 word. This is because the parentheses have a second function, to
 select substrings to be extracted. If we want to use the parentheses
 to specify the scope of the disjunction, but not to select the
 material to be output, we have to add ?:, which is just one of many arcane
 subtleties of regular expressions. Here’s the revised
 version.
>>> re.findall(r'^.*(?:ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processing')
['processing']
However, we’d actually like to split the word into stem and
 suffix. So we should just parenthesize both parts of the regular
 expression:
>>> re.findall(r'^(.*)(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processing')
[('process', 'ing')]
This looks promising, but still has a problem. Let’s look at a
 different word, processes:
>>> re.findall(r'^(.*)(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processes')
[('processe', 's')]
The regular expression incorrectly found an
 -s suffix instead of an -es
 suffix. This demonstrates another subtlety: the star operator is
 “greedy” and so the .* part of the
 expression tries to consume as much of the input as possible. If we
 use the “non-greedy” version of the star operator, written *?, we get what we want:
>>> re.findall(r'^(.*?)(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processes')
[('process', 'es')]
This works even when we allow an empty suffix, by making the
 content of the second parentheses optional:
>>> re.findall(r'^(.*?)(ing|ly|ed|ious|ies|ive|es|s|ment)?$', 'language')
[('language', '')]
This approach still has many problems (can you spot them?), but
 we will move on to define a function to perform stemming, and apply it
 to a whole text:
>>> def stem(word):
... regexp = r'^(.*?)(ing|ly|ed|ious|ies|ive|es|s|ment)?$'
... stem, suffix = re.findall(regexp, word)[0]
... return stem
...
>>> raw = """DENNIS: Listen, strange women lying in ponds distributing swords
... is no basis for a system of government. Supreme executive power derives from
... a mandate from the masses, not from some farcical aquatic ceremony."""
>>> tokens = nltk.word_tokenize(raw)
>>> [stem(t) for t in tokens]
['DENNIS', ':', 'Listen', ',', 'strange', 'women', 'ly', 'in', 'pond',
'distribut', 'sword', 'i', 'no', 'basi', 'for', 'a', 'system', 'of', 'govern',
'.', 'Supreme', 'execut', 'power', 'deriv', 'from', 'a', 'mandate', 'from',
'the', 'mass', ',', 'not', 'from', 'some', 'farcical', 'aquatic', 'ceremony', '.']
Notice that our regular expression removed the
 s from ponds but also from
 is and basis. It produced
 some non-words, such as distribut and
 deriv, but these are acceptable stems in some
 applications.

Searching Tokenized Text

You can use a special kind of regular expression for searching
 across multiple words in a text (where a text is a list of tokens).
 For example, "<a>
 <man>" finds all instances of a
 man in the text. The angle brackets are used to mark token
 boundaries, and any whitespace between the angle brackets is ignored
 (behaviors that are unique to NLTK’s findall() method for texts). In the following example, we include
 <.*> [image: 1], which will match any single
 token, and enclose it in parentheses so only the matched word (e.g.,
 monied) and not the matched phrase (e.g.,
 a monied man) is produced. The second example
 finds three-word phrases ending with the word bro
 [image: 2]. The last example finds
 sequences of three or more words starting with the letter
 l [image: 3].
>>> from nltk.corpus import gutenberg, nps_chat
>>> moby = nltk.Text(gutenberg.words('melville-moby_dick.txt'))
>>> moby.findall(r"<a> (<.*>) <man>") [image: 1]
monied; nervous; dangerous; white; white; white; pious; queer; good;
mature; white; Cape; great; wise; wise; butterless; white; fiendish;
pale; furious; better; certain; complete; dismasted; younger; brave;
brave; brave; brave
>>> chat = nltk.Text(nps_chat.words())
>>> chat.findall(r"<.*> <.*> <bro>") [image: 2]
you rule bro; telling you bro; u twizted bro
>>> chat.findall(r"<l.*>{3,}") [image: 3]
lol lol lol; lmao lol lol; lol lol lol; la la la la la; la la la; la
la la; lovely lol lol love; lol lol lol.; la la la; la la la
Note
Your Turn: Consolidate your
 understanding of regular expression patterns and substitutions using
 nltk.re_show(p, s), which annotates the string s to show every
 place where pattern p was matched,
 and nltk.app.nemo(), which
 provides a graphical interface for exploring regular expressions.
 For more practice, try some of the exercises on regular expressions
 at the end of this chapter.

It is easy to build search patterns when the linguistic
 phenomenon we’re studying is tied to particular words. In some cases,
 a little creativity will go a long way. For instance, searching a
 large text corpus for expressions of the form x and other
 ys allows us to discover hypernyms (see WordNet):
>>> from nltk.corpus import brown
>>> hobbies_learned = nltk.Text(brown.words(categories=['hobbies', 'learned']))
>>> hobbies_learned.findall(r"<\w*> <and> <other> <\w*s>")
speed and other activities; water and other liquids; tomb and other
landmarks; Statues and other monuments; pearls and other jewels;
charts and other items; roads and other features; figures and other
objects; military and other areas; demands and other factors;
abstracts and other compilations; iron and other metals
With enough text, this approach would give us a useful store of
 information about the taxonomy of objects, without the need for any
 manual labor. However, our search results will usually contain false
 positives, i.e., cases that we would want to exclude. For example, the
 result demands and other factors suggests that
 demand is an instance of the type
 factor, but this sentence is actually about wage
 demands. Nevertheless, we could construct our own ontology of English
 concepts by manually correcting the output of such searches.
Note
This combination of automatic and manual processing is the
 most common way for new corpora to be constructed. We will return to
 this in Chapter 11.

Searching corpora also suffers from the problem of false
 negatives, i.e., omitting cases that we would want to include. It is
 risky to conclude that some linguistic phenomenon doesn’t exist in a
 corpus just because we couldn’t find any instances of a search
 pattern. Perhaps we just didn’t think carefully enough about suitable
 patterns.
Note
Your Turn: Look for
 instances of the pattern as x as y to discover
 information about entities and their properties.

Normalizing Text

In earlier program examples we have often converted text to
 lowercase before doing anything with its words, e.g., set(w.lower() for w in text). By using
 lower(), we have normalized the text to lowercase so that the
 distinction between The and
 the is ignored. Often we want to go further than
 this and strip off any affixes, a task known as stemming. A further step
 is to make sure that the resulting form is a known word in a dictionary,
 a task known as lemmatization. We discuss each of these in turn. First,
 we need to define the data we will use in this section:
>>> raw = """DENNIS: Listen, strange women lying in ponds distributing swords
... is no basis for a system of government. Supreme executive power derives from
... a mandate from the masses, not from some farcical aquatic ceremony."""
>>> tokens = nltk.word_tokenize(raw)
Stemmers

NLTK includes several off-the-shelf stemmers, and if you ever
 need a stemmer, you should use one of these in preference to crafting
 your own using regular expressions, since NLTK’s stemmers handle a
 wide range of irregular cases. The Porter and Lancaster stemmers
 follow their own rules for stripping affixes. Observe that the Porter
 stemmer correctly handles the word lying (mapping
 it to lie), whereas the Lancaster stemmer does
 not.
>>> porter = nltk.PorterStemmer()
>>> lancaster = nltk.LancasterStemmer()
>>> [porter.stem(t) for t in tokens]
['DENNI', ':', 'Listen', ',', 'strang', 'women', 'lie', 'in', 'pond',
'distribut', 'sword', 'is', 'no', 'basi', 'for', 'a', 'system', 'of', 'govern',
'.', 'Suprem', 'execut', 'power', 'deriv', 'from', 'a', 'mandat', 'from',
'the', 'mass', ',', 'not', 'from', 'some', 'farcic', 'aquat', 'ceremoni', '.']
>>> [lancaster.stem(t) for t in tokens]
['den', ':', 'list', ',', 'strange', 'wom', 'lying', 'in', 'pond', 'distribut',
'sword', 'is', 'no', 'bas', 'for', 'a', 'system', 'of', 'govern', '.', 'suprem',
'execut', 'pow', 'der', 'from', 'a', 'mand', 'from', 'the', 'mass', ',', 'not',
'from', 'som', 'farc', 'aqu', 'ceremony', '.']
Stemming is not a well-defined process, and we typically pick
 the stemmer that best suits the application we have in mind. The
 Porter Stemmer is a good choice if you are indexing some texts and
 want to support search using alternative forms of words (illustrated
 in Example 3-1, which uses
 object-oriented programming techniques that are
 outside the scope of this book, string formatting techniques to be
 covered in Formatting: From Lists to Strings, and the enumerate() function to be explained in
 Sequences).
Example 3-1. Indexing a text using a stemmer.
class IndexedText(object):

 def __init__(self, stemmer, text):
 self._text = text
 self._stemmer = stemmer
 self._index = nltk.Index((self._stem(word), i)
 for (i, word) in enumerate(text))

 def concordance(self, word, width=40):
 key = self._stem(word)
 wc = width/4 # words of context
 for i in self._index[key]:
 lcontext = ' '.join(self._text[i-wc:i])
 rcontext = ' '.join(self._text[i:i+wc])
 ldisplay = '%*s' % (width, lcontext[-width:])
 rdisplay = '%-*s' % (width, rcontext[:width])
 print ldisplay, rdisplay

 def _stem(self, word):
 return self._stemmer.stem(word).lower()
>>> porter = nltk.PorterStemmer()
>>> grail = nltk.corpus.webtext.words('grail.txt')
>>> text = IndexedText(porter, grail)
>>> text.concordance('lie')
r king ! DENNIS : Listen , strange women lying in ponds distributing swords is no
 beat a very brave retreat . ROBIN : All lies ! MINSTREL : [singing] Bravest of
 Nay . Nay . Come . Come . You may lie here . Oh , but you are wounded !
doctors immediately ! No , no , please ! Lie down . [clap clap] PIGLET : Well
ere is much danger , for beyond the cave lies the Gorge of Eternal Peril , which
 you . Oh ... TIM : To the north there lies a cave -- the cave of Caerbannog --
h it and lived ! Bones of full fifty men lie strewn about its lair . So , brave k
not stop our fight ' til each one of you lies dead , and the Holy Grail returns t

Lemmatization

The WordNet lemmatizer removes affixes only if the resulting
 word is in its dictionary. This additional checking process makes the
 lemmatizer slower than the stemmers just mentioned. Notice that it
 doesn’t handle lying, but it converts
 women to woman.
>>> wnl = nltk.WordNetLemmatizer()
>>> [wnl.lemmatize(t) for t in tokens]
['DENNIS', ':', 'Listen', ',', 'strange', 'woman', 'lying', 'in', 'pond',
'distributing', 'sword', 'is', 'no', 'basis', 'for', 'a', 'system', 'of',
'government', '.', 'Supreme', 'executive', 'power', 'derives', 'from', 'a',
'mandate', 'from', 'the', 'mass', ',', 'not', 'from', 'some', 'farcical',
'aquatic', 'ceremony', '.']
The WordNet lemmatizer is a good choice if you want to compile
 the vocabulary of some texts and want a list of valid lemmas (or
 lexicon headwords).
Note
Another normalization task involves identifying non-standard words, including numbers,
 abbreviations, and dates, and mapping any such tokens to a special
 vocabulary. For example, every decimal number could be mapped to a
 single token 0.0, and every
 acronym could be mapped to AAA.
 This keeps the vocabulary small and improves the accuracy of many
 language modeling tasks.

Regular Expressions for Tokenizing Text

Tokenization is the task of cutting a string into identifiable
 linguistic units that constitute a piece of language data. Although it
 is a fundamental task, we have been able to delay it until now because
 many corpora are already tokenized, and because NLTK includes some
 tokenizers. Now that you are familiar with regular expressions, you can
 learn how to use them to tokenize text, and to have much more control
 over the process.
Simple Approaches to Tokenization

The very simplest method for tokenizing text is to split on
 whitespace. Consider the following text from Alice’s
 Adventures in Wonderland:
>>> raw = """'When I'M a Duchess,' she said to herself, (not in a very hopeful tone
... though), 'I won't have any pepper in my kitchen AT ALL. Soup does very
... well without--Maybe it's always pepper that makes people hot-tempered,'..."""
We could split this raw text on whitespace using raw.split(). To do the same using a regular
 expression, it is not enough to match any space characters in the
 string [image: 1], since this results in
 tokens that contain a \n newline
 character; instead, we need to match any number of spaces, tabs, or
 newlines [image: 2]:
>>> re.split(r' ', raw) [image: 1]
["'When", "I'M", 'a', "Duchess,'", 'she', 'said', 'to', 'herself,', '(not', 'in',
'a', 'very', 'hopeful', 'tone\nthough),', "'I", "won't", 'have', 'any', 'pepper',
'in', 'my', 'kitchen', 'AT', 'ALL.', 'Soup', 'does', 'very\nwell', 'without--Maybe',
"it's", 'always', 'pepper', 'that', 'makes', 'people', "hot-tempered,'..."]
>>> re.split(r'[\t\n]+', raw) [image: 2]
["'When", "I'M", 'a', "Duchess,'", 'she', 'said', 'to', 'herself,', '(not', 'in',
'a', 'very', 'hopeful', 'tone', 'though),', "'I", "won't", 'have', 'any', 'pepper',
'in', 'my', 'kitchen', 'AT', 'ALL.', 'Soup', 'does', 'very', 'well', 'without--Maybe',
"it's", 'always', 'pepper', 'that', 'makes', 'people', "hot-tempered,'..."]
The regular expression «[
 \t\n]+» matches one or more spaces, tabs (\t), or newlines (\n). Other whitespace characters, such as
 carriage return and form feed, should really be included too. Instead,
 we will use a built-in re
 abbreviation, \s, which means any
 whitespace character. The second statement in the preceding example
 can be rewritten as re.split(r'\s+',
 raw).
Note
Important: Remember to
 prefix regular expressions with the letter r (meaning “raw”), which instructs the
 Python interpreter to treat the string literally, rather than
 processing any backslashed characters it contains.

Splitting on whitespace gives us tokens like '(not' and 'herself,'. An alternative is to use the
 fact that Python provides us with a character class \w for word characters, equivalent to
 [a-zA-Z0-9_]. It also defines the
 complement of this class, \W, i.e.,
 all characters other than letters, digits, or underscore. We can use
 \W in a simple regular expression
 to split the input on anything other than a word
 character:
>>> re.split(r'\W+', raw)
['', 'When', 'I', 'M', 'a', 'Duchess', 'she', 'said', 'to', 'herself', 'not', 'in',
'a', 'very', 'hopeful', 'tone', 'though', 'I', 'won', 't', 'have', 'any', 'pepper',
'in', 'my', 'kitchen', 'AT', 'ALL', 'Soup', 'does', 'very', 'well', 'without',
'Maybe', 'it', 's', 'always', 'pepper', 'that', 'makes', 'people', 'hot', 'tempered',
'']
Observe that this gives us empty strings at the start and the
 end (to understand why, try doing 'xx'.split('x')). With re.findall(r'\w+', raw), we get the same
 tokens, but without the empty strings, using a pattern that matches
 the words instead of the spaces. Now that we’re matching the words,
 we’re in a position to extend the regular expression to cover a wider
 range of cases. The regular expression «\w+|\S\w*» will first try to match any
 sequence of word characters. If no match is found, it will try to
 match any non-whitespace character (\S is the complement of \s) followed by further word characters.
 This means that punctuation is grouped with any following letters
 (e.g., ’s) but that sequences of two or more
 punctuation characters are separated.
>>> re.findall(r'\w+|\S\w*', raw)
["'When", 'I', "'M", 'a', 'Duchess', ',', "'", 'she', 'said', 'to', 'herself', ',',
'(not', 'in', 'a', 'very', 'hopeful', 'tone', 'though', ')', ',', "'I", 'won', "'t",
'have', 'any', 'pepper', 'in', 'my', 'kitchen', 'AT', 'ALL', '.', 'Soup', 'does',
'very', 'well', 'without', '-', '-Maybe', 'it', "'s", 'always', 'pepper', 'that',
'makes', 'people', 'hot', '-tempered', ',', "'", '.', '.', '.']
Let’s generalize the \w+ in
 the preceding expression to permit word-internal hyphens and
 apostrophes: «\w+([-']\w+)*». This
 expression means \w+ followed by
 zero or more instances of [-']\w+;
 it would match hot-tempered and
 it’s. (We need to include ?: in this expression for reasons discussed
 earlier.) We’ll also add a pattern to match quote characters so these
 are kept separate from the text they enclose.
>>> print re.findall(r"\w+(?:[-']\w+)*|'|[-.(]+|\S\w*", raw)
["'", 'When', "I'M", 'a', 'Duchess', ',', "'", 'she', 'said', 'to', 'herself', ',',
'(', 'not', 'in', 'a', 'very', 'hopeful', 'tone', 'though', ')', ',', "'", 'I',
"won't", 'have', 'any', 'pepper', 'in', 'my', 'kitchen', 'AT', 'ALL', '.', 'Soup',
'does', 'very', 'well', 'without', '--', 'Maybe', "it's", 'always', 'pepper',
'that', 'makes', 'people', 'hot-tempered', ',', "'", '...']
The expression in this example also included «[-.(]+», which causes the double hyphen,
 ellipsis, and open parenthesis to be tokenized separately.
Table 3-4 lists the regular expression
 character class symbols we have seen in this section, in addition to
 some other useful symbols.
Table 3-4. Regular expression symbols
	Symbol
	Function

	\b
	Word boundary (zero width)

	\d
	Any decimal digit (equivalent to [0-9])

	\D
	Any non-digit character (equivalent to [^0-9])

	\s
	Any whitespace character (equivalent to [\t\n\r\f\v]

	\S
	Any non-whitespace character (equivalent to
 [^
 \t\n\r\f\v])

	\w
	Any alphanumeric character (equivalent to
 [a-zA-Z0-9_])

	\W
	Any non-alphanumeric character (equivalent to
 [^a-zA-Z0-9_])

	\t
	The tab character

	\n
	The newline character

NLTK’s Regular Expression Tokenizer

The function nltk.regexp_tokenize() is similar to
 re.findall() (as we’ve been using
 it for tokenization). However, nltk.regexp_tokenize() is more efficient for
 this task, and avoids the need for special treatment of parentheses.
 For readability we break up the regular expression over several lines
 and add a comment about each line. The special (?x) “verbose flag” tells Python to strip
 out the embedded whitespace and comments.
>>> text = 'That U.S.A. poster-print costs $12.40...'
>>> pattern = r'''(?x) # set flag to allow verbose regexps
... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.
... | \w+(-\w+)* # words with optional internal hyphens
... | \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%
... | \.\.\. # ellipsis
... | [][.,;"'?():-_`] # these are separate tokens
... '''
>>> nltk.regexp_tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']
When using the verbose flag, you can no longer use ' ' to match a space character; use \s instead. The regexp_tokenize() function has an optional gaps parameter. When set to True, the regular expression specifies the
 gaps between tokens, as with re.split().
Note
We can evaluate a tokenizer by comparing the resulting tokens
 with a wordlist, and then report any tokens that don’t appear in the
 wordlist, using set(tokens).difference(wordlist). You’ll probably want to lowercase all the tokens first.

Further Issues with Tokenization

Tokenization turns out to be a far more difficult task than you
 might have expected. No single solution works well across the board,
 and we must decide what counts as a token depending on the application
 domain.
When developing a tokenizer it helps to have access to raw text
 which has been manually tokenized, in order to compare the output of
 your tokenizer with high-quality (or “gold-standard”) tokens. The NLTK
 corpus collection includes a sample of Penn Treebank data, including
 the raw Wall Street Journal text (nltk.corpus.treebank_raw.raw()) and the
 tokenized version (nltk.corpus.treebank.words()).
A final issue for tokenization is the presence of contractions,
 such as didn’t. If we are analyzing the meaning
 of a sentence, it would probably be more useful to normalize this form
 to two separate forms: did and
 n’t (or not). We can do this
 work with the help of a lookup table.

Segmentation

This section discusses more advanced concepts, which you may
 prefer to skip on the first time through this chapter.
Tokenization is an instance of a more general problem of segmentation. In this section, we will look at
 two other instances of this problem, which use radically different
 techniques to the ones we have seen so far in this chapter.
Sentence Segmentation

Manipulating texts at the level of individual words often
 presupposes the ability to divide a text into individual sentences. As
 we have seen, some corpora already provide access at the sentence
 level. In the following example, we compute the average number of
 words per sentence in the Brown Corpus:
>>> len(nltk.corpus.brown.words()) / len(nltk.corpus.brown.sents())
20.250994070456922
In other cases, the text is available only as a stream of
 characters. Before tokenizing the text into words, we need to segment
 it into sentences. NLTK facilitates this by including the Punkt
 sentence segmenter (Kiss & Strunk, 2006). Here is an example of
 its use in segmenting the text of a novel. (Note that if the
 segmenter’s internal data has been updated by the time you read this,
 you will see different output.)
>>> sent_tokenizer=nltk.data.load('tokenizers/punkt/english.pickle')
>>> text = nltk.corpus.gutenberg.raw('chesterton-thursday.txt')
>>> sents = sent_tokenizer.tokenize(text)
>>> pprint.pprint(sents[171:181])
['"Nonsense!',
 '" said Gregory, who was very rational when anyone else\nattempted paradox.',
 '"Why do all the clerks and navvies in the\nrailway trains look so sad and tired,...',
 'I will\ntell you.',
 'It is because they know that the train is going right.',
 'It\nis because they know that whatever place they have taken a ticket\nfor that ...',
 'It is because after they have\npassed Sloane Square they know that the next stat...',
 'Oh, their wild rapture!',
 'oh,\ntheir eyes like stars and their souls again in Eden, if the next\nstation w...'
 '"\n\n"It is you who are unpoetical," replied the poet Syme.']
Notice that this example is really a single sentence, reporting
 the speech of Mr. Lucian Gregory. However, the quoted speech contains
 several sentences, and these have been split into individual strings.
 This is reasonable behavior for most applications.
Sentence segmentation is difficult because a period is used to
 mark abbreviations, and some periods simultaneously mark an
 abbreviation and terminate a sentence, as often happens with acronyms
 like U.S.A.
For another approach to sentence segmentation, see Further Examples of Supervised Classification.

Word Segmentation

For some writing systems, tokenizing text is made more difficult
 by the fact that there is no visual representation of word boundaries.
 For example, in Chinese, the three-character string: 爱国人 (ai4 “love”
 [verb], guo3 “country”, ren2 “person”) could be tokenized as 爱国 / 人,
 “country-loving person,” or as 爱 / 国人, “love
 country-person.”
A similar problem arises in the processing of spoken language,
 where the hearer must segment a continuous speech stream into
 individual words. A particularly challenging version of this problem
 arises when we don’t know the words in advance. This is the problem
 faced by a language learner, such as a child hearing utterances from a
 parent. Consider the following artificial example, where word
 boundaries have been removed:
Example 3-2.
	doyouseethekitty

	seethedoggy

	doyoulikethekitty

	likethedoggy

Our first challenge is simply to represent the problem: we need
 to find a way to separate text content from the segmentation. We can
 do this by annotating each character with a boolean value to indicate
 whether or not a word-break appears after the character (an idea that
 will be used heavily for “chunking” in Chapter 7). Let’s assume that
 the learner is given the utterance breaks, since these often
 correspond to extended pauses. Here is a possible representation,
 including the initial and target segmentations:
>>> text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
>>> seg1 = "0000000000000001000000000010000000000000000100000000000"
>>> seg2 = "0100100100100001001001000010100100010010000100010010000"
Observe that the segmentation strings consist of zeros and ones.
 They are one character shorter than the source text, since a text of
 length n can be broken up in only
 n–1 places. The segment() function in Example 3-3 demonstrates that we can get back to the
 original segmented text from its representation.
Example 3-3. Reconstruct segmented text from string representation:
 seg1 and seg2
 represent the initial and final segmentations of some hypothetical
 child-directed speech; the segment() function can use them
 to reproduce the segmented text.
def segment(text, segs):
 words = []
 last = 0
 for i in range(len(segs)):
 if segs[i] == '1':
 words.append(text[last:i+1])
 last = i+1
 words.append(text[last:])
 return words
>>> text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
>>> seg1 = "0000000000000001000000000010000000000000000100000000000"
>>> seg2 = "0100100100100001001001000010100100010010000100010010000"
>>> segment(text, seg1)
['doyouseethekitty', 'seethedoggy', 'doyoulikethekitty', 'likethedoggy']
>>> segment(text, seg2)
['do', 'you', 'see', 'the', 'kitty', 'see', 'the', 'doggy', 'do', 'you',
 'like', 'the', kitty', 'like', 'the', 'doggy']

Now the segmentation task becomes a search problem: find the bit
 string that causes the text string to be correctly segmented into
 words. We assume the learner is acquiring words and storing them in an
 internal lexicon. Given a suitable lexicon, it is possible to
 reconstruct the source text as a sequence of lexical items. Following
 (Brent & Cartwright, 1995), we can define an objective function, a scoring function whose
 value we will try to optimize, based on the size of the lexicon and
 the amount of information needed to reconstruct the source text from
 the lexicon. We illustrate this in Figure 3-6.
[image: Calculation of objective function: Given a hypothetical segmentation of the source text (on the left), derive a lexicon and a derivation table that permit the source text to be reconstructed, then total up the number of characters used by each lexical item (including a boundary marker) and each derivation, to serve as a score of the quality of the segmentation; smaller values of the score indicate a better segmentation.]

Figure 3-6. Calculation of objective function: Given a hypothetical
 segmentation of the source text (on the left), derive a lexicon and
 a derivation table that permit the source text to be reconstructed,
 then total up the number of characters used by each lexical item
 (including a boundary marker) and each derivation, to serve as a
 score of the quality of the segmentation; smaller values of the
 score indicate a better segmentation.

It is a simple matter to implement this objective function, as
 shown in Example 3-4.
Example 3-4. Computing the cost of storing the lexicon and reconstructing
 the source text.
def evaluate(text, segs):
 words = segment(text, segs)
 text_size = len(words)
 lexicon_size = len(' '.join(list(set(words))))
 return text_size + lexicon_size
>>> text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
>>> seg1 = "0000000000000001000000000010000000000000000100000000000"
>>> seg2 = "0100100100100001001001000010100100010010000100010010000"
>>> seg3 = "0000100100000011001000000110000100010000001100010000001"
>>> segment(text, seg3)
['doyou', 'see', 'thekitt', 'y', 'see', 'thedogg', 'y', 'doyou', 'like',
 'thekitt', 'y', 'like', 'thedogg', 'y']
>>> evaluate(text, seg3)
46
>>> evaluate(text, seg2)
47
>>> evaluate(text, seg1)
63

The final step is to search for the pattern of zeros and ones
 that minimizes this objective function, shown in Example 3-5. Notice that the best segmentation includes
 “words” like thekitty, since there’s not enough
 evidence in the data to split this any further.
Example 3-5. Non-deterministic search using simulated annealing: Begin
 searching with phrase segmentations only; randomly perturb the zeros
 and ones proportional to the “temperature”; with each iteration the
 temperature is lowered and the perturbation of boundaries is
 reduced.
from random import randint

def flip(segs, pos):
 return segs[:pos] + str(1-int(segs[pos])) + segs[pos+1:]

def flip_n(segs, n):
 for i in range(n):
 segs = flip(segs, randint(0,len(segs)-1))
 return segs

def anneal(text, segs, iterations, cooling_rate):
 temperature = float(len(segs))
 while temperature > 0.5:
 best_segs, best = segs, evaluate(text, segs)
 for i in range(iterations):
 guess = flip_n(segs, int(round(temperature)))
 score = evaluate(text, guess)
 if score < best:
 best, best_segs = score, guess
 score, segs = best, best_segs
 temperature = temperature / cooling_rate
 print evaluate(text, segs), segment(text, segs)
 print
 return segs
>>> text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
>>> seg1 = "0000000000000001000000000010000000000000000100000000000"
>>> anneal(text, seg1, 5000, 1.2)
60 ['doyouseetheki', 'tty', 'see', 'thedoggy', 'doyouliketh', 'ekittylike', 'thedoggy']
58 ['doy', 'ouseetheki', 'ttysee', 'thedoggy', 'doy', 'o', 'ulikethekittylike', 'thedoggy']
56 ['doyou', 'seetheki', 'ttysee', 'thedoggy', 'doyou', 'liketh', 'ekittylike', 'thedoggy']
54 ['doyou', 'seethekit', 'tysee', 'thedoggy', 'doyou', 'likethekittylike', 'thedoggy']
53 ['doyou', 'seethekit', 'tysee', 'thedoggy', 'doyou', 'like', 'thekitty', 'like', 'thedoggy']
51 ['doyou', 'seethekittysee', 'thedoggy', 'doyou', 'like', 'thekitty', 'like', 'thedoggy']
42 ['doyou', 'see', 'thekitty', 'see', 'thedoggy', 'doyou', 'like', 'thekitty', 'like', 'thedoggy']
'0000100100000001001000000010000100010000000100010000000'

With enough data, it is possible to automatically segment text
 into words with a reasonable degree of accuracy. Such methods can be
 applied to tokenization for writing systems that don’t have any visual
 representation of word boundaries.

Formatting: From Lists to Strings

Often we write a program to report a single data item, such as a
 particular element in a corpus that meets some complicated criterion, or
 a single summary statistic such as a word-count or the performance of a
 tagger. More often, we write a program to produce a structured result;
 for example, a tabulation of numbers or linguistic forms, or a
 reformatting of the original data. When the results to be presented are
 linguistic, textual output is usually the most natural choice. However,
 when the results are numerical, it may be preferable to produce
 graphical output. In this section, you will learn about a variety of
 ways to present program output.
From Lists to Strings

The simplest kind of structured object we use for text
 processing is lists of words. When we want to output these to a
 display or a file, we must convert these lists into strings. To do
 this in Python we use the join()
 method, and specify the string to be used as the “glue”:
>>> silly = ['We', 'called', 'him', 'Tortoise', 'because', 'he', 'taught', 'us', '.']
>>> ' '.join(silly)
'We called him Tortoise because he taught us .'
>>> ';'.join(silly)
'We;called;him;Tortoise;because;he;taught;us;.'
>>> ''.join(silly)
'WecalledhimTortoisebecausehetaughtus.'
So ' '.join(silly) means:
 take all the items in silly and
 concatenate them as one big string, using '
 ' as a spacer between the items. I.e., join() is a method of the string that you
 want to use as the glue. (Many people find this notation for join() counter-intuitive.) The join() method only works on a list of
 strings—what we have been calling a text—a complex type that enjoys
 some privileges in Python.

Strings and Formats

We have seen that there are two ways to display the contents of
 an object:
>>> word = 'cat'
>>> sentence = """hello
... world"""
>>> print word
cat
>>> print sentence
hello
world
>>> word
'cat'
>>> sentence
'hello\nworld'
The print command yields
 Python’s attempt to produce the most human-readable form of an object.
 The second method—naming the variable at a prompt—shows us a string
 that can be used to recreate this object. It is important to keep in
 mind that both of these are just strings, displayed for the benefit of
 you, the user. They do not give us any clue as to the actual internal
 representation of the object.
There are many other useful ways to display an object as a
 string of characters. This may be for the benefit of a human reader,
 or because we want to export our
 data to a particular file format for use in an external
 program.
Formatted output typically contains a combination of variables
 and pre-specified strings. For example, given a frequency distribution
 fdist, we could do:
>>> fdist = nltk.FreqDist(['dog', 'cat', 'dog', 'cat', 'dog', 'snake', 'dog', 'cat'])
>>> for word in fdist:
... print word, '->', fdist[word], ';',
dog -> 4 ; cat -> 3 ; snake -> 1 ;
Apart from the problem of unwanted whitespace, print statements
 that contain alternating variables and constants can be difficult to
 read and maintain. A better solution is to use string formatting expressions.
>>> for word in fdist:
... print '%s->%d;' % (word, fdist[word]),
dog->4; cat->3; snake->1;
To understand what is going on here, let’s test out the string
 formatting expression on its own. (By now this will be your usual
 method of exploring new syntax.)
>>> '%s->%d;' % ('cat', 3)
'cat->3;'
>>> '%s->%d;' % 'cat'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: not enough arguments for format string
The special symbols %s and
 %d are placeholders for strings and
 (decimal) integers. We can embed these inside a string, then use the
 % operator to combine them. Let’s
 unpack this code further, in order to see this behavior up
 close:
>>> '%s->' % 'cat'
'cat->'
>>> '%d' % 3
'3'
>>> 'I want a %s right now' % 'coffee'
'I want a coffee right now'
We can have a number of placeholders, but following the % operator we need to specify a tuple with
 exactly the same number of values:
>>> "%s wants a %s %s" % ("Lee", "sandwich", "for lunch")
'Lee wants a sandwich for lunch'
We can also provide the values for the placeholders indirectly.
 Here’s an example using a for
 loop:
>>> template = 'Lee wants a %s right now'
>>> menu = ['sandwich', 'spam fritter', 'pancake']
>>> for snack in menu:
... print template % snack
...
Lee wants a sandwich right now
Lee wants a spam fritter right now
Lee wants a pancake right now
The %s and %d symbols are called conversion specifiers. They start with the
 % character and end with a
 conversion character such as s (for
 string) or d (for decimal integer)
 The string containing conversion specifiers is called a format string. We combine a format string
 with the % operator and a tuple of
 values to create a complete string formatting expression.

Lining Things Up

So far our formatting strings generated output of arbitrary
 width on the page (or screen), such as %s and %d. We can specify a width as well, such as
 %6s, producing a string that is
 padded to width 6. It is right-justified by default [image: 1], but we can include a minus sign to
 make it left-justified [image: 2]. In case
 we don’t know in advance how wide a displayed value should be, the
 width value can be replaced with a star in the formatting string, then
 specified using a variable [image: 3].
>>> '%6s' % 'dog' [image: 1]
' dog'
>>> '%-6s' % 'dog' [image: 2]
'dog '
>>> width = 6
>>> '%-*s' % (width, 'dog') [image: 3]
'dog '
Other control characters are used for decimal integers and
 floating-point numbers. Since the percent character % has a special interpretation in formatting
 strings, we have to precede it with another % to get it in the output.
>>> count, total = 3205, 9375
>>> "accuracy for %d words: %2.4f%%" % (total, 100 * count / total)
'accuracy for 9375 words: 34.1867%'
An important use of formatting strings is for tabulating data.
 Recall that in Accessing Text Corpora we
 saw data being tabulated from a conditional frequency distribution.
 Let’s perform the tabulation ourselves, exercising full control of
 headings and column widths, as shown in Example 3-6. Note the clear separation between
 the language processing work, and the tabulation of results.
Example 3-6. Frequency of modals in different sections of the Brown
 Corpus.
def tabulate(cfdist, words, categories):
 print '%-16s' % 'Category',
 for word in words: # column headings
 print '%6s' % word,
 print
 for category in categories:
 print '%-16s' % category, # row heading
 for word in words: # for each word
 print '%6d' % cfdist[category][word], # print table cell
 print # end the row
>>> from nltk.corpus import brown
>>> cfd = nltk.ConditionalFreqDist(
... (genre, word)
... for genre in brown.categories()
... for word in brown.words(categories=genre))
>>> genres = ['news', 'religion', 'hobbies', 'science_fiction', 'romance', 'humor']
>>> modals = ['can', 'could', 'may', 'might', 'must', 'will']
>>> tabulate(cfd, modals, genres)
Category can could may might must will
news 93 86 66 38 50 389
religion 82 59 78 12 54 71
hobbies 268 58 131 22 83 264
science_fiction 16 49 4 12 8 16
romance 74 193 11 51 45 43
humor 16 30 8 8 9 13

Recall from the listing in Example 3-1 that we used a formatting string
 "%*s". This allows us to specify
 the width of a field using a variable.
>>> '%*s' % (15, "Monty Python")
' Monty Python'
We could use this to automatically customize the column to be
 just wide enough to accommodate all the words, using width = max(len(w) for w in words). Remember
 that the comma at the end of print statements adds an extra space, and
 this is sufficient to prevent the column headings from running into
 each other.

Writing Results to a File

We have seen how to read text from files (Accessing Text from the Web and from Disk). It is often useful to write output
 to files as well. The following code opens a file output.txt for writing, and saves the
 program output to the file.
>>> output_file = open('output.txt', 'w')
>>> words = set(nltk.corpus.genesis.words('english-kjv.txt'))
>>> for word in sorted(words):
... output_file.write(word + "\n")
Note
Your Turn: What is the
 effect of appending \n to each
 string before we write it to the file? If you’re using a Windows
 machine, you may want to use word +
 "\r\n" instead. What happens if we do
output_file.write(word)

When we write non-text data to a file, we must convert it to a
 string first. We can do this conversion using formatting strings, as
 we saw earlier. Let’s write the total number of words to our file,
 before closing it.
>>> len(words)
2789
>>> str(len(words))
'2789'
>>> output_file.write(str(len(words)) + "\n")
>>> output_file.close()
Caution!
You should avoid filenames that contain space characters, such
 as output
 file.txt, or that are identical except for case
 distinctions, e.g., Output.txt
 and output.TXT.

Text Wrapping

When the output of our program is text-like, instead of tabular,
 it will usually be necessary to wrap it so that it can be displayed
 conveniently. Consider the following output, which overflows its line,
 and which uses a complicated print
 statement:
>>> saying = ['After', 'all', 'is', 'said', 'and', 'done', ',',
... 'more', 'is', 'said', 'than', 'done', '.']
>>> for word in saying:
... print word, '(' + str(len(word)) + '),',
After (5), all (3), is (2), said (4), and (3), done (4), , (1), more (4), is (2), said (4),
We can take care of line wrapping with the help of Python’s
 textwrap module. For maximum
 clarity we will separate each step onto its own line:
>>> from textwrap import fill
>>> format = '%s (%d),'
>>> pieces = [format % (word, len(word)) for word in saying]
>>> output = ' '.join(pieces)
>>> wrapped = fill(output)
>>> print wrapped
After (5), all (3), is (2), said (4), and (3), done (4), , (1), more
(4), is (2), said (4), than (4), done (4), . (1),
Notice that there is a linebreak between more and its following number. If we wanted
 to avoid this, we could redefine the formatting string so that it
 contained no spaces (e.g., '%s_(%d),'), then instead of printing the
 value of wrapped, we could print
 wrapped.replace('_', '
 ').

Summary

	In this book we view a text as a list of words. A “raw text”
 is a potentially long string containing words and whitespace
 formatting, and is how we typically store and visualize a
 text.

	A string is specified in Python using single or double quotes:
 'Monty Python', "Monty Python".

	The characters of a string are accessed using indexes,
 counting from zero: 'Monty
 Python'[0] gives the value M. The length of a string is found using
 len().

	Substrings are accessed using slice notation: 'Monty Python'[1:5] gives the value
 onty. If the start index is
 omitted, the substring begins at the start of the string; if the end
 index is omitted, the slice continues to the end of the
 string.

	Strings can be split into lists: 'Monty Python'.split() gives ['Monty', 'Python']. Lists can be joined
 into strings: '/'.join(['Monty',
 'Python']) gives 'Monty/Python'.

	We can read text from a file f using text =
 open(f).read(). We can read text from a URL u using text =
 urlopen(u).read(). We can iterate over the lines of a text
 file using for line in
 open(f).

	Texts found on the Web may contain unwanted material (such as
 headers, footers, and markup), that need to be removed before we do
 any linguistic processing.

	Tokenization is the segmentation of a text into basic units—or
 tokens—such as words and punctuation. Tokenization based on
 whitespace is inadequate for many applications because it bundles
 punctuation together with words. NLTK provides an off-the-shelf
 tokenizer nltk.word_tokenize().

	Lemmatization is a process that maps the various forms of a
 word (such as appeared,
 appears) to the canonical or citation form of
 the word, also known as the lexeme or lemma (e.g.,
 appear).

	Regular expressions are a powerful and flexible method of
 specifying patterns. Once we have imported the re module, we can use re.findall() to find all substrings in a
 string that match a pattern.

	If a regular expression string includes a backslash, you
 should tell Python not to preprocess the string, by using a raw
 string with an r prefix: r'regexp'.

	When backslash is used before certain characters, e.g.,
 \n, this takes on a special
 meaning (newline character); however, when backslash is used before
 regular expression wildcards and operators, e.g., \., \|,
 \$, these characters
 lose their special meaning and are matched
 literally.

	A string formatting expression template % arg_tuple consists of a format
 string template that contains
 conversion specifiers like %-6s
 and %0.2d.

Further Reading

Extra materials for this chapter are posted at http://www.nltk.org/, including links to freely available
 resources on the Web. Remember to consult the Python reference materials
 at http://docs.python.org/. (For example, this
 documentation covers “universal newline support,” explaining how to work
 with the different newline conventions used by various operating
 systems.)
For more examples of processing words with NLTK, see the
 tokenization, stemming, and corpus HOWTOs at http://www.nltk.org/howto. Chapters 2 and 3 of (Jurafsky
 & Martin, 2008) contain more advanced material on regular
 expressions and morphology. For more extensive discussion of text
 processing with Python, see (Mertz, 2003). For information about
 normalizing non-standard words, see (Sproat et al., 2001).
There are many references for regular expressions, both practical
 and theoretical. For an introductory tutorial to using regular
 expressions in Python, see Kuchling’s Regular Expression
 HOWTO, http://www.amk.ca/python/howto/regex/. For a
 comprehensive and detailed manual in using regular expressions, covering
 their syntax in most major programming languages, including Python, see
 (Friedl, 2002). Other presentations include Section 2.1 of (Jurafsky
 & Martin, 2008), and Chapter 3 of (Mertz, 2003).
There are many online resources for Unicode. Useful discussions of
 Python’s facilities for handling Unicode are:
	PEP-100 http://www.python.org/dev/peps/pep-0100/

	Jason Orendorff, Unicode for Programmers,
 http://www.jorendorff.com/articles/unicode/

	A. M. Kuchling, Unicode HOWTO, http://www.amk.ca/python/howto/unicode

	Frederik Lundh, Python Unicode Objects,
 http://effbot.org/zone/unicode-objects.htm

	Joel Spolsky, The Absolute Minimum Every Software
 Developer Absolutely, Positively Must Know About Unicode and
 Character Sets (No Excuses!), http://www.joelonsoftware.com/articles/Unicode.html

The problem of tokenizing Chinese text is a major focus of SIGHAN,
 the ACL Special Interest Group on Chinese Language Processing (http://sighan.org/). Our method for segmenting English
 text follows (Brent & Cartwright, 1995); this work falls in the area
 of language acquisition (Niyogi, 2006).
Collocations are a special case of multiword expressions. A
 multiword expression is a small
 phrase whose meaning and other properties cannot be predicted from its
 words alone, e.g., part-of-speech (Baldwin &
 Kim, 2010).
Simulated annealing is a heuristic for finding a good
 approximation to the optimum value of a function in a large, discrete
 search space, based on an analogy with annealing in metallurgy. The
 technique is described in many Artificial Intelligence texts.
The approach to discovering hyponyms in text using search patterns
 like x and other ys is described by (Hearst,
 1992).

Exercises

	○ Define a string s =
 'colorless'. Write a Python statement that changes this to
 “colourless” using only the slice and concatenation
 operations.

	○ We can use the slice notation to remove morphological
 endings on words. For example, 'dogs'[:-1] removes the last character of
 dogs, leaving dog. Use slice notation to remove the
 affixes from these words (we’ve inserted a hyphen to indicate the
 affix boundary, but omit this from your strings): dish-es, run-ning, nation-ality, un-do, pre-heat.

	○ We saw how we can generate an IndexError by indexing beyond the end of a
 string. Is it possible to construct an index that goes too far to
 the left, before the start of the string?

	○ We can specify a “step” size for the slice. The following
 returns every second character within the slice: monty[6:11:2]. It also works in the
 reverse direction: monty[10:5:-2]. Try these for yourself,
 and then experiment with different step values.

	○ What happens if you ask the interpreter to evaluate monty[::-1]? Explain why this is a
 reasonable result.

	○ Describe the class of strings matched by the following
 regular expressions:
	[a-zA-Z]+

	[A-Z][a-z]*

	p[aeiou]{,2}t

	\d+(\.\d+)?

	([^aeiou][aeiou][^aeiou])*

	\w+|[^\w\s]+

Test your answers using nltk.re_show().

	○ Write regular expressions to match the following classes of
 strings:
	A single determiner (assume that a,
 an, and the are the
 only determiners)

	An arithmetic expression using integers, addition, and
 multiplication, such as 2*3+8

	○ Write a utility function that takes a URL as its argument,
 and returns the contents of the URL, with all HTML markup removed.
 Use urllib.urlopen to access the
 contents of the URL, e.g.:
raw_contents = urllib.urlopen('http://www.nltk.org/').read()

	○ Save some text into a file corpus.txt. Define a function load(f) that reads from the file named in its sole argument,
 and returns a string containing the text of the file.
	Use nltk.regexp_tokenize() to create a
 tokenizer that tokenizes the various kinds of punctuation in
 this text. Use one multiline regular expression inline comments,
 using the verbose flag (?x).

	Use nltk.regexp_tokenize() to create a
 tokenizer that tokenizes the following kinds of expressions:
 monetary amounts; dates; names of people and organizations.

	○ Rewrite the following loop as a list comprehension:
>>> sent = ['The', 'dog', 'gave', 'John', 'the', 'newspaper']
>>> result = []
>>> for word in sent:
... word_len = (word, len(word))
... result.append(word_len)
>>> result
[('The', 3), ('dog', 3), ('gave', 4), ('John', 4), ('the', 3), ('newspaper', 9)]

	○ Define a string raw
 containing a sentence of your own choosing. Now, split raw on some character other than space,
 such as 's'.

	○ Write a for loop to print
 out the characters of a string, one per line.

	○ What is the difference between calling split on a string with no argument and one
 with ' ' as the argument, e.g.,
 sent.split() versus sent.split(' ')? What happens when the
 string being split contains tab characters, consecutive space
 characters, or a sequence of tabs and spaces? (In IDLE you will need
 to use '\t' to enter a tab
 character.)

	○ Create a variable words
 containing a list of words. Experiment with words.sort() and sorted(words). What is the
 difference?

	○ Explore the difference between strings and integers by
 typing the following at a Python prompt: "3" * 7 and 3 *
 7. Try converting between strings and integers using
 int("3") and str(3).

	○ Earlier, we asked you to use a text editor to create a file
 called test.py, containing the
 single line monty = 'Monty
 Python'. If you haven’t already done this (or can’t find
 the file), go ahead and do it now. Next, start up a new session with
 the Python interpreter, and enter the expression monty at the prompt. You will get an error
 from the interpreter. Now, try the following (note that you have to
 leave off the .py part of the
 filename):
>>> from test import msg
>>> msg
This time, Python should return with a value. You can also try
 import test, in which case Python
 should be able to evaluate the expression test.monty at the prompt.

	○ What happens when the formatting strings %6s and %-6s are used to display strings that are
 longer than six characters?

	[image:] Read in some text from a corpus, tokenize it, and print the
 list of all wh-word types that occur.
 (wh-words in English are used in questions,
 relative clauses, and exclamations: who,
 which, what, and so on.)
 Print them in order. Are any words duplicated in this list, because
 of the presence of case distinctions or punctuation?

	[image:] Create a file consisting of words and (made up) frequencies,
 where each line consists of a word, the space character, and a
 positive integer, e.g., fuzzy 53.
 Read the file into a Python list using open(filename).readlines(). Next, break each line into its two fields using
 split(), and convert the number
 into an integer using int(). The
 result should be a list of the form: [['fuzzy', 53], ...].

	[image:] Write code to access a favorite web page and extract some
 text from it. For example, access a weather site and extract the
 forecast top temperature for your town or city today.

	[image:] Write a function unknown() that takes a URL as its
 argument, and returns a list of unknown words that occur on that web
 page. In order to do this, extract all substrings consisting of
 lowercase letters (using re.findall()) and remove any items from
 this set that occur in the Words Corpus (nltk.corpus.words). Try to categorize
 these words manually and discuss your findings.

	[image:] Examine the results of processing the URL http://news.bbc.co.uk/ using the regular expressions
 suggested above. You will see that there is still a fair amount of
 non-textual data there, particularly JavaScript commands. You may
 also find that sentence breaks have not been properly preserved.
 Define further regular expressions that improve the extraction of
 text from this web page.

	[image:] Are you able to write a regular expression to tokenize text
 in such a way that the word don’t is tokenized
 into do and n’t? Explain
 why this regular expression won’t work: «n't|\w+».

	[image:] Try to write code to convert text into
 hAck3r, using regular expressions and
 substitution, where e → 3, i →
 1, o → 0,
 l → |, s →
 5, . → 5w33t!, ate → 8. Normalize the text to lowercase before
 converting it. Add more substitutions of your own. Now try to map
 s to two different values:
 $ for word-initial s, and 5 for word-internal s.

	[image:] Pig Latin is a simple transformation of
 English text. Each word of the text is converted as follows: move
 any consonant (or consonant cluster) that appears at the start of
 the word to the end, then append ay, e.g.,
 string → ingstray,
 idle → idleay (see http://en.wikipedia.org/wiki/Pig_Latin).
	Write a function to convert a word to Pig Latin.

	Write code that converts text, instead of individual
 words.

	Extend it further to preserve capitalization, to keep
 qu together (so that quiet becomes ietquay, for example), and to detect
 when y is used as a consonant
 (e.g., yellow) versus a vowel
 (e.g., style).

	[image:] Download some text from a language that has vowel harmony
 (e.g., Hungarian), extract the vowel sequences of words, and create
 a vowel bigram table.

	[image:] Python’s random module
 includes a function choice()
 which randomly chooses an item from a sequence; e.g., choice("aehh ") will produce one of four
 possible characters, with the letter h being twice as frequent as the others.
 Write a generator expression that produces a sequence of 500
 randomly chosen letters drawn from the string "aehh ", and put this expression inside a
 call to the ''.join() function,
 to concatenate them into one long string. You should get a result
 that looks like uncontrolled sneezing or maniacal laughter: he haha ee heheeh eha. Use split() and join() again to normalize the whitespace
 in this string.

	[image:] Consider the numeric expressions in the following sentence
 from the MedLine Corpus: The corresponding free cortisol
 fractions in these sera were 4.53 +/- 0.15% and 8.16 +/- 0.23%,
 respectively. Should we say that the numeric expression
 4.53 +/- 0.15% is three words? Or should we say
 that it’s a single compound word? Or should we say that it is
 actually nine words, since it’s read “four
 point five three, plus or minus fifteen percent”? Or should we say
 that it’s not a “real” word at all, since it wouldn’t appear in any
 dictionary? Discuss these different possibilities. Can you think of
 application domains that motivate at least two of these
 answers?

	[image:] Readability measures are used to score the reading
 difficulty of a text, for the purposes of selecting texts of
 appropriate difficulty for language learners. Let us define
 μw to be the average number of letters per
 word, and μs to be the average number of
 words per sentence, in a given text. The Automated Readability Index
 (ARI) of the text is defined to be: 4.71
 μw + 0.5
 μs - 21.43. Compute the
 ARI score for various sections of the Brown Corpus, including
 section f (popular lore) and
 j (learned). Make use of the fact
 that nltk.corpus.brown.words()
 produces a sequence of words, whereas nltk.corpus.brown.sents() produces a
 sequence of sentences.

	[image:] Use the Porter Stemmer to normalize some tokenized text,
 calling the stemmer on each word. Do the same thing with the
 Lancaster Stemmer, and see if you observe any differences.

	[image:] Define the variable saying to contain the list ['After',
 'all',
 'is', 'said',
 'and',
 'done',
 ',', 'more',
 'is',
 'said',
 'than',
 'done',
 '.']. Process the list using a for loop, and store the result in a new
 list lengths. Hint: begin by
 assigning the empty list to lengths, using lengths = []. Then each time through the
 loop, use append() to add another length value to the list.

	[image:] Define a variable silly
 to contain the string: 'newly formed bland
 ideas are inexpressible in an infuriating way'. (This
 happens to be the legitimate interpretation that bilingual
 English-Spanish speakers can assign to Chomsky’s famous nonsense
 phrase colorless green ideas sleep furiously,
 according to Wikipedia). Now write code to perform the following
 tasks:
	Split silly into a list
 of strings, one per word, using Python’s split() operation, and save this to a
 variable called bland.

	Extract the second letter of each word in silly and join them into a string, to
 get 'eoldrnnnna'.

	Combine the words in bland back into a single string, using
 join(). Make sure the words
 in the resulting string are separated with whitespace.

	Print the words of silly in alphabetical order, one per
 line.

	[image:] The index() function can be used to look up items in sequences.
 For example, 'inexpressible'.index('e') tells us the
 index of the first position of the letter e.
	What happens when you look up a substring, e.g., 'inexpressible'.index('re')?

	Define a variable words
 containing a list of words. Now use words.index() to look up the position
 of an individual word.

	Define a variable silly
 as in Exercise 32. Use the index() function in combination with list slicing to
 build a list phrase
 consisting of all the words up to (but not including) in in silly.

	[image:] Write code to convert nationality adjectives such as
 Canadian and Australian to
 their corresponding nouns Canada and
 Australia (see http://en.wikipedia.org/wiki/List_of_adjectival_forms_of_place_names).

	[image:] Read the LanguageLog post on phrases of the form
 as best as p can and as best p
 can, where p is a pronoun.
 Investigate this phenomenon with the help of a corpus and the
 findall() method for searching tokenized text described in
 Useful Applications of Regular Expressions.
 The post is at http://itre.cis.upenn.edu/~myl/languagelog/archives/002733.html.

	[image:] Study the lolcat version of the book of
 Genesis, accessible as nltk.corpus.genesis.words('lolcat.txt'),
 and the rules for converting text into lolspeak
 at http://www.lolcatbible.com/index.php?title=How_to_speak_lolcat.
 Define regular expressions to convert English words into
 corresponding lolspeak words.

	[image:] Read about the re.sub()
 function for string substitution using regular expressions, using
 help(re.sub) and by consulting
 the further readings for this chapter. Use re.sub in writing code to remove HTML tags
 from an HTML file, and to normalize whitespace.

	● An interesting challenge for tokenization is words that have
 been split across a linebreak. E.g., if
 long-term is split, then we have the string
 long-\nterm.
	Write a regular expression that identifies words that are
 hyphenated at a line-break. The expression will need to include
 the \n character.

	Use re.sub() to remove
 the \n character from these
 words.

	How might you identify words that should not remain
 hyphenated once the newline is removed, e.g., 'encyclo-\npedia'?

	● Read the Wikipedia entry on Soundex.
 Implement this algorithm in Python.

	● Obtain raw texts from two or more genres and compute their
 respective reading difficulty scores as in the earlier exercise on
 reading difficulty. E.g., compare ABC Rural News and ABC Science
 News (nltk.corpus.abc). Use Punkt
 to perform sentence segmentation.

	● Rewrite the following nested loop as a nested list
 comprehension:
>>> words = ['attribution', 'confabulation', 'elocution',
... 'sequoia', 'tenacious', 'unidirectional']
>>> vsequences = set()
>>> for word in words:
... vowels = []
... for char in word:
... if char in 'aeiou':
... vowels.append(char)
... vsequences.add(''.join(vowels))
>>> sorted(vsequences)
['aiuio', 'eaiou', 'eouio', 'euoia', 'oauaio', 'uiieioa']

	● Use WordNet to create a semantic index for a text
 collection. Extend the concordance search program in Example 3-1, indexing each word using the
 offset of its first synset, e.g., wn.synsets('dog')[0].offset (and
 optionally the offset of some of its ancestors in the hypernym
 hierarchy).

	● With the help of a multilingual corpus such as the Universal
 Declaration of Human Rights Corpus (nltk.corpus.udhr), along with NLTK’s
 frequency distribution and rank correlation functionality (nltk.FreqDist, nltk.spearman_correlation), develop a
 system that guesses the language of a previously unseen text. For
 simplicity, work with a single character encoding and just a few
 languages.

	● Write a program that processes a text and discovers cases
 where a word has been used with a novel sense. For each word,
 compute the WordNet similarity between all synsets of the word and
 all synsets of the words in its context. (Note that this is a crude
 approach; doing it well is a difficult, open research
 problem.)

	● Read the article on normalization of non-standard words
 (Sproat et al., 2001), and implement a similar system for text
 normalization.

Chapter 4. Writing Structured Programs

By now you will have a sense of the capabilities of the Python
 programming language for processing natural language. However, if you’re
 new to Python or to programming, you may still be wrestling with Python
 and not feel like you are in full control yet. In this chapter we’ll
 address the following questions:
	How can you write well-structured, readable programs that you
 and others will be able to reuse easily?

	How do the fundamental building blocks work, such as loops,
 functions, and assignment?

	What are some of the pitfalls with Python programming, and how
 can you avoid them?

Along the way, you will consolidate your knowledge of fundamental
 programming constructs, learn more about using features of the Python
 language in a natural and concise way, and learn some useful techniques in
 visualizing natural language data. As before, this chapter contains many
 examples and exercises (and as before, some exercises introduce new
 material). Readers new to programming should work through them carefully
 and consult other introductions to programming if necessary; experienced
 programmers can quickly skim this chapter.
In the other chapters of this book, we have organized the
 programming concepts as dictated by the needs of NLP. Here we revert to a
 more conventional approach, where the material is more closely tied to the
 structure of the programming language. There’s not room for a complete
 presentation of the language, so we’ll just focus on the language
 constructs and idioms that are most important for NLP.
Back to the Basics

Assignment

Assignment would seem to be the most elementary programming
 concept, not deserving a separate discussion. However, there are some
 surprising subtleties here. Consider the following code
 fragment:
>>> foo = 'Monty'
>>> bar = foo [image: 1]
>>> foo = 'Python' [image: 2]
>>> bar
'Monty'
This behaves exactly as expected. When we write bar = foo in the code [image: 1], the value of foo (the string 'Monty') is assigned to bar. That is, bar is a copy of foo, so when we overwrite foo with a new string 'Python' on line [image: 2], the value of bar is not affected.
However, assignment statements do not always involve making
 copies in this way. Assignment always copies the value of an
 expression, but a value is not always what you might expect it to be.
 In particular, the “value” of a structured object such as a list is
 actually just a reference to the object. In the
 following example, [image: 1] assigns the
 reference of foo to the new
 variable bar. Now when we modify
 something inside foo on line [image: 2], we can see that the contents of bar have also been changed.
>>> foo = ['Monty', 'Python']
>>> bar = foo [image: 1]
>>> foo[1] = 'Bodkin' [image: 2]
>>> bar
['Monty', 'Bodkin']
The line bar = foo [image: 1] does not copy the contents of the
 variable, only its “object reference.” To understand what is going on
 here, we need to know how lists are stored in the computer’s memory.
 In Figure 4-1, we see that a list foo is a reference to an object stored at
 location 3133 (which is itself a series of pointers to other locations
 holding strings). When we assign bar =
 foo, it is just the object reference 3133 that gets copied.
 This behavior extends to other aspects of the language, such as
 parameter passing (Functions: The Foundation of Structured Programming).
[image: List assignment and computer memory: Two list objects foo and bar reference the same location in the computer’s memory; updating foo will also modify bar, and vice versa.]

Figure 4-1. List assignment and computer memory: Two list objects foo and
 bar
 reference the same location in the computer’s memory; updating
 foo
 will also modify bar, and vice versa.

Let’s experiment some more, by creating a variable empty holding the empty list, then using it
 three times on the next line.
>>> empty = []
>>> nested = [empty, empty, empty]
>>> nested
[[], [], []]
>>> nested[1].append('Python')
>>> nested
[['Python'], ['Python'], ['Python']]
Observe that changing one of the items inside our nested list of
 lists changed them all. This is because each of the three elements is
 actually just a reference to one and the same list in memory.
Note
Your Turn: Use
 multiplication to create a list of lists: nested = [[]] * 3. Now modify one of the
 elements of the list, and observe that all the elements are changed.
 Use Python’s id() function to
 find out the numerical identifier for any object, and verify that
 id(nested[0]), id(nested[1]), and
 id(nested[2]) are all the
 same.

Now, notice that when we assign a new value to one of the
 elements of the list, it does not propagate to the others:
>>> nested = [[]] * 3
>>> nested[1].append('Python')
>>> nested[1] = ['Monty']
>>> nested
[['Python'], ['Monty'], ['Python']]
We began with a list containing three references to a single
 empty list object. Then we modified that object by appending 'Python' to it, resulting in a list
 containing three references to a single list object ['Python']. Next, we
 overwrote one of those references with a
 reference to a new object ['Monty']. This last step modified one of
 the three object references inside the nested list. However, the
 ['Python'] object wasn’t changed,
 and is still referenced from two places in our nested list of lists.
 It is crucial to appreciate this difference between modifying an
 object via an object reference and overwriting an object
 reference.
Note
Important: To copy the
 items from a list foo to a new
 list bar, you can write bar = foo[:]. This copies the object
 references inside the list. To copy a structure without copying any
 object references, use copy.deepcopy().

Equality

Python provides two ways to check that a pair of items are the
 same. The is operator tests for
 object identity. We can use it to verify our earlier observations
 about objects. First, we create a list containing several copies of
 the same object, and demonstrate that they are not only identical
 according to ==, but also that they
 are one and the same object:
>>> size = 5
>>> python = ['Python']
>>> snake_nest = [python] * size
>>> snake_nest[0] == snake_nest[1] == snake_nest[2] == snake_nest[3] == snake_nest[4]
True
>>> snake_nest[0] is snake_nest[1] is snake_nest[2] is snake_nest[3] is snake_nest[4]
True
Now let’s put a new python in this nest. We can easily show that
 the objects are not all identical:
>>> import random
>>> position = random.choice(range(size))
>>> snake_nest[position] = ['Python']
>>> snake_nest
[['Python'], ['Python'], ['Python'], ['Python'], ['Python']]
>>> snake_nest[0] == snake_nest[1] == snake_nest[2] == snake_nest[3] == snake_nest[4]
True
>>> snake_nest[0] is snake_nest[1] is snake_nest[2] is snake_nest[3] is snake_nest[4]
False
You can do several pairwise tests to discover which position
 contains the interloper, but the id() function makes detection easier:
>>> [id(snake) for snake in snake_nest]
[513528, 533168, 513528, 513528, 513528]
This reveals that the second item of the list has a distinct
 identifier. If you try running this code snippet yourself, expect to
 see different numbers in the resulting list, and don’t be surprised if
 the interloper is in a different position.
Having two kinds of equality might seem strange. However, it’s
 really just the type-token distinction, familiar from natural
 language, here showing up in a programming language.

Conditionals

In the condition part of an if statement, a non-empty string or list is
 evaluated as true, while an empty string or list evaluates as
 false.
>>> mixed = ['cat', '', ['dog'], []]
>>> for element in mixed:
... if element:
... print element
...
cat
['dog']
That is, we don’t need to say if len(element) > 0: in the
 condition.
What’s the difference between using if...elif as opposed to using a couple of
 if statements in a row? Well,
 consider the following situation:
>>> animals = ['cat', 'dog']
>>> if 'cat' in animals:
... print 1
... elif 'dog' in animals:
... print 2
...
1
Since the if clause of the
 statement is satisfied, Python never tries to evaluate the elif clause, so we never get to print out
 2. By contrast, if we replaced the
 elif by an if, then we would print out both 1 and 2.
 So an elif clause potentially gives
 us more information than a bare if
 clause; when it evaluates to true, it tells us not only that the
 condition is satisfied, but also that the condition of the main
 if clause was
 not satisfied.
The functions all() and
 any() can be applied to a list (or
 other sequence) to check whether all or any items meet some
 condition:
>>> sent = ['No', 'good', 'fish', 'goes', 'anywhere', 'without', 'a', 'porpoise', '.']
>>> all(len(w) > 4 for w in sent)
False
>>> any(len(w) > 4 for w in sent)
True

Sequences

So far, we have seen two kinds of sequence object: strings and
 lists. Another kind of sequence is called a tuple. Tuples are formed with the comma
 operator [image: 1], and typically enclosed
 using parentheses. We’ve actually seen them in the previous chapters,
 and sometimes referred to them as “pairs,” since there were always two
 members. However, tuples can have any number of members. Like lists and
 strings, tuples can be indexed [image: 2] and
 sliced [image: 3], and have a length [image: 4].
>>> t = 'walk', 'fem', 3 [image: 1]
>>> t
('walk', 'fem', 3)
>>> t[0] [image: 2]
'walk'
>>> t[1:] [image: 3]
('fem', 3)
>>> len(t) [image: 4]
Caution!
Tuples are constructed using the comma operator. Parentheses are
 a more general feature of Python syntax, designed for grouping. A
 tuple containing the single element 'snark' is defined by adding a trailing
 comma, like this: 'snark',. The
 empty tuple is a special case, and is defined using empty parentheses
 ().

Let’s compare strings, lists, and tuples directly, and do the
 indexing, slice, and length operation on each type:
>>> raw = 'I turned off the spectroroute'
>>> text = ['I', 'turned', 'off', 'the', 'spectroroute']
>>> pair = (6, 'turned')
>>> raw[2], text[3], pair[1]
('t', 'the', 'turned')
>>> raw[-3:], text[-3:], pair[-3:]
('ute', ['off', 'the', 'spectroroute'], (6, 'turned'))
>>> len(raw), len(text), len(pair)
(29, 5, 2)
Notice in this code sample that we computed multiple values on a
 single line, separated by commas. These comma-separated expressions are
 actually just tuples—Python allows us to omit the parentheses around
 tuples if there is no ambiguity. When we print a tuple, the parentheses
 are always displayed. By using tuples in this way, we are implicitly
 aggregating items together.
Note
Your Turn: Define a set,
 e.g., using set(text), and see what
 happens when you convert it to a list or iterate over its
 members.

Operating on Sequence Types

We can iterate over the items in a sequence s in a variety of useful ways, as shown in
 Table 4-1.
Table 4-1. Various ways to iterate over sequences
	Python expression
	Comment

	for item in
 s
	Iterate over the items of s

	for item in
 sorted(s)
	Iterate over the items of s in order

	for item in
 set(s)
	Iterate over unique elements of s

	for item in
 reversed(s)
	Iterate over elements of s in reverse

	for item in
 set(s).difference(t)
	Iterate over elements of s not in t

	for item in
 random.shuffle(s)
	Iterate over elements of s in random order

The sequence functions illustrated in Table 4-1 can be combined in various ways; for
 example, to get unique elements of s sorted in reverse, use reversed(sorted(set(s))).
We can convert between these sequence types. For example,
 tuple(s) converts any kind of
 sequence into a tuple, and list(s)
 converts any kind of sequence into a list. We can convert a list of
 strings to a single string using the join() function, e.g., ':'.join(words).
Some other objects, such as a FreqDist, can be converted into a sequence (using list()) and support iteration:
>>> raw = 'Red lorry, yellow lorry, red lorry, yellow lorry.'
>>> text = nltk.word_tokenize(raw)
>>> fdist = nltk.FreqDist(text)
>>> list(fdist)
['lorry', ',', 'yellow', '.', 'Red', 'red']
>>> for key in fdist:
... print fdist[key],
...
4 3 2 1 1 1
In the next example, we use tuples to re-arrange the contents of
 our list. (We can omit the parentheses because the comma has higher
 precedence than assignment.)
>>> words = ['I', 'turned', 'off', 'the', 'spectroroute']
>>> words[2], words[3], words[4] = words[3], words[4], words[2]
>>> words
['I', 'turned', 'the', 'spectroroute', 'off']
This is an idiomatic and readable way to move items inside a
 list. It is equivalent to the following traditional way of doing such
 tasks that does not use tuples (notice that this method needs a
 temporary variable tmp).
>>> tmp = words[2]
>>> words[2] = words[3]
>>> words[3] = words[4]
>>> words[4] = tmp
As we have seen, Python has sequence functions such as sorted() and reversed() that rearrange the items of a
 sequence. There are also functions that modify the
 structure of a sequence, which can be handy for
 language processing. Thus, zip()
 takes the items of two or more sequences and “zips” them together into
 a single list of pairs. Given a sequence s, enumerate(s) returns pairs consisting of an
 index and the item at that index.
>>> words = ['I', 'turned', 'off', 'the', 'spectroroute']
>>> tags = ['noun', 'verb', 'prep', 'det', 'noun']
>>> zip(words, tags)
[('I', 'noun'), ('turned', 'verb'), ('off', 'prep'),
('the', 'det'), ('spectroroute', 'noun')]
>>> list(enumerate(words))
[(0, 'I'), (1, 'turned'), (2, 'off'), (3, 'the'), (4, 'spectroroute')]
For some NLP tasks it is necessary to cut up a sequence into two
 or more parts. For instance, we might want to “train” a system on 90%
 of the data and test it on the remaining 10%. To do this we decide the
 location where we want to cut the data [image: 1], then cut the sequence at that location
 [image: 2].
>>> text = nltk.corpus.nps_chat.words()
>>> cut = int(0.9 * len(text)) [image: 1]
>>> training_data, test_data = text[:cut], text[cut:] [image: 2]
>>> text == training_data + test_data [image: 3]
True
>>> len(training_data) / len(test_data) [image: 4]
9
We can verify that none of the original data is lost during this
 process, nor is it duplicated [image: 3]. We
 can also verify that the ratio of the sizes of the two pieces is what
 we intended [image: 4].

Combining Different Sequence Types

Let’s combine our knowledge of these three sequence types,
 together with list comprehensions, to perform the task of sorting the
 words in a string by their length.
>>> words = 'I turned off the spectroroute'.split() [image: 1]
>>> wordlens = [(len(word), word) for word in words] [image: 2]
>>> wordlens.sort() [image: 3]
>>> ' '.join(w for (_, w) in wordlens) [image: 4]
'I off the turned spectroroute'
Each of the preceding lines of code contains a significant
 feature. A simple string is actually an object with methods defined on
 it, such as split() [image: 1]. We use a list comprehension to build a
 list of tuples [image: 2], where each
 tuple consists of a number (the word length) and the word, e.g.,
 (3, 'the'). We use the sort() method [image: 3] to sort the
 list in place. Finally, we discard the length information and join the
 words back into a single string [image: 4].
 (The underscore [image: 4] is just a
 regular Python variable, but we can use underscore by convention to
 indicate that we will not use its value.)
We began by talking about the commonalities in these sequence
 types, but the previous code illustrates important differences in
 their roles. First, strings appear at the beginning and the end: this
 is typical in the context where our program is reading in some text
 and producing output for us to read. Lists and tuples are used in the
 middle, but for different purposes. A list is typically a sequence of
 objects all having the same type, of
 arbitrary length. We often use lists to hold
 sequences of words. In contrast, a tuple is typically a collection of
 objects of different types, of fixed
 length. We often use a tuple to hold a record, a collection of different fields relating to some entity. This
 distinction between the use of lists and tuples takes some getting
 used to, so here is another example:
>>> lexicon = [
... ('the', 'det', ['Di:', 'D@']),
... ('off', 'prep', ['Qf', 'O:f'])
...]
Here, a lexicon is represented as a list because it is a
 collection of objects of a single type—lexical entries—of no
 predetermined length. An individual entry is represented as a tuple
 because it is a collection of objects with different interpretations,
 such as the orthographic form, the part-of-speech, and the
 pronunciations (represented in the SAMPA computer-readable phonetic
 alphabet; see http://www.phon.ucl.ac.uk/home/sampa/). Note that these
 pronunciations are stored using a list. (Why?)
Note
A good way to decide when to use tuples versus lists is to ask
 whether the interpretation of an item depends on its position. For
 example, a tagged token combines two strings having different
 interpretations, and we choose to interpret the first item as the
 token and the second item as the tag. Thus we use tuples like this:
 ('grail', 'noun'). A tuple of the
 form ('noun', 'grail') would be
 non-sensical since it would be a word noun tagged grail. In contrast, the elements of a text
 are all tokens, and position is not significant. Thus we use lists
 like this: ['venetian', 'blind'].
 A list of the form ['blind',
 'venetian'] would be equally valid. The linguistic meaning
 of the words might be different, but the interpretation of list
 items as tokens is unchanged.

The distinction between lists and tuples has been described in
 terms of usage. However, there is a more fundamental difference: in
 Python, lists are mutable, whereas
 tuples are immutable. In other
 words, lists can be modified, whereas tuples cannot. Here are some of
 the operations on lists that do in-place modification of the
 list:
>>> lexicon.sort()
>>> lexicon[1] = ('turned', 'VBD', ['t3:nd', 't3`nd'])
>>> del lexicon[0]
Note
Your Turn: Convert lexicon to a tuple, using lexicon =
 tuple(lexicon), then try each of the
 operations, to confirm that none of them is permitted on
 tuples.

Generator Expressions

We’ve been making heavy use of list comprehensions, for compact
 and readable processing of texts. Here’s an example where we tokenize
 and normalize a text:
>>> text = '''"When I use a word," Humpty Dumpty said in rather a scornful tone,
... "it means just what I choose it to mean - neither more nor less."'''
>>> [w.lower() for w in nltk.word_tokenize(text)]
['"', 'when', 'i', 'use', 'a', 'word', ',', '"', 'humpty', 'dumpty', 'said', ...]
Suppose we now want to process these words further. We can do
 this by inserting the preceding expression inside a call to some other
 function [image: 1], but Python allows
 us to omit the brackets [image: 2].
>>> max([w.lower() for w in nltk.word_tokenize(text)]) [image: 1]
'word'
>>> max(w.lower() for w in nltk.word_tokenize(text)) [image: 2]
'word'
The second line uses a generator
 expression. This is more than a notational convenience: in
 many language processing situations, generator expressions will be
 more efficient. In [image: 1], storage
 for the list object must be allocated before the value of max() is computed. If the text is very
 large, this could be slow. In [image: 2],
 the data is streamed to the calling function. Since the calling
 function simply has to find the maximum value—the word that comes
 latest in lexicographic sort order—it can process the stream of data
 without having to store anything more than the maximum value seen so
 far.

Questions of Style

Programming is as much an art as a science. The undisputed “bible”
 of programming, a 2,500 page multivolume work by Donald Knuth, is called
 The Art of Computer Programming. Many books have
 been written on Literate Programming, recognizing
 that humans, not just computers, must read and understand programs. Here
 we pick up on some issues of programming style that have important
 ramifications for the readability of your code, including code layout,
 procedural versus declarative style, and the use of loop
 variables.
Python Coding Style

When writing programs you make many subtle choices about names,
 spacing, comments, and so on. When you look at code written by other
 people, needless differences in style make it harder to interpret the
 code. Therefore, the designers of the Python language have published a
 style guide for Python code, available at http://www.python.org/dev/peps/pep-0008/. The
 underlying value presented in the style guide is
 consistency, for the purpose of maximizing the
 readability of code. We briefly review some of its key recommendations
 here, and refer readers to the full guide for detailed discussion with
 examples.
Code layout should use four spaces per indentation level. You
 should make sure that when you write Python code in a file, you avoid
 tabs for indentation, since these can be misinterpreted by different
 text editors and the indentation can be messed up. Lines should be
 less than 80 characters long; if necessary, you can break a line
 inside parentheses, brackets, or braces, because Python is able to
 detect that the line continues over to the next line, as in the
 following examples:
>>> cv_word_pairs = [(cv, w) for w in rotokas_words
... for cv in re.findall('[ptksvr][aeiou]', w)]
>>> cfd = nltk.ConditionalFreqDist(
... (genre, word)
... for genre in brown.categories()
... for word in brown.words(categories=genre))
>>> ha_words = ['aaahhhh', 'ah', 'ahah', 'ahahah', 'ahh', 'ahhahahaha',
... 'ahhh', 'ahhhh', 'ahhhhhh', 'ahhhhhhhhhhhhhh', 'ha',
... 'haaa', 'hah', 'haha', 'hahaaa', 'hahah', 'hahaha']
If you need to break a line outside parentheses, brackets, or
 braces, you can often add extra parentheses, and you can always add a
 backslash at the end of the line that is broken:
>>> if (len(syllables) > 4 and len(syllables[2]) == 3 and
... syllables[2][2] in [aeiou] and syllables[2][3] == syllables[1][3]):
... process(syllables)
>>> if len(syllables) > 4 and len(syllables[2]) == 3 and \
... syllables[2][2] in [aeiou] and syllables[2][3] == syllables[1][3]:
... process(syllables)
Note
Typing spaces instead of tabs soon becomes a chore. Many
 programming editors have built-in support for Python, and can
 automatically indent code and highlight any syntax errors (including
 indentation errors). For a list of Python-aware editors, please see
 http://wiki.python.org/moin/PythonEditors.

Procedural Versus Declarative Style

We have just seen how the same task can be performed in
 different ways, with implications for efficiency. Another factor
 influencing program development is programming
 style. Consider the following program to compute the
 average length of words in the Brown Corpus:
>>> tokens = nltk.corpus.brown.words(categories='news')
>>> count = 0
>>> total = 0
>>> for token in tokens:
... count += 1
... total += len(token)
>>> print total / count
4.2765382469
In this program we use the variable count to keep track of the number of tokens seen, and
 total to store the combined length
 of all words. This is a low-level style, not far removed from machine
 code, the primitive operations performed by the computer’s CPU. The
 two variables are just like a CPU’s registers, accumulating values at
 many intermediate stages, values that are meaningless until the end.
 We say that this program is written in a
 procedural style, dictating the machine
 operations step by step. Now consider the following program that
 computes the same thing:
>>> total = sum(len(t) for t in tokens)
>>> print total / len(tokens)
4.2765382469
The first line uses a generator expression to sum the token
 lengths, while the second line computes the average as before. Each
 line of code performs a complete, meaningful task, which can be
 understood in terms of high-level properties like: “total is the sum of the lengths of the
 tokens.” Implementation details are left to the Python interpreter.
 The second program uses a built-in function, and constitutes
 programming at a more abstract level; the resulting code is more
 declarative. Let’s look at an extreme example:
>>> word_list = []
>>> len_word_list = len(word_list)
>>> i = 0
>>> while i < len(tokens):
... j = 0
... while j < len_word_list and word_list[j] < tokens[i]:
... j += 1
... if j == 0 or tokens[i] != word_list[j]:
... word_list.insert(j, tokens[i])
... len_word_list += 1
... i += 1
The equivalent declarative version uses familiar built-in
 functions, and its purpose is instantly recognizable:
>>> word_list = sorted(set(tokens))
Another case where a loop counter seems to be necessary is for
 printing a counter with each line of output. Instead, we can use
 enumerate(), which processes a
 sequence s and produces a tuple of
 the form (i, s[i]) for each item in
 s, starting with (0, s[0]). Here we enumerate the keys of the
 frequency distribution, and capture the integer-string pair in the
 variables rank and word. We print rank+1 so that the counting appears to start
 from 1, as required when producing
 a list of ranked items.
>>> fd = nltk.FreqDist(nltk.corpus.brown.words())
>>> cumulative = 0.0
>>> for rank, word in enumerate(fd):
... cumulative += fd[word] * 100 / fd.N()
... print "%3d %6.2f%% %s" % (rank+1, cumulative, word)
... if cumulative > 25:
... break
...
 1 5.40% the
 2 10.42% ,
 3 14.67% .
 4 17.78% of
 5 20.19% and
 6 22.40% to
 7 24.29% a
 8 25.97% in
It’s sometimes tempting to use loop variables to store a maximum
 or minimum value seen so far. Let’s use this method to find the
 longest word in a text.
>>> text = nltk.corpus.gutenberg.words('milton-paradise.txt')
>>> longest = ''
>>> for word in text:
... if len(word) > len(longest):
... longest = word
>>> longest
'unextinguishable'
However, a more transparent solution uses two list
 comprehensions, both having forms that should be familiar by
 now:
>>> maxlen = max(len(word) for word in text)
>>> [word for word in text if len(word) == maxlen]
['unextinguishable', 'transubstantiate', 'inextinguishable', 'incomprehensible']
Note that our first solution found the first word having the
 longest length, while the second solution found
 all of the longest words (which is usually what
 we would want). Although there’s a theoretical efficiency difference
 between the two solutions, the main overhead is reading the data into
 main memory; once it’s there, a second pass through the data is
 effectively instantaneous. We also need to balance our concerns about
 program efficiency with programmer efficiency. A fast but cryptic
 solution will be harder to understand and maintain.

Some Legitimate Uses for Counters

There are cases where we still want to use loop variables in a
 list comprehension. For example, we need to use a loop variable to
 extract successive overlapping n-grams from a list:
>>> sent = ['The', 'dog', 'gave', 'John', 'the', 'newspaper']
>>> n = 3
>>> [sent[i:i+n] for i in range(len(sent)-n+1)]
[['The', 'dog', 'gave'],
 ['dog', 'gave', 'John'],
 ['gave', 'John', 'the'],
 ['John', 'the', 'newspaper']]
It is quite tricky to get the range of the loop variable right.
 Since this is a common operation in NLP, NLTK supports it with
 functions bigrams(text) and trigrams(text), and a general-purpose ngrams(text, n).
Here’s an example of how we can use loop variables in building
 multidimensional structures. For example, to build an array with
 m rows and n columns, where
 each cell is a set, we could use a nested list comprehension:
>>> m, n = 3, 7
>>> array = [[set() for i in range(n)] for j in range(m)]
>>> array[2][5].add('Alice')
>>> pprint.pprint(array)
[[set([]), set([]), set([]), set([]), set([]), set([]), set([])],
 [set([]), set([]), set([]), set([]), set([]), set([]), set([])],
 [set([]), set([]), set([]), set([]), set([]), set(['Alice']), set([])]]
Observe that the loop variables i and j
 are not used anywhere in the resulting object; they are just needed
 for a syntactically correct for
 statement. As another example of this usage, observe that the
 expression ['very' for i in
 range(3)] produces a list containing three instances of
 'very', with no integers in
 sight.
Note that it would be incorrect to do this work using
 multiplication, for reasons concerning object copying that were
 discussed earlier in this section.
>>> array = [[set()] * n] * m
>>> array[2][5].add(7)
>>> pprint.pprint(array)
[[set([7]), set([7]), set([7]), set([7]), set([7]), set([7]), set([7])],
 [set([7]), set([7]), set([7]), set([7]), set([7]), set([7]), set([7])],
 [set([7]), set([7]), set([7]), set([7]), set([7]), set([7]), set([7])]]
Iteration is an important programming device. It is tempting to
 adopt idioms from other languages. However, Python offers some elegant
 and highly readable alternatives, as we have seen.

Functions: The Foundation of Structured Programming

Functions provide an effective way to package and reuse program
 code, as already explained in More Python: Reusing Code. For
 example, suppose we find that we often want to read text from an HTML
 file. This involves several steps: opening the file, reading it in,
 normalizing whitespace, and stripping HTML markup. We can collect these
 steps into a function, and give it a name such as get_text(), as shown in Example 4-1.
Example 4-1. Read text from a file.
import re
def get_text(file):
 """Read text from a file, normalizing whitespace and stripping HTML markup."""
 text = open(file).read()
 text = re.sub('\s+', ' ', text)
 text = re.sub(r'<.*?>', ' ', text)
 return text

Now, any time we want to get cleaned-up text from an HTML file, we
 can just call get_text() with the
 name of the file as its only argument. It will return a string, and we
 can assign this to a variable, e.g., contents =
 get_text("test.html"). Each time we want to use this series of
 steps, we only have to call the function.
Using functions has the benefit of saving space in our program.
 More importantly, our choice of name for the function helps make the
 program readable. In the case of the preceding
 example, whenever our program needs to read cleaned-up text from a file
 we don’t have to clutter the program with four lines of code; we simply
 need to call get_text(). This naming
 helps to provide some “semantic interpretation”—it helps a reader of our
 program to see what the program “means.”
Notice that this example function definition contains a string.
 The first string inside a function definition is called a docstring. Not only does it document the
 purpose of the function to someone reading the code, it is accessible to
 a programmer who has loaded the code from a file:
>>> help(get_text)
Help on function get_text:

get_text(file)
 Read text from a file, normalizing whitespace
 and stripping HTML markup.
We have seen that functions help to make our work reusable and
 readable. They also help make it reliable. When we
 reuse code that has already been developed and tested, we can be more
 confident that it handles a variety of cases correctly. We also remove
 the risk of forgetting some important step or introducing a bug. The
 program that calls our function also has increased reliability. The
 author of that program is dealing with a shorter program, and its
 components behave transparently.
To summarize, as its name suggests, a function captures
 functionality. It is a segment of code that can be given a meaningful
 name and which performs a well-defined task. Functions allow us to
 abstract away from the details, to see a bigger picture, and to program
 more effectively.
The rest of this section takes a closer look at functions,
 exploring the mechanics and discussing ways to make your programs easier
 to read.
Function Inputs and Outputs

We pass information to functions using a function’s parameters,
 the parenthesized list of variables and constants following the
 function’s name in the function definition. Here’s a complete
 example:
>>> def repeat(msg, num): [image: 1]
... return ' '.join([msg] * num)
>>> monty = 'Monty Python'
>>> repeat(monty, 3) [image: 2]
'Monty Python Monty Python Monty Python'
We first define the function to take two parameters, msg and num [image: 1]. Then, we
 call the function and pass it two arguments, monty and 3 [image: 2]; these
 arguments fill the “placeholders” provided by the parameters and
 provide values for the occurrences of msg and num in the function body.
It is not necessary to have any parameters, as we see in the
 following example:
>>> def monty():
... return "Monty Python"
>>> monty()
'Monty Python'
A function usually communicates its results back to the calling
 program via the return statement,
 as we have just seen. To the calling program, it looks as if the
 function call had been replaced with the function’s result:
>>> repeat(monty(), 3)
'Monty Python Monty Python Monty Python'
>>> repeat('Monty Python', 3)
'Monty Python Monty Python Monty Python'
A Python function is not required to have a return statement.
 Some functions do their work as a side effect, printing a result,
 modifying a file, or updating the contents of a parameter to the
 function (such functions are called “procedures” in some other programming languages).
Consider the following three sort functions. The third one is
 dangerous because a programmer could use it without realizing that it
 had modified its input. In general, functions should modify the
 contents of a parameter (my_sort1()), or return a value (my_sort2()), but not both (my_sort3()).
>>> def my_sort1(mylist): # good: modifies its argument, no return value
... mylist.sort()
>>> def my_sort2(mylist): # good: doesn't touch its argument, returns value
... return sorted(mylist)
>>> def my_sort3(mylist): # bad: modifies its argument and also returns it
... mylist.sort()
... return mylist

Parameter Passing

Back in Back to the Basics, you saw that
 assignment works on values, but that the value of a structured object
 is a reference to that object. The same is true
 for functions. Python interprets function parameters as values (this
 is known as call-by-value). In the
 following code, set_up() has two
 parameters, both of which are modified inside the function. We begin
 by assigning an empty string to w
 and an empty list to p. After
 calling the function, w is
 unchanged, while p is
 changed:
>>> def set_up(word, properties):
... word = 'lolcat'
... properties.append('noun')
... properties = 5
...
>>> w = ''
>>> p = []
>>> set_up(w, p)
>>> w
''
>>> p
['noun']
Notice that w was not changed
 by the function. When we called set_up(w,
 p), the value of w (an
 empty string) was assigned to a new variable word. Inside the function, the value of
 word was modified. However, that
 change did not propagate to w. This
 parameter passing is identical to the following sequence of
 assignments:
>>> w = ''
>>> word = w
>>> word = 'lolcat'
>>> w
''
Let’s look at what happened with the list p. When we called set_up(w, p), the value of p (a reference to an empty list) was
 assigned to a new local variable properties, so both variables now reference
 the same memory location. The function modifies properties, and this
 change is also reflected in the value of p, as we saw. The function also assigned a
 new value to properties (the number 5); this did not modify the contents at that
 memory location, but created a new local variable. This behavior is
 just as if we had done the following sequence of assignments:
>>> p = []
>>> properties = p
>>> properties.append['noun']
>>> properties = 5
>>> p
['noun']
Thus, to understand Python’s call-by-value parameter passing, it
 is enough to understand how assignment works. Remember that you can
 use the id() function and is operator to check your understanding of
 object identity after each statement.

Variable Scope

Function definitions create a new local scope for variables. When you assign to a new
 variable inside the body of a function, the name is defined only
 within that function. The name is not visible outside the function, or
 in other functions. This behavior means you can choose variable names
 without being concerned about collisions with names used in your other
 function definitions.
When you refer to an existing name from within the body of a
 function, the Python interpreter first tries to resolve the name with
 respect to the names that are local to the function. If nothing is
 found, the interpreter checks whether it is a global name within the
 module. Finally, if that does not succeed, the interpreter checks
 whether the name is a Python built-in. This is the so-called LGB rule of name resolution: local, then
 global, then built-in.
Caution!
A function can create a new global variable, using the
 global declaration. However, this
 practice should be avoided as much as possible. Defining global
 variables inside a function introduces dependencies on context and
 limits the portability (or reusability) of the function. In general
 you should use parameters for function inputs and return values for
 function outputs.

Checking Parameter Types

Python does not force us to declare the type of a variable when
 we write a program, and this permits us to define functions that are
 flexible about the type of their arguments. For example, a tagger
 might expect a sequence of words, but it wouldn’t care whether this
 sequence is expressed as a list, a tuple, or an iterator (a new
 sequence type that we’ll discuss later).
However, often we want to write programs for later use by
 others, and want to program in a defensive style, providing useful
 warnings when functions have not been invoked correctly. The author of
 the following tag() function assumed that its argument would always be a
 string.
>>> def tag(word):
... if word in ['a', 'the', 'all']:
... return 'det'
... else:
... return 'noun'
...
>>> tag('the')
'det'
>>> tag('knight')
'noun'
>>> tag(["'Tis", 'but', 'a', 'scratch']) [image: 1]
'noun'
The function returns sensible values for the arguments 'the' and 'knight', but look what happens when it is
 passed a list [image: 1]—it fails to complain,
 even though the result which it returns is clearly incorrect. The
 author of this function could take some extra steps to ensure that the
 word parameter of the tag() function is a string. A naive approach would be to
 check the type of the argument using if not
 type(word) is str, and if word is not a string, to simply return
 Python’s special empty value, None.
 This is a slight improvement, because the function is checking the
 type of the argument, and trying to return a “special” diagnostic
 value for the wrong input. However, it is also dangerous because the
 calling program may not detect that None is intended as a “special” value, and
 this diagnostic return value may then be propagated to other parts of
 the program with unpredictable consequences. This approach also fails
 if the word is a Unicode string, which has type unicode, not str. Here’s a better solution, using an
 assert statement together with
 Python’s basestring type that
 generalizes over both unicode and
 str.
>>> def tag(word):
... assert isinstance(word, basestring), "argument to tag() must be a string"
... if word in ['a', 'the', 'all']:
... return 'det'
... else:
... return 'noun'
If the assert statement
 fails, it will produce an error that cannot be ignored, since it halts
 program execution. Additionally, the error message is easy to
 interpret. Adding assertions to a program helps you find logical
 errors, and is a kind of defensive
 programming. A more fundamental approach is to document the
 parameters to each function using docstrings, as described later in
 this section.

Functional Decomposition

Well-structured programs usually make extensive use of
 functions. When a block of program code grows longer than 10–20 lines,
 it is a great help to readability if the code is broken up into one or
 more functions, each one having a clear purpose. This is analogous to
 the way a good essay is divided into paragraphs, each expressing one
 main idea.
Functions provide an important kind of abstraction. They allow
 us to group multiple actions into a single, complex action, and
 associate a name with it. (Compare this with the way we combine the
 actions of go and bring back
 into a single more complex action fetch.) When we
 use functions, the main program can be written at a higher level of
 abstraction, making its structure transparent, as in the
 following:
>>> data = load_corpus()
>>> results = analyze(data)
>>> present(results)
Appropriate use of functions makes programs more readable and
 maintainable. Additionally, it becomes possible to reimplement a
 function—replacing the function’s body with more efficient
 code—without having to be concerned with the rest of the
 program.
Consider the freq_words
 function in Example 4-2. It updates the
 contents of a frequency distribution that is passed in as a parameter,
 and it also prints a list of the n most frequent
 words.
Example 4-2. Poorly designed function to compute frequent words.
def freq_words(url, freqdist, n):
 text = nltk.clean_url(url)
 for word in nltk.word_tokenize(text):
 freqdist.inc(word.lower())
 print freqdist.keys()[:n]
>>> constitution = "http://www.archives.gov/national-archives-experience" \
... "/charters/constitution_transcript.html"
>>> fd = nltk.FreqDist()
>>> freq_words(constitution, fd, 20)
['the', 'of', 'charters', 'bill', 'constitution', 'rights', ',',
'declaration', 'impact', 'freedom', '-', 'making', 'independence']

This function has a number of problems. The function has two
 side effects: it modifies the contents of its second parameter, and it
 prints a selection of the results it has computed. The function would
 be easier to understand and to reuse elsewhere if we initialize the
 FreqDist() object inside the function (in the same place it is
 populated), and if we moved the selection and display of results to
 the calling program. In Example 4-3 we
 refactor this function, and
 simplify its interface by providing a single url parameter.
Example 4-3. Well-designed function to compute frequent words.
def freq_words(url):
 freqdist = nltk.FreqDist()
 text = nltk.clean_url(url)
 for word in nltk.word_tokenize(text):
 freqdist.inc(word.lower())
 return freqdist
>>> fd = freq_words(constitution)
>>> print fd.keys()[:20]
['the', 'of', 'charters', 'bill', 'constitution', 'rights', ',',
'declaration', 'impact', 'freedom', '-', 'making', 'independence']

Note that we have now simplified the work of freq_words to the point that we can do its
 work with three lines of code:
>>> words = nltk.word_tokenize(nltk.clean_url(constitution))
>>> fd = nltk.FreqDist(word.lower() for word in words)
>>> fd.keys()[:20]
['the', 'of', 'charters', 'bill', 'constitution', 'rights', ',',
'declaration', 'impact', 'freedom', '-', 'making', 'independence']

Documenting Functions

If we have done a good job at decomposing our program into
 functions, then it should be easy to describe the purpose of each
 function in plain language, and provide this in the docstring at the
 top of the function definition. This statement should not explain how
 the functionality is implemented; in fact, it should be possible to
 reimplement the function using a different method without changing
 this statement.
For the simplest functions, a one-line docstring is usually
 adequate (see Example 4-1). You should provide a
 triple-quoted string containing
 a complete sentence on a single line. For non-trivial functions, you
 should still provide a one-sentence summary on the first line, since
 many docstring processing tools index this string. This should be
 followed by a blank line, then a more detailed description of the
 functionality (see http://www.python.org/dev/peps/pep-0257/ for more
 information on docstring conventions).
Docstrings can include a doctest
 block, illustrating the use of the function and the
 expected output. These can be tested automatically using Python’s
 docutils module. Docstrings should
 document the type of each parameter to the function, and the return
 type. At a minimum, that can be done in plain text. However, note that
 NLTK uses the “epytext” markup language to document parameters. This
 format can be automatically converted into richly structured API
 documentation (see http://www.nltk.org/), and
 includes special handling of certain “fields,” such as @param, which allow the inputs and outputs
 of functions to be clearly documented. Example 4-4
 illustrates a complete docstring.
Example 4-4. Illustration of a complete docstring, consisting of a
 one-line summary, a more detailed explanation, a doctest example,
 and epytext markup specifying the parameters, types, return type,
 and exceptions.
def accuracy(reference, test):
 """
 Calculate the fraction of test items that equal the corresponding reference items.

 Given a list of reference values and a corresponding list of test values,
 return the fraction of corresponding values that are equal.
 In particular, return the fraction of indexes
 {0<i<=len(test)} such that C{test[i] == reference[i]}.
 >>> accuracy(['ADJ', 'N', 'V', 'N'], ['N', 'N', 'V', 'ADJ'])
 0.5

@param reference: An ordered list of reference values.
@type reference: C{list}
@param test: A list of values to compare against the corresponding
 reference values.
@type test: C{list}
@rtype: C{float}
@raise ValueError: If C{reference} and C{length} do not have the
 same length.
"""

if len(reference) != len(test):
 raise ValueError("Lists must have the same length.")
num_correct = 0
for x, y in izip(reference, test):
 if x == y:
 num_correct += 1
return float(num_correct) / len(reference)

Doing More with Functions

This section discusses more advanced features, which you may
 prefer to skip on the first time through this chapter.
Functions As Arguments

So far the arguments we have passed into functions have been
 simple objects, such as strings, or structured objects, such as lists.
 Python also lets us pass a function as an argument to another
 function. Now we can abstract out the operation, and apply a
 different operation on the same
 data. As the following examples show, we can pass the
 built-in function len() or a
 user-defined function last_letter()
 as arguments to another function:
>>> sent = ['Take', 'care', 'of', 'the', 'sense', ',', 'and', 'the',
... 'sounds', 'will', 'take', 'care', 'of', 'themselves', '.']
>>> def extract_property(prop):
... return [prop(word) for word in sent]
...
>>> extract_property(len)
[4, 4, 2, 3, 5, 1, 3, 3, 6, 4, 4, 4, 2, 10, 1]
>>> def last_letter(word):
... return word[-1]
>>> extract_property(last_letter)
['e', 'e', 'f', 'e', 'e', ',', 'd', 'e', 's', 'l', 'e', 'e', 'f', 's', '.']
The objects len and last_letter can be passed around like lists
 and dictionaries. Notice that parentheses are used after a function
 name only if we are invoking the function; when we are simply treating
 the function as an object, these are omitted.
Python provides us with one more way to define functions as
 arguments to other functions, so-called lambda
 expressions. Supposing there was no need to use the
 last_letter() function in multiple
 places, and thus no need to give it a name. Let’s suppose we can
 equivalently write the following:
>>> extract_property(lambda w: w[-1])
['e', 'e', 'f', 'e', 'e', ',', 'd', 'e', 's', 'l', 'e', 'e', 'f', 's', '.']
Our next example illustrates passing a function to the sorted() function. When we call the latter
 with a single argument (the list to be sorted), it uses the built-in
 comparison function cmp(). However,
 we can supply our own sort function, e.g., to sort by decreasing
 length.
>>> sorted(sent)
[',', '.', 'Take', 'and', 'care', 'care', 'of', 'of', 'sense', 'sounds',
'take', 'the', 'the', 'themselves', 'will']
>>> sorted(sent, cmp)
[',', '.', 'Take', 'and', 'care', 'care', 'of', 'of', 'sense', 'sounds',
'take', 'the', 'the', 'themselves', 'will']
>>> sorted(sent, lambda x, y: cmp(len(y), len(x)))
['themselves', 'sounds', 'sense', 'Take', 'care', 'will', 'take', 'care',
'the', 'and', 'the', 'of', 'of', ',', '.']

Accumulative Functions

These functions start by initializing some storage, and iterate
 over input to build it up, before returning some final object (a large
 structure or aggregated result). A standard way to do this is to
 initialize an empty list, accumulate the material, then return the
 list, as shown in function search1() in Example 4-5.
Example 4-5. Accumulating output into a list.
def search1(substring, words):
 result = []
 for word in words:
 if substring in word:
 result.append(word)
 return result

def search2(substring, words):
 for word in words:
 if substring in word:
 yield word

print "search1:"
for item in search1('zz', nltk.corpus.brown.words()):
 print item
print "search2:"
for item in search2('zz', nltk.corpus.brown.words()):
 print item

The function search2() is a
 generator. The first time this function is called, it gets as far as
 the yield statement and pauses. The
 calling program gets the first word and does any necessary processing.
 Once the calling program is ready for another word, execution of the
 function is continued from where it stopped, until the next time it
 encounters a yield statement. This
 approach is typically more efficient, as the function only generates
 the data as it is required by the calling program, and does not need
 to allocate additional memory to store the output (see the earlier
 discussion of generator expressions).
Here’s a more sophisticated example of a generator which
 produces all permutations of a list of words. In order to force the
 permutations() function to generate
 all its output, we wrap it with a call to list() [image: 1].
>>> def permutations(seq):
... if len(seq) <= 1:
... yield seq
... else:
... for perm in permutations(seq[1:]):
... for i in range(len(perm)+1):
... yield perm[:i] + seq[0:1] + perm[i:]
...
>>> list(permutations(['police', 'fish', 'buffalo'])) [image: 1]
[['police', 'fish', 'buffalo'], ['fish', 'police', 'buffalo'],
 ['fish', 'buffalo', 'police'], ['police', 'buffalo', 'fish'],
 ['buffalo', 'police', 'fish'], ['buffalo', 'fish', 'police']]
Note
The permutations function
 uses a technique called recursion, discussed later in Algorithm Design. The ability to generate
 permutations of a set of words is useful for creating data to test a
 grammar (Chapter 8).

Higher-Order Functions

Python provides some higher-order functions that are standard
 features of functional programming languages such as Haskell. We
 illustrate them here, alongside the equivalent expression using list
 comprehensions.
Let’s start by defining a function is_content_word() which checks whether a
 word is from the open class of content words. We use this function as
 the first parameter of filter(),
 which applies the function to each item in the sequence contained in
 its second parameter, and retains only the items for which the
 function returns True.
>>> def is_content_word(word):
... return word.lower() not in ['a', 'of', 'the', 'and', 'will', ',', '.']
>>> sent = ['Take', 'care', 'of', 'the', 'sense', ',', 'and', 'the',
... 'sounds', 'will', 'take', 'care', 'of', 'themselves', '.']
>>> filter(is_content_word, sent)
['Take', 'care', 'sense', 'sounds', 'take', 'care', 'themselves']
>>> [w for w in sent if is_content_word(w)]
['Take', 'care', 'sense', 'sounds', 'take', 'care', 'themselves']
Another higher-order function is map(), which applies a function to every
 item in a sequence. It is a general version of the extract_property() function we saw earlier in this section. Here is a
 simple way to find the average length of a sentence in the news
 section of the Brown Corpus, followed by an equivalent version with
 list comprehension calculation:
>>> lengths = map(len, nltk.corpus.brown.sents(categories='news'))
>>> sum(lengths) / len(lengths)
21.7508111616
>>> lengths = [len(w) for w in nltk.corpus.brown.sents(categories='news'))]
>>> sum(lengths) / len(lengths)
21.7508111616
In the previous examples, we specified a user-defined function
 is_content_word() and a built-in
 function len(). We can also provide
 a lambda expression. Here’s a pair of equivalent examples that count
 the number of vowels in each word.
>>> map(lambda w: len(filter(lambda c: c.lower() in "aeiou", w)), sent)
[2, 2, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 1, 3, 0]
>>> [len([c for c in w if c.lower() in "aeiou"]) for w in sent]
[2, 2, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 1, 3, 0]
The solutions based on list comprehensions are usually more
 readable than the solutions based on higher-order functions, and we
 have favored the former approach throughout this book.

Named Arguments

When there are a lot of parameters it is easy to get confused
 about the correct order. Instead we can refer to parameters by name,
 and even assign them a default value just in case one was not provided
 by the calling program. Now the parameters can be specified in any
 order, and can be omitted.
>>> def repeat(msg='<empty>', num=1):
... return msg * num
>>> repeat(num=3)
'<empty><empty><empty>'
>>> repeat(msg='Alice')
'Alice'
>>> repeat(num=5, msg='Alice')
'AliceAliceAliceAliceAlice'
These are called keyword arguments.
 If we mix these two kinds of parameters, then we must ensure that the
 unnamed parameters precede the named ones. It has to be this way,
 since unnamed parameters are defined by position. We can define a
 function that takes an arbitrary number of unnamed and named
 parameters, and access them via an in-place list of arguments *args and an “in-place dictionary” of
 keyword arguments **kwargs.
 (Dictionaries will be presented in Mapping Words to Properties Using Python Dictionaries.)
>>> def generic(*args, **kwargs):
... print args
... print kwargs
...
>>> generic(1, "African swallow", monty="python")
(1, 'African swallow')
{'monty': 'python'}
When *args appears as a
 function parameter, it actually corresponds to all the unnamed
 parameters of the function. As another illustration of this aspect of
 Python syntax, consider the zip()
 function, which operates on a variable number of arguments. We’ll use
 the variable name *song to
 demonstrate that there’s nothing special about the name *args.
>>> song = [['four', 'calling', 'birds'],
... ['three', 'French', 'hens'],
... ['two', 'turtle', 'doves']]
>>> zip(song[0], song[1], song[2])
[('four', 'three', 'two'), ('calling', 'French', 'turtle'), ('birds', 'hens', 'doves')]
>>> zip(*song)
[('four', 'three', 'two'), ('calling', 'French', 'turtle'), ('birds', 'hens', 'doves')]
It should be clear from this example that typing *song is just a convenient shorthand, and
 equivalent to typing out song[0], song[1],
 song[2].
Here’s another example of the use of keyword arguments in a
 function definition, along with three equivalent ways to call the
 function:
>>> def freq_words(file, min=1, num=10):
... text = open(file).read()
... tokens = nltk.word_tokenize(text)
... freqdist = nltk.FreqDist(t for t in tokens if len(t) >= min)
... return freqdist.keys()[:num]
>>> fw = freq_words('ch01.rst', 4, 10)
>>> fw = freq_words('ch01.rst', min=4, num=10)
>>> fw = freq_words('ch01.rst', num=10, min=4)
A side effect of having named arguments is that they permit
 optionality. Thus we can leave out any arguments where we are happy
 with the default value: freq_words('ch01.rst', min=4), freq_words('ch01.rst', 4). Another common
 use of optional arguments is to permit a flag. Here’s a revised
 version of the same function that reports its progress if a verbose flag is set:
>>> def freq_words(file, min=1, num=10, verbose=False):
... freqdist = FreqDist()
... if verbose: print "Opening", file
... text = open(file).read()
... if verbose: print "Read in %d characters" % len(file)
... for word in nltk.word_tokenize(text):
... if len(word) >= min:
... freqdist.inc(word)
... if verbose and freqdist.N() % 100 == 0: print "."
... if verbose: print
... return freqdist.keys()[:num]
Caution!
Take care not to use a mutable object as the default value of
 a parameter. A series of calls to the function will use the same
 object, sometimes with bizarre results, as we will see in the
 discussion of debugging later.

Program Development

Programming is a skill that is acquired over several years of
 experience with a variety of programming languages and tasks. Key
 high-level abilities are algorithm design and its
 manifestation in structured programming. Key
 low-level abilities include familiarity with the syntactic constructs of
 the language, and knowledge of a variety of diagnostic methods for
 trouble-shooting a program which does not exhibit the expected
 behavior.
This section describes the internal structure of a program module
 and how to organize a multi-module program. Then it describes various
 kinds of error that arise during program development, what you can do to
 fix them and, better still, to avoid them in the first place.
Structure of a Python Module

The purpose of a program module is to bring logically related
 definitions and functions together in order to facilitate reuse and
 abstraction. Python modules are nothing more than individual .py files. For example, if you were working
 with a particular corpus format, the functions to read and write the
 format could be kept together. Constants used by both formats, such as
 field separators, or a EXTN =
 ".inf" filename extension, could be shared. If the format
 was updated, you would know that only one file needed to be changed.
 Similarly, a module could contain code for creating and manipulating a
 particular data structure such as syntax trees, or code for performing
 a particular processing task such as plotting corpus
 statistics.
When you start writing Python modules, it helps to have some
 examples to emulate. You can locate the code for any NLTK module on
 your system using the __file__
 variable:
>>> nltk.metrics.distance.__file__
'/usr/lib/python2.5/site-packages/nltk/metrics/distance.pyc'
This returns the location of the compiled .pyc file for the module, and you’ll
 probably see a different location on your machine. The file that you
 will need to open is the corresponding .py source file, and this will be in the
 same directory as the .pyc file.
 Alternatively, you can view the latest version of this module on the
 Web at http://code.google.com/p/nltk/source/browse/trunk/nltk/nltk/metrics/distance.py.
Like every other NLTK module, distance.py begins with a group of comment
 lines giving a one-line title of the module and identifying the
 authors. (Since the code is distributed, it also includes the URL
 where the code is available, a copyright statement, and license
 information.) Next is the module-level docstring, a triple-quoted
 multiline string containing information about the module that will be
 printed when someone types help(nltk.metrics.distance).
Natural Language Toolkit: Distance Metrics
#
Copyright (C) 2001-2009 NLTK Project
Author: Edward Loper <edloper@gradient.cis.upenn.edu>
Steven Bird <sb@csse.unimelb.edu.au>
Tom Lippincott <tom@cs.columbia.edu>
URL: <http://www.nltk.org/>
For license information, see LICENSE.TXT
#

"""
Distance Metrics.

Compute the distance between two items (usually strings).
As metrics, they must satisfy the following three requirements:

1. d(a, a) = 0
2. d(a, b) >= 0
3. d(a, c) <= d(a, b) + d(b, c)
"""
After this comes all the import statements required for the
 module, then any global variables, followed by a series of function
 definitions that make up most of the module. Other modules define
 “classes,” the main building blocks of object-oriented programming,
 which falls outside the scope of this book. (Most NLTK modules also
 include a demo() function, which
 can be used to see examples of the module in use.)
Note
Some module variables and functions are only used within the
 module. These should have names beginning with an underscore, e.g.,
 _helper(), since this will hide
 the name. If another module imports this one, using the idiom:
 from module import *, these names
 will not be imported. You can optionally list the externally
 accessible names of a module using a special built-in variable like
 this: __all__ = ['edit_distance',
 'jaccard_distance'].

Multimodule Programs

Some programs bring together a diverse range of tasks, such as
 loading data from a corpus, performing some analysis tasks on the
 data, then visualizing it. We may already have stable modules that
 take care of loading data and producing visualizations. Our work might
 involve coding up the analysis task, and just invoking functions from
 the existing modules. This scenario is depicted in Figure 4-2.
[image: Structure of a multimodule program: The main program my_program.py imports functions from two other modules; unique analysis tasks are localized to the main program, while common loading and visualization tasks are kept apart to facilitate reuse and abstraction.]

Figure 4-2. Structure of a multimodule program: The main program my_program.py imports functions from two other
 modules; unique analysis tasks are localized to the main program,
 while common loading and visualization tasks are kept apart to
 facilitate reuse and abstraction.

By dividing our work into several modules and using import statements to access functions
 defined elsewhere, we can keep the individual modules simple and easy
 to maintain. This approach will also result in a growing collection of
 modules, and make it possible for us to build sophisticated systems
 involving a hierarchy of modules. Designing such systems well is a
 complex software engineering task, and beyond the scope of this
 book.

Sources of Error

Mastery of programming depends on having a variety of
 problem-solving skills to draw upon when the program doesn’t work as
 expected. Something as trivial as a misplaced symbol might cause the
 program to behave very differently. We call these “bugs” because they
 are tiny in comparison to the damage they can cause. They creep into
 our code unnoticed, and it’s only much later when we’re running the
 program on some new data that their presence is detected. Sometimes,
 fixing one bug only reveals another, and we get the distinct
 impression that the bug is on the move. The only reassurance we have
 is that bugs are spontaneous and not the fault of the
 programmer.
Flippancy aside, debugging code is hard because there are so
 many ways for it to be faulty. Our understanding of the input data,
 the algorithm, or even the programming language, may be at fault.
 Let’s look at examples of each of these.
First, the input data may contain some unexpected characters.
 For example, WordNet synset names have the form tree.n.01, with three components separated
 using periods. The NLTK WordNet module initially decomposed these
 names using split('.'). However,
 this method broke when someone tried to look up the word
 PhD, which has the synset name ph.d..n.01, containing four periods instead
 of the expected two. The solution was to use rsplit('.', 2) to do at most two splits,
 using the rightmost instances of the period, and leaving the ph.d. string intact. Although several people
 had tested the module before it was released, it was some weeks before
 someone detected the problem (see http://code.google.com/p/nltk/issues/detail?id=297).
Second, a supplied function might not behave as expected. For
 example, while testing NLTK’s interface to WordNet, one of the authors
 noticed that no synsets had any antonyms defined, even though the
 underlying database provided a large quantity of antonym information.
 What looked like a bug in the WordNet interface turned out to be a
 misunderstanding about WordNet itself: antonyms are defined for
 lemmas, not for synsets. The only “bug” was a misunderstanding of the
 interface (see http://code.google.com/p/nltk/issues/detail?id=98).
Third, our understanding of Python’s semantics may be at fault.
 It is easy to make the wrong assumption about the relative scope of
 two operators. For example, "%s.%s.%02d" %
 "ph.d.", "n", 1 produces a runtime error TypeError: not enough arguments for format
 string. This is because the percent operator has higher
 precedence than the comma operator. The fix is to add parentheses in
 order to force the required scope. As another example, suppose we are
 defining a function to collect all tokens of a text having a given
 length. The function has parameters for the text and the word length,
 and an extra parameter that allows the initial value of the result to
 be given as a parameter:
>>> def find_words(text, wordlength, result=[]):
... for word in text:
... if len(word) == wordlength:
... result.append(word)
... return result
>>> find_words(['omg', 'teh', 'lolcat', 'sitted', 'on', 'teh', 'mat'], 3) [image: 1]
['omg', 'teh', 'teh', 'mat']
>>> find_words(['omg', 'teh', 'lolcat', 'sitted', 'on', 'teh', 'mat'], 2, ['ur']) [image: 2]
['ur', 'on']
>>> find_words(['omg', 'teh', 'lolcat', 'sitted', 'on', 'teh', 'mat'], 3) [image: 3]
['omg', 'teh', 'teh', 'mat', 'omg', 'teh', 'teh', 'mat']
The first time we call find_words() [image: 1], we get all three-letter words as
 expected. The second time we specify an initial value for the result,
 a one-element list ['ur'], and as
 expected, the result has this word along with the other two-letter
 word in our text. Now, the next time we call find_words() [image: 3] we use the same parameters as in [image: 1], but we get a different result! Each
 time we call find_words() with no
 third parameter, the result will simply extend the result of the
 previous call, rather than start with the empty result list as
 specified in the function definition. The program’s behavior is not as
 expected because we incorrectly assumed that the default value was
 created at the time the function was invoked. However, it is created
 just once, at the time the Python interpreter loads the function. This
 one list object is used whenever no explicit value is provided to the
 function.

Debugging Techniques

Since most code errors result from the programmer making
 incorrect assumptions, the first thing to do when you detect a bug is
 to check your assumptions. Localize the problem
 by adding print statements to the
 program, showing the value of important variables, and showing how far
 the program has progressed.
If the program produced an “exception”—a runtime error—the
 interpreter will print a stack
 trace, pinpointing the location of program execution at the
 time of the error. If the program depends on input data, try to reduce
 this to the smallest size while still producing the error.
Once you have localized the problem to a particular function or
 to a line of code, you need to work out what is going wrong. It is
 often helpful to recreate the situation using the interactive command
 line. Define some variables, and then copy-paste the offending line of
 code into the session and see what happens. Check your understanding
 of the code by reading some documentation and examining other code
 samples that purport to do the same thing that you are trying to do.
 Try explaining your code to someone else, in case she can see where
 things are going wrong.
Python provides a debugger
 which allows you to monitor the execution of your program, specify
 line numbers where execution will stop (i.e., breakpoints), and step through sections of
 code and inspect the value of variables. You can invoke the debugger
 on your code as follows:
>>> import pdb
>>> import mymodule
>>> pdb.run('mymodule.myfunction()')
It will present you with a prompt (Pdb) where you can type instructions to the
 debugger. Type help to see the full
 list of commands. Typing step (or
 just s) will execute the current
 line and stop. If the current line calls a function, it will enter the
 function and stop at the first line. Typing next (or just n) is similar, but it stops execution at the
 next line in the current function. The break (or b) command can be used to create or list
 breakpoints. Type continue (or
 c) to continue execution as far as
 the next breakpoint. Type the name of any variable to inspect its
 value.
We can use the Python debugger to locate the problem in our
 find_words() function. Remember
 that the problem arose the second time the function was called. We’ll
 start by calling the function without using the debugger [image: 1], using the smallest possible input. The
 second time, we’ll call it with the debugger [image: 2].
>>> import pdb
>>> find_words(['cat'], 3) [image: 1]
['cat']
>>> pdb.run("find_words(['dog'], 3)") [image: 2]
> <string>(1)<module>()
(Pdb) step
--Call--
> <stdin>(1)find_words()
(Pdb) args
text = ['dog']
wordlength = 3
result = ['cat']
Here we typed just two commands into the debugger: step took us inside the function, and
 args showed the values of its
 arguments (or parameters). We see immediately that result has an initial value of ['cat'], and not the empty list as expected.
 The debugger has helped us to localize the problem, prompting us to
 check our understanding of Python functions.

Defensive Programming

In order to avoid some of the pain of debugging, it helps to
 adopt some defensive programming habits. Instead of writing a 20-line
 program and then testing it, build the program bottom-up out of small
 pieces that are known to work. Each time you combine these pieces to
 make a larger unit, test it carefully to see that it works as
 expected. Consider adding assert
 statements to your code, specifying properties of a variable, e.g.,
 assert(isinstance(text, list)). If
 the value of the text variable
 later becomes a string when your code is used in some larger context,
 this will raise an AssertionError and you will get
 immediate notification of the problem.
Once you think you’ve found the bug, view your solution as a
 hypothesis. Try to predict the effect of your bugfix before re-running
 the program. If the bug isn’t fixed, don’t fall into the trap of
 blindly changing the code in the hope that it will magically start
 working again. Instead, for each change, try to articulate a
 hypothesis about what is wrong and why the change will fix the
 problem. Then undo the change if the problem was not resolved.
As you develop your program, extend its functionality, and fix
 any bugs, it helps to maintain a suite of test cases. This is called
 regression testing, since it is
 meant to detect situations where the code “regresses”—where a change
 to the code has an unintended side effect of breaking something that
 used to work. Python provides a simple regression-testing framework in
 the form of the doctest module.
 This module searches a file of code or documentation for blocks of
 text that look like an interactive Python session, of the form you
 have already seen many times in this book. It executes the Python
 commands it finds, and tests that their output matches the output
 supplied in the original file. Whenever there is a mismatch, it
 reports the expected and actual values. For details, please consult
 the doctest documentation at
 http://docs.python.org/library/doctest.html.
 Apart from its value for regression testing, the doctest module is useful for ensuring that
 your software documentation stays in sync with your code.
Perhaps the most important defensive programming strategy is to
 set out your code clearly, choose meaningful variable and function
 names, and simplify the code wherever possible by decomposing it into
 functions and modules with well-documented interfaces.

Algorithm Design

This section discusses more advanced concepts, which you may
 prefer to skip on the first time through this chapter.
A major part of algorithmic problem solving is selecting or
 adapting an appropriate algorithm for the problem at hand. Sometimes
 there are several alternatives, and choosing the best one depends on
 knowledge about how each alternative performs as the size of the data
 grows. Whole books are written on this topic, and we only have space to
 introduce some key concepts and elaborate on the approaches that are
 most prevalent in natural language processing.
The best-known strategy is known as divide-and-conquer. We attack a problem of size
 n by dividing it into two problems of size
 n/2, solve these problems, and combine their
 results into a solution of the original problem. For example, suppose
 that we had a pile of cards with a single word written on each card. We
 could sort this pile by splitting it in half and giving it to two other
 people to sort (they could do the same in turn). Then, when two sorted
 piles come back, it is an easy task to merge them into a single sorted
 pile. See Figure 4-3 for an illustration of this
 process.
[image: Sorting by divide-and-conquer: To sort an array, we split it in half and sort each half (recursively); we merge each sorted half back into a whole list (again recursively); this algorithm is known as “Merge Sort.”]

Figure 4-3. Sorting by divide-and-conquer: To sort an array, we split it in
 half and sort each half (recursively); we merge each sorted half back
 into a whole list (again recursively); this algorithm is known as
 “Merge Sort.”

Another example is the process of looking up a word in a
 dictionary. We open the book somewhere around the middle and compare our
 word with the current page. If it’s earlier in the dictionary, we repeat
 the process on the first half; if it’s later, we use the second half.
 This search method is called binary search since it
 splits the problem in half at every step.
In another approach to algorithm design, we attack a problem by
 transforming it into an instance of a problem we already know how to
 solve. For example, in order to detect duplicate entries in a list, we
 can pre-sort the list, then scan
 through it once to check whether any adjacent pairs of elements are
 identical.
Recursion

The earlier examples of sorting and searching have a striking
 property: to solve a problem of size n, we have
 to break it in half and then work on one or more problems of size
 n/2. A common way to implement such methods uses
 recursion. We define a function
 f, which simplifies the problem, and
 calls itself to solve one or more easier
 instances of the same problem. It then combines the results into a
 solution for the original problem.
For example, suppose we have a set of n
 words, and want to calculate how many different ways they can be
 combined to make a sequence of words. If we have only one word
 (n=1), there is just one way to make it into a
 sequence. If we have a set of two words, there are two ways to put
 them into a sequence. For three words there are six possibilities. In
 general, for n words, there are
 n × n-1 × … ×
 2 × 1 ways (i.e., the factorial of
 n). We can code this up as follows:
>>> def factorial1(n):
... result = 1
... for i in range(n):
... result *= (i+1)
... return result
However, there is also a recursive algorithm for solving this
 problem, based on the following observation. Suppose we have a way to
 construct all orderings for n-1 distinct words.
 Then for each such ordering, there are n places
 where we can insert a new word: at the start, the end, or any of the
 n-2 boundaries between the words. Thus we simply
 multiply the number of solutions found for n-1 by
 the value of n. We also need the base case, to say that if we have a single
 word, there’s just one ordering. We can code this up as
 follows:
>>> def factorial2(n):
... if n == 1:
... return 1
... else:
... return n * factorial2(n-1)
These two algorithms solve the same problem. One uses iteration
 while the other uses recursion. We can use recursion to navigate a
 deeply nested object, such as the WordNet hypernym hierarchy. Let’s
 count the size of the hypernym hierarchy rooted at a given synset
 s. We’ll do this by finding the size of each
 hyponym of s, then adding these together (we will
 also add 1 for the synset itself). The following function size1() does this work; notice that the body
 of the function includes a recursive call to size1():
>>> def size1(s):
... return 1 + sum(size1(child) for child in s.hyponyms())
We can also design an iterative solution to this problem which
 processes the hierarchy in layers. The first layer is the synset
 itself [image: 1], then all the hyponyms of
 the synset, then all the hyponyms of the hyponyms. Each time through
 the loop it computes the next layer by finding the hyponyms of
 everything in the last layer [image: 3]. It
 also maintains a total of the number of synsets encountered so far
 [image: 2].
>>> def size2(s):
... layer = [s] [image: 1]
... total = 0
... while layer:
... total += len(layer) [image: 2]
... layer = [h for c in layer for h in c.hyponyms()] [image: 3]
... return total
Not only is the iterative solution much longer, it is harder to
 interpret. It forces us to think procedurally, and keep track of what
 is happening with the layer and
 total variables through time. Let’s
 satisfy ourselves that both solutions give the same result. We’ll use
 a new form of the import statement, allowing us to abbreviate the name
 wordnet to wn:
>>> from nltk.corpus import wordnet as wn
>>> dog = wn.synset('dog.n.01')
>>> size1(dog)
190
>>> size2(dog)
190
As a final example of recursion, let’s use it to
 construct a deeply nested object. A letter trie is a data structure that can be
 used for indexing a lexicon, one letter at a time. (The name is based
 on the word retrieval.) For example, if trie contained a letter trie, then trie['c'] would be a smaller trie which held
 all words starting with c. Example 4-6 demonstrates the recursive process of building
 a trie, using Python dictionaries (Mapping Words to Properties Using Python Dictionaries). To insert the word
 chien (French for dog), we
 split off the c and recursively insert
 hien into the sub-trie trie['c']. The recursion continues until
 there are no letters remaining in the word, when we store the intended
 value (in this case, the word dog).
Example 4-6. Building a letter trie: A recursive function that builds a
 nested dictionary structure; each level of nesting contains all
 words with a given prefix, and a sub-trie containing all possible
 continuations.
def insert(trie, key, value):
 if key:
 first, rest = key[0], key[1:]
 if first not in trie:
 trie[first] = {}
 insert(trie[first], rest, value)
 else:
 trie['value'] = value
>>> trie = nltk.defaultdict(dict)
>>> insert(trie, 'chat', 'cat')
>>> insert(trie, 'chien', 'dog')
>>> insert(trie, 'chair', 'flesh')
>>> insert(trie, 'chic', 'stylish')
>>> trie = dict(trie) # for nicer printing
>>> trie['c']['h']['a']['t']['value']
'cat'
>>> pprint.pprint(trie)
{'c': {'h': {'a': {'t': {'value': 'cat'}},
 {'i': {'r': {'value': 'flesh'}}},
 'i': {'e': {'n': {'value': 'dog'}}}
 {'c': {'value': 'stylish'}}}}}

Caution!
Despite the simplicity of recursive programming, it comes with
 a cost. Each time a function is called, some state information needs
 to be pushed on a stack, so that once the function has completed,
 execution can continue from where it left off. For this reason,
 iterative solutions are often more efficient than recursive
 solutions.

Space-Time Trade-offs

We can sometimes significantly speed up the execution of a
 program by building an auxiliary data structure, such as an index. The
 listing in Example 4-7 implements a
 simple text retrieval system for the Movie Reviews Corpus. By indexing
 the document collection, it provides much faster lookup.
Example 4-7. A simple text retrieval system.
def raw(file):
 contents = open(file).read()
 contents = re.sub(r'<.*?>', ' ', contents)
 contents = re.sub('\s+', ' ', contents)
 return contents

def snippet(doc, term): # buggy
 text = ' '*30 + raw(doc) + ' '*30
 pos = text.index(term)
 return text[pos-30:pos+30]

print "Building Index..."
files = nltk.corpus.movie_reviews.abspaths()
idx = nltk.Index((w, f) for f in files for w in raw(f).split())

query = ''
while query != "quit":
 query = raw_input("query> ")
 if query in idx:
 for doc in idx[query]:
 print snippet(doc, query)
 else:
 print "Not found"

A more subtle example of a space-time trade-off involves
 replacing the tokens of a corpus with integer identifiers. We create a
 vocabulary for the corpus, a list in which each word is stored once,
 then invert this list so that we can look up any word to find its
 identifier. Each document is preprocessed, so that a list of words
 becomes a list of integers. Any language models can now work with
 integers. See the listing in Example 4-8
 for an example of how to do this for a tagged corpus.
Example 4-8. Preprocess tagged corpus data, converting all words and tags
 to integers.
def preprocess(tagged_corpus):
 words = set()
 tags = set()
 for sent in tagged_corpus:
 for word, tag in sent:
 words.add(word)
 tags.add(tag)
 wm = dict((w,i) for (i,w) in enumerate(words))
 tm = dict((t,i) for (i,t) in enumerate(tags))
 return [[(wm[w], tm[t]) for (w,t) in sent] for sent in tagged_corpus]

Another example of a space-time trade-off is maintaining a
 vocabulary list. If you need to process an input text to check that
 all words are in an existing vocabulary, the vocabulary should be
 stored as a set, not a list. The elements of a set are automatically
 indexed, so testing membership of a large set will be much faster than
 testing membership of the corresponding list.
We can test this claim using the timeit module. The Timer class has two parameters: a statement
 that is executed multiple times, and setup code that is executed once
 at the beginning. We will simulate a vocabulary of 100,000 items using
 a list [image: 1] or set [image: 2] of integers. The test statement will
 generate a random item that has a 50% chance of being in the
 vocabulary [image: 3].
>>> from timeit import Timer
>>> vocab_size = 100000
>>> setup_list = "import random; vocab = range(%d)" % vocab_size [image: 1]
>>> setup_set = "import random; vocab = set(range(%d))" % vocab_size [image: 2]
>>> statement = "random.randint(0, %d) in vocab" % vocab_size * 2 [image: 3]
>>> print Timer(statement, setup_list).timeit(1000)
2.78092288971
>>> print Timer(statement, setup_set).timeit(1000)
0.0037260055542
Performing 1,000 list membership tests takes a total of 2.8
 seconds, whereas the equivalent tests on a set take a mere 0.0037
 seconds, or three orders of magnitude faster!

Dynamic Programming

Dynamic programming is a general technique for designing
 algorithms which is widely used in natural language processing. The
 term “programming” is used in a different sense to what you might
 expect, to mean planning or scheduling. Dynamic programming is used
 when a problem contains overlapping subproblems. Instead of computing
 solutions to these subproblems repeatedly, we simply store them in a
 lookup table. In the remainder of this section, we will introduce
 dynamic programming, but in a rather different context to syntactic
 parsing.
Pingala was an Indian author who lived around the 5th century
 B.C., and wrote a treatise on Sanskrit prosody called the
 Chandas Shastra. Virahanka extended this work
 around the 6th century A.D., studying the number of ways of combining
 short and long syllables to create a meter of length
 n. Short syllables, marked
 S, take up one unit of length, while long
 syllables, marked L, take two. Pingala found, for
 example, that there are five ways to construct a meter of length 4:
 V4 =
 {LL, SSL,
 SLS, LSS,
 SSSS}. Observe that we can split
 V4 into two subsets, those
 starting with L and those starting with
 S, as shown in Example 4-9.
Example 4-9.
V4 =
 LL, LSS
 i.e. L prefixed to each item of V2 = {L, SS}
 SSL, SLS, SSSS
 i.e. S prefixed to each item of V3 = {SL, LS, SSS}

With this observation, we can write a little recursive function
 called virahanka1() to compute
 these meters, shown in Example 4-10. Notice that,
 in order to compute V4 we
 first compute V3 and
 V2. But to compute
 V3, we need to first
 compute V2 and
 V1. This call structure is depicted in Example 4-11.
Example 4-10. Four ways to compute Sanskrit meter: (i) iterative, (ii)
 bottom-up dynamic programming, (iii) top-down dynamic programming,
 and (iv) built-in memoization.
def virahanka1(n):
 if n == 0:
 return [""]
 elif n == 1:
 return ["S"]
 else:
 s = ["S" + prosody for prosody in virahanka1(n-1)]
 l = ["L" + prosody for prosody in virahanka1(n-2)]
 return s + l

def virahanka2(n):
 lookup = [[""], ["S"]]
 for i in range(n-1):
 s = ["S" + prosody for prosody in lookup[i+1]]
 l = ["L" + prosody for prosody in lookup[i]]
 lookup.append(s + l)
 return lookup[n]

def virahanka3(n, lookup={0:[""], 1:["S"]}):
 if n not in lookup:
 s = ["S" + prosody for prosody in virahanka3(n-1)]
 l = ["L" + prosody for prosody in virahanka3(n-2)]
 lookup[n] = s + l
 return lookup[n]

from nltk import memoize
@memoize
def virahanka4(n):
 if n == 0:
 return [""]
 elif n == 1:
 return ["S"]
 else:
 s = ["S" + prosody for prosody in virahanka4(n-1)]
 l = ["L" + prosody for prosody in virahanka4(n-2)]
 return s + l
>>> virahanka1(4)
['SSSS', 'SSL', 'SLS', 'LSS', 'LL']
>>> virahanka2(4)
['SSSS', 'SSL', 'SLS', 'LSS', 'LL']
>>> virahanka3(4)
['SSSS', 'SSL', 'SLS', 'LSS', 'LL']
>>> virahanka4(4)
['SSSS', 'SSL', 'SLS', 'LSS', 'LL']

Example 4-11.
[image: image with no caption]

As you can see, V2
 is computed twice. This might not seem like a significant problem, but
 it turns out to be rather wasteful as n gets
 large: to compute V20
 using this recursive technique, we would compute
 V2 4,181 times; and for
 V40 we would compute
 V2 63,245,986 times! A
 much better alternative is to store the value of
 V2 in a table and look it
 up whenever we need it. The same goes for other values, such as
 V3 and so on. Function
 virahanka2() implements a dynamic
 programming approach to the problem. It works by filling up a table
 (called lookup) with solutions to
 all smaller instances of the problem, stopping as
 soon as we reach the value we’re interested in. At this point we read
 off the value and return it. Crucially, each subproblem is only ever
 solved once.
Notice that the approach taken in virahanka2() is to solve smaller problems on
 the way to solving larger problems. Accordingly, this is known as the
 bottom-up approach to dynamic
 programming. Unfortunately it turns out to be quite wasteful for some
 applications, since it may compute solutions to sub-problems that are
 never required for solving the main problem. This wasted computation
 can be avoided using the top-down
 approach to dynamic programming, which is illustrated in the function
 virahanka3() in Example 4-10. Unlike the bottom-up approach, this
 approach is recursive. It avoids the huge wastage of virahanka1() by checking whether it has
 previously stored the result. If not, it computes the result
 recursively and stores it in the table. The last step is to return the
 stored result. The final method, in virahanka4(), is to use a Python “decorator”
 called memoize, which takes care of
 the housekeeping work done by virahanka3() without cluttering up the
 program. This “memoization” process stores the result of each previous
 call to the function along with the parameters that were used. If the
 function is subsequently called with the same parameters, it returns
 the stored result instead of recalculating it. (This aspect of Python
 syntax is beyond the scope of this book.)
This concludes our brief introduction to dynamic programming. We
 will encounter it again in Parsing with Context-Free Grammar.

A Sample of Python Libraries

Python has hundreds of third-party libraries, specialized software
 packages that extend the functionality of Python. NLTK is one such
 library. To realize the full power of Python programming, you should
 become familiar with several other libraries. Most of these will need to
 be manually installed on your computer.
Matplotlib

Python has some libraries that are useful for visualizing
 language data. The Matplotlib package supports sophisticated plotting
 functions with a MATLAB-style interface, and is available from http://matplotlib.sourceforge.net/.
So far we have focused on textual presentation and the use of
 formatted print statements to get output lined up in columns. It is
 often very useful to display numerical data in graphical form, since
 this often makes it easier to detect patterns. For example, in Example 3-6, we saw a table of numbers showing
 the frequency of particular modal verbs in the Brown Corpus,
 classified by genre. The program in Example 4-12
 presents the same information in graphical format. The output is shown
 in Figure 4-4 (a color figure in the graphical
 display).
Example 4-12. Frequency of modals in different sections of the Brown
 Corpus.
colors = 'rgbcmyk' # red, green, blue, cyan, magenta, yellow, black
def bar_chart(categories, words, counts):
 "Plot a bar chart showing counts for each word by category"
 import pylab
 ind = pylab.arange(len(words))
 width = 1 / (len(categories) + 1)
 bar_groups = []
 for c in range(len(categories)):
 bars = pylab.bar(ind+c*width, counts[categories[c]], width,
 color=colors[c % len(colors)])
 bar_groups.append(bars)
 pylab.xticks(ind+width, words)
 pylab.legend([b[0] for b in bar_groups], categories, loc='upper left')
 pylab.ylabel('Frequency')
 pylab.title('Frequency of Six Modal Verbs by Genre')
 pylab.show()
>>> genres = ['news', 'religion', 'hobbies', 'government', 'adventure']
>>> modals = ['can', 'could', 'may', 'might', 'must', 'will']
>>> cfdist = nltk.ConditionalFreqDist(
... (genre, word)
... for genre in genres
... for word in nltk.corpus.brown.words(categories=genre)
... if word in modals)
...
>>> counts = {}
>>> for genre in genres:
... counts[genre] = [cfdist[genre][word] for word in modals]
>>> bar_chart(genres, modals, counts)

From the bar chart it is immediately obvious that
 may and must have almost
 identical relative frequencies. The same goes for
 could and might.
It is also possible to generate such data visualizations on the
 fly. For example, a web page with form input could permit visitors to
 specify search parameters, submit the form, and see a dynamically
 generated visualization. To do this we have to specify the Agg backend for matplotlib, which is a library for producing
 raster (pixel) images [image: 1]. Next, we use
 all the same PyLab methods as before, but instead of displaying the
 result on a graphical terminal using pylab.show(), we save it to a file using
 pylab.savefig() [image: 2]. We specify the filename and dpi, then
 print HTML markup that directs the web browser to load the
 file.
>>> import matplotlib
>>> matplotlib.use('Agg') [image: 1]
>>> pylab.savefig('modals.png') [image: 2]
>>> print 'Content-Type: text/html'
>>> print
>>> print '<html><body>'
>>> print ''
>>> print '</body></html>'
[image: Bar chart showing frequency of modals in different sections of Brown Corpus: This visualization was produced by the program in .]

Figure 4-4. Bar chart showing frequency of modals in different sections
 of Brown Corpus: This visualization was produced by the program in
 Example 4-12.

NetworkX

The NetworkX package is for defining and manipulating structures
 consisting of nodes and edges, known as graphs. It is available from https://networkx.lanl.gov/. NetworkX can be used in
 conjunction with Matplotlib to visualize networks, such as WordNet
 (the semantic network we introduced in WordNet). The program in Example 4-13 initializes an empty graph [image: 3] and then traverses the WordNet hypernym
 hierarchy adding edges to the graph [image: 1].
 Notice that the traversal is recursive [image: 2], applying the programming
 technique discussed in Algorithm Design. The
 resulting display is shown in Figure 4-5.
Example 4-13. Using the NetworkX and Matplotlib libraries.
import networkx as nx
import matplotlib
from nltk.corpus import wordnet as wn

def traverse(graph, start, node):
 graph.depth[node.name] = node.shortest_path_distance(start)
 for child in node.hyponyms():
 graph.add_edge(node.name, child.name) [image: 1]
 traverse(graph, start, child) [image: 2]

def hyponym_graph(start):
 G = nx.Graph() [image: 3]
 G.depth = {}
 traverse(G, start, start)
 return G

def graph_draw(graph):
 nx.draw_graphviz(graph,
 node_size = [16 * graph.degree(n) for n in graph],
 node_color = [graph.depth[n] for n in graph],
 with_labels = False)
 matplotlib.pyplot.show()
>>> dog = wn.synset('dog.n.01')
>>> graph = hyponym_graph(dog)
>>> graph_draw(graph)

csv

Language analysis work often involves data tabulations,
 containing information about lexical items, the participants in an
 empirical study, or the linguistic features extracted from a corpus.
 Here’s a fragment of a simple lexicon, in CSV format:
sleep, sli:p, v.i, a condition of body and mind ...
walk, wo:k, v.intr, progress by lifting and setting down each foot ...
wake, weik, intrans, cease to sleep

We can use Python’s CSV library to read and write files stored
 in this format. For example, we can open a CSV file called lexicon.csv [image: 1]
 and iterate over its rows [image: 2]:
>>> import csv
>>> input_file = open("lexicon.csv", "rb") [image: 1]
>>> for row in csv.reader(input_file): [image: 2]
... print row
['sleep', 'sli:p', 'v.i', 'a condition of body and mind ...']
['walk', 'wo:k', 'v.intr', 'progress by lifting and setting down each foot ...']
['wake', 'weik', 'intrans', 'cease to sleep']
Each row is just a list of strings. If any fields contain
 numerical data, they will appear as strings, and will have to be
 converted using int() or float().
[image: Visualization with NetworkX and Matplotlib: Part of the WordNet hypernym hierarchy is displayed, starting with dog.n.01 (the darkest node in the middle); node size is based on the number of children of the node, and color is based on the distance of the node from dog.n.01; this visualization was produced by the program in .]

Figure 4-5. Visualization with NetworkX and Matplotlib: Part of the
 WordNet hypernym hierarchy is displayed, starting with dog.n.01 (the
 darkest node in the middle); node size is based on the number of
 children of the node, and color is based on the distance of the node
 from dog.n.01; this visualization was produced by the program in
 Example 4-13.

NumPy

The NumPy package provides substantial support for numerical
 processing in Python. NumPy has a multidimensional array object, which
 is easy to initialize and access:
>>> from numpy import array
>>> cube = array([[[0,0,0], [1,1,1], [2,2,2]],
... [[3,3,3], [4,4,4], [5,5,5]],
... [[6,6,6], [7,7,7], [8,8,8]]])
>>> cube[1,1,1]
4
>>> cube[2].transpose()
array([[6, 7, 8],
 [6, 7, 8],
 [6, 7, 8]])
>>> cube[2,1:]
array([[7, 7, 7],
 [8, 8, 8]])
NumPy includes linear algebra functions. Here we perform
 singular value decomposition on a matrix, an operation used in
 latent semantic analysis to help
 identify implicit concepts in a document collection:
>>> from numpy import linalg
>>> a=array([[4,0], [3,-5]])
>>> u,s,vt = linalg.svd(a)
>>> u
array([[-0.4472136 , -0.89442719],
 [-0.89442719, 0.4472136]])
>>> s
array([6.32455532, 3.16227766])
>>> vt
array([[-0.70710678, 0.70710678],
 [-0.70710678, -0.70710678]])
NLTK’s clustering package nltk.cluster makes extensive use of NumPy arrays, and includes
 support for k-means clustering, Gaussian EM
 clustering, group average agglomerative clustering, and dendrogram
 plots. For details, type help(nltk.cluster).

Other Python Libraries

There are many other Python libraries, and you can search for
 them with the help of the Python Package Index at http://pypi.python.org/. Many libraries provide an
 interface to external software, such as relational databases (e.g.,
 mysql-python) and large document
 collections (e.g., PyLucene). Many
 other libraries give access to file formats such as PDF, MSWord, and
 XML (pypdf, pywin32, xml.etree), RSS feeds (e.g., feedparser), and electronic mail (e.g.,
 imaplib, email).

Summary

	Python’s assignment and parameter passing use object
 references; e.g., if a is a list
 and we assign b = a, then any
 operation on a will modify
 b, and vice versa.

	The is operation tests
 whether two objects are identical internal objects, whereas == tests whether two objects are
 equivalent. This distinction parallels the type-token
 distinction.

	Strings, lists, and tuples are different kinds of sequence
 object, supporting common operations such as indexing, slicing,
 len(), sorted(), and membership testing using
 in.

	We can write text to a file by opening the file for
 writing
ofile = open('output.txt', 'w'
then adding content to the file ofile.write("Monty Python"), and finally
 closing the file ofile.close().

	A declarative programming style usually produces more compact,
 readable code; manually incremented loop variables are usually
 unnecessary. When a sequence must be enumerated, use enumerate().

	Functions are an essential programming abstraction: key
 concepts to understand are parameter passing, variable scope, and
 docstrings.

	A function serves as a namespace: names defined inside a
 function are not visible outside that function, unless those names
 are declared to be global.

	Modules permit logically related material to be localized in a
 file. A module serves as a namespace: names defined in a module—such
 as variables and functions—are not visible to other modules, unless
 those names are imported.

	Dynamic programming is an algorithm design technique used
 widely in NLP that stores the results of previous computations in
 order to avoid unnecessary recomputation.

Further Reading

This chapter has touched on many topics in programming, some
 specific to Python, and some quite general. We’ve just scratched the
 surface, and you may want to read more about these topics, starting with
 the further materials for this chapter available at http://www.nltk.org/.
The Python website provides extensive documentation. It is
 important to understand the built-in functions and standard types,
 described at http://docs.python.org/library/functions.html and http://docs.python.org/library/stdtypes.html. We have
 learned about generators and their importance for efficiency; for
 information about iterators, a closely related topic, see http://docs.python.org/library/itertools.html. Consult
 your favorite Python book for more information on such topics. An
 excellent resource for using Python for multimedia processing, including
 working with sound files, is (Guzdial, 2005).
When using the online Python documentation, be aware that your
 installed version might be different from the version of the
 documentation you are reading. You can easily check what version you
 have, with import sys; sys.version.
 Version-specific documentation is available at http://www.python.org/doc/versions/.
Algorithm design is a rich field within computer science. Some
 good starting points are (Harel, 2004), (Levitin, 2004), and (Knuth,
 2006). Useful guidance on the practice of software development is
 provided in (Hunt & Thomas, 2000) and (McConnell, 2004).

Exercises

	○ Find out more about sequence objects using Python’s help
 facility. In the interpreter, type help(str), help(list), and help(tuple). This will give you a full
 list of the functions supported by each type. Some functions have
 special names flanked with underscores; as the help documentation
 shows, each such function corresponds to something more familiar.
 For example x.__getitem__(y) is
 just a long-winded way of saying x[y].

	○ Identify three operations that can be performed on both
 tuples and lists. Identify three list operations that cannot be
 performed on tuples. Name a context where using a list instead of a
 tuple generates a Python error.

	○ Find out how to create a tuple consisting of a single item.
 There are at least two ways to do this.

	○ Create a list words = ['is', 'NLP',
 'fun', '?']. Use a series of assignment statements (e.g.,
 words[1] = words[2]) and a
 temporary variable tmp to
 transform this list into the list ['NLP',
 'is', 'fun', '!']. Now do the same transformation using
 tuple assignment.

	○ Read about the built-in comparison function cmp, by typing help(cmp). How does it differ in behavior
 from the comparison operators?

	○ Does the method for creating a sliding window of n-grams
 behave correctly for the two limiting cases: n
 = 1 and n = len(sent)?

	○ We pointed out that when empty strings and empty lists occur
 in the condition part of an if
 clause, they evaluate to False.
 In this case, they are said to be occurring in a Boolean context.
 Experiment with different kinds of non-Boolean expressions in
 Boolean contexts, and see whether they evaluate as True or False.

	○ Use the inequality operators to compare strings, e.g.,
 'Monty' < 'Python'. What
 happens when you do 'Z' < 'a'?
 Try pairs of strings that have a common prefix, e.g., 'Monty' < 'Montague'. Read up on
 “lexicographical sort” in order to understand what is going on here.
 Try comparing structured objects, e.g., ('Monty', 1) < ('Monty', 2). Does this
 behave as expected?

	○ Write code that removes whitespace at the beginning and end
 of a string, and normalizes whitespace between words to be a
 single-space character.
	Do this task using split() and join().

	Do this task using regular expression
 substitutions.

	○ Write a program to sort words by length. Define a helper
 function cmp_len which uses the
 cmp comparison function on word
 lengths.

	[image:] Create a list of words and store it in a variable sent1. Now assign sent2 = sent1. Modify one of the items in
 sent1 and verify that sent2 has changed.
	Now try the same exercise, but instead assign sent2 = sent1[:]. Modify sent1 again and see what happens to
 sent2. Explain.

	Now define text1 to be
 a list of lists of strings (e.g., to represent a text consisting
 of multiple sentences). Now assign text2 = text1[:], assign a new value
 to one of the words, e.g., text1[1][1]
 = 'Monty'. Check what this did to text2. Explain.

	Load Python’s deepcopy() function (i.e., from copy import deepcopy), consult
 its documentation, and test that it makes a fresh copy of any
 object.

	[image:] Initialize an
 n-by-m list of lists of
 empty strings using list multiplication, e.g., word_table = [[''] * n] * m. What happens
 when you set one of its values, e.g., word_table[1][2] = "hello"? Explain why
 this happens. Now write an expression using range() to construct a list of lists, and
 show that it does not have this problem.

	[image:] Write code to initialize a two-dimensional array of sets
 called word_vowels and process a
 list of words, adding each word to word_vowels[l][v] where l is the length of the word and v is the number of vowels it
 contains.

	[image:] Write a function novel10(text) that prints any word that
 appeared in the last 10% of a text that had not been encountered
 earlier.

	[image:] Write a program that takes a sentence expressed as a single
 string, splits it, and counts up the words. Get it to print out each
 word and the word’s frequency, one per line, in alphabetical
 order.

	[image:] Read up on Gematria, a method for assigning numbers to
 words, and for mapping between words having the same number to
 discover the hidden meaning of texts (http://en.wikipedia.org/wiki/Gematria, http://essenes.net/gemcal.htm).
	Write a function gematria() that sums the numerical
 values of the letters of a word, according to the letter values
 in letter_vals:
>>> letter_vals = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5, 'f':80, 'g':3, 'h':8,
... 'i':10, 'j':10, 'k':20, 'l':30, 'm':40, 'n':50, 'o':70, 'p':80, 'q':100,
... 'r':200, 's':300, 't':400, 'u':6, 'v':6, 'w':800, 'x':60, 'y':10, 'z':7}

	Process a corpus (e.g., nltk.corpus.state_union) and for each
 document, count how many of its words have the number
 666.

	Write a function decode() to process a text, randomly
 replacing words with their Gematria equivalents, in order to
 discover the “hidden meaning” of the text.

	[image:] Write a function shorten(text,
 n) to process a text, omitting the n
 most frequently occurring words of the text. How readable is
 it?

	[image:] Write code to print out an index for a lexicon, allowing
 someone to look up words according to their meanings (or their
 pronunciations; whatever properties are contained in the lexical
 entries).

	[image:] Write a list comprehension that sorts a list of WordNet
 synsets for proximity to a given synset. For example, given the
 synsets minke_whale.n.01,
 orca.n.01, novel.n.01, and tortoise.n.01, sort them according to
 their path_distance() from
 right_whale.n.01.

	[image:] Write a function that takes a list of words (containing
 duplicates) and returns a list of words (with no duplicates) sorted
 by decreasing frequency. E.g., if the input list contained 10
 instances of the word table and 9
 instances of the word chair, then
 table would appear before
 chair in the output list.

	[image:] Write a function that takes a text and a vocabulary as its
 arguments and returns the set of words that appear in the text but
 not in the vocabulary. Both arguments can be represented as lists of
 strings. Can you do this in a single line, using set.difference()?

	[image:] Import the itemgetter()
 function from the operator module
 in Python’s standard library (i.e., from
 operator import itemgetter). Create a list words containing several words. Now try
 calling: sorted(words,
 key=itemgetter(1)), and sorted(words, key=itemgetter(-1)). Explain
 what itemgetter() is
 doing.

	[image:] Write a recursive function lookup(trie, key) that looks up a key in a
 trie, and returns the value it finds. Extend the function to return
 a word when it is uniquely determined by its prefix (e.g., vanguard is the only word that starts with
 vang-, so lookup(trie, 'vang') should return the
 same thing as lookup(trie,
 'vanguard')).

	[image:] Read up on “keyword linkage” (Chapter 5 of (Scott &
 Tribble, 2006)). Extract keywords from NLTK’s Shakespeare Corpus and
 using the NetworkX package, plot keyword linkage networks.

	[image:] Read about string edit distance and the Levenshtein
 Algorithm. Try the implementation provided in nltk.edit_dist(). In what way is this
 using dynamic programming? Does it use the bottom-up or top-down
 approach? (See also http://norvig.com/spell-correct.html.)

	[image:] The Catalan numbers arise in many applications of
 combinatorial mathematics, including the counting of parse trees
 (Grammar Development). The series can be
 defined as follows: C0
 = 1, and
 Cn+1
 =
 Σ0..n
 (CiCn-i).
	Write a recursive function to compute
 nth Catalan number
 Cn.

	Now write another function that does this computation
 using dynamic programming.

	Use the timeit module
 to compare the performance of these functions as
 n increases.

	● Reproduce some of the results of (Zhao & Zobel, 2007)
 concerning authorship identification.

	● Study gender-specific lexical choice, and see if you can
 reproduce some of the results of http://www.clintoneast.com/articles/words.php.

	● Write a recursive function that pretty prints a trie in
 alphabetically sorted order, for example:
chair: 'flesh'
---t: 'cat'
--ic: 'stylish'
---en: 'dog'

	● With the help of the trie data structure, write a recursive
 function that processes text, locating the uniqueness point in each
 word, and discarding the remainder of each word. How much
 compression does this give? How readable is the resulting
 text?

	● Obtain some raw text, in the form of a single, long string.
 Use Python’s textwrap module to
 break it up into multiple lines. Now write code to add extra spaces
 between words, in order to justify the output. Each line must have
 the same width, and spaces must be approximately evenly distributed
 across each line. No line can begin or end with a space.

	● Develop a simple extractive summarization tool, that prints
 the sentences of a document which contain the highest total word
 frequency. Use FreqDist() to count word frequencies, and use sum to sum the frequencies of the words in
 each sentence. Rank the sentences according to their score. Finally,
 print the n highest-scoring sentences in
 document order. Carefully review the design of your program, especially your approach to this
 double sorting. Make sure the program is written as clearly as
 possible.

	● Read the following article on semantic orientation of
 adjectives. Use the NetworkX package to visualize a network of
 adjectives with edges to indicate same versus different semantic
 orientation (see http://www.aclweb.org/anthology/P97-1023).

	● Design an algorithm to find the “statistically improbable
 phrases” of a document collection (see http://www.amazon.com/gp/search-inside/sipshelp.html).

	● Write a program to implement a brute-force algorithm for
 discovering word squares, a kind of n ×
 n: crossword in which the entry in the
 nth row is the same as the entry in the
 nth column. For discussion, see http://itre.cis.upenn.edu/~myl/languagelog/archives/002679.html.

Chapter 5. Categorizing and Tagging Words

Back in elementary school you learned the difference between nouns,
 verbs, adjectives, and adverbs. These “word classes” are not just the idle
 invention of grammarians, but are useful categories for many language
 processing tasks. As we will see, they arise from simple analysis of the
 distribution of words in text. The goal of this chapter is to answer the
 following questions:
	What are lexical categories, and how are they used in natural
 language processing?

	What is a good Python data structure for storing words and their
 categories?

	How can we automatically tag each word of a text with its word
 class?

Along the way, we’ll cover some fundamental techniques in NLP,
 including sequence labeling, n-gram models, backoff, and evaluation. These
 techniques are useful in many areas, and tagging gives us a simple context
 in which to present them. We will also see how tagging is the second step
 in the typical NLP pipeline, following tokenization.
The process of classifying words into their parts-of-speech and labeling them accordingly is
 known as part-of-speech tagging,
 POS tagging, or simply tagging. Parts-of-speech are also known as
 word classes or lexical categories. The collection of tags used
 for a particular task is known as a tagset. Our emphasis in this chapter is on
 exploiting tags, and tagging text automatically.
Using a Tagger

A part-of-speech tagger, or POS
 tagger, processes a sequence of words, and attaches a part of
 speech tag to each word (don’t forget to import
 nltk):
>>> text = nltk.word_tokenize("And now for something completely different")
>>> nltk.pos_tag(text)
[('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'),
('completely', 'RB'), ('different', 'JJ')]
Here we see that and is CC, a coordinating conjunction;
 now and completely are
 RB, or adverbs;
 for is IN, a
 preposition; something is NN, a noun; and different
 is JJ, an adjective.
Note
NLTK provides documentation for each tag, which can be queried
 using the tag, e.g., nltk.help.upenn_tagset('RB'), or a regular expression, e.g., nltk.help.upenn_brown_tagset('NN.*'). Some
 corpora have README files with tagset documentation; see nltk.name.readme(),
 substituting in the name of the corpus.

Let’s look at another example, this time including some
 homonyms:
>>> text = nltk.word_tokenize("They refuse to permit us to obtain the refuse permit")
>>> nltk.pos_tag(text)
[('They', 'PRP'), ('refuse', 'VBP'), ('to', 'TO'), ('permit', 'VB'), ('us', 'PRP'),
('to', 'TO'), ('obtain', 'VB'), ('the', 'DT'), ('refuse', 'NN'), ('permit', 'NN')]
Notice that refuse and
 permit both appear as a present tense verb
 (VBP) and a noun (NN). E.g., refUSE is a
 verb meaning “deny,” while REFuse is a noun meaning
 “trash” (i.e., they are not homophones). Thus, we need to know which
 word is being used in order to pronounce the text correctly. (For this
 reason, text-to-speech systems usually perform POS tagging.)
Note
Your Turn: Many words, like
 ski and race, can be used as
 nouns or verbs with no difference in pronunciation. Can you think of
 others? Hint: think of a commonplace object and try to put the word
 to before it to see if it can also be a verb, or
 think of an action and try to put the before it
 to see if it can also be a noun. Now make up a sentence with both uses
 of this word, and run the POS tagger on this sentence.

Lexical categories like “noun” and part-of-speech tags like
 NN seem to have their uses, but the
 details will be obscure to many readers. You might wonder what
 justification there is for introducing this extra level of information.
 Many of these categories arise from superficial analysis of the
 distribution of words in text. Consider the following analysis involving
 woman (a noun), bought (a
 verb), over (a preposition), and
 the (a determiner). The text.similar() method takes a word
 w, finds all contexts
 w1w
 w2, then finds all words
 w’ that appear in the same context, i.e.
 w1w’w2.
>>> text = nltk.Text(word.lower() for word in nltk.corpus.brown.words())
>>> text.similar('woman')
Building word-context index...
man time day year car moment world family house country child boy
state job way war girl place room word
>>> text.similar('bought')
made said put done seen had found left given heard brought got been
was set told took in felt that
>>> text.similar('over')
in on to of and for with from at by that into as up out down through
is all about
>>> text.similar('the')
a his this their its her an that our any all one these my in your no
some other and
Observe that searching for woman finds nouns;
 searching for bought mostly finds verbs; searching
 for over generally finds prepositions; searching
 for the finds several determiners. A tagger can
 correctly identify the tags on these words in the context of a sentence,
 e.g., The woman bought over $150,000 worth of
 clothes.
A tagger can also model our knowledge of unknown words; for
 example, we can guess that scrobbling is probably a
 verb, with the root scrobble, and likely to occur
 in contexts like he was scrobbling.

Tagged Corpora

Representing Tagged Tokens

By convention in NLTK, a tagged token is represented using a
 tuple consisting of the token and the tag. We can create one of these
 special tuples from the standard string representation of a tagged
 token, using the function str2tuple():
>>> tagged_token = nltk.tag.str2tuple('fly/NN')
>>> tagged_token
('fly', 'NN')
>>> tagged_token[0]
'fly'
>>> tagged_token[1]
'NN'
We can construct a list of tagged tokens directly from a string.
 The first step is to tokenize the string to access the individual
 word/tag strings, and then to convert each of these into a tuple
 (using str2tuple()).
>>> sent = '''
... The/AT grand/JJ jury/NN commented/VBD on/IN a/AT number/NN of/IN
... other/AP topics/NNS ,/, AMONG/IN them/PPO the/AT Atlanta/NP and/CC
... Fulton/NP-tl County/NN-tl purchasing/VBG departments/NNS which/WDT it/PPS
... said/VBD ``/`` ARE/BER well/QL operated/VBN and/CC follow/VB generally/RB
... accepted/VBN practices/NNS which/WDT inure/VB to/IN the/AT best/JJT
... interest/NN of/IN both/ABX governments/NNS ''/'' ./.
... '''
>>> [nltk.tag.str2tuple(t) for t in sent.split()]
[('The', 'AT'), ('grand', 'JJ'), ('jury', 'NN'), ('commented', 'VBD'),
('on', 'IN'), ('a', 'AT'), ('number', 'NN'), ... ('.', '.')]

Reading Tagged Corpora

Several of the corpora included with NLTK have been tagged for their part-of-speech. Here’s an
 example of what you might see if you opened a file from the Brown
 Corpus with a text editor:
The/at Fulton/np-tl County/nn-tl Grand/jj-tl Jury/nn-tl
 said/vbd Friday/nr an/at investigation/nn of/in Atlanta’s/np$
 recent/jj primary/nn election/nn produced/vbd / no/at evidence/nn ''/'' that/cs any/dti
 irregularities/nns took/vbd place/nn ./.

Other corpora use a variety of formats for storing
 part-of-speech tags. NLTK’s corpus readers provide a uniform interface
 so that you don’t have to be concerned with the different file
 formats. In contrast with the file extract just shown, the corpus
 reader for the Brown Corpus represents the data as shown next. Note
 that part-of-speech tags have been converted to uppercase; this has
 become standard practice since the Brown Corpus was published.
>>> nltk.corpus.brown.tagged_words()
[('The', 'AT'), ('Fulton', 'NP-TL'), ('County', 'NN-TL'), ...]
>>> nltk.corpus.brown.tagged_words(simplify_tags=True)
[('The', 'DET'), ('Fulton', 'N'), ('County', 'N'), ...]
Whenever a corpus contains tagged text, the NLTK corpus
 interface will have a tagged_words() method. Here are some more examples, again using the
 output format illustrated for the Brown Corpus:
>>> print nltk.corpus.nps_chat.tagged_words()
[('now', 'RB'), ('im', 'PRP'), ('left', 'VBD'), ...]
>>> nltk.corpus.conll2000.tagged_words()
[('Confidence', 'NN'), ('in', 'IN'), ('the', 'DT'), ...]
>>> nltk.corpus.treebank.tagged_words()
[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ...]
Not all corpora employ the same set of tags; see the tagset help
 functionality and the readme()
 methods mentioned earlier for documentation. Initially we want to
 avoid the complications of these tagsets, so we use a built-in mapping
 to a simplified tagset:
>>> nltk.corpus.brown.tagged_words(simplify_tags=True)
[('The', 'DET'), ('Fulton', 'NP'), ('County', 'N'), ...]
>>> nltk.corpus.treebank.tagged_words(simplify_tags=True)
[('Pierre', 'NP'), ('Vinken', 'NP'), (',', ','), ...]
Tagged corpora for several other languages are distributed with
 NLTK, including Chinese, Hindi, Portuguese, Spanish, Dutch, and
 Catalan. These usually contain non-ASCII text, and Python always displays
 this in hexadecimal when printing a larger structure such as a
 list.
>>> nltk.corpus.sinica_treebank.tagged_words()
[('\xe4\xb8\x80', 'Neu'), ('\xe5\x8f\x8b\xe6\x83\x85', 'Nad'), ...]
>>> nltk.corpus.indian.tagged_words()
[('\xe0\xa6\xae\xe0\xa6\xb9\xe0\xa6\xbf\xe0\xa6\xb7\xe0\xa7\x87\xe0\xa6\xb0', 'NN'),
('\xe0\xa6\xb8\xe0\xa6\xa8\xe0\xa7\x8d\xe0\xa6\xa4\xe0\xa6\xbe\xe0\xa6\xa8', 'NN'),
...]
>>> nltk.corpus.mac_morpho.tagged_words()
[('Jersei', 'N'), ('atinge', 'V'), ('m\xe9dia', 'N'), ...]
>>> nltk.corpus.conll2002.tagged_words()
[('Sao', 'NC'), ('Paulo', 'VMI'), ('(', 'Fpa'), ...]
>>> nltk.corpus.cess_cat.tagged_words()
[('El', 'da0ms0'), ('Tribunal_Suprem', 'np0000o'), ...]
If your environment is set up correctly, with appropriate
 editors and fonts, you should be able to display individual strings in
 a human-readable way. For example, Figure 5-1
 shows data accessed using nltk.corpus.indian.
If the corpus is also segmented into sentences, it will have a
 tagged_sents() method that divides up the tagged words into sentences
 rather than presenting them as one big list. This will be useful when
 we come to developing automatic taggers, as they are trained and
 tested on lists of sentences, not words.

A Simplified Part-of-Speech Tagset

Tagged corpora use many different conventions for tagging words.
 To help us get started, we will be looking at a simplified tagset
 (shown in Table 5-1).
Table 5-1. Simplified part-of-speech tagset
	Tag
	Meaning
	Examples

	ADJ
	adjective
	new, good, high, special, big,
 local

	ADV
	adverb
	really, already, still, early,
 now

	CNJ
	conjunction
	and, or, but, if, while,
 although

	DET
	determiner
	the, a, some, most, every,
 no

	EX
	existential
	there,
 there’s

	FW
	foreign word
	dolce, ersatz, esprit, quo,
 maitre

	MOD
	modal verb
	will, can, would, may, must,
 should

	N
	noun
	year, home, costs, time,
 education

	NP
	proper noun
	Alison, Africa, April,
 Washington

	NUM
	number
	twenty-four, fourth, 1991,
 14:24

	PRO
	pronoun
	he, their, her, its, my, I,
 us

	P
	preposition
	on, of, at, with, by, into,
 under

	TO
	the word to
	to

	UH
	interjection
	ah, bang, ha, whee, hmpf,
 oops

	V
	verb
	is, has, get, do, make, see,
 run

	VD
	past tense
	said, took, told, made,
 asked

	VG
	present participle
	making, going, playing,
 working

	VN
	past participle
	given, taken, begun,
 sung

	WH
	wh determiner
	who, which, when, what, where,
 how

[image: POS tagged data from four Indian languages: Bangla, Hindi, Marathi, and Telugu.]

Figure 5-1. POS tagged data from four Indian languages: Bangla, Hindi,
 Marathi, and Telugu.

Let’s see which of these tags are the most common in the news
 category of the Brown Corpus:
>>> from nltk.corpus import brown
>>> brown_news_tagged = brown.tagged_words(categories='news', simplify_tags=True)
>>> tag_fd = nltk.FreqDist(tag for (word, tag) in brown_news_tagged)
>>> tag_fd.keys()
['N', 'P', 'DET', 'NP', 'V', 'ADJ', ',', '.', 'CNJ', 'PRO', 'ADV', 'VD', ...]
Note
Your Turn: Plot the
 frequency distribution just shown using tag_fd.plot(cumulative=True). What
 percentage of words are tagged using the first five tags of the
 above list?

We can use these tags to do powerful searches using a graphical
 POS-concordance tool nltk.app.concordance(). Use it to search for
 any combination of words and POS tags, e.g., N N N N, hit/VD, hit/VN, or the ADJ
 man.

Nouns

Nouns generally refer to people, places, things, or concepts,
 e.g., woman, Scotland, book, intelligence. Nouns
 can appear after determiners and adjectives, and can be the subject or
 object of the verb, as shown in Table 5-2.
Table 5-2. Syntactic patterns involving some nouns
	Word
	After a determiner
	Subject of the verb

	woman
	the woman who I saw
 yesterday ...
	the woman sat
 down

	Scotland
	the Scotland I remember as a
 child ...
	Scotland has five million
 people

	book
	the book I bought yesterday
 ...
	this book recounts the
 colonization of Australia

	intelligence
	the intelligence displayed
 by the child ...
	Mary’s intelligence
 impressed her teachers

The simplified noun tags are N for common nouns like
 book, and NP
 for proper nouns like Scotland.
Let’s inspect some tagged text to see what parts-of-speech occur
 before a noun, with the most frequent ones first. To begin with, we
 construct a list of bigrams whose members are themselves word-tag
 pairs, such as (('The', 'DET'), ('Fulton',
 'NP')) and (('Fulton', 'NP'),
 ('County', 'N')). Then we construct a FreqDist from the tag parts of the bigrams.
>>> word_tag_pairs = nltk.bigrams(brown_news_tagged)
>>> list(nltk.FreqDist(a[1] for (a, b) in word_tag_pairs if b[1] == 'N'))
['DET', 'ADJ', 'N', 'P', 'NP', 'NUM', 'V', 'PRO', 'CNJ', '.', ',', 'VG', 'VN', ...]
This confirms our assertion that nouns occur after determiners
 and adjectives, including numeral adjectives (tagged as NUM).

Verbs

Verbs are words that describe events and actions, e.g.,
 fall and eat, as shown in
 Table 5-3. In the context of a sentence,
 verbs typically express a relation involving the referents of one or
 more noun phrases.
Table 5-3. Syntactic patterns involving some verbs
	Word
	Simple
	With modifiers and adjuncts
 (italicized)

	fall
	Rome fell
	Dot com stocks suddenly fell
 like a stone

	eat
	Mice eat cheese
	John ate the pizza with
 gusto

What are the most common verbs in news text? Let’s sort all the
 verbs by frequency:
>>> wsj = nltk.corpus.treebank.tagged_words(simplify_tags=True)
>>> word_tag_fd = nltk.FreqDist(wsj)
>>> [word + "/" + tag for (word, tag) in word_tag_fd if tag.startswith('V')]
['is/V', 'said/VD', 'was/VD', 'are/V', 'be/V', 'has/V', 'have/V', 'says/V',
'were/VD', 'had/VD', 'been/VN', "'s/V", 'do/V', 'say/V', 'make/V', 'did/VD',
'rose/VD', 'does/V', 'expected/VN', 'buy/V', 'take/V', 'get/V', 'sell/V',
'help/V', 'added/VD', 'including/VG', 'according/VG', 'made/VN', 'pay/V', ...]
Note that the items being counted in the frequency distribution
 are word-tag pairs. Since words and tags are paired, we can treat the
 word as a condition and the tag as an event, and initialize a
 conditional frequency distribution with a list of condition-event
 pairs. This lets us see a frequency-ordered list of tags given a
 word:
>>> cfd1 = nltk.ConditionalFreqDist(wsj)
>>> cfd1['yield'].keys()
['V', 'N']
>>> cfd1['cut'].keys()
['V', 'VD', 'N', 'VN']
We can reverse the order of the pairs, so that the tags are the
 conditions, and the words are the events. Now we can see likely words
 for a given tag:
>>> cfd2 = nltk.ConditionalFreqDist((tag, word) for (word, tag) in wsj)
>>> cfd2['VN'].keys()
['been', 'expected', 'made', 'compared', 'based', 'priced', 'used', 'sold',
'named', 'designed', 'held', 'fined', 'taken', 'paid', 'traded', 'said', ...]
To clarify the distinction between VD (past tense) and VN (past participle), let’s find words that
 can be both VD and VN, and see some surrounding text:
>>> [w for w in cfd1.conditions() if 'VD' in cfd1[w] and 'VN' in cfd1[w]]
['Asked', 'accelerated', 'accepted', 'accused', 'acquired', 'added', 'adopted', ...]
>>> idx1 = wsj.index(('kicked', 'VD'))
>>> wsj[idx1-4:idx1+1]
[('While', 'P'), ('program', 'N'), ('trades', 'N'), ('swiftly', 'ADV'),
('kicked', 'VD')]
>>> idx2 = wsj.index(('kicked', 'VN'))
>>> wsj[idx2-4:idx2+1]
[('head', 'N'), ('of', 'P'), ('state', 'N'), ('has', 'V'), ('kicked', 'VN')]
In this case, we see that the past participle of
 kicked is preceded by a form of the auxiliary
 verb have. Is this generally true?
Note
Your Turn: Given the list
 of past participles specified by cfd2['VN'].keys(), try to collect a list
 of all the word-tag pairs that immediately precede items in that
 list.

Adjectives and Adverbs

Two other important word classes are adjectives and adverbs. Adjectives describe nouns, and can
 be used as modifiers (e.g., large in
 the large pizza), or as predicates (e.g.,
 the pizza is large). English adjectives can have
 internal structure (e.g., fall+ing in
 the falling stocks). Adverbs modify verbs to
 specify the time, manner, place, or direction of the event described
 by the verb (e.g., quickly in the
 stocks fell quickly). Adverbs may also modify adjectives
 (e.g., really in Mary’s teacher was
 really nice).
English has several categories of closed class words in addition
 to prepositions, such as articles
 (also often called determiners)
 (e.g., the, a), modals (e.g., should,
 may), and personal
 pronouns (e.g., she,
 they). Each dictionary and grammar classifies
 these words differently.
Note
Your Turn: If you are
 uncertain about some of these parts-of-speech, study them using
 nltk.app.concordance(), or watch
 some of the Schoolhouse Rock! grammar videos
 available at YouTube, or consult Further Reading.

Unsimplified Tags

Let’s find the most frequent nouns of each noun part-of-speech
 type. The program in Example 5-1 finds all tags
 starting with NN, and provides a
 few example words for each one. You will see that there are many
 variants of NN; the most important
 contain $ for possessive nouns,
 S for plural nouns (since plural
 nouns typically end in s), and P for proper nouns. In addition, most of the
 tags have suffix modifiers: -NC for
 citations, -HL
 for words in headlines, and -TL for
 titles (a feature of Brown tags).
Example 5-1. Program to find the most frequent noun tags.
def findtags(tag_prefix, tagged_text):
 cfd = nltk.ConditionalFreqDist((tag, word) for (word, tag) in tagged_text
 if tag.startswith(tag_prefix))
 return dict((tag, cfd[tag].keys()[:5]) for tag in cfd.conditions())
>>> tagdict = findtags('NN', nltk.corpus.brown.tagged_words(categories='news'))
>>> for tag in sorted(tagdict):
... print tag, tagdict[tag]
...
NN ['year', 'time', 'state', 'week', 'man']
NN$ ["year's", "world's", "state's", "nation's", "company's"]
NN$-HL ["Golf's", "Navy's"]
NN$-TL ["President's", "University's", "League's", "Gallery's", "Army's"]
NN-HL ['cut', 'Salary', 'condition', 'Question', 'business']
NN-NC ['eva', 'ova', 'aya']
NN-TL ['President', 'House', 'State', 'University', 'City']
NN-TL-HL ['Fort', 'City', 'Commissioner', 'Grove', 'House']
NNS ['years', 'members', 'people', 'sales', 'men']
NNS$ ["children's", "women's", "men's", "janitors'", "taxpayers'"]
NNS$-HL ["Dealers'", "Idols'"]
NNS$-TL ["Women's", "States'", "Giants'", "Officers'", "Bombers'"]
NNS-HL ['years', 'idols', 'Creations', 'thanks', 'centers']
NNS-TL ['States', 'Nations', 'Masters', 'Rules', 'Communists']
NNS-TL-HL ['Nations']

When we come to constructing part-of-speech taggers later in
 this chapter, we will use the unsimplified tags.

Exploring Tagged Corpora

Let’s briefly return to the kinds of exploration of corpora we
 saw in previous chapters, this time exploiting POS tags.
Suppose we’re studying the word often and
 want to see how it is used in text. We could ask to see the words that
 follow often:
>>> brown_learned_text = brown.words(categories='learned')
>>> sorted(set(b for (a, b) in nltk.ibigrams(brown_learned_text) if a == 'often'))
[',', '.', 'accomplished', 'analytically', 'appear', 'apt', 'associated', 'assuming',
'became', 'become', 'been', 'began', 'call', 'called', 'carefully', 'chose', ...]
However, it’s probably more instructive use the tagged_words() method to look at the part-of-speech tag of the
 following words:
>>> brown_lrnd_tagged = brown.tagged_words(categories='learned', simplify_tags=True)
>>> tags = [b[1] for (a, b) in nltk.ibigrams(brown_lrnd_tagged) if a[0] == 'often']
>>> fd = nltk.FreqDist(tags)
>>> fd.tabulate()
 VN V VD DET ADJ ADV P CNJ , TO VG WH VBZ .
 15 12 8 5 5 4 4 3 3 1 1 1 1 1
Notice that the most high-frequency parts-of-speech following
 often are verbs. Nouns never appear in this
 position (in this particular corpus).
Next, let’s look at some larger context, and find words
 involving particular sequences of tags and words (in this case
 "<Verb> to <Verb>"). In
 Example 5-2, we consider each three-word
 window in the sentence [image: 1], and check
 whether they meet our criterion [image: 2].
 If the tags match, we print the corresponding words [image: 3].
Example 5-2. Searching for three-word phrases using POS tags.
from nltk.corpus import brown
def process(sentence):
 for (w1,t1), (w2,t2), (w3,t3) in nltk.trigrams(sentence): [image: 1]
 if (t1.startswith('V') and t2 == 'TO' and t3.startswith('V')): [image: 2]
 print w1, w2, w3 [image: 3]
>>> for tagged_sent in brown.tagged_sents():
... process(tagged_sent)
...
combined to achieve
continue to place
serve to protect
wanted to wait
allowed to place
expected to become
...

Finally, let’s look for words that are highly ambiguous as to
 their part-of-speech tag. Understanding why such words are tagged as
 they are in each context can help us clarify the distinctions between
 the tags.
>>> brown_news_tagged = brown.tagged_words(categories='news', simplify_tags=True)
>>> data = nltk.ConditionalFreqDist((word.lower(), tag)
... for (word, tag) in brown_news_tagged)
>>> for word in data.conditions():
... if len(data[word]) > 3:
... tags = data[word].keys()
... print word, ' '.join(tags)
...
best ADJ ADV NP V
better ADJ ADV V DET
close ADV ADJ V N
cut V N VN VD
even ADV DET ADJ V
grant NP N V -
hit V VD VN N
lay ADJ V NP VD
left VD ADJ N VN
like CNJ V ADJ P -
near P ADV ADJ DET
open ADJ V N ADV
past N ADJ DET P
present ADJ ADV V N
read V VN VD NP
right ADJ N DET ADV
second NUM ADV DET N
set VN V VD N -
that CNJ V WH DET
Note
Your Turn: Open the POS
 concordance tool nltk.app.concordance() and load the
 complete Brown Corpus (simplified tagset). Now pick some of the
 words listed at the end of the previous code example and see how the
 tag of the word correlates with the context of the word. E.g.,
 search for near to see all forms
 mixed together, near/ADJ to see
 it used as an adjective, near N
 to see just those cases where a noun follows, and so forth.

Mapping Words to Properties Using Python Dictionaries

As we have seen, a tagged word of the form (word, tag) is an association between a word and a part-of-speech
 tag. Once we start doing part-of-speech tagging, we will be creating
 programs that assign a tag to a word, the tag which is most likely in a
 given context. We can think of this process as mapping from words to tags. The most natural
 way to store mappings in Python uses the so-called dictionary data type (also known as an
 associative array or hash array in other programming languages). In
 this section, we look at dictionaries and see how they can represent a
 variety of language information, including parts-of-speech.
Indexing Lists Versus Dictionaries

A text, as we have seen, is treated in Python as a list of
 words. An important property of lists is that we can “look up” a
 particular item by giving its index, e.g., text1[100]. Notice how we specify a number
 and get back a word. We can think of a list as a simple kind of table,
 as shown in Figure 5-2.
[image: List lookup: We access the contents of a Python list with the help of an integer index.]

Figure 5-2. List lookup: We access the contents of a Python list with the
 help of an integer index.

Contrast this situation with frequency distributions (Computing with Language: Simple Statistics), where we
 specify a word and get back a number, e.g., fdist['monstrous'], which tells us the
 number of times a given word has occurred in a text. Lookup using
 words is familiar to anyone who has used a dictionary. Some more
 examples are shown in Figure 5-3.
[image: Dictionary lookup: we access the entry of a dictionary using a key such as someone’s name, a web domain, or an English word; other names for dictionary are map, hashmap, hash, and associative array.]

Figure 5-3. Dictionary lookup: we access the entry of a dictionary using
 a key such as someone’s name, a web domain, or an English word;
 other names for dictionary are map, hashmap, hash, and associative
 array.

In the case of a phonebook, we look up an entry using a
 name and get back a number. When we type a domain
 name in a web browser, the computer looks this up to get back an IP
 address. A word frequency table allows us to look up a word and find
 its frequency in a text collection. In all these cases, we are mapping
 from names to numbers, rather than the other way around as with a
 list. In general, we would like to be able to map between arbitrary
 types of information. Table 5-4 lists
 a variety of linguistic objects, along with what they map.
Table 5-4. Linguistic objects as mappings from keys to values
	Linguistic object
	Maps from
	Maps to

	Document Index
	Word
	List of pages (where word is
 found)

	Thesaurus
	Word sense
	List of synonyms

	Dictionary
	Headword
	Entry (part-of-speech, sense definitions,
 etymology)

	Comparative Wordlist
	Gloss term
	Cognates (list of words, one per
 language)

	Morph Analyzer
	Surface form
	Morphological analysis (list of component
 morphemes)

Most often, we are mapping from a “word” to some structured
 object. For example, a document index maps from a word (which we can
 represent as a string) to a list of pages (represented as a list of
 integers). In this section, we will see how to represent such mappings
 in Python.

Dictionaries in Python

Python provides a dictionary
 data type that can be used for mapping between arbitrary types. It is
 like a conventional dictionary, in that it gives you an efficient way
 to look things up. However, as we see from Table 5-4, it has a much wider range of
 uses.
To illustrate, we define pos
 to be an empty dictionary and then add four entries to it, specifying
 the part-of-speech of some words. We add entries to a dictionary using
 the familiar square bracket notation:
>>> pos = {}
>>> pos
{}
>>> pos['colorless'] = 'ADJ' [image: 1]
>>> pos
{'colorless': 'ADJ'}
>>> pos['ideas'] = 'N'
>>> pos['sleep'] = 'V'
>>> pos['furiously'] = 'ADV'
>>> pos [image: 2]
{'furiously': 'ADV', 'ideas': 'N', 'colorless': 'ADJ', 'sleep': 'V'}
So, for example, [image: 1] says that
 the part-of-speech of colorless is adjective, or
 more specifically, that the key
 'colorless' is assigned the
 value 'ADJ' in dictionary pos. When we inspect the value of pos [image: 2] we
 see a set of key-value pairs. Once we have populated the dictionary in
 this way, we can employ the keys to retrieve values:
>>> pos['ideas']
'N'
>>> pos['colorless']
'ADJ'
Of course, we might accidentally use a key that hasn’t been
 assigned a value.
>>> pos['green']
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
KeyError: 'green'
This raises an important question. Unlike lists and strings,
 where we can use len() to work out
 which integers will be legal indexes, how do we work out the legal
 keys for a dictionary? If the dictionary is not too big, we can simply
 inspect its contents by evaluating the variable pos. As we saw earlier in line [image: 2], this gives us the key-value pairs.
 Notice that they are not in the same order they were originally
 entered; this is because dictionaries are not sequences but mappings
 (see Figure 5-3), and the keys are not inherently
 ordered.
Alternatively, to just find the keys, we can either convert the
 dictionary to a list [image: 1] or use the
 dictionary in a context where a list is expected, as the parameter of
 sorted() [image: 2] or in a for loop [image: 3].
>>> list(pos) [image: 1]
['ideas', 'furiously', 'colorless', 'sleep']
>>> sorted(pos) [image: 2]
['colorless', 'furiously', 'ideas', 'sleep']
>>> [w for w in pos if w.endswith('s')] [image: 3]
['colorless', 'ideas']
Note
When you type list(pos),
 you might see a different order to the one shown here. If you want
 to see the keys in order, just sort them.

As well as iterating over all keys in the dictionary with a
 for loop, we can use the for loop as we did for printing
 lists:
>>> for word in sorted(pos):
... print word + ":", pos[word]
...
colorless: ADJ
furiously: ADV
sleep: V
ideas: N
Finally, the dictionary methods keys(), values(), and items() allow us
 to access the keys, values, and key-value pairs as separate lists. We
 can even sort tuples [image: 1], which orders
 them according to their first element (and if the first elements are
 the same, it uses their second elements).
>>> pos.keys()
['colorless', 'furiously', 'sleep', 'ideas']
>>> pos.values()
['ADJ', 'ADV', 'V', 'N']
>>> pos.items()
[('colorless', 'ADJ'), ('furiously', 'ADV'), ('sleep', 'V'), ('ideas', 'N')]
>>> for key, val in sorted(pos.items()): [image: 1]
... print key + ":", val
...
colorless: ADJ
furiously: ADV
ideas: N
sleep: V
We want to be sure that when we look something up in a
 dictionary, we get only one value for each key. Now suppose we try to
 use a dictionary to store the fact that the word
 sleep can be used as both a verb and a
 noun:
>>> pos['sleep'] = 'V'
>>> pos['sleep']
'V'
>>> pos['sleep'] = 'N'
>>> pos['sleep']
'N'
Initially, pos['sleep'] is
 given the value 'V'. But this is
 immediately overwritten with the new value, 'N'. In other words, there can be only one
 entry in the dictionary for 'sleep'. However, there is a way of storing
 multiple values in that entry: we use a list value, e.g., pos['sleep'] = ['N', 'V']. In fact, this is
 what we saw in Lexical Resources for the CMU
 Pronouncing Dictionary, which stores multiple pronunciations for a
 single word.

Defining Dictionaries

We can use the same key-value pair format to create a
 dictionary. There are a couple of ways to do this, and we will
 normally use the first:
>>> pos = {'colorless': 'ADJ', 'ideas': 'N', 'sleep': 'V', 'furiously': 'ADV'}
>>> pos = dict(colorless='ADJ', ideas='N', sleep='V', furiously='ADV')
Note that dictionary keys must be immutable types, such as
 strings and tuples. If we try to define a dictionary using a mutable
 key, we get a TypeError:
>>> pos = {['ideas', 'blogs', 'adventures']: 'N'}
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: list objects are unhashable

Default Dictionaries

If we try to access a key that is not in a dictionary, we get an
 error. However, it’s often useful if a dictionary can automatically
 create an entry for this new key and give it a default value, such as
 zero or the empty list. Since Python 2.5, a special kind of dictionary
 called a defaultdict has been
 available. (It is provided as nltk.defaultdict for the benefit of readers
 who are using Python 2.4.) In order to use it, we have to supply a
 parameter which can be used to create the default value, e.g.,
 int, float, str, list, dict, tuple.
>>> frequency = nltk.defaultdict(int)
>>> frequency['colorless'] = 4
>>> frequency['ideas']
0
>>> pos = nltk.defaultdict(list)
>>> pos['sleep'] = ['N', 'V']
>>> pos['ideas']
[]
Note
These default values are actually functions that convert other
 objects to the specified type (e.g., int("2"), list("2")). When they are called with no
 parameter—say, int(), list()—they return 0 and [] respectively.

The preceding examples specified the default value of a
 dictionary entry to be the default value of a particular data type.
 However, we can specify any default value we like, simply by providing
 the name of a function that can be called with no arguments to create
 the required value. Let’s return to our part-of-speech example, and
 create a dictionary whose default value for any entry is 'N' [image: 1].
 When we access a non-existent entry [image: 2], it is automatically added to the
 dictionary [image: 3].
>>> pos = nltk.defaultdict(lambda: 'N') [image: 1]
>>> pos['colorless'] = 'ADJ'
>>> pos['blog'] [image: 2]
'N'
>>> pos.items()
[('blog', 'N'), ('colorless', 'ADJ')] [image: 3]
Note
This example used a lambda expression,
 introduced in Functions: The Foundation of Structured Programming. This lambda
 expression specifies no parameters, so we call it using parentheses
 with no arguments. Thus, the following definitions of f and g
 are equivalent:
>>> f = lambda: 'N'
>>> f()
'N'
>>> def g():
... return 'N'
>>> g()
'N'

Let’s see how default dictionaries could be used in a more
 substantial language processing task. Many language processing
 tasks—including tagging—struggle to correctly process the hapaxes of a
 text. They can perform better with a fixed vocabulary and a guarantee
 that no new words will appear. We can preprocess a text to replace
 low-frequency words with a special “out of vocabulary” token, UNK, with the help of a default dictionary.
 (Can you work out how to do this without reading on?)
We need to create a default dictionary that maps each word to
 its replacement. The most frequent n words will
 be mapped to themselves. Everything else will be mapped to UNK.
>>> alice = nltk.corpus.gutenberg.words('carroll-alice.txt')
>>> vocab = nltk.FreqDist(alice)
>>> v1000 = list(vocab)[:1000]
>>> mapping = nltk.defaultdict(lambda: 'UNK')
>>> for v in v1000:
... mapping[v] = v
...
>>> alice2 = [mapping[v] for v in alice]
>>> alice2[:100]
['UNK', 'Alice', "'", 's', 'Adventures', 'in', 'Wonderland', 'by', 'UNK', 'UNK',
'UNK', 'UNK', 'CHAPTER', 'I', '.', 'UNK', 'the', 'Rabbit', '-', 'UNK', 'Alice',
'was', 'beginning', 'to', 'get', 'very', 'tired', 'of', 'sitting', 'by', 'her',
'sister', 'on', 'the', 'bank', ',', 'and', 'of', 'having', 'nothing', 'to', 'do',
':', 'once', 'or', 'twice', 'she', 'had', 'UNK', 'into', 'the', 'book', 'her',
'sister', 'was', 'UNK', ',', 'but', 'it', 'had', 'no', 'pictures', 'or', 'UNK',
'in', 'it', ',', "'", 'and', 'what', 'is', 'the', 'use', 'of', 'a', 'book', ",'",
'thought', 'Alice', "'", 'without', 'pictures', 'or', 'conversation', "?'", ...]
>>> len(set(alice2))
1001

Incrementally Updating a Dictionary

We can employ dictionaries to count occurrences, emulating the
 method for tallying words shown in Figure 1-3. We
 begin by initializing an empty defaultdict, then process each
 part-of-speech tag in the text. If the tag hasn’t been seen before, it
 will have a zero count by default. Each time we encounter a tag, we
 increment its count using the +=
 operator (see Example 5-3).
Example 5-3. Incrementally updating a dictionary, and sorting by
 value.
>>> counts = nltk.defaultdict(int)
>>> from nltk.corpus import brown
>>> for (word, tag) in brown.tagged_words(categories='news'):
... counts[tag] += 1
...
>>> counts['N']
22226
>>> list(counts)
['FW', 'DET', 'WH', "''", 'VBZ', 'VB+PPO', "'", ')', 'ADJ', 'PRO', '*', '-', ...]

>>> from operator import itemgetter
>>> sorted(counts.items(), key=itemgetter(1), reverse=True)
[('N', 22226), ('P', 10845), ('DET', 10648), ('NP', 8336), ('V', 7313), ...]
>>> [t for t, c in sorted(counts.items(), key=itemgetter(1), reverse=True)]
['N', 'P', 'DET', 'NP', 'V', 'ADJ', ',', '.', 'CNJ', 'PRO', 'ADV', 'VD', ...]

The listing in Example 5-3 illustrates an
 important idiom for sorting a dictionary by its values, to show words
 in decreasing order of frequency. The first parameter of sorted() is the items
 to sort, which is a list of tuples consisting of a POS tag and a
 frequency. The second parameter specifies the sort key using a
 function itemgetter(). In general,
 itemgetter(n) returns a function
 that can be called on some other sequence object to obtain the
 nth element:
>>> pair = ('NP', 8336)
>>> pair[1]
8336
>>> itemgetter(1)(pair)
8336
The last parameter of sorted() specifies that the items should be
 returned in reverse order, i.e., decreasing values of
 frequency.
There’s a second useful programming idiom at the beginning of
 Example 5-3, where we initialize a defaultdict and then use a for loop to update its values. Here’s a
 schematic version:
>>> my_dictionary = nltk.defaultdict(function to create default value)
>>> for item in sequence:
... my_dictionary[item_key] is updated with information about item

Here’s another instance of this pattern, where we index words
 according to their last two letters:
>>> last_letters = nltk.defaultdict(list)
>>> words = nltk.corpus.words.words('en')
>>> for word in words:
... key = word[-2:]
... last_letters[key].append(word)
...
>>> last_letters['ly']
['abactinally', 'abandonedly', 'abasedly', 'abashedly', 'abashlessly', 'abbreviately',
'abdominally', 'abhorrently', 'abidingly', 'abiogenetically', 'abiologically', ...]
>>> last_letters['zy']
['blazy', 'bleezy', 'blowzy', 'boozy', 'breezy', 'bronzy', 'buzzy', 'Chazy', ...]
The following example uses the same pattern to create an anagram
 dictionary. (You might experiment with the third line to get an idea
 of why this program works.)
>>> anagrams = nltk.defaultdict(list)
>>> for word in words:
... key = ''.join(sorted(word))
... anagrams[key].append(word)
...
>>> anagrams['aeilnrt']
['entrail', 'latrine', 'ratline', 'reliant', 'retinal', 'trenail']
Since accumulating words like this is such a common task, NLTK
 provides a more convenient way of creating a defaultdict(list), in the form of nltk.Index():
>>> anagrams = nltk.Index((''.join(sorted(w)), w) for w in words)
>>> anagrams['aeilnrt']
['entrail', 'latrine', 'ratline', 'reliant', 'retinal', 'trenail']
Note
nltk.Index is a defaultdict(list) with extra support for
 initialization. Similarly, nltk.FreqDist is essentially a defaultdict(int) with extra support for
 initialization (along with sorting and plotting methods).

Complex Keys and Values

We can use default dictionaries with complex keys and values.
 Let’s study the range of possible tags for a word, given the word
 itself and the tag of the previous word. We will see how this
 information can be used by a POS tagger.
>>> pos = nltk.defaultdict(lambda: nltk.defaultdict(int))
>>> brown_news_tagged = brown.tagged_words(categories='news', simplify_tags=True)
>>> for ((w1, t1), (w2, t2)) in nltk.ibigrams(brown_news_tagged): [image: 1]
... pos[(t1, w2)][t2] += 1 [image: 2]
...
>>> pos[('DET', 'right')] [image: 3]
defaultdict(<type 'int'>, {'ADV': 3, 'ADJ': 9, 'N': 3})
This example uses a dictionary whose default value for an entry
 is a dictionary (whose default value is int(), i.e., zero). Notice how we iterated
 over the bigrams of the tagged corpus, processing a pair of word-tag
 pairs for each iteration [image: 1]. Each
 time through the loop we updated our pos dictionary’s entry for (t1, w2), a tag and its
 following word [image: 2]. When we look up an item in pos we must specify a compound key [image: 3], and we get back a dictionary object. A
 POS tagger could use such information to decide that the word
 right, when preceded by a determiner, should be
 tagged as ADJ.

Inverting a Dictionary

Dictionaries support efficient lookup, so long as you want to
 get the value for any key. If d is
 a dictionary and k is a key, we
 type d[k] and immediately obtain
 the value. Finding a key given a value is slower and more
 cumbersome:
>>> counts = nltk.defaultdict(int)
>>> for word in nltk.corpus.gutenberg.words('milton-paradise.txt'):
... counts[word] += 1
...
>>> [key for (key, value) in counts.items() if value == 32]
['brought', 'Him', 'virtue', 'Against', 'There', 'thine', 'King', 'mortal',
'every', 'been']
If we expect to do this kind of “reverse lookup” often, it helps
 to construct a dictionary that maps values to keys. In the case that
 no two keys have the same value, this is an easy thing to do. We just
 get all the key-value pairs in the dictionary, and create a new
 dictionary of value-key pairs. The next example also illustrates
 another way of initializing a dictionary pos with key-value pairs.
>>> pos = {'colorless': 'ADJ', 'ideas': 'N', 'sleep': 'V', 'furiously': 'ADV'}
>>> pos2 = dict((value, key) for (key, value) in pos.items())
>>> pos2['N']
'ideas'
Let’s first make our part-of-speech dictionary a bit more
 realistic and add some more words to pos using the dictionary update() method, to create the situation
 where multiple keys have the same value. Then the technique just shown
 for reverse lookup will no longer work (why not?). Instead, we have to
 use append() to accumulate the words for each part-of-speech, as
 follows:
>>> pos.update({'cats': 'N', 'scratch': 'V', 'peacefully': 'ADV', 'old': 'ADJ'})
>>> pos2 = nltk.defaultdict(list)
>>> for key, value in pos.items():
... pos2[value].append(key)
...
>>> pos2['ADV']
['peacefully', 'furiously']
Now we have inverted the pos
 dictionary, and can look up any part-of-speech and find all words
 having that part-of-speech. We can do the same thing even more simply
 using NLTK’s support for indexing, as follows:
>>> pos2 = nltk.Index((value, key) for (key, value) in pos.items())
>>> pos2['ADV']
['peacefully', 'furiously']
A summary of Python’s dictionary methods is given in Table 5-5.
Table 5-5. Python’s dictionary methods: A summary of commonly used
 methods and idioms involving dictionaries
	Example
	Description

	d =
 {}
	Create an empty dictionary and assign it to
 d

	d[key] =
 value
	Assign a value to a given dictionary
 key

	d.keys()
	The list of keys of the dictionary

	list(d)
	The list of keys of the dictionary

	sorted(d)
	The keys of the dictionary, sorted

	key in
 d
	Test whether a particular key is in the
 dictionary

	for key in
 d
	Iterate over the keys of the
 dictionary

	d.values()
	The list of values in the
 dictionary

	dict([(k1,v1), (k2,v2),
 ...])
	Create a dictionary from a list of key-value
 pairs

	d1.update(d2)
	Add all items from d2 to d1

	defaultdict(int)
	A dictionary whose default value is
 zero

Automatic Tagging

In the rest of this chapter we will explore various ways to
 automatically add part-of-speech tags to text. We will see that the tag
 of a word depends on the word and its context within a sentence. For
 this reason, we will be working with data at the level of (tagged)
 sentences rather than words. We’ll begin by loading the data we will be
 using.
>>> from nltk.corpus import brown
>>> brown_tagged_sents = brown.tagged_sents(categories='news')
>>> brown_sents = brown.sents(categories='news')
The Default Tagger

The simplest possible tagger assigns the same tag to each token.
 This may seem to be a rather banal step, but it establishes an
 important baseline for tagger performance. In order to get the best
 result, we tag each word with the most likely tag. Let’s find out
 which tag is most likely (now using the unsimplified
 tagset):
>>> tags = [tag for (word, tag) in brown.tagged_words(categories='news')]
>>> nltk.FreqDist(tags).max()
'NN'
Now we can create a tagger that tags everything as NN.
>>> raw = 'I do not like green eggs and ham, I do not like them Sam I am!'
>>> tokens = nltk.word_tokenize(raw)
>>> default_tagger = nltk.DefaultTagger('NN')
>>> default_tagger.tag(tokens)
[('I', 'NN'), ('do', 'NN'), ('not', 'NN'), ('like', 'NN'), ('green', 'NN'),
('eggs', 'NN'), ('and', 'NN'), ('ham', 'NN'), (',', 'NN'), ('I', 'NN'),
('do', 'NN'), ('not', 'NN'), ('like', 'NN'), ('them', 'NN'), ('Sam', 'NN'),
('I', 'NN'), ('am', 'NN'), ('!', 'NN')]
Unsurprisingly, this method performs rather poorly. On a typical
 corpus, it will tag only about an eighth of the tokens correctly, as
 we see here:
>>> default_tagger.evaluate(brown_tagged_sents)
0.13089484257215028
Default taggers assign their tag to every single word, even
 words that have never been encountered before. As it happens, once we
 have processed several thousand words of English text, most new words
 will be nouns. As we will see, this means that default taggers can
 help to improve the robustness of a language processing system. We
 will return to them shortly.

The Regular Expression Tagger

The regular expression tagger assigns tags to tokens on the
 basis of matching patterns. For instance, we might guess that any word
 ending in ed is the past participle of a verb,
 and any word ending with ’s is a possessive noun.
 We can express these as a list of regular expressions:
>>> patterns = [
... (r'.*ing$', 'VBG'), # gerunds
... (r'.*ed$', 'VBD'), # simple past
... (r'.*es$', 'VBZ'), # 3rd singular present
... (r'.*ould$', 'MD'), # modals
... (r'.*\'s$', 'NN$'), # possessive nouns
... (r'.*s$', 'NNS'), # plural nouns
... (r'^-?[0-9]+(.[0-9]+)?$', 'CD'), # cardinal numbers
... (r'.*', 'NN') # nouns (default)
...]
Note that these are processed in order, and the first one that
 matches is applied. Now we can set up a tagger and use it to tag a
 sentence. After this step, it is correct about a fifth of the
 time.
>>> regexp_tagger = nltk.RegexpTagger(patterns)
>>> regexp_tagger.tag(brown_sents[3])
[('``', 'NN'), ('Only', 'NN'), ('a', 'NN'), ('relative', 'NN'), ('handful', 'NN'),
('of', 'NN'), ('such', 'NN'), ('reports', 'NNS'), ('was', 'NNS'), ('received', 'VBD'),
("''", 'NN'), (',', 'NN'), ('the', 'NN'), ('jury', 'NN'), ('said', 'NN'), (',', 'NN'),
('``', 'NN'), ('considering', 'VBG'), ('the', 'NN'), ('widespread', 'NN'), ...]
>>> regexp_tagger.evaluate(brown_tagged_sents)
0.20326391789486245
The final regular expression «.*» is a catch-all that tags everything as a
 noun. This is equivalent to the default tagger (only much less
 efficient). Instead of respecifying this as part of the regular
 expression tagger, is there a way to combine this tagger with the
 default tagger? We will see how to do this shortly.
Note
Your Turn: See if you can
 come up with patterns to improve the performance of the regular
 expression tagger just shown. (Note that Supervised Classification describes a way to
 partially automate such work.)

The Lookup Tagger

A lot of high-frequency words do not have the NN tag. Let’s find the hundred most frequent
 words and store their most likely tag. We can then use this
 information as the model for a “lookup tagger” (an NLTK UnigramTagger):
>>> fd = nltk.FreqDist(brown.words(categories='news'))
>>> cfd = nltk.ConditionalFreqDist(brown.tagged_words(categories='news'))
>>> most_freq_words = fd.keys()[:100]
>>> likely_tags = dict((word, cfd[word].max()) for word in most_freq_words)
>>> baseline_tagger = nltk.UnigramTagger(model=likely_tags)
>>> baseline_tagger.evaluate(brown_tagged_sents)
0.45578495136941344
It should come as no surprise by now that simply knowing the
 tags for the 100 most frequent words enables us to tag a large
 fraction of tokens correctly (nearly half, in fact). Let’s see what it
 does on some untagged input text:
>>> sent = brown.sents(categories='news')[3]
>>> baseline_tagger.tag(sent)
[('``', '``'), ('Only', None), ('a', 'AT'), ('relative', None),
('handful', None), ('of', 'IN'), ('such', None), ('reports', None),
('was', 'BEDZ'), ('received', None), ("''", "''"), (',', ','),
('the', 'AT'), ('jury', None), ('said', 'VBD'), (',', ','),
('``', '``'), ('considering', None), ('the', 'AT'), ('widespread', None),
('interest', None), ('in', 'IN'), ('the', 'AT'), ('election', None),
(',', ','), ('the', 'AT'), ('number', None), ('of', 'IN'),
('voters', None), ('and', 'CC'), ('the', 'AT'), ('size', None),
('of', 'IN'), ('this', 'DT'), ('city', None), ("''", "''"), ('.', '.')]
Many words have been assigned a tag of None, because they were not among the 100
 most frequent words. In these cases we would like to assign the
 default tag of NN. In other words,
 we want to use the lookup table first, and if it is unable to assign a
 tag, then use the default tagger, a process known as backoff (N-Gram Tagging). We do this by specifying one tagger
 as a parameter to the other, as shown next. Now the lookup tagger will
 only store word-tag pairs for words other than nouns, and whenever it
 cannot assign a tag to a word, it will invoke the default
 tagger.
>>> baseline_tagger = nltk.UnigramTagger(model=likely_tags,
... backoff=nltk.DefaultTagger('NN'))
Let’s put all this together and write a program to create and
 evaluate lookup taggers having a range of sizes (Example 5-4).
Example 5-4. Lookup tagger performance with varying model size.
def performance(cfd, wordlist):
 lt = dict((word, cfd[word].max()) for word in wordlist)
 baseline_tagger = nltk.UnigramTagger(model=lt, backoff=nltk.DefaultTagger('NN'))
 return baseline_tagger.evaluate(brown.tagged_sents(categories='news'))

def display():
 import pylab
 words_by_freq = list(nltk.FreqDist(brown.words(categories='news')))
 cfd = nltk.ConditionalFreqDist(brown.tagged_words(categories='news'))
 sizes = 2 ** pylab.arange(15)
 perfs = [performance(cfd, words_by_freq[:size]) for size in sizes]
 pylab.plot(sizes, perfs, '-bo')
 pylab.title('Lookup Tagger Performance with Varying Model Size')
 pylab.xlabel('Model Size')
 pylab.ylabel('Performance')
 pylab.show()
>>> display()

Observe in Figure 5-4 that performance
 initially increases rapidly as the model size grows, eventually
 reaching a plateau, when large increases in model size yield little
 improvement in performance. (This example used the pylab plotting package, discussed in A Sample of Python Libraries.)
[image: Lookup tagger]

Figure 5-4. Lookup tagger

Evaluation

In the previous examples, you will have noticed an emphasis on
 accuracy scores. In fact, evaluating the performance of such tools is
 a central theme in NLP. Recall the processing pipeline in Figure 1-5; any errors in the output of one module are
 greatly multiplied in the downstream modules.
We evaluate the performance of a tagger relative to the tags a
 human expert would assign. Since we usually don’t have access to an
 expert and impartial human judge, we make do instead with gold standard test data. This is a corpus
 which has been manually annotated and accepted as a standard against
 which the guesses of an automatic system are assessed. The tagger is
 regarded as being correct if the tag it guesses for a given word is
 the same as the gold standard tag.
Of course, the humans who designed and carried out the original
 gold standard annotation were only human. Further analysis might show
 mistakes in the gold standard, or may eventually lead to a revised
 tagset and more elaborate guidelines. Nevertheless, the gold standard
 is by definition “correct” as far as the evaluation of an automatic
 tagger is concerned.
Note
Developing an annotated corpus is a major undertaking. Apart
 from the data, it generates sophisticated tools, documentation, and
 practices for ensuring high-quality annotation. The tagsets and
 other coding schemes inevitably depend on some theoretical position
 that is not shared by all. However, corpus creators often go to
 great lengths to make their work as theory-neutral as possible in
 order to maximize the usefulness of their work. We will discuss the
 challenges of creating a corpus in Chapter 11.

N-Gram Tagging

Unigram Tagging

Unigram taggers are based on a simple statistical algorithm: for each
 token, assign the tag that is most likely for that particular token.
 For example, it will assign the tag JJ to any occurrence of the word
 frequent, since frequent is
 used as an adjective (e.g., a frequent word) more
 often than it is used as a verb (e.g., I frequent this
 cafe). A unigram tagger behaves just like a lookup tagger
 (Automatic Tagging), except there is a more
 convenient technique for setting it up, called training. In the following code sample, we
 train a unigram tagger, use it to tag a sentence, and then
 evaluate:
>>> from nltk.corpus import brown
>>> brown_tagged_sents = brown.tagged_sents(categories='news')
>>> brown_sents = brown.sents(categories='news')
>>> unigram_tagger = nltk.UnigramTagger(brown_tagged_sents)
>>> unigram_tagger.tag(brown_sents[2007])
[('Various', 'JJ'), ('of', 'IN'), ('the', 'AT'), ('apartments', 'NNS'),
('are', 'BER'), ('of', 'IN'), ('the', 'AT'), ('terrace', 'NN'), ('type', 'NN'),
(',', ','), ('being', 'BEG'), ('on', 'IN'), ('the', 'AT'), ('ground', 'NN'),
('floor', 'NN'), ('so', 'QL'), ('that', 'CS'), ('entrance', 'NN'), ('is', 'BEZ'),
('direct', 'JJ'), ('.', '.')]
>>> unigram_tagger.evaluate(brown_tagged_sents)
0.9349006503968017
We train a UnigramTagger by specifying tagged sentence data as a parameter when
 we initialize the tagger. The training process involves inspecting the
 tag of each word and storing the most likely tag for any word in a
 dictionary that is stored inside the tagger.

Separating the Training and Testing Data

Now that we are training a tagger on some data, we must be
 careful not to test it on the same data, as we did in the previous
 example. A tagger that simply memorized its training data and made no
 attempt to construct a general model would get a perfect score, but
 would be useless for tagging new text. Instead, we should split the
 data, training on 90% and testing on the remaining 10%:
>>> size = int(len(brown_tagged_sents) * 0.9)
>>> size
4160
>>> train_sents = brown_tagged_sents[:size]
>>> test_sents = brown_tagged_sents[size:]
>>> unigram_tagger = nltk.UnigramTagger(train_sents)
>>> unigram_tagger.evaluate(test_sents)
0.81202033290142528
Although the score is worse, we now have a better picture of the
 usefulness of this tagger, i.e., its performance on previously unseen
 text.

General N-Gram Tagging

When we perform a language processing task based on unigrams, we
 are using one item of context. In the case of tagging, we consider
 only the current token, in isolation from any larger context. Given
 such a model, the best we can do is tag each word with its a
 priori most likely tag. This means we would tag a word such
 as wind with the same tag, regardless of whether
 it appears in the context the wind or
 to wind.
An n-gram tagger is a
 generalization of a unigram tagger whose context is the current word
 together with the part-of-speech tags of the n-1
 preceding tokens, as shown in Figure 5-5. The
 tag to be chosen,
 tn,
 is circled, and the context is shaded in grey. In the example of an
 n-gram tagger shown in Figure 5-5, we have
 n=3; that is, we consider the tags of the two
 preceding words in addition to the current word. An n-gram tagger
 picks the tag that is most likely in the given context.
[image: Tagger context.]

Figure 5-5. Tagger context.

Note
A 1-gram tagger is another term for a unigram tagger: i.e.,
 the context used to tag a token is just the text of the token
 itself. 2-gram taggers are also called bigram
 taggers, and 3-gram taggers are called trigram
 taggers.

The NgramTagger class uses a tagged training corpus to determine which
 part-of-speech tag is most likely for each context. Here we see a
 special case of an n-gram tagger, namely a bigram tagger. First we
 train it, then use it to tag untagged sentences:
>>> bigram_tagger = nltk.BigramTagger(train_sents)
>>> bigram_tagger.tag(brown_sents[2007])
[('Various', 'JJ'), ('of', 'IN'), ('the', 'AT'), ('apartments', 'NNS'),
('are', 'BER'), ('of', 'IN'), ('the', 'AT'), ('terrace', 'NN'),
('type', 'NN'), (',', ','), ('being', 'BEG'), ('on', 'IN'), ('the', 'AT'),
('ground', 'NN'), ('floor', 'NN'), ('so', 'CS'), ('that', 'CS'),
('entrance', 'NN'), ('is', 'BEZ'), ('direct', 'JJ'), ('.', '.')]
>>> unseen_sent = brown_sents[4203]
>>> bigram_tagger.tag(unseen_sent)
[('The', 'AT'), ('population', 'NN'), ('of', 'IN'), ('the', 'AT'), ('Congo', 'NP'),
('is', 'BEZ'), ('13.5', None), ('million', None), (',', None), ('divided', None),
('into', None), ('at', None), ('least', None), ('seven', None), ('major', None),
('``', None), ('culture', None), ('clusters', None), ("''", None), ('and', None),
('innumerable', None), ('tribes', None), ('speaking', None), ('400', None),
('separate', None), ('dialects', None), ('.', None)]
Notice that the bigram tagger manages to tag every word in a
 sentence it saw during training, but does badly on an unseen sentence.
 As soon as it encounters a new word (i.e., 13.5),
 it is unable to assign a tag. It cannot tag the following word (i.e.,
 million), even if it was seen during training,
 simply because it never saw it during training with a None tag on the previous word. Consequently,
 the tagger fails to tag the rest of the sentence. Its overall accuracy
 score is very low:
>>> bigram_tagger.evaluate(test_sents)
0.10276088906608193
As n gets larger, the specificity of the
 contexts increases, as does the chance that the data we wish to tag
 contains contexts that were not present in the training data. This is
 known as the sparse data problem, and is quite
 pervasive in NLP. As a consequence, there is a trade-off between the
 accuracy and the coverage of our results (and this is related to the
 precision/recall trade-off in
 information retrieval).
Caution!
N-gram taggers should not consider context that crosses a
 sentence boundary. Accordingly, NLTK taggers are designed to work
 with lists of sentences, where each sentence is a list of words. At
 the start of a sentence,
 tn-1
 and preceding tags are set to None.

Combining Taggers

One way to address the trade-off between accuracy and coverage
 is to use the more accurate algorithms when we can, but to fall back
 on algorithms with wider coverage when necessary. For example, we
 could combine the results of a bigram tagger, a unigram tagger, and a default tagger, as
 follows:
	Try tagging the token with the bigram tagger.

	If the bigram tagger is unable to find a tag for the token,
 try the unigram tagger.

	If the unigram tagger is also unable to find a tag, use a
 default tagger.

Most NLTK taggers permit a backoff tagger to be specified. The
 backoff tagger may itself have a backoff tagger:
>>> t0 = nltk.DefaultTagger('NN')
>>> t1 = nltk.UnigramTagger(train_sents, backoff=t0)
>>> t2 = nltk.BigramTagger(train_sents, backoff=t1)
>>> t2.evaluate(test_sents)
0.84491179108940495
Note
Your Turn: Extend the
 preceding example by defining a TrigramTagger called t3, which
 backs off to t2.

Note that we specify the backoff tagger when the tagger is
 initialized so that training can take advantage of the backoff tagger.
 Thus, if the bigram tagger would assign the same tag as its unigram
 backoff tagger in a certain context, the bigram tagger discards the
 training instance. This keeps the bigram tagger model as small as
 possible. We can further specify that a tagger needs to see more than
 one instance of a context in order to retain it. For example, nltk.BigramTagger(sents, cutoff=2,
 backoff=t1) will discard contexts that have only been seen once or
 twice.

Tagging Unknown Words

Our approach to tagging unknown words still uses backoff to a
 regular expression tagger or a default tagger. These are unable to
 make use of context. Thus, if our tagger encountered the word
 blog, not seen during training, it would assign
 it the same tag, regardless of whether this word appeared in the
 context the blog or to blog.
 How can we do better with these unknown words, or out-of-vocabulary items?
A useful method to tag unknown words based on context is to
 limit the vocabulary of a tagger to the most frequent
 n words, and to replace every other word with a
 special word UNK using the method shown in Mapping Words to Properties Using Python Dictionaries. During training, a unigram tagger will
 probably learn that UNK is usually a noun.
 However, the n-gram taggers will detect contexts in which it has some
 other tag. For example, if the preceding word is
 to (tagged TO), then UNK will
 probably be tagged as a verb.

Storing Taggers

Training a tagger on a large corpus may take a significant time.
 Instead of training a tagger every time we need one, it is convenient
 to save a trained tagger in a file for later reuse. Let’s save our
 tagger t2 to a file t2.pkl:
>>> from cPickle import dump
>>> output = open('t2.pkl', 'wb')
>>> dump(t2, output, -1)
>>> output.close()
Now, in a separate Python process, we can load our saved
 tagger:
>>> from cPickle import load
>>> input = open('t2.pkl', 'rb')
>>> tagger = load(input)
>>> input.close()
Now let’s check that it can be used for tagging:
>>> text = """The board's action shows what free enterprise
... is up against in our complex maze of regulatory laws ."""
>>> tokens = text.split()
>>> tagger.tag(tokens)
[('The', 'AT'), ("board's", 'NN$'), ('action', 'NN'), ('shows', 'NNS'),
('what', 'WDT'), ('free', 'JJ'), ('enterprise', 'NN'), ('is', 'BEZ'),
('up', 'RP'), ('against', 'IN'), ('in', 'IN'), ('our', 'PP$'), ('complex', 'JJ'),
('maze', 'NN'), ('of', 'IN'), ('regulatory', 'NN'), ('laws', 'NNS'), ('.', '.')]

Performance Limitations

What is the upper limit to the performance of an n-gram tagger?
 Consider the case of a trigram tagger. How many cases of
 part-of-speech ambiguity does it encounter? We can determine the
 answer to this question empirically:
>>> cfd = nltk.ConditionalFreqDist(
... ((x[1], y[1], z[0]), z[1])
... for sent in brown_tagged_sents
... for x, y, z in nltk.trigrams(sent))
>>> ambiguous_contexts = [c for c in cfd.conditions() if len(cfd[c]) > 1]
>>> sum(cfd[c].N() for c in ambiguous_contexts) / cfd.N()
0.049297702068029296
Thus, 1 out of 20 trigrams is ambiguous. Given the current word
 and the previous two tags, in 5% of cases there is more than one tag
 that could be legitimately assigned to the current word according to
 the training data. Assuming we always pick the most likely tag in such
 ambiguous contexts, we can derive a lower bound on the performance of
 a trigram tagger.
Another way to investigate the performance of a tagger is to
 study its mistakes. Some tags may be harder than others to assign, and
 it might be possible to treat them specially by pre- or
 post-processing the data. A convenient way to look at tagging errors
 is the confusion matrix. It charts
 expected tags (the gold standard) against actual tags generated by a
 tagger:
>>> test_tags = [tag for sent in brown.sents(categories='editorial')
... for (word, tag) in t2.tag(sent)]
>>> gold_tags = [tag for (word, tag) in brown.tagged_words(categories='editorial')]
>>> print nltk.ConfusionMatrix(gold, test)
Based on such analysis we may decide to modify the tagset.
 Perhaps a distinction between tags that is difficult to make can be
 dropped, since it is not important in the context of some larger
 processing task.
Another way to analyze the performance bound on a tagger comes
 from the less than 100% agreement between human annotators.
In general, observe that the tagging process collapses
 distinctions: e.g., lexical identity is usually lost when all personal
 pronouns are tagged PRP. At the
 same time, the tagging process introduces new distinctions and removes
 ambiguities: e.g., deal tagged as VB or NN.
 This characteristic of collapsing certain distinctions and introducing
 new distinctions is an important feature of tagging which facilitates
 classification and prediction. When we introduce finer distinctions in
 a tagset, an n-gram tagger gets more detailed information about the
 left-context when it is deciding what tag to assign to a particular
 word. However, the tagger simultaneously has to do more work to
 classify the current token, simply because there are more tags to
 choose from. Conversely, with fewer distinctions (as with the
 simplified tagset), the tagger has less information about context, and
 it has a smaller range of choices in classifying the current
 token.
We have seen that ambiguity in the training data leads to an
 upper limit in tagger performance. Sometimes more context will resolve
 the ambiguity. In other cases, however, as noted by (Abney, 1996), the
 ambiguity can be resolved only with reference to syntax or to world
 knowledge. Despite these imperfections, part-of-speech tagging has
 played a central role in the rise of statistical approaches to natural
 language processing. In the early 1990s, the surprising accuracy of
 statistical taggers was a striking demonstration that it was possible to
 solve one small part of the language understanding problem, namely
 part-of-speech disambiguation, without reference to deeper sources of
 linguistic knowledge. Can this idea be pushed further? In Chapter 7, we will see that it can.

Tagging Across Sentence Boundaries

An n-gram tagger uses recent tags to guide the choice of tag for
 the current word. When tagging the first word of a sentence, a trigram
 tagger will be using the part-of-speech tag of the previous two
 tokens, which will normally be the last word of the previous sentence
 and the sentence-ending punctuation. However, the lexical category
 that closed the previous sentence has no bearing on the one that
 begins the next sentence.
To deal with this situation, we can train, run, and evaluate
 taggers using lists of tagged sentences, as shown in Example 5-5.
Example 5-5. N-gram tagging at the sentence level.
brown_tagged_sents = brown.tagged_sents(categories='news')
brown_sents = brown.sents(categories='news')

size = int(len(brown_tagged_sents) * 0.9)
train_sents = brown_tagged_sents[:size]
test_sents = brown_tagged_sents[size:]

t0 = nltk.DefaultTagger('NN')
t1 = nltk.UnigramTagger(train_sents, backoff=t0)
t2 = nltk.BigramTagger(train_sents, backoff=t1)
>>> t2.evaluate(test_sents)
0.84491179108940495

Transformation-Based Tagging

A potential issue with n-gram taggers is the size of their n-gram
 table (or language model). If tagging is to be employed in a variety of
 language technologies deployed on mobile computing devices, it is
 important to strike a balance between model size and tagger performance.
 An n-gram tagger with backoff may store trigram and bigram tables, which
 are large, sparse arrays that may have hundreds of millions of
 entries.
A second issue concerns context. The only information an n-gram
 tagger considers from prior context is tags, even though words
 themselves might be a useful source of information. It is simply
 impractical for n-gram models to be conditioned on the identities of
 words in the context. In this section, we examine Brill tagging, an
 inductive tagging method which performs very well using models that are
 only a tiny fraction of the size of n-gram taggers.
Brill tagging is a kind of transformation-based
 learning, named after its inventor. The general idea is very
 simple: guess the tag of each word, then go back and fix the mistakes.
 In this way, a Brill tagger successively transforms a bad tagging of a
 text into a better one. As with n-gram tagging, this is a
 supervised learning method, since we need annotated
 training data to figure out whether the tagger’s guess is a mistake or
 not. However, unlike n-gram tagging, it does not count observations but
 compiles a list of transformational correction rules.
The process of Brill tagging is usually explained by analogy with
 painting. Suppose we were painting a tree, with all its details of
 boughs, branches, twigs, and leaves, against a uniform sky-blue
 background. Instead of painting the tree first and then trying to paint
 blue in the gaps, it is simpler to paint the whole canvas blue, then
 “correct” the tree section by over-painting the blue background. In the
 same fashion, we might paint the trunk a uniform brown before going back
 to over-paint further details with even finer brushes. Brill tagging
 uses the same idea: begin with broad brush strokes, and then fix up the
 details, with successively finer changes. Let’s look at an example
 involving the following sentence:
Example 5-6.
The President said he will ask Congress to increase grants to
 states for vocational rehabilitation.

We will examine the operation of two rules: (a) replace NN with VB
 when the previous word is TO; (b)
 replace TO with IN when the next tag is NNS. Table 5-6
 illustrates this process, first tagging with the unigram tagger, then
 applying the rules to fix the errors.
Table 5-6. Steps in Brill tagging
	Phrase
	to
	increase
	grants
	to
	states
	for
	vocational
	rehabilitation

	Unigram
	TO
	NN
	NNS
	TO
	NNS
	IN
	JJ
	NN

	Rule
 1
	 	VB
	 	 	 	 	 	
	Rule
 2
	 	 	 	IN
	 	 	 	
	Output
	TO
	VB
	NNS
	IN
	NNS
	IN
	JJ
	NN

	Gold
	TO
	VB
	NNS
	IN
	NNS
	IN
	JJ
	NN

In this table, we see two rules. All such rules are generated from
 a template of the following form: “replace
 T1 with
 T2 in the context
 C.” Typical contexts are the identity or the tag of
 the preceding or following word, or the appearance of a specific tag
 within two to three words of the current word. During its training
 phase, the tagger guesses values for
 T1,
 T2, and
 C, to create thousands of candidate rules. Each
 rule is scored according to its net benefit: the number of incorrect
 tags that it corrects, less the number of correct tags it incorrectly
 modifies.
Brill taggers have another interesting property: the rules are
 linguistically interpretable. Compare this with the n-gram taggers,
 which employ a potentially massive table of n-grams. We cannot learn
 much from direct inspection of such a table, in comparison to the rules
 learned by the Brill tagger. Example 5-7
 demonstrates NLTK’s Brill tagger.
Example 5-7. Brill tagger demonstration: The tagger has a collection of
 templates of the form X → Y if the preceding word is Z; the variables
 in these templates are instantiated to particular words and tags to
 create “rules”; the score for a rule is the number of broken examples
 it corrects minus the number of correct cases it breaks; apart from
 training a tagger, the demonstration displays residual errors.
>>> nltk.tag.brill.demo()
Training Brill tagger on 80 sentences...
Finding initial useful rules...
 Found 6555 useful rules.

 B |
 S F r O | Score = Fixed - Broken
 c i o t | R Fixed = num tags changed incorrect -> correct
 o x k h | u Broken = num tags changed correct -> incorrect
 r e e e | l Other = num tags changed incorrect -> incorrect
 e d n r | e
------------------+---
 12 13 1 4 | NN -> VB if the tag of the preceding word is 'TO'
 8 9 1 23 | NN -> VBD if the tag of the following word is 'DT'
 8 8 0 9 | NN -> VBD if the tag of the preceding word is 'NNS'
 6 9 3 16 | NN -> NNP if the tag of words i-2...i-1 is '-NONE-'
 5 8 3 6 | NN -> NNP if the tag of the following word is 'NNP'
 5 6 1 0 | NN -> NNP if the text of words i-2...i-1 is 'like'
 5 5 0 3 | NN -> VBN if the text of the following word is '*-1'
 ...
>>> print(open("errors.out").read())
 left context | word/test->gold | right context
--------------------------+------------------------+--------------------------
 | Then/NN->RB | ,/, in/IN the/DT guests/N
, in/IN the/DT guests/NNS | '/VBD->POS | honor/NN ,/, the/DT speed
'/POS honor/NN ,/, the/DT | speedway/JJ->NN | hauled/VBD out/RP four/CD
NN ,/, the/DT speedway/NN | hauled/NN->VBD | out/RP four/CD drivers/NN
DT speedway/NN hauled/VBD | out/NNP->RP | four/CD drivers/NNS ,/, c
dway/NN hauled/VBD out/RP | four/NNP->CD | drivers/NNS ,/, crews/NNS
hauled/VBD out/RP four/CD | drivers/NNP->NNS | ,/, crews/NNS and/CC even
P four/CD drivers/NNS ,/, | crews/NN->NNS | and/CC even/RB the/DT off
NNS and/CC even/RB the/DT | official/NNP->JJ | Indianapolis/NNP 500/CD a
 | After/VBD->IN | the/DT race/NN ,/, Fortun
ter/IN the/DT race/NN ,/, | Fortune/IN->NNP | 500/CD executives/NNS dro
s/NNS drooled/VBD like/IN | schoolboys/NNP->NNS | over/IN the/DT cars/NNS a
olboys/NNS over/IN the/DT | cars/NN->NNS | and/CC drivers/NNS ./.

How to Determine the Category of a Word

Now that we have examined word classes in detail, we turn to a
 more basic question: how do we decide what category a word belongs to in
 the first place? In general, linguists use morphological, syntactic, and
 semantic clues to determine the category of a word.
Morphological Clues

The internal structure of a word may give useful clues as to the
 word’s category. For example, -ness is a suffix
 that combines with an adjective to produce a noun, e.g.,
 happy → happiness,
 ill → illness. So if we
 encounter a word that ends in -ness, this is very
 likely to be a noun. Similarly, -ment is a suffix
 that combines with some verbs to produce a noun, e.g.,
 govern → government and
 establish →
 establishment.
English verbs can also be morphologically complex. For instance,
 the present participle of a verb
 ends in -ing, and expresses the idea of ongoing,
 incomplete action (e.g., falling,
 eating). The -ing suffix
 also appears on nouns derived from verbs, e.g., the falling
 of the leaves (this is known as the gerund).

Syntactic Clues

Another source of information is the typical contexts in which a
 word can occur. For example, assume that we have already determined
 the category of nouns. Then we might say that a syntactic criterion
 for an adjective in English is that it can occur immediately before a
 noun, or immediately following the words be or
 very. According to these tests,
 near should be categorized as an
 adjective:
Example 5-8.
	the near window

	The end is (very) near.

Semantic Clues

Finally, the meaning of a word is a useful clue as to its
 lexical category. For example, the best-known definition of a noun is
 semantic: “the name of a person, place, or thing.” Within modern
 linguistics, semantic criteria for word classes are treated with
 suspicion, mainly because they are hard to formalize. Nevertheless,
 semantic criteria underpin many of our intuitions about word classes,
 and enable us to make a good guess about the categorization of words
 in languages with which we are unfamiliar. For example, if all we know
 about the Dutch word verjaardag is that it means
 the same as the English word birthday, then we
 can guess that verjaardag is a noun in Dutch.
 However, some care is needed: although we might translate
 zij is vandaag jarig as it’s her
 birthday today, the word jarig is in
 fact an adjective in Dutch, and has no exact equivalent in
 English.

New Words

All languages acquire new lexical items. A list of words
 recently added to the Oxford Dictionary of English includes
 cyberslacker, fatoush,
 blamestorm, SARS,
 cantopop, bupkis,
 noughties, muggle, and
 robata. Notice that all these new words are
 nouns, and this is reflected in calling nouns an open class. By contrast, prepositions are
 regarded as a closed class. That
 is, there is a limited set of words belonging to the class (e.g.,
 above, along,
 at, below,
 beside, between,
 during, for,
 from, in,
 near, on,
 outside, over,
 past, through,
 towards, under,
 up, with), and membership of
 the set only changes very gradually over time.

Morphology in Part-of-Speech Tagsets

Common tagsets often capture some morphosyntactic information, that is,
 information about the kind of morphological markings that words
 receive by virtue of their syntactic role. Consider, for example, the
 selection of distinct grammatical forms of the word
 go illustrated in the following
 sentences:
Example 5-9.
	Go away!

	He sometimes goes to the cafe.

	All the cakes have gone.

	We went on the excursion.

Each of these forms—go,
 goes, gone, and
 went—is morphologically distinct from the others.
 Consider the form goes. This occurs in a
 restricted set of grammatical contexts, and requires a third person
 singular subject. Thus, the following sentences are ungrammatical.
Example 5-10.
	*They sometimes goes to the
 cafe.

	*I sometimes goes to the cafe.

By contrast, gone is the past participle
 form; it is required after have (and cannot be
 replaced in this context by goes), and cannot
 occur as the main verb of a clause.
Example 5-11.
	*All the cakes have goes.

	*He sometimes gone to the
 cafe.

We can easily imagine a tagset in which the four distinct
 grammatical forms just discussed were all tagged as VB. Although this would be adequate for some
 purposes, a more fine-grained tagset provides useful information about
 these forms that can help other processors that try to detect patterns
 in tag sequences. The Brown tagset captures these distinctions, as
 summarized in Table 5-7.
Table 5-7. Some morphosyntactic distinctions in the Brown tagset
	Form
	Category
	Tag

	go
	base
	VB

	goes
	third singular present
	VBZ

	gone
	past participle
	VBN

	going
	gerund
	VBG

	went
	simple past
	VBD

In addition to this set of verb tags, the various forms of the
 verb to be have special tags: be/BE, being/BEG, am/BEM, are/BER, is/BEZ, been/BEN, were/BED, and was/BEDZ (plus extra tags for negative forms
 of the verb). All told, this fine-grained tagging of verbs means that
 an automatic tagger that uses this tagset is effectively carrying out
 a limited amount of morphological
 analysis.
Most part-of-speech tagsets make use of the same basic
 categories, such as noun, verb, adjective, and preposition. However,
 tagsets differ both in how finely they divide words into categories,
 and in how they define their categories. For example,
 is might be tagged simply as a verb in one
 tagset, but as a distinct form of the lexeme be
 in another tagset (as in the Brown Corpus). This variation in tagsets
 is unavoidable, since part-of-speech tags are used in different ways
 for different tasks. In other words, there is no one “right way” to
 assign tags, only more or less useful ways depending on one’s
 goals.

Summary

	Words can be grouped into classes, such as nouns, verbs,
 adjectives, and adverbs. These classes are known as lexical
 categories or parts-of-speech. Parts-of-speech are assigned short
 labels, or tags, such as NN and
 VB.

	The process of automatically assigning parts-of-speech to
 words in text is called part-of-speech tagging, POS tagging, or just
 tagging.

	Automatic tagging is an important step in the NLP pipeline,
 and is useful in a variety of situations, including predicting the
 behavior of previously unseen words, analyzing word usage in
 corpora, and text-to-speech systems.

	Some linguistic corpora, such as the Brown Corpus, have been
 POS tagged.

	A variety of tagging methods are possible, e.g., default
 tagger, regular expression tagger, unigram tagger, and n-gram
 taggers. These can be combined using a technique known as
 backoff.

	Taggers can be trained and evaluated using tagged
 corpora.

	Backoff is a method for combining models: when a more
 specialized model (such as a bigram tagger) cannot assign a tag in a
 given context, we back off to a more general model (such as a
 unigram tagger).

	Part-of-speech tagging is an important, early example of a
 sequence classification task in NLP: a classification decision at
 any one point in the sequence makes use of words and tags in the
 local context.

	A dictionary is used to map between arbitrary types of
 information, such as a string and a number: freq['cat'] = 12. We create dictionaries using the brace notation:
 pos = {}, pos = {'furiously': 'adv', 'ideas': 'n',
 'colorless': 'adj'}.

	N-gram taggers can be defined for large values of
 n, but once n is larger
 than 3, we usually encounter the sparse data problem; even with a
 large quantity of training data, we see only a tiny fraction of
 possible contexts.

	Transformation-based tagging involves learning a series of
 repair rules of the form “change tag s to tag
 t in context c,” where
 each rule fixes mistakes and possibly introduces a (smaller) number
 of errors.

Further Reading

Extra materials for this chapter are posted at http://www.nltk.org/, including links to freely available
 resources on the Web. For more examples of tagging with NLTK, please see
 the Tagging HOWTO at http://www.nltk.org/howto.
 Chapters 4 and 5 of (Jurafsky & Martin, 2008) contain more advanced
 material on n-grams and part-of-speech tagging. Other approaches to
 tagging involve machine learning methods (Chapter 6).
 In Chapter 7, we will see a generalization of tagging
 called chunking in which a contiguous sequence of
 words is assigned a single tag.
For tagset documentation, see nltk.help.upenn_tagset() and nltk.help.brown_tagset(). Lexical categories are introduced in linguistics
 textbooks, including those listed in Chapter 1 of this
 book.
There are many other kinds of tagging. Words can be tagged with
 directives to a speech synthesizer, indicating which words should be
 emphasized. Words can be tagged with sense numbers, indicating which
 sense of the word was used. Words can also be tagged with morphological
 features. Examples of each of these kinds of tags are shown in the
 following list. For space reasons, we only show the tag for a single
 word. Note also that the first two examples use XML-style tags, where
 elements in angle brackets enclose the word that is tagged.
	Speech Synthesis Markup Language (W3C SSML)
	That is a
 <emphasis>big</emphasis> car!

	SemCor: Brown Corpus tagged with WordNet senses
	Space in any <wf pos="NN"
 lemma="form" wnsn="4">form</wf> is completely measured by the three
 dimensions. (Wordnet form/nn sense 4: “shape, form,
 configuration, contour, conformation”)

	Morphological tagging, from the Turin University Italian
 Treebank
	E' italiano , come progetto e
 realizzazione , il primo (PRIMO ADJ ORDIN M SING) porto turistico
 dell' Albania .

Note that tagging is also performed at higher levels. Here is an
 example of dialogue act tagging, from the NPS Chat Corpus (Forsyth &
 Martell, 2007) included with NLTK. Each turn of the dialogue is
 categorized as to its communicative function:
Statement User117 Dude..., I wanted some of that
ynQuestion User120 m I missing something?
Bye User117 I'm gonna go fix food, I'll be back later.
System User122 JOIN
System User2 slaps User122 around a bit with a large trout.
Statement User121 18/m pm me if u tryin to chat

Exercises

	○ Search the Web for “spoof newspaper headlines,” to find such
 gems as: British Left Waffles on Falkland
 Islands, and Juvenile Court to Try Shooting
 Defendant. Manually tag these headlines to see whether
 knowledge of the part-of-speech tags removes the ambiguity.

	○ Working with someone else, take turns picking a word that
 can be either a noun or a verb (e.g., contest);
 the opponent has to predict which one is likely to be the most
 frequent in the Brown Corpus. Check the opponent’s prediction, and
 tally the score over several turns.

	○ Tokenize and tag the following sentence: They wind
 back the clock, while we chase after the wind. What
 different pronunciations and parts-of-speech are involved?

	○ Review the mappings in Table 5-4. Discuss any other examples of
 mappings you can think of. What type of information do they map from
 and to?

	○ Using the Python interpreter in interactive mode, experiment
 with the dictionary examples in this chapter. Create a dictionary
 d, and add some entries. What
 happens whether you try to access a non-existent entry, e.g.,
 d['xyz']?

	○ Try deleting an element from a dictionary d, using the syntax del d['abc']. Check that the item was
 deleted.

	○ Create two dictionaries, d1 and d2, and add some entries to each. Now
 issue the command d1.update(d2).
 What did this do? What might it be useful for?

	○ Create a dictionary e, to
 represent a single lexical entry for some word of your choice.
 Define keys such as headword,
 part-of-speech, sense, and example, and assign them suitable
 values.

	○ Satisfy yourself that there are restrictions on the
 distribution of go and
 went, in the sense that they cannot be freely
 interchanged in the kinds of contexts illustrated in Example 5-9, How to Determine the Category of a Word.

	○ Train a unigram tagger and run it on some new text. Observe
 that some words are not assigned a tag. Why not?

	○ Learn about the affix tagger (type help(nltk.AffixTagger)). Train an affix
 tagger and run it on some new text. Experiment with different
 settings for the affix length and the minimum word length. Discuss
 your findings.

	○ Train a bigram tagger with no backoff tagger, and run it on
 some of the training data. Next, run it on some new data. What
 happens to the performance of the tagger? Why?

	○ We can use a dictionary to specify the values to be
 substituted into a formatting string. Read Python’s library
 documentation for formatting strings (http://docs.python.org/lib/typesseq-strings.html) and
 use this method to display today’s date in two different
 formats.

	[image:] Use sorted() and set() to get a sorted list of tags used in
 the Brown Corpus, removing duplicates.

	[image:] Write programs to process the Brown Corpus and find answers
 to the following questions:
	Which nouns are more common in their plural form, rather
 than their singular form? (Only consider regular plurals, formed
 with the -s suffix.)

	Which word has the greatest number of distinct tags? What
 are they, and what do they represent?

	List tags in order of decreasing frequency. What do the 20
 most frequent tags represent?

	Which tags are nouns most commonly found after? What do
 these tags represent?

	[image:] Explore the following issues that arise in connection with
 the lookup tagger:
	What happens to the tagger performance for the various
 model sizes when a backoff tagger is omitted?

	Consider the curve in Figure 5-4;
 suggest a good size for a lookup tagger that balances memory and
 performance. Can you come up with scenarios where it would be
 preferable to minimize memory usage, or to maximize performance
 with no regard for memory usage?

	[image:] What is the upper limit of performance for a lookup tagger,
 assuming no limit to the size of its table? (Hint: write a program
 to work out what percentage of tokens of a word are assigned the
 most likely tag for that word, on average.)

	[image:] Generate some statistics for tagged data to answer the
 following questions:
	What proportion of word types are always assigned the same
 part-of-speech tag?

	How many words are ambiguous, in the sense that they
 appear with at least two tags?

	What percentage of word tokens in the
 Brown Corpus involve these ambiguous words?

	[image:] The evaluate() method works out how accurately the tagger performs
 on this text. For example, if the supplied tagged text was [('the', 'DT'), ('dog', 'NN')] and the
 tagger produced the output [('the', 'NN'),
 ('dog', 'NN')], then the score would be 0.5. Let’s try to figure out how the
 evaluation method works:
	A tagger t takes a list
 of words as input, and produces a list of tagged words as
 output. However, t.evaluate()
 is given correctly tagged text as its only parameter. What must
 it do with this input before performing the tagging?

	Once the tagger has created newly tagged text, how might
 the evaluate() method go about comparing it with the original
 tagged text and computing the accuracy score?

	Now examine the source code to see how the method is
 implemented. Inspect nltk.tag.api.__file__ to discover the
 location of the source code, and open this file using an editor
 (be sure to use the api.py
 file and not the compiled api.pyc binary file).

	[image:] Write code to search the Brown Corpus for particular words
 and phrases according to tags, to answer the following
 questions:
	Produce an alphabetically sorted list of the distinct
 words tagged as MD.

	Identify words that can be plural nouns or third person
 singular verbs (e.g., deals,
 flies).

	Identify three-word prepositional phrases of the form IN +
 DET + NN (e.g., in the lab).

	What is the ratio of masculine to feminine
 pronouns?

	[image:] In Table 3-1, we saw a table
 involving frequency counts for the verbs adore,
 love, like, and
 prefer, and preceding qualifiers such as
 really. Investigate the full range of
 qualifiers (Brown tag QL) that
 appear before these four verbs.

	[image:] We defined the regexp_tagger that can be used as a
 fall-back tagger for unknown words. This tagger only checks for
 cardinal numbers. By testing for particular prefix or suffix
 strings, it should be possible to guess other tags. For example, we
 could tag any word that ends with -s as a
 plural noun. Define a regular expression tagger (using RegexpTagger()) that tests for at least five other patterns in the
 spelling of words. (Use inline documentation to explain the
 rules.)

	[image:] Consider the regular expression tagger developed in the
 exercises in the previous section. Evaluate the tagger using its
 accuracy() method, and try to come up with ways to improve its
 performance. Discuss your findings. How does objective evaluation
 help in the development process?

	[image:] How serious is the sparse data problem? Investigate the
 performance of n-gram taggers as n increases
 from 1 to 6. Tabulate the accuracy score. Estimate the training data
 required for these taggers, assuming a vocabulary size of
 105 and a tagset size of
 102.

	[image:] Obtain some tagged data for another language, and train and
 evaluate a variety of taggers on it. If the language is
 morphologically complex, or if there are any orthographic clues
 (e.g., capitalization) to word classes, consider developing a
 regular expression tagger for it (ordered after the unigram tagger,
 and before the default tagger). How does the accuracy of your
 tagger(s) compare with the same taggers run on English data? Discuss
 any issues you encounter in applying these methods to the
 language.

	[image:] Example 5-4 plotted a curve
 showing change in the performance of a lookup tagger as the model
 size was increased. Plot the performance curve for a unigram tagger,
 as the amount of training data is varied.

	[image:] Inspect the confusion matrix for the bigram tagger t2 defined in N-Gram Tagging, and identify one or more sets of
 tags to collapse. Define a dictionary to do the mapping, and
 evaluate the tagger on the simplified data.

	[image:] Experiment with taggers using the simplified tagset (or make
 one of your own by discarding all but the first character of each
 tag name). Such a tagger has fewer distinctions to make, but much
 less information on which to base its work. Discuss your
 findings.

	[image:] Recall the example of a bigram tagger which encountered a
 word it hadn’t seen during training, and tagged the rest of the
 sentence as None. It is possible
 for a bigram tagger to fail partway through a sentence even if it
 contains no unseen words (even if the sentence was used during
 training). In what circumstance can this happen? Can you write a
 program to find some examples of this?

	[image:] Preprocess the Brown News data by replacing low-frequency
 words with UNK, but leaving the tags untouched.
 Now train and evaluate a bigram tagger on this data. How much does
 this help? What is the contribution of the unigram tagger and
 default tagger now?

	[image:] Modify the program in Example 5-4 to use a logarithmic scale on the
 x-axis, by replacing pylab.plot() with pylab.semilogx(). What do you notice about
 the shape of the resulting plot? Does the gradient tell you
 anything?

	[image:] Consult the documentation for the Brill tagger demo
 function, using help(nltk.tag.brill.demo). Experiment with the tagger by setting different
 values for the parameters. Is there any trade-off between training
 time (corpus size) and performance?

	[image:] Write code that builds a dictionary of dictionaries of sets.
 Use it to store the set of POS tags that can follow a given word
 having a given POS tag, i.e.,
 wordi →
 tagi →
 tagi+1.

	● There are 264 distinct words in the Brown Corpus having
 exactly three possible tags.
	Print a table with the integers 1..10 in one column, and
 the number of distinct words in the corpus having 1..10 distinct
 tags in the other column.

	For the word with the greatest number of distinct tags,
 print out sentences from the corpus containing the word, one for
 each possible tag.

	● Write a program to classify contexts involving the word
 must according to the tag of the following
 word. Can this be used to discriminate between the epistemic and
 deontic uses of must?

	● Create a regular expression tagger and various unigram and
 n-gram taggers, incorporating backoff, and train them on part of the
 Brown Corpus.
	Create three different combinations of the taggers. Test
 the accuracy of each combined tagger. Which combination works
 best?

	Try varying the size of the training corpus. How does it
 affect your results?

	● Our approach for tagging an unknown word has been to
 consider the letters of the word (using RegexpTagger()), or to ignore the word altogether and tag it as a
 noun (using nltk.DefaultTagger()). These methods will
 not do well for texts having new words that are not nouns. Consider
 the sentence I like to blog on Kim’s blog. If
 blog is a new word, then looking at the
 previous tag (TO versus NP$) would probably be helpful, i.e., we
 need a default tagger that is sensitive to the preceding tag.
	Create a new kind of unigram tagger that looks at the tag
 of the previous word, and ignores the current word. (The best
 way to do this is to modify the source code for UnigramTagger(), which presumes knowledge of object-oriented
 programming in Python.)

	Add this tagger to the sequence of backoff taggers
 (including ordinary trigram and bigram taggers that look at
 words), right before the usual default tagger.

	Evaluate the contribution of this new unigram
 tagger.

	● Consider the code in N-Gram Tagging,
 which determines the upper bound for accuracy of a trigram tagger.
 Review Abney’s discussion concerning the impossibility of exact
 tagging (Abney, 2006). Explain why correct tagging of these examples
 requires access to other kinds of information than just words and
 tags. How might you estimate the scale of this problem?

	● Use some of the estimation techniques in nltk.probability, such as Lidstone or
 Laplace estimation, to develop a statistical
 tagger that does a better job than n-gram backoff taggers in cases
 where contexts encountered during testing were not seen during
 training.

	● Inspect the diagnostic files created by the Brill tagger
 rules.out and errors.out. Obtain the demonstration code
 by accessing the source code (at http://www.nltk.org/code) and create your own version
 of the Brill tagger. Delete some of the rule templates, based on
 what you learned from inspecting rules.out. Add some new rule templates
 which employ contexts that might help to correct the errors you saw
 in errors.out.

	● Develop an n-gram backoff tagger that permits “anti-n-grams”
 such as ["the", "the"] to be
 specified when a tagger is initialized. An anti-n-gram is assigned a
 count of zero and is used to prevent backoff for this n-gram (e.g.,
 to avoid estimating P(the |
 the) as just
 P(the)).

	● Investigate three different ways to define the split between
 training and testing data when developing a tagger using the Brown
 Corpus: genre (category), source
 (fileid), and sentence. Compare
 their relative performance and discuss which method is the most
 legitimate. (You might use n-fold cross validation, discussed in
 Evaluation, to improve the accuracy of the
 evaluations.)

	● Develop your own NgramTagger class that inherits from
 NLTK’s class, and which encapsulates the method of collapsing the
 vocabulary of the tagged training and testing data that was
 described in this chapter. Make sure that the unigram and default
 backoff taggers have access to the full vocabulary.

Chapter 6. Learning to Classify Text

Detecting patterns is a central part of Natural Language Processing.
 Words ending in -ed tend to be past tense verbs
 (Chapter 5). Frequent use of will
 is indicative of news text (Chapter 3). These observable
 patterns—word structure and word frequency—happen to correlate with
 particular aspects of meaning, such as tense and topic. But how did we
 know where to start looking, which aspects of form to associate with which
 aspects of meaning?
The goal of this chapter is to answer the following
 questions:
	How can we identify particular features of language data that
 are salient for classifying it?

	How can we construct models of language that can be used to
 perform language processing tasks automatically?

	What can we learn about language from these models?

Along the way we will study some important machine learning
 techniques, including decision trees, naive Bayes classifiers, and maximum
 entropy classifiers. We will gloss over the mathematical and statistical
 underpinnings of these techniques, focusing instead on how and when to use
 them (see Further Reading for more technical
 background). Before looking at these methods, we first need to appreciate
 the broad scope of this topic.
Supervised Classification

Classification is the task of
 choosing the correct class label for
 a given input. In basic classification tasks, each input is considered
 in isolation from all other inputs, and the set of labels is defined in
 advance. Some examples of classification tasks are:
	Deciding whether an email is spam or not.

	Deciding what the topic of a news article is, from a fixed
 list of topic areas such as “sports,” “technology,” and
 “politics.”

	Deciding whether a given occurrence of the word
 bank is used to refer to a river bank, a
 financial institution, the act of tilting to the side, or the act of
 depositing something in a financial institution.

The basic classification task has a number of interesting
 variants. For example, in multi-class classification, each instance may
 be assigned multiple labels; in open-class classification, the set of
 labels is not defined in advance; and in sequence classification, a list
 of inputs are jointly classified.
A classifier is called supervised if it is built based on training
 corpora containing the correct label for each input. The framework used
 by supervised classification is shown in Figure 6-1.
[image: Supervised classification. (a) During training, a feature extractor is used to convert each input value to a feature set. These feature sets, which capture the basic information about each input that should be used to classify it, are discussed in the next section. Pairs of feature sets and labels are fed into the machine learning algorithm to generate a model. (b) During prediction, the same feature extractor is used to convert unseen inputs to feature sets. These feature sets are then fed into the model, which generates predicted labels.]

Figure 6-1. Supervised classification. (a) During training, a feature
 extractor is used to convert each input value to a feature set. These
 feature sets, which capture the basic information about each input
 that should be used to classify it, are discussed in the next section.
 Pairs of feature sets and labels are fed into the machine learning
 algorithm to generate a model. (b) During prediction, the same feature
 extractor is used to convert unseen inputs to feature sets. These
 feature sets are then fed into the model, which generates predicted
 labels.

In the rest of this section, we will look at how classifiers can
 be employed to solve a wide variety of tasks. Our discussion is not
 intended to be comprehensive, but to give a representative sample of
 tasks that can be performed with the help of text classifiers.
Gender Identification

In Lexical Resources, we saw that male
 and female names have some distinctive characteristics. Names ending
 in a, e, and
 i are likely to be female, while names ending in
 k, o,
 r, s, and
 t are likely to be male. Let’s build a classifier
 to model these differences more precisely.
The first step in creating a classifier is deciding what
 features of the input are relevant,
 and how to encode those features.
 For this example, we’ll start by just looking at the final letter of a
 given name. The following feature
 extractor function builds a dictionary containing relevant
 information about a given name:
>>> def gender_features(word):
... return {'last_letter': word[-1]}
>>> gender_features('Shrek')
{'last_letter': 'k'}
The dictionary that is returned by this function is called a
 feature set and maps from features’
 names to their values. Feature names are case-sensitive strings that
 typically provide a short human-readable description of the feature.
 Feature values are values with simple types, such as Booleans,
 numbers, and strings.
Note
Most classification methods require that features be encoded
 using simple value types, such as Booleans, numbers, and strings.
 But note that just because a feature has a simple type, this does
 not necessarily mean that the feature’s value is simple to express
 or compute; indeed, it is even possible to use very complex and
 informative values, such as the output of a second supervised
 classifier, as features.

Now that we’ve defined a feature extractor, we need to prepare a
 list of examples and corresponding class labels:
>>> from nltk.corpus import names
>>> import random
>>> names = ([(name, 'male') for name in names.words('male.txt')] +
... [(name, 'female') for name in names.words('female.txt')])
>>> random.shuffle(names)
Next, we use the feature extractor to process the names data, and divide the resulting list of
 feature sets into a training set
 and a test set. The training set is
 used to train a new “naive Bayes” classifier.
>>> featuresets = [(gender_features(n), g) for (n,g) in names]
>>> train_set, test_set = featuresets[500:], featuresets[:500]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
We will learn more about the naive Bayes classifier later in the
 chapter. For now, let’s just test it out on some names that did not
 appear in its training data:
>>> classifier.classify(gender_features('Neo'))
'male'
>>> classifier.classify(gender_features('Trinity'))
'female'
Observe that these character names from The
 Matrix are correctly classified. Although this science
 fiction movie is set in 2199, it still conforms with our expectations
 about names and genders. We can systematically evaluate the classifier
 on a much larger quantity of unseen data:
>>> print nltk.classify.accuracy(classifier, test_set)
0.758
Finally, we can examine the classifier to determine which
 features it found most effective for distinguishing the names’
 genders:
>>> classifier.show_most_informative_features(5)
Most Informative Features
 last_letter = 'a' female : male = 38.3 : 1.0
 last_letter = 'k' male : female = 31.4 : 1.0
 last_letter = 'f' male : female = 15.3 : 1.0
 last_letter = 'p' male : female = 10.6 : 1.0
 last_letter = 'w' male : female = 10.6 : 1.0
This listing shows that the names in the training set that end
 in a are female 38 times more often than they are
 male, but names that end in k are male 31 times
 more often than they are female. These ratios are known as likelihood ratios, and can be useful for
 comparing different feature-outcome relationships.
Note
Your Turn: Modify the
 gender_features() function to
 provide the classifier with features encoding the length of the
 name, its first letter, and any other features that seem like they
 might be informative. Retrain the classifier with these new
 features, and test its accuracy.

When working with large corpora, constructing a single list that
 contains the features of every instance can use up a large amount of
 memory. In these cases, use the function nltk.classify.apply_features, which returns
 an object that acts like a list but does not store all the feature
 sets in memory:
>>> from nltk.classify import apply_features
>>> train_set = apply_features(gender_features, names[500:])
>>> test_set = apply_features(gender_features, names[:500])

Choosing the Right Features

Selecting relevant features and deciding how to encode them for
 a learning method can have an enormous impact on the learning method’s
 ability to extract a good model. Much of the interesting work in
 building a classifier is deciding what features might be relevant, and
 how we can represent them. Although it’s often possible to get decent
 performance by using a fairly simple and obvious set of features,
 there are usually significant gains to be had by using carefully
 constructed features based on a thorough understanding of the task at
 hand.
Typically, feature extractors are built through a process of
 trial-and-error, guided by intuitions about what information is
 relevant to the problem. It’s common to start with a “kitchen sink”
 approach, including all the features that you can think of, and then
 checking to see which features actually are helpful. We take this
 approach for name gender features in Example 6-1.
Example 6-1. A feature extractor that overfits gender features. The
 featuresets returned by this feature extractor contain a large
 number of specific features, leading to overfitting for the
 relatively small Names Corpus.
def gender_features2(name):
 features = {}
 features["firstletter"] = name[0].lower()
 features["lastletter"] = name[–1].lower()
 for letter in 'abcdefghijklmnopqrstuvwxyz':
 features["count(%s)" % letter] = name.lower().count(letter)
 features["has(%s)" % letter] = (letter in name.lower())
 return features
>>> gender_features2('John')
{'count(j)': 1, 'has(d)': False, 'count(b)': 0, ...}

However, there are usually limits to the number of features that
 you should use with a given learning algorithm—if you provide too many
 features, then the algorithm will have a higher chance of relying on
 idiosyncrasies of your training data that don’t generalize well to new
 examples. This problem is known as overfitting, and can be especially
 problematic when working with small training sets. For example, if we
 train a naive Bayes classifier using the feature extractor shown in
 Example 6-1, it will overfit
 the relatively small training set, resulting in a system whose
 accuracy is about 1% lower than the accuracy of a classifier that only
 pays attention to the final letter of each name:
>>> featuresets = [(gender_features2(n), g) for (n,g) in names]
>>> train_set, test_set = featuresets[500:], featuresets[:500]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print nltk.classify.accuracy(classifier, test_set)
0.748
Once an initial set of features has been chosen, a very
 productive method for refining the feature set is error analysis. First, we select a development set, containing the corpus data
 for creating the model. This development set is then subdivided into
 the training set and the dev-test set.
>>> train_names = names[1500:]
>>> devtest_names = names[500:1500]
>>> test_names = names[:500]
The training set is used to train the model, and the dev-test
 set is used to perform error analysis. The test set serves in our
 final evaluation of the system. For reasons discussed later, it is
 important that we employ a separate dev-test set for error analysis,
 rather than just using the test set. The division of the corpus data
 into different subsets is shown in Figure 6-2.
Having divided the corpus into appropriate datasets, we train a
 model using the training set [image: 1], and then run it on the dev-test
 set [image: 2].
>>> train_set = [(gender_features(n), g) for (n,g) in train_names]
>>> devtest_set = [(gender_features(n), g) for (n,g) in devtest_names]
>>> test_set = [(gender_features(n), g) for (n,g) in test_names]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set) [image: 1]
>>> print nltk.classify.accuracy(classifier, devtest_set) [image: 2]
0.765
[image: Organization of corpus data for training supervised classifiers. The corpus data is divided into two sets: the development set and the test set. The development set is often further subdivided into a training set and a dev-test set.]

Figure 6-2. Organization of corpus data for training supervised
 classifiers. The corpus data is divided into two sets: the
 development set and the test set. The development set is often
 further subdivided into a training set and a dev-test set.

Using the dev-test set, we can generate a list of the errors
 that the classifier makes when predicting name genders:
>>> errors = []
>>> for (name, tag) in devtest_names:
... guess = classifier.classify(gender_features(name))
... if guess != tag:
... errors.append((tag, guess, name))
We can then examine individual error cases where the model
 predicted the wrong label, and try to determine what additional pieces
 of information would allow it to make the right decision (or which
 existing pieces of information are tricking it into making the wrong
 decision). The feature set can then be adjusted accordingly. The names
 classifier that we have built generates about 100 errors on the
 dev-test corpus:
>>> for (tag, guess, name) in sorted(errors): # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
... print 'correct=%-8s guess=%-8s name=%-30s' %
(tag, guess, name)
 ...
correct=female guess=male name=Cindelyn
 ...
correct=female guess=male name=Katheryn
correct=female guess=male name=Kathryn
 ...
correct=male guess=female name=Aldrich
 ...
correct=male guess=female name=Mitch
 ...
correct=male guess=female name=Rich
 ...
Looking through this list of errors makes it clear that some
 suffixes that are more than one letter can be indicative of name
 genders. For example, names ending in yn appear
 to be predominantly female, despite the fact that names ending in
 n tend to be male; and names ending in
 ch are usually male, even though names that end
 in h tend to be female. We therefore adjust our
 feature extractor to include features for two-letter suffixes:
>>> def gender_features(word):
... return {'suffix1': word[-1:],
... 'suffix2': word[-2:]}
Rebuilding the classifier with the new feature extractor, we see
 that the performance on the dev-test dataset improves by almost three
 percentage points (from 76.5% to 78.2%):
>>> train_set = [(gender_features(n), g) for (n,g) in train_names]
>>> devtest_set = [(gender_features(n), g) for (n,g) in devtest_names]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print nltk.classify.accuracy(classifier, devtest_set)
0.782
This error analysis procedure can then be repeated, checking for
 patterns in the errors that are made by the newly improved classifier.
 Each time the error analysis procedure is repeated, we should select a
 different dev-test/training split, to ensure that the classifier does
 not start to reflect idiosyncrasies in the dev-test set.
But once we’ve used the dev-test set to help us develop the
 model, we can no longer trust that it will give us an accurate idea of
 how well the model would perform on new data. It is therefore
 important to keep the test set separate, and unused, until our model
 development is complete. At that point, we can use the test set to
 evaluate how well our model will perform on new input
 values.

Document Classification

In Accessing Text Corpora, we saw
 several examples of corpora where documents have been labeled with
 categories. Using these corpora, we can build classifiers that will
 automatically tag new documents with appropriate category labels.
 First, we construct a list of documents, labeled with the appropriate
 categories. For this example, we’ve chosen the Movie Reviews Corpus,
 which categorizes each review as positive or negative.
>>> from nltk.corpus import movie_reviews
>>> documents = [(list(movie_reviews.words(fileid)), category)
... for category in movie_reviews.categories()
... for fileid in movie_reviews.fileids(category)]
>>> random.shuffle(documents)
Next, we define a feature extractor for documents, so the
 classifier will know which aspects of the data it should pay attention
 to (see Example 6-2). For document
 topic identification, we can define a feature for each word,
 indicating whether the document contains that word. To limit the
 number of features that the classifier needs to process, we begin by
 constructing a list of the 2,000 most frequent words in the overall
 corpus [image: 1]. We can then
 define a feature extractor [image: 2] that simply checks
 whether each of these words is present in a given document.
Example 6-2. A feature extractor for document classification, whose
 features indicate whether or not individual words are present in a
 given document.
all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words())
word_features = all_words.keys()[:2000] [image: 1]

def document_features(document): [image: 2]
 document_words = set(document) [image: 3]
 features = {}
 for word in word_features:
 features['contains(%s)' % word] = (word in document_words)
 return features
>>> print document_features(movie_reviews.words('pos/cv957_8737.txt'))
{'contains(waste)': False, 'contains(lot)': False, ...}

Note
We compute the set of all words in a document in [image: 3], rather than just checking if
 word in document, because
 checking whether a word occurs in a set is much faster than checking
 whether it occurs in a list (see Algorithm Design).

Now that we’ve defined our feature extractor, we can use it to
 train a classifier to label new movie reviews (Example 6-3). To check how reliable the
 resulting classifier is, we compute its accuracy on the test set [image: 1]. And once again, we can use
 show_most_informative_features() to find out which features the classifier found to be
 most informative [image: 2].
Example 6-3. Training and testing a classifier for document
 classification.
featuresets = [(document_features(d), c) for (d,c) in documents]
train_set, test_set = featuresets[100:], featuresets[:100]
classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print nltk.classify.accuracy(classifier, test_set) [image: 1]
0.81
>>> classifier.show_most_informative_features(5) [image: 2]
Most Informative Features
 contains(outstanding) = True pos : neg = 11.1 : 1.0
 contains(seagal) = True neg : pos = 7.7 : 1.0
 contains(wonderfully) = True pos : neg = 6.8 : 1.0
 contains(damon) = True pos : neg = 5.9 : 1.0
 contains(wasted) = True neg : pos = 5.8 : 1.0

Apparently in this corpus, a review that mentions
 Seagal is almost 8 times more likely to be
 negative than positive, while a review that mentions
 Damon is about 6 times more likely to be
 positive.

Part-of-Speech Tagging

In Chapter 5, we built a regular expression
 tagger that chooses a part-of-speech tag for a word by looking at the
 internal makeup of the word. However, this regular expression tagger
 had to be handcrafted. Instead, we can train a classifier to work out
 which suffixes are most informative. Let’s begin by finding the most
 common suffixes:
>>> from nltk.corpus import brown
>>> suffix_fdist = nltk.FreqDist()
>>> for word in brown.words():
... word = word.lower()
... suffix_fdist.inc(word[-1:])
... suffix_fdist.inc(word[-2:])
... suffix_fdist.inc(word[-3:])
>>> common_suffixes = suffix_fdist.keys()[:100]
>>> print common_suffixes
['e', ',', '.', 's', 'd', 't', 'he', 'n', 'a', 'of', 'the',
 'y', 'r', 'to', 'in', 'f', 'o', 'ed', 'nd', 'is', 'on', 'l',
 'g', 'and', 'ng', 'er', 'as', 'ing', 'h', 'at', 'es', 'or',
 're', 'it', '``', 'an', "''", 'm', ';', 'i', 'ly', 'ion', ...]
Next, we’ll define a feature extractor function that checks a
 given word for these suffixes:
>>> def pos_features(word):
... features = {}
... for suffix in common_suffixes:
... features['endswith(%s)' % suffix] = word.lower().endswith(suffix)
... return features
Feature extraction functions behave like tinted glasses,
 highlighting some of the properties (colors) in our data and making it
 impossible to see other properties. The classifier will rely
 exclusively on these highlighted properties when determining how to
 label inputs. In this case, the classifier will make its decisions
 based only on information about which of the common suffixes (if any)
 a given word has.
Now that we’ve defined our feature extractor, we can use it to
 train a new “decision tree” classifier (to be discussed in Decision Trees):
>>> tagged_words = brown.tagged_words(categories='news')
>>> featuresets = [(pos_features(n), g) for (n,g) in tagged_words]
>>> size = int(len(featuresets) * 0.1)
>>> train_set, test_set = featuresets[size:], featuresets[:size]
>>> classifier = nltk.DecisionTreeClassifier.train(train_set)
>>> nltk.classify.accuracy(classifier, test_set)
0.62705121829935351
>>> classifier.classify(pos_features('cats'))
'NNS'
One nice feature of decision tree models is that they are often
 fairly easy to interpret. We can even instruct NLTK to print them out
 as pseudocode:
>>> print classifier.pseudocode(depth=4)
if endswith(,) == True: return ','
if endswith(,) == False:
 if endswith(the) == True: return 'AT'
 if endswith(the) == False:
 if endswith(s) == True:
 if endswith(is) == True: return 'BEZ'
 if endswith(is) == False: return 'VBZ'
 if endswith(s) == False:
 if endswith(.) == True: return '.'
 if endswith(.) == False: return 'NN'
Here, we can see that the classifier begins by checking whether
 a word ends with a comma—if so, then it will receive the special tag
 ",". Next, the classifier checks
 whether the word ends in "the", in
 which case it’s almost certainly a determiner. This “suffix” gets used
 early by the decision tree because the word the
 is so common. Continuing on, the classifier checks if the word ends in
 s. If so, then it’s most likely to receive the
 verb tag VBZ (unless it’s the word
 is, which has the special tag BEZ), and if not, then it’s most likely a
 noun (unless it’s the punctuation mark “.”). The actual classifier
 contains further nested if-then statements below the ones shown here,
 but the depth=4 argument just
 displays the top portion of the decision tree.

Exploiting Context

By augmenting the feature extraction function, we could modify
 this part-of-speech tagger to leverage a variety of other
 word-internal features, such as the length of the word, the number of
 syllables it contains, or its prefix. However, as long as the feature
 extractor just looks at the target word, we have no way to add
 features that depend on the context in which the
 word appears. But contextual features often provide powerful clues
 about the correct tag—for example, when tagging the word
 fly, knowing that the previous word is
 a will allow us to determine that it is
 functioning as a noun, not a verb.
In order to accommodate features that depend on a word’s
 context, we must revise the pattern that we used to define our feature
 extractor. Instead of just passing in the word to be tagged, we will
 pass in a complete (untagged) sentence, along with the index of the
 target word. This approach is demonstrated in Example 6-4, which employs a context-dependent
 feature extractor to define a part-of-speech tag classifier.
Example 6-4. A part-of-speech classifier whose feature detector examines
 the context in which a word appears in order to determine which
 part-of-speech tag should be assigned. In particular, the identity
 of the previous word is included as a feature.
def pos_features(sentence, i): [image: 1]
 features = {"suffix(1)": sentence[i][-1:],
 "suffix(2)": sentence[i][-2:],
 "suffix(3)": sentence[i][-3:]}
 if i == 0:
 features["prev-word"] = "<START>"
 else:
 features["prev-word"] = sentence[i-1]
 return features
>>> pos_features(brown.sents()[0], 8)
{'suffix(3)': 'ion', 'prev-word': 'an', 'suffix(2)': 'on', 'suffix(1)': 'n'}
>>> tagged_sents = brown.tagged_sents(categories='news')
>>> featuresets = []
>>> for tagged_sent in tagged_sents:
... untagged_sent = nltk.tag.untag(tagged_sent)
... for i, (word, tag) in enumerate(tagged_sent):
... featuresets.append(
(pos_features(untagged_sent, i), tag))

>>> size = int(len(featuresets) * 0.1)
>>> train_set, test_set = featuresets[size:], featuresets[:size]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)

>>> nltk.classify.accuracy(classifier, test_set)
0.78915962207856782

It’s clear that exploiting contextual features improves the
 performance of our part-of-speech tagger. For example, the classifier
 learns that a word is likely to be a noun if it comes immediately
 after the word large or the word
 gubernatorial. However, it is unable to learn the
 generalization that a word is probably a noun if it follows an
 adjective, because it doesn’t have access to the previous word’s
 part-of-speech tag. In general, simple classifiers always treat each
 input as independent from all other inputs. In many contexts, this
 makes perfect sense. For example, decisions about whether names tend
 to be male or female can be made on a case-by-case basis. However,
 there are often cases, such as part-of-speech tagging, where we are
 interested in solving classification problems that are closely related
 to one another.

Sequence Classification

In order to capture the dependencies between related
 classification tasks, we can use joint
 classifier models, which choose an appropriate labeling for
 a collection of related inputs. In the case of part-of-speech tagging,
 a variety of different sequence classifier models can be used
 to jointly choose part-of-speech tags for all the words in a given
 sentence.
One sequence classification strategy, known as consecutive classification or greedy sequence classification, is to find
 the most likely class label for the first input, then to use that
 answer to help find the best label for the next input. The process can
 then be repeated until all of the inputs have been labeled. This is
 the approach that was taken by the bigram tagger from N-Gram Tagging, which began by choosing a
 part-of-speech tag for the first word in the sentence, and then chose
 the tag for each subsequent word based on the word itself and the
 predicted tag for the previous word.
This strategy is demonstrated in Example 6-5. First, we must augment our
 feature extractor function to take a history argument, which provides a list of
 the tags that we’ve predicted for the sentence so far [image: 1]. Each tag in history corresponds with a word in sentence. But note that history will only contain tags for words
 we’ve already classified, that is, words to the left of the target
 word. Thus, although it is possible to look at some features of words
 to the right of the target word, it is not possible to look at the
 tags for those words (since we haven’t generated them yet).
Having defined a feature extractor, we can proceed to build our
 sequence classifier [image: 2]. During training, we use
 the annotated tags to provide the appropriate history to the feature
 extractor, but when tagging new sentences, we generate the history
 list based on the output of the tagger itself.
Example 6-5. Part-of-speech tagging with a consecutive classifier.
def pos_features(sentence, i, history): [image: 1]
 features = {"suffix(1)": sentence[i][-1:],
 "suffix(2)": sentence[i][-2:],
 "suffix(3)": sentence[i][-3:]}
 if i == 0:
 features["prev-word"] = "<START>"
 features["prev-tag"] = "<START>"
 else:
 features["prev-word"] = sentence[i-1]
 features["prev-tag"] = history[i-1]
 return features

class ConsecutivePosTagger(nltk.TaggerI): [image: 2]
 def __init__(self, train_sents):
 train_set = []
 for tagged_sent in train_sents:
 untagged_sent = nltk.tag.untag(tagged_sent)
 history = []
 for i, (word, tag) in enumerate(tagged_sent):
 featureset = pos_features(untagged_sent, i, history)
 train_set.append((featureset, tag))
 history.append(tag)
 self.classifier = nltk.NaiveBayesClassifier.train(train_set)
 def tag(self, sentence):
 history = []
 for i, word in enumerate(sentence):
 featureset = pos_features(sentence, i, history)
 tag = self.classifier.classify(featureset)
 history.append(tag)
 return zip(sentence, history)
>>> tagged_sents = brown.tagged_sents(categories='news')
>>> size = int(len(tagged_sents) * 0.1)
>>> train_sents, test_sents = tagged_sents[size:], tagged_sents[:size]
>>> tagger = ConsecutivePosTagger(train_sents)
>>> print tagger.evaluate(test_sents)
0.79796012981

Other Methods for Sequence Classification

One shortcoming of this approach is that we commit to every
 decision that we make. For example, if we decide to label a word as a
 noun, but later find evidence that it should have been a verb, there’s
 no way to go back and fix our mistake. One solution to this problem is
 to adopt a transformational strategy instead. Transformational joint
 classifiers work by creating an initial assignment of labels for the
 inputs, and then iteratively refining that assignment in an attempt to
 repair inconsistencies between related inputs. The Brill tagger,
 described in Transformation-Based Tagging, is a
 good example of this strategy.
Another solution is to assign scores to all of the possible
 sequences of part-of-speech tags, and to choose the sequence whose
 overall score is highest. This is the approach taken by Hidden Markov Models. Hidden Markov Models are
 similar to consecutive classifiers in that they look at both the
 inputs and the history of predicted tags. However, rather than simply
 finding the single best tag for a given word, they generate a
 probability distribution over tags. These probabilities are then
 combined to calculate probability scores for tag sequences, and the
 tag sequence with the highest probability is chosen. Unfortunately,
 the number of possible tag sequences is quite large. Given a tag set
 with 30 tags, there are about 600 trillion
 (3010) ways to label a 10-word sentence. In
 order to avoid considering all these possible sequences separately,
 Hidden Markov Models require that the feature extractor only look at
 the most recent tag (or the most recent n tags,
 where n is fairly small). Given that restriction,
 it is possible to use dynamic programming (Algorithm Design) to efficiently find the most likely
 tag sequence. In particular, for each consecutive word index
 i, a score is computed for each possible current
 and previous tag. This same basic approach is taken by two more
 advanced models, called Maximum Entropy Markov
 Models and Linear-Chain Conditional
 Random Field Models; but different algorithms are used to
 find scores for tag sequences.

Further Examples of Supervised Classification

Sentence Segmentation

Sentence segmentation can be viewed as a classification task for
 punctuation: whenever we encounter a symbol that could possibly end a
 sentence, such as a period or a question mark, we have to decide
 whether it terminates the preceding sentence.
The first step is to obtain some data that has already been
 segmented into sentences and convert it into a form that is suitable
 for extracting features:
>>> sents = nltk.corpus.treebank_raw.sents()
>>> tokens = []
>>> boundaries = set()
>>> offset = 0
>>> for sent in nltk.corpus.treebank_raw.sents():
... tokens.extend(sent)
... offset += len(sent)
... boundaries.add(offset-1)
Here, tokens is a merged list of tokens from the individual
 sentences, and boundaries is a set
 containing the indexes of all sentence-boundary tokens. Next, we need
 to specify the features of the data that will be used in order to
 decide whether punctuation indicates a sentence boundary:
>>> def punct_features(tokens, i):
... return {'next-word-capitalized': tokens[i+1][0].isupper(),
... 'prevword': tokens[i-1].lower(),
... 'punct': tokens[i],
... 'prev-word-is-one-char': len(tokens[i-1]) == 1}
Based on this feature extractor, we can create a list of labeled
 featuresets by selecting all the punctuation tokens, and tagging
 whether they are boundary tokens or not:
>>> featuresets = [(punct_features(tokens, i), (i in boundaries))
... for i in range(1, len(tokens)-1)
... if tokens[i] in '.?!']
Using these featuresets, we can train and evaluate a punctuation
 classifier:
>>> size = int(len(featuresets) * 0.1)
>>> train_set, test_set = featuresets[size:], featuresets[:size]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> nltk.classify.accuracy(classifier, test_set)
0.97419354838709682
To use this classifier to perform sentence segmentation, we
 simply check each punctuation mark to see whether it’s labeled as a
 boundary, and divide the list of words at the boundary marks. The
 listing in Example 6-6
 shows how this can be done.
Example 6-6. Classification-based sentence segmenter.
def segment_sentences(words):
 start = 0
 sents = []
 for i, word in enumerate(words):
 if word in '.?!' and classifier.classify(punct_features(words, i)) == True:
 sents.append(words[start:i+1])
 start = i+1
 if start < len(words):
 sents.append(words[start:])
 return sents

Identifying Dialogue Act Types

When processing dialogue, it can be useful to think of
 utterances as a type of action performed by the
 speaker. This interpretation is most straightforward for performative
 statements such as I forgive you or I
 bet you can’t climb that hill. But greetings, questions,
 answers, assertions, and clarifications can all be thought of as types
 of speech-based actions. Recognizing the dialogue acts underlying the utterances in a
 dialogue can be an important first step in understanding the
 conversation.
The NPS Chat Corpus, which was demonstrated in Accessing Text Corpora, consists of over 10,000
 posts from instant messaging sessions. These posts have all been
 labeled with one of 15 dialogue act types, such as “Statement,”
 “Emotion,” “ynQuestion,” and “Continuer.” We can therefore use this
 data to build a classifier that can identify the dialogue act types
 for new instant messaging posts. The first step is to extract the
 basic messaging data. We will call xml_posts() to get a data structure representing the XML annotation
 for each post:
>>> posts = nltk.corpus.nps_chat.xml_posts()[:10000]
Next, we’ll define a simple feature extractor that checks what
 words the post contains:
>>> def dialogue_act_features(post):
... features = {}
... for word in nltk.word_tokenize(post):
... features['contains(%s)' % word.lower()] = True
... return features
Finally, we construct the training and testing data by applying
 the feature extractor to each post (using post.get('class') to get a post’s dialogue
 act type), and create a new classifier:
>>> featuresets = [(dialogue_act_features(post.text), post.get('class'))
... for post in posts]
>>> size = int(len(featuresets) * 0.1)
>>> train_set, test_set = featuresets[size:], featuresets[:size]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print nltk.classify.accuracy(classifier, test_set)
0.66

Recognizing Textual Entailment

Recognizing textual entailment (RTE) is the task of determining
 whether a given piece of text T entails another
 text called the “hypothesis” (as already discussed in Automatic Natural Language Understanding). To date,
 there have been four RTE Challenges, where shared development and test
 data is made available to competing teams. Here are a couple of
 examples of text/hypothesis pairs from the Challenge 3 development
 dataset. The label True indicates that the
 entailment holds, and False indicates that it
 fails to hold.
Challenge 3, Pair 34 (True)
	T: Parviz Davudi was
 representing Iran at a meeting of the Shanghai Co-operation
 Organisation (SCO), the fledgling association that binds Russia,
 China and four former Soviet republics of central Asia together to
 fight terrorism.

	H: China is a member of
 SCO.

Challenge 3, Pair 81 (False)
	T: According to NC
 Articles of Organization, the members of LLC company are H. Nelson
 Beavers, III, H. Chester Beavers and Jennie Beavers
 Stewart.

	H: Jennie Beavers Stewart
 is a share-holder of Carolina Analytical Laboratory.

It should be emphasized that the relationship between text and
 hypothesis is not intended to be logical entailment, but rather
 whether a human would conclude that the text provides reasonable
 evidence for taking the hypothesis to be true.
We can treat RTE as a classification task, in which we try to
 predict the True/False label
 for each pair. Although it seems likely that successful approaches to
 this task will involve a combination of parsing, semantics, and
 real-world knowledge, many early attempts at RTE achieved reasonably
 good results with shallow analysis, based on similarity between the
 text and hypothesis at the word level. In the ideal case, we would
 expect that if there is an entailment, then all the information
 expressed by the hypothesis should also be present in the text.
 Conversely, if there is information found in the hypothesis that is
 absent from the text, then there will be no entailment.
In our RTE feature detector (Example 6-7), we let words (i.e., word types) serve
 as proxies for information, and our features count the degree of word
 overlap, and the degree to which there are words in the hypothesis but
 not in the text (captured by the method hyp_extra()). Not all words are equally important—named entity
 mentions, such as the names of people, organizations, and places, are
 likely to be more significant, which motivates us to extract distinct
 information for words and nes (named entities). In addition, some high-frequency
 function words are filtered out as “stopwords.”
Example 6-7. “Recognizing Text Entailment” feature extractor: The RTEFeatureExtractor class builds
 a bag of words for both the text and the hypothesis after throwing
 away some stopwords, then calculates overlap and difference.
def rte_features(rtepair):
 extractor = nltk.RTEFeatureExtractor(rtepair)
 features = {}
 features['word_overlap'] = len(extractor.overlap('word'))
 features['word_hyp_extra'] = len(extractor.hyp_extra('word'))
 features['ne_overlap'] = len(extractor.overlap('ne'))
 features['ne_hyp_extra'] = len(extractor.hyp_extra('ne'))
 return features

To illustrate the content of these features, we examine some
 attributes of the text/hypothesis Pair 34 shown earlier:
>>> rtepair = nltk.corpus.rte.pairs(['rte3_dev.xml'])[33]
>>> extractor = nltk.RTEFeatureExtractor(rtepair)
>>> print extractor.text_words
set(['Russia', 'Organisation', 'Shanghai', 'Asia', 'four', 'at',
'operation', 'SCO', ...])
>>> print extractor.hyp_words
set(['member', 'SCO', 'China'])
>>> print extractor.overlap('word')
set([])
>>> print extractor.overlap('ne')
set(['SCO', 'China'])
>>> print extractor.hyp_extra('word')
set(['member'])
These features indicate that all important words in the
 hypothesis are contained in the text, and thus there is some evidence
 for labeling this as True.
The module nltk.classify.rte_classify reaches just over 58% accuracy on the combined RTE test
 data using methods like these. Although this figure is not very
 impressive, it requires
 significant effort, and more linguistic processing, to achieve much
 better results.

Scaling Up to Large Datasets

Python provides an excellent environment for performing basic
 text processing and feature extraction. However, it is not able to
 perform the numerically intensive calculations required by machine
 learning methods nearly as quickly as lower-level languages such as C.
 Thus, if you attempt to use the pure-Python machine learning
 implementations (such as nltk.NaiveBayesClassifier) on large
 datasets, you may find that the learning algorithm takes an
 unreasonable amount of time and memory to complete.
If you plan to train classifiers with large amounts of training
 data or a large number of features, we recommend that you explore
 NLTK’s facilities for interfacing with external machine learning
 packages. Once these packages have been installed, NLTK can
 transparently invoke them (via system calls) to train classifier
 models significantly faster than the pure-Python classifier
 implementations. See the NLTK web page for a list of recommended
 machine learning packages that are supported by NLTK.

Evaluation

In order to decide whether a classification model is accurately
 capturing a pattern, we must evaluate that model. The result of this
 evaluation is important for deciding how trustworthy the model is, and
 for what purposes we can use it. Evaluation can also be an effective
 tool for guiding us in making future improvements to the
 model.
The Test Set

Most evaluation techniques calculate a score for a model by
 comparing the labels that it generates for the inputs in a test set (or evaluation set) with the correct labels for
 those inputs. This test set typically has the same format as the
 training set. However, it is very important that the test set be
 distinct from the training corpus: if we simply reused the training
 set as the test set, then a model that simply memorized its input,
 without learning how to generalize to new examples, would receive
 misleadingly high scores.
When building the test set, there is often a trade-off between
 the amount of data available for testing and the amount available for
 training. For classification tasks that have a small number of
 well-balanced labels and a diverse test set, a meaningful evaluation
 can be performed with as few as 100 evaluation instances. But if a
 classification task has a large number of labels or includes very
 infrequent labels, then the size of the test set should be chosen to
 ensure that the least frequent label occurs at least 50 times.
 Additionally, if the test set contains many closely related
 instances—such as instances drawn from a single document—then the size
 of the test set should be increased to ensure that this lack of
 diversity does not skew the evaluation results. When large amounts of
 annotated data are available, it is common to err on the side of
 safety by using 10% of the overall data for evaluation.
Another consideration when choosing the test set is the degree
 of similarity between instances in the test set and those in the
 development set. The more similar these two datasets are, the less
 confident we can be that evaluation results will generalize to other
 datasets. For example, consider the part-of-speech tagging task. At
 one extreme, we could create the training set and test set by randomly
 assigning sentences from a data source that reflects a single genre,
 such as news:
>>> import random
>>> from nltk.corpus import brown
>>> tagged_sents = list(brown.tagged_sents(categories='news'))
>>> random.shuffle(tagged_sents)
>>> size = int(len(tagged_sents) * 0.1)
>>> train_set, test_set = tagged_sents[size:], tagged_sents[:size]
In this case, our test set will be very
 similar to our training set. The training set and test set are taken
 from the same genre, and so we cannot be confident that evaluation
 results would generalize to other genres. What’s worse, because of the
 call to random.shuffle(), the test set contains
 sentences that are taken from the same documents that were used for
 training. If there is any consistent pattern within a document (say,
 if a given word appears with a particular part-of-speech tag
 especially frequently), then that difference will be reflected in both
 the development set and the test set. A somewhat better approach is to
 ensure that the training set and test set are taken from different
 documents:
>>> file_ids = brown.fileids(categories='news')
>>> size = int(len(file_ids) * 0.1)
>>> train_set = brown.tagged_sents(file_ids[size:])
>>> test_set = brown.tagged_sents(file_ids[:size])
If we want to perform a more stringent evaluation, we can draw
 the test set from documents that are less closely related to those in
 the training set:
>>> train_set = brown.tagged_sents(categories='news')
>>> test_set = brown.tagged_sents(categories='fiction')
If we build a classifier that performs well on this test set,
 then we can be confident that it has the power to generalize well
 beyond the data on which it was trained.

Accuracy

The simplest metric that can be used to evaluate a classifier,
 accuracy, measures the percentage
 of inputs in the test set that the classifier correctly labeled. For
 example, a name gender classifier that predicts the correct name 60
 times in a test set containing 80 names would have an accuracy of
 60/80 = 75%. The function nltk.classify.accuracy() will calculate the
 accuracy of a classifier model on a given test set:
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print 'Accuracy: %4.2f' % nltk.classify.accuracy(classifier, test_set)
0.75
When interpreting the accuracy score of a classifier, it is
 important to consider the frequencies of the individual class labels
 in the test set. For example, consider a classifier that determines
 the correct word sense for each occurrence of the word
 bank. If we evaluate this classifier on financial
 newswire text, then we may find that the financial-institution sense appears 19 times
 out of 20. In that case, an accuracy of 95% would hardly be
 impressive, since we could achieve that accuracy with a model that
 always returns the financial-institution sense. However, if we
 instead evaluate the classifier on a more balanced corpus, where the
 most frequent word sense has a frequency of 40%, then a 95% accuracy
 score would be a much more positive result. (A similar issue arises
 when measuring inter-annotator agreement in The Life Cycle of a Corpus.)

Precision and Recall

Another instance where accuracy scores can be misleading is in
 “search” tasks, such as information retrieval, where we are attempting
 to find documents that are relevant to a particular task. Since the
 number of irrelevant documents far outweighs the number of relevant
 documents, the accuracy score for a model that labels every document
 as irrelevant would be very close to 100%.
[image: True and false positives and negatives.]

Figure 6-3. True and false positives and negatives.

It is therefore conventional to employ a different set of
 measures for search tasks, based on the number of items in each of the
 four categories shown in Figure 6-3:
	True positives are
 relevant items that we correctly identified as relevant.

	True negatives are
 irrelevant items that we correctly identified as
 irrelevant.

	False positives (or
 Type I errors) are irrelevant
 items that we incorrectly identified as relevant.

	False negatives (or
 Type II errors) are relevant
 items that we incorrectly identified as irrelevant.

Given these four numbers, we can define the following
 metrics:
	Precision, which
 indicates how many of the items that we identified were relevant,
 is
 TP/(TP+FP).

	Recall, which indicates
 how many of the relevant items that we identified, is TP/(TP+FN).

	The F-Measure (or
 F-Score), which combines the
 precision and recall to give a single score, is defined to be the
 harmonic mean of the precision and recall (2 × Precision ×
 Recall)/(Precision+Recall).

Confusion Matrices

When performing classification tasks with three or more labels,
 it can be informative to subdivide the errors made by the model based
 on which types of mistake it made. A confusion
 matrix is a table where each cell
 [i,j] indicates how often
 label j was predicted when the correct label was
 i. Thus, the diagonal entries (i.e., cells
 [i,j]) indicate labels that
 were correctly predicted, and the off-diagonal entries indicate
 errors. In the following example, we generate a confusion matrix for
 the unigram tagger developed in Automatic Tagging:
>>> def tag_list(tagged_sents):
... return [tag for sent in tagged_sents for (word, tag) in sent]
>>> def apply_tagger(tagger, corpus):
... return [tagger.tag(nltk.tag.untag(sent)) for sent in corpus]
>>> gold = tag_list(brown.tagged_sents(categories='editorial'))
>>> test = tag_list(apply_tagger(t2, brown.tagged_sents(categories='editorial')))
>>> cm = nltk.ConfusionMatrix(gold, test)
 | N |
 | N I A J N V N |
 | N N T J . S , B P |
----+--+
 NN | <11.8%> 0.0% . 0.2% . 0.0% . 0.3% 0.0% |
 IN | 0.0% <9.0%> . . . 0.0% . . . |
 AT | . . <8.6%> |
 JJ | 1.6% . . <4.0%> . . . 0.0% 0.0% |
 . | <4.8%> |
 NS | 1.5% <3.2%> . . 0.0% |
 , | <4.4%> . . |
 B | 0.9% . . 0.0% . . . <2.4%> . |
 NP | 1.0% . . 0.0% <1.9%>|
----+--+
(row = reference; col = test)

The confusion matrix indicates that common errors include a
 substitution of NN for JJ (for 1.6% of words), and of NN for NNS (for 1.5% of words). Note that periods
 (.) indicate cells whose value is
 0, and that the diagonal entries—which correspond to correct
 classifications—are marked with angle brackets.

Cross-Validation

In order to evaluate our models, we must reserve a portion of
 the annotated data for the test set. As we already mentioned, if the
 test set is too small, our evaluation may not be accurate. However,
 making the test set larger usually means making the training set
 smaller, which can have a significant impact on performance if a
 limited amount of annotated data is available.
One solution to this problem is to perform multiple evaluations
 on different test sets, then to combine the scores from those
 evaluations, a technique known as cross-validation. In particular, we
 subdivide the original corpus into N subsets
 called folds. For each of these
 folds, we train a model using all of the data
 except the data in that fold, and then test that
 model on the fold. Even though the individual folds might be too small
 to give accurate evaluation scores on their own, the combined
 evaluation score is based on a large amount of data and is therefore
 quite reliable.
A second, and equally important, advantage of using
 cross-validation is that it allows us to examine how widely the
 performance varies across different training sets. If we get very
 similar scores for all N training sets, then we
 can be fairly confident that the score is accurate. On the other hand,
 if scores vary widely across the N training sets,
 then we should probably be skeptical about the accuracy of the
 evaluation score.

Decision Trees

In the next three sections, we’ll take a closer look at three
 machine learning methods that can be used to automatically build
 classification models: decision trees, naive Bayes classifiers, and
 Maximum Entropy classifiers. As we’ve seen, it’s possible to treat these
 learning methods as black boxes, simply training models and using them
 for prediction without understanding how they work. But there’s a lot to
 be learned from taking a closer look at how these learning methods
 select models based on the data in a training set. An understanding of
 these methods can help guide our selection of appropriate features, and
 especially our decisions about how those features should be encoded. And
 an understanding of the generated models can allow us to extract
 information about which features are most informative, and how those
 features relate to one another.
A decision tree is a simple
 flowchart that selects labels for input values. This flowchart consists
 of decision nodes, which check
 feature values, and leaf nodes, which
 assign labels. To choose the label for an input value, we begin at the
 flowchart’s initial decision node, known as its root node. This node contains a condition that
 checks one of the input value’s features, and selects a branch based on
 that feature’s value. Following the branch that describes our input
 value, we arrive at a new decision node, with a new condition on the
 input value’s features. We continue following the branch selected by
 each node’s condition, until we arrive at a leaf node which provides a
 label for the input value. Figure 6-4 shows an
 example decision tree model for the name gender task.
[image: Decision Tree model for the name gender task. Note that tree diagrams are conventionally drawn “upside down,” with the root at the top, and the leaves at the bottom.]

Figure 6-4. Decision Tree model for the name gender task. Note that tree
 diagrams are conventionally drawn “upside down,” with the root at the
 top, and the leaves at the bottom.

Once we have a decision tree, it is straightforward to use it to
 assign labels to new input values. What’s less straightforward is how we
 can build a decision tree that models a given training set. But before
 we look at the learning algorithm for building decision trees, we’ll
 consider a simpler task: picking the best “decision stump” for a corpus.
 A decision stump is a decision tree
 with a single node that decides how to classify inputs based on a single
 feature. It contains one leaf for each possible feature value,
 specifying the class label that should be assigned to inputs whose
 features have that value. In order to build a decision stump, we must
 first decide which feature should be used. The simplest method is to
 just build a decision stump for each possible feature, and see which one
 achieves the highest accuracy on the training data, although there are
 other alternatives that we will discuss later. Once we’ve picked a
 feature, we can build the decision stump by assigning a label to each
 leaf based on the most frequent label for the selected examples in the
 training set (i.e., the examples where the selected feature has that
 value).
Given the algorithm for choosing decision stumps, the algorithm
 for growing larger decision trees is straightforward. We begin by
 selecting the overall best decision stump for the classification task.
 We then check the accuracy of each of the leaves on the training set.
 Leaves that do not achieve sufficient accuracy are then replaced by new
 decision stumps, trained on the subset of the training corpus that is
 selected by the path to the leaf. For example, we could grow the
 decision tree in Figure 6-4 by replacing the
 leftmost leaf with a new decision stump, trained on the subset of the
 training set names that do not start with a k or
 end with a vowel or an l.
Entropy and Information Gain

As was mentioned before, there are several methods for
 identifying the most informative feature for a decision stump. One
 popular alternative, called information
 gain, measures how much more organized the input values
 become when we divide them up using a given feature. To measure how
 disorganized the original set of input values are, we calculate
 entropy of their labels, which will be high if the input values have
 highly varied labels, and low if many input values all have the same
 label. In particular, entropy is defined as the sum of the probability
 of each label times the log probability of that same label:
Example 6-8.
H = − Σl
 ∈ labelsP(l)
 ×
 log2P(l).

For example, Figure 6-5 shows how the
 entropy of labels in the name gender prediction task depends on the
 ratio of male to female names. Note that if most input values have the
 same label (e.g., if P(male) is near 0 or near
 1), then entropy is low. In particular, labels that have low frequency
 do not contribute much to the entropy (since
 P(l) is small), and labels
 with high frequency also do not contribute much to the entropy (since
 log2P(l)
 is small). On the other hand, if the input values have a wide variety
 of labels, then there are many labels with a “medium” frequency, where
 neither P(l) nor
 log2P(l)
 is small, so the entropy is high. Example 6-9 demonstrates how to
 calculate the entropy of a list of labels.
[image: The entropy of labels in the name gender prediction task, as a function of the percentage of names in a given set that are male.]

Figure 6-5. The entropy of labels in the name gender prediction task, as
 a function of the percentage of names in a given set that are
 male.

Example 6-9. Calculating the entropy of a list of labels.
import math
def entropy(labels):
 freqdist = nltk.FreqDist(labels)
 probs = [freqdist.freq(l) for l in nltk.FreqDist(labels)]
 return -sum([p * math.log(p,2) for p in probs])
>>> print entropy(['male', 'male', 'male', 'male'])
0.0
>>> print entropy(['male', 'female', 'male', 'male'])
0.811278124459
>>> print entropy(['female', 'male', 'female', 'male'])
1.0
>>> print entropy(['female', 'female', 'male', 'female'])
0.811278124459
>>> print entropy(['female', 'female', 'female', 'female'])
0.0

Once we have calculated the entropy of the labels of the
 original set of input values, we can determine how much more organized
 the labels become once we apply the decision stump. To do so, we
 calculate the entropy for each of the decision stump’s leaves, and
 take the average of those leaf entropy values (weighted by the number
 of samples in each leaf). The information gain is then equal to the
 original entropy minus this new, reduced entropy. The higher the
 information gain, the better job the decision stump does of dividing
 the input values into coherent groups, so we can build decision trees
 by selecting the decision stumps with the highest information
 gain.
Another consideration for decision trees is efficiency. The
 simple algorithm for selecting decision stumps described earlier must
 construct a candidate decision stump for every possible feature, and
 this process must be repeated for every node in the constructed
 decision tree. A number of algorithms have been developed to cut down
 on the training time by storing and reusing information about
 previously evaluated examples.
Decision trees have a number of useful qualities. To begin with,
 they’re simple to understand, and easy to interpret. This is
 especially true near the top of the decision tree, where it is usually
 possible for the learning algorithm to find very useful features.
 Decision trees are especially well suited to cases where many
 hierarchical categorical distinctions can be made. For example,
 decision trees can be very effective at capturing phylogeny
 trees.
However, decision trees also have a few disadvantages. One
 problem is that, since each branch in the decision tree splits the
 training data, the amount of training data available to train nodes
 lower in the tree can become quite small. As a result, these lower
 decision nodes may overfit the
 training set, learning patterns that reflect idiosyncrasies of the
 training set rather than linguistically significant patterns in the
 underlying problem. One solution to this problem is to stop dividing
 nodes once the amount of training data becomes too small. Another
 solution is to grow a full decision tree, but then to prune decision nodes that do not improve
 performance on a dev-test.
A second problem with decision trees is that they force features
 to be checked in a specific order, even when features may act
 relatively independently of one another. For example, when classifying
 documents into topics (such as sports, automotive, or murder mystery),
 features such as hasword(football)
 are highly indicative of a specific label, regardless of what the
 other feature values are. Since there is limited space near the top of
 the decision tree, most of these features will need to be repeated on
 many different branches in the tree. And since the number of branches
 increases exponentially as we go down the tree, the amount of
 repetition can be very large.
A related problem is that decision trees are not good at making
 use of features that are weak predictors of the correct label. Since
 these features make relatively small incremental improvements, they tend to
 occur very low in the decision tree. But by the time the decision tree
 learner has descended far enough to use these features, there is not
 enough training data left to reliably determine what effect they
 should have. If we could instead look at the effect of these features
 across the entire training set, then we might be able to make some
 conclusions about how they should affect the choice of label.
The fact that decision trees require that features be checked in
 a specific order limits their ability to exploit features that are
 relatively independent of one another. The naive Bayes classification
 method, which we’ll discuss next, overcomes this limitation by
 allowing all features to act “in parallel.”

Naive Bayes Classifiers

In naive Bayes classifiers,
 every feature gets a say in determining which label should be assigned
 to a given input value. To choose a label for an input value, the naive
 Bayes classifier begins by calculating the prior
 probability of each label, which is determined by checking
 the frequency of each label in the training set. The contribution from
 each feature is then combined with this prior probability, to arrive at
 a likelihood estimate for each label. The label whose likelihood
 estimate is the highest is then assigned to the input value. Figure 6-6 illustrates this
 process.
[image: An abstract illustration of the procedure used by the naive Bayes classifier to choose the topic for a document. In the training corpus, most documents are automotive, so the classifier starts out at a point closer to the “automotive” label. But it then considers the effect of each feature. In this example, the input document contains the word dark, which is a weak indicator for murder mysteries, but it also contains the word football, which is a strong indicator for sports documents. After every feature has made its contribution, the classifier checks which label it is closest to, and assigns that label to the input.]

Figure 6-6. An abstract illustration of the procedure used by the naive
 Bayes classifier to choose the topic for a document. In the training
 corpus, most documents are automotive, so the classifier starts out at
 a point closer to the “automotive” label. But it then considers the
 effect of each feature. In this example, the input document contains
 the word dark, which is a weak indicator
 for murder mysteries, but it also contains the word football, which is a strong indicator for sports
 documents. After every feature has made its contribution, the
 classifier checks which label it is closest to, and assigns that label
 to the input.

Individual features make their contribution to the overall
 decision by “voting against” labels that don’t occur with that feature
 very often. In particular, the likelihood score for each label is
 reduced by multiplying it by the probability that an input value with
 that label would have the feature. For example, if the word
 run occurs in 12% of the sports documents, 10% of
 the murder mystery documents, and 2% of the automotive documents, then
 the likelihood score for the sports label will be multiplied by 0.12,
 the likelihood score for the murder mystery label will be multiplied by
 0.1, and the likelihood score for the automotive label will be
 multiplied by 0.02. The overall effect will be to reduce the score of
 the murder mystery label slightly more than the score of the sports
 label, and to significantly reduce the automotive label with respect to
 the other two labels. This process is illustrated in Figures 6-7 and 6-8.
[image: Calculating label likelihoods with naive Bayes. Naive Bayes begins by calculating the prior probability of each label, based on how frequently each label occurs in the training data. Every feature then contributes to the likelihood estimate for each label, by multiplying it by the probability that input values with that label will have that feature. The resulting likelihood score can be thought of as an estimate of the probability that a randomly selected value from the training set would have both the given label and the set of features, assuming that the feature probabilities are all independent.]

Figure 6-7. Calculating label likelihoods with naive Bayes. Naive Bayes
 begins by calculating the prior probability of each label, based on
 how frequently each label occurs in the training data. Every feature
 then contributes to the likelihood estimate for each label, by
 multiplying it by the probability that input values with that label
 will have that feature. The resulting likelihood score can be thought
 of as an estimate of the probability that a randomly selected value
 from the training set would have both the given label and the set of
 features, assuming that the feature probabilities are all
 independent.

[image: A Bayesian Network Graph illustrating the generative process that is assumed by the naive Bayes classifier. To generate a labeled input, the model first chooses a label for the input, and then it generates each of the input’s features based on that label. Every feature is assumed to be entirely independent of every other feature, given the label.]

Figure 6-8. A Bayesian Network Graph illustrating the generative process
 that is assumed by the naive Bayes classifier. To generate a labeled
 input, the model first chooses a label for the input, and then it
 generates each of the input’s features based on that label. Every
 feature is assumed to be entirely independent of every other feature,
 given the label.

Underlying Probabilistic Model

Another way of understanding the naive Bayes classifier is that
 it chooses the most likely label for an input, under the assumption
 that every input value is generated by first choosing a class label
 for that input value, and then generating each feature, entirely
 independent of every other feature. Of course, this assumption is
 unrealistic; features are often highly dependent on one another. We’ll
 return to some of the consequences of this assumption at the end of
 this section. This simplifying assumption, known as the naive Bayes assumption (or independence assumption), makes it much
 easier to combine the contributions of the different features, since
 we don’t need to worry about how they should interact with one
 another.
Based on this assumption, we can calculate an expression for
 P(label|features), the
 probability that an input will have a particular label given that it
 has a particular set of features. To choose a label for a new input,
 we can then simply pick the label l that
 maximizes
 P(l|features).
To begin, we note that
 P(label|features) is equal
 to the probability that an input has a particular label
 and the specified set of features, divided by the
 probability that it has the specified set of features:
Example 6-10.
P(label|features)
 =
 P(features,
 label)/P(features)

Next, we note that
 P(features) will be the same
 for every choice of label, so if we are simply interested in finding
 the most likely label, it suffices to calculate
 P(features,
 label), which we’ll call the label
 likelihood.
Note
If we want to generate a probability estimate for each label,
 rather than just choosing the most likely label, then the easiest
 way to compute P(features)
 is to simply calculate the sum over labels of
 P(features,
 label):
Example 6-11.
 P(features) =
 Σlabel ∈
 labels
 P(features,
 label)

The label likelihood can be expanded out as the probability of
 the label times the probability of the features given the
 label:
Example 6-12.
P(features,
 label) =
 P(label) ×
 P(features|label)

Furthermore, since the features are all independent of one
 another (given the label), we can separate out the probability of each
 individual feature:
Example 6-13.
P(features,
 label) =
 P(label) ×
 ⊓f ∈
 featuresP(f|label)

This is exactly the equation we discussed earlier for
 calculating the label likelihood: P(label) is the
 prior probability for a given label, and each
 P(f|label) is the contribution of a single
 feature to the label likelihood.

Zero Counts and Smoothing

The simplest way to calculate P(f|label),
 the contribution of a feature f toward the label
 likelihood for a label label, is to take the
 percentage of training instances with the given label that also have
 the given feature:
Example 6-14.
P(f|label) =
 count(f,
 label)/count(label)

However, this simple approach can become problematic when a
 feature never occurs with a given label in the
 training set. In this case, our calculated value for
 P(f|label) will be zero,
 which will cause the label likelihood for the given label to be zero.
 Thus, the input will never be assigned this label, regardless of how
 well the other features fit the label.
The basic problem here is with our calculation of
 P(f|label), the probability
 that an input will have a feature, given a label. In particular, just
 because we haven’t seen a feature/label combination occur in the
 training set, doesn’t mean it’s impossible for that combination to
 occur. For example, we may not have seen any murder mystery documents
 that contained the word football, but we wouldn’t
 want to conclude that it’s completely impossible for such documents to
 exist.
Thus, although
 count(f,label)/count(label)
 is a good estimate for
 P(f|label) when
 count(f,
 label) is relatively high, this estimate becomes
 less reliable when count(f)
 becomes smaller. Therefore, when building naive Bayes models, we
 usually employ more sophisticated techniques, known as smoothing techniques, for calculating
 P(f|label), the probability
 of a feature given a label. For example, the Expected Likelihood Estimation for the
 probability of a feature given a label basically adds 0.5 to each
 count(f,label)
 value, and the Heldout Estimation uses
 a heldout corpus to calculate the relationship between feature
 frequencies and feature probabilities. The nltk.probability module provides support for
 a wide variety of smoothing techniques.

Non-Binary Features

We have assumed here that each feature is binary, i.e., that
 each input either has a feature or does not. Label-valued features
 (e.g., a color feature, which could be red,
 green, blue,
 white, or orange) can be
 converted to binary features by replacing them with binary features,
 such as “color-is-red”. Numeric features can be converted to binary
 features by binning, which replaces
 them with features such as “4<x<6.”
Another alternative is to use regression methods to model the
 probabilities of numeric features. For example, if we assume that the
 height feature has a bell curve distribution, then we could estimate
 P(height|label)
 by finding the mean and variance of the heights of the inputs with
 each label. In this case,
 P(f=v|label) would not be a
 fixed value, but would vary depending on the value of
 v.

The Naivete of Independence

The reason that naive Bayes classifiers are called “naive” is
 that it’s unreasonable to assume that all features are independent of
 one another (given the label). In particular, almost all real-world
 problems contain features with varying degrees of dependence on one
 another. If we had to avoid any features that were dependent on one
 another, it would be very difficult to construct good feature sets
 that provide the required information to the machine learning
 algorithm.
So what happens when we ignore the independence assumption, and
 use the naive Bayes classifier with features that are not independent?
 One problem that arises is that the classifier can end up
 “double-counting” the effect of highly correlated features, pushing
 the classifier closer to a given label than is justified.
To see how this can occur, consider a name gender classifier
 that contains two identical features,
 f1 and
 f2. In other words,
 f2 is an exact copy of
 f1, and contains no new
 information. When the classifier is considering an input, it will
 include the contribution of both
 f1 and
 f2 when deciding which
 label to choose. Thus, the information content of these two features
 will be given more weight than it deserves.
Of course, we don’t usually build naive Bayes classifiers that
 contain two identical features. However, we do build classifiers that
 contain features which are dependent on one another. For example, the
 features ends-with(a) and ends-with(vowel) are dependent on one
 another, because if an input value has the first feature, then it must
 also have the second feature. For features like these, the duplicated
 information may be given more weight than is justified by the training
 set.

The Cause of Double-Counting

The reason for the double-counting problem is that during
 training, feature contributions are computed separately; but when
 using the classifier to choose labels for new inputs, those feature
 contributions are combined. One solution, therefore, is to consider
 the possible interactions between feature contributions during
 training. We could then use those interactions to adjust the
 contributions that individual features make.
To make this more precise, we can rewrite the equation used to
 calculate the likelihood of a label, separating out the contribution
 made by each feature (or label):
Example 6-15.
P(features,
 label) =
 w[label] ×
 ⊓f ∈
 features
 w[f,
 label]

Here, w[label] is the
 “starting score” for a given label, and
 w[f,
 label] is the contribution made by a given
 feature towards a label’s likelihood. We call these values
 w[label] and
 w[f,
 label] the parameters or weights for the model. Using the naive Bayes
 algorithm, we set each of these parameters independently:
Example 6-16.
w[label]
 =
 P(label)

Example 6-17.
w[f,
 label] =
 P(f|label)

However, in the next section, we’ll look at a classifier that
 considers the possible interactions between these parameters when
 choosing their values.

Maximum Entropy Classifiers

The Maximum Entropy classifier
 uses a model that is very similar to the model employed by the naive
 Bayes classifier. But rather than using probabilities to set the model’s parameters, it uses search
 techniques to find a set of parameters that will maximize the
 performance of the classifier. In particular, it looks for the set of
 parameters that maximizes the total
 likelihood of the training corpus, which is defined
 as:
Example 6-18.
P(features) =
 Σx ∈ corpus
 P(label(x)|features(x))

Where P(label|features),
 the probability that an input whose features are
 features will have class label
 label, is defined as:
Example 6-19.
P(label|features)
 = P(label,
 features)/Σlabel
 P(label,
 features)

Because of the potentially complex interactions between the
 effects of related features, there is no way to directly calculate the
 model parameters that maximize the likelihood of the training set.
 Therefore, Maximum Entropy classifiers choose the model parameters using
 iterative optimization techniques,
 which initialize the model’s parameters to random values, and then
 repeatedly refine those parameters to bring them closer to the optimal
 solution. These iterative optimization techniques guarantee that each
 refinement of the parameters will bring them closer to the optimal
 values, but do not necessarily provide a means of determining when those
 optimal values have been reached. Because the parameters for Maximum
 Entropy classifiers are selected using iterative optimization
 techniques, they can take a long time to learn. This is especially true
 when the size of the training set, the number of features, and the
 number of labels are all large.
Note
Some iterative optimization techniques are much faster than
 others. When training Maximum Entropy models, avoid the use of
 Generalized Iterative Scaling (GIS) or Improved Iterative Scaling
 (IIS), which are both considerably slower than the Conjugate Gradient
 (CG) and the BFGS optimization methods.

The Maximum Entropy Model

The Maximum Entropy classifier model is a generalization of the
 model used by the naive Bayes classifier. Like the naive Bayes model,
 the Maximum Entropy classifier calculates the likelihood of each label
 for a given input value by multiplying together the parameters that
 are applicable for the input value and label. The naive Bayes
 classifier model defines a parameter for each label, specifying its
 prior probability, and a parameter for each (feature, label) pair,
 specifying the contribution of individual features toward a label’s
 likelihood.
In contrast, the Maximum Entropy classifier model leaves it up
 to the user to decide what combinations of labels and features should
 receive their own parameters. In particular, it is possible to use a
 single parameter to associate a feature with more than one label; or
 to associate more than one feature with a given label. This will
 sometimes allow the model to “generalize” over some of the differences
 between related labels or features.
Each combination of labels and features that receives its own
 parameter is called a joint-feature. Note that joint-features are
 properties of labeled values, whereas (simple)
 features are properties of unlabeled
 values.
Note
In literature that describes and discusses Maximum Entropy
 models, the term “features” often refers to joint-features; the term
 “contexts” refers to what we have been calling (simple)
 features.

Typically, the joint-features that are used to construct Maximum
 Entropy models exactly mirror those that are used by the naive Bayes
 model. In particular, a joint-feature is defined for each label,
 corresponding to
 w[label],
 and for each combination of (simple) feature and label, corresponding
 to w[f,
 label]. Given the joint-features for a Maximum
 Entropy model, the score assigned to a label for a given input is
 simply the product of the parameters associated with the
 joint-features that apply to that input and label:
Example 6-20.
P(input,
 label) =
 ⊓joint-features(input,label)w[joint-feature]

Maximizing Entropy

The intuition that motivates Maximum Entropy classification is
 that we should build a model that captures the frequencies of
 individual joint-features, without making any unwarranted assumptions.
 An example will help to illustrate this principle.
Suppose we are assigned the task of picking the correct word
 sense for a given word, from a list of 10 possible senses (labeled
 A–J). At first, we are not told anything more about the word or the
 senses. There are many probability distributions that we could choose
 for the 10 senses, such as:
	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J

	(i)
	10%
	10%
	10%
	10%
	10%
	10%
	10%
	10%
	10%
	10%

	(ii)
	5%
	15%
	0%
	30%
	0%
	8%
	12%
	0%
	6%
	24%

	(iii)
	0%
	100%
	0%
	0%
	0%
	0%
	0%
	0%
	0%
	0%

Although any of these distributions might
 be correct, we are likely to choose distribution
 (i), because without any more information, there
 is no reason to believe that any word sense is more likely than any
 other. On the other hand, distributions (ii) and
 (iii) reflect assumptions that are not supported
 by what we know.
One way to capture this intuition that distribution
 (i) is more “fair” than the other two is to
 invoke the concept of entropy. In the discussion of decision trees, we
 described entropy as a measure of how “disorganized” a set of labels
 was. In particular, if a single label dominates then entropy is low,
 but if the labels are more evenly distributed then entropy is high. In
 our example, we chose distribution (i) because
 its label probabilities are evenly distributed—in other words, because
 its entropy is high. In general, the Maximum
 Entropy principle states that, among the distributions that
 are consistent with what we know, we should choose the distribution
 whose entropy is highest.
Next, suppose that we are told that sense A appears 55% of the
 time. Once again, there are many distributions that are consistent
 with this new piece of information, such as:
	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J

	(iv)
	55%
	45%
	0%
	0%
	0%
	0%
	0%
	0%
	0%
	0%

	(v)
	55%
	5%
	5%
	5%
	5%
	5%
	5%
	5%
	5%
	5%

	(vi)
	55%
	3%
	1%
	2%
	9%
	5%
	0%
	25%
	0%
	0%

But again, we will likely choose the distribution that makes the
 fewest unwarranted assumptions—in this case, distribution
 (v).
Finally, suppose that we are told that the word
 up appears in the nearby context 10% of the time,
 and that when it does appear in the context there’s an 80% chance that
 sense A or C will be used. In this case, we will have a harder time
 coming up with an appropriate distribution by hand; however, we can
 verify that the following distribution looks appropriate:
	
	 	A
	B
	C
	D
	E
	F
	G
	H
	I
	J

	(vii)
	+up
	5.1%
	0.25%
	2.9%
	0.25%
	0.25%
	0.25%
	0.25%
	0.25%
	0.25%
	0.25%

	
	–up
	49.9%
	4.46%
	4.46%
	4.46%
	4.46%
	4.46%
	4.46%
	4.46%
	4.46%
	4.46%

In particular, the distribution is consistent with what we know:
 if we add up the probabilities in column A, we get 55%; if we add up
 the probabilities of row 1, we get 10%; and if we add up the boxes for
 senses A and C in the +up row, we get 8% (or 80% of the +up cases).
 Furthermore, the remaining probabilities appear to be “evenly distributed.”
Throughout this example, we have restricted ourselves to
 distributions that are consistent with what we know; among these, we
 chose the distribution with the highest entropy. This is exactly what
 the Maximum Entropy classifier does as well. In particular, for each joint-feature, the
 Maximum Entropy model calculates the “empirical frequency” of that
 feature—i.e., the frequency with which it occurs in the training set.
 It then searches for the distribution which maximizes entropy, while
 still predicting the correct frequency for each joint-feature.

Generative Versus Conditional Classifiers

An important difference between the naive Bayes classifier and
 the Maximum Entropy classifier concerns the types of questions they
 can be used to answer. The naive Bayes classifier is an example of a
 generative classifier, which builds
 a model that predicts
 P(input,
 label), the joint probability of an
 (input, label) pair. As a
 result, generative models can be used to answer the following
 questions:
	What is the most likely label for a given input?

	How likely is a given label for a given input?

	What is the most likely input value?

	How likely is a given input value?

	How likely is a given input value with a given label?

	What is the most likely label for an input that might have
 one of two values (but we don’t know which)?

The Maximum Entropy classifier, on the other hand, is an example
 of a conditional classifier.
 Conditional classifiers build models that predict
 P(label|input)—the
 probability of a label given the input value.
 Thus, conditional models can still be used to answer questions 1 and
 2. However, conditional models cannot be used to
 answer the remaining questions 3–6.
In general, generative models are strictly more powerful than
 conditional models, since we can calculate the conditional probability
 P(label|input) from the
 joint probability P(input,
 label), but not vice versa. However, this additional power
 comes at a price. Because the model is more powerful, it has more
 “free parameters” that need to be learned. However, the size of the
 training set is fixed. Thus, when using a more powerful model, we end
 up with less data that can be used to train each parameter’s value,
 making it harder to find the best parameter values. As a result, a
 generative model may not do as good a job at answering questions 1 and
 2 as a conditional model, since the conditional model can focus its
 efforts on those two questions. However, if we do need answers to
 questions like 3–6, then we have no choice but to use a generative
 model.
The difference between a generative model and a conditional
 model is analogous to the difference between a topographical map and a
 picture of a skyline. Although the topographical map can be used to
 answer a wider variety of questions, it is significantly more
 difficult to generate an accurate topographical map than it is to
 generate an accurate skyline.

Modeling Linguistic Patterns

Classifiers can help us to understand the linguistic patterns that
 occur in natural language, by allowing us to create explicit models that capture those patterns. Typically,
 these models are using supervised classification techniques, but it is
 also possible to build analytically motivated models. Either way, these
 explicit models serve two important purposes: they help us to understand
 linguistic patterns, and they can be used to make predictions about new
 language data.
The extent to which explicit models can give us insights into
 linguistic patterns depends largely on what kind of model is used. Some
 models, such as decision trees, are relatively transparent, and give us
 direct information about which factors are important in making decisions
 and about which factors are related to one another. Other models, such
 as multilevel neural networks, are much more opaque. Although it can be
 possible to gain insight by studying them, it typically takes a lot more
 work.
But all explicit models can make predictions about new unseen language data that was not included in
 the corpus used to build the model. These predictions can be evaluated
 to assess the accuracy of the model. Once a model is deemed sufficiently
 accurate, it can then be used to automatically predict information about
 new language data. These predictive models can be combined into systems
 that perform many useful language processing tasks, such as document
 classification, automatic translation, and question answering.
What Do Models Tell Us?

It’s important to understand what we can learn about language
 from an automatically constructed model. One important consideration
 when dealing with models of language is the distinction between
 descriptive models and explanatory models. Descriptive models capture
 patterns in the data, but they don’t provide any information about
 why the data contains those patterns. For
 example, as we saw in Table 3-1, the synonyms
 absolutely and definitely
 are not interchangeable: we say absolutely adore
 not definitely adore, and definitely
 prefer, not absolutely prefer. In
 contrast, explanatory models attempt to capture properties and
 relationships that cause the linguistic patterns. For example, we
 might introduce the abstract concept of “polar adjective” as an
 adjective that has an extreme meaning, and categorize some adjectives,
 such as adore and detest as
 polar. Our explanatory model would contain the constraint that
 absolutely can combine only with polar
 adjectives, and definitely can only combine with
 non-polar adjectives. In summary, descriptive models provide
 information about correlations in the data, while explanatory models
 go further to postulate causal relationships.
Most models that are automatically constructed from a corpus are
 descriptive models; in other words, they can tell us what features are
 relevant to a given pattern or construction, but they can’t
 necessarily tell us how those features and patterns relate to one
 another. If our goal is to understand the linguistic patterns, then we
 can use this information about which features are related as a
 starting point for further experiments designed to tease apart the
 relationships between features and patterns. On the other hand, if
 we’re just interested in using the model to make predictions (e.g., as
 part of a language processing system), then we can use the model to
 make predictions about new data without worrying about the details of
 underlying causal relationships.

Summary

	Modeling the linguistic data found in corpora can help us to
 understand linguistic patterns, and can be used to make predictions
 about new language data.

	Supervised classifiers use labeled training corpora to build
 models that predict the label of an input based on specific features
 of that input.

	Supervised classifiers can perform a wide variety of NLP
 tasks, including document classification, part-of-speech tagging,
 sentence segmentation, dialogue act type identification, and
 determining entailment relations, and many other tasks.

	When training a supervised classifier, you should split your
 corpus into three datasets: a training set for building the
 classifier model, a dev-test set for helping select and tune the
 model’s features, and a test set for evaluating the final model’s
 performance.

	When evaluating a supervised classifier, it is important that
 you use fresh data that was not included in the training or dev-test
 set. Otherwise, your evaluation results may be unrealistically
 optimistic.

	Decision trees are automatically constructed tree-structured
 flowcharts that are used to assign labels to input values based on
 their features. Although they’re easy to interpret, they are not
 very good at handling cases where feature values interact in
 determining the proper label.

	In naive Bayes classifiers, each feature independently
 contributes to the decision of which label should be used. This
 allows feature values to interact, but can be problematic when two
 or more features are highly correlated with one another.

	Maximum Entropy classifiers use a basic model that is similar
 to the model used by naive Bayes; however, they employ iterative
 optimization to find the set of feature weights that maximizes the
 probability of the training set.

	Most of the models that are automatically constructed from a
 corpus are descriptive, that is, they let us know which features are
 relevant to a given pattern or construction, but they don’t give any
 information about causal relationships between those features and
 patterns.

Further Reading

Please consult http://www.nltk.org/ for
 further materials on this chapter and on how to install external machine
 learning packages, such as Weka, Mallet, TADM, and MegaM. For more
 examples of classification and machine learning with NLTK, please see
 the classification HOWTOs at http://www.nltk.org/howto.
For a general introduction to machine learning, we recommend
 (Alpaydin, 2004). For a more mathematically intense introduction to the
 theory of machine learning, see (Hastie, Tibshirani & Friedman,
 2009). Excellent books on using machine learning techniques for NLP
 include (Abney, 2008), (Daelemans & Bosch, 2005), (Feldman &
 Sanger, 2007), (Segaran, 2007), and (Weiss et al., 2004). For more on
 smoothing techniques for language problems, see (Manning & Schütze,
 1999). For more on sequence modeling, and especially hidden Markov
 models, see (Manning & Schütze, 1999) or (Jurafsky & Martin,
 2008). Chapter 13 of (Manning, Raghavan & Schütze, 2008) discusses
 the use of naive Bayes for classifying texts.
Many of the machine learning algorithms discussed in this chapter
 are numerically intensive, and as a result, they will run slowly when
 coded naively in Python. For information on increasing the efficiency of
 numerically intensive algorithms in Python, see (Kiusalaas,
 2005).
The classification techniques described in this chapter can be
 applied to a very wide variety of problems. For example, (Agirre &
 Edmonds, 2007) uses classifiers to perform word-sense disambiguation;
 and (Melamed, 2001) uses classifiers to create parallel texts. Recent
 textbooks that cover text classification include (Manning, Raghavan
 & Schütze, 2008) and (Croft, Metzler & Strohman, 2009).
Much of the current research in the application of machine
 learning techniques to NLP problems is driven by government-sponsored
 “challenges,” where a set of research organizations are all provided
 with the same development corpus and asked to build a system, and the
 resulting systems are compared based on a reserved test set. Examples of
 these challenge competitions include CoNLL Shared Tasks, the Recognizing
 Textual Entailment competitions, the ACE competitions, and the AQUAINT
 competitions. Consult http://www.nltk.org/ for a
 list of pointers to the web pages for these challenges.

Exercises

	○ Read up on one of the language technologies mentioned in
 this section, such as word sense disambiguation, semantic role
 labeling, question answering, machine translation, or named entity
 recognition. Find out what type and quantity of annotated data is
 required for developing such systems. Why do you think a large
 amount of data is required?

	○ Using any of the three classifiers described in this
 chapter, and any features you can think of, build the best name
 gender classifier you can. Begin by splitting the Names Corpus into
 three subsets: 500 words for the test set, 500 words for the
 dev-test set, and the remaining 6,900 words for the training set.
 Then, starting with the example name gender classifier, make
 incremental improvements. Use the dev-test set to check your
 progress. Once you are satisfied with your classifier, check its
 final performance on the test set. How does the performance on the
 test set compare to the performance on the dev-test set? Is this
 what you’d expect?

	○ The Senseval 2 Corpus contains data intended to train word-sense
 disambiguation classifiers. It contains data for four words:
 hard, interest,
 line, and serve. Choose
 one of these four words, and load the corresponding data:
>>> from nltk.corpus import senseval
>>> instances = senseval.instances('hard.pos')
>>> size = int(len(instances) * 0.1)
>>> train_set, test_set = instances[size:], instances[:size]
Using this dataset, build a classifier that predicts the
 correct sense tag for a given instance. See the corpus HOWTO at
 http://www.nltk.org/howto for information on
 using the instance objects returned by the Senseval 2 Corpus.

	○ Using the movie review document classifier discussed in this
 chapter, generate a list of the 30 features that the classifier
 finds to be most informative. Can you explain why these particular
 features are informative? Do you find any of them surprising?

	○ Select one of the classification tasks described in this
 chapter, such as name gender detection, document classification,
 part-of-speech tagging, or dialogue act classification. Using the
 same training and test data, and the same feature extractor, build
 three classifiers for the task: a decision tree, a naive Bayes
 classifier, and a Maximum Entropy classifier. Compare the
 performance of the three classifiers on your selected task. How do
 you think that your results might be different if you used a
 different feature extractor?

	○ The synonyms strong and
 powerful pattern differently (try combining
 them with chip and sales).
 What features are relevant in this distinction? Build a classifier
 that predicts when each word should be used.

	[image:] The dialogue act classifier assigns labels to individual
 posts, without considering the context in which the post is found.
 However, dialogue acts are highly dependent on context, and some
 sequences of dialogue act are much more likely than others. For
 example, a ynQuestion dialogue act is much more likely to be
 answered by a yanswer than by a
 greeting. Make use of this fact
 to build a consecutive classifier for labeling dialogue acts. Be
 sure to consider what features might be useful. See the code for the
 consecutive classifier for part-of-speech tags in Example 6-5 to get some ideas.

	[image:] Word features can be very useful for performing document
 classification, since the words that appear in a document give a
 strong indication about what its semantic content is. However, many
 words occur very infrequently, and some of the most informative
 words in a document may never have occurred in our training data.
 One solution is to make use of a lexicon, which describes how different
 words relate to one another. Using the WordNet lexicon, augment the
 movie review document classifier presented in this chapter to use
 features that generalize the words that appear in a document, making
 it more likely that they will match words found in the training
 data.

	● The PP Attachment Corpus is a corpus describing
 prepositional phrase attachment decisions. Each instance in the
 corpus is encoded as a PPAttachment object:
>>> from nltk.corpus import ppattach
>>> ppattach.attachments('training')
[PPAttachment(sent='0', verb='join', noun1='board',
 prep='as', noun2='director', attachment='V'),
 PPAttachment(sent='1', verb='is', noun1='chairman',
 prep='of', noun2='N.V.', attachment='N'),
 ...]
>>> inst = ppattach.attachments('training')[1]
>>> (inst.noun1, inst.prep, inst.noun2)
('chairman', 'of', 'N.V.')
Select only the instances where inst.attachment is N:
>>> nattach = [inst for inst in ppattach.attachments('training')
... if inst.attachment == 'N']
Using this subcorpus, build a classifier that attempts to
 predict which preposition is used to connect a given pair of nouns.
 For example, given the pair of nouns team and
 researchers, the classifier should predict the
 preposition of. See the corpus HOWTO at http://www.nltk.org/howto for more information on
 using the PP Attachment Corpus.

	● Suppose you wanted to automatically generate a prose
 description of a scene, and already had a word to uniquely describe
 each entity, such as the book, and simply
 wanted to decide whether to use in or
 on in relating various items, e.g.,
 the book is in the cupboard versus
 the book is on the shelf. Explore this issue by
 looking at corpus data and writing programs as needed. Consider the
 following examples:

Example 6-21.
	in the car versus on the train

	in town versus on campus

	in the picture versus on the
 screen

	in Macbeth versus on
 Letterman

Chapter 7. Extracting Information from Text

For any given question, it’s likely that someone has written the
 answer down somewhere. The amount of natural language text that is
 available in electronic form is truly staggering, and is increasing every
 day. However, the complexity of natural language can make it very
 difficult to access the information in that text. The state of the art in
 NLP is still a long way from being able to build general-purpose
 representations of meaning from unrestricted text. If we instead focus our
 efforts on a limited set of questions or “entity relations,” such as
 “where are different facilities located” or “who is employed by what
 company,” we can make significant progress. The goal of this chapter is to
 answer the following questions:
	How can we build a system that extracts structured data from
 unstructured text?

	What are some robust methods for identifying the entities and
 relationships described in a text?

	Which corpora are appropriate for this work, and how do we use
 them for training and evaluating our models?

Along the way, we’ll apply techniques from the last two chapters to
 the problems of chunking and named entity recognition.
Information Extraction

Information comes in many shapes and sizes. One important form is
 structured data, where there is a regular
 and predictable organization of entities and relationships. For example,
 we might be interested in the relation between companies and locations.
 Given a particular company, we would like to be able to identify the
 locations where it does business; conversely, given a location, we would
 like to discover which companies do business in that location. If our
 data is in tabular form, such as the example in Table 7-1, then answering these queries is
 straightforward.
Table 7-1. Locations data
	OrgName
	LocationName

	Omnicom
	New York

	DDB Needham
	New York

	Kaplan Thaler Group
	New York

	BBDO South
	Atlanta

	Georgia-Pacific
	Atlanta

If this location data was stored in Python as a list of tuples
 (entity,
 relation,
 entity), then the question “Which
 organizations operate in Atlanta?” could be translated as
 follows:
>>> print [org for (e1, rel, e2) if rel=='IN' and e2=='Atlanta']
['BBDO South', 'Georgia-Pacific']
Things are more tricky if we try to get similar information out of
 text. For example, consider the following snippet (from nltk.corpus.ieer, for fileid NYT19980315.0085).
Example 7-1.
The fourth Wells account moving to another agency is the
 packaged paper-products division of Georgia-Pacific Corp., which
 arrived at Wells only last fall. Like Hertz and the History Channel,
 it is also leaving for an Omnicom-owned agency, the BBDO South unit of
 BBDO Worldwide. BBDO South in Atlanta, which handles corporate
 advertising for Georgia-Pacific, will assume additional duties for
 brands like Angel Soft toilet tissue and Sparkle paper towels, said
 Ken Haldin, a spokesman for Georgia-Pacific in Atlanta.

If you read through Example 7-1, you will glean the
 information required to answer the example question. But how do we get a
 machine to understand enough about Example 7-1 to return
 the list ['BBDO South', ‘Georgia-Pacific'] as an answer? This is
 obviously a much harder task. Unlike Table 7-1, Example 7-1 contains no
 structure that links organization names with location names.
One approach to this problem involves building a very general
 representation of meaning (Chapter 10). In this
 chapter we take a different approach, deciding in advance that we will
 only look for very specific kinds of information in text, such as the
 relation between organizations and locations. Rather than trying to use
 text like Example 7-1 to answer the question directly, we
 first convert the unstructured data
 of natural language sentences into the structured data of Table 7-1. Then we reap the benefits of powerful
 query tools such as SQL. This method of getting meaning from text is
 called Information
 Extraction.
Information Extraction has many applications, including business
 intelligence, resume harvesting, media analysis, sentiment detection,
 patent search, and email scanning. A particularly important area of
 current research involves the attempt to extract structured data out of electronically
 available scientific literature, especially in the domain of biology and
 medicine.
Information Extraction Architecture

Figure 7-1 shows the architecture
 for a simple information extraction system. It begins by processing a
 document using several of the procedures discussed in Chapters 3 and 5: first, the raw
 text of the document is split into sentences using a sentence
 segmenter, and each sentence is further subdivided into words using a
 tokenizer. Next, each sentence is tagged with part-of-speech tags,
 which will prove very helpful in the next step, named entity recognition. In this step, we
 search for mentions of potentially interesting entities in each
 sentence. Finally, we use relation
 recognition to search for likely relations between
 different entities in the text.
[image: Simple pipeline architecture for an information extraction system. This system takes the raw text of a document as its input, and generates a list of (entity, relation, entity) tuples as its output. For example, given a document that indicates that the company Georgia-Pacific is located in Atlanta, it might generate the tuple ([ORG: 'Georgia-Pacific'] 'in' [LOC: 'Atlanta']).]

Figure 7-1. Simple pipeline architecture for an information extraction
 system. This system takes the raw text of a document as its input,
 and generates a list of (entity,
 relation, entity) tuples as its output. For example,
 given a document that indicates that the company Georgia-Pacific is
 located in Atlanta, it might generate the tuple ([ORG: 'Georgia-Pacific'] 'in'
 [LOC: 'Atlanta']).

To perform the first three tasks, we can define a function that
 simply connects together NLTK’s default sentence segmenter [image: 1], word tokenizer [image: 2], and part-of-speech tagger [image: 3]:
>>> def ie_preprocess(document):
... sentences = nltk.sent_tokenize(document) [image: 1]
... sentences = [nltk.word_tokenize(sent) for sent in sentences] [image: 2]
... sentences = [nltk.pos_tag(sent) for sent in sentences] [image: 3]
Note
Remember that our program samples assume you begin your
 interactive session or your program with import nltk, re, pprint.

Next, in named entity recognition, we segment and label the
 entities that might participate in interesting relations with one
 another. Typically, these will be definite noun phrases such as
 the knights who say “ni”, or proper names such as
 Monty Python. In some tasks it is useful to also
 consider indefinite nouns or noun chunks, such as every
 student or cats, and these do not
 necessarily refer to entities in the same way as definite NPs and proper names.
Finally, in relation extraction, we search for specific patterns
 between pairs of entities that occur near one another in the text, and
 use those patterns to build tuples recording the relationships between
 the entities.

Chunking

The basic technique we will use for entity recognition is
 chunking, which segments and labels
 multitoken sequences as illustrated in Figure 7-2. The smaller boxes show the
 word-level tokenization and part-of-speech tagging, while the large
 boxes show higher-level chunking. Each of these larger boxes is called a
 chunk. Like tokenization, which omits
 whitespace, chunking usually selects a subset of the tokens. Also like
 tokenization, the pieces produced by a chunker do not overlap in the
 source text.
[image: Segmentation and labeling at both the Token and Chunk levels.]

Figure 7-2. Segmentation and labeling at both the Token and Chunk
 levels.

In this section, we will explore chunking in some depth, beginning
 with the definition and representation of chunks. We will see regular
 expression and n-gram approaches to chunking, and will develop and
 evaluate chunkers using the CoNLL-2000 Chunking Corpus. We will then
 return in Sections and to the tasks of named entity
 recognition and relation extraction.
Noun Phrase Chunking

We will begin by considering the task of noun phrase chunking, or NP-chunking, where we search for chunks
 corresponding to individual noun phrases. For example, here is some
 Wall Street Journal text with NP-chunks marked using brackets:
Example 7-2.
[The/DT market/NN] for/IN [system-management/NN software/NN
] for/IN [Digital/NNP] [’s/POS hardware/NN] is/VBZ fragmented/JJ
 enough/RB that/IN [a/DT giant/NN] such/JJ as/IN [Computer/NNP
 Associates/NNPS] should/MD do/VB well/RB there/RB ./.

As we can see, NP-chunks are
 often smaller pieces than complete noun phrases. For example,
 the market for system-management software for Digital’s
 hardware is a single noun phrase (containing two nested
 noun phrases), but it is captured in NP-chunks by the simpler chunk the
 market. One of the motivations for this difference is that
 NP-chunks are defined so as not to
 contain other NP-chunks.
 Consequently, any prepositional phrases or subordinate clauses that
 modify a nominal will not be included in the corresponding NP-chunk, since they almost certainly
 contain further noun phrases.
One of the most useful sources of information for NP-chunking is part-of-speech tags. This is
 one of the motivations for performing part-of-speech tagging in our
 information extraction system. We demonstrate this approach using an
 example sentence that has been part-of-speech tagged in Example 7-3. In order to create an NP-chunker, we will first define a chunk grammar, consisting of rules that
 indicate how sentences should be chunked. In this case, we will define
 a simple grammar with a single regular expression rule [image: 2]. This rule says that an NP chunk
 should be formed whenever the chunker finds an optional determiner
 (DT) followed by any number of
 adjectives (JJ) and then a noun
 (NN). Using this grammar, we create
 a chunk parser [image: 3], and test it on our
 example sentence [image: 4]. The result is a
 tree, which we can either print [image: 5],
 or display graphically [image: 6].
Example 7-3. Example of a simple regular expression–based NP
 chunker.
>>> sentence = [("the", "DT"), ("little", "JJ"), ("yellow", "JJ"), [image: 1]
... ("dog", "NN"), ("barked", "VBD"), ("at", "IN"), ("the", "DT"), ("cat", "NN")]

>>> grammar = "NP: {<DT>?<JJ>*<NN>}" [image: 2]

>>> cp = nltk.RegexpParser(grammar) [image: 3]
>>> result = cp.parse(sentence) [image: 4]
>>> print result [image: 5]
(S
 (NP the/DT little/JJ yellow/JJ dog/NN)
 barked/VBD
 at/IN
 (NP the/DT cat/NN))
>>> result.draw() [image: 6]

[image: image with no caption]

Tag Patterns

The rules that make up a chunk grammar use tag patterns to describe sequences of tagged
 words. A tag pattern is a sequence of part-of-speech tags delimited
 using angle brackets, e.g.,<DT>?<JJ>*<NN>. Tag
 patterns are similar to regular expression patterns (Regular Expressions for Detecting Word Patterns). Now, consider the
 following noun phrases from the Wall Street
 Journal:
another/DT sharp/JJ dive/NN
trade/NN figures/NNS
any/DT new/JJ policy/NN measures/NNS
earlier/JJR stages/NNS
Panamanian/JJ dictator/NN Manuel/NNP Noriega/NNP
We can match these noun phrases using a slight refinement of the
 first tag pattern above, i.e., <DT>?<JJ.*>*<NN.*>+. This
 will chunk any sequence of tokens beginning with an optional
 determiner, followed by zero or more adjectives of any type (including
 relative adjectives like earlier/JJR), followed by one or more nouns
 of any type. However, it is easy to find many more complicated
 examples which this rule will not cover:
his/PRP$ Mansion/NNP House/NNP speech/NN
the/DT price/NN cutting/VBG
3/CD %/NN to/TO 4/CD %/NN
more/JJR than/IN 10/CD %/NN
the/DT fastest/JJS developing/VBG trends/NNS
's/POS skill/NN
Note
Your Turn: Try to come up
 with tag patterns to cover these cases. Test them using the
 graphical interface nltk.app.chunkparser(). Continue to refine
 your tag patterns with the help of the feedback given by this
 tool.

Chunking with Regular Expressions

To find the chunk structure for a given sentence, the RegexpParser chunker begins with a flat structure in which no tokens
 are chunked. The chunking rules are applied in turn, successively
 updating the chunk structure. Once all of the rules have been invoked,
 the resulting chunk structure is returned.
Example 7-4 shows a simple chunk grammar
 consisting of two rules. The first rule matches an optional determiner
 or possessive pronoun, zero or more adjectives, then a noun. The
 second rule matches one or more proper nouns. We also define an
 example sentence to be chunked [image: 1], and run the chunker on this input
 [image: 1].
Example 7-4. Simple noun phrase chunker.
grammar = r"""
 NP: {<DT|PP\$>?<JJ>*<NN>} # chunk determiner/possessive, adjectives and nouns
 {<NNP>+} # chunk sequences of proper nouns
"""
cp = nltk.RegexpParser(grammar)
sentence = [("Rapunzel", "NNP"), ("let", "VBD"), ("down", "RP"), [image: 1]
 ("her", "PP$"), ("long", "JJ"), ("golden", "JJ"), ("hair", "NN")]
>>> print cp.parse(sentence) [image: 1]
(S
 (NP Rapunzel/NNP)
 let/VBD
 down/RP
 (NP her/PP$ long/JJ golden/JJ hair/NN))

Note
The $ symbol is a special
 character in regular expressions, and must be backslash escaped in
 order to match the tag PP$.

If a tag pattern matches at overlapping locations, the leftmost
 match takes precedence. For example, if we apply a rule that matches
 two consecutive nouns to a text containing three consecutive nouns,
 then only the first two nouns will be chunked:
>>> nouns = [("money", "NN"), ("market", "NN"), ("fund", "NN")]
>>> grammar = "NP: {<NN><NN>} # Chunk two consecutive nouns"
>>> cp = nltk.RegexpParser(grammar)
>>> print cp.parse(nouns)
(S (NP money/NN market/NN) fund/NN)
Once we have created the chunk for money
 market, we have removed the context that would have
 permitted fund to be included in a chunk. This
 issue would have been avoided with a more permissive chunk rule, e.g.,
 NP: {<NN>+}.
Note
We have added a comment to each of our chunk rules. These are
 optional; when they are present, the chunker prints these comments
 as part of its tracing output.

Exploring Text Corpora

In Tagged Corpora, we saw how we could
 interrogate a tagged corpus to extract phrases matching a particular
 sequence of part-of-speech tags. We can do the same work more easily
 with a chunker, as follows:
>>> cp = nltk.RegexpParser('CHUNK: {<V.*> <TO> <V.*>}')
>>> brown = nltk.corpus.brown
>>> for sent in brown.tagged_sents():
... tree = cp.parse(sent)
... for subtree in tree.subtrees():
... if subtree.node == 'CHUNK': print subtree
...
(CHUNK combined/VBN to/TO achieve/VB)
(CHUNK continue/VB to/TO place/VB)
(CHUNK serve/VB to/TO protect/VB)
(CHUNK wanted/VBD to/TO wait/VB)
(CHUNK allowed/VBN to/TO place/VB)
(CHUNK expected/VBN to/TO become/VB)
...
(CHUNK seems/VBZ to/TO overtake/VB)
(CHUNK want/VB to/TO buy/VB)
Note
Your Turn: Encapsulate the
 previous example inside a function find_chunks() that takes a chunk string
 like "CHUNK: {<V.*> <TO>
 <V.*>}" as an argument. Use it to search the corpus
 for several other patterns, such as four or more nouns in a row,
 e.g., "NOUNS:
 {<N.*>{4,}}".

Chinking

Sometimes it is easier to define what we want to
 exclude from a chunk. We can define a chink to be a sequence of tokens that is not
 included in a chunk. In the following example, barked/VBD at/IN is a chink:
[the/DT little/JJ yellow/JJ dog/NN] barked/VBD at/IN [the/DT cat/NN]
Chinking is the process of removing a sequence of tokens from a
 chunk. If the matching sequence of tokens spans an entire chunk, then
 the whole chunk is removed; if the sequence of tokens appears in the
 middle of the chunk, these tokens are removed, leaving two chunks
 where there was only one before. If the sequence is at the periphery
 of the chunk, these tokens are removed, and a smaller chunk remains.
 These three possibilities are illustrated in Table 7-2.
Table 7-2. Three chinking rules applied to the same chunk
	
	Entire chunk
	Middle of a chunk
	End of a chunk

	Input
	[a/DT little/JJ dog/NN]
	[a/DT little/JJ dog/NN]
	[a/DT little/JJ dog/NN]

	Operation
	Chink “DT JJ NN”
	Chink “JJ”
	Chink “NN”

	Pattern
	}DT JJ NN{
	}JJ{
	}NN{

	Output
	a/DT little/JJ dog/NN
	[a/DT] little/JJ [dog/NN]
	[a/DT little/JJ] dog/NN

In Example 7-5, we put the entire sentence
 into a single chunk, then excise the chinks.
Example 7-5. Simple chinker.
grammar = r"""
 NP:
 {<.*>+} # Chunk everything
 }<VBD|IN>+{ # Chink sequences of VBD and IN
 """
sentence = [("the", "DT"), ("little", "JJ"), ("yellow", "JJ"),
 ("dog", "NN"), ("barked", "VBD"), ("at", "IN"), ("the", "DT"), ("cat", "NN")]
cp = nltk.RegexpParser(grammar)
>>> print cp.parse(sentence)
(S
 (NP the/DT little/JJ yellow/JJ dog/NN)
 barked/VBD
 at/IN
 (NP the/DT cat/NN))

Representing Chunks: Tags Versus Trees

As befits their intermediate status between tagging and parsing
 (Chapter 8), chunk structures can be represented
 using either tags or trees. The most widespread file representation
 uses IOB tags. In this scheme, each
 token is tagged with one of three special chunk tags, I (inside), O (outside), or B (begin). A token is tagged as B if it marks the beginning of a chunk.
 Subsequent tokens within the chunk are tagged I. All other tokens are tagged O. The B
 and I tags are suffixed with the
 chunk type, e.g., B-NP, I-NP. Of course, it is not necessary to
 specify a chunk type for tokens that appear outside a chunk, so these
 are just labeled O. An example of
 this scheme is shown in Figure 7-3.
[image: Tag representation of chunk structures.]

Figure 7-3. Tag representation of chunk structures.

IOB tags have become the standard way to represent chunk
 structures in files, and we will also be using this format. Here is
 how the information in Figure 7-3 would
 appear in a file:
We PRP B-NP
saw VBD O
the DT B-NP
little JJ I-NP
yellow JJ I-NP
dog NN I-NP
In this representation there is one token per line, each with
 its part-of-speech tag and chunk tag. This format permits us to
 represent more than one chunk type, so long as the chunks do not
 overlap. As we saw earlier, chunk structures can also be represented
 using trees. These have the benefit that each chunk is a constituent
 that can be manipulated directly. An example is shown in Figure 7-4.
[image: Tree representation of chunk structures.]

Figure 7-4. Tree representation of chunk structures.

Note
NLTK uses trees for its internal representation of chunks, but
 provides methods for converting between such trees and the IOB
 format.

Developing and Evaluating Chunkers

Now you have a taste of what chunking does, but we haven’t
 explained how to evaluate chunkers. As usual, this requires a suitably
 annotated corpus. We begin by looking at the mechanics of converting IOB
 format into an NLTK tree, then at how this is done on a larger scale
 using a chunked corpus. We will see how to score the accuracy of a
 chunker relative to a corpus, then look at some more data-driven ways to
 search for NP chunks. Our focus throughout will be on expanding the
 coverage of a chunker.
Reading IOB Format and the CoNLL-2000 Chunking Corpus

Using the corpora module we can load Wall Street
 Journal text that has been tagged then chunked using the
 IOB notation. The chunk categories provided in this corpus are
 NP, VP, and PP. As we have seen, each sentence is
 represented using multiple lines, as shown here:
he PRP B-NP
accepted VBD B-VP
the DT B-NP
position NN I-NP
...
A conversion function chunk.conllstr2tree() builds a tree
 representation from one of these multiline strings. Moreover, it
 permits us to choose any subset of the three chunk types to use, here
 just for NP chunks:
>>> text = '''
... he PRP B-NP
... accepted VBD B-VP
... the DT B-NP
... position NN I-NP
... of IN B-PP
... vice NN B-NP
... chairman NN I-NP
... of IN B-PP
... Carlyle NNP B-NP
... Group NNP I-NP
... , , O
... a DT B-NP
... merchant NN I-NP
... banking NN I-NP
... concern NN I-NP
... . . O
... '''
>>> nltk.chunk.conllstr2tree(text, chunk_types=['NP']).draw()
[image: image with no caption]

We can use the NLTK corpus module to access a larger amount of
 chunked text. The CoNLL-2000 Chunking Corpus contains 270k words of
 Wall Street Journal text, divided into “train”
 and “test” portions, annotated with part-of-speech tags and chunk tags
 in the IOB format. We can access the data using nltk.corpus.conll2000. Here is an example
 that reads the 100th sentence of the “train” portion of the
 corpus:
>>> from nltk.corpus import conll2000
>>> print conll2000.chunked_sents('train.txt')[99]
(S
 (PP Over/IN)
 (NP a/DT cup/NN)
 (PP of/IN)
 (NP coffee/NN)
 ,/,
 (NP Mr./NNP Stone/NNP)
 (VP told/VBD)
 (NP his/PRP$ story/NN)
 ./.)
As you can see, the CoNLL-2000 Chunking Corpus contains three
 chunk types: NP chunks, which we
 have already seen; VP chunks, such
 as has already delivered; and PP chunks, such as because
 of. Since we are only interested in the NP chunks right now, we can use the chunk_types argument to select them:
>>> print conll2000.chunked_sents('train.txt', chunk_types=['NP'])[99]
(S
 Over/IN
 (NP a/DT cup/NN)
 of/IN
 (NP coffee/NN)
 ,/,
 (NP Mr./NNP Stone/NNP)
 told/VBD
 (NP his/PRP$ story/NN)
 ./.)

Simple Evaluation and Baselines

Now that we can access a chunked corpus, we can evaluate
 chunkers. We start off by establishing a baseline for the trivial
 chunk parser cp that creates no
 chunks:
>>> from nltk.corpus import conll2000
>>> cp = nltk.RegexpParser("")
>>> test_sents = conll2000.chunked_sents('test.txt', chunk_types=['NP'])
>>> print cp.evaluate(test_sents)
ChunkParse score:
 IOB Accuracy: 43.4%
 Precision: 0.0%
 Recall: 0.0%
 F-Measure: 0.0%
The IOB tag accuracy indicates that more than a third of the
 words are tagged with O, i.e., not
 in an NP chunk. However, since our
 tagger did not find any chunks, its precision,
 recall, and F-measure are all zero. Now let’s try a naive regular
 expression chunker that looks for tags beginning with letters that are
 characteristic of noun phrase tags (e.g., CD, DT,
 and JJ).
>>> grammar = r"NP: {<[CDJNP].*>+}"
>>> cp = nltk.RegexpParser(grammar)
>>> print cp.evaluate(test_sents)
ChunkParse score:
 IOB Accuracy: 87.7%
 Precision: 70.6%
 Recall: 67.8%
 F-Measure: 69.2%
As you can see, this approach achieves decent results. However,
 we can improve on it by adopting a more data-driven approach, where we
 use the training corpus to find the chunk tag (I, O, or
 B) that is most likely for each
 part-of-speech tag. In other words, we can build a chunker using a
 unigram tagger (Automatic Tagging). But rather than trying to
 determine the correct part-of-speech tag for each word, we are trying
 to determine the correct chunk tag, given each word’s part-of-speech
 tag.
In Example 7-6, we define the
 UnigramChunker class, which uses a
 unigram tagger to label sentences with chunk tags. Most of the code in
 this class is simply used to convert back and forth between the chunk
 tree representation used by NLTK’s ChunkParserI interface, and the IOB representation used by the
 embedded tagger. The class defines two methods: a constructor [image: 1], which is called
 when we build a new UnigramChunker; and the parse method [image: 3], which is used to chunk
 new sentences.
Example 7-6. Noun phrase chunking with a unigram tagger.
class UnigramChunker(nltk.ChunkParserI):
 def __init__(self, train_sents): [image: 1]
 train_data = [[(t,c) for w,t,c in nltk.chunk.tree2conlltags(sent)]
 for sent in train_sents]
 self.tagger = nltk.UnigramTagger(train_data) [image: 2]

 def parse(self, sentence): [image: 3]
 pos_tags = [pos for (word,pos) in sentence]
 tagged_pos_tags = self.tagger.tag(pos_tags)
 chunktags = [chunktag for (pos, chunktag) in tagged_pos_tags]
 conlltags = [(word, pos, chunktag) for ((word,pos),chunktag)
 in zip(sentence, chunktags)]
 return nltk.chunk.conlltags2tree(conlltags)

The constructor [image: 1] expects a list of
 training sentences, which will be in the form of chunk trees. It first
 converts training data to a form that’s suitable for training the
 tagger, using tree2conlltags to map each chunk tree to a list of word,tag,chunk triples. It then uses that converted training data to
 train a unigram tagger, and stores it in self.tagger for later use.
The parse method [image: 3] takes a tagged sentence as
 its input, and begins by extracting the part-of-speech tags from that
 sentence. It then tags the part-of-speech tags with IOB chunk tags,
 using the tagger self.tagger that
 was trained in the constructor. Next, it extracts the chunk tags, and
 combines them with the original sentence, to yield conlltags. Finally, it
 uses conlltags2tree to convert the result back into a chunk tree.
Now that we have UnigramChunker, we can train it using the
 CoNLL-2000 Chunking Corpus, and test its resulting
 performance:
>>> test_sents = conll2000.chunked_sents('test.txt', chunk_types=['NP'])
>>> train_sents = conll2000.chunked_sents('train.txt', chunk_types=['NP'])
>>> unigram_chunker = UnigramChunker(train_sents)
>>> print unigram_chunker.evaluate(test_sents)
ChunkParse score:
 IOB Accuracy: 92.9%
 Precision: 79.9%
 Recall: 86.8%
 F-Measure: 83.2%
This chunker does reasonably well, achieving an overall
 F-measure score of 83%. Let’s take a look at what it’s learned, by
 using its unigram tagger to assign a tag to each of the part-of-speech
 tags that appear in the corpus:
>>> postags = sorted(set(pos for sent in train_sents
... for (word,pos) in sent.leaves()))
>>> print unigram_chunker.tagger.tag(postags)
[('#', 'B-NP'), ('$', 'B-NP'), ("''", 'O'), ('(', 'O'), (')', 'O'),
 (',', 'O'), ('.', 'O'), (':', 'O'), ('CC', 'O'), ('CD', 'I-NP'),
 ('DT', 'B-NP'), ('EX', 'B-NP'), ('FW', 'I-NP'), ('IN', 'O'),
 ('JJ', 'I-NP'), ('JJR', 'B-NP'), ('JJS', 'I-NP'), ('MD', 'O'),
 ('NN', 'I-NP'), ('NNP', 'I-NP'), ('NNPS', 'I-NP'), ('NNS', 'I-NP'),
 ('PDT', 'B-NP'), ('POS', 'B-NP'), ('PRP', 'B-NP'), ('PRP$', 'B-NP'),
 ('RB', 'O'), ('RBR', 'O'), ('RBS', 'B-NP'), ('RP', 'O'), ('SYM', 'O'),
 ('TO', 'O'), ('UH', 'O'), ('VB', 'O'), ('VBD', 'O'), ('VBG', 'O'),
 ('VBN', 'O'), ('VBP', 'O'), ('VBZ', 'O'), ('WDT', 'B-NP'),
 ('WP', 'B-NP'), ('WP$', 'B-NP'), ('WRB', 'O'), ('``', 'O')]
It has discovered that most punctuation marks occur outside of
 NP chunks, with the exception of #
 and $, both of which are used as
 currency markers. It has also found that determiners (DT) and possessives (PRP$ and WP$) occur at the beginnings of NP chunks,
 while noun types (NN, NNP, NNPS, NNS) mostly occur inside of NP
 chunks.
Having built a unigram chunker, it is quite easy to build a
 bigram chunker: we simply change the class name to BigramChunker, and modify line [image: 2] in Example 7-6 to construct a BigramTagger rather than a UnigramTagger. The resulting chunker has slightly higher performance
 than the unigram chunker:
>>> bigram_chunker = BigramChunker(train_sents)
>>> print bigram_chunker.evaluate(test_sents)
ChunkParse score:
 IOB Accuracy: 93.3%
 Precision: 82.3%
 Recall: 86.8%
 F-Measure: 84.5%

Training Classifier-Based Chunkers

Both the regular expression–based chunkers and the n-gram
 chunkers decide what chunks to create entirely based on part-of-speech
 tags. However, sometimes part-of-speech tags are insufficient to
 determine how a sentence should be chunked. For example, consider the
 following two statements:
Example 7-7.
	Joey/NN sold/VBD the/DT farmer/NN rice/NN ./.

	Nick/NN broke/VBD my/DT computer/NN monitor/NN ./.

These two sentences have the same part-of-speech tags, yet they
 are chunked differently. In the first sentence, the
 farmer and rice are separate chunks,
 while the corresponding material in the second sentence, the
 computer monitor, is a single chunk. Clearly, we need to
 make use of information about the content of the words, in addition to
 just their part-of-speech tags, if we wish to maximize chunking
 performance.
One way that we can incorporate information about the content of
 words is to use a classifier-based tagger to chunk the sentence. Like
 the n-gram chunker considered in the previous section, this
 classifier-based chunker will work by assigning IOB tags to the words
 in a sentence, and then converting those tags to chunks. For the
 classifier-based tagger itself, we will use the same approach that we
 used in Supervised Classification to build a
 part-of-speech tagger.
The basic code for the classifier-based NP chunker is shown in
 Example 7-8. It consists of two
 classes. The first class [image: 1] is
 almost identical to the ConsecutivePosTagger class from Example 6-5. The only two differences are
 that it calls a different feature extractor [image: 2] and that it uses a MaxentClassifier rather than a NaiveBayesClassifier [image: 3]. The second class [image: 4] is basically a wrapper around the
 tagger class that turns it into a chunker. During training, this
 second class maps the chunk trees in the training corpus into tag
 sequences; in the parse() method, it converts the tag sequence provided by the
 tagger back into a chunk tree.
Example 7-8. Noun phrase chunking with a consecutive classifier.
class ConsecutiveNPChunkTagger(nltk.TaggerI): [image: 1]

 def __init__(self, train_sents):
 train_set = []
 for tagged_sent in train_sents:
 untagged_sent = nltk.tag.untag(tagged_sent)
 history = []
 for i, (word, tag) in enumerate(tagged_sent):
 featureset = npchunk_features(untagged_sent, i, history) [image: 2]
 train_set.append((featureset, tag))
 history.append(tag)
 self.classifier = nltk.MaxentClassifier.train([image: 3]
 train_set, algorithm='megam', trace=0)

 def tag(self, sentence):
 history = []
 for i, word in enumerate(sentence):
 featureset = npchunk_features(sentence, i, history)
 tag = self.classifier.classify(featureset)
 history.append(tag)
 return zip(sentence, history)

class ConsecutiveNPChunker(nltk.ChunkParserI): [image: 4]
 def __init__(self, train_sents):
 tagged_sents = [[((w,t),c) for (w,t,c) in
 nltk.chunk.tree2conlltags(sent)]
 for sent in train_sents]
 self.tagger = ConsecutiveNPChunkTagger(tagged_sents)

 def parse(self, sentence):
 tagged_sents = self.tagger.tag(sentence)
 conlltags = [(w,t,c) for ((w,t),c) in tagged_sents]
 return nltk.chunk.conlltags2tree(conlltags)

The only piece left to fill in is the feature extractor. We
 begin by defining a simple feature extractor, which just provides the
 part-of-speech tag of the current token. Using this feature extractor,
 our classifier-based chunker is very similar to the unigram chunker,
 as is reflected in its performance:
>>> def npchunk_features(sentence, i, history):
... word, pos = sentence[i]
... return {"pos": pos}
>>> chunker = ConsecutiveNPChunker(train_sents)
>>> print chunker.evaluate(test_sents)
ChunkParse score:
 IOB Accuracy: 92.9%
 Precision: 79.9%
 Recall: 86.7%
 F-Measure: 83.2%
We can also add a feature for the previous part-of-speech tag.
 Adding this feature allows the classifier to model interactions
 between adjacent tags, and results in a chunker that is closely
 related to the bigram chunker.
>>> def npchunk_features(sentence, i, history):
... word, pos = sentence[i]
... if i == 0:
... prevword, prevpos = "<START>", "<START>"
... else:
... prevword, prevpos = sentence[i-1]
... return {"pos": pos, "prevpos": prevpos}
>>> chunker = ConsecutiveNPChunker(train_sents)
>>> print chunker.evaluate(test_sents)
ChunkParse score:
 IOB Accuracy: 93.6%
 Precision: 81.9%
 Recall: 87.1%
 F-Measure: 84.4%
Next, we’ll try adding a feature for the current word, since we
 hypothesized that word content should be useful for chunking. We find
 that this feature does indeed improve the chunker’s performance, by
 about 1.5 percentage points (which corresponds to about a 10%
 reduction in the error rate).
>>> def npchunk_features(sentence, i, history):
... word, pos = sentence[i]
... if i == 0:
... prevword, prevpos = "<START>", "<START>"
... else:
... prevword, prevpos = sentence[i-1]
... return {"pos": pos, "word": word, "prevpos": prevpos}
>>> chunker = ConsecutiveNPChunker(train_sents)
>>> print chunker.evaluate(test_sents)
ChunkParse score:
 IOB Accuracy: 94.2%
 Precision: 83.4%
 Recall: 88.6%
 F-Measure: 85.9%
Finally, we can try extending the feature extractor with a
 variety of additional features, such as lookahead features [image: 1], paired features [image: 2], and complex contextual features
 [image: 3]. This last feature, called
 tags-since-dt, creates a string describing the set of all
 part-of-speech tags that have been encountered since the most recent
 determiner.
>>> def npchunk_features(sentence, i, history):
... word, pos = sentence[i]
... if i == 0:
... prevword, prevpos = "<START>", "<START>"
... else:
... prevword, prevpos = sentence[i-1]
... if i == len(sentence)-1:
... nextword, nextpos = "<END>", "<END>"
... else:
... nextword, nextpos = sentence[i+1]
... return {"pos": pos,
... "word": word,
... "prevpos": prevpos,
... "nextpos": nextpos, [image: 1]
... "prevpos+pos": "%s+%s" % (prevpos, pos), [image: 2]
... "pos+nextpos": "%s+%s" % (pos, nextpos),
... "tags-since-dt": tags_since_dt(sentence, i)} [image: 3]
>>> def tags_since_dt(sentence, i):
... tags = set()
... for word, pos in sentence[:i]:
... if pos == 'DT':
... tags = set()
... else:
... tags.add(pos)
... return '+'.join(sorted(tags))
>>> chunker = ConsecutiveNPChunker(train_sents)
>>> print chunker.evaluate(test_sents)
ChunkParse score:
 IOB Accuracy: 95.9%
 Precision: 88.3%
 Recall: 90.7%
 F-Measure: 89.5%
Note
Your Turn: Try adding
 different features to the feature extractor function npchunk_features, and see if you can
 further improve the performance of the NP chunker.

Recursion in Linguistic Structure

Building Nested Structure with Cascaded Chunkers

So far, our chunk structures have been relatively flat. Trees
 consist of tagged tokens, optionally grouped under a chunk node such
 as NP. However, it is possible to
 build chunk structures of arbitrary depth, simply by creating a
 multistage chunk grammar containing recursive rules. Example 7-9 has patterns for noun phrases,
 prepositional phrases, verb phrases, and sentences. This is a
 four-stage chunk grammar, and can be used to create structures having
 a depth of at most four.
Example 7-9. A chunker that handles NP, PP, VP, and S.
grammar = r"""
 NP: {<DT|JJ|NN.*>+} # Chunk sequences of DT, JJ, NN
 PP: {<IN><NP>} # Chunk prepositions followed by NP
 VP: {<VB.*><NP|PP|CLAUSE>+$} # Chunk verbs and their arguments
 CLAUSE: {<NP><VP>} # Chunk NP, VP
 """
cp = nltk.RegexpParser(grammar)
sentence = [("Mary", "NN"), ("saw", "VBD"), ("the", "DT"), ("cat", "NN"),
 ("sit", "VB"), ("on", "IN"), ("the", "DT"), ("mat", "NN")]
>>> print cp.parse(sentence)
(S
 (NP Mary/NN)
 saw/VBD
 (CLAUSE
 (NP the/DT cat/NN)
 (VP sit/VB (PP on/IN (NP the/DT mat/NN)))))

Unfortunately this result misses the VP headed by saw. It
 has other shortcomings, too. Let’s see what happens when we apply this
 chunker to a sentence having deeper nesting. Notice that it fails to
 identify the VP chunk starting at
 [image: 1].
>>> sentence = [("John", "NNP"), ("thinks", "VBZ"), ("Mary", "NN"),
... ("saw", "VBD"), ("the", "DT"), ("cat", "NN"), ("sit", "VB"),
... ("on", "IN"), ("the", "DT"), ("mat", "NN")]
>>> print cp.parse(sentence)
(S
 (NP John/NNP)
 thinks/VBZ
 (NP Mary/NN)
 saw/VBD [image: 1]
 (CLAUSE
 (NP the/DT cat/NN)
 (VP sit/VB (PP on/IN (NP the/DT mat/NN)))))
The solution to these problems is to get the chunker to loop
 over its patterns: after trying all of them, it repeats the process.
 We add an optional second argument loop to specify the number of times the set
 of patterns should be run:
>>> cp = nltk.RegexpParser(grammar, loop=2)
>>> print cp.parse(sentence)
(S
 (NP John/NNP)
 thinks/VBZ
 (CLAUSE
 (NP Mary/NN)
 (VP
 saw/VBD
 (CLAUSE
 (NP the/DT cat/NN)
 (VP sit/VB (PP on/IN (NP the/DT mat/NN)))))))
Note
This cascading process enables us to create deep structures.
 However, creating and debugging a cascade is difficult, and there
 comes a point where it is more effective to do full parsing (see
 Chapter 8). Also, the cascading process can only
 produce trees of fixed depth (no deeper than the number of stages in
 the cascade), and this is insufficient for complete syntactic
 analysis.

Trees

A tree is a set of connected
 labeled nodes, each reachable by a unique path from a distinguished
 root node. Here’s an example of a tree (note that they are standardly
 drawn upside-down):
Example 7-10.
[image: image with no caption]

We use a ‘family’ metaphor to talk about the relationships of
 nodes in a tree: for example, S is
 the parent of VP; conversely VP is a child of S. Also, since NP and VP
 are both children of S, they are
 also siblings. For convenience,
 there is also a text format for specifying trees:
(S
 (NP Alice)
 (VP
 (V chased)
 (NP
 (Det the)
 (N rabbit))))
Although we will focus on syntactic trees, trees can be used to
 encode any homogeneous hierarchical structure
 that spans a sequence of linguistic forms (e.g., morphological
 structure, discourse structure). In the general case, leaves and node
 values do not have to be strings.
In NLTK, we create a tree by giving a node label and a list of
 children:
>>> tree1 = nltk.Tree('NP', ['Alice'])
>>> print tree1
(NP Alice)
>>> tree2 = nltk.Tree('NP', ['the', 'rabbit'])
>>> print tree2
(NP the rabbit)
We can incorporate these into successively larger trees as
 follows:
>>> tree3 = nltk.Tree('VP', ['chased', tree2])
>>> tree4 = nltk.Tree('S', [tree1, tree3])
>>> print tree4
(S (NP Alice) (VP chased (NP the rabbit)))
Here are some of the methods available for tree objects:
>>> print tree4[1]
(VP chased (NP the rabbit))
>>> tree4[1].node
'VP'
>>> tree4.leaves()
['Alice', 'chased', 'the', 'rabbit']
>>> tree4[1][1][1]
'rabbit'
The bracketed representation for complex trees can be difficult
 to read. In these cases, the draw method can be very useful. It opens a new window,
 containing a graphical representation of the tree. The tree display
 window allows you to zoom in and out, to collapse and expand subtrees,
 and to print the graphical representation to a postscript file (for
 inclusion in a document).
>>> tree3.draw()
[image: image with no caption]

Tree Traversal

It is standard to use a recursive function to traverse a tree.
 The listing in Example 7-11 demonstrates
 this.
Example 7-11. A recursive function to traverse a tree.
def traverse(t):
 try:
 t.node
 except AttributeError:
 print t,
 else:
 # Now we know that t.node is defined
 print '(', t.node,
 for child in t:
 traverse(child)
 print ')',
>>> t = nltk.Tree('(S (NP Alice) (VP chased (NP the rabbit)))')
>>> traverse(t)
(S (NP Alice) (VP chased (NP the rabbit)))

Note
We have used a technique called duck
 typing to detect that t is a tree (i.e., t.node is defined).

Named Entity Recognition

At the start of this chapter, we briefly introduced named entities
 (NEs). Named entities are definite noun phrases that refer to specific
 types of individuals, such as organizations, persons, dates, and so on.
 Table 7-3 lists some of the more commonly used
 types of NEs. These should be self-explanatory, except for “FACILITY”:
 human-made artifacts in the domains of architecture and civil
 engineering; and “GPE”: geo-political entities such as city,
 state/province, and country.
Table 7-3. Commonly used types of named entity
	NE type
	Examples

	ORGANIZATION
	Georgia-Pacific Corp.,
 WHO

	PERSON
	Eddy Bonte,
 President Obama

	LOCATION
	Murray River, Mount
 Everest

	DATE
	June,
 2008-06-29

	TIME
	two fifty a m, 1:30
 p.m.

	MONEY
	175 million Canadian Dollars,
 GBP 10.40

	PERCENT
	twenty pct, 18.75
 %

	FACILITY
	Washington Monument,
 Stonehenge

	GPE
	South East Asia,
 Midlothian

The goal of a named entity
 recognition (NER) system is to identify all textual mentions
 of the named entities. This can be broken down into two subtasks:
 identifying the boundaries of the NE, and identifying its type. While
 named entity recognition is frequently a prelude to identifying
 relations in Information Extraction, it can also contribute to other
 tasks. For example, in Question Answering (QA), we try to improve the
 precision of Information Retrieval by recovering not whole pages, but
 just those parts which contain an answer to the user’s question. Most QA
 systems take the documents
 returned by standard Information Retrieval, and then attempt to isolate
 the minimal text snippet in the document containing the answer. Now
 suppose the question was
 Who was the first President of the US?, and one of
 the documents that was retrieved contained the following
 passage:
Example 7-12.
The Washington Monument is the most prominent structure in
 Washington, D.C. and one of the city’s early attractions. It was built
 in honor of George Washington, who led the country to independence and
 then became its first President.

Analysis of the question leads us to expect that an answer should
 be of the form X was the first President of the US,
 where X is not only a noun phrase, but also refers
 to a named entity of type PER. This
 should allow us to ignore the first sentence in the passage. Although it
 contains two occurrences of Washington, named
 entity recognition should tell us that neither of them has the correct
 type.
How do we go about identifying named entities? One option would be
 to look up each word in an appropriate list of names. For example, in
 the case of locations, we could use a gazetteer, or geographical dictionary, such as
 the Alexandria Gazetteer or the Getty Gazetteer. However, doing this
 blindly runs into problems, as shown in Figure 7-5.
[image: Location detection by simple lookup for a news story: Looking up every word in a gazetteer is error-prone; case distinctions may help, but these are not always present.]

Figure 7-5. Location detection by simple lookup for a news story: Looking
 up every word in a gazetteer is error-prone; case distinctions may
 help, but these are not always present.

Observe that the gazetteer has good coverage of locations in many
 countries, and incorrectly finds locations like Sanchez in the Dominican
 Republic and On in Vietnam. Of course we could omit such locations from
 the gazetteer, but then we won’t be able to identify them when they do
 appear in a document.
It gets even harder in the case of names for people or
 organizations. Any list of such names will probably have poor coverage.
 New organizations come into existence every day, so if we are trying to
 deal with contemporary newswire or blog entries, it is unlikely that we
 will be able to recognize many of the entities using gazetteer
 lookup.
Another major source of difficulty is caused by the fact that many
 named entity terms are ambiguous. Thus May and
 North are likely to be parts of named entities for
 DATE and LOCATION, respectively, but could both be part of a PERSON;
 conversely Christian Dior looks like a PERSON but
 is more likely to be of type ORGANIZATION. A term like
 Yankee will be an ordinary modifier in some
 contexts, but will be marked as an entity of type ORGANIZATION in the
 phrase Yankee infielders.
Further challenges are posed by multiword names like
 Stanford University, and by names that contain
 other names, such as Cecil H. Green Library and
 Escondido Village Conference Service Center. In
 named entity recognition, therefore, we need to be able to identify the
 beginning and end of multitoken sequences.
Named entity recognition is a task that is well suited to the type
 of classifier-based approach that we saw for noun phrase chunking. In
 particular, we can build a tagger that labels each word in a sentence
 using the IOB format, where chunks are labeled by their appropriate
 type. Here is part of the CONLL 2002 (conll2002) Dutch training data:
Eddy N B-PER
Bonte N I-PER
is V O
woordvoerder N O
van Prep O
diezelfde Pron O
Hogeschool N B-ORG
. Punc O
In this representation, there is one token per line, each with its
 part-of-speech tag and its named entity tag. Based on this training
 corpus, we can construct a tagger that can be used to label new
 sentences, and use the nltk.chunk.conlltags2tree() function to
 convert the tag sequences into a chunk tree.
NLTK provides a classifier that has already been trained to
 recognize named entities, accessed with the function nltk.ne_chunk(). If we set the parameter
 binary=True [image: 1], then named entities are just tagged as
 NE; otherwise, the classifier adds
 category labels such as PERSON, ORGANIZATION, and GPE.
>>> sent = nltk.corpus.treebank.tagged_sents()[22]
>>> print nltk.ne_chunk(sent, binary=True) [image: 1]
(S
 The/DT
 (NE U.S./NNP)
 is/VBZ
 one/CD
 ...
 according/VBG
 to/TO
 (NE Brooke/NNP T./NNP Mossman/NNP)
 ...)
>>> print nltk.ne_chunk(sent)
(S
 The/DT
 (GPE U.S./NNP)
 is/VBZ
 one/CD
 ...
 according/VBG
 to/TO
 (PERSON Brooke/NNP T./NNP Mossman/NNP)
 ...)

Relation Extraction

Once named entities have been identified in a text, we then want
 to extract the relations that exist between them. As indicated earlier,
 we will typically be looking for relations between specified types of
 named entity. One way of approaching this task is to initially look for
 all triples of the form (X, α,
 Y), where X and
 Y are named entities of the required types, and α
 is the string of words that intervenes between X
 and Y. We can then use regular expressions to pull
 out just those instances of α that express the relation that we are
 looking for. The following example searches for strings that contain the
 word in. The special regular expression (?!\b.+ing\b) is a negative lookahead
 assertion that allows us to disregard strings such as success
 in supervising the transition of, where
 in is followed by a gerund.
>>> IN = re.compile(r'.*\bin\b(?!\b.+ing)')
>>> for doc in nltk.corpus.ieer.parsed_docs('NYT_19980315'):
... for rel in nltk.sem.extract_rels('ORG', 'LOC', doc,
... corpus='ieer', pattern = IN):
... print nltk.sem.show_raw_rtuple(rel)
[ORG: 'WHYY'] 'in' [LOC: 'Philadelphia']
[ORG: 'McGlashan & Sarrail'] 'firm in' [LOC: 'San Mateo']
[ORG: 'Freedom Forum'] 'in' [LOC: 'Arlington']
[ORG: 'Brookings Institution'] ', the research group in' [LOC: 'Washington']
[ORG: 'Idealab'] ', a self-described business incubator based in' [LOC: 'Los Angeles']
[ORG: 'Open Text'] ', based in' [LOC: 'Waterloo']
[ORG: 'WGBH'] 'in' [LOC: 'Boston']
[ORG: 'Bastille Opera'] 'in' [LOC: 'Paris']
[ORG: 'Omnicom'] 'in' [LOC: 'New York']
[ORG: 'DDB Needham'] 'in' [LOC: 'New York']
[ORG: 'Kaplan Thaler Group'] 'in' [LOC: 'New York']
[ORG: 'BBDO South'] 'in' [LOC: 'Atlanta']
[ORG: 'Georgia-Pacific'] 'in' [LOC: 'Atlanta']
Searching for the keyword in works reasonably
 well, though it will also retrieve false positives such as [ORG: House Transportation Committee] , secured the most
 money in the [LOC: New York]; there is unlikely to be a simple
 string-based method of excluding filler strings such as this.
As shown earlier, the Dutch section of the CoNLL 2002 Named Entity
 Corpus contains not just named entity annotation, but also
 part-of-speech tags. This allows us to devise patterns that are
 sensitive to these tags, as shown in the next example. The method
 show_clause() prints out the relations in a clausal form, where the
 binary relation symbol is specified as the value of parameter relsym [image: 1].
>>> from nltk.corpus import conll2002
>>> vnv = """
... (
... is/V| # 3rd sing present and
... was/V| # past forms of the verb zijn ('be')
... werd/V| # and also present
... wordt/V # past of worden ('become')
...)
... .* # followed by anything
... van/Prep # followed by van ('of')
... """
>>> VAN = re.compile(vnv, re.VERBOSE)
>>> for doc in conll2002.chunked_sents('ned.train'):
... for r in nltk.sem.extract_rels('PER', 'ORG', doc,
... corpus='conll2002', pattern=VAN):
... print nltk.sem.show_clause(r, relsym="VAN") [image: 1]
VAN("cornet_d'elzius", 'buitenlandse_handel')
VAN('johan_rottiers', 'kardinaal_van_roey_instituut')
VAN('annie_lennox', 'eurythmics')
Note
Your Turn: Replace the last
 line [image: 1] with print
 show_raw_rtuple(rel, lcon=True, rcon=True). This will show you the actual words that intervene
 between the two NEs and also their left and right context, within a
 default 10-word window. With the help of a Dutch dictionary, you might
 be able to figure out why the result VAN('annie_lennox', 'eurythmics') is a false
 hit.

Summary

	Information extraction systems search large bodies of
 unrestricted text for specific types of entities and relations, and
 use them to populate well-organized databases. These databases can
 then be used to find answers for specific questions.

	The typical architecture for an information extraction system
 begins by segmenting, tokenizing, and part-of-speech tagging the
 text. The resulting data is then searched for specific types of
 entity. Finally, the information extraction system looks at entities
 that are mentioned near one another in the text, and tries to
 determine whether specific relationships hold between those
 entities.

	Entity recognition is often performed using chunkers, which
 segment multitoken sequences, and label them with the appropriate
 entity type. Common entity types include ORGANIZATION, PERSON,
 LOCATION, DATE, TIME, MONEY, and GPE (geo-political entity).

	Chunkers can be constructed using rule-based systems, such as
 the RegexpParser class provided by NLTK; or using machine learning
 techniques, such as the ConsecutiveNPChunker presented in
 this chapter. In either case, part-of-speech tags are often a very
 important feature when searching for chunks.

	Although chunkers are specialized to create relatively flat
 data structures, where no two chunks are allowed to overlap, they
 can be cascaded together to build nested structures.

	Relation extraction can be performed using either rule-based
 systems, which typically look for specific patterns in the text that
 connect entities and the intervening words; or using
 machine-learning systems, which typically attempt to learn such
 patterns automatically from a training corpus.

Further Reading

Extra materials for this chapter are posted at http://www.nltk.org/, including links to freely available
 resources on the Web. For more examples of chunking with NLTK, please
 see the Chunking HOWTO at http://www.nltk.org/howto.
The popularity of chunking is due in great part to pioneering work
 by Abney, e.g., (Abney, 1996a). Abney’s Cass chunker is described in
 http://www.vinartus.net/spa/97a.pdf.
The word chink initially meant
 a sequence of stopwords, according to a 1975 paper by Ross and Tukey
 (Abney, 1996a).
The IOB format (or sometimes BIO
 Format) was developed for NP chunking by (Ramshaw & Marcus, 1995),
 and was used for the shared NP
 bracketing task run by the Conference on Natural Language
 Learning (CoNLL) in 1999. The same format was adopted by
 CoNLL 2000 for annotating a section of Wall Street
 Journal text as part of a shared task on NP chunking.
Section 13.5 of (Jurafsky & Martin, 2008) contains a
 discussion of chunking. Chapter 22 covers information extraction,
 including named entity recognition. For information about text mining in
 biology and medicine, see (Ananiadou & McNaught, 2006).
For more information on the Getty and Alexandria gazetteers, see
 http://en.wikipedia.org/wiki/Getty_Thesaurus_of_Geographic_Names
 and http://www.alexandria.ucsb.edu/gazetteer/.

Exercises

	○ The IOB format categorizes tagged tokens as I, O,
 and B. Why are three tags
 necessary? What problem would be caused if we used I and O
 tags exclusively?

	○ Write a tag pattern to match noun phrases containing plural
 head nouns, e.g., many/JJ
 researchers/NNS, two/CD
 weeks/NNS, both/DT new/JJ
 positions/NNS. Try to do this by generalizing the tag
 pattern that handled singular noun phrases.

	○ Pick one of the three chunk types in the CoNLL-2000 Chunking
 Corpus. Inspect the data and try to observe any patterns in the POS
 tag sequences that make up this kind of chunk. Develop a simple
 chunker using the regular expression chunker nltk.RegexpParser. Discuss any tag
 sequences that are difficult to chunk reliably.

	○ An early definition of chunk was the
 material that occurs between chinks. Develop a chunker that starts
 by putting the whole sentence in a single chunk, and then does the
 rest of its work solely by chinking. Determine which tags (or tag
 sequences) are most likely to make up chinks with the help of your
 own utility program. Compare the performance and simplicity of this
 approach relative to a chunker based entirely on chunk rules.

	[image:] Write a tag pattern to cover noun phrases that contain
 gerunds, e.g., the/DT receiving/VBG
 end/NN, assistant/NN managing/VBG
 editor/NN. Add these patterns to the grammar, one per
 line. Test your work using some tagged sentences of your own
 devising.

	[image:] Write one or more tag patterns to handle coordinated noun
 phrases, e.g., July/NNP and/CC
 August/NNP, all/DT your/PRP$
 managers/NNS and/CC supervisors/NNS, company/NN courts/NNS and/CC
 adjudicators/NNS.

	[image:] Carry out the following evaluation tasks for any of the
 chunkers you have developed earlier. (Note that most chunking
 corpora contain some internal inconsistencies, such that any
 reasonable rule-based approach will produce errors.)
	Evaluate your chunker on 100 sentences from a chunked
 corpus, and report the precision, recall, and F-measure.

	Use the chunkscore.missed() and chunkscore.incorrect() methods to
 identify the errors made by your chunker. Discuss.

	Compare the performance of your chunker to the baseline
 chunker discussed in the evaluation section of this
 chapter.

	[image:] Develop a chunker for one of the chunk types in the CoNLL
 Chunking Corpus using a regular expression–based chunk grammar
 RegexpChunk. Use any combination of rules for chunking, chinking,
 merging, or splitting.

	[image:] Sometimes a word is incorrectly tagged, e.g., the head noun
 in 12/CD or/CC so/RB cases/VBZ.
 Instead of requiring manual correction of tagger output, good
 chunkers are able to work with the erroneous output of taggers. Look
 for other examples of correctly chunked noun phrases with incorrect
 tags.

	[image:] The bigram chunker scores about 90% accuracy. Study its
 errors and try to work out why it doesn’t get 100% accuracy.
 Experiment with trigram chunking. Are you able to improve the
 performance any more?

	● Apply the n-gram and Brill tagging methods to IOB chunk
 tagging. Instead of assigning POS tags to words, here we will assign
 IOB tags to the POS tags. E.g., if the tag DT (determiner) often occurs at the start
 of a chunk, it will be tagged B
 (begin). Evaluate the performance of these chunking methods relative
 to the regular expression chunking methods covered in this
 chapter.

	● We saw in Chapter 5 that it is possible to
 establish an upper limit to tagging performance by looking for
 ambiguous n-grams, which are n-grams that are tagged in more than
 one possible way in the training data. Apply the same method to
 determine an upper bound on the performance of an n-gram
 chunker.

	● Pick one of the three chunk types in the CoNLL Chunking
 Corpus. Write functions to do the following tasks for your chosen
 type:
	List all the tag sequences that occur with each instance
 of this chunk type.

	Count the frequency of each tag sequence, and produce a
 ranked list in order of decreasing frequency; each line should
 consist of an integer (the frequency) and the tag
 sequence.

	Inspect the high-frequency tag sequences. Use these as the
 basis for developing a better chunker.

	● The baseline chunker presented in the evaluation section
 tends to create larger chunks than it should. For example, the
 phrase [every/DT time/NN] [she/PRP]
 sees/VBZ [a/DT newspaper/NN] contains two consecutive
 chunks, and our baseline chunker will incorrectly combine the first
 two: [every/DT time/NN she/PRP].
 Write a program that finds which of these chunk-internal tags
 typically occur at the start of a chunk, then devise one or more
 rules that will split up these chunks. Combine these with the
 existing baseline chunker and re-evaluate it, to see if you have
 discovered an improved baseline.

	● Develop an NP chunker
 that converts POS tagged text into a list of tuples, where each
 tuple consists of a verb followed by a sequence of noun phrases and
 prepositions, e.g., the little cat sat on
 the mat becomes ('sat', 'on',
 'NP')...

	● The Penn Treebank Corpus sample contains a section of tagged
 Wall Street Journal text that has been
 chunked into noun phrases. The format uses square brackets, and we
 have encountered it several times in this chapter. The corpus can be
 accessed using: for sent in
 nltk.corpus.treebank_chunk.chunked_sents(fileid). These are flat trees, just as we got using nltk.corpus.conll2000.chunked_sents().
	The functions nltk.tree.pprint() and nltk.chunk.tree2conllstr() can be used
 to create Treebank and IOB strings from a tree. Write functions
 chunk2brackets() and chunk2iob() that take a single chunk
 tree as their sole argument, and return the required multiline
 string representation.

	Write command-line conversion utilities bracket2iob.py and iob2bracket.py that take a file in
 Treebank or CoNLL format (respectively) and convert it to the
 other format. (Obtain some raw Treebank or CoNLL data from the
 NLTK Corpora, save it to a file, and then use for line in open(filename) to access it from Python.)

	● An n-gram chunker can use information other than the current
 part-of-speech tag and the n-1 previous chunk
 tags. Investigate other models of the context, such as the
 n-1 previous part-of-speech tags, or some
 combination of previous chunk tags along with previous and following
 part-of-speech tags.

	● Consider the way an n-gram tagger uses recent tags to inform
 its tagging choice. Now observe how a chunker may reuse this
 sequence information. For example, both tasks will make use of the
 information that nouns tend to follow adjectives (in English). It
 would appear that the same information is being maintained in two
 places. Is this likely to become a problem as the size of the rule
 sets grows? If so, speculate about any ways that this problem might
 be addressed.

Chapter 8. Analyzing Sentence Structure

Earlier chapters focused on words: how to identify them, analyze
 their structure, assign them to lexical categories, and access their
 meanings. We have also seen how to identify patterns in word sequences or
 n-grams. However, these methods only scratch the surface of the complex
 constraints that govern sentences. We need a way to deal with the
 ambiguity that natural language is famous for. We also need to be able to
 cope with the fact that there are an unlimited number of possible
 sentences, and we can only write finite programs to analyze their
 structures and discover their meanings.
The goal of this chapter is to answer the following
 questions:
	How can we use a formal grammar to describe the structure of an
 unlimited set of sentences?

	How do we represent the structure of sentences using syntax
 trees?

	How do parsers analyze a sentence and automatically build a
 syntax tree?

Along the way, we will cover the fundamentals of English syntax, and
 see that there are systematic aspects of meaning that are much easier to
 capture once we have identified the structure of sentences.
Some Grammatical Dilemmas

Linguistic Data and Unlimited Possibilities

Previous chapters have shown you how to process and analyze text
 corpora, and we have stressed the challenges for NLP in dealing with
 the vast amount of electronic language data that is growing daily.
 Let’s consider this data more closely, and make the thought experiment
 that we have a gigantic corpus consisting of everything that has been
 either uttered or written in English over, say, the last 50 years.
 Would we be justified in calling this corpus “the language of modern
 English”? There are a number of reasons why we might answer no. Recall
 that in Chapter 3, we asked you to search the Web
 for instances of the pattern the of. Although it
 is easy to find examples on the Web containing this word sequence,
 such as New man at the of IMG (see http://www.telegraph.co.uk/sport/2387900/New-man-at-the-of-IMG.html),
 speakers of English will say that most such examples are errors, and
 therefore not part of English after all.
Accordingly, we can argue that “modern English” is not
 equivalent to the very big set of word sequences in our imaginary
 corpus. Speakers of English can make judgments about these sequences,
 and will reject some of them as being ungrammatical.
Equally, it is easy to compose a new sentence and have speakers
 agree that it is perfectly good English. For example, sentences have
 an interesting property that they can be embedded inside larger
 sentences. Consider the following sentences:
Example 8-1.
	Usain Bolt broke the 100m record.

	The Jamaica Observer reported that Usain Bolt broke the
 100m record.

	Andre said The Jamaica Observer reported that Usain Bolt
 broke the 100m record.

	I think Andre said the Jamaica Observer reported that
 Usain Bolt broke the 100m record.

If we replaced whole sentences with the symbol S, we would see patterns like
 Andre said S
 and I think S.
 These are templates for taking a sentence and constructing a bigger
 sentence. There are other templates we can use, such as S but S and S
 when S. With a
 bit of ingenuity we can construct some really long sentences using
 these templates. Here’s an impressive example from a Winnie the Pooh
 story by A.A. Milne, In Which Piglet Is Entirely Surrounded
 by Water:
[You can imagine Piglet’s joy when at last the ship came in
 sight of him.] In after-years he liked to think that he had been in
 Very Great Danger during the Terrible Flood, but the only danger he
 had really been in was the last half-hour of his imprisonment, when
 Owl, who had just flown up, sat on a branch of his tree to comfort
 him, and told him a very long story about an aunt who had once laid
 a seagull’s egg by mistake, and the story went on and on, rather
 like this sentence, until Piglet who was listening out of his window
 without much hope, went to sleep quietly and naturally, slipping
 slowly out of the window towards the water until he was only hanging
 on by his toes, at which moment, luckily, a sudden loud squawk from
 Owl, which was really part of the story, being what his aunt said,
 woke the Piglet up and just gave him time to jerk himself back into
 safety and say, “How interesting, and did she?” when—well, you can
 imagine his joy when at last he saw the good ship, Brain of Pooh
 (Captain, C. Robin; 1st Mate, P. Bear) coming over the sea to rescue
 him…

This long sentence actually has a simple structure that begins
 S but S when S. We can see from this example that
 language provides us with constructions which seem to allow us to
 extend sentences indefinitely. It is also striking that we can
 understand sentences of arbitrary length that we’ve never heard
 before: it’s not hard to concoct an entirely novel sentence, one that
 has probably never been used before in the history of the language,
 yet all speakers of the language will understand it.
The purpose of a grammar is to give an explicit description of a
 language. But the way in which we think of a grammar is closely
 intertwined with what we consider to be a language. Is it a large but
 finite set of observed utterances and written texts? Is it something
 more abstract like the implicit knowledge that competent speakers have
 about grammatical sentences? Or is it some combination of the two? We
 won’t take a stand on this issue, but instead will introduce the main
 approaches.
In this chapter, we will adopt the formal framework of
 “generative grammar,” in which a “language” is considered to be
 nothing more than an enormous collection of all grammatical sentences,
 and a grammar is a formal notation that can be used for “generating”
 the members of this set. Grammars use recursive productions of the form S →
 S and S, as we will explore in Context-Free Grammar. In Chapter 10 we will extend
 this, to automatically build up the meaning of a sentence out of the
 meanings of its parts.

Ubiquitous Ambiguity

A well-known example of ambiguity is shown in Example 8-2, from the Groucho Marx movie,
 Animal Crackers (1930):
Example 8-2.
While hunting in Africa, I shot an elephant in my pajamas. How
 an elephant got into my pajamas I’ll never know.

Let’s take a closer look at the ambiguity in the phrase:
 I shot an elephant in my pajamas. First we need
 to define a simple grammar:
>>> groucho_grammar = nltk.parse_cfg("""
... S -> NP VP
... PP -> P NP
... NP -> Det N | Det N PP | 'I'
... VP -> V NP | VP PP
... Det -> 'an' | 'my'
... N -> 'elephant' | 'pajamas'
... V -> 'shot'
... P -> 'in'
... """)
This grammar permits the sentence to be analyzed in two ways,
 depending on whether the prepositional phrase in my
 pajamas describes the elephant or the shooting
 event.
>>> sent = ['I', 'shot', 'an', 'elephant', 'in', 'my', 'pajamas']
>>> parser = nltk.ChartParser(groucho_grammar)
>>> trees = parser.nbest_parse(sent)
>>> for tree in trees:
... print tree
(S
 (NP I)
 (VP
 (V shot)
 (NP (Det an) (N elephant) (PP (P in) (NP (Det my) (N pajamas))))))
(S
 (NP I)
 (VP
 (VP (V shot) (NP (Det an) (N elephant)))
 (PP (P in) (NP (Det my) (N pajamas)))))
The program produces two bracketed structures, which we can
 depict as trees, as shown in Example 8-3:
Example 8-3.
	[image: image with no caption]

	[image: image with no caption]

Notice that there’s no ambiguity concerning the meaning of any
 of the words; e.g., the word shot doesn’t refer
 to the act of using a gun in the first sentence and using a camera in
 the second sentence.
Note
Your Turn: Consider the
 following sentences and see if you can think of two quite different
 interpretations: Fighting animals could be
 dangerous. Visiting relatives can be
 tiresome. Is ambiguity of the individual words to blame?
 If not, what is the cause of the ambiguity?

This chapter presents grammars and parsing, as the formal and
 computational methods for investigating and modeling the linguistic
 phenomena we have been discussing. As we shall see, patterns of
 well-formedness and ill-formedness in a sequence of words can be
 understood with respect to the phrase structure and dependencies. We
 can develop formal models of these structures using grammars and
 parsers. As before, a key motivation is natural language
 understanding. How much more of the meaning of a
 text can we access when we can reliably recognize the linguistic
 structures it contains? Having read in a text, can a program
 “understand” it enough to be able to answer simple questions about
 “what happened” or “who did what to whom”? Also as before, we will
 develop simple programs to process annotated corpora and perform
 useful tasks.

What’s the Use of Syntax?

Beyond n-grams

We gave an example in Chapter 2 of how to use
 the frequency information in bigrams to generate text that seems
 perfectly acceptable for small sequences of words but rapidly
 degenerates into nonsense. Here’s another pair of examples that we
 created by computing the bigrams over the text of a children’s story,
 The Adventures of Buster Brown (included in the
 Project Gutenberg Selection Corpus):
Example 8-4.
	He roared with me the pail slip down his back

	The worst part and clumsy looking for whoever heard
 light

You intuitively know that these sequences are “word-salad,” but
 you probably find it hard to pin down what’s wrong with them. One
 benefit of studying grammar is that it provides a conceptual framework
 and vocabulary for spelling out these intuitions. Let’s take a closer
 look at the sequence the worst part and clumsy
 looking. This looks like a coordinate structure, where two phrases are
 joined by a coordinating conjunction such as and,
 but, or or. Here’s an
 informal (and simplified) statement of how coordination works
 syntactically:
Coordinate Structure: if
 v1 and
 v2 are both phrases of
 grammatical category X, then
 v1
 and
 v2 is also a phrase of
 category X.
Here are a couple of examples. In the first, two NPs (noun phrases) have been conjoined to
 make an NP, while in the second,
 two APs (adjective phrases) have
 been conjoined to make an AP.
Example 8-5.
	The book’s ending was (NP the worst part and the
 best part) for me.

	On land they are (AP slow and clumsy
 looking).

What we can’t do is conjoin an NP and an AP, which is why the worst part
 and clumsy looking is ungrammatical. Before we can
 formalize these ideas, we need to understand the concept of constituent structure.
Constituent structure is based on the observation that words
 combine with other words to form units. The evidence that a sequence
 of words forms such a unit is given by substitutability—that is, a
 sequence of words in a well-formed sentence can be replaced by a
 shorter sequence without rendering the sentence ill-formed. To clarify
 this idea, consider the following sentence:
Example 8-6.
The little bear saw the fine fat trout in the brook.

The fact that we can substitute He for
 The little bear indicates that the latter
 sequence is a unit. By contrast, we cannot replace little
 bear saw in the same way. (We use an asterisk at the start
 of a sentence to indicate that it is ungrammatical.)
Example 8-7.
	He saw the fine fat trout in the brook.

	*The he the fine fat trout in the brook.

In Figure 8-1, we systematically
 substitute longer sequences by shorter ones in a way which preserves
 grammaticality. Each sequence that forms a unit can in fact be
 replaced by a single word, and we end up with just two
 elements.
[image: Substitution of word sequences: Working from the top row, we can replace particular sequences of words (e.g., the brook) with individual words (e.g., it); repeating this process, we arrive at a grammatical two-word sentence.]

Figure 8-1. Substitution of word sequences: Working from the top row, we
 can replace particular sequences of words (e.g., the brook) with individual words (e.g.,
 it); repeating this process, we arrive
 at a grammatical two-word sentence.

In Figure 8-2, we have added
 grammatical category labels to the words we saw in the earlier figure.
 The labels NP, VP, and PP stand for noun
 phrase, verb phrase, and
 prepositional phrase,
 respectively.
[image: Substitution of word sequences plus grammatical categories: This diagram reproduces along with grammatical categories corresponding to noun phrases (NP), verb phrases (VP), prepositional phrases (PP), and nominals (Nom).]

Figure 8-2. Substitution of word sequences plus grammatical categories:
 This diagram reproduces Figure 8-1 along with
 grammatical categories corresponding to noun phrases (NP), verb
 phrases (VP), prepositional
 phrases (PP), and nominals (Nom).

If we now strip out the words apart from the topmost row, add an
 S node, and flip the figure over,
 we end up with a standard phrase structure tree, shown in Example 8-8. Each node in this tree
 (including the words) is called a constituent. The immediate constituents of S are NP
 and VP.
Example 8-8.
[image: image with no caption]

Note
As we saw in Some Grammatical Dilemmas, sentences can
 have arbitrary length. Consequently, phrase structure trees can have
 arbitrary depth. The cascaded chunk parsers we
 saw in Recursion in Linguistic Structure can
 only produce structures of bounded depth, so chunking methods aren’t
 applicable here.

As we will see in the next section, a grammar specifies how the
 sentence can be subdivided into its immediate constituents, and how
 these can be further subdivided until we reach the level of individual
 words.

Context-Free Grammar

A Simple Grammar

Let’s start off by looking at a simple context-free grammar
 (CFG). By convention, the lefthand side of the first production is the
 start-symbol of the grammar,
 typically S, and all well-formed
 trees must have this symbol as their root label. In NLTK, context-free
 grammars are defined in the nltk.grammar module. In Example 8-9 we define a
 grammar and show how to parse a simple sentence admitted by the
 grammar.
Example 8-9. A simple context-free grammar.
grammar1 = nltk.parse_cfg("""
 S -> NP VP
 VP -> V NP | V NP PP
 PP -> P NP
 V -> "saw" | "ate" | "walked"
 NP -> "John" | "Mary" | "Bob" | Det N | Det N PP
 Det -> "a" | "an" | "the" | "my"
 N -> "man" | "dog" | "cat" | "telescope" | "park"
 P -> "in" | "on" | "by" | "with"
 """)
>>> sent = "Mary saw Bob".split()
>>> rd_parser = nltk.RecursiveDescentParser(grammar1)
>>> for tree in rd_parser.nbest_parse(sent):
... print tree
(S (NP Mary) (VP (V saw) (NP Bob)))

The grammar in Example 8-9 contains productions
 involving various syntactic categories, as laid out in Table 8-1. The recursive descent parser used here can
 also be inspected via a graphical interface, as illustrated in Figure 8-3; we discuss this parser in more
 detail in Parsing with Context-Free Grammar.
Table 8-1. Syntactic categories
	Symbol
	Meaning
	Example

	S
	sentence
	the man
 walked

	NP
	noun phrase
	a dog

	VP
	verb phrase
	saw a park

	PP
	prepositional phrase
	with a
 telescope

	Det
	determiner
	the

	N
	noun
	dog

	V
	verb
	walked

	P
	preposition
	in

A production like VP -> V NP | V NP
 PP has a disjunction on the righthand side, shown by the
 |, and is an abbreviation for the
 two productions VP -> V NP and
 VP -> V NP PP.
If we parse the sentence The dog saw a man in the
 park using the grammar shown in Example 8-9, we end up with two trees, similar to those we
 saw for Example 8-3:
Example 8-10.
	[image: image with no caption]

	[image: image with no caption]

[image: Recursive descent parser demo: This tool allows you to watch the operation of a recursive descent parser as it grows the parse tree and matches it against the input words.]

Figure 8-3. Recursive descent parser demo: This tool allows you to watch
 the operation of a recursive descent parser as it grows the parse
 tree and matches it against the input words.

Since our grammar licenses two trees for this sentence, the
 sentence is said to be structurally
 ambiguous. The ambiguity in question is called a prepositional phrase attachment ambiguity, as
 we saw earlier in this chapter. As you may recall, it is an ambiguity
 about attachment since the PP
 in the park needs to be attached to one of two
 places in the tree: either as a child of VP or else as a child of NP. When the PP is attached to VP, the intended interpretation is that the
 seeing event happened in the park. However, if the PP is attached to NP, then it was the man who was in the park,
 and the agent of the seeing (the dog) might have been sitting on the
 balcony of an apartment overlooking the park.

Writing Your Own Grammars

If you are interested in experimenting with writing CFGs, you
 will find it helpful to create and edit your grammar in a text file,
 say, mygrammar.cfg. You can then
 load it into NLTK and parse with it as follows:
>>> grammar1 = nltk.data.load('file:mygrammar.cfg')
>>> sent = "Mary saw Bob".split()
>>> rd_parser = nltk.RecursiveDescentParser(grammar1)
>>> for tree in rd_parser.nbest_parse(sent):
... print tree
Make sure that you put a .cfg suffix on the filename, and that there
 are no spaces in the string 'file:mygrammar.cfg'. If the command
 print tree produces no output, this is probably because your
 sentence sent is not admitted by
 your grammar. In this case, call the parser with tracing set to be on:
 rd_parser =
 nltk.RecursiveDescentParser(grammar1, trace=2). You can also
 check what productions are currently in the grammar with the command
 for p in grammar1.productions(): print
 p.
When you write CFGs for parsing in NLTK, you cannot combine
 grammatical categories with lexical items on the righthand side of the
 same production. Thus, a production such as PP -> 'of' NP is disallowed. In addition,
 you are not permitted to place multiword lexical items on the
 righthand side of a production. So rather than writing NP -> 'New York', you have to resort to
 something like NP -> 'New_York'
 instead.

Recursion in Syntactic Structure

A grammar is said to be recursive if a category occurring on the
 lefthand side of a production also appears on the righthand side of a
 production, as illustrated in Example 8-11. The
 production Nom -> Adj Nom (where
 Nom is the category of nominals)
 involves direct recursion on the category Nom, whereas indirect recursion on S arises from the combination of two
 productions, namely S -> NP VP
 and VP -> V S.
Example 8-11. A recursive context-free grammar.
grammar2 = nltk.parse_cfg("""
 S -> NP VP
 NP -> Det Nom | PropN
 Nom -> Adj Nom | N
 VP -> V Adj | V NP | V S | V NP PP
 PP -> P NP
 PropN -> 'Buster' | 'Chatterer' | 'Joe'
 Det -> 'the' | 'a'
 N -> 'bear' | 'squirrel' | 'tree' | 'fish' | 'log'
 Adj -> 'angry' | 'frightened' | 'little' | 'tall'
 V -> 'chased' | 'saw' | 'said' | 'thought' | 'was' | 'put'
 P -> 'on'
 """)

To see how recursion arises from this grammar, consider the
 following trees. a involves nested
 nominal phrases, while b contains
 nested sentences.
Example 8-12.
	[image: image with no caption]

	[image: image with no caption]

We’ve only illustrated two levels of recursion here, but there’s
 no upper limit on the depth. You can experiment with parsing sentences
 that involve more deeply nested structures. Beware that the RecursiveDescentParser is unable to handle left-recursive productions of the
 form X -> X Y; we will return to
 this in Parsing with Context-Free Grammar.

Parsing with Context-Free Grammar

A parser processes input
 sentences according to the productions of a grammar, and builds one or
 more constituent structures that conform to the grammar. A grammar is a
 declarative specification of well-formedness—it is actually just a
 string, not a program. A parser is a procedural interpretation of the
 grammar. It searches through the space of trees licensed by a grammar to
 find one that has the required sentence along its fringe.
A parser permits a grammar to be evaluated against a collection of
 test sentences, helping linguists to discover mistakes in their
 grammatical analysis. A parser can serve as a model of psycholinguistic
 processing, helping to explain the difficulties that humans have with
 processing certain syntactic constructions. Many natural language
 applications involve parsing at some point; for example, we would expect
 the natural language questions submitted to a question-answering system
 to undergo parsing as an initial step.
In this section, we see two simple parsing algorithms, a top-down
 method called recursive descent parsing, and a bottom-up method called
 shift-reduce parsing. We also see some more sophisticated algorithms, a
 top-down method with bottom-up filtering called left-corner parsing, and
 a dynamic programming technique called chart parsing.
Recursive Descent Parsing

The simplest kind of parser interprets a grammar as a
 specification of how to break a high-level goal into several
 lower-level subgoals. The top-level goal is to find an S. The S → NP
 VP production permits the parser to replace this goal with
 two subgoals: find an NP, then find
 a VP. Each of these subgoals can be
 replaced in turn by sub-subgoals, using productions that have NP and VP
 on their lefthand side. Eventually, this expansion process leads to
 subgoals such as: find the word telescope. Such
 subgoals can be directly compared against the input sequence, and
 succeed if the next word is matched. If there is no match, the parser
 must back up and try a different alternative.
The recursive descent parser builds a parse tree during this
 process. With the initial goal (find an S), the S
 root node is created. As the process recursively expands its goals
 using the productions of the grammar, the parse tree is extended
 downwards (hence the name recursive descent). We
 can see this in action using the graphical demonstration nltk.app.rdparser(). Six stages of the
 execution of this parser are shown in Figure 8-4.
[image: Six stages of a recursive descent parser: The parser begins with a tree consisting of the node S; at each stage it consults the grammar to find a production that can be used to enlarge the tree; when a lexical production is encountered, its word is compared against the input; after a complete parse has been found, the parser backtracks to look for more parses.]

Figure 8-4. Six stages of a recursive descent parser: The parser begins
 with a tree consisting of the node S; at each stage it consults the
 grammar to find a production that can be used to enlarge the tree;
 when a lexical production is encountered, its word is compared
 against the input; after a complete parse has been found, the parser
 backtracks to look for more parses.

During this process, the parser is often forced to choose
 between several possible productions. For example, in going from step
 3 to step 4, it tries to find productions with N on the lefthand side. The first of these
 is N → man.
 When this does not work it backtracks, and tries other N productions in order, until it gets to
 N → dog, which
 matches the next word in the input sentence. Much later, as shown in
 step 5, it finds a complete parse. This is a tree that covers the
 entire sentence, without any dangling edges. Once a parse has been
 found, we can get the parser to look for additional parses. Again it
 will backtrack and explore other choices of production in case any of
 them result in a parse.
NLTK provides a recursive descent parser:
>>> rd_parser = nltk.RecursiveDescentParser(grammar1)
>>> sent = 'Mary saw a dog'.split()
>>> for t in rd_parser.nbest_parse(sent):
... print t
(S (NP Mary) (VP (V saw) (NP (Det a) (N dog))))
Note
RecursiveDescentParser() takes an optional parameter trace. If trace is greater than zero, then the
 parser will report the steps that it takes as it parses a
 text.

Recursive descent parsing has three key shortcomings. First,
 left-recursive productions like NP -> NP
 PP send it into an infinite loop. Second, the parser wastes
 a lot of time considering words and structures that do not correspond
 to the input sentence. Third, the backtracking process may discard
 parsed constituents that will need to be rebuilt again later. For
 example, backtracking over VP -> V
 NP will discard the subtree created for the NP. If the parser then proceeds with
 VP -> V NP PP, then the NP subtree must be created all over
 again.
Recursive descent parsing is a kind of top-down parsing. Top-down parsers use a
 grammar to predict what the input will be, before
 inspecting the input! However, since the input is available to the
 parser all along, it would be more sensible to consider the input
 sentence from the very beginning. This approach is called bottom-up parsing, and we will see an example
 in the next section.

Shift-Reduce Parsing

A simple kind of bottom-up parser is the shift-reduce parser. In common with all
 bottom-up parsers, a shift-reduce parser tries to find sequences of
 words and phrases that correspond to the
 righthand side of a grammar production, and
 replace them with the lefthand side, until the whole sentence is
 reduced to an S.
The shift-reduce parser repeatedly pushes the next input word
 onto a stack (Back to the Basics); this is the
 shift operation. If the top
 n items on the stack match the
 n items on the righthand side of some production,
 then they are all popped off the stack, and the item on the lefthand
 side of the production is pushed onto the stack. This replacement of
 the top n items with a single item is the
 reduce operation. The operation may
 be applied only to the top of the stack; reducing items lower in the
 stack must be done before later items are pushed onto the stack. The
 parser finishes when all the input is consumed and there is only one
 item remaining on the stack, a parse tree with an S node as its root. The shift-reduce parser
 builds a parse tree during the above process. Each time it pops
 n items off the stack, it combines them into a
 partial parse tree, and pushes this back onto the stack. We can see
 the shift-reduce parsing algorithm in action using the graphical
 demonstration nltk.app.srparser().
 Six stages of the execution of this parser are shown in Figure 8-5.
[image: Six stages of a shift-reduce parser: The parser begins by shifting the first input word onto its stack; once the top items on the stack match the righthand side of a grammar production, they can be replaced with the lefthand side of that production; the parser succeeds once all input is consumed and one S item remains on the stack.]

Figure 8-5. Six stages of a shift-reduce parser: The parser begins by
 shifting the first input word onto its stack; once the top items on
 the stack match the righthand side of a grammar production, they can
 be replaced with the lefthand side of that production; the parser
 succeeds once all input is consumed and one S item remains on the
 stack.

NLTK provides ShiftReduceParser(), a simple implementation of a shift-reduce parser. This
 parser does not implement any backtracking, so it is not guaranteed to
 find a parse for a text, even if one exists. Furthermore, it will only
 find at most one parse, even if more parses exist. We can provide an
 optional trace parameter that
 controls how verbosely the parser reports the steps that it takes as
 it parses a text:
>>> sr_parse = nltk.ShiftReduceParser(grammar1)
>>> sent = 'Mary saw a dog'.split()
>>> print sr_parse.parse(sent)
 (S (NP Mary) (VP (V saw) (NP (Det a) (N dog))))
Note
Your Turn: Run this parser
 in tracing mode to see the sequence of shift and reduce operations,
 using sr_parse =
 nltk.ShiftReduceParser(grammar1, trace=2).

A shift-reduce parser can reach a dead end and fail to find any
 parse, even if the input sentence is well-formed according to the
 grammar. When this happens, no input remains, and the stack contains
 items that cannot be reduced to an S. The problem arises because there are
 choices made earlier that cannot be undone by the parser (although
 users of the graphical demonstration can undo their choices). There
 are two kinds of choices to be made by the parser: (a) which reduction
 to do when more than one is possible and (b) whether to shift or
 reduce when either action is possible.
A shift-reduce parser may be extended to implement policies for
 resolving such conflicts. For example, it may address shift-reduce
 conflicts by shifting only when no reductions are possible, and it may
 address reduce-reduce conflicts by favoring the reduction operation
 that removes the most items from the stack. (A generalization of the
 shift-reduce parser, a “lookahead LR parser,” is commonly used in
 programming language compilers.)
The advantage of shift-reduce parsers over recursive descent
 parsers is that they only build structure that corresponds to the
 words in the input. Furthermore, they only build each substructure
 once; e.g., NP(Det(the), N(man)) is
 only built and pushed onto the stack a single time, regardless of
 whether it will later be used by the VP ->
 V NP PP reduction or the NP ->
 NP PP reduction.

The Left-Corner Parser

One of the problems with the recursive descent parser is that it
 goes into an infinite loop when it encounters a left-recursive
 production. This is because it applies the grammar productions
 blindly, without considering the actual input sentence. A left-corner
 parser is a hybrid between the bottom-up and top-down approaches we
 have seen.
A left-corner parser is a
 top-down parser with bottom-up filtering. Unlike an ordinary recursive
 descent parser, it does not get trapped in left-recursive productions.
 Before starting its work, a left-corner parser preprocesses the
 context-free grammar to build a table where each row contains two
 cells, the first holding a non-terminal, and the second holding the
 collection of possible left corners of that non-terminal. Table 8-2 illustrates this for the grammar from grammar2.
Table 8-2. Left corners in grammar2
	Category
	Left corners (pre-terminals)

	S
	NP

	NP
	Det, PropN

	VP
	V

	PP
	P

Each time a production is considered by the parser, it checks
 that the next input word is compatible with at least one of the
 pre-terminal categories in the left-corner table.

Well-Formed Substring Tables

The simple parsers discussed in the previous sections suffer
 from limitations in both completeness and efficiency. In order to
 remedy these, we will apply the algorithm design technique of
 dynamic programming to the parsing
 problem. As we saw in Algorithm Design, dynamic
 programming stores intermediate results and reuses them when
 appropriate, achieving significant efficiency gains. This technique
 can be applied to syntactic parsing, allowing us to store partial
 solutions to the parsing task and then look them up as necessary in
 order to efficiently arrive at a complete solution. This approach to
 parsing is known as chart parsing.
 We introduce the main idea in this section; see the online materials
 available for this chapter for more implementation details.
Dynamic programming allows us to build the PP in my pajamas just
 once. The first time we build it we save it in a table, then we look
 it up when we need to use it as a subconstituent of either the object
 NP or the higher VP. This table is known as a well-formed substring table, or WFST for
 short. (The term “substring” refers to a contiguous sequence of words
 within a sentence.) We will show how to construct the WFST bottom-up
 so as to systematically record what syntactic constituents have been
 found.
Let’s set our input to be the sentence in Example 8-2. The numerically specified spans of the
 WFST are reminiscent of Python’s slice notation (Strings: Text Processing at the Lowest Level). Another way to think about the data
 structure is shown in Figure 8-6, a data
 structure known as a chart.
[image: The chart data structure: Words are the edge labels of a linear graph structure.]

Figure 8-6. The chart data structure: Words are the edge labels of a
 linear graph structure.

In a WFST, we record the position of the words by filling in
 cells in a triangular matrix: the vertical axis will denote the start
 position of a substring, while the horizontal axis will denote the end
 position (thus shot will appear in the cell with
 coordinates (1, 2)). To simplify this presentation, we will assume
 each word has a unique lexical category, and we will store this (not
 the word) in the matrix. So cell (1, 2) will contain the entry
 V. More generally, if our input
 string is
 a1a2
 ...
 an,
 and our grammar contains a production of the form
 A →
 ai,
 then we add A to the cell
 (i-1, i).
So, for every word in text,
 we can look up in our grammar what category it belongs to.
>>> text = ['I', 'shot', 'an', 'elephant', 'in', 'my', 'pajamas']
[V -> 'shot']
For our WFST, we create an (n-1)
 × (n-1) matrix as a list of
 lists in Python, and initialize it with the lexical categories of each
 token in the init_wfst() function
 in Example 8-13. We also define a utility function
 display() to pretty-print the WFST for us. As expected, there is
 a V in cell (1, 2).
Example 8-13. Acceptor using well-formed substring table.
def init_wfst(tokens, grammar):
 numtokens = len(tokens)
 wfst = [[None for i in range(numtokens+1)] for j in range(numtokens+1)]
 for i in range(numtokens):
 productions = grammar.productions(rhs=tokens[i])
 wfst[i][i+1] = productions[0].lhs()
 return wfst

def complete_wfst(wfst, tokens, grammar, trace=False):
 index = dict((p.rhs(), p.lhs()) for p in grammar.productions())
 numtokens = len(tokens)
 for span in range(2, numtokens+1):
 for start in range(numtokens+1-span):
 end = start + span
 for mid in range(start+1, end):
 nt1, nt2 = wfst[start][mid], wfst[mid][end]
 if nt1 and nt2 and (nt1,nt2) in index:
 wfst[start][end] = index[(nt1,nt2)]
 if trace:
 print "[%s] %3s [%s] %3s [%s] ==> [%s] %3s [%s]" % \
 (start, nt1, mid, nt2, end, start, index[(nt1,nt2)], end)
 return wfst

def display(wfst, tokens):
 print '\nWFST ' + ' '.join([("%-4d" % i) for i in range(1, len(wfst))])
 for i in range(len(wfst)-1):
 print "%d " % i,
 for j in range(1, len(wfst)):
 print "%-4s" % (wfst[i][j] or '.'),
 print
>>> tokens = "I shot an elephant in my pajamas".split()
>>> wfst0 = init_wfst(tokens, groucho_grammar)
>>> display(wfst0, tokens)
WFST 1 2 3 4 5 6 7
0 NP
1 . V
2 . . Det
3 . . . N . . .
4 P . .
5 Det .
6 N
>>> wfst1 = complete_wfst(wfst0, tokens, groucho_grammar)
>>> display(wfst1, tokens)
WFST 1 2 3 4 5 6 7
0 NP . . S . . S
1 . V . VP . . VP
2 . . Det NP . . .
3 . . . N . . .
4 P . PP
5 Det NP
6 N

Returning to our tabular representation, given that we have
 Det in cell (2, 3) for the word
 an, and N in
 cell (3, 4) for the word elephant, what should we
 put into cell (2, 4) for an elephant? We need to
 find a production of the form A → Det N. Consulting the grammar, we know that
 we can enter NP in cell (0,
 2).
More generally, we can enter A in
 (i, j) if there is a
 production A → B
 C, and we find non-terminal
 B in (i,
 k) and C in
 (k, j). The program in Example 8-13 uses this rule to complete the WFST. By setting
 trace to True when calling the function complete_wfst(), we see
 tracing output that shows the WFST being constructed:
>>> wfst1 = complete_wfst(wfst0, tokens, groucho_grammar, trace=True)
[2] Det [3] N [4] ==> [2] NP [4]
[5] Det [6] N [7] ==> [5] NP [7]
[1] V [2] NP [4] ==> [1] VP [4]
[4] P [5] NP [7] ==> [4] PP [7]
[0] NP [1] VP [4] ==> [0] S [4]
[1] VP [4] PP [7] ==> [1] VP [7]
[0] NP [1] VP [7] ==> [0] S [7]
For example, this says that since we found Det at wfst[2][3] and N at wfst[3][4], we can add NP to wfst[2][4].
Note
To help us easily retrieve productions by their righthand
 sides, we create an index for the grammar. This is an example of a
 space-time trade-off: we do a reverse lookup on the grammar, instead
 of having to check through the entire list of productions each time
 we want to look up via the righthand side.

[image: The chart data structure: Non-terminals are represented as extra edges in the chart.]

Figure 8-7. The chart data structure: Non-terminals are represented as
 extra edges in the chart.

We conclude that there is a parse for the whole input string
 once we have constructed an S node
 in cell (0, 7), showing that we have found a sentence that covers the
 whole input. The final state of the WFST is depicted in Figure 8-7.
Notice that we have not used any built-in parsing functions
 here. We’ve implemented a complete primitive chart parser from the
 ground up!
WFSTs have several shortcomings. First, as you can see, the WFST
 is not itself a parse tree, so the technique is strictly speaking
 recognizing that a sentence is
 admitted by a grammar, rather than parsing it. Second, it requires
 every non-lexical grammar production to be
 binary. Although it is possible to convert an
 arbitrary CFG into this form, we would prefer to use an approach
 without such a requirement. Third, as a bottom-up approach it is
 potentially wasteful, being able to propose constituents in locations
 that would not be licensed by the grammar.
Finally, the WFST did not represent the structural ambiguity in
 the sentence (i.e., the two verb phrase readings). The VP in cell (2,8) was actually entered twice,
 once for a V NP reading, and once
 for a VP PP reading. These are
 different hypotheses, and the second overwrote the first (as it
 happens, this didn’t matter since the lefthand side was the same).
 Chart parsers use a slightly richer data structure and some
 interesting algorithms to solve these problems (see Further Reading).
Note
Your Turn: Try out the
 interactive chart parser application nltk.app.chartparser().

Dependencies and Dependency Grammar

Phrase structure grammar is concerned with how words and sequences
 of words combine to form constituents. A distinct
 and complementary approach, dependency
 grammar, focuses instead on how words
 relate to other words. Dependency is a binary
 asymmetric relation that holds between a head and its dependents. The head of a sentence is usually
 taken to be the tensed verb, and every other word is either dependent on
 the sentence head or connects to it through a path of
 dependencies.
A dependency representation is a labeled directed graph, where the
 nodes are the lexical items and the labeled arcs represent dependency
 relations from heads to dependents. Figure 8-8
 illustrates a dependency graph, where arrows point from heads to their
 dependents.
[image: Dependency structure: Arrows point from heads to their dependents; labels indicate the grammatical function of the dependent as subject, object, or modifier.]

Figure 8-8. Dependency structure: Arrows point from heads to their
 dependents; labels indicate the grammatical function of the dependent
 as subject, object, or modifier.

The arcs in Figure 8-8 are labeled with the
 grammatical function that holds between a dependent and its head. For
 example, I is the SBJ (subject) of shot
 (which is the head of the whole sentence), and in
 is an NMOD (noun modifier of
 elephant). In contrast to phrase structure grammar,
 therefore, dependency grammars can be used to directly express
 grammatical functions as a type of dependency.
Here’s one way of encoding a dependency grammar in NLTK—note that
 it only captures bare dependency information without specifying the type
 of dependency:
>>> groucho_dep_grammar = nltk.parse_dependency_grammar("""
... 'shot' -> 'I' | 'elephant' | 'in'
... 'elephant' -> 'an' | 'in'
... 'in' -> 'pajamas'
... 'pajamas' -> 'my'
... """)
>>> print groucho_dep_grammar
Dependency grammar with 7 productions
 'shot' -> 'I'
 'shot' -> 'elephant'
 'shot' -> 'in'
 'elephant' -> 'an'
 'elephant' -> 'in'
 'in' -> 'pajamas'
 'pajamas' -> 'my'
A dependency graph is projective if, when all the words are written
 in linear order, the edges can be drawn above the words without
 crossing. This is equivalent to saying that a word and all its
 descendants (dependents and dependents of its dependents, etc.) form a
 contiguous sequence of words within the sentence. Figure 8-8 is projective, and we can parse many
 sentences in English using a projective dependency parser. The next
 example shows how groucho_dep_grammar
 provides an alternative approach to capturing the attachment ambiguity
 that we examined earlier with phrase structure grammar.
>>> pdp = nltk.ProjectiveDependencyParser(groucho_dep_grammar)
>>> sent = 'I shot an elephant in my pajamas'.split()
>>> trees = pdp.parse(sent)
>>> for tree in trees:
... print tree
(shot I (elephant an (in (pajamas my))))
(shot I (elephant an) (in (pajamas my)))
These bracketed dependency structures can also be displayed as
 trees, where dependents are shown
 as children of their heads.
Example 8-14.
[image: image with no caption]

[image: image with no caption]

In languages with more flexible word order than English,
 non-projective dependencies are more frequent.
Various criteria have been proposed for deciding what is the head
 H and what is the dependent D
 in a construction C. Some of the most important are
 the following:
	H determines the distribution class of
 C; or alternatively, the external syntactic
 properties of C are due to
 H.

	H determines the semantic type of
 C.

	H is obligatory while
 D may be optional.

	H selects D and
 determines whether it is obligatory or optional.

	The morphological form of D is determined
 by H (e.g., agreement or case government).

When we say in a phrase structure grammar that the immediate
 constituents of a PP are P and NP,
 we are implicitly appealing to the head/dependent distinction. A
 prepositional phrase is a phrase whose head is a preposition; moreover,
 the NP is a dependent of P. The same distinction carries over to the
 other types of phrase that we have discussed. The key point to note here
 is that although phrase structure grammars seem very different from
 dependency grammars, they implicitly embody a recognition of dependency
 relations. Although CFGs are not intended to directly capture
 dependencies, more recent linguistic frameworks have increasingly
 adopted formalisms which combine aspects of both approaches.
Valency and the Lexicon

Let us take a closer look at verbs and their dependents. The
 grammar in Example 8-11 correctly generates examples
 like Example 8-15.
Example 8-15.
	The squirrel was frightened.

	Chatterer saw the bear.

	Chatterer thought Buster was angry.

	Joe put the fish on the log.

These possibilities correspond to the productions in Table 8-3.
Table 8-3. VP productions and their lexical heads
	Production	Lexical head
	VP -> V
 Adj
	was

	VP -> V
 NP
	saw

	VP -> V
 S
	thought

	VP -> V NP
 PP
	put

That is, was can occur with a following
 Adj, saw can
 occur with a following NP,
 thought can occur with a following S, and put can occur
 with a following NP and PP. The dependents Adj, NP,
 S, and PP are often called complements of the respective verbs, and
 there are strong constraints on what verbs can occur with what
 complements. By contrast with Example 8-15, the word
 sequences in Example 8-16 are ill-formed:
Example 8-16.
	*The squirrel was Buster was angry.

	*Chatterer saw frightened.

	*Chatterer thought the bear.

	*Joe put on the log.

Note
With a little imagination, it is possible to invent contexts
 in which unusual combinations of verbs and complements are
 interpretable. However, we assume that the examples in Example 8-16 are to be interpreted in neutral
 contexts.

In the tradition of dependency grammar, the verbs in Table 8-3 are said to have different valencies. Valency restrictions are not just
 applicable to verbs, but also to the other classes of heads.
Within frameworks based on phrase structure grammar, various
 techniques have been proposed for excluding the ungrammatical examples
 in Example 8-16. In a CFG, we need some way of
 constraining grammar productions which expand VP so that verbs co-occur
 only with their correct complements. We can do
 this by dividing the class of verbs into “subcategories,” each of
 which is associated with a different set of complements. For example,
 transitive verbs such as
 chased and saw require a
 following NP object complement;
 that is, they are subcategorized
 for NP direct objects. If we
 introduce a new category label for transitive verbs, namely TV (for transitive verb), then we can use it
 in the following productions:
VP -> TV NP
TV -> 'chased' | 'saw'
Now *Joe thought the bear is excluded since
 we haven’t listed thought as a TV, but Chatterer saw the
 bear is still allowed. Table 8-4
 provides more examples of labels for verb subcategories.
Table 8-4. Verb subcategories
	Symbol
	Meaning
	Example

	IV
	Intransitive verb
	barked

	TV
	Transitive verb
	saw a man

	DatV
	Dative verb
	gave a dog to a
 man

	SV
	Sentential verb
	said that a dog
 barked

Valency is a property of lexical items, and we will discuss it
 further in Chapter 9.
Complements are often contrasted with modifiers (or adjuncts),
 although both are kinds of dependents. Prepositional phrases,
 adjectives, and adverbs typically function as modifiers. Unlike
 complements, modifiers are optional, can often be iterated, and are
 not selected for by heads in the same way as complements. For example,
 the adverb really can be added as a modifier to
 all the sentences in Example 8-17:
Example 8-17.
	The squirrel really was frightened.

	Chatterer really saw the bear.

	Chatterer really thought Buster was angry.

	Joe really put the fish on the log.

The structural ambiguity of PP attachment, which we have illustrated in
 both phrase structure and dependency grammars, corresponds
 semantically to an ambiguity in the scope of the modifier.

Scaling Up

So far, we have only considered “toy grammars,” small grammars
 that illustrate the key aspects of parsing. But there is an obvious
 question as to whether the approach can be scaled up to cover large
 corpora of natural languages. How hard would it be to construct such a
 set of productions by hand? In general, the answer is: very
 hard. Even if we allow ourselves to use various formal
 devices that give much more succinct representations of grammar
 productions, it is still extremely difficult to keep control of the
 complex interactions between the many productions required to cover
 the major constructions of a language. In other words, it is hard to
 modularize grammars so that one portion can be developed independently
 of the other parts. This in turn means that it is difficult to
 distribute the task of grammar writing across a team of linguists.
 Another difficulty is that as the grammar expands to cover a wider and
 wider range of constructions, there is a corresponding increase in the
 number of analyses that are admitted for any one sentence. In other
 words, ambiguity increases with coverage.
Despite these problems, some large collaborative projects have
 achieved interesting and impressive results in developing rule-based
 grammars for several languages. Examples are the Lexical Functional
 Grammar (LFG) Pargram project, the Head-Driven Phrase Structure
 Grammar (HPSG) LinGO Matrix framework, and the Lexicalized Tree
 Adjoining Grammar XTAG Project.

Grammar Development

Parsing builds trees over sentences, according to a phrase
 structure grammar. Now, all the examples we gave earlier only involved
 toy grammars containing a handful of productions. What happens if we try
 to scale up this approach to deal with realistic corpora of language? In
 this section, we will see how to access treebanks, and look at the
 challenge of developing broad-coverage grammars.
Treebanks and Grammars

The corpus module defines the treebank corpus reader, which contains a 10% sample of the Penn
 Treebank Corpus.
>>> from nltk.corpus import treebank
>>> t = treebank.parsed_sents('wsj_0001.mrg')[0]
>>> print t
(S
 (NP-SBJ
 (NP (NNP Pierre) (NNP Vinken))
 (, ,)
 (ADJP (NP (CD 61) (NNS years)) (JJ old))
 (, ,))
 (VP
 (MD will)
 (VP
 (VB join)
 (NP (DT the) (NN board))
 (PP-CLR
 (IN as)
 (NP (DT a) (JJ nonexecutive) (NN director)))
 (NP-TMP (NNP Nov.) (CD 29))))
 (. .))
We can use this data to help develop a grammar. For example, the
 program in Example 8-18 uses a simple
 filter to find verbs that take sentential complements. Assuming we
 already have a production of the form VP
 -> SV S, this information enables us to identify
 particular verbs that would be included in the expansion of SV.
Example 8-18. Searching a treebank to find sentential complements.
def filter(tree):
 child_nodes = [child.node for child in tree
 if isinstance(child, nltk.Tree)]
 return (tree.node == 'VP') and ('S' in child_nodes)
>>> from nltk.corpus import treebank
>>> [subtree for tree in treebank.parsed_sents()
... for subtree in tree.subtrees(filter)]
 [Tree('VP', [Tree('VBN', ['named']), Tree('S', [Tree('NP-SBJ', ...]), ...]), ...]

The PP Attachment Corpus, nltk.corpus.ppattach, is another source of
 information about the valency of particular verbs. Here we illustrate
 a technique for mining this corpus. It finds pairs of prepositional
 phrases where the preposition and noun are fixed, but where the choice
 of verb determines whether the prepositional phrase is attached to the
 VP or to the NP.
>>> entries = nltk.corpus.ppattach.attachments('training')
>>> table = nltk.defaultdict(lambda: nltk.defaultdict(set))
>>> for entry in entries:
... key = entry.noun1 + '-' + entry.prep + '-' + entry.noun2
... table[key][entry.attachment].add(entry.verb)
...
>>> for key in sorted(table):
... if len(table[key]) > 1:
... print key, 'N:', sorted(table[key]['N']), 'V:', sorted(table[key]['V'])
Among the output lines of this program we find offer-from-group N: ['rejected'] V:
 ['received'], which indicates that
 received expects a separate PP complement attached to the VP, while rejected does
 not. As before, we can use this information to help construct the
 grammar.
The NLTK corpus collection includes data from the PE08
 Cross-Framework and Cross Domain Parser Evaluation Shared Task. A
 collection of larger grammars has been prepared for the purpose of
 comparing different parsers, which can be obtained by downloading the
 large_grammars package (e.g.,
 python -m nltk.downloader
 large_grammars).
The NLTK corpus collection also includes a sample from the
 Sinica Treebank Corpus, consisting of 10,000 parsed sentences drawn
 from the Academia Sinica Balanced Corpus of Modern
 Chinese. Let’s load and display one of the trees in this
 corpus.
>>> nltk.corpus.sinica_treebank.parsed_sents()[3450].draw()
[image: image with no caption]

Pernicious Ambiguity

Unfortunately, as the coverage of the grammar increases and the
 length of the input sentences grows, the number of parse trees grows
 rapidly. In fact, it grows at an astronomical rate.
Let’s explore this issue with the help of a simple example. The
 word fish is both a noun and a verb. We can make
 up the sentence fish fish fish, meaning
 fish like to fish for other fish. (Try this with
 police if you prefer something more sensible.)
 Here is a toy grammar for the “fish” sentences.
>>> grammar = nltk.parse_cfg("""
... S -> NP V NP
... NP -> NP Sbar
... Sbar -> NP V
... NP -> 'fish'
... V -> 'fish'
... """)
Now we can try parsing a longer sentence, fish fish
 fish fish fish, which among other things, means “fish that
 other fish fish are in the habit of fishing fish themselves.” We use
 the NLTK chart parser, which is presented earlier in this chapter.
 This sentence has two readings.
>>> tokens = ["fish"] * 5
>>> cp = nltk.ChartParser(grammar)
>>> for tree in cp.nbest_parse(tokens):
... print tree
(S (NP (NP fish) (Sbar (NP fish) (V fish))) (V fish) (NP fish))
(S (NP fish) (V fish) (NP (NP fish) (Sbar (NP fish) (V fish))))
As the length of this sentence goes up (3, 5, 7, ...) we get the
 following numbers of parse trees: 1; 2; 5; 14; 42; 132; 429; 1,430;
 4,862; 16,796; 58,786; 208,012; …. (These are the Catalan numbers, which we saw in an exercise
 in Chapter 4.) The last of these is for a sentence
 of length 23, the average length of sentences in the WSJ section of
 Penn Treebank. For a sentence of length 50 there would be over
 1012 parses, and this is only half the
 length of the Piglet sentence (Some Grammatical Dilemmas), which
 young children process effortlessly. No practical NLP system could
 construct millions of trees for a sentence and choose the appropriate
 one in the context. It’s clear that humans don’t do this
 either!
Note that the problem is not with our choice of example. (Church
 & Patil, 1982) point out that the syntactic ambiguity of PP attachment in sentences like Example 8-19 also grows in proportion to the Catalan
 numbers.
Example 8-19.
Put the block in the box on the table.

So much for structural ambiguity; what about lexical ambiguity?
 As soon as we try to construct a broad-coverage grammar, we are forced
 to make lexical entries highly ambiguous for their part-of-speech. In
 a toy grammar, a is only a determiner,
 dog is only a noun, and runs
 is only a verb. However, in a broad-coverage grammar,
 a is also a noun (e.g., part
 a), dog is also a verb (meaning to
 follow closely), and runs is also a noun (e.g.,
 ski runs). In fact, all words can be referred to
 by name: e.g., the verb ‘ate’ is spelled with three
 letters; in speech we do not need to supply quotation
 marks. Furthermore, it is possible to verb most
 nouns. Thus a parser for a broad-coverage grammar will be overwhelmed
 with ambiguity. Even complete gibberish will often have a reading,
 e.g., the a are of I. As (Abney, 1996) has
 pointed out, this is not word salad but a grammatical noun phrase, in
 which are is a noun meaning a hundredth of a
 hectare (or 100 sq m), and a and
 I are nouns designating coordinates, as shown in
 Figure 8-9.
[image: The a are of I: A schematic drawing of 27 paddocks, each being one are in size, and each identified using coordinates; the top-left cell is the a are of column A (after Abney).]

Figure 8-9. The a are of I: A schematic drawing of 27 paddocks, each
 being one are in size, and each identified using coordinates; the
 top-left cell is the a are of column A (after Abney).

Even though this phrase is unlikely, it is still grammatical,
 and a broad-coverage parser should be able to construct a parse tree
 for it. Similarly, sentences that seem to be unambiguous, such as
 John saw Mary, turn out to have other readings we
 would not have anticipated (as Abney explains). This ambiguity is
 unavoidable, and leads to horrendous inefficiency in parsing seemingly
 innocuous sentences. The solution to these problems is provided by
 probabilistic parsing, which allows us to
 rank the parses of an ambiguous sentence on the
 basis of evidence from corpora.

Weighted Grammar

As we have just seen, dealing with ambiguity is a key challenge
 in developing broad-coverage parsers. Chart parsers improve the
 efficiency of computing multiple parses of the same sentences, but
 they are still overwhelmed by the sheer number of possible parses.
 Weighted grammars and probabilistic parsing algorithms have provided
 an effective solution to these problems.
Before looking at these, we need to understand why the notion of
 grammaticality could be gradient. Considering the
 verb give. This verb requires both a direct
 object (the thing being given) and an indirect object (the recipient).
 These complements can be given in either order, as illustrated in
 Example 8-20. In the “prepositional dative” form in
 a, the direct object appears
 first, followed by a prepositional phrase containing the indirect
 object.
Example 8-20.
	Kim gave a bone to the dog.

	Kim gave the dog a bone.

In the “double object” form in b, the indirect object appears
 first, followed by the direct object. In this case, either order is
 acceptable. However, if the indirect object is a pronoun, there is a
 strong preference for the double object construction:
Example 8-21.
	Kim gives the heebie-jeebies to me
 (prepositional dative).

	Kim gives me the heebie-jeebies (double
 object).

Using the Penn Treebank sample, we can examine all instances of
 prepositional dative and double object constructions involving
 give, as shown in Example 8-22.
Example 8-22. Usage of give and gave in the Penn Treebank sample.
def give(t):
 return t.node == 'VP' and len(t) > 2 and t[1].node == 'NP'\
 and (t[2].node == 'PP-DTV' or t[2].node == 'NP')\
 and ('give' in t[0].leaves() or 'gave' in t[0].leaves())
def sent(t):
 return ' '.join(token for token in t.leaves() if token[0] not in '*-0')
def print_node(t, width):
 output = "%s %s: %s / %s: %s" %\
 (sent(t[0]), t[1].node, sent(t[1]), t[2].node, sent(t[2]))
 if len(output) > width:
 output = output[:width] + "..."
 print output
>>> for tree in nltk.corpus.treebank.parsed_sents():
... for t in tree.subtrees(give):
... print_node(t, 72)
gave NP: the chefs / NP: a standing ovation
give NP: advertisers / NP: discounts for maintaining or increasing ad sp...
give NP: it / PP-DTV: to the politicians
gave NP: them / NP: similar help
give NP: them / NP:
give NP: only French history questions / PP-DTV: to students in a Europe...
give NP: federal judges / NP: a raise
give NP: consumers / NP: the straight scoop on the U.S. waste crisis
gave NP: Mitsui / NP: access to a high-tech medical product
give NP: Mitsubishi / NP: a window on the U.S. glass industry
give NP: much thought / PP-DTV: to the rates she was receiving , nor to ...
give NP: your Foster Savings Institution / NP: the gift of hope and free...
give NP: market operators / NP: the authority to suspend trading in futu...
gave NP: quick approval / PP-DTV: to $ 3.18 billion in supplemental appr...
give NP: the Transportation Department / NP: up to 50 days to review any...
give NP: the president / NP: such power
give NP: me / NP: the heebie-jeebies
give NP: holders / NP: the right , but not the obligation , to buy a cal...
gave NP: Mr. Thomas / NP: only a `` qualified '' rating , rather than ``...
give NP: the president / NP: line-item veto power

We can observe a strong tendency for the shortest complement to
 appear first. However, this does not account for a form like give NP: federal judges / NP: a raise, where
 animacy may play a role. In fact, there turns out to be a large number
 of contributing factors, as
 surveyed by (Bresnan & Hay, 2008). Such preferences can be
 represented in a weighted grammar.
A probabilistic context-free
 grammar (or PCFG) is a context-free grammar that associates
 a probability with each of its productions. It generates the same set
 of parses for a text that the corresponding context-free grammar does,
 and assigns a probability to each parse. The probability of a parse
 generated by a PCFG is simply the product of the probabilities of the
 productions used to generate it.
The simplest way to define a PCFG is to load it from a specially
 formatted string consisting of a sequence of weighted productions,
 where weights appear in brackets, as shown in Example 8-23.
Example 8-23. Defining a probabilistic context-free grammar (PCFG).
grammar = nltk.parse_pcfg("""
 S -> NP VP [1.0]
 VP -> TV NP [0.4]
 VP -> IV [0.3]
 VP -> DatV NP NP [0.3]
 TV -> 'saw' [1.0]
 IV -> 'ate' [1.0]
 DatV -> 'gave' [1.0]
 NP -> 'telescopes' [0.8]
 NP -> 'Jack' [0.2]
 """)
>>> print grammar
Grammar with 9 productions (start state = S)
 S -> NP VP [1.0]
 VP -> TV NP [0.4]
 VP -> IV [0.3]
 VP -> DatV NP NP [0.3]
 TV -> 'saw' [1.0]
 IV -> 'ate' [1.0]
 DatV -> 'gave' [1.0]
 NP -> 'telescopes' [0.8]
 NP -> 'Jack' [0.2]

It is sometimes convenient to combine multiple productions into
 a single line, e.g., VP
 -> TV NP [0.4] | IV [0.3] | DatV NP NP [0.3]. In order to
 ensure that the trees generated by the grammar form a probability
 distribution, PCFG grammars impose the constraint that all productions
 with a given lefthand side must have probabilities that sum to one.
 The grammar in Example 8-23 obeys this constraint:
 for S, there is only one
 production, with a probability of 1.0; for VP, 0.4+0.3+0.3=1.0; and for NP, 0.8+0.2=1.0. The parse tree returned by
 parse() includes probabilities:
>>> viterbi_parser = nltk.ViterbiParser(grammar)
>>> print viterbi_parser.parse(['Jack', 'saw', 'telescopes'])
(S (NP Jack) (VP (TV saw) (NP telescopes))) (p=0.064)
Now that parse trees are assigned probabilities, it no longer
 matters that there may be a huge number of possible parses for a given
 sentence. A parser will be responsible for finding the most likely
 parses.

Summary

	Sentences have internal organization that can be represented
 using a tree. Notable features of constituent structure are:
 recursion, heads, complements, and modifiers.

	A grammar is a compact characterization of a potentially
 infinite set of sentences; we say that a tree is well-formed
 according to a grammar, or that a grammar licenses a tree.

	A grammar is a formal model for describing whether a given
 phrase can be assigned a particular constituent or dependency
 structure.

	Given a set of syntactic categories, a context-free grammar
 uses a set of productions to say how a phrase of some category
 A can be analyzed into a sequence of smaller
 parts α1 ...
 αn.

	A dependency grammar uses productions to specify what the
 dependents are of a given lexical head.

	Syntactic ambiguity arises when one sentence has more than one
 syntactic analysis (e.g., prepositional phrase attachment
 ambiguity).

	A parser is a procedure for finding one or more trees
 corresponding to a grammatically well-formed sentence.

	A simple top-down parser is the recursive descent parser,
 which recursively expands the start symbol (usually S) with the help of the grammar
 productions, and tries to match the input sentence. This parser
 cannot handle left-recursive productions (e.g., productions such as
 NP -> NP PP). It is
 inefficient in the way it blindly expands categories without
 checking whether they are compatible with the input string, and in
 repeatedly expanding the same non-terminals and discarding the
 results.

	A simple bottom-up parser is the shift-reduce parser, which
 shifts input onto a stack and tries to match the items at the top of
 the stack with the righthand side of grammar productions. This
 parser is not guaranteed to find a valid parse for the input, even
 if one exists, and builds substructures without checking whether it
 is globally consistent with the grammar.

Further Reading

Extra materials for this chapter are posted at http://www.nltk.org/, including links to freely available
 resources on the Web. For more examples of parsing with NLTK, please see
 the Parsing HOWTO at http://www.nltk.org/howto.
There are many introductory books on syntax. (O’Grady et al.,
 2004) is a general introduction to linguistics, while (Radford, 1988)
 provides a gentle introduction to transformational grammar, and can be
 recommended for its coverage of transformational approaches to unbounded
 dependency constructions. The most widely used term in linguistics for
 formal grammar is generative grammar,
 though it has nothing to do with generation (Chomsky, 1965).
(Burton-Roberts, 1997) is a practically oriented textbook on how
 to analyze constituency in English, with extensive exemplification and
 exercises. (Huddleston & Pullum, 2002) provides an up-to-date and
 comprehensive analysis of syntactic phenomena in English.
Chapter 12 of (Jurafsky & Martin, 2008) covers formal grammars
 of English; Sections 13.1–3 cover simple parsing algorithms and
 techniques for dealing with ambiguity; Chapter 14 covers statistical
 parsing; and Chapter 16 covers the Chomsky hierarchy and the formal
 complexity of natural language. (Levin, 1993) has categorized English
 verbs into fine-grained classes, according to their syntactic
 properties.
There are several ongoing efforts to build large-scale rule-based
 grammars, e.g., the LFG Pargram project (http://www2.parc.com/istl/groups/nltt/pargram/), the HPSG
 LinGO Matrix framework (http://www.delph-in.net/matrix/), and the XTAG Project
 (http://www.cis.upenn.edu/~xtag/).

Exercises

	○ Can you come up with grammatical sentences that probably
 have never been uttered before? (Take turns with a partner.) What
 does this tell you about human language?

	○ Recall Strunk and White’s prohibition against using a
 sentence-initial however to mean “although.” Do
 a web search for however used at the start of
 the sentence. How widely used is this construction?

	○ Consider the sentence Kim arrived or Dana left and
 everyone cheered. Write down the parenthesized forms to
 show the relative scope of and and
 or. Generate tree structures corresponding to
 both of these interpretations.

	○ The Tree class implements a variety of other useful methods.
 See the Tree help documentation for more details (i.e., import the
 Tree class and then type help(Tree)).

	○ In this exercise you will manually construct some parse
 trees.
	Write code to produce two trees, one for each reading of
 the phrase old men and women.

	Encode any of the trees presented in this chapter as a
 labeled bracketing, and use nltk.Tree() to check that it is
 well-formed. Now use draw() to display the tree.

	As in (a), draw a tree for The woman saw a man
 last Thursday.

	○ Write a recursive function to traverse a tree and return the
 depth of the tree, such that a tree with a single node would have
 depth zero. (Hint: the depth of a subtree is the maximum depth of
 its children, plus one.)

	○ Analyze the A.A. Milne sentence about Piglet, by underlining
 all of the sentences it contains then replacing these with S (e.g., the first sentence becomes
 S when
 S). Draw a tree structure for
 this “compressed” sentence. What are the main syntactic
 constructions used for building such a long sentence?

	○ In the recursive descent parser demo, experiment with
 changing the sentence to be parsed by selecting Edit Text in the
 Edit menu.

	○ Can the grammar in grammar1 (Example 8-9) be
 used to describe sentences that are more than 20 words in
 length?

	○ Use the graphical chart-parser interface to experiment with
 different rule invocation strategies. Come up with your own strategy
 that you can execute manually using the graphical interface.
 Describe the steps, and report any efficiency improvements it has
 (e.g., in terms of the size of the resulting chart). Do these
 improvements depend on the structure of the grammar? What do you
 think of the prospects for significant performance boosts from
 cleverer rule invocation strategies?

	○ With pen and paper, manually trace the execution of a
 recursive descent parser and a shift-reduce parser, for a CFG you
 have already seen, or one of your own devising.

	○ We have seen that a chart parser adds but never removes
 edges from a chart. Why?

	○ Consider the sequence of words: Buffalo buffalo
 Buffalo buffalo buffalo buffalo Buffalo buffalo. This is
 a grammatically correct sentence, as explained at http://en.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo.
 Consider the tree diagram presented on this Wikipedia page, and
 write down a suitable grammar. Normalize case to lowercase, to
 simulate the problem that a listener has when hearing this sentence.
 Can you find other parses for this sentence? How does the number of
 parse trees grow as the sentence gets longer? (More examples of
 these sentences can be found at http://en.wikipedia.org/wiki/List_of_homophonous_phrases.)

	[image:] You can modify the grammar in the recursive descent parser
 demo by selecting Edit Grammar in the Edit menu. Change the first
 expansion production, namely NP -> Det N PP, to NP -> NP PP. Using the Step button, try
 to build a parse tree. What happens?

	[image:] Extend the grammar in grammar2 with productions that expand
 prepositions as intransitive, transitive, and requiring a PP complement. Based on these productions,
 use the method of the preceding exercise to draw a tree for the
 sentence Lee ran away home.

	[image:] Pick some common verbs and complete the following
 tasks:
	Write a program to find those verbs in the PP Attachment
 Corpus nltk.corpus.ppattach.
 Find any cases where the same verb exhibits two different
 attachments, but where the first noun, or second noun, or
 preposition stays unchanged (as we saw in our discussion of
 syntactic ambiguity in What’s the Use of Syntax?).

	Devise CFG grammar productions to cover some of these
 cases.

	[image:] Write a program to compare the efficiency of a top-down
 chart parser compared with a recursive descent parser (Parsing with Context-Free Grammar). Use the same grammar and input sentences
 for both. Compare their performance using the timeit module (see Algorithm Design for an example of how to do
 this).

	[image:] Compare the performance of the top-down, bottom-up, and
 left-corner parsers using the same grammar and three grammatical
 test sentences. Use timeit to log
 the amount of time each parser takes on the same sentence. Write a
 function that runs all three parsers on all three sentences, and
 prints a 3-by-3 grid of times, as well as row and column totals.
 Discuss your findings.

	[image:] Read up on “garden path” sentences. How might the
 computational work of a parser relate to the difficulty humans have
 with processing these sentences? (See http://en.wikipedia.org/wiki/Garden_path_sentence.)

	[image:] To compare multiple trees in a single window, we can use the
 draw_trees() method. Define some trees and try it out:
>>> from nltk.draw.tree import draw_trees
>>> draw_trees(tree1, tree2, tree3)

	[image:] Using tree positions, list the subjects of the first 100
 sentences in the Penn treebank; to make the results easier to view,
 limit the extracted subjects to subtrees whose height is at most
 2.

	[image:] Inspect the PP Attachment Corpus and try to suggest some
 factors that influence PP
 attachment.

	[image:] In What’s the Use of Syntax?, we
 claimed that there are linguistic regularities that cannot be
 described simply in terms of n-grams. Consider the following
 sentence, particularly the position of the phrase in his
 turn. Does this illustrate a problem for an approach
 based on n-grams?
What was more, the in his turn somewhat youngish
 Nikolay Parfenovich also turned out to be the only person in the
 entire world to acquire a sincere liking to our
 “discriminated-against” public procurator. (Dostoevsky:
 The Brothers Karamazov)

	[image:] Write a recursive function that produces a nested bracketing
 for a tree, leaving out the leaf nodes and displaying the
 non-terminal labels after their subtrees. So the example in Grammar Development about Pierre Vinken would
 produce: [[[NNP NNP]NP , [ADJP [CD NNS]NP
 JJ]ADJP ,]NP-SBJ MD [VB [DT NN]NP [IN [DT JJ NN]NP]PP-CLR [NNP
 CD]NP-TMP]VP .]S. Consecutive categories should be
 separated by space.

	[image:] Download several electronic books from Project Gutenberg.
 Write a program to scan these texts for any extremely long
 sentences. What is the longest sentence you can find? What syntactic
 construction(s) are responsible for such long sentences?

	[image:] Modify the functions init_wfst() and complete_wfst() so that the contents of
 each cell in the WFST is a set of non-terminal symbols rather than a
 single non-terminal.

	[image:] Consider the algorithm in Example 8-13. Can
 you explain why parsing context-free grammar is proportional to
 n3, where
 n is the length of the input sentence?

	[image:] Process each tree of the Penn Treebank Corpus sample
 nltk.corpus.treebank and extract
 the productions with the help of Tree.productions(). Discard the productions that occur only once.
 Productions with the same lefthand side and similar righthand sides
 can be collapsed, resulting in an equivalent but more compact set of
 rules. Write code to output a compact grammar.

	● One common way of defining the subject of a sentence
 S in English is as the
 noun phrase that is the child of S and the sibling of
 VP. Write a function that takes
 the tree for a sentence and returns the subtree corresponding to the
 subject of the sentence. What should it do if the root node of the
 tree passed to this function is not S, or if it lacks a subject?

	● Write a function that takes a grammar (such as the one
 defined in Example 8-9) and returns a random
 sentence generated by the grammar. (Use grammar.start() to find the start symbol
 of the grammar; grammar.productions(lhs) to get the list
 of productions from the grammar that have the specified lefthand
 side; and production.rhs() to get
 the righthand side of a production.)

	● Implement a version of the shift-reduce parser using
 backtracking, so that it finds all possible parses for a sentence,
 what might be called a “recursive ascent parser.” Consult the
 Wikipedia entry for backtracking at http://en.wikipedia.org/wiki/Backtracking.

	● As we saw in Chapter 7, it is possible to collapse chunks
 down to their chunk label. When we do this for sentences involving
 the word gave, we find patterns such as the
 following:
gave NP
gave up NP in NP
gave NP up
gave NP NP
gave NP to NP
	Use this method to study the complementation patterns of a
 verb of interest, and write suitable grammar productions. (This
 task is sometimes called lexical
 acquisition.)

	Identify some English verbs that are near-synonyms, such
 as the dumped/filled/loaded example from
 Example 9-69 in Chapter 9. Use
 the chunking method to study the complementation patterns of
 these verbs. Create a grammar to cover these cases. Can the
 verbs be freely substituted for each other, or are there
 constraints? Discuss your findings.

	● Develop a left-corner parser based on the recursive descent
 parser, and inheriting from ParseI.

	● Extend NLTK’s shift-reduce parser to incorporate
 backtracking, so that it is guaranteed to find all parses that exist
 (i.e., it is complete).

	● Modify the functions init_wfst() and complete_wfst() so that when a non-terminal symbol is added to a cell in
 the WFST, it includes a record of the cells from which it was
 derived. Implement a function that will convert a WFST in this form
 to a parse tree.

Chapter 9. Building Feature-Based Grammars

Natural languages have an extensive range of grammatical
 constructions which are hard to handle with the simple methods described
 in Chapter 8. In order to gain more flexibility, we
 change our treatment of grammatical categories like S, NP, and
 V. In place of atomic labels, we
 decompose them into structures like dictionaries, where features can take
 on a range of values.
The goal of this chapter is to answer the following
 questions:
	How can we extend the framework of context-free grammars with
 features so as to gain more fine-grained control over grammatical
 categories and productions?

	What are the main formal properties of feature structures, and
 how do we use them computationally?

	What kinds of linguistic patterns and grammatical constructions
 can we now capture with feature-based grammars?

Along the way, we will cover more topics in English syntax,
 including phenomena such as agreement, subcategorization, and unbounded
 dependency constructions.
Grammatical Features

In Chapter 6, we described how to build
 classifiers that rely on detecting features of text. Such features may
 be quite simple, such as extracting the last letter of a word, or more
 complex, such as a part-of-speech tag that has itself been predicted by
 the classifier. In this chapter, we will investigate the role of
 features in building rule-based grammars. In contrast to feature
 extractors, which record features that have been automatically detected,
 we are now going to declare the features of words
 and phrases. We start off with a very simple example, using dictionaries
 to store features and their values.
>>> kim = {'CAT': 'NP', 'ORTH': 'Kim', 'REF': 'k'}
>>> chase = {'CAT': 'V', 'ORTH': 'chased', 'REL': 'chase'}
The objects kim and chase both have a couple of shared features,
 CAT (grammatical category) and
 ORTH (orthography, i.e., spelling).
 In addition, each has a more semantically oriented feature: kim['REF'] is intended to give the referent of
 kim, while chase['REL'] gives the relation expressed by
 chase. In the context of rule-based
 grammars, such pairings of features and values are known as feature structures, and we will shortly see
 alternative notations for them.
Feature structures contain various kinds of information about
 grammatical entities. The information need not be exhaustive, and we
 might want to add further properties. For example, in the case of a
 verb, it is often useful to know what “semantic role” is played by the
 arguments of the verb. In the case of chase, the
 subject plays the role of “agent,” whereas the object has the role of
 “patient.” Let’s add this information, using 'sbj' (subject) and 'obj' (object) as placeholders which will get
 filled once the verb combines with its grammatical arguments:
>>> chase['AGT'] = 'sbj'
>>> chase['PAT'] = 'obj'
If we now process a sentence Kim chased Lee,
 we want to “bind” the verb’s agent role to the subject and the patient
 role to the object. We do this by linking to the REF feature of the relevant NP. In the following example, we make the
 simple-minded assumption that the NPs
 immediately to the left and right of the verb are the subject and
 object, respectively. We also add a feature structure for
 Lee to complete the example.
>>> sent = "Kim chased Lee"
>>> tokens = sent.split()
>>> lee = {'CAT': 'NP', 'ORTH': 'Lee', 'REF': 'l'}
>>> def lex2fs(word):
... for fs in [kim, lee, chase]:
... if fs['ORTH'] == word:
... return fs
>>> subj, verb, obj = lex2fs(tokens[0]), lex2fs(tokens[1]), lex2fs(tokens[2])
 >>> verb['AGT'] = subj['REF'] # agent of 'chase' is Kim
 >>> verb['PAT'] = obj['REF'] # patient of 'chase' is Lee
 >>> for k in ['ORTH', 'REL', 'AGT', 'PAT']: # check featstruct of 'chase'
... print "%-5s => %s" % (k, verb[k])
ORTH => chased
REL => chase
AGT => k
PAT => l
The same approach could be adopted for a different verb—say,
 surprise—though in this case, the subject would
 play the role of “source” (SRC), and
 the object plays the role of “experiencer” (EXP):
>>> surprise = {'CAT': 'V', 'ORTH': 'surprised', 'REL': 'surprise',
... 'SRC': 'sbj', 'EXP': 'obj'}
Feature structures are pretty powerful, but the way in which we
 have manipulated them is extremely ad hoc. Our next
 task in this chapter is to show how the framework of context-free
 grammar and parsing can be expanded to accommodate feature structures,
 so that we can build analyses like this in a more generic and principled
 way. We will start off by looking at the phenomenon of syntactic
 agreement; we will show how agreement constraints can be expressed
 elegantly using features, and illustrate their use in a simple
 grammar.
Since feature structures are a general data structure for
 representing information of any kind, we will briefly look at them from
 a more formal point of view, and illustrate the support for feature
 structures offered by NLTK. In the final part of the chapter, we
 demonstrate that the additional expressiveness of features opens up a
 wide spectrum of possibilities for describing sophisticated aspects of
 linguistic structure.
Syntactic Agreement

The following examples show pairs of word sequences, the first
 of which is grammatical and the second not. (We use an asterisk at the
 start of a word sequence to signal that it is
 ungrammatical.)
Example 9-1.
	this dog

	*these dog

Example 9-2.
	these dogs

	*this dogs

In English, nouns are usually marked as being singular or
 plural. The form of the demonstrative also varies:
 this (singular) and these
 (plural). Examples Example 9-1 and Example 9-2 show that there are constraints on the use
 of demonstratives and nouns within a noun phrase: either both are
 singular or both are plural. A similar constraint holds between
 subjects and predicates:
Example 9-3.
	the dog runs

	*the dog run

Example 9-4.
	the dogs run

	*the dogs runs

Here we can see that morphological properties of the verb
 co-vary with syntactic properties of the subject noun phrase. This
 co-variance is called agreement. If
 we look further at verb agreement in English, we will see that present
 tense verbs typically have two inflected forms: one for third person
 singular, and another for every other combination of person and
 number, as shown in Table 9-1.
Table 9-1. Agreement paradigm for English regular verbs
	 	Singular
	Plural

	1st
 person
	I run
	we run

	2nd
 person
	you run
	you run

	3rd
 person
	he/she/it
 runs
	they run

We can make the role of morphological properties a bit more
 explicit, as illustrated in Example 9-5 and Example 9-6. These representations indicate that the verb
 agrees with its subject in person and number. (We use 3 as an abbreviation for 3rd person,
 SG for singular, and PL for plural.)
Example 9-5.
	the
	dog
	run-s

	 	dog.3.SG
	run-3.SG

Example 9-6.
	the
	dog-s
	run

	 	dog.3.PL
	run-3.PL

Let’s see what happens when we encode these agreement
 constraints in a context-free grammar. We will begin with the simple
 CFG in Example 9-7.
Example 9-7.
S -> NP VP
NP -> Det N
VP -> V

Det -> 'this'
N -> 'dog'
V -> 'runs'

Grammar Example 9-7 allows us to generate the
 sentence this dog runs; however, what we really
 want to do is also generate these dogs run while
 blocking unwanted sequences like *this dogs run
 and *these dog runs. The most straightforward
 approach is to add new non-terminals and productions to the
 grammar:
Example 9-8.
S -> NP_SG VP_SG
S -> NP_PL VP_PL
NP_SG -> Det_SG N_SG
NP_PL -> Det_PL N_PL
VP_SG -> V_SG
VP_PL -> V_PL

Det_SG -> 'this'
Det_PL -> 'these'
N_SG -> 'dog'
N_PL -> 'dogs'
V_SG -> 'runs'
V_PL -> 'run'

In place of a single production expanding S, we now have two productions, one covering
 the sentences involving singular subject NPs and VPs, the other covering sentences with
 plural subject NPs and VPs. In fact, every production in Example 9-7 has two counterparts in Example 9-8. With a small grammar, this is not really such
 a problem, although it is aesthetically unappealing. However, with a
 larger grammar that covers a reasonable subset of English
 constructions, the prospect of doubling the grammar size is very
 unattractive. Let’s suppose now that we used the same approach to deal
 with first, second, and third person agreement, for both singular and
 plural. This would lead to the original grammar being multiplied by a
 factor of 6, which we definitely want to avoid. Can we do better than
 this? In the next section, we will show that capturing number and
 person agreement need not come at the cost of “blowing up” the number
 of productions.

Using Attributes and Constraints

We spoke informally of linguistic categories having
 properties, for example, that a noun has the
 property of being plural. Let’s make this explicit:
Example 9-9.
N[NUM=pl]

In Example 9-9, we have introduced some new
 notation which says that the category N has a (grammatical) feature called NUM (short for “number”) and that the value
 of this feature is pl (short for
 “plural”). We can add similar annotations to other categories, and use
 them in lexical entries:
Example 9-10.
Det[NUM=sg] -> 'this'
Det[NUM=pl] -> 'these'

N[NUM=sg] -> 'dog'
N[NUM=pl] -> 'dogs'
V[NUM=sg] -> 'runs'
V[NUM=pl] -> 'run'

Does this help at all? So far, it looks just like a slightly
 more verbose alternative to what was specified in Example 9-8. Things become more interesting when we allow
 variables over feature values, and use these to
 state constraints:
Example 9-11.
S -> NP[NUM=?n] VP[NUM=?n]
NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]
VP[NUM=?n] -> V[NUM=?n]

We are using ?n as a variable
 over values of NUM; it can be
 instantiated either to sg or
 pl, within a given production. We
 can read the first production as saying that whatever value NP takes for the feature NUM, VP
 must take the same value.
In order to understand how these feature constraints work, it’s
 helpful to think about how one would go about building a tree. Lexical
 productions will admit the following local trees (trees of depth
 one):
Example 9-12.
	[image: image with no caption]

	[image: image with no caption]

Example 9-13.
	[image: image with no caption]

	[image: image with no caption]

Now NP[NUM=?n] -> Det[NUM=?n]
 N[NUM=?n] says that whatever the NUM values of N and Det
 are, they have to be the same. Consequently, this production will
 permit a and a to be
 combined into an NP, as shown in
 a, and it will also allow b and b to be combined,
 as in b. By contrast, a and b are prohibited
 because the roots of their subtrees differ in their values for the
 NUM feature; this incompatibility
 of values is indicated informally with a FAIL
 value at the top node.
Example 9-14.
	[image: image with no caption]

	[image: image with no caption]

Example 9-15.
	[image: image with no caption]

	[image: image with no caption]

Production VP[NUM=?n] ->
 V[NUM=?n] says that the NUM value of the head verb has to be the
 same as the NUM value of the
 VP parent. Combined with the
 production for expanding S, we
 derive the consequence that if the NUM value of the subject head noun is
 pl, then so is the NUM value of the VP’s head verb.
Example 9-16.
[image: image with no caption]

Grammar Example 9-10 illustrated lexical
 productions for determiners like this and
 these, which require a singular or plural head
 noun respectively. However, other determiners in English are not
 choosy about the grammatical number of the noun they combine with. One
 way of describing this would be to add two lexical entries to the
 grammar, one each for the singular and plural versions of a determiner
 such as the:
Det[NUM=sg] -> 'the' | 'some' | 'several'
Det[NUM=pl] -> 'the' | 'some' | 'several'
However, a more elegant solution is to leave the NUM value underspecified and let it agree in number
 with whatever noun it combines with. Assigning a variable value to
 NUM is one way of achieving this
 result:
Det[NUM=?n] -> 'the' | 'some' | 'several'
But in fact we can be even more economical, and just omit any
 specification for NUM in such
 productions. We only need to explicitly enter a variable value when
 this constrains another value elsewhere in the same production.
The grammar in Example 9-17 illustrates most
 of the ideas we have introduced so far in this chapter, plus a couple
 of new ones.
Example 9-17. Example feature-based grammar.
>>> nltk.data.show_cfg('grammars/book_grammars/feat0.fcfg')
% start S
###################
Grammar Productions
###################
S expansion productions
S -> NP[NUM=?n] VP[NUM=?n]
NP expansion productions
NP[NUM=?n] -> PropN[NUM=?n]
NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]
NP[NUM=pl] -> N[NUM=pl]
VP expansion productions
VP[TENSE=?t, NUM=?n] -> IV[TENSE=?t, NUM=?n]
VP[TENSE=?t, NUM=?n] -> TV[TENSE=?t, NUM=?n] NP
###################
Lexical Productions
###################
Det[NUM=sg] -> 'this' | 'every'
Det[NUM=pl] -> 'these' | 'all'
Det -> 'the' | 'some' | 'several'
PropN[NUM=sg]-> 'Kim' | 'Jody'
N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child'
N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children'
IV[TENSE=pres, NUM=sg] -> 'disappears' | 'walks'
TV[TENSE=pres, NUM=sg] -> 'sees' | 'likes'
IV[TENSE=pres, NUM=pl] -> 'disappear' | 'walk'
TV[TENSE=pres, NUM=pl] -> 'see' | 'like'
IV[TENSE=past] -> 'disappeared' | 'walked'
TV[TENSE=past] -> 'saw' | 'liked'

Notice that a syntactic category can have more than one feature:
 for example, V[TENSE=pres, NUM=pl].
 In general, we can add as many features as we like.
A final detail about Example 9-17 is the
 statement %start S. This
 “directive” tells the parser to take S as the start symbol for the
 grammar.
In general, when we are trying to develop even a very small
 grammar, it is convenient to put the productions in a file where they
 can be edited, tested, and revised. We have saved Example 9-17 as a file named feat0.fcfg in the NLTK data distribution.
 You can make your own copy of this for further experimentation using
 nltk.data.load().
Feature-based grammars are parsed in NLTK using an Earley chart
 parser (see Further Reading for more
 information about this) and Example 9-18
 illustrates how this is carried out. After tokenizing the input, we
 import the load_parser function [image: 1], which
 takes a grammar filename as input and returns a chart parser cp [image: 2].
 Calling the parser’s nbest_parse() method will return a list trees of parse trees; trees will be empty if the grammar fails to parse the input
 and otherwise will contain one or more parse trees, depending on
 whether the input is syntactically ambiguous.
Example 9-18. Trace of feature-based chart parser.
>>> tokens = 'Kim likes children'.split()
>>> from nltk import load_parser [image: 1]
>>> cp = load_parser('grammars/book_grammars/feat0.fcfg', trace=2) [image: 2]
>>> trees = cp.nbest_parse(tokens)
|.Kim .like.chil.|
|[----] . .| PropN[NUM='sg'] -> 'Kim' *
|[----] . .| NP[NUM='sg'] -> PropN[NUM='sg'] *
|[----> . .| S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'sg'}
|. [----] .| TV[NUM='sg', TENSE='pres'] -> 'likes' *
|. [----> .| VP[NUM=?n, TENSE=?t] -> TV[NUM=?n, TENSE=?t] * NP[]
 {?n: 'sg', ?t: 'pres'}
|. . [----]| N[NUM='pl'] -> 'children' *
|. . [----]| NP[NUM='pl'] -> N[NUM='pl'] *
|. . [---->| S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'pl'}
|. [---------]| VP[NUM='sg', TENSE='pres']
 -> TV[NUM='sg', TENSE='pres'] NP[] *
|[==============]| S[] -> NP[NUM='sg'] VP[NUM='sg'] *

The details of the parsing procedure are not that important for
 present purposes. However, there is an implementation issue which
 bears on our earlier discussion of grammar size. One possible approach
 to parsing productions containing feature constraints is to compile
 out all admissible values of the features in question so that we end
 up with a large, fully specified CFG along the lines of Example 9-8. By contrast, the parser process illustrated in
 the previous examples works directly with the underspecified
 productions given by the grammar. Feature values “flow upwards” from
 lexical entries, and variable values are then associated with those
 values via bindings (i.e., dictionaries) such as {?n: 'sg', ?t: 'pres'}.
 As the parser assembles information about the nodes of the tree it is
 building, these variable bindings are used to instantiate values in
 these nodes; thus the underspecified VP[NUM=?n, TENSE=?t] -> TV[NUM=?n, TENSE=?t]
 NP[] becomes instantiated as VP[NUM='sg', TENSE='pres'] -> TV[NUM='sg',
 TENSE='pres'] NP[] by looking up the values of ?n and ?t
 in the bindings.
Finally, we can inspect the resulting parse trees (in this case,
 a single one).
>>> for tree in trees: print tree
(S[]
 (NP[NUM='sg'] (PropN[NUM='sg'] Kim))
 (VP[NUM='sg', TENSE='pres']
 (TV[NUM='sg', TENSE='pres'] likes)
 (NP[NUM='pl'] (N[NUM='pl'] children))))

Terminology

So far, we have only seen feature values like sg and pl. These simple values are usually called
 atomic—that is, they can’t be
 decomposed into subparts. A special case of atomic values are
 Boolean values, that is, values
 that just specify whether a property is true or false. For example, we
 might want to distinguish auxiliary
 verbs such as can, may,
 will, and do with the
 Boolean feature AUX. Then the
 production V[TENSE=pres, aux=+] ->
 'can' means that can receives the value
 pres for TENSE and + or true
 for AUX. There is a widely adopted
 convention that abbreviates the representation of Boolean features
 f; instead of aux=+ or aux=-, we use +aux and -aux respectively. These are just
 abbreviations, however, and the parser interprets them as though
 + and - are like any other atomic value. Example 9-19 shows some representative productions:
Example 9-19.
V[TENSE=pres, +aux] -> 'can'
V[TENSE=pres, +aux] -> 'may'

V[TENSE=pres, -aux] -> 'walks'
V[TENSE=pres, -aux] -> 'likes'

We have spoken of attaching “feature annotations” to syntactic
 categories. A more radical approach represents the whole category—that
 is, the non-terminal symbol plus the annotation—as a bundle of
 features. For example, N[NUM=sg]
 contains part-of-speech information which can be represented as
 POS=N. An alternative notation for
 this category, therefore, is [POS=N,
 NUM=sg].
In addition to atomic-valued features, features may take values
 that are themselves feature structures. For example, we can group
 together agreement features (e.g., person, number, and gender) as a
 distinguished part of a category, serving as the value of AGR. In this case, we say that AGR has a complex value. Example 9-20
 depicts the structure, in a format known as an attribute value matrix (AVM).
Example 9-20.
[POS = N]
[]
[AGR = [PER = 3]]
[[NUM = pl]]
[[GND = fem]]

In passing, we should point out that there are alternative
 approaches for displaying AVMs; Figure 9-1 shows an
 example. Although feature structures rendered in the style of Example 9-20 are less visually pleasing, we will stick with
 this format, since it corresponds to the output we will be getting
 from NLTK.
[image: Rendering a feature structure as an attribute value matrix.]

Figure 9-1. Rendering a feature structure as an attribute value
 matrix.

On the topic of representation, we also note that feature
 structures, like dictionaries, assign no particular significance to
 the order of features. So Example 9-20 is equivalent to:
Example 9-21.
[AGR = [NUM = pl]]
[[PER = 3]]
[[GND = fem]]
[]
[POS = N]

Once we have the possibility of using features like AGR, we can refactor a grammar like Example 9-17 so that agreement features are bundled
 together. A tiny grammar illustrating this idea is shown in Example 9-22.
Example 9-22.
S -> NP[AGR=?n] VP[AGR=?n]
NP[AGR=?n] -> PropN[AGR=?n]
VP[TENSE=?t, AGR=?n] -> Cop[TENSE=?t, AGR=?n] Adj

Cop[TENSE=pres, AGR=[NUM=sg, PER=3]] -> 'is'
PropN[AGR=[NUM=sg, PER=3]] -> 'Kim'
Adj -> 'happy'

Processing Feature Structures

In this section, we will show how feature structures can be
 constructed and manipulated in NLTK. We will also discuss the
 fundamental operation of unification, which allows us to combine the
 information contained in two different feature structures.
Feature structures in NLTK are declared with the FeatStruct() constructor. Atomic feature values can be strings or
 integers.
>>> fs1 = nltk.FeatStruct(TENSE='past', NUM='sg')
>>> print fs1
[NUM = 'sg']
[TENSE = 'past']
A feature structure is actually just a kind of dictionary, and so
 we access its values by indexing in the usual way. We can use our
 familiar syntax to assign values to
 features:
>>> fs1 = nltk.FeatStruct(PER=3, NUM='pl', GND='fem')
>>> print fs1['GND']
fem
>>> fs1['CASE'] = 'acc'
We can also define feature structures that have complex values, as
 discussed earlier.
>>> fs2 = nltk.FeatStruct(POS='N', AGR=fs1)
>>> print fs2
[[CASE = 'acc']]
[AGR = [GND = 'fem']]
[[NUM = 'pl']]
[[PER = 3]]
[]
[POS = 'N']
>>> print fs2['AGR']
[CASE = 'acc']
[GND = 'fem']
[NUM = 'pl']
[PER = 3]
>>> print fs2['AGR']['PER']
3
An alternative method of specifying feature structures is to use a
 bracketed string consisting of feature-value pairs in the format
 feature=value, where values may
 themselves be feature structures:
>>> print nltk.FeatStruct("[POS='N', AGR=[PER=3, NUM='pl', GND='fem']]")
[[PER = 3]]
[AGR = [GND = 'fem']]
[[NUM = 'pl']]
[]
[POS = 'N']
Feature structures are not inherently tied to linguistic objects;
 they are general-purpose structures for representing knowledge. For
 example, we could encode information about a person in a feature
 structure:
>>> print nltk.FeatStruct(name='Lee', telno='01 27 86 42 96', age=33)
[age = 33]
[name = 'Lee']
[telno = '01 27 86 42 96']
In the next couple of pages, we are going to use examples like
 this to explore standard operations over feature structures. This will
 briefly divert us from processing natural language, but we need to lay
 the groundwork before we can get back to talking about grammars. Hang on
 tight!
It is often helpful to view feature structures as graphs, more
 specifically, as directed acyclic
 graphs (DAGs). Example 9-23 is equivalent to
 the preceding AVM.
Example 9-23.
[image: image with no caption]

The feature names appear as labels on the directed arcs, and
 feature values appear as labels on the nodes that are pointed to by the
 arcs.
Just as before, feature values can be complex:
Example 9-24.
[image: image with no caption]

When we look at such graphs, it is natural to think in terms of
 paths through the graph. A feature
 path is a sequence of arcs that can be followed from the root
 node. We will represent paths as tuples of arc labels. Thus, ('ADDRESS', 'STREET') is a feature path whose
 value in Example 9-24 is the node labeled 'rue Pascal'.
Now let’s consider a situation where Lee has a spouse named
 Kim, and Kim’s address is the same as Lee’s. We
 might represent this as Example 9-25.
Example 9-25.
[image: image with no caption]

However, rather than repeating the address information in the
 feature structure, we can “share” the same sub-graph between different
 arcs:
Example 9-26.
[image: image with no caption]

In other words, the value of the path ('ADDRESS') in Example 9-26 is
 identical to the value of the path ('SPOUSE',
 'ADDRESS'). DAGs such as Example 9-26 are said
 to involve structure sharing or
 reentrancy. When two paths have the
 same value, they are said to be equivalent.
In order to indicate reentrancy in our matrix-style
 representations, we will prefix the first occurrence of a shared feature
 structure with an integer in parentheses, such as (1). Any later reference to that structure
 will use the notation ->(1), as
 shown here.
>>> print nltk.FeatStruct("""[NAME='Lee', ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'],
... SPOUSE=[NAME='Kim', ADDRESS->(1)]]""")
[ADDRESS = (1) [NUMBER = 74]]
[[STREET = 'rue Pascal']]
[]
[NAME = 'Lee']
[]
[SPOUSE = [ADDRESS -> (1)]]
[[NAME = 'Kim']]
The bracketed integer is sometimes called a tag or a coindex. The choice of integer is not
 significant. There can be any number of tags within a single feature
 structure.
>>> print nltk.FeatStruct("[A='a', B=(1)[C='c'], D->(1), E->(1)]")
[A = 'a']
[]
[B = (1) [C = 'c']]
[]
[D -> (1)]
[E -> (1)]
Subsumption and Unification

It is standard to think of feature structures as providing
 partial information about some
 object, in the sense that we can order feature structures according to
 how general they are. For example, a is more
 general (less specific) than b, which in turn
 is more general than c.
Example 9-27.
	[NUMBER = 74]

	[NUMBER = 74]
[STREET = 'rue Pascal']

	[NUMBER = 74]
[STREET = 'rue Pascal']
[CITY = 'Paris']

This ordering is called subsumption; a more general feature structure
 subsumes a less general one. If
 FS0 subsumes
 FS1 (formally, we write
 FS0 ⊑
 FS1), then
 FS1 must have all the
 paths and path equivalences of
 FS0, and may have
 additional paths and equivalences as well. Thus, Example 9-25 subsumes Example 9-26 since the
 latter has additional path equivalences. It should be obvious that
 subsumption provides only a partial ordering on feature structures,
 since some feature structures are incommensurable. For example, Example 9-28 neither subsumes nor is subsumed by a.
Example 9-28.
[TELNO = 01 27 86 42 96]

So we have seen that some feature structures are more specific
 than others. How do we go about specializing a given feature
 structure? For example, we might decide that addresses should consist
 of not just a street number and a street name, but also a city. That
 is, we might want to merge graph a with b to yield
 c.
Example 9-29.
	[image: image with no caption]

	[image: image with no caption]

	[image: image with no caption]

Merging information from two feature structures is called
 unification and is supported by the
 unify() method.
>>> fs1 = nltk.FeatStruct(NUMBER=74, STREET='rue Pascal')
>>> fs2 = nltk.FeatStruct(CITY='Paris')
>>> print fs1.unify(fs2)
[CITY = 'Paris']
[NUMBER = 74]
[STREET = 'rue Pascal']
Unification is formally defined as a binary operation:
 FS0 ⊔
 FS1. Unification is
 symmetric, so FS0 ⊔
 FS1 =
 FS1 ⊔
 FS0. The same is true in
 Python:
>>> print fs2.unify(fs1)
[CITY = 'Paris']
[NUMBER = 74]
[STREET = 'rue Pascal']
If we unify two feature structures that stand in the subsumption
 relationship, then the result of unification is the most specific of
 the two:
Example 9-30.
If FS0 ⊑
 FS1, then
 FS0 ⊔
 FS1 =
 FS1

For example, the result of unifying b
 with c is c.
Unification between
 FS0 and
 FS1 will fail if the two
 feature structures share a path π where the value of π in
 FS0 is a distinct atom
 from the value of π in
 FS1. This is implemented
 by setting the result of unification to be None.
>>> fs0 = nltk.FeatStruct(A='a')
>>> fs1 = nltk.FeatStruct(A='b')
>>> fs2 = fs0.unify(fs1)
>>> print fs2
None
Now, if we look at how unification interacts with
 structure-sharing, things become really interesting. First, let’s
 define Example 9-25 in Python:
>>> fs0 = nltk.FeatStruct("""[NAME=Lee,
... ADDRESS=[NUMBER=74,
... STREET='rue Pascal'],
... SPOUSE= [NAME=Kim,
... ADDRESS=[NUMBER=74,
... STREET='rue Pascal']]]""")
>>> print fs0
[ADDRESS = [NUMBER = 74]]
[[STREET = 'rue Pascal']]
[]
[NAME = 'Lee']
[]
[[ADDRESS = [NUMBER = 74]]]
[SPOUSE = [[STREET = 'rue Pascal']]]
[[]]
[[NAME = 'Kim']]
What happens when we augment Kim’s address with a specification
 for CITY? Notice that fs1 needs to include the whole path from the
 root of the feature structure down to CITY.
>>> fs1 = nltk.FeatStruct("[SPOUSE = [ADDRESS = [CITY = Paris]]]")
>>> print fs1.unify(fs0)
[ADDRESS = [NUMBER = 74]]
[[STREET = 'rue Pascal']]
[]
[NAME = 'Lee']
[]
[[[CITY = 'Paris']]]
[[ADDRESS = [NUMBER = 74]]]
[SPOUSE = [[STREET = 'rue Pascal']]]
[[]]
[[NAME = 'Kim']]
By contrast, the result is very different if fs1 is unified with the structure sharing
 version fs2 (also shown earlier as
 the graph Example 9-26):
>>> fs2 = nltk.FeatStruct("""[NAME=Lee, ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'],
... SPOUSE=[NAME=Kim, ADDRESS->(1)]]""")
>>> print fs1.unify(fs2)
[[CITY = 'Paris']]
[ADDRESS = (1) [NUMBER = 74]]
[[STREET = 'rue Pascal']]
[]
[NAME = 'Lee']
[]
[SPOUSE = [ADDRESS -> (1)]]
[[NAME = 'Kim']]
Rather than just updating what was in effect Kim’s “copy” of
 Lee’s address, we have now updated both their
 addresses at the same time. More generally, if a unification involves
 specializing the value of some path π, that unification simultaneously
 specializes the value of any path that is equivalent
 to π.
As we have already seen, structure sharing can also be stated
 using variables such as ?x.
>>> fs1 = nltk.FeatStruct("[ADDRESS1=[NUMBER=74, STREET='rue Pascal']]")
>>> fs2 = nltk.FeatStruct("[ADDRESS1=?x, ADDRESS2=?x]")
>>> print fs2
[ADDRESS1 = ?x]
[ADDRESS2 = ?x]
>>> print fs2.unify(fs1)
[ADDRESS1 = (1) [NUMBER = 74]]
[[STREET = 'rue Pascal']]
[]
[ADDRESS2 -> (1)]

Extending a Feature-Based Grammar

In this section, we return to feature-based grammar and explore a
 variety of linguistic issues, and demonstrate the benefits of
 incorporating features into the grammar.
Subcategorization

In Chapter 8, we augmented our category labels to represent
 different kinds of verbs, and used the labels IV and TV
 for intransitive and transitive verbs respectively. This allowed us to
 write productions like the following:
Example 9-31.
VP -> IV
VP -> TV NP

Although we know that IV and
 TV are two kinds of V, they are just atomic non-terminal symbols
 in a CFG and are as distinct from each other as any other pair of
 symbols. This notation doesn’t let us say anything about verbs in
 general; e.g., we cannot say “All lexical items of category V can be marked for tense,” since
 walk, say, is an item of category IV, not V. So, can we replace category labels such
 as TV and IV by V
 along with a feature that tells us whether the verb combines with a
 following NP object or whether it
 can occur without any complement?
A simple approach, originally developed for a grammar framework
 called Generalized Phrase Structure Grammar (GPSG), tries to solve
 this problem by allowing lexical categories to bear a SUBCAT feature, which tells us what
 subcategorization class the item belongs to. In contrast to the
 integer values for SUBCAT used by
 GPSG, the example here adopts more mnemonic values, namely intrans, trans, and clause:
Example 9-32.
VP[TENSE=?t, NUM=?n] -> V[SUBCAT=intrans, TENSE=?t, NUM=?n]
VP[TENSE=?t, NUM=?n] -> V[SUBCAT=trans, TENSE=?t, NUM=?n] NP
VP[TENSE=?t, NUM=?n] -> V[SUBCAT=clause, TENSE=?t, NUM=?n] SBar

V[SUBCAT=intrans, TENSE=pres, NUM=sg] -> 'disappears' | 'walks'
V[SUBCAT=trans, TENSE=pres, NUM=sg] -> 'sees' | 'likes'
V[SUBCAT=clause, TENSE=pres, NUM=sg] -> 'says' | 'claims'

V[SUBCAT=intrans, TENSE=pres, NUM=pl] -> 'disappear' | 'walk'
V[SUBCAT=trans, TENSE=pres, NUM=pl] -> 'see' | 'like'
V[SUBCAT=clause, TENSE=pres, NUM=pl] -> 'say' | 'claim'

V[SUBCAT=intrans, TENSE=past] -> 'disappeared' | 'walked'
V[SUBCAT=trans, TENSE=past] -> 'saw' | 'liked'
V[SUBCAT=clause, TENSE=past] -> 'said' | 'claimed'

When we see a lexical category like V[SUBCAT=trans], we can interpret the
 SUBCAT specification as a pointer
 to a production in which V[SUBCAT=trans] is introduced as the head
 child in a VP production. By
 convention, there is a correspondence between the values of SUBCAT and the productions that introduce
 lexical heads. On this approach, SUBCAT can appear only
 on lexical categories; it makes no sense, for example, to specify a
 SUBCAT value on VP. As required, walk
 and like both belong to the category V. Nevertheless, walk
 will occur only in VPs expanded by
 a production with the feature SUBCAT=intrans on the righthand side,
 as opposed to like, which requires a SUBCAT=trans.
In our third class of verbs in Example 9-32,
 we have specified a category SBar.
 This is a label for subordinate clauses, such as the complement of
 claim in the example You claim that you
 like children. We require two further productions to
 analyze such sentences:
Example 9-33.
SBar -> Comp S
Comp -> 'that'

The resulting structure is the following.
Example 9-34.
[image: image with no caption]

An alternative treatment of subcategorization, due originally to
 a framework known as categorial grammar, is represented in
 feature-based frameworks such as PATR and Head-driven Phrase Structure
 Grammar. Rather than using SUBCAT
 values as a way of indexing productions, the SUBCAT value directly encodes the valency of
 a head (the list of arguments that it can combine with). For example,
 a verb like put that takes NP and PP
 complements (put the book on the table) might be
 represented as Example 9-35:
Example 9-35.
V[SUBCAT=<NP, NP, PP>]

This says that the verb can combine with three arguments. The
 leftmost element in the list is the subject NP, while everything else—an NP followed by a PP in this case—comprises the
 subcategorized-for complements. When a verb like
 put is combined with appropriate complements, the
 requirements which are specified in the SUBCAT are discharged, and only a subject
 NP is needed. This category, which
 corresponds to what is traditionally thought of as VP, might be represented as follows:
Example 9-36.
V[SUBCAT=<NP>]

Finally, a sentence is a kind of verbal category that has
 no requirements for further arguments, and hence
 has a SUBCAT whose value is the
 empty list. The tree Example 9-37 shows how these
 category assignments combine in a parse of Kim put the book
 on the table.
Example 9-37.
[image: image with no caption]

Heads Revisited

We noted in the previous section that by factoring
 subcategorization information out of the main category label, we could
 express more generalizations about properties of verbs. Another
 property of this kind is the following: expressions of category
 V are heads of phrases of category
 VP. Similarly, Ns are heads of NPs, As
 (i.e., adjectives) are heads of APs, and Ps (i.e., prepositions) are heads of
 PPs. Not all phrases have heads—for
 example, it is standard to say that coordinate phrases (e.g.,
 the book and the bell) lack heads. Nevertheless,
 we would like our grammar formalism to express the parent/head-child
 relation where it holds. At present, V and VP
 are just atomic symbols, and we need to find a way to relate them
 using features (as we did earlier to relate IV and TV).
X-bar syntax addresses this issue by abstracting out the notion
 of phrasal level. It is usual to
 recognize three such levels. If N
 represents the lexical level, then N' represents the next level up,
 corresponding to the more traditional category Nom, and N'' represents the phrasal level,
 corresponding to the category NP.
 a illustrates a representative structure,
 while b is the more conventional
 counterpart.
Example 9-38.
	[image: image with no caption]

	[image: image with no caption]

The head of the structure a is
 N, and N' and N'' are called (phrasal) projections of N. N'' is
 the maximal projection, and
 N is sometimes called the zero projection. One of the central claims of
 X-bar syntax is that all constituents share a structural similarity.
 Using X as a variable over N, V,
 A, and P, we say that directly subcategorized
 complements of a lexical head X are always placed as siblings of the head,
 whereas adjuncts are placed as siblings of the
 intermediate category, X'. Thus,
 the configuration of the two P''
 adjuncts in Example 9-39 contrasts with that of the
 complement P'' in a.
Example 9-39.
[image: image with no caption]

The productions in Example 9-40 illustrate how
 bar levels can be encoded using feature structures. The nested
 structure in Example 9-39 is achieved by two
 applications of the recursive rule expanding N[BAR=1].
Example 9-40.
S -> N[BAR=2] V[BAR=2]
N[BAR=2] -> Det N[BAR=1]
N[BAR=1] -> N[BAR=1] P[BAR=2]
N[BAR=1] -> N[BAR=0] P[BAR=2]

Auxiliary Verbs and Inversion

Inverted clauses—where the order of subject and verb is
 switched—occur in English interrogatives and also after “negative”
 adverbs:
Example 9-41.
	Do you like children?

	Can Jody walk?

Example 9-42.
	Rarely do you see Kim.

	Never have I seen this dog.

However, we cannot place just any verb in pre-subject
 position:
Example 9-43.
	*Like you children?

	*Walks Jody?

Example 9-44.
	*Rarely see you Kim.

	*Never saw I this dog.

Verbs that can be positioned initially in inverted clauses
 belong to the class known as auxiliaries, and as well as
 do, can, and
 have include be,
 will, and shall. One way of
 capturing such structures is with the following production:
Example 9-45.
S[+INV] -> V[+AUX] NP VP

That is, a clause marked as [+inv] consists of an auxiliary verb
 followed by a VP. (In a more
 detailed grammar, we would need to place some constraints on the form
 of the VP, depending on the choice
 of auxiliary.) Example 9-46 illustrates the structure
 of an inverted clause:
Example 9-46.
[image: image with no caption]

Unbounded Dependency Constructions

Consider the following contrasts:
Example 9-47.
	You like Jody.

	*You like.

Example 9-48.
	You put the card into the slot.

	*You put into the slot.

	*You put the card.

	*You put.

The verb like requires an NP complement, while
 put requires both a following NP and PP. Example 9-47 and Example 9-48 show that these complements are
 obligatory: omitting them leads to
 ungrammaticality. Yet there are contexts in which obligatory
 complements can be omitted, as Example 9-49 and Example 9-50 illustrate.
Example 9-49.
	Kim knows who you like.

	This music, you really like.

Example 9-50.
	Which card do you put into the slot?

	Which slot do you put the card into?

That is, an obligatory complement can be omitted if there is an
 appropriate filler in the sentence,
 such as the question word who in a, the preposed topic this
 music in b, or the
 wh phrases which card/slot
 in Example 9-50. It is common to say that sentences like
 those in Example 9-49 and Example 9-50
 contain gaps where the obligatory
 complements have been omitted, and these gaps are sometimes made
 explicit using an underscore:
Example 9-51.
	Which card do you put __ into the slot?

	Which slot do you put the card into __?

So, a gap can occur if it is licensed by a filler. Conversely, fillers can
 occur only if there is an appropriate gap elsewhere in the sentence,
 as shown by the following examples:
Example 9-52.
	*Kim knows who you like Jody.

	*This music, you really like hip-hop.

Example 9-53.
	*Which card do you put this into the slot?

	*Which slot do you put the card into this one?

The mutual co-occurrence between filler and gap is sometimes
 termed a “dependency.” One issue of considerable importance in
 theoretical linguistics has been the nature of the material that can
 intervene between a filler and the gap that it licenses; in
 particular, can we simply list a finite set of sequences that separate
 the two? The answer is no: there is no upper bound on the distance
 between filler and gap. This fact can be easily illustrated with
 constructions involving sentential complements, as shown in Example 9-54.
Example 9-54.
	Who do you like __?

	Who do you claim that you like __?

	Who do you claim that Jody says that you like __?

Since we can have indefinitely deep recursion of sentential
 complements, the gap can be embedded indefinitely far inside the whole
 sentence. This constellation of properties leads to the notion of an
 unbounded dependency construction,
 that is, a filler-gap dependency where there is no upper bound on the
 distance between filler and gap.
A variety of mechanisms have been suggested for handling
 unbounded dependencies in formal grammars; here we illustrate the
 approach due to Generalized Phrase Structure Grammar that involves
 slash categories. A slash category
 has the form Y/XP; we interpret
 this as a phrase of category Y that
 is missing a subconstituent of category XP. For example, S/NP is an S that is missing an NP. The use of slash categories is
 illustrated in Example 9-55.
Example 9-55.
[image: image with no caption]

The top part of the tree introduces the filler
 who (treated as an expression of category
 NP[+wh]) together with a
 corresponding gap-containing constituent S/NP. The gap information is then “percolated” down
 the tree via the VP/NP category,
 until it reaches the category NP/NP. At this point, the dependency is
 discharged by realizing the gap information as the empty string,
 immediately dominated by NP/NP.
Do we need to think of slash categories as a completely new kind
 of object? Fortunately, we can accommodate them within our existing
 feature-based framework, by treating slash as a feature and the
 category to its right as a value; that is, S/NP is reducible to S[SLASH=NP]. In practice, this is also how
 the parser interprets slash categories.
The grammar shown in Example 9-56
 illustrates the main principles of slash categories, and also includes
 productions for inverted clauses. To simplify presentation, we have
 omitted any specification of tense on the verbs.
Example 9-56. Grammar with productions for inverted clauses and
 long-distance dependencies, making use of slash categories.
>>> nltk.data.show_cfg('grammars/book_grammars/feat1.fcfg')
% start S
###################
Grammar Productions
###################
S[-INV] -> NP VP
S[-INV]/?x -> NP VP/?x
S[-INV] -> NP S/NP
S[-INV] -> Adv[+NEG] S[+INV]
S[+INV] -> V[+AUX] NP VP
S[+INV]/?x -> V[+AUX] NP VP/?x
SBar -> Comp S[-INV]
SBar/?x -> Comp S[-INV]/?x
VP -> V[SUBCAT=intrans, -AUX]
VP -> V[SUBCAT=trans, -AUX] NP
VP/?x -> V[SUBCAT=trans, -AUX] NP/?x
VP -> V[SUBCAT=clause, -AUX] SBar
VP/?x -> V[SUBCAT=clause, -AUX] SBar/?x
VP -> V[+AUX] VP
VP/?x -> V[+AUX] VP/?x
###################
Lexical Productions
###################
V[SUBCAT=intrans, -AUX] -> 'walk' | 'sing'
V[SUBCAT=trans, -AUX] -> 'see' | 'like'
V[SUBCAT=clause, -AUX] -> 'say' | 'claim'
V[+AUX] -> 'do' | 'can'
NP[-WH] -> 'you' | 'cats'
NP[+WH] -> 'who'
Adv[+NEG] -> 'rarely' | 'never'
NP/NP ->
Comp -> 'that'

The grammar in Example 9-56 contains one
 “gap-introduction” production, namely S[-INV]
 -> NP S/NP. In order to percolate the slash feature
 correctly, we need to add slashes with variable values to both sides
 of the arrow in productions that expand S, VP,
 and NP. For example, VP/?x -> V SBar/?x is the slashed version
 of VP -> V SBar and says that a
 slash value can be specified on the VP parent of a constituent if the same value
 is also specified on the SBar
 child. Finally, NP/NP -> allows
 the slash information on NP to be
 discharged as the empty string. Using the grammar in Example 9-56, we can parse the sequence who do
 you claim that you like:
>>> tokens = 'who do you claim that you like'.split()
>>> from nltk import load_parser
>>> cp = load_parser('grammars/book_grammars/feat1.fcfg')
>>> for tree in cp.nbest_parse(tokens):
... print tree
(S[-INV]
 (NP[+WH] who)
 (S[+INV]/NP[]
 (V[+AUX] do)
 (NP[-WH] you)
 (VP[]/NP[]
 (V[-AUX, SUBCAT='clause'] claim)
 (SBar[]/NP[]
 (Comp[] that)
 (S[-INV]/NP[]
 (NP[-WH] you)
 (VP[]/NP[] (V[-AUX, SUBCAT='trans'] like) (NP[]/NP[])))))))
A more readable version of this tree is shown in Example 9-57.
Example 9-57.
[image: image with no caption]

The grammar in Example 9-56 will also allow
 us to parse sentences without gaps:
>>> tokens = 'you claim that you like cats'.split()
>>> for tree in cp.nbest_parse(tokens):
... print tree
(S[-INV]
 (NP[-WH] you)
 (VP[]
 (V[-AUX, SUBCAT='clause'] claim)
 (SBar[]
 (Comp[] that)
 (S[-INV]
 (NP[-WH] you)
 (VP[] (V[-AUX, SUBCAT='trans'] like) (NP[-WH] cats))))))
In addition, it admits inverted sentences that do not involve
 wh constructions:
>>> tokens = 'rarely do you sing'.split()
>>> for tree in cp.nbest_parse(tokens):
... print tree
(S[-INV]
 (Adv[+NEG] rarely)
 (S[+INV]
 (V[+AUX] do)
 (NP[-WH] you)
 (VP[] (V[-AUX, SUBCAT='intrans'] sing))))

Case and Gender in German

Compared with English, German has a relatively rich morphology
 for agreement. For example, the definite article in German varies with
 case, gender, and number, as shown in Table 9-2.
Table 9-2. Morphological paradigm for the German definite
 article
	Case	Masculine	Feminine	Neutral	Plural
	Nominative
	der
	die
	das
	die

	Genitive
	des
	der
	des
	der

	Dative
	dem
	der
	dem
	den

	Accusative
	den
	die
	das
	die

Subjects in German take the nominative case, and most verbs
 govern their objects in the accusative case. However, there are
 exceptions, such as helfen, that govern the
 dative case:
Example 9-58.
		Die
	Katze
	sieht
	den
	Hund

	the.NOM.FEM.SG
	cat.3.FEM.SG
	see.3.SG
	the.ACC.MASC.SG
	dog.3.MASC.SG

	‘the cat
 sees the dog’

		*Die
	Katze
	sieht
	dem
	Hund

	the.NOM.FEM.SG
	cat.3.FEM.SG
	see.3.SG
	the.DAT.MASC.SG
	dog.3.MASC.SG

		Die
	Katze
	hilft
	dem
	Hund

	the.NOM.FEM.SG
	cat.3.FEM.SG
	help.3.SG
	the.DAT.MASC.SG
	dog.3.MASC.SG

	‘the cat
 helps the dog’

		*Die
	Katze
	hilft
	den
	Hund

	the.NOM.FEM.SG
	cat.3.FEM.SG
	help.3.SG
	the.ACC.MASC.SG
	dog.3.MASC.SG

The grammar in Example 9-59 illustrates the
 interaction of agreement (comprising person, number, and gender) with
 case.
Example 9-59. Example feature-based grammar.
>>> nltk.data.show_cfg('grammars/book_grammars/german.fcfg')
% start S
 # Grammar Productions
 S -> NP[CASE=nom, AGR=?a] VP[AGR=?a]
 NP[CASE=?c, AGR=?a] -> PRO[CASE=?c, AGR=?a]
 NP[CASE=?c, AGR=?a] -> Det[CASE=?c, AGR=?a] N[CASE=?c, AGR=?a]
 VP[AGR=?a] -> IV[AGR=?a]
 VP[AGR=?a] -> TV[OBJCASE=?c, AGR=?a] NP[CASE=?c]
 # Lexical Productions
 # Singular determiners
 # masc
 Det[CASE=nom, AGR=[GND=masc,PER=3,NUM=sg]] -> 'der'
 Det[CASE=dat, AGR=[GND=masc,PER=3,NUM=sg]] -> 'dem'
 Det[CASE=acc, AGR=[GND=masc,PER=3,NUM=sg]] -> 'den'
 # fem
 Det[CASE=nom, AGR=[GND=fem,PER=3,NUM=sg]] -> 'die'
 Det[CASE=dat, AGR=[GND=fem,PER=3,NUM=sg]] -> 'der'
 Det[CASE=acc, AGR=[GND=fem,PER=3,NUM=sg]] -> 'die'
 # Plural determiners
 Det[CASE=nom, AGR=[PER=3,NUM=pl]] -> 'die'
 Det[CASE=dat, AGR=[PER=3,NUM=pl]] -> 'den'
 Det[CASE=acc, AGR=[PER=3,NUM=pl]] -> 'die'
 # Nouns
 N[AGR=[GND=masc,PER=3,NUM=sg]] -> 'Hund'
 N[CASE=nom, AGR=[GND=masc,PER=3,NUM=pl]] -> 'Hunde'
 N[CASE=dat, AGR=[GND=masc,PER=3,NUM=pl]] -> 'Hunden'
 N[CASE=acc, AGR=[GND=masc,PER=3,NUM=pl]] -> 'Hunde'
 N[AGR=[GND=fem,PER=3,NUM=sg]] -> 'Katze'
 N[AGR=[GND=fem,PER=3,NUM=pl]] -> 'Katzen'
 # Pronouns
 PRO[CASE=nom, AGR=[PER=1,NUM=sg]] -> 'ich'
 PRO[CASE=acc, AGR=[PER=1,NUM=sg]] -> 'mich'
 PRO[CASE=dat, AGR=[PER=1,NUM=sg]] -> 'mir'
 PRO[CASE=nom, AGR=[PER=2,NUM=sg]] -> 'du'
 PRO[CASE=nom, AGR=[PER=3,NUM=sg]] -> 'er' | 'sie' | 'es'
 PRO[CASE=nom, AGR=[PER=1,NUM=pl]] -> 'wir'
 PRO[CASE=acc, AGR=[PER=1,NUM=pl]] -> 'uns'
 PRO[CASE=dat, AGR=[PER=1,NUM=pl]] -> 'uns'
 PRO[CASE=nom, AGR=[PER=2,NUM=pl]] -> 'ihr'
 PRO[CASE=nom, AGR=[PER=3,NUM=pl]] -> 'sie'
 # Verbs
 IV[AGR=[NUM=sg,PER=1]] -> 'komme'
 IV[AGR=[NUM=sg,PER=2]] -> 'kommst'
 IV[AGR=[NUM=sg,PER=3]] -> 'kommt'
 IV[AGR=[NUM=pl, PER=1]] -> 'kommen'
 IV[AGR=[NUM=pl, PER=2]] -> 'kommt'
 IV[AGR=[NUM=pl, PER=3]] -> 'kommen'
 TV[OBJCASE=acc, AGR=[NUM=sg,PER=1]] -> 'sehe' | 'mag'
 TV[OBJCASE=acc, AGR=[NUM=sg,PER=2]] -> 'siehst' | 'magst'
 TV[OBJCASE=acc, AGR=[NUM=sg,PER=3]] -> 'sieht' | 'mag'
 TV[OBJCASE=dat, AGR=[NUM=sg,PER=1]] -> 'folge' | 'helfe'
 TV[OBJCASE=dat, AGR=[NUM=sg,PER=2]] -> 'folgst' | 'hilfst'
 TV[OBJCASE=dat, AGR=[NUM=sg,PER=3]] -> 'folgt' | 'hilft'
 TV[OBJCASE=acc, AGR=[NUM=pl,PER=1]] -> 'sehen' | 'moegen'
 TV[OBJCASE=acc, AGR=[NUM=pl,PER=2]] -> 'sieht' | 'moegt'
 TV[OBJCASE=acc, AGR=[NUM=pl,PER=3]] -> 'sehen' | 'moegen'
 TV[OBJCASE=dat, AGR=[NUM=pl,PER=1]] -> 'folgen' | 'helfen'
 TV[OBJCASE=dat, AGR=[NUM=pl,PER=2]] -> 'folgt' | 'helft'
 TV[OBJCASE=dat, AGR=[NUM=pl,PER=3]] -> 'folgen' | 'helfen'

As you can see, the feature objcase is used
 to specify the case that a verb governs on its object. The next
 example illustrates the parse tree for a sentence containing a verb
 that governs the dative case:
>>> tokens = 'ich folge den Katzen'.split()
>>> cp = load_parser('grammars/book_grammars/german.fcfg')
>>> for tree in cp.nbest_parse(tokens):
... print tree
(S[]
 (NP[AGR=[NUM='sg', PER=1], CASE='nom']
 (PRO[AGR=[NUM='sg', PER=1], CASE='nom'] ich))
 (VP[AGR=[NUM='sg', PER=1]]
 (TV[AGR=[NUM='sg', PER=1], OBJCASE='dat'] folge)
 (NP[AGR=[GND='fem', NUM='pl', PER=3], CASE='dat']
 (Det[AGR=[NUM='pl', PER=3], CASE='dat'] den)
 (N[AGR=[GND='fem', NUM='pl', PER=3]] Katzen))))
In developing grammars, excluding ungrammatical word sequences
 is often as challenging as parsing grammatical ones. In order to get
 an idea where and why a sequence fails to parse, setting the trace parameter of the load_parser() method can be crucial. Consider the following parse
 failure:
>>> tokens = 'ich folge den Katze'.split()
>>> cp = load_parser('grammars/book_grammars/german.fcfg', trace=2)
>>> for tree in cp.nbest_parse(tokens):
... print tree
|.ich.fol.den.Kat.|
|[---] . . .| PRO[AGR=[NUM='sg', PER=1], CASE='nom'] -> 'ich' *
|[---] . . .| NP[AGR=[NUM='sg', PER=1], CASE='nom']
 -> PRO[AGR=[NUM='sg', PER=1], CASE='nom'] *
|[---> . . .| S[] -> NP[AGR=?a, CASE='nom'] * VP[AGR=?a]
 {?a: [NUM='sg', PER=1]}
|. [---] . .| TV[AGR=[NUM='sg', PER=1], OBJCASE='dat'] -> 'folge' *
|. [---> . .| VP[AGR=?a] -> TV[AGR=?a, OBJCASE=?c]
 * NP[CASE=?c] {?a: [NUM='sg', PER=1], ?c: 'dat'}
|. . [---] .| Det[AGR=[GND='masc', NUM='sg', PER=3], CASE='acc'] -> 'den' *
|. . [---] .| Det[AGR=[NUM='pl', PER=3], CASE='dat'] -> 'den' *
|. . [---> .| NP[AGR=?a, CASE=?c] -> Det[AGR=?a, CASE=?c]
 * N[AGR=?a, CASE=?c] {?a: [NUM='pl', PER=3], ?c: 'dat'}
|. . [---> .| NP[AGR=?a, CASE=?c] -> Det[AGR=?a, CASE=?c] * N[AGR=?a, CASE=?c]
 {?a: [GND='masc', NUM='sg', PER=3], ?c: 'acc'}
|. . . [---]| N[AGR=[GND='fem', NUM='sg', PER=3]] -> 'Katze' *
The last two Scanner lines in
 the trace show that den is recognized as
 admitting two possible categories: Det[AGR=[GND='masc', NUM='sg', PER=3],
 CASE='acc'] and Det[AGR=[NUM='pl',
 PER=3], CASE='dat']. We know from the grammar in Example 9-59 that Katze has category N[AGR=[GND=fem, NUM=sg, PER=3]]. Thus there
 is no binding for the variable ?a
 in production:
NP[CASE=?c, AGR=?a] -> Det[CASE=?c, AGR=? a] N[CASE=?c, AGR=?a]
that will satisfy these constraints, since the AGR value of Katze will not unify with either of the
 AGR values of
 den, that is, with either [GND='masc', NUM='sg', PER=3] or [NUM='pl', PER=3].

Summary

	The traditional categories of context-free grammar are atomic
 symbols. An important motivation for feature structures is to
 capture fine-grained distinctions that would otherwise require a
 massive multiplication of atomic categories.

	By using variables over feature values, we can express
 constraints in grammar productions that allow the realization of
 different feature specifications to be inter-dependent.

	Typically we specify fixed values of features at the lexical
 level and constrain the values of features in phrases to unify with
 the corresponding values in their children.

	Feature values are either atomic or complex. A particular
 subcase of atomic value is the Boolean value, represented by
 convention as [+/- feat].

	Two features can share a value (either atomic or complex).
 Structures with shared values are said to be re-entrant. Shared
 values are represented by numerical indexes (or tags) in
 AVMs.

	A path in a feature structure is a tuple of features
 corresponding to the labels on a sequence of arcs from the root of
 the graph representation.

	Two paths are equivalent if they share a value.

	Feature structures are partially ordered by subsumption.
 FS0 subsumes
 FS1 when
 FS0 is more general
 (less informative) than
 FS1.

	The unification of two structures
 FS0 and
 FS1, if successful, is
 the feature structure
 FS2 that contains the
 combined information of both
 FS0 and
 FS1.

	If unification specializes a path π in
 FS, then it also specializes every path π'
 equivalent to π.

	We can use feature structures to build succinct analyses of a
 wide variety of linguistic phenomena, including verb
 subcategorization, inversion constructions, unbounded dependency constructions,
 and case government.

Further Reading

Please consult http://www.nltk.org/ for
 further materials on this chapter, including HOWTOs feature structures,
 feature grammars, Earley parsing, and grammar test suites.
For an excellent introduction to the phenomenon of agreement, see
 (Corbett, 2006).
The earliest use of features in theoretical linguistics was
 designed to capture phonological properties of phonemes. For example, a
 sound like /b/ might be decomposed into the structure [+labial, +voice]. An important motivation was
 to capture generalizations across classes of segments, for example, that
 /n/ gets realized as /m/ preceding any +labial consonant. Within Chomskyan grammar,
 it was standard to use atomic features for phenomena such as agreement,
 and also to capture generalizations across syntactic categories, by
 analogy with phonology. A radical expansion of the use of features in
 theoretical syntax was advocated by Generalized Phrase Structure Grammar
 (GPSG; [Gazdar et al., 1985]), particularly in the use of features with
 complex values.
Coming more from the perspective of computational linguistics,
 (Kay, 1985) proposed that functional aspects of language could be
 captured by unification of attribute-value structures, and a similar
 approach was elaborated by (Grosz & Stickel, 1983) within the
 PATR-II formalism. Early work in Lexical-Functional grammar (LFG;
 [Kaplan & Bresnan, 1982]) introduced the notion of an f-structure that was primarily intended to
 represent the grammatical relations and predicate-argument structure
 associated with a constituent structure parse. (Shieber, 1986) provides
 an excellent introduction to this phase of research into feature-based
 grammars.
One conceptual difficulty with algebraic approaches to feature
 structures arose when researchers attempted to model negation. An
 alternative perspective, pioneered by (Kasper & Rounds, 1986) and
 (Johnson, 1988), argues that grammars involve
 descriptions of feature structures rather than the
 structures themselves. These descriptions are combined using logical
 operations such as conjunction, and negation is just the usual logical
 operation over feature descriptions. This description-oriented
 perspective was integral to LFG from the outset (Kaplan, 1989), and was
 also adopted by later versions of Head-Driven Phrase Structure Grammar
 (HPSG; [Sag & Wasow, 1999]). A comprehensive bibliography of HPSG
 literature can be found at http://www.cl.uni-bremen.de/HPSG-Bib/.
Feature structures, as presented in this chapter, are unable to
 capture important constraints on linguistic information. For example,
 there is no way of saying that the only permissible values for NUM are sg
 and pl, while a specification such as
 [NUM=masc] is anomalous. Similarly,
 we cannot say that the complex value of AGR must contain
 specifications for the features PER,
 NUM, and GND, but cannot contain a
 specification such as [SUBCAT=trans].
 Typed feature structures were
 developed to remedy this deficiency. A good early review of work on typed feature structures
 is (Emele & Zajac, 1990). A more comprehensive examination of the
 formal foundations can be found in (Carpenter, 1992), while (Copestake, 2002)
 focuses on implementing an HPSG-oriented approach to typed feature
 structures.
There is a copious literature on the analysis of German within
 feature-based grammar frameworks. (Nerbonne, Netter & Pollard, 1994)
 is a good starting point for the HPSG literature on this topic, while
 (Müller, 2002) gives a very extensive and detailed analysis of German
 syntax in HPSG.
Chapter 15 of (Jurafsky & Martin, 2008) discusses feature
 structures, the unification algorithm, and the integration of
 unification into parsing algorithms.

Exercises

	○ What constraints are required to correctly parse word
 sequences like I am happy and she is
 happy but not *you is happy or
 *they am happy? Implement two solutions for the
 present tense paradigm of the verb be in
 English, first taking Grammar Example 9-8 as your
 starting point, and then taking Grammar Example 9-22
 as the starting point.

	○ Develop a variant of grammar in Example 9-17 that uses a feature COUNT to make the distinctions shown
 here:
Example 9-60.
	The boy sings.

	*Boy sings.

Example 9-61.
	The boys sing.

	Boys sing.

Example 9-62.
	The water is precious.

	Water is precious.

	○ Write a function subsumes() that holds of two feature
 structures fs1 and fs2 just in case fs1 subsumes fs2.

	○ Modify the grammar illustrated in Example 9-32 to incorporate a BAR feature for dealing with phrasal
 projections.

	○ Modify the German grammar in Example 9-59 to incorporate the treatment of
 subcategorization presented in Extending a Feature-Based Grammar.

	[image:] Develop a feature-based grammar that will correctly describe
 the following Spanish noun phrases:
Example 9-63.
	un
	cuadro
	hermos-o

	INDEF.SG.MASC
	picture
	beautiful-SG.MASC

	‘a beautiful
 picture’

Example 9-64.
	un-os
	cuadro-s
	hermos-os

	INDEF-PL.MASC
	picture-PL
	beautiful-PL.MASC

	‘beautiful
 pictures’

Example 9-65.
	un-a
	cortina
	hermos-a

	INDEF-SG.FEM
	curtain
	beautiful-SG.FEM

	‘a beautiful
 curtain’

Example 9-66.
	un-as
	cortina-s
	hermos-as

	INDEF-PL.FEM
	curtain
	beautiful-PL.FEM

	‘beautiful
 curtains’

	[image:] Develop a wrapper for the earley_parser so that a trace is only
 printed if the input sequence fails to parse.

	[image:] Consider the feature structures shown in Example 9-67.
Example 9-67. Exploring feature structures.
fs1 = nltk.FeatStruct("[A = ?x, B= [C = ?x]]")
fs2 = nltk.FeatStruct("[B = [D = d]]")
fs3 = nltk.FeatStruct("[B = [C = d]]")
fs4 = nltk.FeatStruct("[A = (1)[B = b], C->(1)]")
fs5 = nltk.FeatStruct("[A = (1)[D = ?x], C = [E -> (1), F = ?x]]")
fs6 = nltk.FeatStruct("[A = [D = d]]")
fs7 = nltk.FeatStruct("[A = [D = d], C = [F = [D = d]]]")
fs8 = nltk.FeatStruct("[A = (1)[D = ?x, G = ?x], C = [B = ?x, E -> (1)]]")
fs9 = nltk.FeatStruct("[A = [B = b], C = [E = [G = e]]]")
fs10 = nltk.FeatStruct("[A = (1)[B = b], C -> (1)]")

Work out on paper what the result is of the following
 unifications. (Hint: you might find it useful to draw the graph
 structures.)
	fs1 and fs2

	fs1 and fs3

	fs4 and fs5

	fs5 and fs6

	fs5 and fs7

	fs8 and fs9

	fs8 and fs10

Check your answers using NLTK.

	[image:] List two feature structures that subsume [A=?x, B=?x].

	[image:] Ignoring structure sharing, give an informal algorithm for
 unifying two feature structures.

	[image:] Extend the German grammar in Example 9-59 so that it can handle so-called
 verb-second structures like the following:
Example 9-68.
Heute sieht der Hund die Katze.

	[image:] Seemingly synonymous verbs have slightly different syntactic
 properties (Levin, 1993). Consider the following patterns of
 grammaticality for the verbs loaded,
 filled, and dumped. Can
 you write grammar productions to handle such data?
Example 9-69.
	The farmer loaded the cart with
 sand

	The farmer loaded sand into the
 cart

	The farmer filled the cart with
 sand

	*The farmer filled sand into the
 cart

	*The farmer dumped the cart with
 sand

	The farmer dumped sand into the
 cart

	● Morphological paradigms are rarely completely regular, in
 the sense of every cell in the matrix having a different
 realization. For example, the present tense conjugation of the
 lexeme walk has only two distinct forms:
 walks for the third-person singular, and
 walk for all other combinations of person and
 number. A successful analysis should not require redundantly
 specifying that five out of the six possible morphological
 combinations have the same realization. Propose and implement a
 method for dealing with this.

	● So-called head features
 are shared between the parent node and head child. For example,
 TENSE is a head feature that is
 shared between a VP and its head
 V child. See (Gazdar et al.,
 1985) for more details. Most of the features we have looked at are
 head features—exceptions are SUBCAT and SLASH. Since the sharing of head features
 is predictable, it should not need to be stated explicitly in the
 grammar productions. Develop
 an approach that automatically accounts for this regular behavior of
 head features.

	● Extend NLTK’s treatment of feature structures to allow
 unification into list-valued features, and use this to implement an
 HPSG-style analysis of subcategorization, whereby the SUBCAT of a head category is the
 concatenation of its complements’ categories with the
 SUBCAT value of its immediate
 parent.

	● Extend NLTK’s treatment of feature structures to allow
 productions with underspecified categories, such as S[-INV] -> ?x S/?x.

	● Extend NLTK’s treatment of feature structures to allow typed
 feature structures.

	● Pick some grammatical constructions described in (Huddleston
 & Pullum, 2002), and develop a feature-based grammar to account
 for them.

Chapter 10. Analyzing the Meaning of Sentences

We have seen how useful it is to harness the power of a computer to
 process text on a large scale. However, now that we have the machinery of
 parsers and feature-based grammars, can we do anything similarly useful by
 analyzing the meaning of sentences? The goal of this chapter is to answer
 the following questions:
	How can we represent natural language meaning so that a computer
 can process these representations?

	How can we associate meaning representations with an unlimited
 set of sentences?

	How can we use programs that connect the meaning representations
 of sentences to stores of knowledge?

Along the way we will learn some formal techniques in the field of
 logical semantics, and see how these can be used for interrogating
 databases that store facts about the world.
Natural Language Understanding

Querying a Database

Suppose we have a program that lets us type in a natural
 language question and gives us back the right answer:
Example 10-1.
	Which country is Athens in?

	Greece.

How hard is it to write such a program? And can we just use the
 same techniques that we’ve encountered so far in this book, or does it
 involve something new? In this section, we will show that solving the
 task in a restricted domain is pretty straightforward. But we will
 also see that to address the problem in a more general way, we have to
 open up a whole new box of ideas and techniques, involving the
 representation of meaning.
So let’s start off by assuming that we have data about cities
 and countries in a structured form. To be concrete, we will use a
 database table whose first few rows are shown in Table 10-1.
Note
The data illustrated in Table 10-1 is drawn
 from the Chat-80 system (Warren & Pereira, 1982). Population
 figures are given in thousands, but note that the data used in these
 examples dates back at least to the 1980s, and was already somewhat
 out of date at the point when (Warren & Pereira, 1982) was
 published.

Table 10-1. city_table: A table of cities, countries, and
 populations
	City
	Country
	Population

	athens
	greece
	1368

	bangkok
	thailand
	1178

	barcelona
	spain
	1280

	berlin
	east_germany
	3481

	birmingham
	united_kingdom
	1112

The obvious way to retrieve answers from this tabular data
 involves writing queries in a database query language such as
 SQL.
Note
SQL (Structured Query Language) is a language designed for
 retrieving and managing data in relational databases. If you want to
 find out more about SQL, http://www.w3schools.com/sql/ is a convenient online
 reference.

For example, executing the query Example 10-2 will
 pull out the value 'greece':
Example 10-2.
SELECT Country FROM city_table WHERE
 City = 'athens'

This specifies a result set consisting of all values for the
 column Country in data rows where
 the value of the City column is
 'athens'.
How can we get the same effect using English as our input to the
 query system? The feature-based grammar formalism described in Chapter 9 makes it easy to translate from English to SQL.
 The grammar sql0.fcfg illustrates
 how to assemble a meaning representation for a sentence in tandem with
 parsing the sentence. Each phrase structure rule is supplemented with
 a recipe for constructing a value for the feature SEM. You can see that these recipes are extremely simple;
 in each case, we use the string concatenation operation + to splice the values for the child
 constituents to make a value for the parent constituent.
>>> nltk.data.show_cfg('grammars/book_grammars/sql0.fcfg')
% start S
S[SEM=(?np + WHERE + ?vp)] -> NP[SEM=?np] VP[SEM=?vp]
VP[SEM=(?v + ?pp)] -> IV[SEM=?v] PP[SEM=?pp]
VP[SEM=(?v + ?ap)] -> IV[SEM=?v] AP[SEM=?ap]
NP[SEM=(?det + ?n)] -> Det[SEM=?det] N[SEM=?n]
PP[SEM=(?p + ?np)] -> P[SEM=?p] NP[SEM=?np]
AP[SEM=?pp] -> A[SEM=?a] PP[SEM=?pp]
NP[SEM='Country="greece"'] -> 'Greece'
NP[SEM='Country="china"'] -> 'China'
Det[SEM='SELECT'] -> 'Which' | 'What'
N[SEM='City FROM city_table'] -> 'cities'
IV[SEM=''] -> 'are'
A[SEM=''] -> 'located'
P[SEM=''] -> 'in'
This allows us to parse a query into SQL:
>>> from nltk import load_parser
>>> cp = load_parser('grammars/book_grammars/sql0.fcfg')
>>> query = 'What cities are located in China'
>>> trees = cp.nbest_parse(query.split())
>>> answer = trees[0].node['SEM']
>>> q = ' '.join(answer)
>>> print q
SELECT City FROM city_table WHERE Country="china"
Note
Your Turn: Run the parser
 with maximum tracing on, i.e., cp =
 load_parser('grammars/book_grammars/sql0.fcfg',
 trace=3), and examine how the values of SEM are built up as complete edges are added to the
 chart.

Finally, we execute the query over the database city.db and retrieve some results:
>>> from nltk.sem import chat80
>>> rows = chat80.sql_query('corpora/city_database/city.db', q)
>>> for r in rows: print r[0], [image: 1]
canton chungking dairen harbin kowloon mukden peking shanghai sian tientsin
Since each row r is a
 one-element tuple, we print out the member of the tuple rather than
 the tuple itself [image: 1].
To summarize, we have defined a task where the computer returns
 useful data in response to a natural language query, and we
 implemented this by translating a small subset of English into SQL. We
 can say that our NLTK code already “understands” SQL, given that
 Python is able to execute SQL queries against a database, and by
 extension it also “understands” queries such as What cities
 are located in China. This parallels being able to
 translate from Dutch into English as an example of natural language
 understanding. Suppose that you are a native speaker of English, and
 have started to learn Dutch. Your teacher asks if you understand what
 Example 10-3 means:
Example 10-3.
Margrietje houdt van Brunoke.

If you know the meanings of the individual words in Example 10-3, and know how these meanings are combined to make
 up the meaning of the whole sentence, you might say that Example 10-3 means the same as Margrietje loves
 Brunoke.
An observer—let’s call her Olga—might well take this as evidence
 that you do grasp the meaning of Example 10-3. But this
 would depend on Olga herself understanding English. If she doesn’t,
 then your translation from Dutch to English is not going to convince
 her of your ability to understand Dutch. We will return to this issue
 shortly.
The grammar sql0.fcfg,
 together with the NLTK Earley parser, is instrumental in carrying out
 the translation from English to SQL. How adequate is this grammar? You
 saw that the SQL translation for the whole sentence was built up from
 the translations of the components. However, there does not seem to be
 a lot of justification for these component meaning representations.
 For example, if we look at the analysis of the noun phrase
 Which cities, the determiner and noun correspond
 respectively to the SQL fragments SELECT and City
 FROM city_table. But neither of these has a well-defined
 meaning in isolation from the other.
There is another criticism we can level at the grammar: we have
 “hard-wired” an embarrassing amount of detail about the database into
 it. We need to know the name of the relevant table (e.g., city_table) and the names of the fields. But
 our database could have contained exactly the same rows of data yet
 used a different table name and different field names, in which case
 the SQL queries would not be executable. Equally, we could have stored
 our data in a different format, such as XML, in which case retrieving
 the same results would require us to translate our English queries
 into an XML query language rather than SQL. These considerations
 suggest that we should be translating English into something that is
 more abstract and generic than SQL.
In order to sharpen the point, let’s consider another English
 query and its translation:
Example 10-4.
	What cities are in China and have populations above
 1,000,000?

	SELECT City FROM city_table WHERE
 Country = 'china' AND Population > 1000

Note
Your Turn: Extend the
 grammar sql0.fcfg so that it
 will translate a into b, and check the values returned by the query.
 Remember that figures in the Chat-80 database are given in
 thousands, hence 1000 in (4b)
 represents one million inhabitants.
You will probably find it easiest to first extend the grammar
 to handle queries like What cities have populations above
 1,000,000 before tackling conjunction. After you have had
 a go at this task, you can compare your solution to grammars/book_grammars/sql1.fcfg in the
 NLTK data distribution.

Observe that the and conjunction in a is translated into an AND in the SQL counterpart, b. The latter tells us to select results from rows
 where two conditions are true together: the value of the Country column is 'china' and the value of the Population column is greater than 1000. This interpretation for
 and involves a new idea: it talks about
 what is true in some particular situation, and
 tells us that Cond1 AND
 Cond2 is true in situation
 s if and only if condition Cond1 is true in
 s and condition Cond2 is true in
 s. Although this doesn’t account for the full
 range of meanings of and in English, it has the
 nice property that it is independent of any query language. In fact,
 we have given it the standard interpretation from classical logic. In
 the following sections, we will explore an approach in which sentences
 of natural language are translated into logic instead of an executable
 query language such as SQL. One advantage of logical formalisms is
 that they are more abstract and therefore more generic. If we wanted
 to, once we had our translation into logic, we could then translate it
 into various other special-purpose languages. In fact, most serious
 attempts to query databases via natural language have used this
 methodology.

Natural Language, Semantics, and Logic

We started out trying to capture the meaning of a by translating it into a query in another
 language, SQL, which the computer could interpret and execute. But
 this still begged the question whether the translation was correct.
 Stepping back from database query, we noted that the meaning of
 and seems to depend on being able to specify when
 statements are true or not in a particular situation. Instead of
 translating a sentence S from one language to
 another, we try to say what S is
 about by relating it to a situation in the world.
 Let’s pursue this further. Imagine there is a situation
 s where there are two entities, Margrietje and
 her favorite doll, Brunoke. In addition, there is a relation holding
 between the two entities, which we will call the
 love relation. If you understand the meaning of
 Example 10-3, then you know that it is true in situation
 s. In part, you know this because you know that
 Margrietje refers to Margrietje,
 Brunoke refers to Brunoke, and houdt
 van refers to the love
 relation.
We have introduced two fundamental notions in semantics. The
 first is that declarative sentences are true or false in
 certain situations. The second is that definite noun
 phrases and proper nouns refer to things in the
 world. So Example 10-3 is true in a situation
 where Margrietje loves the doll Brunoke, here illustrated in Figure 10-1.
[image: Depiction of a situation in which Margrietje loves Brunoke.]

Figure 10-1. Depiction of a situation in which Margrietje loves
 Brunoke.

Once we have adopted the notion of truth in a situation, we have
 a powerful tool for reasoning. In particular, we can look at sets of
 sentences, and ask whether they could be true together in some
 situation. For example, the sentences in Example 10-5
 can be both true, whereas those in Example 10-6 and
 Example 10-7 cannot be. In other words, the sentences
 in Example 10-5 are consistent, whereas those in Example 10-6 and Example 10-7 are inconsistent.
Example 10-5.
	Sylvania is to the north of Freedonia.

	Freedonia is a republic.

Example 10-6.
	The capital of Freedonia has a population of 9,000.

	No city in Freedonia has a population of 9,000.

Example 10-7.
	Sylvania is to the north of Freedonia.

	Freedonia is to the north of Sylvania.

We have chosen sentences about fictional countries (featured in
 the Marx Brothers’ 1933 movie Duck Soup) to
 emphasize that your ability to reason about these examples does not
 depend on what is true or false in the actual world. If you know the
 meaning of the word no, and also know that the
 capital of a country is a city in that country, then you should be
 able to conclude that the two sentences in Example 10-6
 are inconsistent, regardless of where Freedonia is or what the
 population of its capital is. That is, there’s no possible situation
 in which both sentences could be true. Similarly, if you know that the
 relation expressed by to the north of is
 asymmetric, then you should be able to conclude that the two sentences
 in Example 10-7 are inconsistent.
Broadly speaking, logic-based approaches to natural language
 semantics focus on those aspects of natural language that guide our
 judgments of consistency and inconsistency. The syntax of a logical
 language is designed to make these features formally explicit. As a
 result, determining properties like consistency can often be reduced
 to symbolic manipulation, that is, to a task that can be carried out
 by a computer. In order to pursue this approach, we first want to
 develop a technique for representing a possible situation. We do this
 in terms of something that logicians call a “model.”
A model for a set
 W of sentences is a formal representation of a
 situation in which all the sentences in W are
 true. The usual way of representing models involves set theory. The
 domain D of discourse (all the entities we
 currently care about) is a set of individuals, while relations are
 treated as sets built up from D. Let’s look at a
 concrete example. Our domain D will consist of
 three children, Stefan, Klaus, and Evi, represented respectively as
 s, k, and e.
 We write this as D = {s,
 k, e}. The expression boy denotes the
 set consisting of Stefan and Klaus, the expression
 girl denotes the set consisting of Evi, and the
 expression is running denotes the set consisting
 of Stefan and Evi. Figure 10-2 is a graphical
 rendering of the model.
[image: Diagram of a model containing a domain D and subsets of D corresponding to the predicates boy, girl, and is running.]

Figure 10-2. Diagram of a model containing a domain D and subsets of D
 corresponding to the predicates boy,
 girl, and is
 running.

Later in this chapter we will use models to help evaluate the
 truth or falsity of English sentences, and in this way to illustrate
 some methods for representing meaning. However, before going into more
 detail, let’s put the discussion into a broader perspective, and link
 back to a topic that we briefly raised in Automatic Natural Language Understanding. Can a
 computer understand the meaning of a sentence? And how could we tell
 if it did? This is similar to asking “Can a computer think?” Alan
 Turing famously proposed to answer this by examining the ability of a
 computer to hold sensible conversations with a human (Turing, 1950).
 Suppose you are having a chat session with a person and a computer,
 but you are not told at the outset which is which. If you cannot
 identify which of your partners is the computer after chatting with
 each of them, then the computer has successfully imitated a human. If
 a computer succeeds in passing itself off as human in this “imitation
 game” (or “Turing Test” as it is popularly known), then according to
 Turing, we should be prepared to say that the computer
 can think and can be said to be intelligent. So
 Turing side-stepped the question of somehow examining the internal
 states of a computer by instead using its
 behavior as evidence of intelligence. By the same
 reasoning, we have assumed that in order to say that a computer
 understands English, it just needs to behave as though it did. What is
 important here is not so much the specifics of Turing’s imitation
 game, but rather the proposal to judge a capacity for natural language
 understanding in terms of observable behavior.

Propositional Logic

A logical language is designed to make reasoning formally
 explicit. As a result, it can capture aspects of natural language which
 determine whether a set of sentences is consistent. As part of this
 approach, we need to develop logical representations of a sentence φ
 that formally capture the truth-conditions of φ. We’ll start off with a
 simple example:
Example 10-8.
[Klaus chased Evi] and [Evi ran away].

Let’s replace the two sub-sentences in Example 10-8 by φ and ψ respectively, and put & for the logical operator corresponding
 to the English word and: φ & ψ. This structure is the logical form of Example 10-8.
Propositional logic allows us
 to represent just those parts of linguistic structure that correspond to
 certain sentential connectives. We have just looked at
 and. Other such connectives are
 not, or, and if...,
 then.... In the formalization of propositional logic, the
 counterparts of such connectives are sometimes called Boolean operators. The basic expressions of
 propositional logic are propositional
 symbols, often written as P,
 Q, R, etc. There are varying
 conventions for representing Boolean operators. Since we will be
 focusing on ways of exploring logic within NLTK, we will stick to the
 following ASCII versions of the operators:
>>> nltk.boolean_ops()
negation -
conjunction &
disjunction |
implication ->
equivalence <->
From the propositional symbols and the Boolean operators we can
 build an infinite set of well-formed
 formulas (or just formulas, for short) of propositional
 logic. First, every propositional letter is a formula. Then if φ is a
 formula, so is -φ. And if φ and ψ are
 formulas, then so are (φ & ψ),
 (φ | ψ),
 (φ -> ψ),
 and(φ <-> ψ).
Table 10-2 specifies the truth-conditions
 for formulas containing these operators. As before we use φ and ψ as
 variables over sentences, and abbreviate if and only
 if as iff.
Table 10-2. Truth conditions for the Boolean operators in propositional
 logic
	Boolean operator
	Truth
 conditions

	negation (it is not the case that
 ...)
	-φ is true in
 s
	iff
	φ is false in s

	conjunction
 (and)
	(φ & ψ) is true in
 s
	iff
	φ is true in s and ψ is true
 in s

	disjunction
 (or)
	(φ | ψ) is true in
 s
	iff
	φ is true in s or ψ is true in
 s

	implication (if ..., then
 ...)
	(φ -> ψ) is true in
 s
	iff
	φ is false in s or ψ is true
 in s

	equivalence (if and only
 if)
	(φ <-> ψ) is true in
 s
	iff
	φ and ψ are both true in s or
 both false in s

These rules are generally straightforward, though the truth
 conditions for implication depart in many cases from our usual
 intuitions about the conditional in English. A formula of the form
 (P -> Q) is false only when
 P is true and Q is false. If P is false (say, P corresponds to The moon is made of
 green cheese) and Q is
 true (say, Q corresponds to
 Two plus two equals four), then P -> Q will come out true.
NLTK’s LogicParser() parses logical expressions into various subclasses of
 Expression:
>>> lp = nltk.LogicParser()
>>> lp.parse('-(P & Q)')
<NegatedExpression -(P & Q)>
>>> lp.parse('P & Q')
<AndExpression (P & Q)>
>>> lp.parse('P | (R -> Q)')
<OrExpression (P | (R -> Q))>
>>> lp.parse('P <-> -- P')
<IffExpression (P <-> --P)>
From a computational perspective, logics give us an important tool
 for performing inference. Suppose you state that Freedonia is not to the
 north of Sylvania, and you give as your reasons that Sylvania is to the
 north of Freedonia. In this case, you have produced an argument. The sentence Sylvania is to
 the north of Freedonia is the assumption of the argument,
 while Freedonia is not to the north of Sylvania is
 the conclusion. The step of moving
 from one or more assumptions to a conclusion is called inference. Informally, it is common to write
 arguments in a format where the conclusion is preceded by
 therefore.
Example 10-9.
Sylvania is to the north of Freedonia.
Therefore, Freedonia is not to the north of Sylvania.

An argument is valid if there
 is no possible situation in which its premises are all true and its
 conclusion is not true.
Now, the validity of Example 10-9 crucially
 depends on the meaning of the phrase to the north
 of, in particular, the fact that it is an asymmetric
 relation:
Example 10-10.
if x is to the north of
 y then y is not to the north
 of x.

Unfortunately, we can’t express such rules in propositional logic:
 the smallest elements we have to play with are atomic propositions, and
 we cannot “look inside” these to talk about relations between
 individuals x and y. The best
 we can do in this case is capture a particular case of the asymmetry.
 Let’s use the propositional symbol SnF to stand for Sylvania is to the
 north of Freedonia and FnS
 for Freedonia is to the north of Sylvania. To say
 that Freedonia is not to the north of Sylvania, we
 write -FnS. That is, we treat
 not as equivalent to the phrase it is not
 the case that ..., and translate this as the one-place
 Boolean operator -. Replacing
 x and y in Example 10-10 by Sylvania and
 Freedonia respectively gives us an implication that
 can be written as:
Example 10-11.
SnF -> -FnS

How about giving a version of the complete argument? We will
 replace the first sentence of Example 10-9 by two
 formulas of propositional logic: SnF,
 and also the implication in Example 10-11, which
 expresses (rather poorly) our background knowledge of the meaning of
 to the north of. We’ll write [A1, ..., An] / C to represent the argument
 that conclusion C follows from
 assumptions [A1, ..., An]. This leads
 to the following as a representation of argument Example 10-9:
Example 10-12.
[SnF, SnF -> -FnS] /
 -FnS

This is a valid argument: if SnF and SnF ->
 -FnS are both true in a situation s, then
 -FnS must also
 be true in s. By contrast, if FnS were true, this would conflict with our
 understanding that two objects cannot both be to the north of each other
 in any possible situation. Equivalently, the list [SnF, SnF -> -FnS, FnS] is
 inconsistent—these sentences cannot all be true together.
Arguments can be tested for “syntactic validity” by using a proof
 system. We will say a little bit more about this later on in First-Order Logic. Logical proofs can be carried out with NLTK’s
 inference module, for example, via an
 interface to the third-party theorem prover Prover9. The inputs to the
 inference mechanism first have to be parsed into logical expressions by
 LogicParser().
>>> lp = nltk.LogicParser()
>>> SnF = lp.parse('SnF')
>>> NotFnS = lp.parse('-FnS')
>>> R = lp.parse('SnF -> -FnS')
>>> prover = nltk.Prover9()
>>> prover.prove(NotFnS, [SnF, R])
True
Here’s another way of seeing why the conclusion follows. SnF -> -FnS is semantically equivalent to
 -SnF | -FnS, where | is the two-place operator corresponding to
 or. In general, φ | ψ is true in a situation
 s if either φ is true in s or
 φ is true in s. Now, suppose both SnF and -SnF |
 -FnS are true in situation s. If SnF is true, then -SnF cannot also be true; a fundamental
 assumption of classical logic is that a sentence cannot be both true and
 false in a situation. Consequently, -FnS must be true.
Recall that we interpret sentences of a logical language relative
 to a model, which is a very simplified version of the world. A model for
 propositional logic needs to assign the values True or False to every possible formula. We do this
 inductively: first, every propositional symbol is assigned a value, and
 then we compute the value of complex formulas by consulting the meanings
 of the Boolean operators (i.e., Table 10-2) and
 applying them to the values of the formula’s components. A Valuation is a mapping from basic symbols of the logic to their
 values. Here’s an example:
>>> val = nltk.Valuation([('P', True), ('Q', True), ('R', False)])
We initialize a Valuation with a list of pairs, each of which consists of a
 semantic symbol and a semantic value. The resulting object is
 essentially just a dictionary that maps logical symbols (treated as
 strings) to appropriate values.
>>> val['P']
True
As we will see later, our models need to be somewhat more
 complicated in order to handle the more complex logical forms discussed
 in the next section; for the time being, just ignore the dom and g
 parameters in the following declarations.
>>> dom = set([])
>>> g = nltk.Assignment(dom)
Now let’s initialize a model m
 that uses val:
>>> m = nltk.Model(dom, val)
Every model comes with an evaluate() method, which will determine the semantic value of
 logical expressions, such as formulas of propositional logic; of course,
 these values depend on the initial truth values we assigned to
 propositional symbols such as P,
 Q, and R.
>>> print m.evaluate('(P & Q)', g)
True
>>> print m.evaluate('-(P & Q)', g)
False
>>> print m.evaluate('(P & R)', g)
False
>>> print m.evaluate('(P | R)', g)
True
Note
Your Turn: Experiment with
 evaluating different formulas of propositional logic. Does the model
 give the values that you expected?

Up until now, we have been translating our English sentences into
 propositional logic. Because we are confined to representing atomic
 sentences with letters such as P and
 Q, we cannot dig into their internal
 structure. In effect, we are saying that there is no semantic benefit in
 dividing atomic sentences into subjects, objects, and predicates.
 However, this seems wrong: if we want to formalize arguments such as
 Example 10-9, we have to be able to “look inside”
 basic sentences. As a result, we will move beyond propositional logic to
 something more expressive, namely first-order logic. This is what we
 turn to in the next section.

First-Order Logic

In the remainder of this chapter, we will represent the meaning of
 natural language expressions by translating them into first-order logic.
 Not all of natural language semantics can be expressed in first-order
 logic. But it is a good choice for computational semantics because it is
 expressive enough to represent many aspects of semantics, and on the
 other hand, there are excellent systems available off the shelf for
 carrying out automated inference in first-order logic.
Our next step will be to describe how formulas of first-order
 logic are constructed, and then how such formulas can be evaluated in a
 model.
Syntax

First-order logic keeps all the Boolean operators of
 propositional logic, but it adds some important new mechanisms. To
 start with, propositions are analyzed into predicates and arguments,
 which takes us a step closer to the structure of natural languages.
 The standard construction rules for first-order logic recognize
 terms such as individual variables
 and individual constants, and predicates that take differing numbers of
 arguments. For example, Angus
 walks might be formalized as
 walk(angus) and
 Angus sees Bertie as
 see(angus,
 bertie). We will call walk a
 unary predicate, and
 see a binary
 predicate. The symbols used as predicates do not have
 intrinsic meaning, although it is hard to remember this. Returning to
 one of our earlier examples, there is no logical
 difference between a and b.
Example 10-13.
	love(margrietje,
 brunoke)

	houden_van(margrietje,
 brunoke)

By itself, first-order logic has nothing substantive to say
 about lexical semantics—the meaning of individual words—although some
 theories of lexical semantics can be encoded in first-order logic.
 Whether an atomic predication like
 see(angus,
 bertie) is true or false in a situation is not a
 matter of logic, but depends on the particular valuation that we have
 chosen for the constants see,
 angus, and bertie. For this
 reason, such expressions are called non-logical constants. By contrast, logical constants (such as the Boolean
 operators) always receive the same interpretation in every model for
 first-order logic.
We should mention here that one binary predicate has special
 status, namely equality, as in formulas such as angus =
 aj. Equality is regarded as a logical constant, since for
 individual terms
 t1
 and t2, the formula
 t1 =
 t2 is true if and only if
 t1 and
 t2 refer to one and the
 same entity.
It is often helpful to inspect the syntactic structure of
 expressions of first-order logic, and the usual way of doing this is
 to assign types to expressions.
 Following the tradition of Montague grammar, we will use two basic types: e is the
 type of entities, while t is the type of
 formulas, i.e., expressions that have truth values. Given these two
 basic types, we can form complex
 types for function expressions. That is, given any types σ
 and τ, 〈σ, τ〉 is a complex type corresponding to functions from 'σ
 things’ to 'τ things’. For example, 〈e,
 t〉 is the type of expressions from entities to
 truth values, namely unary predicates. The LogicParser can be invoked so that it carries out type
 checking.
>>> tlp = nltk.LogicParser(type_check=True)
>>> parsed = tlp.parse('walk(angus)')
>>> parsed.argument
<ConstantExpression angus>
>>> parsed.argument.type
e
>>> parsed.function
<ConstantExpression walk>
>>> parsed.function.type
<e,?>
Why do we see <e,?> at
 the end of this example? Although the type-checker will try to infer
 as many types as possible, in this case it has not managed to fully
 specify the type of walk, since its
 result type is unknown. Although we are intending walk to receive type <e,
 t>, as far as the type-checker knows, in this context it
 could be of some other type, such as <e, e>
 or <e, <e, t>>. To help the
 type-checker, we need to specify a signature, implemented as a dictionary that
 explicitly associates types with non-logical constants:
>>> sig = {'walk': '<e, t>'}
>>> parsed = tlp.parse('walk(angus)', sig)
>>> parsed.function.type
<e,t>
A binary predicate has type 〈e,
 〈e, t〉〉. Although this is
 the type of something which combines first with an argument of type
 e to make a unary predicate, we represent binary
 predicates as combining directly with their two arguments. For
 example, the predicate see in the translation of
 Angus sees Cyril will combine with its arguments
 to give the result
 see(angus,
 cyril).
In first-order logic, arguments of predicates can also be
 individual variables such as x,
 y, and z. In NLTK, we adopt
 the convention that variables of type e are all
 lowercase. Individual variables are similar to personal pronouns like
 he, she, and
 it, in that we need to know about the context of
 use in order to figure out their denotation. One way of interpreting the pronoun in Example 10-14 is by pointing to a relevant individual in
 the local context.
Example 10-14.
He disappeared.

Another way is to supply a textual antecedent for the pronoun
 he, for example, by uttering a prior to Example 10-14.
 Here, we say that he is coreferential with the noun phrase
 Cyril. In such a context, Example 10-14 is semantically equivalent to b.
Example 10-15.
	Cyril is Angus’s dog.

	Cyril disappeared.

Consider by contrast the occurrence of he
 in a. In this case, it is bound by the indefinite NP a dog, and this is a
 different relationship than coreference. If we replace the pronoun
 he by a dog, the result
 b is not
 semantically equivalent to a.
Example 10-16.
	Angus had a dog but he disappeared.

	Angus had a dog but a dog disappeared.

Corresponding to a, we can
 construct an open formula b with two occurrences of the variable
 x. (We ignore tense to simplify
 exposition.)
Example 10-17.
	He is a dog and he disappeared.

	dog(x) &
 disappear(x)

By placing an existential
 quantifier ∃x (“for some
 x”) in front of b,
 we can bind these variables, as in
 a, which means b or, more idiomatically, c.
Example 10-18.
	∃x.(dog(x) &
 disappear(x))

	At least one entity is a dog and disappeared.

	A dog disappeared.

Here is the NLTK counterpart of a:
Example 10-19.
exists x.(dog(x) &
 disappear(x))

In addition to the existential quantifier, first-order logic
 offers us the universal quantifier
 ∀x (“for all x”),
 illustrated in Example 10-20.
Example 10-20.
	∀x.(dog(x)
 → disappear(x))

	Everything has the property that if it is a dog, it
 disappears.

	Every dog disappeared.

Here is the NLTK counterpart of a:
Example 10-21.
all x.(dog(x) ->
 disappear(x))

Although a is the standard
 first-order logic translation of c, the
 truth conditions aren’t necessarily what you expect. The formula says
 that if some x is a dog,
 then x disappears—but it doesn’t say that there
 are any dogs. So in a situation where there are no dogs, a will still come out true. (Remember that
 (P -> Q) is true when P is false.) Now you might argue that
 every dog disappeared does presuppose the
 existence of dogs, and that the logic formalization is simply wrong.
 But it is possible to find other examples that lack such a
 presupposition. For instance, we might explain that the value of the
 Python expression astring.replace('ate',
 '8') is the result of replacing every occurrence of 'ate' in astring by '8', even though there may in fact be no
 such occurrences (Table 3-2).
We have seen a number of examples where variables are bound by
 quantifiers. What happens in formulas such as the following?
((exists x. dog(x)) -> bark(x))
The scope of the exists x
 quantifier is dog(x), so the
 occurrence of x in bark(x) is unbound. Consequently it can
 become bound by some other quantifier, for example, all x in the next formula:
all x.((exists x. dog(x)) -> bark(x))
In general, an occurrence of a variable x in a formula φ is free in φ if that occurrence doesn’t fall
 within the scope of all x or
 some x in φ. Conversely, if
 x is free in formula φ, then it is
 bound in all x.φ and exists
 x.φ. If all variable occurrences in a formula are bound, the
 formula is said to be closed.
We mentioned before that the parse() method of NLTK’s LogicParser returns objects of class Expression. Each instance expr
 of this class comes with a method free(), which returns the set of variables
 that are free in expr.
>>> lp = nltk.LogicParser()
>>> lp.parse('dog(cyril)').free()
set([])
>>> lp.parse('dog(x)').free()
set([Variable('x')])
>>> lp.parse('own(angus, cyril)').free()
set([])
>>> lp.parse('exists x.dog(x)').free()
set([])
>>> lp.parse('((some x. walk(x)) -> sing(x))').free()
set([Variable('x')])
>>> lp.parse('exists x.own(y, x)').free()
set([Variable('y')])

First-Order Theorem Proving

Recall the constraint on to the north of,
 which we proposed earlier as Example 10-10:
Example 10-22.
if x is to the north of
 y then y is not to the
 north of x.

We observed that propositional logic is not expressive enough to
 represent generalizations about binary predicates, and as a result we
 did not properly capture the argument Sylvania is to the
 north of Freedonia. Therefore, Freedonia is not to the north of
 Sylvania.
You have no doubt realized that first-order logic, by contrast,
 is ideal for formalizing such rules:
all x. all y.(north_of(x, y) -> -north_of(y, x))
Even better, we can perform automated inference to show the
 validity of the argument.
The general case in theorem proving is to determine whether a
 formula that we want to prove (a proof
 goal) can be derived by a finite sequence of inference
 steps from a list of assumed formulas. We write this as A ⊢ g, where A is a (possibly empty) list of assumptions,
 and g is a proof goal. We will
 illustrate this with NLTK’s interface to the theorem prover Prover9.
 First, we parse the required proof goal [image: 1]
 and the two assumptions [image: 2] [image: 3]. Then we create a Prover9 instance [image: 4], and call
 its prove() method on the goal, given the list of assumptions [image: 5].
>>> NotFnS = lp.parse('-north_of(f, s)') [image: 1]
>>> SnF = lp.parse('north_of(s, f)') [image: 2]
>>> R = lp.parse('all x. all y. (north_of(x, y) -> -north_of(y, x))') [image: 3]
>>> prover = nltk.Prover9() [image: 4]
>>> prover.prove(NotFnS, [SnF, R]) [image: 5]
True
Happily, the theorem prover agrees with us that the argument is
 valid. By contrast, it concludes that it is not possible to infer
 north_of(f, s) from our
 assumptions:
>>> FnS = lp.parse('north_of(f, s)')
>>> prover.prove(FnS, [SnF, R])
False

Summarizing the Language of First-Order Logic

We’ll take this opportunity to restate our earlier syntactic
 rules for propositional logic and add the formation rules for
 quantifiers; together, these give us the syntax of first-order logic.
 In addition, we make explicit the types of the expressions involved.
 We’ll adopt the convention that
 〈en,
 t〉 is the type of a predicate that combines with
 n arguments of type e to
 yield an expression of type t. In this case, we
 say that n is the arity of the predicate.
	If P is a predicate of type
 〈en,
 t〉, and α1, ...
 αn are terms of type
 e, then P(α1,
 ... αn) is of
 type t.

	If α and β are both of type e, then (α
 = β) and (α != β) are of type t.

	If φ is of type t, then so is -φ.

	If φ and ψ are of type t, then so are
 (φ & ψ), (φ | ψ), (φ -> ψ), and (φ <-> ψ).

	If φ is of type t, and
 x is a variable of type
 e, then exists
 x.φ and all x.φ are
 of type t.

Table 10-3 summarizes the new logical
 constants of the logic module, and two of the methods of Expressions.
Table 10-3. Summary of new logical relations and operators required for
 first-order logic
	Example
	Description

	=
	Equality

	!=
	Inequality

	exists
	Existential quantifier

	all
	Universal quantifier

Truth in Model

We have looked at the syntax of first-order logic, and in The Semantics of English Sentences we will examine the task
 of translating English into first-order logic. Yet as we argued in
 Natural Language Understanding, this gets us further forward
 only if we can give a meaning to sentences of first-order logic. In
 other words, we need to give a truth-conditional
 semantics to first-order logic. From the point of view of
 computational semantics, there are obvious limits to how far one can
 push this approach. Although we want to talk about sentences being
 true or false in situations, we only have the means of representing
 situations in the computer in a symbolic manner. Despite this
 limitation, it is still possible to gain a clearer picture of
 truth-conditional semantics by encoding models in NLTK.
Given a first-order logic language L, a
 model M for L is a pair
 〈D, Val〉, where
 D is an non-empty set called the domain of the model, and
 Val is a function called the valuation function, which assigns values from
 D to expressions of L as
 follows:
	For every individual constant c in
 L,
 Val(c) is an element of
 D.

	For every predicate symbol P of arity
 n ≥ 0,
 Val(P) is a function
 from
 Dn
 to {True, False}. (If
 the arity of P is 0, then
 Val(P) is simply a truth
 value, and P is regarded as a propositional
 symbol.)

According to 2, if P is of arity 2, then
 Val(P) will be a function
 f from pairs of elements of
 D to {True,
 False}. In the models we shall build in NLTK,
 we’ll adopt a more convenient alternative, in which
 Val(P) is a set
 S of pairs, defined as follows:
Example 10-23.
S = {s |
 f(s) =
 True}

Such an f is called the characteristic function of
 S (as discussed in the further readings).
Relations are represented semantically in NLTK in the standard
 set-theoretic way: as sets of tuples. For example, let’s suppose we
 have a domain of discourse consisting of the individuals Bertie,
 Olive, and Cyril, where Bertie is a boy, Olive is a girl, and Cyril is
 a dog. For mnemonic reasons, we use b, o, and
 c as the corresponding labels in
 the model. We can declare the domain as follows:
>>> dom = set(['b', 'o', 'c'])
We will use the utility function parse_valuation() to convert a sequence of strings of the form
 symbol =>
 value into a Valuation object.
>>> v = """
... bertie => b
... olive => o
... cyril => c
... boy => {b}
... girl => {o}
... dog => {c}
... walk => {o, c}
... see => {(b, o), (c, b), (o, c)}
... """
>>> val = nltk.parse_valuation(v)
>>> print val
{'bertie': 'b',
 'boy': set([('b',)]),
 'cyril': 'c',
 'dog': set([('c',)]),
 'girl': set([('o',)]),
 'olive': 'o',
 'see': set([('o', 'c'), ('c', 'b'), ('b', 'o')]),
 'walk': set([('c',), ('o',)])}
So according to this valuation, the value of see is a set of tuples such that Bertie sees
 Olive, Cyril sees Bertie, and Olive sees Cyril.
Note
Your Turn: Draw a picture
 of the domain dom and the sets
 corresponding to each of the unary predicates, by analogy with the
 diagram shown in Figure 10-2.

You may have noticed that our unary predicates (i.e, boy, girl, dog) also come out as sets of singleton
 tuples, rather than just sets of individuals. This is a convenience
 which allows us to have a uniform treatment of relations of any arity.
 A predication of the form
 P(τ1, ...
 τn), where
 P is of arity n, comes out
 true just in case the tuple of values corresponding to
 (τ1, ...
 τn) belongs to the set of
 tuples in the value of P.
>>> ('o', 'c') in val['see']
True
>>> ('b',) in val['boy']
True

Individual Variables and Assignments

In our models, the counterpart of a context of use is a variable
 assignment. This is a mapping from
 individual variables to entities in the domain. Assignments are
 created using the Assignment constructor, which also takes the model’s domain of
 discourse as a parameter. We are not required to actually enter any
 bindings, but if we do, they are in a (variable,
 value) format similar to what we saw earlier for
 valuations.
>>> g = nltk.Assignment(dom, [('x', 'o'), ('y', 'c')])
>>> g
{'y': 'c', 'x': 'o'}
In addition, there is a print() format for assignments which uses a
 notation closer to that often found in logic textbooks:
>>> print g
g[c/y][o/x]
Let’s now look at how we can evaluate an atomic formula of
 first-order logic. First, we create a model, and then we call the
 evaluate() method to compute the truth value:
>>> m = nltk.Model(dom, val)
>>> m.evaluate('see(olive, y)', g)
True
What’s happening here? We are evaluating a formula which is
 similar to our earlier example, see(olive,
 cyril). However, when the interpretation function encounters
 the variable y, rather than
 checking for a value in val, it
 asks the variable assignment g to
 come up with a value:
>>> g['y']
'c'
Since we already know that individuals o and c
 stand in the see relation, the value True is what we expected. In this case, we
 can say that assignment g satisfies the formula see(olive, y). By contrast, the following
 formula evaluates to False relative
 to g (check that you see why this
 is).
>>> m.evaluate('see(y, x)', g)
False
In our approach (though not in standard first-order logic),
 variable assignments are partial. For example,
 g says nothing about any variables
 apart from x and y. The method purge() clears all bindings from an
 assignment.
>>> g.purge()
>>> g
{}
If we now try to evaluate a formula such as see(olive, y) relative to g, it is like trying to interpret a sentence
 containing a him when we don’t know what
 him refers to. In this case, the evaluation
 function fails to deliver a truth value.
>>> m.evaluate('see(olive, y)', g)
'Undefined'
Since our models already contain rules for interpreting Boolean
 operators, arbitrarily complex formulas can be composed and
 evaluated.
>>> m.evaluate('see(bertie, olive) & boy(bertie) & -walk(bertie)', g)
True
The general process of determining truth or falsity of a formula
 in a model is called model
 checking.

Quantification

One of the crucial insights of modern logic is that the notion
 of variable satisfaction can be used to provide an interpretation for
 quantified formulas. Let’s use Example 10-24 as an
 example.
Example 10-24.
exists x.(girl(x) &
 walk(x))

When is it true? Let’s think about all the individuals in our
 domain, i.e., in dom. We want to
 check whether any of these individuals has the property of being a
 girl and walking. In other words, we want to know if there is some
 u in dom such
 that g[u/x] satisfies the open formula Example 10-25.
Example 10-25.
girl(x) &
 walk(x)

Consider the following:
>>> m.evaluate('exists x.(girl(x) & walk(x))', g)
True
evaluate() returns True here
 because there is some u in dom such that Example 10-25
 is satisfied by an assignment which binds x to u. In fact,
 o is such a
 u:
>>> m.evaluate('girl(x) & walk(x)', g.add('x', 'o'))
True
One useful tool offered by NLTK is the satisfiers() method. This returns a set of all the individuals that
 satisfy an open formula. The method parameters are a parsed formula, a
 variable, and an assignment. Here are a few examples:
>>> fmla1 = lp.parse('girl(x) | boy(x)')
>>> m.satisfiers(fmla1, 'x', g)
set(['b', 'o'])
>>> fmla2 = lp.parse('girl(x) -> walk(x)')
>>> m.satisfiers(fmla2, 'x', g)
set(['c', 'b', 'o'])
>>> fmla3 = lp.parse('walk(x) -> girl(x)')
>>> m.satisfiers(fmla3, 'x', g)
set(['b', 'o'])
It’s useful to think about why fmla2 and fmla3 receive the values they do. The truth
 conditions for -> mean that
 fmla2 is equivalent to -girl(x) | walk(x), which is satisfied by
 something that either isn’t a girl or walks. Since neither b (Bertie) nor c (Cyril) are girls, according to model
 m, they both satisfy the whole
 formula. And of course o satisfies
 the formula because o satisfies
 both disjuncts. Now, since every member of the domain of discourse
 satisfies fmla2, the corresponding
 universally quantified formula is also true.
>>> m.evaluate('all x.(girl(x) -> walk(x))', g)
True
In other words, a universally quantified formula
 ∀x.φ is true with respect to g just in case for every
 u, φ is true with respect to g[u/x].
Note
Your Turn: Try to figure
 out, first with pencil and paper, and then using m.evaluate(), what the truth values are
 for all x.(girl(x) & walk(x))
 and exists x.(boy(x) ->
 walk(x)). Make sure you understand why they receive these
 values.

Quantifier Scope Ambiguity

What happens when we want to give a formal representation of a
 sentence with two quantifiers, such as the
 following?
Example 10-26.
Everybody admires someone.

There are (at least) two ways of expressing Example 10-26 in first-order logic:
Example 10-27.
	all x.(person(x) -> exists
 y.(person(y) & admire(x,y)))

	exists y.(person(y) & all
 x.(person(x) -> admire(x,y)))

Can we use both of these? The answer is yes, but they have
 different meanings. b is logically
 stronger than a: it claims that there is a
 unique person, say, Bruce, who is admired by everyone. a, on the other hand, just requires that for
 every person u, we can find some person
 u’ whom u admires; but this
 could be a different person u’ in each case. We
 distinguish between a and b in terms of the scope of the quantifiers. In the first, ∀ has
 wider scope than ∃, whereas in b, the
 scope ordering is reversed. So now we have two ways of representing
 the meaning of Example 10-26, and they are both quite
 legitimate. In other words, we are claiming that Example 10-26 is ambiguous with respect
 to quantifier scope, and the formulas in Example 10-27
 give us a way to make the two readings explicit. However, we are not
 just interested in associating two distinct representations with Example 10-26; we also want to show in detail how the two
 representations lead to different conditions for truth in a
 model.
In order to examine the ambiguity more closely, let’s fix our
 valuation as follows:
>>> v2 = """
... bruce => b
... cyril => c
... elspeth => e
... julia => j
... matthew => m
... person => {b, e, j, m}
... admire => {(j, b), (b, b), (m, e), (e, m), (c, a)}
... """
>>> val2 = nltk.parse_valuation(v2)
The admire relation can be visualized using
 the mapping diagram shown in Example 10-28.
Example 10-28.
[image: image with no caption]

In Example 10-28, an arrow between two
 individuals x and y
 indicates that x admires y.
 So j and b both admire b (Bruce is very vain), while e admires m and m
 admires e. In this model, formula
 a is true but b is false. One way of exploring these results
 is by using the satisfiers() method of Model objects.
>>> dom2 = val2.domain
>>> m2 = nltk.Model(dom2, val2)
>>> g2 = nltk.Assignment(dom2)
>>> fmla4 = lp.parse('(person(x) -> exists y.(person(y) & admire(x, y)))')
>>> m2.satisfiers(fmla4, 'x', g2)
set(['a', 'c', 'b', 'e', 'j', 'm'])
This shows that fmla4 holds
 of every individual in the domain. By contrast, consider the formula
 fmla5; this has no satisfiers for
 the variable y.
>>> fmla5 = lp.parse('(person(y) & all x.(person(x) -> admire(x, y)))')
>>> m2.satisfiers(fmla5, 'y', g2)
set([])
That is, there is no person that is admired by everybody. Taking
 a different open formula, fmla6, we
 can verify that there is a person, namely Bruce, who is admired by
 both Julia and Bruce.
>>> fmla6 = lp.parse('(person(y) & all x.((x = bruce | x = julia) -> admire(x, y)))')
>>> m2.satisfiers(fmla6, 'y', g2)
set(['b'])
Note
Your Turn: Devise a new
 model based on m2 such that a comes out false in your model; similarly,
 devise a new model such that b comes out
 true.

Model Building

We have been assuming that we already had a model, and wanted to
 check the truth of a sentence in the model. By contrast, model
 building tries to create a new model, given some set of sentences. If
 it succeeds, then we know that the set is consistent, since we have an
 existence proof of the model.
We invoke the Mace4 model builder by creating an instance of
 Mace() and calling its build_model() method, in an analogous way to calling the Prover9
 theorem prover. One option is to treat our candidate set of sentences
 as assumptions, while leaving the goal unspecified. The following
 interaction shows how both [a, c1]
 and [a, c2] are consistent lists,
 since Mace succeeds in building a model for each of them, whereas
 [c1, c2] is inconsistent.
>>> a3 = lp.parse('exists x.(man(x) & walks(x))')
>>> c1 = lp.parse('mortal(socrates)')
>>> c2 = lp.parse('-mortal(socrates)')
>>> mb = nltk.Mace(5)
>>> print mb.build_model(None, [a3, c1])
True
>>> print mb.build_model(None, [a3, c2])
True
>>> print mb.build_model(None, [c1, c2])
False
We can also use the model builder as an adjunct to the theorem
 prover. Let’s suppose we are trying to prove A ⊢ g,
 i.e., that g is logically derivable
 from assumptions A = [a1, a2, ...,
 an]. We can feed this same input to Mace4, and the model
 builder will try to find a counterexample, that is, to show that
 g does not
 follow from A. So, given this
 input, Mace4 will try to find a model for the assumptions A together with the negation of g, namely the list A' = [a1, a2, ..., an, -g]. If g fails to follow from S, then Mace4 may well return with a
 counterexample faster than Prover9 concludes that it cannot find the
 required proof. Conversely, if g
 is provable from S, Mace4 may take a long time unsuccessfully
 trying to find a countermodel, and will eventually give up.
Let’s consider a concrete scenario. Our assumptions are the list
 [There is a woman that every man loves,
 Adam is a man, Eve is a
 woman]. Our conclusion is Adam loves
 Eve. Can Mace4 find a model in which the premises are true
 but the conclusion is false? In the following code, we use MaceCommand(), which will let us inspect the model that has been
 built.
>>> a4 = lp.parse('exists y. (woman(y) & all x. (man(x) -> love(x,y)))')
>>> a5 = lp.parse('man(adam)')
>>> a6 = lp.parse('woman(eve)')
>>> g = lp.parse('love(adam,eve)')
>>> mc = nltk.MaceCommand(g, assumptions=[a4, a5, a6])
>>> mc.build_model()
True
So the answer is yes: Mace4 found a countermodel in which there
 is some woman other than Eve that Adam loves. But let’s have a closer
 look at Mace4’s model, converted to the format we use for
 valuations:
>>> print mc.valuation
{'C1': 'b',
 'adam': 'a',
 'eve': 'a',
 'love': set([('a', 'b')]),
 'man': set([('a',)]),
 'woman': set([('a',), ('b',)])}
The general form of this valuation should be familiar to you: it
 contains some individual constants and predicates, each with an
 appropriate kind of value. What might be puzzling is the C1. This is a “Skolem constant” that the
 model builder introduces as a representative of the existential
 quantifier. That is, when the model builder encountered the exists y part of a4, it knew that there is some individual
 b in the domain which satisfies the
 open formula in the body of a4.
 However, it doesn’t know whether b
 is also the denotation of an individual constant anywhere else in its
 input, so it makes up a new name for b on the fly, namely C1. Now, since our premises said nothing
 about the individual constants adam
 and eve, the model builder has
 decided there is no reason to treat them as denoting different
 entities, and they both get mapped to a. Moreover, we didn’t specify that man and woman denote disjoint sets, so the model
 builder lets their denotations overlap. This illustrates quite
 dramatically the implicit knowledge that we bring to bear in
 interpreting our scenario, but which the model builder knows nothing
 about. So let’s add a new assumption which makes the sets of men and
 women disjoint. The model builder still produces a countermodel, but
 this time it is more in accord with our intuitions about the
 situation:
>>> a7 = lp.parse('all x. (man(x) -> -woman(x))')
>>> g = lp.parse('love(adam,eve)')
>>> mc = nltk.MaceCommand(g, assumptions=[a4, a5, a6, a7])
>>> mc.build_model()
True
>>> print mc.valuation
{'C1': 'c',
 'adam': 'a',
 'eve': 'b',
 'love': set([('a', 'c')]),
 'man': set([('a',)]),
 'woman': set([('b',), ('c',)])}
On reflection, we can see that there is nothing in our premises
 which says that Eve is the only woman in the domain of discourse, so
 the countermodel in fact is acceptable. If we wanted to rule it out,
 we would have to add a further assumption such as exists y. all x. (woman(x) -> (x = y)) to
 ensure that there is only one woman in the model.

The Semantics of English Sentences

Compositional Semantics in Feature-Based Grammar

At the beginning of the chapter we briefly illustrated a method
 of building semantic representations on the basis of a syntactic
 parse, using the grammar framework developed in Chapter 9. This time, rather than constructing an SQL
 query, we will build a logical form. One of our guiding ideas for
 designing such grammars is the Principle of
 Compositionality. (Also known as Frege’s Principle; see
 [Partee, 1995] for the formulation given.)
Principle of
 Compositionality: the meaning of a whole is a function of
 the meanings of the parts and of the way they are syntactically
 combined.
We will assume that the semantically relevant parts of a complex
 expression are given by a theory of syntactic analysis. Within this
 chapter, we will take it for granted that expressions are parsed
 against a context-free grammar. However, this is not entailed by the
 Principle of Compositionality.
Our goal now is to integrate the construction of a semantic
 representation in a manner that can be smoothly with the process of
 parsing. Example 10-29 illustrates a first approximation
 to the kind of analyses we would like to build.
Example 10-29.
[image: image with no caption]

In Example 10-29, the SEM value at the root node shows a semantic representation
 for the whole sentence, while the SEM values at lower nodes show semantic representations for
 constituents of the sentence. Since the values of SEM have to be treated in a special manner, they are
 distinguished from other feature values by being enclosed in angle
 brackets.
So far, so good, but how do we write grammar rules that will
 give us this kind of result? Our approach will be similar to that
 adopted for the grammar sql0.fcfg
 at the start of this chapter, in that we will assign semantic
 representations to lexical nodes, and then compose the semantic
 representations for each phrase from those of its child nodes.
 However, in the present case we will use function application rather
 than string concatenation as the mode of composition. To be more
 specific, suppose we have NP and
 VP constituents with appropriate
 values for their SEM nodes. Then the SEM value of an S is
 handled by a rule like Example 10-30. (Observe that in
 the case where the value of SEM is a variable, we omit the angle brackets.)
Example 10-30.
S[SEM=<?vp(?np)>] ->
 NP[SEM=?np] VP[SEM=?vp]

Example 10-30 tells us that given some SEM value ?np for the
 subject NP and some SEM value ?vp for the
 VP, the SEM value of the S
 parent is constructed by applying ?vp as a function expression to ?np. From this, we can conclude that
 ?vp has to denote a function which
 has the denotation of ?np in its
 domain. Example 10-30 is a nice example of building
 semantics using the principle of compositionality.
To complete the grammar is very straightforward; all we require
 are the rules shown here:
VP[SEM=?v] -> IV[SEM=?v]
NP[SEM=<cyril>] -> 'Cyril'
IV[SEM=<\x.bark(x)>] -> 'barks'
The VP rule says that the
 parent’s semantics is the same as the head child’s semantics. The two
 lexical rules provide non-logical constants to serve as the semantic
 values of Cyril and barks
 respectively. There is an additional piece of notation in the entry
 for barks which we will explain shortly.
Before launching into compositional semantic rules in more
 detail, we need to add a new tool to our kit, namely the λ-calculus.
 This provides us with an invaluable tool for combining expressions of
 first-order logic as we assemble a meaning representation for an
 English sentence.

The λ-Calculus

In Computing with Language: Simple Statistics, we pointed
 out that mathematical set notation was a helpful method of specifying
 properties P of words that we wanted to select
 from a document. We illustrated this with Example 10-31, which we glossed as “the set
 of all w such that w is an
 element of V (the vocabulary) and
 w has property P”.
Example 10-31.
{w | w ∈
 V &
 P(w)}

It turns out to be extremely useful to add something to
 first-order logic that will achieve the same effect. We do this with
 the λ-operator (pronounced
 “lambda”). The λ counterpart to Example 10-31 is Example 10-32. (Since we are not trying to do set theory
 here, we just treat V as a unary
 predicate.)
Example 10-32.
λw.
 (V(w) &
 P(w))

Note
λ expressions were originally designed by Alonzo Church to
 represent computable functions and to provide a foundation for
 mathematics and logic. The theory in which λ expressions are studied
 is known as the λ-calculus.
 Note that the λ-calculus is not part of first-order logic—both can
 be used independently of the other.

λ is a binding operator, just as the first-order logic
 quantifiers are. If we have an open formula, such as a, then we can bind the variable
 x with the λ operator, as shown in b. The corresponding NLTK representation
 is given in c.
Example 10-33.
	(walk(x) &
 chew_gum(x))

	λx.(walk(x)
 &
 chew_gum(x))

	\x.(walk(x) &
 chew_gum(x))

Remember that \ is a special
 character in Python strings. We must either escape it (with another
 \), or else use “raw strings”
 (Regular Expressions for Detecting Word Patterns) as shown
 here:
>>> lp = nltk.LogicParser()
>>> e = lp.parse(r'\x.(walk(x) & chew_gum(x))')
>>> e
<LambdaExpression \x.(walk(x) & chew_gum(x))>
>>> e.free()
set([])
>>> print lp.parse(r'\x.(walk(x) & chew_gum(y))')
\x.(walk(x) & chew_gum(y))
We have a special name for the result of binding the variables
 in an expression: λ-abstraction. When you first
 encounter λ-abstracts, it can be hard to get an intuitive sense of
 their meaning. A couple of English glosses for b are: “be an x such
 that x walks and x chews
 gum” or “have the property of walking and chewing gum.” It has often
 been suggested that λ-abstracts are good representations for verb
 phrases (or subjectless clauses), particularly when these occur as
 arguments in their own right. This is illustrated in a and its translation, b.
Example 10-34.
	To walk and chew gum is hard

	hard(\x.(walk(x) &
 chew_gum(x))

So the general picture is this: given an open formula φ with
 free variable x, abstracting over
 x yields a property expression
 λx.φ—the property of being an
 x such that φ. Here’s a more official version of
 how abstracts are built:
Example 10-35.
If α is of type τ, and x is a variable of
 type e, then \x.α is of type 〈e,
 τ〉.

b illustrated a case where we
 say something about a property, namely that it is hard. But what we
 usually do with properties is attribute them to individuals. And in
 fact, if φ is an open formula, then the abstract
 λx.φ can be used as a unary predicate. In Example 10-36, b is
 predicated of the term gerald.
Example 10-36.
\x.(walk(x) & chew_gum(x))
 (gerald)

Now Example 10-36 says that Gerald has the
 property of walking and chewing gum, which has the same meaning as
 Example 10-37.
Example 10-37.
(walk(gerald) &
 chew_gum(gerald))

What we have done here is remove the \x from the beginning of \x.(walk(x) & chew_gum(x)) and replaced
 all occurrences of x in (walk(x) & chew_gum(x)) by gerald. We’ll use
 α[β/x] as notation for the operation of replacing
 all free occurrences of x in α by the expression
 β. So
(walk(x) & chew_gum(x))[gerald/x]
represents the same expression as Example 10-37. The “reduction” of Example 10-36 to Example 10-37
 is an extremely useful operation in simplifying semantic
 representations, and we shall use it a lot in the rest of this
 chapter. The operation is often called β-reduction. In order for it to be
 semantically justified, we want it to hold that
 λx. α(β) has the same semantic value as
 α[β/x]. This is indeed true, subject to a slight
 complication that we will come to shortly. In order to carry out
 β-reduction of expressions in NLTK, we can call the simplify() method [image: 1].
>>> e = lp.parse(r'\x.(walk(x) & chew_gum(x))(gerald)')
>>> print e
\x.(walk(x) & chew_gum(x))(gerald)
>>> print e.simplify() [image: 1]
(walk(gerald) & chew_gum(gerald))
Although we have so far only considered cases where the body of
 the λ-abstract is an open formula, i.e., of type
 t, this is not a necessary restriction; the body
 can be any well-formed expression. Here’s an example with two
 λs:
Example 10-38.
\x.\y.(dog(x) & own(y,
 x))

Just as b plays the role of a
 unary predicate, Example 10-38 works like a
 binary predicate: it can be applied directly to two arguments [image: 1]. The LogicParser allows nested λs such as \x.\y. to be written in the abbreviated form
 \x y. [image: 1].
>>> print lp.parse(r'\x.\y.(dog(x) & own(y, x))(cyril)').simplify()
\y.(dog(cyril) & own(y,cyril))
>>> print lp.parse(r'\x y.(dog(x) & own(y, x))(cyril, angus)').simplify() [image: 1]
(dog(cyril) & own(angus,cyril))
All our λ-abstracts so far have involved the familiar
 first-order variables: x, y, and so on—variables of type
 e. But suppose we want to treat one abstract,
 say, \x.walk(x), as the
 argument of another λ-abstract? We might try
 this:
\y.y(angus)(\x.walk(x))
But since the variable y is
 stipulated to be of type e, \y.y(angus) only applies to arguments of
 type e while \x.walk(x) is of type
 〈e, t〉! Instead, we need to
 allow abstraction over variables of higher type. Let’s use P and Q
 as variables of type 〈e, t〉,
 and then we can have an abstract such as \P.P(angus). Since P is of type 〈e,
 t〉, the whole abstract is of type
 〈〈e, t〉,
 t〉. Then \P.P(angus)(\x.walk(x)) is legal, and can be
 simplified via β-reduction to \x.walk(x)(angus) and then again to walk(angus).
When carrying out β-reduction, some care has to be taken with
 variables. Consider, for example, the λ-terms a and b, which
 differ only in the identity of a free variable.
Example 10-39.
	\y.see(y, x)

	\y.see(y, z)

Suppose now that we apply the λ-term \P.exists x.P(x) to each of these
 terms:
Example 10-40.
	\P.exists x.P(x)(\y.see(y,
 x))

	\P.exists x.P(x)(\y.see(y,
 z))

We pointed out earlier that the results of the application
 should be semantically equivalent. But if we let the free variable
 x in a
 fall inside the scope of the existential quantifier in a, then after reduction, the results will be
 different:
Example 10-41.
	exists x.see(x,
 x)

	exists x.see(x,
 z)

a means there is some x that sees him/herself, whereas b means that there is some x that sees an unspecified individual
 z. What has gone wrong here?
 Clearly, we want to forbid the kind of variable “capture” shown in
 a.
In order to deal with this problem, let’s step back a moment.
 Does it matter what particular name we use for the variable bound by
 the existential quantifier in the function expression of a? The answer is no. In fact, given any
 variable-binding expression (involving ∀, ∃, or λ), the name chosen
 for the bound variable is completely arbitrary. For example, exists x.P(x) and exists y.P(y) are equivalent; they are
 called α-equivalents, or alphabetic variants. The process of
 relabeling bound variables is known as α-conversion. When we test for equality of
 VariableBinderExpressions in the logic module (i.e., using ==), we are in fact testing for
 α-equivalence:
>>> e1 = lp.parse('exists x.P(x)')
>>> print e1
exists x.P(x)
>>> e2 = e1.alpha_convert(nltk.sem.Variable('z'))
>>> print e2
exists z.P(z)
>>> e1 == e2
True
When β-reduction is carried out on an application f(a), we check whether there are free
 variables in a that also occur as
 bound variables in any subterms of f. Suppose, as in the example just
 discussed, that x is free in
 a, and that f contains the subterm exists x.P(x). In this case, we produce an
 alphabetic variant of exists
 x.P(x), say, exists
 z1.P(z1), and then carry on with the reduction. This
 relabeling is carried out automatically by the β-reduction code in
 logic, and the results can be seen in the following
 example:
>>> e3 = lp.parse('\P.exists x.P(x)(\y.see(y, x))')
>>> print e3
(\P.exists x.P(x))(\y.see(y,x))
>>> print e3.simplify()
exists z1.see(z1,x)
Note
As you work through examples like these in the following
 sections, you may find that the logical expressions which are
 returned have different variable names; for example, you might see
 z14 in place of z1 in the preceding formula. This change
 in labeling is innocuous—in fact, it is just an illustration of
 alphabetic variants.

After this excursus, let’s return to the task of building
 logical forms for English sentences.

Quantified NPs

At the start of this section, we briefly described how to build
 a semantic representation for Cyril barks. You
 would be forgiven for thinking this was all too easy—surely there is a
 bit more to building compositional semantics. What about quantifiers,
 for instance? Right, this is a crucial issue. For example, we want
 a to be given the logical form in b. How can this be accomplished?
Example 10-42.
	A dog barks.

	exists x.(dog(x) &
 bark(x))

Let’s make the assumption that our only
 operation for building complex semantic representations is function
 application. Then our problem is this: how do we give a semantic
 representation to the quantified NPs a dog so that it
 can be combined with bark to give
 the result in b? As a first step, let’s make
 the subject’s SEM value act as the function expression rather than the
 argument. (This is sometimes called type-raising.) Now we are looking
 for a way of instantiating ?np so
 that [SEM=<?np(\x.bark(x))>] is equivalent to
 [SEM=<exists x.(dog(x) &
 bark(x))>]. Doesn’t this look a bit reminiscent of
 carrying out β-reduction in the λ-calculus? In other words, we want a
 λ-term M to replace ?np so that applying M
 to \x.bark(x) yields b. To do this, we replace the occurrence of
 \x.bark(x) in b by a predicate variable P, and bind the variable with λ, as shown in
 Example 10-43.
Example 10-43.
\P.exists x.(dog(x) &
 P(x))

We have used a different style of variable in Example 10-43—that is, 'P'
 rather than 'x' or 'y'—to signal that we are abstracting over a
 different kind of object—not an individual, but a function expression
 of type 〈e, t〉. So the type
 of Example 10-43 as a whole is 〈〈e,
 t〉, t〉. We will take this to
 be the type of NPs in general. To
 illustrate further, a universally quantified NP will look like Example 10-44.
Example 10-44.
\P.all x.(dog(x) ->
 P(x))

We are pretty much done now, except that we also want to carry
 out a further abstraction plus application for the process of
 combining the semantics of the determiner a,
 namely Example 10-45, with the semantics of
 dog.
Example 10-45.
\Q P.exists x.(Q(x) &
 P(x))

Applying Example 10-45 as a function expression
 to \x.dog(x) yields Example 10-43, and applying that to \x.bark(x) gives us \P.exists x.(dog(x) & P(x))(\x.bark(x)).
 Finally, carrying out β-reduction yields just what we wanted, namely
 b.

Transitive Verbs

Our next challenge is to deal with sentences containing
 transitive verbs, such as Example 10-46.
Example 10-46.
Angus chases a dog.

The output semantics that we want to build is exists x.(dog(x) & chase(angus, x)).
 Let’s look at how we can use λ-abstraction to get this result. A
 significant constraint on possible solutions is to require that the
 semantic representation of a dog be independent
 of whether the NP acts as subject
 or object of the sentence. In other words, we want to get the formula
 just shown as our output while sticking to Example 10-43
 as the NP semantics. A second
 constraint is that VPs should have
 a uniform type of interpretation, regardless of whether they consist
 of just an intransitive verb or a transitive verb plus object. More
 specifically, we stipulate that VPs
 are always of type 〈e, t〉.
 Given these constraints, here’s a semantic representation for
 chases a dog that does the trick.
Example 10-47.
\y.exists x.(dog(x) & chase(y,
 x))

Think of Example 10-47 as the property of being a
 y such that for some dog x,
 y chases x; or more
 colloquially, being a y who chases a dog. Our
 task now resolves to designing a semantic representation for
 chases which can combine with Example 10-43 so as to allow Example 10-47 to be
 derived.
Let’s carry out the inverse of β-reduction on Example 10-47, giving rise to Example 10-48.
Example 10-48.
\P.exists x.(dog(x) &
 P(x))(\z.chase(y, z))

Example 10-48 may be slightly hard to read at
 first; you need to see that it involves applying the quantified
 NP representation from Example 10-43 to \z.chase(y,z). Example 10-48
 is equivalent via β-reduction to
 exists x.(dog(x) & chase(y,
 x)).
Now let’s replace the function expression in Example 10-48 by a variable X of the same type as an NP, that is, of type
 〈〈e, t〉,
 t〉.
Example 10-49.
X(\z.chase(y, z))

The representation of a transitive verb will have to apply to an
 argument of the type of X to yield
 a function expression of the type of VPs, that is, of type
 〈e, t〉. We can ensure this
 by abstracting over both the X
 variable in Example 10-49 and also the subject variable
 y. So the full solution is reached
 by giving chases the semantic representation
 shown in Example 10-50.
Example 10-50.
\X y.X(\x.chase(y,
 x))

If Example 10-50 is applied to Example 10-43, the result after β-reduction is equivalent to
 Example 10-47, which is what we wanted all along:
>>> lp = nltk.LogicParser()
>>> tvp = lp.parse(r'\X x.X(\y.chase(x,y))')
>>> np = lp.parse(r'(\P.exists x.(dog(x) & P(x)))')
>>> vp = nltk.sem.ApplicationExpression(tvp, np)
>>> print vp
(\X x.X(\y.chase(x,y)))(\P.exists x.(dog(x) & P(x)))
>>> print vp.simplify()
\x.exists z2.(dog(z2) & chase(x,z2))
In order to build a semantic representation for a sentence, we
 also need to combine in the semantics of the subject NP. If the latter is a quantified
 expression, such as every girl, everything
 proceeds in the same way as we showed for a dog
 barks earlier on; the subject is translated as a function
 expression which is applied to the semantic representation of the
 VP. However, we now seem to have
 created another problem for ourselves with proper names. So far, these
 have been treated semantically as individual constants, and these
 cannot be applied as functions to expressions like Example 10-47. Consequently, we need to come up with a
 different semantic representation for them. What we do in this case is
 reinterpret proper names so that they too are function expressions,
 like quantified NPs. Here is the
 required λ-expression for Angus:
Example 10-51.
\P.P(angus)

Example 10-51 denotes the characteristic function
 corresponding to the set of all properties which are true of Angus.
 Converting from an individual constant angus to \P.P(angus) is another example of
 type-raising, briefly mentioned earlier, and allows us to replace a
 Boolean-valued application such as \x.walk(x)(angus) with an equivalent
 function application \P.P(angus)(\x.walk(x)). By β-reduction,
 both expressions reduce to walk(angus).
The grammar simple-sem.fcfg
 contains a small set of rules for parsing and translating simple
 examples of the kind that we have been looking at. Here’s a slightly
 more complicated example:
>>> from nltk import load_parser
>>> parser = load_parser('grammars/book_grammars/simple-sem.fcfg', trace=0)
>>> sentence = 'Angus gives a bone to every dog'
>>> tokens = sentence.split()
>>> trees = parser.nbest_parse(tokens)
>>> for tree in trees:
... print tree.node['SEM']
all z2.(dog(z2) -> exists z1.(bone(z1) & give(angus,z1,z2)))
NLTK provides some utilities to make it easier to derive and
 inspect semantic interpretations. The function batch_interpret() is intended for batch interpretation of a list of input
 sentences. It builds a dictionary d
 where for each sentence sent in the
 input, d[sent] is a list of pairs
 (synrep, semrep) consisting
 of trees and semantic representations for sent. The value is a list since sent may be syntactically ambiguous; in the
 following example, however, there is only one parse tree per sentence
 in the list.
(S[SEM=<walk(irene)>]
 (NP[-LOC, NUM='sg', SEM=<\P.P(irene)>]
 (PropN[-LOC, NUM='sg', SEM=<\P.P(irene)>] Irene))
 (VP[NUM='sg', SEM=<\x.walk(x)>]
 (IV[NUM='sg', SEM=<\x.walk(x)>, TNS='pres'] walks)))
(S[SEM=<exists z1.(ankle(z1) & bite(cyril,z1))>]
 (NP[-LOC, NUM='sg', SEM=<\P.P(cyril)>]
 (PropN[-LOC, NUM='sg', SEM=<\P.P(cyril)>] Cyril))
 (VP[NUM='sg', SEM=<\x.exists z1.(ankle(z1) & bite(x,z1))>]
 (TV[NUM='sg', SEM=<\X x.X(\y.bite(x,y))>, TNS='pres'] bites)
 (NP[NUM='sg', SEM=<\Q.exists x.(ankle(x) & Q(x))>]
 (Det[NUM='sg', SEM=<\P Q.exists x.(P(x) & Q(x))>] an)
 (Nom[NUM='sg', SEM=<\x.ankle(x)>]
 (N[NUM='sg', SEM=<\x.ankle(x)>] ankle)))))
We have seen now how to convert English sentences into logical
 forms, and earlier we saw how logical forms could be checked as true
 or false in a model. Putting these two mappings together, we can check
 the truth value of English sentences in a given model. Let’s take
 model m as defined earlier. The
 utility batch_evaluate() resembles batch_interpret(), except that we need to pass a model and a variable
 assignment as parameters. The output is a triple
 (synrep, semrep,
 value), where synrep,
 semrep are as before, and
 value is a truth value. For simplicity, the
 following example only processes a single sentence.
>>> v = """
... bertie => b
... olive => o
... cyril => c
... boy => {b}
... girl => {o}
... dog => {c}
... walk => {o, c}
... see => {(b, o), (c, b), (o, c)}
... """
>>> val = nltk.parse_valuation(v)
>>> g = nltk.Assignment(val.domain)
>>> m = nltk.Model(val.domain, val)
>>> sent = 'Cyril sees every boy'
>>> grammar_file = 'grammars/book_grammars/simple-sem.fcfg'
>>> results = nltk.batch_evaluate([sent], grammar_file, m, g)[0]
>>> for (syntree, semrep, value) in results:
... print semrep
... print value
all z4.(boy(z4) -> see(cyril,z4))
True

Quantifier Ambiguity Revisited

One important limitation of the methods described earlier is
 that they do not deal with scope ambiguity. Our translation method is
 syntax-driven, in the sense that the semantic representation is
 closely coupled with the syntactic analysis, and the scope of the
 quantifiers in the semantics therefore reflects the relative scope of
 the corresponding NPs in the
 syntactic parse tree. Consequently, a sentence like Example 10-26, repeated here, will always be translated as
 a, not b.
Example 10-52.
Every girl chases a dog.

Example 10-53.
	all x.(girl(x) -> exists
 y.(dog(y) & chase(x,y)))

	exists y.(dog(y) & all
 x.(girl(x) -> chase(x,y)))

There are numerous approaches to dealing with scope ambiguity,
 and we will look very briefly at one of the simplest. To start with,
 let’s briefly consider the structure of scoped formulas. Figure 10-3 depicts the way in which the two readings
 of Example 10-52 differ.
[image: Quantifier scopings.]

Figure 10-3. Quantifier scopings.

Let’s consider the lefthand structure first. At the top, we have
 the quantifier corresponding to every girl. The φ
 can be thought of as a placeholder for whatever is inside the scope of
 the quantifier. Moving downward, we see that we can plug in the
 quantifier corresponding to a dog as an
 instantiation of φ. This gives a new placeholder ψ, representing the
 scope of a dog, and into this we can plug the
 “core” of the semantics, namely the open sentence corresponding to
 x chases
 y. The structure on the righthand side is
 identical, except we have swapped round the order of the two
 quantifiers.
In the method known as Cooper
 storage, a semantic representation is no longer an
 expression of first-order logic, but instead a pair consisting of a
 “core” semantic representation plus a list of binding operators. For the moment, think of a
 binding operator as being identical to the semantic representation of
 a quantified NP such as Example 10-44 or Example 10-45. Following
 along the lines indicated in Figure 10-3, let’s
 assume that we have constructed a Cooper-storage-style semantic
 representation of sentence Example 10-52, and let’s
 take our core to be the open formula chase(x,y). Given a list of binding
 operators corresponding to the two NPs in Example 10-52, we
 pick a binding operator off the list, and combine it with the
 core.
\P.exists y.(dog(y) & P(y))(\z2.chase(z1,z2))
Then we take the result, and apply the next binding operator
 from the list to it.
\P.all x.(girl(x) -> P(x))(\z1.exists x.(dog(x) & chase(z1,x)))
Once the list is empty, we have a conventional logical form for
 the sentence. Combining binding operators with the core in this way is
 called S-Retrieval. If we are
 careful to allow every possible order of binding operators (for
 example, by taking all permutations of the list; see Doing More with Functions), then we will be able to
 generate every possible scope ordering of quantifiers.
The next question to address is how we build up a core+store
 representation compositionally. As before, each phrasal and lexical
 rule in the grammar will have a SEM feature, but now there will be embedded features
 CORE and STORE. To illustrate the machinery, let’s
 consider a simpler example, namely Cyril smiles.
 Here’s a lexical rule for the verb smiles (taken
 from the grammar storage.fcfg),
 which looks pretty innocuous:
IV[SEM=[CORE=<\x.smile(x)>, STORE=(/)]] -> 'smiles'
The rule for the proper name Cyril is more
 complex.
NP[SEM=[CORE=<@x>, STORE=(<bo(\P.P(cyril),@x)>)]] -> 'Cyril'
The bo predicate has two
 subparts: the standard (type-raised) representation of a proper name,
 and the expression @x, which is
 called the address of the binding
 operator. (We’ll explain the need for the address variable shortly.)
 @x is a metavariable, that is, a
 variable that ranges over individual variables of the logic and, as
 you will see, also provides the value of core. The rule for VP just percolates up the semantics of the
 IV, and the interesting work is
 done by the S rule.
VP[SEM=?s] -> IV[SEM=?s]

S[SEM=[CORE=<?vp(?np)>, STORE=(?b1+?b2)]] ->
 NP[SEM=[CORE=?np, STORE=?b1]] VP[SEM=[CORE=?vp, STORE=?b2]]
The core value at the
 S node is the result of applying
 the VP’s core value, namely \x.smile(x), to the subject NP’s value. The latter will not be @x, but rather an instantiation of @x, say, z3. After β-reduction, <?vp(?np)> will be unified with
 <smile(z3)>. Now, when
 @x is instantiated as part of the
 parsing process, it will be instantiated uniformly. In particular, the
 occurrence of @x in the subject
 NP’s STORE will also be mapped to z3, yielding the element bo(\P.P(cyril),z3). These steps can be seen
 in the following parse tree.
(S[SEM=[CORE=<smile(z3)>, STORE=(bo(\P.P(cyril),z3))]]
 (NP[SEM=[CORE=<z3>, STORE=(bo(\P.P(cyril),z3))]] Cyril)
 (VP[SEM=[CORE=<\x.smile(x)>, STORE=()]]
 (IV[SEM=[CORE=<\x.smile(x)>, STORE=()]] smiles)))
Let’s return to our more complex example, Example 10-52, and see what the storage style SEM value is, after parsing with grammar storage.fcfg.
CORE = <chase(z1,z2)>
STORE = (bo(\P.all x.(girl(x) -> P(x)),z1), bo(\P.exists x.(dog(x) & P(x)),z2))
It should be clearer now why the address variables are an
 important part of the binding operator. Recall that during
 S-retrieval, we will be taking binding operators off the STORE list and applying them successively to
 the CORE. Suppose we start with
 bo(\P.all x.(girl(x) ->
 P(x)),z1), which we want to combine with chase(z1,z2). The quantifier part of the
 binding operator is \P.all x.(girl(x) ->
 P(x)), and to combine this with chase(z1,z2), the latter needs to first be
 turned into a λ-abstract. How do we know which variable to abstract
 over? This is what the address z1
 tells us, i.e., that every girl has the role of
 chaser rather than chasee.
The module nltk.sem.cooper_storage deals with the task of turning storage-style semantic
 representations into standard logical forms. First, we construct a
 CooperStore instance, and inspect its STORE and CORE.
>>> from nltk.sem import cooper_storage as cs
>>> sentence = 'every girl chases a dog'
>>> trees = cs.parse_with_bindops(sentence, grammar='grammars/book_grammars/storage.fcfg')
>>> semrep = trees[0].node['SEM']
>>> cs_semrep = cs.CooperStore(semrep)
>>> print cs_semrep.core
chase(z1,z2)
>>> for bo in cs_semrep.store:
... print bo
bo(\P.all x.(girl(x) -> P(x)),z1)
bo(\P.exists x.(dog(x) & P(x)),z2)
Finally, we call s_retrieve() and check the readings.
>>> cs_semrep.s_retrieve(trace=True)
Permutation 1
 (\P.all x.(girl(x) -> P(x)))(\z1.chase(z1,z2))
 (\P.exists x.(dog(x) & P(x)))(\z2.all x.(girl(x) -> chase(x,z2)))
Permutation 2
 (\P.exists x.(dog(x) & P(x)))(\z2.chase(z1,z2))
 (\P.all x.(girl(x) -> P(x)))(\z1.exists x.(dog(x) & chase(z1,x)))
>>> for reading in cs_semrep.readings:
... print reading
exists x.(dog(x) & all z3.(girl(z3) -> chase(z3,x)))
all x.(girl(x) -> exists z4.(dog(z4) & chase(x,z4)))

Discourse Semantics

A discourse is a sequence of
 sentences. Very often, the interpretation of a sentence in a discourse
 depends on what preceded it. A clear example of this comes from
 anaphoric pronouns, such as he,
 she, and it. Given a discourse
 such as Angus used to have a dog. But he recently
 disappeared., you will probably interpret
 he as referring to Angus’s dog. However, in
 Angus used to have a dog. He took him for walks in New
 Town., you are more likely to interpret
 he as referring to Angus himself.
Discourse Representation Theory

The standard approach to quantification in first-order logic is
 limited to single sentences. Yet there seem to be examples where the
 scope of a quantifier can extend over two or more sentences. We saw
 one earlier, and here’s a second example, together with a
 translation.
Example 10-54.
	Angus owns a dog. It bit Irene.

	∃x.(dog(x)
 & own(Angus,
 x) &
 bite(x,
 Irene))

That is, the NP a
 dog acts like a quantifier which binds the
 it in the second sentence. Discourse
 Representation Theory (DRT) was developed with the specific goal of
 providing a means for handling this and other semantic phenomena which
 seem to be characteristic of discourse. A discourse representation structure (DRS)
 presents the meaning of discourse in terms of a list of discourse
 referents and a list of conditions. The discourse referents are the things under
 discussion in the discourse, and they correspond to the individual
 variables of first-order logic. The DRS
 conditions apply to those discourse referents, and
 correspond to atomic open formulas of first-order logic. Figure 10-4 illustrates how a DRS for the first sentence in
 a is augmented to become a DRS for both
 sentences.
[image: Building a DRS: The DRS on the lefthand side represents the result of processing the first sentence in the discourse, while the DRS on the righthand side shows the effect of processing the second sentence and integrating its content.]

Figure 10-4. Building a DRS: The DRS on the lefthand side represents the
 result of processing the first sentence in the discourse, while the
 DRS on the righthand side shows the effect of processing the second
 sentence and integrating its content.

When the second sentence of a is
 processed, it is interpreted in the context of what is already present
 in the lefthand side of Figure 10-4. The pronoun
 it triggers the addition of a new discourse
 referent, say, u, and we need to find an
 anaphoric antecedent for it—that is, we
 want to work out what it refers to. In DRT, the
 task of finding the antecedent for an anaphoric pronoun involves
 linking it to a discourse referent already within the current DRS, and
 y is the obvious choice. (We will say more about
 anaphora resolution shortly.) This processing step gives rise to a new
 condition u = y. The
 remaining content contributed by the second sentence is also merged
 with the content of the first, and this is shown on the righthand side
 of Figure 10-4.
Figure 10-4 illustrates how a DRS can represent
 more than just a single sentence. In this case, it is a two-sentence
 discourse, but in principle a single DRS could correspond to the
 interpretation of a whole text. We can inquire into the truth
 conditions of the righthand DRS in Figure 10-4.
 Informally, it is true in some situation s if
 there are entities a, c, and i
 in s corresponding to the discourse referents in
 the DRS such that all the conditions are true in
 s; that is, a
 is named Angus, c is a dog, a owns c,
 i is named
 Irene, and c
 bit i.
In order to process DRSs computationally, we need to convert
 them into a linear format. Here’s an example, where the DRS is a pair
 consisting of a list of discourse referents and a list of DRS
 conditions:
([x, y], [angus(x), dog(y), own(x,y)])
The easiest way to build a DRS object in NLTK is by parsing a string representation
 [image: 1].
>>> dp = nltk.DrtParser()
>>> drs1 = dp.parse('([x, y], [angus(x), dog(y), own(x, y)])') [image: 1]
>>> print drs1
([x,y],[angus(x), dog(y), own(x,y)])
We can use the draw() method [image: 1] to visualize the
 result, as shown in Figure 10-5.
>>> drs1.draw() [image: 1]
[image: DRS screenshot.]

Figure 10-5. DRS screenshot.

When we discussed the truth conditions of the DRSs in Figure 10-4, we assumed that the topmost discourse referents
 were interpreted as existential quantifiers, while the conditions were
 interpreted as though they are conjoined. In fact, every DRS can be
 translated into a formula of first-order logic, and the fol() method implements this translation.
>>> print drs1.fol()
exists x y.((angus(x) & dog(y)) & own(x,y))
In addition to the functionality available for first-order logic
 expressions, DRT Expressions have a DRS-concatenation operator, represented as the
 + symbol. The concatenation of two
 DRSs is a single DRS containing the merged discourse referents and the
 conditions from both arguments. DRS-concatenation automatically
 α-converts bound variables to avoid name-clashes.
>>> drs2 = dp.parse('([x], [walk(x)]) + ([y], [run(y)])')
>>> print drs2
(([x],[walk(x)]) + ([y],[run(y)]))
>>> print drs2.simplify()
([x,y],[walk(x), run(y)])
While all the conditions seen so far have been atomic, it is
 possible to embed one DRS within another, and this is how universal
 quantification is handled. In drs3,
 there are no top-level discourse referents, and the sole condition is
 made up of two sub-DRSs, connected by an implication. Again, we can
 use fol() to get a handle on the truth conditions.
>>> drs3 = dp.parse('([], [(([x], [dog(x)]) -> ([y],[ankle(y), bite(x, y)]))])')
>>> print drs3.fol()
all x.(dog(x) -> exists y.(ankle(y) & bite(x,y)))
We pointed out earlier that DRT is designed to allow anaphoric
 pronouns to be interpreted by linking to existing discourse referents.
 DRT sets constraints on which discourse referents are “accessible” as
 possible antecedents, but is not intended to explain how a particular
 antecedent is chosen from the set of candidates. The module nltk.sem.drt_resolve_anaphora adopts a similarly conservative strategy: if the DRS
 contains a condition of the form PRO(x), the method resolve_anaphora() replaces this with a condition of the form x = [...], where [...] is a list of possible
 antecedents.
>>> drs4 = dp.parse('([x, y], [angus(x), dog(y), own(x, y)])')
>>> drs5 = dp.parse('([u, z], [PRO(u), irene(z), bite(u, z)])')
>>> drs6 = drs4 + drs5
>>> print drs6.simplify()
([x,y,u,z],[angus(x), dog(y), own(x,y), PRO(u), irene(z), bite(u,z)])
>>> print drs6.simplify().resolve_anaphora()
([x,y,u,z],[angus(x), dog(y), own(x,y), (u = [x,y,z]), irene(z), bite(u,z)])
Since the algorithm for anaphora resolution has been separated
 into its own module, this facilitates swapping in alternative
 procedures that try to make more intelligent guesses about the correct
 antecedent.
Our treatment of DRSs is fully compatible with the existing
 machinery for handling λ-abstraction, and consequently it is
 straightforward to build compositional semantic representations that
 are based on DRT rather than first-order logic. This technique is
 illustrated in the following rule for indefinites (which is part of
 the grammar drt.fcfg). For ease
 of comparison, we have added the parallel rule for indefinites from
 simple-sem.fcfg.
Det[NUM=sg,SEM=<\P Q.(([x],[]) + P(x) + Q(x))>] -> 'a'
Det[NUM=sg,SEM=<\P Q. exists x.(P(x) & Q(x))>] -> 'a'
To get a better idea of how the DRT rule works, look at this
 subtree for the NP a
 dog:
(NP[NUM='sg', SEM=<\Q.(([x],[dog(x)]) + Q(x))>]
 (Det[NUM'sg', SEM=<\P Q.((([x],[]) + P(x)) + Q(x))>] a)
 (Nom[NUM='sg', SEM=<\x.([],[dog(x)])>]
 (N[NUM='sg', SEM=<\x.([],[dog(x)])>] dog)))))
The λ-abstract for the indefinite is applied as a function
 expression to \x.([],[dog(x)])
 which leads to \Q.(([x],[]) + ([],[dog(x)]) +
 Q(x)); after simplification, we get \Q.(([x],[dog(x)]) + Q(x)) as the
 representation for the NP as a
 whole.
In order to parse with grammar drt.fcfg, we specify in the call to
 load_earley() that SEM values in
 feature structures are to be parsed using DrtParser in place of the default LogicParser.
>>> from nltk import load_parser
>>> parser = load_parser('grammars/book_grammars/drt.fcfg', logic_parser=nltk.DrtParser())
>>> trees = parser.nbest_parse('Angus owns a dog'.split())
>>> print trees[0].node['SEM'].simplify()
([x,z2],[Angus(x), dog(z2), own(x,z2)])

Discourse Processing

When we interpret a sentence, we use a rich context for
 interpretation, determined in part by the preceding context and in
 part by our background assumptions. DRT provides a theory of how the
 meaning of a sentence is integrated into a representation of the prior
 discourse, but two things have been glaringly absent from the
 processing approach just discussed. First, there has been no attempt
 to incorporate any kind of inference; and second, we have only
 processed individual sentences. These omissions are redressed by the
 module nltk.inference.discourse.
Whereas a discourse is a sequence
 s1, ...
 sn of
 sentences, a discourse thread is a sequence
 s1-ri,
 ...
 sn-rj
 of readings, one for each sentence in the discourse. The module
 processes sentences incrementally, keeping track of all possible
 threads when there is ambiguity. For simplicity, the following example
 ignores scope ambiguity:
>>> dt = nltk.DiscourseTester(['A student dances', 'Every student is a person'])
>>> dt.readings()
s0 readings: s0-r0: exists x.(student(x) & dance(x))
s1 readings: s1-r0: all x.(student(x) -> person(x))
When a new sentence is added to the current discourse, setting
 the parameter consistchk=True causes consistency to
 be checked by invoking the model checker for each thread, i.e., each
 sequence of admissible readings. In this case, the user has the option
 of retracting the sentence in question.
>>> dt.add_sentence('No person dances', consistchk=True)
Inconsistent discourse d0 ['s0-r0', 's1-r0', 's2-r0']:
s0-r0: exists x.(student(x) & dance(x))
s1-r0: all x.(student(x) -> person(x))
s2-r0: -exists x.(person(x) & dance(x))
>>> dt.retract_sentence('No person dances', verbose=True)
Current sentences are
s0: A student dances
s1: Every student is a person
In a similar manner, we use informchk=True to check whether a new
 sentence φ is informative relative to the current discourse. The
 theorem prover treats existing sentences in the thread as assumptions
 and attempts to prove φ; it is informative if no such proof can be
 found.
>>> dt.add_sentence('A person dances', informchk=True)
Sentence 'A person dances' under reading 'exists x.(person(x) & dance(x))':
Not informative relative to thread 'd0'
It is also possible to pass in an additional set of assumptions
 as background knowledge and use these to filter out inconsistent
 readings; see the Discourse HOWTO at http://www.nltk.org/howto for more details.
The discourse module can
 accommodate semantic ambiguity and filter out readings that are not
 admissible. The following example invokes both Glue Semantics as well
 as DRT. Since the Glue Semantics module is configured to use the
 wide-coverage Malt dependency parser, the input (Every dog
 chases a boy. He runs.) needs to be tagged as well as
 tokenized.
>>> from nltk.tag import RegexpTagger
>>> tagger = RegexpTagger(
... [('^(chases|runs)$', 'VB'),
... ('^(a)$', 'ex_quant'),
... ('^(every)$', 'univ_quant'),
... ('^(dog|boy)$', 'NN'),
... ('^(He)$', 'PRP')
...])
>>> rc = nltk.DrtGlueReadingCommand(depparser=nltk.MaltParser(tagger=tagger))
>>> dt = nltk.DiscourseTester(['Every dog chases a boy', 'He runs'], rc)
>>> dt.readings()
s0 readings:
s0-r0: ([],[(([x],[dog(x)]) -> ([z3],[boy(z3), chases(x,z3)]))])
s0-r1: ([z4],[boy(z4), (([x],[dog(x)]) -> ([],[chases(x,z4)]))])

s1 readings:
s1-r0: ([x],[PRO(x), runs(x)])
The first sentence of the discourse has two possible readings,
 depending on the quantifier scoping. The unique reading of the second
 sentence represents the pronoun He via the
 condition PRO(x). Now let’s look at
 the discourse threads that result:
>>> dt.readings(show_thread_readings=True)
d0: ['s0-r0', 's1-r0'] : INVALID: AnaphoraResolutionException
d1: ['s0-r1', 's1-r0'] : ([z6,z10],[boy(z6), (([x],[dog(x)]) ->
([],[chases(x,z6)])), (z10 = z6), runs(z10)])
When we examine threads d0
 and d1, we see that reading
 s0-r0, where every
 dog out-scopes a boy, is
 deemed inadmissible because the pronoun in the second sentence cannot
 be resolved. By contrast, in thread d1 the pronoun (relettered to z10) has been bound via the equation
 (z10 = z6).
Inadmissible readings can be filtered out by passing the
 parameter filter=True.
>>> dt.readings(show_thread_readings=True, filter=True)
d1: ['s0-r1', 's1-r0'] : ([z12,z15],[boy(z12), (([x],[dog(x)]) ->
([],[chases(x,z12)])), (z17 = z15), runs(z15)])
Although this little discourse is extremely limited, it should
 give you a feel for the kind of semantic processing issues that arise
 when we go beyond single sentences, and also a feel for the techniques
 that can be deployed to address them.

Summary

	First-order logic is a suitable language for representing
 natural language meaning in a computational setting since it is
 flexible enough to represent many useful aspects of natural meaning,
 and there are efficient theorem provers for reasoning with
 first-order logic. (Equally, there are a variety of phenomena in
 natural language semantics which are believed to require more
 powerful logical mechanisms.)

	As well as translating natural language sentences into
 first-order logic, we can state the truth conditions of these
 sentences by examining models of first-order formulas.

	In order to build meaning representations compositionally, we
 supplement first-order logic with the λ-calculus.

	β-reduction in the λ-calculus corresponds semantically to
 application of a function to an argument. Syntactically, it involves
 replacing a variable bound by λ in the function expression with the
 expression that provides the argument in the function
 application.

	A key part of constructing a model lies in building a
 valuation which assigns interpretations to non-logical constants.
 These are interpreted as either n-ary
 predicates or as individual constants.

	An open expression is an expression containing one or more
 free variables. Open expressions receive an interpretation only when
 their free variables receive values from a variable
 assignment.

	Quantifiers are interpreted by constructing, for a formula
 φ[x] open in variable x,
 the set of individuals which make φ[x] true
 when an assignment g assigns them as the value
 of x. The quantifier then places constraints on
 that set.

	A closed expression is one that has no free variables; that
 is, the variables are all bound. A closed sentence is true or false
 with respect to all variable assignments.

	If two formulas differ only in the label of the variable bound
 by binding operator (i.e., λ or a quantifier) , they are said to be
 α-equivalents. The result of relabeling a bound variable in a
 formula is called α-conversion.

	Given a formula with two nested quantifiers
 Q1 and
 Q2, the outermost
 quantifier Q1 is said to
 have wide scope (or scope over
 Q2). English sentences
 are frequently ambiguous with respect to the scope of the
 quantifiers they contain.

	English sentences can be associated with a semantic
 representation by treating SEM as a feature in a feature-based grammar. The SEM value of a complex expressions, typically involves
 functional application of the SEM values of the component expressions.

Further Reading

Consult http://www.nltk.org/ for further
 materials on this chapter and on how to install the Prover9 theorem
 prover and Mace4 model builder. General information about these two
 inference tools is given by (McCune, 2008).
For more examples of semantic analysis with NLTK, please see the
 semantics and logic HOWTOs at http://www.nltk.org/howto. Note that there are
 implementations of two other approaches to scope ambiguity, namely
 Hole semantics as described in
 (Blackburn & Bos, 2005), and Glue
 semantics, as described in (Dalrymple et al.,
 1999).
There are many phenomena in natural language semantics that have
 not been touched on in this chapter, most notably:
	Events, tense, and aspect

	Semantic roles

	Generalized quantifiers, such as
 most

	Intensional constructions involving, for example, verbs such
 as may and believe

While (1) and (2) can be dealt with using first-order logic, (3)
 and (4) require different logics. These issues are covered by many of
 the references in the following readings.
A comprehensive overview of results and techniques in building
 natural language front-ends to databases can be found in
 (Androutsopoulos, Ritchie & Thanisch, 1995).
Any introductory book to modern logic will present propositional
 and first-order logic. (Hodges, 1977) is highly recommended as an
 entertaining and insightful text with many illustrations from natural
 language.
For a wide-ranging, two-volume textbook on logic that also
 presents contemporary material on the formal semantics of natural
 language, including Montague Grammar and intensional logic, see (Gamut,
 1991a, 1991b). (Kamp & Reyle, 1993) provides the definitive account
 of Discourse Representation Theory, and covers a large and interesting
 fragment of natural language, including tense, aspect, and modality.
 Another comprehensive study of the semantics of many natural language
 constructions is (Carpenter, 1997).
There are numerous works that introduce logical semantics within
 the framework of linguistic theory. (Chierchia & McConnell-Ginet,
 1990) is relatively agnostic about syntax, while (Heim & Kratzer,
 1998) and (Larson & Segal, 1995) are both more explicitly oriented
 toward integrating truth-conditional semantics into a Chomskyan
 framework.
(Blackburn & Bos, 2005) is the first textbook devoted to
 computational semantics, and provides an excellent introduction to the
 area. It expands on many of the topics covered in this chapter,
 including underspecification of quantifier scope ambiguity, first-order
 inference, and discourse processing.
To gain an overview of more advanced contemporary approaches to
 semantics, including treatments of tense and generalized quantifiers,
 try consulting (Lappin, 1996) or (van Benthem & ter Meulen,
 1997).

Exercises

	○ Translate the following sentences into propositional logic
 and verify that they parse with LogicParser. Provide a key that shows how the propositional
 variables in your translation correspond to expressions of
 English.
	If Angus sings, it is not the case that Bertie
 sulks.

	Cyril runs and barks.

	It will snow if it doesn’t rain.

	It’s not the case that Irene will be happy if Olive or
 Tofu comes.

	Pat didn’t cough or sneeze.

	If you don’t come if I call, I won’t come if you
 call.

	○ Translate the following sentences into predicate-argument
 formulas of first-order logic.
	Angus likes Cyril and Irene hates Cyril.

	Tofu is taller than Bertie.

	Bruce loves himself and Pat does too.

	Cyril saw Bertie, but Angus didn’t.

	Cyril is a four-legged friend.

	Tofu and Olive are near each other.

	○ Translate the following sentences into quantified formulas
 of first-order logic.
	Angus likes someone and someone likes Julia.

	Angus loves a dog who loves him.

	Nobody smiles at Pat.

	Somebody coughs and sneezes.

	Nobody coughed or sneezed.

	Bruce loves somebody other than Bruce.

	Nobody other than Matthew loves Pat.

	Cyril likes everyone except for Irene.

	Exactly one person is asleep.

	○ Translate the following verb phrases using λ-abstracts and
 quantified formulas of first-order logic.
	feed Cyril and give a capuccino to Angus

	be given ‘War and Peace’ by Pat

	be loved by everyone

	be loved or detested by everyone

	be loved by everyone and detested by no-one

	○ Consider the following statements:
>>> lp = nltk.LogicParser()
>>> e2 = lp.parse('pat')
>>> e3 = nltk.sem.ApplicationExpression(e1, e2)
>>> print e3.simplify()
exists y.love(pat, y)
Clearly something is missing here, namely a declaration of the
 value of e1. In order for
 ApplicationExpression(e1,
 e2) to be β-convertible to exists y.love(pat, y), e1 must be a λ-abstract which can take
 pat as an argument. Your task is
 to construct such an abstract, bind it to e1, and satisfy yourself that these
 statements are all satisfied (up to alphabetic variance). In
 addition, provide an informal English translation of e3.simplify().
Now carry on doing this same task for the further cases of
 e3.simplify() shown here:
>>> print e3.simplify()
exists y.(love(pat,y) | love(y,pat))
>>> print e3.simplify()
exists y.(love(pat,y) | love(y,pat))
>>> print e3.simplify()
walk(fido)

	○ As in the preceding exercise, find a λ-abstract e1 that yields results equivalent to those
 shown here:
>>> e2 = lp.parse('chase')
>>> e3 = nltk.sem.ApplicationExpression(e1, e2)
>>> print e3.simplify()
\x.all y.(dog(y) -> chase(x,pat))
>>> e2 = lp.parse('chase')
>>> e3 = nltk.sem.ApplicationExpression(e1, e2)
>>> print e3.simplify()
\x.exists y.(dog(y) & chase(pat,x))
>>> e2 = lp.parse('give')
>>> e3 = nltk.sem.ApplicationExpression(e1, e2)
>>> print e3.simplify()
\x0 x1.exists y.(present(y) & give(x1,y,x0))

	○ As in the preceding exercise, find a λ-abstract e1 that yields results equivalent to those
 shown here:
>>> e2 = lp.parse('bark')
>>> e3 = nltk.sem.ApplicationExpression(e1, e2)
>>> print e3.simplify()
exists y.(dog(x) & bark(x))
>>> e2 = lp.parse('bark')
>>> e3 = nltk.sem.ApplicationExpression(e1, e2)
>>> print e3.simplify()
bark(fido)
>>> e2 = lp.parse('\\P. all x. (dog(x) -> P(x))')
>>> e3 = nltk.sem.ApplicationExpression(e1, e2)
>>> print e3.simplify()
all x.(dog(x) -> bark(x))

	[image:] Develop a method for translating English sentences into
 formulas with binary generalized
 quantifiers. In such an approach, given a generalized
 quantifier Q, a quantified
 formula is of the form Q(A, B),
 where both A and B are expressions of type
 〈e, t〉. Then, for example,
 all(A, B) is true iff A denotes a subset of what B denotes.

	[image:] Extend the approach in the preceding exercise so that the
 truth conditions for quantifiers such as most
 and exactly three can be computed in a
 model.

	[image:] Modify the sem.evaluate code so that it will give a helpful error message if
 an expression is not in the domain of a model’s valuation
 function.

	● Select three or four contiguous sentences from a book for
 children. A possible source of examples are the collections of
 stories in nltk.corpus.gutenberg:
 bryant-stories.txt, burgess-busterbrown.txt, and edgeworth-parents.txt. Develop a grammar
 that will allow your sentences to be translated into first-order
 logic, and build a model that will allow those translations to be
 checked for truth or falsity.

	● Carry out the preceding exercise, but use DRT as the meaning
 representation.

	● Taking (Warren & Pereira, 1982) as a starting point,
 develop a technique for converting a natural language query into a
 form that can be evaluated more efficiently in a model. For example,
 given a query of the form (P(x) &
 Q(x)), convert it to (Q(x) &
 P(x)) if the extension of Q is smaller than the extension of
 P.

Chapter 11. Managing Linguistic Data

Structured collections of annotated linguistic data are essential in
 most areas of NLP; however, we still face many obstacles in using them.
 The goal of this chapter is to answer the following questions:
	How do we design a new language resource and ensure that its
 coverage, balance, and documentation support a wide range of
 uses?

	When existing data is in the wrong format for some analysis
 tool, how can we convert it to a suitable format?

	What is a good way to document the existence of a resource we
 have created so that others can easily find it?

Along the way, we will study the design of existing corpora, the
 typical workflow for creating a corpus, and the life cycle of a corpus. As
 in other chapters, there will be many examples drawn from practical
 experience managing linguistic data, including data that has been
 collected in the course of linguistic fieldwork, laboratory work, and web
 crawling.
Corpus Structure: A Case Study

The TIMIT Corpus was the first annotated speech database to be
 widely distributed, and it has an especially clear organization. TIMIT
 was developed by a consortium including Texas Instruments and MIT, from
 which it derives its name. It was designed to provide data for the
 acquisition of acoustic-phonetic knowledge and to support the
 development and evaluation of automatic speech recognition
 systems.
The Structure of TIMIT

Like the Brown Corpus, which displays a balanced selection of
 text genres and sources, TIMIT includes a balanced selection of
 dialects, speakers, and materials. For each of eight dialect regions,
 50 male and female speakers having a range of ages and educational
 backgrounds each read 10 carefully chosen sentences. Two sentences,
 read by all speakers, were designed to bring out dialect
 variation:
Example 11-1.
	she had your dark suit in greasy wash water all
 year

	don’t ask me to carry an oily rag like that

The remaining sentences were chosen to be phonetically rich,
 involving all phones (sounds) and a comprehensive range of diphones
 (phone bigrams). Additionally, the design strikes a balance between
 multiple speakers saying the same sentence in order to permit
 comparison across speakers, and having a large range of sentences
 covered by the corpus to get maximal coverage of diphones. Five of the
 sentences read by each speaker are also read by six other speakers
 (for comparability). The remaining three sentences read by each
 speaker were unique to that speaker (for coverage).
NLTK includes a sample from the TIMIT Corpus. You can access its
 documentation in the usual way, using help(nltk.corpus.timit). Print nltk.corpus.timit.fileids() to see a list of
 the 160 recorded utterances in the corpus sample. Each filename has
 internal structure, as shown in Figure 11-1.
[image: Structure of a TIMIT identifier: Each recording is labeled using a string made up of the speaker’s dialect region, gender, speaker identifier, sentence type, and sentence identifier.]

Figure 11-1. Structure of a TIMIT identifier: Each recording is labeled
 using a string made up of the speaker’s dialect region, gender,
 speaker identifier, sentence type, and sentence identifier.

Each item has a phonetic transcription which can be accessed
 using the phones() method. We can access the corresponding word tokens in
 the customary way. Both access methods permit an optional argument
 offset=True, which includes the
 start and end offsets of the corresponding span in the audio
 file.
>>> phonetic = nltk.corpus.timit.phones('dr1-fvmh0/sa1')
>>> phonetic
['h#', 'sh', 'iy', 'hv', 'ae', 'dcl', 'y', 'ix', 'dcl', 'd', 'aa', 'kcl',
's', 'ux', 'tcl', 'en', 'gcl', 'g', 'r', 'iy', 's', 'iy', 'w', 'aa',
'sh', 'epi', 'w', 'aa', 'dx', 'ax', 'q', 'ao', 'l', 'y', 'ih', 'ax', 'h#']
>>> nltk.corpus.timit.word_times('dr1-fvmh0/sa1')
[('she', 7812, 10610), ('had', 10610, 14496), ('your', 14496, 15791),
('dark', 15791, 20720), ('suit', 20720, 25647), ('in', 25647, 26906),
('greasy', 26906, 32668), ('wash', 32668, 37890), ('water', 38531, 42417),
('all', 43091, 46052), ('year', 46052, 50522)]
In addition to this text data, TIMIT includes a lexicon that
 provides the canonical pronunciation of every word, which can be
 compared with a particular utterance:
>>> timitdict = nltk.corpus.timit.transcription_dict()
>>> timitdict['greasy'] + timitdict['wash'] + timitdict['water']
['g', 'r', 'iy1', 's', 'iy', 'w', 'ao1', 'sh', 'w', 'ao1', 't', 'axr']
>>> phonetic[17:30]
['g', 'r', 'iy', 's', 'iy', 'w', 'aa', 'sh', 'epi', 'w', 'aa', 'dx', 'ax']
This gives us a sense of what a speech processing system would
 have to do in producing or recognizing speech in this particular
 dialect (New England). Finally, TIMIT includes demographic data about
 the speakers, permitting fine-grained study of vocal, social, and
 gender characteristics.
>>> nltk.corpus.timit.spkrinfo('dr1-fvmh0')
SpeakerInfo(id='VMH0', sex='F', dr='1', use='TRN', recdate='03/11/86',
birthdate='01/08/60', ht='5\'05"', race='WHT', edu='BS',
comments='BEST NEW ENGLAND ACCENT SO FAR')

Notable Design Features

TIMIT illustrates several key features of corpus design. First,
 the corpus contains two layers of annotation, at the phonetic and
 orthographic levels. In general, a text or speech corpus may be
 annotated at many different linguistic levels, including
 morphological, syntactic, and discourse levels. Moreover, even at a
 given level there may be different labeling schemes or even
 disagreement among annotators, such that we want to represent multiple
 versions. A second property of TIMIT is its balance across multiple
 dimensions of variation, for coverage of dialect regions and diphones.
 The inclusion of speaker demographics brings in many more independent
 variables that may help to account for variation in the data, and
 which facilitate later uses of the corpus for purposes that were not
 envisaged when the corpus was created, such as sociolinguistics. A
 third property is that there is a sharp division between the original
 linguistic event captured as an audio recording and the annotations of
 that event. The same holds true of text corpora, in the sense that the
 original text usually has an external source, and is considered to be
 an immutable artifact. Any transformations of that artifact which
 involve human judgment—even something as simple as tokenization—are
 subject to later revision; thus it is important to retain the source
 material in a form that is as close to the original as
 possible.
[image: Structure of the published TIMIT Corpus: The CD-ROM contains doc, train, and test directories at the top level; the train and test directories both have eight sub-directories, one per dialect region; each of these contains further subdirectories, one per speaker; the contents of the directory for female speaker aks0 are listed, showing 10 wav files accompanied by a text transcription, a word-aligned transcription, and a phonetic transcription.]

Figure 11-2. Structure of the published TIMIT Corpus: The CD-ROM contains
 doc, train, and test
 directories at the top level; the train and test
 directories both have eight sub-directories, one per dialect region;
 each of these contains further subdirectories, one per speaker; the
 contents of the directory for female speaker aks0 are listed,
 showing 10 wav files accompanied by a
 text transcription, a word-aligned transcription, and a phonetic
 transcription.

A fourth feature of TIMIT is the hierarchical structure of the
 corpus. With 4 files per sentence, and 10 sentences for each of 500
 speakers, there are 20,000 files. These are organized into a tree
 structure, shown schematically in Figure 11-2. At the top level there is a split
 between training and testing sets, which gives away its intended use
 for developing and evaluating statistical models.
Finally, notice that even though TIMIT is a speech corpus, its
 transcriptions and associated data are just text, and can be processed
 using programs just like any other text corpus. Therefore, many of the
 computational methods described in this book are applicable. Moreover,
 notice that all of the data types included in the TIMIT Corpus fall
 into the two basic categories of lexicon and text, which we will
 discuss later. Even the speaker demographics data is just another
 instance of the lexicon data type.
This last observation is less surprising when we consider that
 text and record structures are the primary domains for the two
 subfields of computer science that focus on data management, namely
 text retrieval and databases. A notable feature of linguistic data
 management is that it usually brings both data types together, and
 that it can draw on results and techniques from both fields.

Fundamental Data Types

Despite its complexity, the TIMIT Corpus contains only two
 fundamental data types, namely lexicons and texts. As we saw in
 Chapter 2, most lexical resources can be represented using a record
 structure, i.e., a key plus one or more fields, as shown in Figure 11-3. A lexical resource could be a conventional
 dictionary or comparative wordlist, as illustrated. It could also be a
 phrasal lexicon, where the key field is a phrase rather than a single
 word. A thesaurus also consists of record-structured data, where we
 look up entries via non-key fields that correspond to topics. We can
 also construct special tabulations (known as paradigms) to illustrate
 contrasts and systematic variation, as shown in Figure 11-3 for three verbs. TIMIT’s speaker table is
 also a kind of lexicon.
[image: Basic linguistic data types—lexicons and texts: Amid their diversity, lexicons have a record structure, whereas annotated texts have a temporal organization.]

Figure 11-3. Basic linguistic data types—lexicons and texts: Amid their
 diversity, lexicons have a record structure, whereas annotated texts
 have a temporal organization.

At the most abstract level, a text is a representation of a real
 or fictional speech event, and the time-course of that event carries
 over into the text itself. A text could be a small unit, such as a
 word or sentence, or a complete narrative or dialogue. It may come
 with annotations such as part-of-speech tags, morphological analysis,
 discourse structure, and so forth. As we saw in the IOB tagging
 technique (Chapter 7), it is possible to represent higher-level
 constituents using tags on individual words. Thus the abstraction of
 text shown in Figure 11-3 is sufficient.
Despite the complexities and idiosyncrasies of individual
 corpora, at base they are collections of texts together with
 record-structured data. The contents of a corpus are often biased
 toward one or the other of these types. For example, the Brown Corpus
 contains 500 text files, but we still use a table to relate the files
 to 15 different genres. At the other end of the spectrum, WordNet
 contains 117,659 synset records, yet it incorporates many example
 sentences (mini-texts) to illustrate word usages. TIMIT is an
 interesting midpoint on this spectrum, containing substantial
 free-standing material of both the text and lexicon types.

The Life Cycle of a Corpus

Corpora are not born fully formed, but involve careful preparation
 and input from many people over an extended period. Raw data needs to be
 collected, cleaned up, documented, and stored in a systematic structure.
 Various layers of annotation might be applied, some requiring
 specialized knowledge of the morphology or syntax of the language.
 Success at this stage depends on creating an efficient workflow
 involving appropriate tools and format converters. Quality control
 procedures can be put in place to find inconsistencies in the
 annotations, and to ensure the highest possible level of inter-annotator
 agreement. Because of the scale and complexity of the task, large
 corpora may take years to prepare, and involve tens or hundreds of
 person-years of effort. In this section, we briefly review the various
 stages in the life cycle of a corpus.
Three Corpus Creation Scenarios

In one type of corpus, the design unfolds over in the course of
 the creator’s explorations. This is the pattern typical of traditional
 “field linguistics,” in which material from elicitation sessions is
 analyzed as it is gathered, with tomorrow’s elicitation often based on
 questions that arise in analyzing today’s. The resulting corpus is
 then used during subsequent years of research, and may serve as an
 archival resource indefinitely. Computerization is an obvious boon to
 work of this type, as exemplified by the popular program Shoebox, now
 over two decades old and re-released as Toolbox (see Lexical Resources). Other software tools, even simple
 word processors and spreadsheets, are routinely used to acquire the
 data. In the next section, we will look at how to extract data from
 these sources.
Another corpus creation scenario is typical of experimental
 research where a body of carefully designed material is collected from
 a range of human subjects, then analyzed to evaluate a hypothesis or
 develop a technology. It has become common for such databases to be
 shared and reused within a laboratory or company, and often to be
 published more widely. Corpora of this type are the basis of the
 “common task” method of research management, which over the past two
 decades has become the norm in government-funded research programs in
 language technology. We have already encountered many such corpora in
 the earlier chapters; we will see how to write Python programs to
 implement the kinds of curation tasks that are necessary before such
 corpora are published.
Finally, there are efforts to gather a “reference corpus” for a
 particular language, such as the American National
 Corpus (ANC) and the British National
 Corpus (BNC). Here the goal has been to produce a
 comprehensive record of the many forms, styles, and uses of a
 language. Apart from the sheer challenge of scale, there is a heavy
 reliance on automatic annotation tools together with post-editing to
 fix any errors. However, we can write programs to locate and repair
 the errors, and also to analyze the corpus for balance.

Quality Control

Good tools for automatic and manual preparation of data are
 essential. However, the creation of a high-quality corpus depends just
 as much on such mundane things as documentation, training, and
 workflow. Annotation guidelines define the task and document the
 markup conventions. They may be regularly updated to cover difficult
 cases, along with new rules that are devised to achieve more
 consistent annotations. Annotators need to be trained in the
 procedures, including methods for resolving cases not covered in the
 guidelines. A workflow needs to be established, possibly with
 supporting software, to keep track of which files have been
 initialized, annotated, validated, manually checked, and so on. There
 may be multiple layers of annotation, provided by different
 specialists. Cases of uncertainty or disagreement may require
 adjudication.
Large annotation tasks require multiple annotators, which raises
 the problem of achieving
 consistency. How consistently can a group of annotators perform? We
 can easily measure consistency by having a portion of the source
 material independently annotated by two people. This may reveal
 shortcomings in the guidelines or differing abilities with the
 annotation task. In cases where quality is paramount, the entire
 corpus can be annotated twice, and any inconsistencies adjudicated by
 an expert.
It is considered best practice to report the inter-annotator
 agreement that was achieved for a corpus (e.g., by double-annotating
 10% of the corpus). This score serves as a helpful upper bound on the
 expected performance of any automatic system that is trained on this
 corpus.
Caution!
Care should be exercised when interpreting an inter-annotator
 agreement score, since annotation tasks vary greatly in their
 difficulty. For example, 90% agreement would be a terrible score for
 part-of-speech tagging, but an exceptional score for semantic role
 labeling.

The Kappa coefficient κ
 measures agreement between two people making category judgments,
 correcting for expected chance agreement. For example, suppose an item
 is to be annotated, and four coding options are equally likely. In
 this case, two people coding randomly would be expected to agree 25%
 of the time. Thus, an agreement of 25% will be assigned κ = 0, and
 better levels of agreement will be scaled accordingly. For an
 agreement of 50%, we would get κ = 0.333, as 50 is a third of the way
 from 25 to 100. Many other agreement measures exist; see help(nltk.metrics.agreement) for details.
[image: Three segmentations of a sequence: The small rectangles represent characters, words, sentences, in short, any sequence which might be divided into linguistic units; S1 and S2 are in close agreement, but both differ significantly from S3.]

Figure 11-4. Three segmentations of a sequence: The small rectangles
 represent characters, words, sentences, in short, any sequence which
 might be divided into linguistic units; S1
 and S2 are in close agreement, but both
 differ significantly from S3.

We can also measure the agreement between two independent
 segmentations of language input, e.g., for tokenization, sentence
 segmentation, and named entity recognition. In Figure 11-4 we see three possible segmentations of a
 sequence of items which might have been produced by annotators (or
 programs). Although none of them agree exactly,
 S1 and S2 are in close
 agreement, and we would like a suitable measure. Windowdiff is a
 simple algorithm for evaluating the agreement of two segmentations by
 running a sliding window over the data and awarding partial credit for
 near misses. If we preprocess our tokens into a sequence of zeros and
 ones, to record when a token is followed by a boundary, we can
 represent the segmentations as strings and apply the windowdiff scorer.
>>> s1 = "00000010000000001000000"
>>> s2 = "00000001000000010000000"
>>> s3 = "00010000000000000001000"
>>> nltk.windowdiff(s1, s1, 3)
0
>>> nltk.windowdiff(s1, s2, 3)
4
>>> nltk.windowdiff(s2, s3, 3)
16
In this example, the window had a size of 3. The windowdiff computation slides this window
 across a pair of strings. At each position it totals up the number of
 boundaries found inside this window, for both strings, then computes
 the difference. These differences are then summed. We can increase or
 shrink the window size to control the sensitivity of the
 measure.

Curation Versus Evolution

As large corpora are published, researchers are increasingly
 likely to base their investigations on balanced, focused subsets that
 were derived from corpora produced for entirely different reasons. For
 instance, the Switchboard database, originally collected for speaker
 identification research, has since been used as the basis for
 published studies in speech recognition, word pronunciation,
 disfluency, syntax, intonation, and discourse structure. The
 motivations for recycling linguistic corpora include the desire to
 save time and effort, the desire to work on material available to
 others for replication, and sometimes a desire to study more
 naturalistic forms of linguistic behavior than would be possible
 otherwise. The process of choosing a subset for such a study may count
 as a non-trivial contribution in itself.
In addition to selecting an appropriate subset of a corpus, this
 new work could involve reformatting a text file (e.g., converting to
 XML), renaming files, retokenizing the text, selecting a subset of the
 data to enrich, and so forth. Multiple research groups might do this
 work independently, as illustrated in Figure 11-5. At a later date, should someone want to
 combine sources of information from different versions, the task will
 probably be extremely onerous.
[image: Evolution of a corpus over time: After a corpus is published, research groups will use it independently, selecting and enriching different pieces; later research that seeks to integrate separate annotations confronts the difficult challenge of aligning the annotations.]

Figure 11-5. Evolution of a corpus over time: After a corpus is published,
 research groups will use it independently, selecting and enriching
 different pieces; later research that seeks to integrate separate
 annotations confronts the difficult challenge of aligning the
 annotations.

The task of using derived corpora is made even more difficult by
 the lack of any record about how the derived version was created, and
 which version is the most up-to-date.
An alternative to this chaotic situation is for a corpus to be
 centrally curated, and for committees of experts to revise and extend
 it at periodic intervals, considering submissions from third parties
 and publishing new releases from time to time. Print dictionaries and
 national corpora may be centrally curated in this way. However, for
 most corpora this model is simply impractical.
A middle course is for the original corpus publication to have a
 scheme for identifying any sub-part. Each sentence, tree, or lexical
 entry could have a globally unique identifier, and each token, node,
 or field (respectively) could have a relative offset. Annotations,
 including segmentations, could reference the source using this
 identifier scheme (a method which is known as standoff annotation). This way, new
 annotations could be distributed independently of the source, and
 multiple independent annotations of the same source could be compared
 and updated without touching the source.
If the corpus publication is provided in multiple versions, the
 version number or date could be part of the identification scheme. A
 table of correspondences between identifiers across editions of the
 corpus would permit any standoff annotations to be updated
 easily.
Caution!
Sometimes an updated corpus contains revisions of base
 material that has been externally annotated. Tokens might be split
 or merged, and constituents may have been rearranged. There may not
 be a one-to-one correspondence between old and new identifiers. It
 is better to cause standoff annotations to break on such components
 of the new version than to silently allow their identifiers to refer
 to incorrect locations.

Acquiring Data

Obtaining Data from the Web

The Web is a rich source of data for language analysis purposes.
 We have already discussed methods for accessing individual files, RSS
 feeds, and search engine results (see Accessing Text from the Web and from Disk). However, in some cases we want to
 obtain large quantities of web text.
The simplest approach is to obtain a published corpus of web
 text. The ACL Special Interest Group on Web as Corpus (SIGWAC)
 maintains a list of resources at http://www.sigwac.org.uk/. The advantage of using a
 well-defined web corpus is that they are documented, stable, and
 permit reproducible experimentation.
If the desired content is localized to a particular website,
 there are many utilities for capturing all the accessible contents of
 a site, such as GNU Wget (http://www.gnu.org/software/wget/). For maximal
 flexibility and control, a web crawler can be used, such as Heritrix
 (http://crawler.archive.org/). Crawlers permit
 fine-grained control over where to look, which links to follow, and
 how to organize the results. For example, if we want to compile a
 bilingual text collection having corresponding pairs of documents in
 each language, the crawler needs to detect the structure of the site
 in order to extract the correspondence between the documents, and it
 needs to organize the downloaded pages in such a way that the
 correspondence is captured. It might be tempting to write your own web
 crawler, but there are dozens of pitfalls having to do with detecting
 MIME types, converting relative to absolute URLs, avoiding getting
 trapped in cyclic link structures, dealing with network latencies,
 avoiding overloading the site or being banned from accessing the site,
 and so on.

Obtaining Data from Word Processor Files

Word processing software is often used in the manual preparation
 of texts and lexicons in projects that have limited computational
 infrastructure. Such projects often provide templates for data entry,
 though the word processing software does not ensure that the data is
 correctly structured. For example, each text may be required to have a
 title and date. Similarly, each lexical entry may have certain
 obligatory fields. As the data grows in size and complexity, a larger
 proportion of time may be spent maintaining its consistency.
How can we extract the content of such files so that we can
 manipulate it in external programs? Moreover, how can we validate the
 content of these files to help authors create well-structured data, so
 that the quality of the data can be maximized in the context of the
 original authoring process?
Consider a dictionary in which each entry has a part-of-speech
 field, drawn from a set of 20 possibilities, displayed after the
 pronunciation field, and rendered in 11-point bold type. No
 conventional word processor has search or macro functions capable of
 verifying that all part-of-speech fields have been correctly entered
 and displayed. This task requires exhaustive manual checking. If the
 word processor permits the document to be saved in a non-proprietary
 format, such as text, HTML, or XML, we can sometimes write programs to
 do this checking automatically.
Consider the following fragment of a lexical entry: “sleep
 [sli:p] v.i. condition of
 body and mind...”. We can key in such text using MSWord,
 then “Save as Web Page,” then inspect the resulting HTML file:
<p class=MsoNormal>sleep

 [sli:p]

 v.i.

 <i>a condition of body and mind ...<o:p></o:p></i>
</p>
Observe that the entry is represented as an HTML paragraph,
 using the <p> element, and
 that the part of speech appears inside a
 element. The following program defines the set of legal
 parts-of-speech, legal_pos. Then it
 extracts all 11-point content from the dict.htm file and stores it in the set
 used_pos. Observe that the search
 pattern contains a parenthesized sub-expression; only the material
 that matches this subexpression is returned by re.findall. Finally, the program constructs
 the set of illegal parts-of-speech as the set difference between
 used_pos and legal_pos:
>>> legal_pos = set(['n', 'v.t.', 'v.i.', 'adj', 'det'])
>>> pattern = re.compile(r"'font-size:11.0pt'>([a-z.]+)<")
>>> document = open("dict.htm").read()
>>> used_pos = set(re.findall(pattern, document))
>>> illegal_pos = used_pos.difference(legal_pos)
>>> print list(illegal_pos)
['v.i', 'intrans']
This simple program represents the tip of the iceberg. We can
 develop sophisticated tools to check the consistency of word processor
 files, and report errors so that the maintainer of the dictionary can
 correct the original file using the original word processor.
Once we know the data is correctly formatted, we can write other
 programs to convert the data into a different format. The program in
 Example 11-2 strips out the HTML markup using
 nltk.clean_html(), extracts the
 words and their pronunciations, and generates output in
 “comma-separated value” (CSV) format.
Example 11-2. Converting HTML created by Microsoft Word into
 comma-separated values.
def lexical_data(html_file):
 SEP = '_ENTRY'
 html = open(html_file).read()
 html = re.sub(r'<p', SEP + '<p', html)
 text = nltk.clean_html(html)
 text = ' '.join(text.split())
 for entry in text.split(SEP):
 if entry.count(' ') > 2:
 yield entry.split(' ', 3)
>>> import csv
>>> writer = csv.writer(open("dict1.csv", "wb"))
>>> writer.writerows(lexical_data("dict.htm"))

Obtaining Data from Spreadsheets and Databases

Spreadsheets are often used for acquiring wordlists or
 paradigms. For example, a comparative wordlist may be created using a
 spreadsheet, with a row for each cognate set and a column for each
 language (see nltk.corpus.swadesh
 and www.rosettaproject.org). Most
 spreadsheet software can export their data in CSV format. As we will
 see later, it is easy for Python programs to access these using the
 csv module.
Sometimes lexicons are stored in a full-fledged relational
 database. When properly normalized, these databases can ensure the
 validity of the data. For example, we can require that all
 parts-of-speech come from a specified vocabulary by declaring that the
 part-of-speech field is an enumerated type or a
 foreign key that references a separate part-of-speech table. However,
 the relational model requires the structure of the data (the schema)
 be declared in advance, and this runs counter to the dominant approach
 to structuring linguistic data, which is highly exploratory. Fields
 which were assumed to be obligatory and unique often turn out to be
 optional and repeatable. A relational database can accommodate this
 when it is fully known in advance; however, if it is not, or if just
 about every property turns out to be optional or repeatable, the
 relational approach is unworkable.
Nevertheless, when our goal is simply to extract the contents
 from a database, it is enough to dump out the tables (or SQL query
 results) in CSV format and load them into our program. Our program
 might perform a linguistically motivated query that cannot easily be
 expressed in SQL, e.g., select all words that appear in
 example sentences for which no dictionary entry is
 provided. For this task, we would need to extract enough
 information from a record for it to be uniquely identified, along with
 the headwords and example sentences. Let’s suppose this information
 was now available in a CSV file dict.csv:
"sleep","sli:p","v.i","a condition of body and mind ..."
"walk","wo:k","v.intr","progress by lifting and setting down each foot ..."
"wake","weik","intrans","cease to sleep"
Now we can express this query as shown here:
>>> import csv
>>> lexicon = csv.reader(open('dict.csv'))
>>> pairs = [(lexeme, defn) for (lexeme, _, _, defn) in lexicon]
>>> lexemes, defns = zip(*pairs)
>>> defn_words = set(w for defn in defns for w in defn.split())
>>> sorted(defn_words.difference(lexemes))
['...', 'a', 'and', 'body', 'by', 'cease', 'condition', 'down', 'each',
'foot', 'lifting', 'mind', 'of', 'progress', 'setting', 'to']
This information would then guide the ongoing work to enrich the
 lexicon, work that updates the content of the relational
 database.

Converting Data Formats

Annotated linguistic data rarely arrives in the most convenient
 format, and it is often necessary to perform various kinds of format
 conversion. Converting between character encodings has already been
 discussed (see Text Processing with Unicode). Here we focus on the
 structure of the data.
In the simplest case, the input and output formats are
 isomorphic. For instance, we might be converting lexical data from
 Toolbox format to XML, and it is straightforward to transliterate the
 entries one at a time (Working with XML). The
 structure of the data is reflected in the structure of the required
 program: a for loop whose body
 takes care of a single entry.
In another common case, the output is a digested form of the
 input, such as an inverted file index. Here it is necessary to build
 an index structure in memory (see Example 4.8), then write it to a
 file in the desired format. The following example constructs an index
 that maps the words of a dictionary definition to the corresponding
 lexeme [image: 1] for each lexical entry
 [image: 2], having tokenized the definition
 text [image: 3], and discarded short words
 [image: 4]. Once the index has been
 constructed, we open a file and then iterate over the index entries,
 to write out the lines in the required format [image: 5].
>>> idx = nltk.Index((defn_word, lexeme) [image: 1]
... for (lexeme, defn) in pairs [image: 2]
... for defn_word in nltk.word_tokenize(defn) [image: 3]
... if len(defn_word) > 3) [image: 4]
>>> idx_file = open("dict.idx", "w")
>>> for word in sorted(idx):
... idx_words = ', '.join(idx[word])
... idx_line = "%s: %s\n" % (word, idx_words) [image: 5]
... idx_file.write(idx_line)
>>> idx_file.close()
The resulting file dict.idx
 contains the following lines. (With a larger dictionary, we would
 expect to find multiple lexemes listed for each index entry.)
body: sleep
cease: wake
condition: sleep
down: walk
each: walk
foot: walk
lifting: walk
mind: sleep
progress: walk
setting: walk
sleep: wake
In some cases, the input and output data both consist of two or
 more dimensions. For instance, the input might be a set of files, each
 containing a single column of word frequency data. The required output
 might be a two-dimensional table in which the original columns appear
 as rows. In such cases we populate an internal data structure by
 filling up one column at a time, then read off the data one row at a
 time as we write data to the output file.
In the most vexing cases, the source and target formats have
 slightly different coverage of the domain, and information is
 unavoidably lost when translating between them. For example, we could
 combine multiple Toolbox files to create a single CSV file containing
 a comparative wordlist, losing all but the \lx field of the input files. If the CSV
 file was later modified, it would be a labor-intensive process to
 inject the changes into the original Toolbox files. A partial solution
 to this “round-tripping” problem is to associate explicit identifiers
 with each linguistic object, and to propagate the identifiers with the
 objects.

Deciding Which Layers of Annotation to Include

Published corpora vary greatly in the richness of the
 information they contain. At a minimum, a corpus will typically
 contain at least a sequence of sound or orthographic symbols. At the
 other end of the spectrum, a corpus could contain a large amount of
 information about the syntactic structure, morphology, prosody, and
 semantic content of every sentence, plus annotation of discourse
 relations or dialogue acts. These extra layers of annotation may be
 just what someone needs for performing a particular data analysis
 task. For example, it may be much easier to find a given linguistic
 pattern if we can search for specific syntactic structures; and it may
 be easier to categorize a linguistic pattern if every word has been
 tagged with its sense. Here are some commonly provided annotation
 layers:
	Word tokenization
	The orthographic form of text does not unambiguously
 identify its tokens. A tokenized and normalized version, in
 addition to the conventional orthographic version, may be a very
 convenient resource.

	Sentence segmentation
	As we saw in Chapter 3, sentence
 segmentation can be more difficult than it seems. Some corpora
 therefore use explicit annotations to mark sentence
 segmentation.

	Paragraph segmentation
	Paragraphs and other structural elements (headings,
 chapters, etc.) may be explicitly annotated.

	Part-of-speech
	The syntactic category of each word in a document.

	Syntactic structure
	A tree structure showing the constituent structure of a
 sentence.

	Shallow semantics
	Named entity and coreference annotations, and semantic
 role labels.

	Dialogue and discourse
	Dialogue act tags and rhetorical structure.

Unfortunately, there is not much consistency between existing
 corpora in how they represent their annotations. However, two general
 classes of annotation representation should be distinguished.
 Inline annotation modifies the
 original document by inserting special symbols or control sequences
 that carry the annotated information. For example, when part-of-speech
 tagging a document, the string "fly" might be replaced with the string
 "fly/NN", to indicate that the word
 fly is a noun in this context. In contrast,
 standoff annotation does not modify
 the original document, but instead creates a new file that adds
 annotation information using pointers that reference the original
 document. For example, this new document might contain the string
 "<token id=8
 pos='NN'/>", to indicate that token 8 is a noun.

Standards and Tools

For a corpus to be widely useful, it needs to be available in a
 widely supported format. However, the cutting edge of NLP research
 depends on new kinds of annotations, which by definition are not
 widely supported. In general, adequate tools for creation,
 publication, and use of linguistic data are not widely available. Most
 projects must develop their own set of tools for internal use, which
 is no help to others who lack the necessary resources. Furthermore, we
 do not have adequate, generally accepted standards for expressing the
 structure and content of corpora. Without such standards,
 general-purpose tools are impossible—though at the same time, without
 available tools, adequate standards are unlikely to be developed,
 used, and accepted.
One response to this situation has been to forge ahead with
 developing a generic format that is sufficiently expressive to capture
 a wide variety of annotation types (see Further Reading for examples). The challenge for
 NLP is to write programs that cope with the generality of such
 formats. For example, if the programming task involves tree data, and
 the file format permits arbitrary directed graphs, then input data
 must be validated to check for tree properties such as rootedness,
 connectedness, and acyclicity. If the input files contain other layers
 of annotation, the program would need to know how to ignore them when
 the data was loaded, but not invalidate or obliterate those layers
 when the tree data was saved back to the file.
Another response has been to write one-off scripts to manipulate
 corpus formats; such scripts litter the filespaces of many NLP
 researchers. NLTK’s corpus readers are a more systematic approach,
 founded on the premise that the work of parsing a corpus format should
 be done only once (per programming language).
Instead of focusing on a common format, we believe it is more
 promising to develop a common interface (see nltk.corpus). Consider the case of treebanks, an important corpus
 type for work in NLP. There are many ways to store a phrase structure
 tree in a file. We can use nested parentheses, or nested XML elements,
 or a dependency notation with a
 (child-id, parent-id) pair
 on each line, or an XML version of the dependency notation, etc.
 However, in each case the logical structure is almost the same. It is
 much easier to devise a common interface that allows application
 programmers to write code to access tree data using methods such as
 children(), leaves(), depth(), and so
 forth. Note that this approach follows accepted practice within
 computer science, viz. abstract data types, object-oriented design,
 and the three-layer architecture (Figure 11-6). The last of these—from the world
 of relational databases—allows end-user applications to use a common
 model (the “relational model”) and a common language (SQL) to abstract
 away from the idiosyncrasies of file storage. It also allows
 innovations in filesystem technologies to occur without disturbing
 end-user applications. In the same way, a common corpus interface
 insulates application programs from data formats.
[image: A common format versus a common interface.]

Figure 11-6. A common format versus a common interface.

In this context, when creating a new corpus for dissemination,
 it is expedient to use a widely used format wherever possible. When
 this is not possible, the corpus could be accompanied with
 software—such as an nltk.corpus module—that supports existing interface methods.

Special Considerations When Working with Endangered
 Languages

The importance of language to science and the arts is matched in
 significance by the cultural treasure embodied in language. Each of
 the world’s ~7,000 human languages is rich in unique respects, in its
 oral histories and creation legends, down to its grammatical
 constructions and its very words and their nuances of meaning.
 Threatened remnant cultures have words to distinguish plant subspecies
 according to therapeutic uses that are unknown to science. Languages
 evolve over time as they come into contact with each other, and each
 one provides a unique window onto human pre-history. In many parts of
 the world, small linguistic variations from one town to the next add
 up to a completely different language in the space of a half-hour
 drive. For its breathtaking complexity and diversity, human language
 is as a colorful tapestry stretching through time and space.
However, most of the world’s languages face extinction. In
 response to this, many linguists are hard at work documenting the
 languages, constructing rich records of this important facet of the
 world’s linguistic heritage. What can the field of NLP offer to help
 with this effort? Developing taggers, parsers, named entity
 recognizers, etc., is not an early priority, and there is usually
 insufficient data for developing such tools in any case. Instead, the
 most frequently voiced need is to have better tools for collecting and
 curating data, with a focus on texts and lexicons.
On the face of things, it should be a straightforward matter to
 start collecting texts in an endangered language. Even if we ignore
 vexed issues such as who owns the texts, and sensitivities surrounding
 cultural knowledge contained in the texts, there is the obvious
 practical issue of transcription. Most languages lack a standard
 orthography. When a language has no literary tradition, the
 conventions of spelling and punctuation are not well established.
 Therefore it is common practice to create a lexicon in tandem with a
 text collection, continually updating the lexicon as new words appear
 in the texts. This work could be done using a text processor (for the
 texts) and a spreadsheet (for the lexicon). Better still, SIL’s free
 linguistic software Toolbox and Fieldworks provide sophisticated
 support for integrated creation of texts and lexicons.
When speakers of the language in question are trained to enter
 texts themselves, a common obstacle is an overriding concern for
 correct spelling. Having a lexicon greatly helps this process, but we
 need to have lookup methods that do not assume someone can determine
 the citation form of an arbitrary word. The problem may be acute for
 languages having a complex morphology that includes prefixes. In such
 cases it helps to tag lexical items with semantic domains, and to
 permit lookup by semantic domain or by gloss.
Permitting lookup by pronunciation similarity is also a big
 help. Here’s a simple demonstration of how to do this. The first step
 is to identify confusible letter sequences, and map complex versions
 to simpler versions. We might also notice that the relative order of
 letters within a cluster of consonants is a source of spelling errors,
 and so we normalize the order of consonants.
>>> mappings = [('ph', 'f'), ('ght', 't'), ('^kn', 'n'), ('qu', 'kw'),
... ('[aeiou]+', 'a'), (r'(.)\1', r'\1')]
>>> def signature(word):
... for patt, repl in mappings:
... word = re.sub(patt, repl, word)
... pieces = re.findall('[^aeiou]+', word)
... return ''.join(char for piece in pieces for char in sorted(piece))[:8]
>>> signature('illefent')
'lfnt'
>>> signature('ebsekwieous')
'bskws'
>>> signature('nuculerr')
'nclr'
Next, we create a mapping from signatures to words, for all the
 words in our lexicon. We can use this to get candidate corrections for
 a given input word (but we must first compute that word’s
 signature).
>>> signatures = nltk.Index((signature(w), w) for w in nltk.corpus.words.words())
>>> signatures[signature('nuculerr')]
['anicular', 'inocular', 'nucellar', 'nuclear', 'unicolor', 'uniocular', 'unocular']
Finally, we should rank the results in terms of similarity with
 the original word. This is done by the function rank(). The only remaining function provides
 a simple interface to the user:
>>> def rank(word, wordlist):
... ranked = sorted((nltk.edit_dist(word, w), w) for w in wordlist)
... return [word for (_, word) in ranked]
>>> def fuzzy_spell(word):
... sig = signature(word)
... if sig in signatures:
... return rank(word, signatures[sig])
... else:
... return []
>>> fuzzy_spell('illefent')
['olefiant', 'elephant', 'oliphant', 'elephanta']
>>> fuzzy_spell('ebsekwieous')
['obsequious']
>>> fuzzy_spell('nucular')
['nuclear', 'nucellar', 'anicular', 'inocular', 'unocular', 'unicolor', 'uniocular']
This is just one illustration where a simple program can
 facilitate access to lexical data in a context where the writing
 system of a language may not be standardized, or where users of the
 language may not have a good command of spellings. Other simple
 applications of NLP in this area include building indexes to
 facilitate access to data, gleaning wordlists from texts, locating
 examples of word usage in constructing a lexicon, detecting prevalent
 or exceptional patterns in poorly understood data, and performing
 specialized validation on data created using various linguistic
 software tools. We will return to the last of these in Working with Toolbox Data.

Working with XML

The Extensible Markup Language (XML) provides a framework for
 designing domain-specific markup languages. It is sometimes used for
 representing annotated text and for lexical resources. Unlike HTML with
 its predefined tags, XML permits us to make up our own tags. Unlike a
 database, XML permits us to create data without first specifying its
 structure, and it permits us to have optional and repeatable elements.
 In this section, we briefly review some features of XML that are
 relevant for representing linguistic data, and show how to access data
 stored in XML files using Python programs.
Using XML for Linguistic Structures

Thanks to its flexibility and extensibility, XML is a natural
 choice for representing linguistic structures. Here’s an example of a
 simple lexical entry.
Example 11-3.
<entry>
 <headword>whale</headword>
 <pos>noun</pos>
 <gloss>any of the larger cetacean mammals having a streamlined
 body and breathing through a blowhole on the head</gloss>
</entry>

It consists of a series of XML tags enclosed in angle brackets.
 Each opening tag, such as <gloss>, is matched with a closing
 tag, </gloss>; together they
 constitute an XML element. The
 preceding example has been laid out nicely using whitespace, but it
 could equally have been put on a single long line. Our approach to
 processing XML will usually not be sensitive to whitespace. In order
 for XML to be well formed, all opening
 tags must have corresponding closing tags, at the same level of
 nesting (i.e., the XML document must be a well-formed tree).
XML permits us to repeat elements, e.g., to add another gloss
 field, as we see next. We will use different whitespace to underscore
 the point that layout does not matter.
Example 11-4.
<entry><headword>whale</headword><pos>noun</pos><gloss>any of the
larger cetacean mammals having a streamlined body and breathing
through a blowhole on the head</gloss><gloss>a very large person;
impressive in size or qualities</gloss></entry>

A further step might be to link our lexicon to some external
 resource, such as WordNet, using external identifiers. In Example 11-5 we group the gloss and a synset identifier
 inside a new element, which we have called “sense.”
Example 11-5.
<entry>
 <headword>whale</headword>
 <pos>noun</pos>
 <sense>
 <gloss>any of the larger cetacean mammals having a streamlined
 body and breathing through a blowhole on the head</gloss>
 <synset>whale.n.02</synset>
 </sense>
 <sense>
 <gloss>a very large person; impressive in size or qualities</gloss>
 <synset>giant.n.04</synset>
 </sense>
</entry>

Alternatively, we could have represented the synset identifier
 using an XML attribute, without the need
 for any nested structure, as in Example 11-6.
Example 11-6.
<entry>
 <headword>whale</headword>
 <pos>noun</pos>
 <gloss synset="whale.n.02">any of the larger cetacean mammals having
 a streamlined body and breathing through a blowhole on the head</gloss>
 <gloss synset="giant.n.04">a very large person; impressive in size or
 qualities</gloss>
</entry>

This illustrates some of the flexibility of XML. If it seems
 somewhat arbitrary, that’s because it is! Following the rules of XML,
 we can invent new attribute names, and nest them as deeply as we like.
 We can repeat elements, leave them out, and put them in a different
 order each time. We can have fields whose presence depends on the
 value of some other field; e.g., if the part of speech is verb, then the entry can have a past_tense element to hold the past tense of
 the verb, but if the part of speech is noun, no past_tense element is permitted. To impose
 some order over all this freedom, we can constrain the structure of an
 XML file using a “schema,” which is a declaration akin to a
 context-free grammar. Tools exist for testing the validity of an XML file with respect to a
 schema.

The Role of XML

We can use XML to represent many kinds of linguistic
 information. However, the flexibility comes at a price. Each time we
 introduce a complication, such as by permitting an element to be
 optional or repeated, we make more work for any program that accesses
 the data. We also make it more difficult to check the validity of the
 data, or to interrogate the data using one of the XML query
 languages.
Thus, using XML to represent linguistic structures does not
 magically solve the data modeling problem. We still have to work out
 how to structure the data, then define that structure with a schema,
 and then write programs to read and write the format and convert it to
 other formats. Similarly, we still need to follow some standard
 principles concerning data normalization. It is wise to avoid making
 duplicate copies of the same information, so that we don’t end up with
 inconsistent data when only one copy is changed. For example, a
 cross-reference that was represented as <xref>headword</xref> would
 duplicate the storage of the headword of some other lexical entry, and
 the link would break if the copy of the string at the other location
 was modified. Existential dependencies between information types need
 to be modeled, so that we can’t create elements without a home. For
 example, if sense definitions cannot exist independently of a lexical
 entry, the sense element can be
 nested inside the entry element. Many-to-many relations need to be abstracted
 out of hierarchical structures. For example, if a word can have many
 corresponding senses, and a sense can have several corresponding
 words, then both words and senses must be enumerated separately, as
 must the list of (word,
 sense) pairings. This complex structure might
 even be split across three separate XML files.
As we can see, although XML provides us with a convenient format
 accompanied by an extensive collection of tools, it offers no
 panacea.

The ElementTree Interface

Python’s ElementTree module
 provides a convenient way to access data stored in XML files. ElementTree is part of Python’s standard
 library (since Python 2.5), and is also provided as part of NLTK in
 case you are using Python 2.4.
We will illustrate the use of ElementTree using a collection of
 Shakespeare plays that have been formatted using XML. Let’s load the
 XML file and inspect the raw data, first at the top of the file [image: 1], where we see some XML headers and the
 name of a schema called play.dtd,
 followed by the root element
 PLAY. We pick it up again at the
 start of Act 1 [image: 2]. (Some blank lines
 have been omitted from the output.)
>>> merchant_file = nltk.data.find('corpora/shakespeare/merchant.xml')
>>> raw = open(merchant_file).read()
>>> print raw[0:168] [image: 1]
<?xml version="1.0"?>
<?xml-stylesheet type="text/css" href="shakes.css"?>
<!-- <!DOCTYPE PLAY SYSTEM "play.dtd"> -->
<PLAY>
<TITLE>The Merchant of Venice</TITLE>
>>> print raw[1850:2075] [image: 2]
<TITLE>ACT I</TITLE>
<SCENE><TITLE>SCENE I. Venice. A street.</TITLE>
<STAGEDIR>Enter ANTONIO, SALARINO, and SALANIO</STAGEDIR>
<SPEECH>
<SPEAKER>ANTONIO</SPEAKER>
<LINE>In sooth, I know not why I am so sad:</LINE>
We have just accessed the XML data as a string. As we can see,
 the string at the start of Act 1 contains XML tags for title, scene,
 stage directions, and so forth.
The next step is to process the file contents as structured XML
 data, using ElementTree. We are processing a file (a multiline string) and
 building a tree, so it’s not surprising that the method name is
 parse [image: 1]. The variable merchant contains an XML element PLAY [image: 2].
 This element has internal structure; we can use an index to get its
 first child, a TITLE element [image: 3]. We can also see the text content of
 this element, the title of the play [image: 4]. To get a list of all the child
 elements, we use the getchildren() method [image: 5].
>>> from nltk.etree.ElementTree import ElementTree
>>> merchant = ElementTree().parse(merchant_file) [image: 1]
>>> merchant
<Element PLAY at 22fa800> [image: 2]
>>> merchant[0]
<Element TITLE at 22fa828> [image: 3]
>>> merchant[0].text
'The Merchant of Venice' [image: 4]
>>> merchant.getchildren() [image: 5]
[<Element TITLE at 22fa828>, <Element PERSONAE at 22fa7b0>, <Element SCNDESCR at 2300170>,
<Element PLAYSUBT at 2300198>, <Element ACT at 23001e8>, <Element ACT at 234ec88>,
<Element ACT at 23c87d8>, <Element ACT at 2439198>, <Element ACT at 24923c8>]
The play consists of a title, the personae, a scene description,
 a subtitle, and five acts. Each act has a title and some scenes, and
 each scene consists of speeches which are made up of lines, a
 structure with four levels of nesting. Let’s dig down into Act
 IV:
>>> merchant[-2][0].text
'ACT IV'
>>> merchant[-2][1]
<Element SCENE at 224cf80>
>>> merchant[-2][1][0].text
'SCENE I. Venice. A court of justice.'
>>> merchant[-2][1][54]
<Element SPEECH at 226ee40>
>>> merchant[-2][1][54][0]
<Element SPEAKER at 226ee90>
>>> merchant[-2][1][54][0].text
'PORTIA'
>>> merchant[-2][1][54][1]
<Element LINE at 226eee0>
>>> merchant[-2][1][54][1].text
"The quality of mercy is not strain'd,"
Note
Your Turn: Repeat some of
 the methods just shown, for one of the other Shakespeare plays
 included in the corpus, such as Romeo and
 Juliet or Macbeth. For a list, see
 nltk.corpus.shakespeare.fileids().

Although we can access the entire tree this way, it is more
 convenient to search for sub-elements with particular names. Recall
 that the elements at the top level have several types. We can iterate
 over just the types we are interested in (such as the acts), using
 merchant.findall('ACT'). Here’s an
 example of doing such tag-specific searches at every level of
 nesting:
>>> for i, act in enumerate(merchant.findall('ACT')):
... for j, scene in enumerate(act.findall('SCENE')):
... for k, speech in enumerate(scene.findall('SPEECH')):
... for line in speech.findall('LINE'):
... if 'music' in str(line.text):
... print "Act %d Scene %d Speech %d: %s" % (i+1, j+1, k+1, line.text)
Act 3 Scene 2 Speech 9: Let music sound while he doth make his choice;
Act 3 Scene 2 Speech 9: Fading in music: that the comparison
Act 3 Scene 2 Speech 9: And what is music then? Then music is
Act 5 Scene 1 Speech 23: And bring your music forth into the air.
Act 5 Scene 1 Speech 23: Here will we sit and let the sounds of music
Act 5 Scene 1 Speech 23: And draw her home with music.
Act 5 Scene 1 Speech 24: I am never merry when I hear sweet music.
Act 5 Scene 1 Speech 25: Or any air of music touch their ears,
Act 5 Scene 1 Speech 25: By the sweet power of music: therefore the poet
Act 5 Scene 1 Speech 25: But music for the time doth change his nature.
Act 5 Scene 1 Speech 25: The man that hath no music in himself,
Act 5 Scene 1 Speech 25: Let no such man be trusted. Mark the music.
Act 5 Scene 1 Speech 29: It is your music, madam, of the house.
Act 5 Scene 1 Speech 32: No better a musician than the wren.
Instead of navigating each step of the way down the hierarchy,
 we can search for particular embedded elements. For example, let’s
 examine the sequence of speakers. We can use a frequency distribution
 to see who has the most to say:
>>> speaker_seq = [s.text for s in merchant.findall('ACT/SCENE/SPEECH/SPEAKER')]
>>> speaker_freq = nltk.FreqDist(speaker_seq)
>>> top5 = speaker_freq.keys()[:5]
>>> top5
['PORTIA', 'SHYLOCK', 'BASSANIO', 'GRATIANO', 'ANTONIO']
We can also look for patterns in who follows whom in the
 dialogues. Since there are 23 speakers, we need to reduce the
 “vocabulary” to a manageable size first, using the method described in
 Mapping Words to Properties Using Python Dictionaries.
>>> mapping = nltk.defaultdict(lambda: 'OTH')
>>> for s in top5:
... mapping[s] = s[:4]
...
>>> speaker_seq2 = [mapping[s] for s in speaker_seq]
>>> cfd = nltk.ConditionalFreqDist(nltk.ibigrams(speaker_seq2))
>>> cfd.tabulate()
 ANTO BASS GRAT OTH PORT SHYL
ANTO 0 11 4 11 9 12
BASS 10 0 11 10 26 16
GRAT 6 8 0 19 9 5
 OTH 8 16 18 153 52 25
PORT 7 23 13 53 0 21
SHYL 15 15 2 26 21 0
Ignoring the entries for exchanges between people other than the
 top five (labeled OTH), the largest
 value suggests that Portia and Bassanio have the most significant
 interactions.

Using ElementTree for Accessing Toolbox Data

In Lexical Resources, we saw a simple
 interface for accessing Toolbox data, a popular and well-established
 format used by linguists for managing data. In this section, we
 discuss a variety of techniques for manipulating Toolbox data in ways
 that are not supported by the Toolbox software. The methods we discuss
 could be applied to other record-structured data, regardless of the
 actual file format.
We can use the toolbox.xml()
 method to access a Toolbox file and load it into an ElementTree object. This file contains a
 lexicon for the Rotokas language of Papua New Guinea.
>>> from nltk.corpus import toolbox
>>> lexicon = toolbox.xml('rotokas.dic')
There are two ways to access the contents of the lexicon object:
 by indexes and by paths. Indexes use the familiar syntax; thus
 lexicon[3] returns entry number 3
 (which is actually the fourth entry counting from zero) and lexicon[3][0] returns its first
 field:
>>> lexicon[3][0]
<Element lx at 77bd28>
>>> lexicon[3][0].tag
'lx'
>>> lexicon[3][0].text
'kaa'
The second way to access the contents of the lexicon object uses
 paths. The lexicon is a series of record objects, each containing a series of
 field objects, such as lx and
 ps. We can conveniently address all
 of the lexemes using the path record/lx. Here we use the findall() function to search for any matches to the path record/lx, and we access the text content of
 the element, normalizing it to lowercase:
>>> [lexeme.text.lower() for lexeme in lexicon.findall('record/lx')]
['kaa', 'kaa', 'kaa', 'kaakaaro', 'kaakaaviko', 'kaakaavo', 'kaakaoko',
'kaakasi', 'kaakau', 'kaakauko', 'kaakito', 'kaakuupato', ..., 'kuvuto']
Let’s view the Toolbox data in XML format. The write() method of ElementTree expects a file object. We usually create one of these
 using Python’s built-in open()
 function. In order to see the output displayed on the screen, we can
 use a special predefined file object called stdout [image: 1]
 (standard output), defined in Python’s sys module.
>>> import sys
>>> from nltk.etree.ElementTree import ElementTree
>>> tree = ElementTree(lexicon[3])
>>> tree.write(sys.stdout) [image: 1]
<record>
 <lx>kaa</lx>
 <ps>N</ps>
 <pt>MASC</pt>
 <cl>isi</cl>
 <ge>cooking banana</ge>
 <tkp>banana bilong kukim</tkp>
 <pt>itoo</pt>
 <sf>FLORA</sf>
 <dt>12/Aug/2005</dt>
 <ex>Taeavi iria kaa isi kovopaueva kaparapasia.</ex>
 <xp>Taeavi i bin planim gaden banana bilong kukim tasol long paia.</xp>
 <xe>Taeavi planted banana in order to cook it.</xe>
</record>

Formatting Entries

We can use the same idea we saw in the previous section to
 generate HTML tables instead of plain text. This would be useful for
 publishing a Toolbox lexicon on the Web. It produces HTML elements
 <table>, <tr> (table row), and <td> (table data).
>>> html = "<table>\n"
>>> for entry in lexicon[70:80]:
... lx = entry.findtext('lx')
... ps = entry.findtext('ps')
... ge = entry.findtext('ge')
... html += " <tr><td>%s</td><td>%s</td><td>%s</td></tr>\n" % (lx, ps, ge)
>>> html += "</table>"
>>> print html
<table>
 <tr><td>kakae</td><td>???</td><td>small</td></tr>
 <tr><td>kakae</td><td>CLASS</td><td>child</td></tr>
 <tr><td>kakaevira</td><td>ADV</td><td>small-like</td></tr>
 <tr><td>kakapikoa</td><td>???</td><td>small</td></tr>
 <tr><td>kakapikoto</td><td>N</td><td>newborn baby</td></tr>
 <tr><td>kakapu</td><td>V</td><td>place in sling for purpose of carrying</td></tr>
 <tr><td>kakapua</td><td>N</td><td>sling for lifting</td></tr>
 <tr><td>kakara</td><td>N</td><td>arm band</td></tr>
 <tr><td>Kakarapaia</td><td>N</td><td>village name</td></tr>
 <tr><td>kakarau</td><td>N</td><td>frog</td></tr>
</table>

Working with Toolbox Data

Given the popularity of Toolbox among linguists, we will discuss
 some further methods for working with Toolbox data. Many of the methods
 discussed in previous chapters, such as counting, building frequency
 distributions, and tabulating co-occurrences, can be applied to the
 content of Toolbox entries. For example, we can trivially compute the
 average number of fields for each entry:
>>> from nltk.corpus import toolbox
>>> lexicon = toolbox.xml('rotokas.dic')
>>> sum(len(entry) for entry in lexicon) / len(lexicon)
13.635955056179775
In this section, we will discuss two tasks that arise in the
 context of documentary linguistics, neither of which is supported by the
 Toolbox software.
Adding a Field to Each Entry

It is often convenient to add new fields that are derived
 automatically from existing ones. Such fields often facilitate search
 and analysis. For instance, in Example 11-7 we
 define a function cv(), which maps
 a string of consonants and vowels to the corresponding CV sequence,
 e.g., kakapua would map to CVCVCVV. This mapping has four steps. First,
 the string is converted to lowercase, then we replace any
 non-alphabetic characters [^a-z]
 with an underscore. Next, we replace all vowels with V. Finally, anything that is not a V or an underscore must be a consonant, so
 we replace it with a C. Now, we can
 scan the lexicon and add a new cv
 field after every lx field. Example 11-7 shows what this does to a particular
 entry; note the last line of output, which shows the new cv field.
Example 11-7. Adding a new cv field to a lexical entry.
from nltk.etree.ElementTree import SubElement

def cv(s):
 s = s.lower()
 s = re.sub(r'[^a-z]', r'_', s)
 s = re.sub(r'[aeiou]', r'V', s)
 s = re.sub(r'[^V_]', r'C', s)
 return (s)

def add_cv_field(entry):
 for field in entry:
 if field.tag == 'lx':
 cv_field = SubElement(entry, 'cv')
 cv_field.text = cv(field.text)
>>> lexicon = toolbox.xml('rotokas.dic')
>>> add_cv_field(lexicon[53])
>>> print nltk.to_sfm_string(lexicon[53])
\lx kaeviro
\ps V
\pt A
\ge lift off
\ge take off
\tkp go antap
\sc MOTION
\vx 1
\nt used to describe action of plane
\dt 03/Jun/2005
\ex Pita kaeviroroe kepa kekesia oa vuripierevo kiuvu.
\xp Pita i go antap na lukim haus win i bagarapim.
\xe Peter went to look at the house that the wind destroyed.
\cv CVVCVCV

Note
If a Toolbox file is being continually updated, the program in
 Example 11-7 will need to be run more than
 once. It would be possible to modify add_cv_field() to modify the contents of
 an existing entry. However, it is a safer practice to use such
 programs to create enriched files for the purpose of data analysis,
 without replacing the manually curated source files.

Validating a Toolbox Lexicon

Many lexicons in Toolbox format do not conform to any particular schema.
 Some entries may include extra fields, or may order existing fields in
 a new way. Manually inspecting thousands of lexical entries is not
 practicable. However, we can easily identify frequent versus
 exceptional field sequences, with the help of a FreqDist:
>>> fd = nltk.FreqDist(':'.join(field.tag for field in entry) for entry in lexicon)
>>> fd.items()
[('lx:ps:pt:ge:tkp:dt:ex:xp:xe', 41), ('lx:rt:ps:pt:ge:tkp:dt:ex:xp:xe', 37),
('lx:rt:ps:pt:ge:tkp:dt:ex:xp:xe:ex:xp:xe', 27), ('lx:ps:pt:ge:tkp:nt:dt:ex:xp:xe', 20),
..., ('lx:alt:rt:ps:pt:ge:eng:eng:eng:tkp:tkp:dt:ex:xp:xe:ex:xp:xe:ex:xp:xe', 1)]
After inspecting the high-frequency field sequences, we could
 devise a context-free grammar for lexical entries. The grammar in
 Example 11-8 uses the CFG format we saw
 in Chapter 8. Such a grammar models the implicit nested structure of
 Toolbox entries, building a tree structure, where the leaves of the
 tree are individual field names. We iterate over the entries and
 report their conformance with the grammar, as shown in Example 11-8. Those that are accepted by the
 grammar are prefixed with a '+'
 [image: 1], and those that are rejected
 are prefixed with a '-' [image: 2]. During the process of developing
 such a grammar, it helps to filter out some of the tags [image: 3].
Example 11-8. Validating Toolbox entries using a context-free
 grammar.
grammar = nltk.parse_cfg('''
 S -> Head PS Glosses Comment Date Sem_Field Examples
 Head -> Lexeme Root
 Lexeme -> "lx"
 Root -> "rt" |
 PS -> "ps"
 Glosses -> Gloss Glosses |
 Gloss -> "ge" | "tkp" | "eng"
 Date -> "dt"
 Sem_Field -> "sf"
 Examples -> Example Ex_Pidgin Ex_English Examples |
 Example -> "ex"
 Ex_Pidgin -> "xp"
 Ex_English -> "xe"
 Comment -> "cmt" | "nt" |
 ''')

def validate_lexicon(grammar, lexicon, ignored_tags):
 rd_parser = nltk.RecursiveDescentParser(grammar)
 for entry in lexicon:
 marker_list = [field.tag for field in entry if field.tag not in ignored_tags]
 if rd_parser.nbest_parse(marker_list):
 print "+", ':'.join(marker_list) [image: 1]
 else:
 print "-", ':'.join(marker_list) [image: 2]

>>> lexicon = toolbox.xml('rotokas.dic')[10:20]
>>> ignored_tags = ['arg', 'dcsv', 'pt', 'vx'] [image: 3]
>>> validate_lexicon(grammar, lexicon, ignored_tags)
- lx:ps:ge:tkp:sf:nt:dt:ex:xp:xe:ex:xp:xe:ex:xp:xe
- lx:rt:ps:ge:tkp:nt:dt:ex:xp:xe:ex:xp:xe
- lx:ps:ge:tkp:nt:dt:ex:xp:xe:ex:xp:xe
- lx:ps:ge:tkp:nt:sf:dt
- lx:ps:ge:tkp:dt:cmt:ex:xp:xe:ex:xp:xe
- lx:ps:ge:ge:ge:tkp:cmt:dt:ex:xp:xe
- lx:rt:ps:ge:ge:tkp:dt
- lx:rt:ps:ge:eng:eng:eng:ge:tkp:tkp:dt:cmt:ex:xp:xe:ex:xp:xe:ex:xp:xe:ex:xp:xe:ex:xp:xe
- lx:rt:ps:ge:tkp:dt:ex:xp:xe
- lx:ps:ge:ge:tkp:dt:ex:xp:xe:ex:xp:xe

Another approach would be to use a chunk parser (Chapter 7), since these are much more effective at
 identifying partial structures and can report the partial structures
 that have been identified. In Example 11-9 we
 set up a chunk grammar for the entries of a lexicon, then parse each
 entry. A sample of the output from this program is shown in Figure 11-7.
[image: XML representation of a lexical entry, resulting from chunk parsing a Toolbox record.]

Figure 11-7. XML representation of a lexical entry, resulting from chunk
 parsing a Toolbox record.

Example 11-9. Chunking a Toolbox lexicon: A chunk grammar describing the
 structure of entries for a lexicon for Iu Mien, a language of
 China.
from nltk_contrib import toolbox

grammar = r"""
 lexfunc: {<lf>(<lv><ln|le>*)*}
 example: {<rf|xv><xn|xe>*}
 sense: {<sn><ps><pn|gv|dv|gn|gp|dn|rn|ge|de|re>*<example>*<lexfunc>*}
 record: {<lx><hm><sense>+<dt>}
 """
>>> from nltk.etree.ElementTree import ElementTree
>>> db = toolbox.ToolboxData()
>>> db.open(nltk.data.find('corpora/toolbox/iu_mien_samp.db'))
>>> lexicon = db.parse(grammar, encoding='utf8')
>>> toolbox.data.indent(lexicon)
>>> tree = ElementTree(lexicon)
>>> output = open("iu_mien_samp.xml", "w")
>>> tree.write(output, encoding='utf8')
>>> output.close()

Describing Language Resources Using OLAC Metadata

Members of the NLP community have a common need for discovering
 language resources with high precision and recall. The solution which
 has been developed by the Digital Libraries community involves metadata
 aggregation.
What Is Metadata?

The simplest definition of metadata is “structured data about
 data.” Metadata is descriptive information about an object or
 resource, whether it be physical or electronic. Although the term
 “metadata” itself is relatively new, the underlying concepts behind
 metadata have been in use for as long as collections of information
 have been organized. Library catalogs represent a well-established
 type of metadata; they have served as collection management and
 resource discovery tools for decades. Metadata can be generated either
 “by hand” or automatically using software.
The Dublin Core Metadata Initiative began in 1995 to develop
 conventions for finding, sharing, and managing information. The Dublin
 Core metadata elements represent a broad, interdisciplinary consensus
 about the core set of elements that are likely to be widely useful to
 support resource discovery. The Dublin Core consists of 15 metadata
 elements, where each element is optional and repeatable: Title,
 Creator, Subject, Description, Publisher, Contributor, Date, Type,
 Format, Identifier, Source, Language, Relation, Coverage, and Rights.
 This metadata set can be used to describe resources that exist in
 digital or traditional formats.
The Open Archives Initiative (OAI) provides a common framework
 across digital repositories of scholarly materials, regardless of
 their type, including documents, data, software, recordings, physical
 artifacts, digital surrogates, and so forth. Each repository consists
 of a network-accessible server offering public access to archived
 items. Each item has a unique identifier, and is associated with a
 Dublin Core metadata record (and possibly additional records in other
 formats). The OAI defines a protocol for metadata search services to
 “harvest” the contents of repositories.

OLAC: Open Language Archives Community

The Open Language Archives Community, or OLAC, is an
 international partnership of institutions and individuals who are
 creating a worldwide virtual library of language resources by: (i)
 developing consensus on best current practices for the digital
 archiving of language resources, and (ii) developing a network of
 interoperating repositories and services for housing and accessing
 such resources. OLAC’s home on the Web is at http://www.language-archives.org/.
OLAC Metadata is a standard for describing language resources.
 Uniform description across repositories is ensured by limiting the
 values of certain metadata elements to the use of terms from
 controlled vocabularies. OLAC metadata can be used to describe data
 and tools, in both physical and digital formats. OLAC metadata extends
 the Dublin Core Metadata Set, a
 widely accepted standard for describing resources of all types. To
 this core set, OLAC adds descriptors to cover fundamental properties
 of language resources, such as subject language and linguistic type.
 Here’s an example of a complete OLAC record:
<?xml version="1.0" encoding="UTF-8"?>
<olac:olac xmlns:olac="http://www.language-archives.org/OLAC/1.1/"
 xmlns="http://purl.org/dc/elements/1.1/"
 xmlns:dcterms="http://purl.org/dc/terms/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.language-archives.org/OLAC/1.1/
 http://www.language-archives.org/OLAC/1.1/olac.xsd">
 <title>A grammar of Kayardild. With comparative notes on Tangkic.</title>
 <creator>Evans, Nicholas D.</creator>
 <subject>Kayardild grammar</subject>
 <subject xsi:type="olac:language" olac:code="gyd">Kayardild</subject>
 <language xsi:type="olac:language" olac:code="en">English</language>
 <description>Kayardild Grammar (ISBN 3110127954)</description>
 <publisher>Berlin - Mouton de Gruyter</publisher>
 <contributor xsi:type="olac:role" olac:code="author">Nicholas Evans</contributor>
 <format>hardcover, 837 pages</format>
 <relation>related to ISBN 0646119966</relation>
 <coverage>Australia</coverage>
 <type xsi:type="olac:linguistic-type" olac:code="language_description"/>
 <type xsi:type="dcterms:DCMIType">Text</type>
</olac:olac>
Participating language archives publish their catalogs in an XML
 format, and these records are regularly “harvested” by OLAC services
 using the OAI protocol. In addition to this software infrastructure,
 OLAC has documented a series of best practices for describing language
 resources, through a process that involved extended consultation with
 the language resources community (e.g., see http://www.language-archives.org/REC/bpr.html).
OLAC repositories can be searched using a query engine on the
 OLAC website. Searching for “German lexicon” finds the following
 resources, among others:
	CALLHOME German Lexicon, at http://www.language-archives.org/item/oai:www.ldc.upenn.edu:LDC97L18

	MULTILEX multilingual lexicon, at http://www.language-archives.org/item/oai:elra.icp.inpg.fr:M0001

	Slelex Siemens Phonetic lexicon, at http://www.language-archives.org/item/oai:elra.icp.inpg.fr:S0048

Searching for “Korean” finds a newswire corpus, and a treebank,
 a lexicon, a child-language corpus, and interlinear glossed texts. It
 also finds software, including a syntactic analyzer and a
 morphological analyzer.
Observe that the previous URLs include a substring of the form:
 oai:www.ldc.upenn.edu:LDC97L18.
 This is an OAI identifier, using a URI scheme registered with ICANN
 (the Internet Corporation for Assigned Names and Numbers). These
 identifiers have the format oai:archive:local_id,
 where oai is the name of the URI
 scheme, archive is an archive identifier,
 such as www.ldc.upenn.edu, and
 local_id is the resource identifier
 assigned by the archive, e.g., LDC97L18.
Given an OAI identifier for an OLAC resource, it is possible to
 retrieve the complete XML record for the resource using a URL of the
 following form: http://www.language-archives.org/static-records/oai:archive:local_id.

Summary

	Fundamental data types, present in most corpora, are annotated
 texts and lexicons. Texts have a temporal structure, whereas
 lexicons have a record structure.

	The life cycle of a corpus includes data collection,
 annotation, quality control, and publication. The life cycle
 continues after publication as the corpus is modified and enriched
 during the course of research.

	Corpus development involves a balance between capturing a
 representative sample of language usage, and capturing enough
 material from any one source or genre to be useful; multiplying out
 the dimensions of variability is usually not feasible because of
 resource limitations.

	XML provides a useful format for the storage and interchange
 of linguistic data, but provides no shortcuts for solving pervasive
 data modeling problems.

	Toolbox format is widely used in language documentation
 projects; we can write programs to support the curation of Toolbox
 files, and to convert them to XML.

	The Open Language Archives Community (OLAC) provides an
 infrastructure for documenting and discovering language
 resources.

Further Reading

Extra materials for this chapter are posted at http://www.nltk.org/, including links to freely available
 resources on the Web.
The primary sources of linguistic corpora are the
 Linguistic Data Consortium and the
 European Language Resources Agency, both with
 extensive online catalogs. More details concerning the major corpora
 mentioned in the chapter are available: American National Corpus
 (Reppen, Ide & Suderman, 2005), British National Corpus (BNC, 1999),
 Thesaurus Linguae Graecae (TLG, 1999), Child Language Data Exchange
 System (CHILDES) (MacWhinney, 1995), and TIMIT (Garofolo et al.,
 1986).
Two special interest groups of the Association for Computational
 Linguistics that organize regular workshops with published proceedings
 are SIGWAC, which promotes the use of the Web as a corpus and has
 sponsored the CLEANEVAL task for removing HTML markup, and SIGANN, which
 is encouraging efforts toward interoperability of linguistic
 annotations. An extended discussion of web crawling is provided by
 (Croft, Metzler & Strohman, 2009).
Full details of the Toolbox data format are provided with the
 distribution (Buseman, Buseman & Early, 1996), and with the latest
 distribution freely available from http://www.sil.org/computing/toolbox/. For guidelines on the process of constructing a Toolbox
 lexicon, see http://www.sil.org/computing/ddp/.
 More examples of our efforts with the Toolbox are documented in (Bird,
 1999) and (Robinson, Aumann & Bird, 2007). Dozens of other tools for
 linguistic data management are available, some surveyed by (Bird &
 Simons, 2003). See also the proceedings of the LaTeCH workshops on
 language technology for cultural heritage data.
There are many excellent resources for XML (e.g., http://zvon.org/) and for writing Python programs to work
 with XML http://www.python.org/doc/lib/markup.html. Many editors
 have XML modes. XML formats for lexical information include OLIF (http://www.olif.net/) and LIFT (http://code.google.com/p/lift-standard/).
For a survey of linguistic annotation software, see the
 Linguistic Annotation Page at http://www.ldc.upenn.edu/annotation/. The initial
 proposal for standoff annotation was (Thompson & McKelvie, 1997). An
 abstract data model for linguistic annotations, called “annotation
 graphs,” was proposed in (Bird & Liberman, 2001). A general-purpose ontology for linguistic
 description (GOLD) is documented at http://www.linguistics-ontology.org/.
For guidance on planning and constructing a corpus, see (Meyer,
 2002) and (Farghaly, 2003). More details of methods for scoring
 inter-annotator agreement are available in (Artstein & Poesio, 2008)
 and (Pevzner & Hearst, 2002).
Rotokas data was provided by Stuart Robinson, and Iu Mien data was
 provided by Greg Aumann.
For more information about the Open Language Archives Community,
 visit http://www.language-archives.org/, or see
 (Simons & Bird, 2003).

Exercises

	[image:] In Example 11-7 the new field
 appeared at the bottom of the entry. Modify this program so that it
 inserts the new subelement right after the lx field. (Hint: create the new cv field using Element('cv'), assign a text value to it, then use the insert() method of the parent
 element.)

	[image:] Write a function that deletes a specified field from a
 lexical entry. (We could use this to sanitize our lexical data
 before giving it to others, e.g., by removing fields containing
 irrelevant or uncertain content.)

	[image:] Write a program that scans an HTML dictionary file to find
 entries having an illegal part-of-speech field, and then reports the
 headword for each entry.

	[image:] Write a program to find any parts-of-speech (ps field) that occurred less than 10
 times. Perhaps these are typing mistakes?

	[image:] We saw a method for adding a cv field (Working with Toolbox Data). There is an interesting
 issue with keeping this up-to-date when someone modifies the content
 of the lx field on which it is
 based. Write a version of this program to add a cv field, replacing any existing cv field.

	[image:] Write a function to add a new field syl which gives a count of the number of
 syllables in the word.

	[image:] Write a function which displays the complete entry for a
 lexeme. When the lexeme is incorrectly spelled, it should display
 the entry for the most similarly spelled lexeme.

	[image:] Write a function that takes a lexicon and finds which pairs
 of consecutive fields are most frequent (e.g., ps is often followed by pt). (This might help us to discover some
 of the structure of a lexical entry.)

	[image:] Create a spreadsheet using office software, containing one
 lexical entry per row, consisting of a headword, a part of speech,
 and a gloss. Save the spreadsheet in CSV format. Write Python code
 to read the CSV file and print it in Toolbox format, using lx for the headword, ps for the part of speech, and gl for the gloss.

	[image:] Index the words of Shakespeare’s plays, with the help of
 nltk.Index. The resulting data
 structure should permit lookup on individual words, such as
 music, returning a list of references to acts,
 scenes, and speeches, of the form [(3, 2,
 9), (5, 1, 23), ...], where (3,
 2, 9) indicates Act 3 Scene 2 Speech 9.

	[image:] Construct a conditional frequency distribution which records
 the word length for each speech in The Merchant of
 Venice, conditioned on the name of the character; e.g.,
 cfd['PORTIA'][12] would give us
 the number of speeches by Portia consisting of 12 words.

	[image:] Write a recursive function to convert an arbitrary NLTK tree
 into an XML counterpart, with non-terminals represented as XML
 elements, and leaves represented as text content, e.g.:
<S>
 <NP type="SBJ">
 <NP>
 <NNP>Pierre</NNP>
 <NNP>Vinken</NNP>
 </NP>
 <COMMA>,</COMMA>

	● Obtain a comparative wordlist in CSV format, and write a
 program that prints those cognates having an edit-distance of at
 least three from each other.

	● Build an index of those lexemes which appear in example
 sentences. Suppose the lexeme for a given entry is
 w. Then, add a single cross-reference field
 xrf to this entry, referencing
 the headwords of other entries having example sentences containing
 w. Do this for all entries and save the result
 as a Toolbox-format file.

Appendix A. Afterword: The Language Challenge

Natural language throws up some interesting computational
 challenges. We’ve explored many of these in the preceding chapters,
 including tokenization, tagging, classification, information extraction,
 and building syntactic and semantic representations. You should now be
 equipped to work with large datasets, to create robust models of
 linguistic phenomena, and to extend them into components for practical
 language technologies. We hope that the Natural Language Toolkit (NLTK)
 has served to open up the exciting endeavor of practical natural language
 processing to a broader audience than before.
In spite of all that has come before, language presents us with far
 more than a temporary challenge for computation. Consider the following
 sentences which attest to the riches of language:
	Overhead the day drives level and grey, hiding the sun by a
 flight of grey spears. (William Faulkner, As I Lay
 Dying, 1935)

	When using the toaster please ensure that the exhaust fan is
 turned on. (sign in dormitory kitchen)

	Amiodarone weakly inhibited CYP2C9, CYP2D6, and CYP3A4-mediated
 activities with Ki values of 45.1-271.6 μM (Medline, PMID:
 10718780)

	Iraqi Head Seeks Arms (spoof news headline)

	The earnest prayer of a righteous man has great power and
 wonderful results. (James 5:16b)

	Twas brillig, and the slithy toves did gyre and gimble in the
 wabe (Lewis Carroll, Jabberwocky, 1872)

	There are two ways to do this, AFAIK :smile: (Internet
 discussion archive)

Other evidence for the riches of language is the vast array of
 disciplines whose work centers on language. Some obvious disciplines
 include translation, literary criticism, philosophy, anthropology, and
 psychology. Many less obvious disciplines investigate language use,
 including law, hermeneutics, forensics, telephony, pedagogy, archaeology,
 cryptanalysis, and speech pathology. Each applies distinct methodologies
 to gather observations, develop theories, and test hypotheses. All serve
 to deepen our understanding of language and of the intellect that is
 manifested in language.
In view of the complexity of language and the broad range of
 interest in studying it from different angles, it’s clear that we have
 barely scratched the surface here. Additionally, within NLP itself, there
 are many important methods and applications that we haven’t
 mentioned.
In our closing remarks we will take a broader view of NLP, including
 its foundations and the further directions you might want to explore. Some
 of the topics are not well supported by NLTK, and you might like to
 rectify that problem by contributing new software and data to the
 toolkit.
Language Processing Versus Symbol Processing

The very notion that natural language could be treated in a
 computational manner grew out of a research program, dating back to the
 early 1900s, to reconstruct mathematical reasoning using logic, most
 clearly manifested in work by Frege, Russell, Wittgenstein, Tarski,
 Lambek, and Carnap. This work led to the notion of language as a formal
 system amenable to automatic processing. Three later developments laid
 the foundation for natural language processing. The first was formal language theory. This defined a language
 as a set of strings accepted by a class of automata, such as
 context-free languages and pushdown automata, and provided the
 underpinnings for computational syntax.
The second development was symbolic
 logic. This provided a formal method for capturing selected
 aspects of natural language that are relevant for expressing logical
 proofs. A formal calculus in symbolic logic provides the syntax of a
 language, together with rules of inference and, possibly, rules of
 interpretation in a set-theoretic model; examples are propositional
 logic and first-order logic. Given such a calculus, with a well-defined
 syntax and semantics, it becomes possible to associate meanings with
 expressions of natural language by translating them into expressions of
 the formal calculus. For example, if we translate John saw
 Mary into a formula saw(j, m), we
 (implicitly or explicitly) interpret the English verb
 saw as a binary relation, and
 John and Mary as denoting
 individuals. More general statements like All birds
 fly require quantifiers, in this case ∀, meaning
 for all: ∀x
 (bird(x)
 →
 fly(x)). This use of logic
 provided the technical machinery to perform inferences that are an
 important part of language understanding.
A closely related development was the principle of compositionality, namely that the
 meaning of a complex expression is composed from the meaning of its
 parts and their mode of combination (Chapter 10). This
 principle provided a useful correspondence between syntax and semantics, namely
 that the meaning of a complex expression could be computed recursively.
 Consider the sentence It is not true that
 p, where p is a proposition.
 We can represent the meaning of this sentence as
 not(p). Similarly, we can
 represent the meaning of John saw Mary as
 saw(j,
 m). Now we can compute the interpretation of
 It is not true that John saw Mary recursively,
 using the foregoing information, to get
 not(saw(j,m)).
The approaches just outlined share the premise that computing with
 natural language crucially relies on rules for manipulating symbolic
 representations. For a certain period in the development of NLP,
 particularly during the 1980s, this premise provided a common starting
 point for both linguists and practitioners of NLP, leading to a family
 of grammar formalisms known as unification-based (or feature-based)
 grammar (see Chapter 9), and to NLP applications
 implemented in the Prolog programming language. Although grammar-based
 NLP is still a significant area of research, it has become somewhat
 eclipsed in the last 15–20 years due to a variety of factors. One
 significant influence came from automatic speech recognition. Although
 early work in speech processing adopted a model that emulated the kind
 of rule-based phonological phonology
 processing typified by the Sound Pattern of English
 (Chomsky & Halle, 1968), this turned out to be hopelessly inadequate
 in dealing with the hard problem of recognizing actual speech in
 anything like real time. By contrast, systems which involved learning
 patterns from large bodies of speech data were significantly more
 accurate, efficient, and robust. In addition, the speech community found
 that progress in building better systems was hugely assisted by the
 construction of shared resources for quantitatively measuring
 performance against common test data. Eventually, much of the NLP
 community embraced a data-intensive
 orientation to language processing, coupled with a growing use of
 machine-learning techniques and evaluation-led methodology.

Contemporary Philosophical Divides

The contrasting approaches to NLP described in the preceding
 section relate back to early metaphysical debates about rationalism versus empiricism and realism versus idealism that occurred in the Enlightenment
 period of Western philosophy. These debates took place against a
 backdrop of orthodox thinking in which the source of all knowledge was
 believed to be divine revelation. During this period of the 17th and
 18th centuries, philosophers argued that human reason or sensory
 experience has priority over revelation. Descartes and Leibniz, among
 others, took the rationalist position, asserting that all truth has its
 origins in human thought, and in the existence of “innate ideas”
 implanted in our minds from birth. For example, they argued that the
 principles of Euclidean geometry were developed using human reason, and
 were not the result of supernatural revelation or sensory experience. In
 contrast, Locke and others took the empiricist view, that our primary
 source of knowledge is the experience of our faculties, and that human
 reason plays a secondary role in reflecting on that experience.
 Often-cited evidence for this position was Galileo’s discovery—based on
 careful observation of the motion of the planets—that the solar system
 is heliocentric and not geocentric. In the context of linguistics, this
 debate leads to the following question: to what extent does human
 linguistic experience, versus our innate “language faculty,” provide the
 basis for our knowledge of language? In NLP this issue surfaces in
 debates about the priority of corpus data versus linguistic
 introspection in the construction of computational models.
A further concern, enshrined in the debate between realism and
 idealism, was the metaphysical
 status of the constructs of a theory. Kant argued for a distinction
 between phenomena, the manifestations we can experience, and “things in
 themselves” which can never be known directly. A linguistic realist
 would take a theoretical construct like noun
 phrase to be a real-world entity that exists independently of
 human perception and reason, and which actually
 causes the observed linguistic phenomena. A
 linguistic idealist, on the other hand, would argue that noun phrases,
 along with more abstract constructs, like semantic representations, are
 intrinsically unobservable, and simply play the role of useful fictions.
 The way linguists write about theories often betrays a realist position,
 whereas NLP practitioners occupy neutral territory or else lean toward
 the idealist position. Thus, in NLP, it is often enough if a theoretical
 abstraction leads to a useful result; it does not matter whether this
 result sheds any light on human linguistic processing.
These issues are still alive today, and show up in the
 distinctions between symbolic versus statistical methods, deep versus
 shallow processing, binary versus gradient classifications, and
 scientific versus engineering goals. However, such contrasts are now
 highly nuanced, and the debate is no longer as polarized as it once was.
 In fact, most of the discussions—and most of the advances, even—involve
 a “balancing act.” For example, one intermediate position is to assume
 that humans are innately endowed with analogical and memory-based
 learning methods (weak rationalism), and use these methods to identify
 meaningful patterns in their sensory language experience
 (empiricism).
We have seen many examples of this methodology throughout this
 book. Statistical methods inform symbolic models anytime corpus
 statistics guide the selection of productions in a context-free grammar,
 i.e., “grammar engineering.” Symbolic methods inform statistical models
 anytime a corpus that was created using rule-based methods is used as a
 source of features for training a statistical language model, i.e.,
 “grammatical inference.” The circle is closed.

NLTK Roadmap

The Natural Language Toolkit is a work in progress, and is being
 continually expanded as people contribute code. Some areas of NLP and
 linguistics are not (yet) well supported in NLTK, and contributions in
 these areas are especially welcome. Check http://www.nltk.org/ for news about developments after
 the publication date of this book. Contributions in the following areas
 are particularly encouraged:
	Phonology and morphology
	Computational approaches to the study of sound patterns and
 word structures typically use a finite-state toolkit. Phenomena
 such as suppletion and non-concatenative morphology are difficult
 to address using the string-processing methods we have been
 studying. The technical challenge is not only to link NLTK to a
 high-performance finite-state toolkit, but to avoid duplication of
 lexical data and to link the morphosyntactic features needed by
 morph analyzers and syntactic parsers.

	High-performance components
	Some NLP tasks are too computationally intensive for pure
 Python implementations to be feasible. However, in some cases the
 expense arises only when training models, not when using them to
 label inputs. NLTK’s package system provides a convenient way to
 distribute trained models, even models trained using corpora that
 cannot be freely distributed. Alternatives are to develop Python
 interfaces to high-performance machine learning tools, or to
 expand the reach of Python by using parallel programming
 techniques such as MapReduce.

	Lexical semantics
	This is a vibrant area of current research, encompassing
 inheritance models of the lexicon, ontologies, multiword
 expressions, etc., mostly outside the scope of NLTK as it stands.
 A conservative goal would be to access lexical information from
 rich external stores in support of tasks in word sense
 disambiguation, parsing, and semantic interpretation.

	Natural language generation
	Producing coherent text from underlying representations of
 meaning is an important part of NLP; a unification-based approach
 to NLG has been developed in NLTK, and there is scope for more
 contributions in this area.

	Linguistic fieldwork
	A major challenge faced by linguists is to document
 thousands of endangered languages, work which generates
 heterogeneous and rapidly evolving data in large quantities. More
 fieldwork data formats, including interlinear text formats and
 lexicon interchange formats, could be supported in NLTK, helping
 linguists to curate and analyze this data, while liberating them
 to spend as much time as possible on data elicitation.

	Other languages
	Improved support for NLP in languages other than English
 could involve work in two areas: obtaining permission to
 distribute more corpora with NLTK’s data collection; and writing
 language-specific HOWTOs for posting at http://www.nltk.org/howto, illustrating the use of
 NLTK and discussing language-specific problems for NLP, including
 character encodings, word segmentation, and morphology. NLP
 researchers with expertise in a particular language could arrange
 to translate this book and host a copy on the NLTK website; this
 would go beyond translating the discussions to providing
 equivalent worked examples using data in the target language, a
 non-trivial undertaking.

	NLTK-Contrib
	Many of NLTK’s core components were contributed by members
 of the NLP community, and were initially housed in NLTK’s
 “Contrib” package, nltk_contrib. The only requirement for
 software to be added to this package is that it must be written in
 Python, relevant to NLP, and given the same open source license as
 the rest of NLTK. Imperfect software is welcome, and will probably
 be improved over time by other members of the NLP
 community.

	Teaching materials
	Since the earliest days of NLTK development, teaching
 materials have accompanied the software, materials that have
 gradually expanded to fill this book, plus a substantial quantity
 of online materials as well. We hope that instructors who
 supplement these materials with presentation slides, problem sets,
 solution sets, and more detailed treatments of the topics we have
 covered will make them available, and will notify the authors so
 we can link them from http://www.nltk.org/.
 Of particular value are materials that help NLP become a
 mainstream course in the undergraduate programs of computer
 science and linguistics departments, or that make NLP accessible
 at the secondary level, where there is significant scope for
 including computational content in the language, literature,
 computer science, and information technology curricula.

	Only a toolkit
	As stated in the preface, NLTK is a
 toolkit, not a system. Many problems will be
 tackled with a combination of NLTK, Python, other Python
 libraries, and interfaces to external NLP tools and
 formats.

Envoi...

Linguists are sometimes asked how many languages they speak, and
 have to explain that this field actually concerns the study of abstract
 structures that are shared by languages, a study which is more profound
 and elusive than learning to speak as many languages as possible.
 Similarly, computer scientists are sometimes asked how many programming
 languages they know, and have to explain that computer science actually
 concerns the study of data structures and algorithms that can be
 implemented in any programming language, a study which is more profound
 and elusive than striving for fluency in as many programming languages
 as possible.
This book has covered many topics in the field of Natural Language
 Processing. Most of the examples have used Python and English. However,
 it would be unfortunate if readers concluded that NLP is about how to
 write Python programs to manipulate English text, or more broadly, about
 how to write programs (in any programming language) to manipulate text
 (in any natural language). Our selection of Python and English was
 expedient, nothing more. Even our focus on programming itself was only a
 means to an end: as a way to understand data structures and algorithms
 for representing and manipulating collections of linguistically
 annotated text, as a way to build new language technologies to better
 serve the needs of the information society, and ultimately as a pathway
 into deeper understanding of the vast riches of human language.
But for the present: happy hacking!

Appendix B. Bibliography

[Abney, 1989] Steven P. Abney. A computational
 model of human parsing. Journal of Psycholinguistic
 Research, 18:129–144, 1989.
[Abney, 1991] Steven P. Abney. Parsing by chunks.
 In Robert C. Berwick, Steven P. Abney, and Carol Tenny, editors,
 Principle-Based Parsing: Computation and
 Psycholinguistics, volume 44 of Studies in
 Linguistics and Philosophy. Kluwer Academic Publishers,
 Dordrecht, 1991.
[Abney, 1996a] Steven Abney. Part-of-speech
 tagging and partial parsing. In Ken Church, Steve Young, and
 Gerrit Bloothooft, editors, Corpus-Based Methods in Language
 and Speech. Kluwer Academic Publishers, Dordrecht,
 1996.
[Abney, 1996b] Steven Abney. Statistical methods and
 linguistics. In Judith Klavans and Philip Resnik, editors,
 The Balancing Act: Combining Symbolic and Statistical
 Approaches to Language. MIT Press, 1996.
[Abney, 2008] Steven Abney. Semisupervised
 Learning for Computational Linguistics. Chapman and Hall,
 2008.
[Agirre and Edmonds, 2007] Eneko Agirre and Philip
 Edmonds. Word Sense Disambiguation: Algorithms and
 Applications. Springer, 2007.
[Alpaydin, 2004] Ethem Alpaydin.
 Introduction to Machine Learning. MIT Press,
 2004.
[Ananiadou and McNaught, 2006] Sophia Ananiadou
 and John McNaught, editors. Text Mining for Biology and
 Biomedicine. Artech House, 2006.
[Androutsopoulos et al., 1995] Ion
 Androutsopoulos, Graeme Ritchie, and Peter Thanisch. Natural language
 interfaces to databases—an introduction. Journal of Natural
 Language Engineering, 1:29–81, 1995.
[Artstein and Poesio, 2008] Ron Artstein and
 Massimo Poesio. Inter-coder agreement for computational linguistics.
 Computational Linguistics, pages 555–596,
 2008.
[Baayen, 2008] Harald Baayen. Analyzing
 Linguistic Data: A Practical Introduction to Statistics Using
 R. Cambridge University Press, 2008.
[Bachenko and Fitzpatrick, 1990] J. Bachenko
 and E. Fitzpatrick. A computational grammar of discourse-neutral prosodic
 phrasing in English. Computational Linguistics,
 16:155–170, 1990.
[Baldwin & Kim, 2010] Timothy Baldwin and Su
 Nam Kim. Multiword Expressions. In Nitin Indurkhya and Fred J. Damerau,
 editors, Handbook of Natural Language Processing,
 second edition. Morgan and Claypool, 2010.
[Beazley, 2006] David M. Beazley.
 Python Essential Reference. Developer’s Library.
 Sams Publishing, third edition, 2006.
[Biber et al., 1998] Douglas Biber, Susan Conrad, and
 Randi Reppen. Corpus Linguistics: Investigating Language
 Structure and Use. Cambridge University Press, 1998.
[Bird, 1999] Steven Bird. Multidimensional exploration of online
 linguistic field data. In Pius Tamanji, Masako Hirotani, and Nancy Hall,
 editors, Proceedings of the 29th Annual Meeting of the
 Northeast Linguistics Society, pages 33–47. GLSA, University
 of Massachussetts at Amherst, 1999.
[Bird and Liberman, 2001] Steven Bird and Mark
 Liberman. A formal framework
 for linguistic annotation. Speech
 Communication, 33:23–60, 2001.
[Bird and Simons, 2003] Steven Bird and
 Gary Simons. Seven dimensions of portability for language documentation
 and description. Language, 79:557–582, 2003.
[Blackburn and Bos, 2005] Patrick Blackburn
 and Johan Bos. Representation and Inference for Natural
 Language: A First Course in Computational Semantics. CSLI
 Publications, Stanford, CA, 2005.
[BNC, 1999] BNC. British National Corpus, 1999.
 [http://info.ox.ac.uk/bnc/].
[Brent and Cartwright, 1995] Michael Brent and
 Timothy Cartwright. Distributional regularity and phonotactic constraints
 are useful for segmentation. In Michael Brent, editor,
 Computational Approaches to Language Acquisition.
 MIT Press, 1995.
[Bresnan and Hay, 2006] Joan Bresnan and Jennifer
 Hay. Gradient grammar: An effect of animacy on the syntax of
 give in New Zealand and American English. Lingua 118:
 254–59, 2008.
[Budanitsky and Hirst, 2006] Alexander
 Budanitsky and Graeme Hirst. Evaluating wordnet-based measures of lexical
 semantic relatedness. Computational Linguistics,
 32:13–48, 2006.
[Burton-Roberts, 1997] Noel Burton-Roberts.
 Analysing Sentences. Longman, 1997.
[Buseman et al., 1996] Alan Buseman, Karen
 Buseman, and Rod Early. The Linguist’s Shoebox: Integrated Data
 Management and Analysis for the Field Linguist. Waxhaw NC:
 SIL, 1996.
[Carpenter, 1992] Bob Carpenter.
 The Logic of Typed Feature Structures. Cambridge
 University Press, 1992.
[Carpenter, 1997] Bob Carpenter.
 Type-Logical Semantics. MIT Press, 1997.
[Chierchia and McConnell-Ginet, 1990] Gennaro
 Chierchia and Sally McConnell-Ginet. Meaning and Grammar: An
 Introduction to Meaning. MIT Press, Cambridge, MA,
 1990.
[Chomsky, 1965] Noam Chomsky. Aspects of
 the Theory of Syntax. MIT Press, Cambridge, MA, 1965.
[Chomsky, 1970] Noam Chomsky. Remarks on
 nominalization. In R. Jacobs and P. Rosenbaum, editors,
 Readings in English Transformational Grammar.
 Blaisdell, Waltham, MA, 1970.
[Chomsky and Halle, 1968] Noam Chomsky and Morris Halle.
 The Sound Pattern of English. New York: Harper and
 Row, 1968.
[Church and Patil, 1982] Kenneth Church and
 Ramesh Patil. Coping with syntactic ambiguity or how to put the block in
 the box on the table. American Journal of Computational
 Linguistics, 8:139–149, 1982.
[Cohen and Hunter, 2004] K. Bretonnel Cohen
 and Lawrence Hunter. Natural language processing and systems biology. In
 Werner Dubitzky and Francisco Azuaje, editors, Artificial
 Intelligence Methods and Tools for Systems Biology, page
 147–174 Springer Verlag, 2004.
[Cole, 1997] Ronald Cole, editor. Survey of the State of
 the Art in Human Language Technology. Studies in
 Natural Language Processing. Cambridge University Press, 1997.
[Copestake, 2002] Ann Copestake.
 Implementing Typed Feature Structure Grammars. CSLI
 Publications, Stanford, CA, 2002.
[Corbett, 2006] Greville G. Corbett.
 Agreement. Cambridge University Press, 2006.
[Croft et al., 2009] Bruce Croft, Donald Metzler, and
 Trevor Strohman. Search Engines: Information Retrieval in
 Practice. Addison Wesley, 2009.
[Daelemans and van den Bosch, 2005] Walter
 Daelemans and Antal van den Bosch. Memory-Based Language
 Processing. Cambridge University Press, 2005.
[Dagan et al., 2006] Ido Dagan, Oren Glickman, and
 Bernardo Magnini. The PASCAL recognising textual entailment challenge. In
 J. Quinonero-Candela, I. Dagan, B. Magnini, and F. d’Alché Buc, editors,
 Machine Learning Challenges, volume 3944 of
 Lecture Notes in Computer Science, pages 177–190.
 Springer, 2006.
[Dale et al., 2000] Robert Dale, Hermann Moisl,
 and Harold Somers, editors. Handbook of Natural Language
 Processing. Marcel Dekker, 2000.
[Dalrymple, 2001] Mary Dalrymple. Lexical Functional
 Grammar, volume 34 of Syntax and
 Semantics. Academic Press, New York, 2001.
[Dalrymple et al., 1999] Mary Dalrymple, V.
 Gupta, John Lamping, and V. Saraswat. Relating resource-based semantics to
 categorial semantics. In Mary Dalrymple, editor, Semantics and
 Syntax in Lexical Functional Grammar: The Resource Logic
 Approach, pages 261–280. MIT Press, Cambridge, MA,
 1999.
[Dowty et al., 1981] David R. Dowty, Robert E.
 Wall, and Stanley Peters. Introduction to Montague
 Semantics. Kluwer Academic Publishers, 1981.
[Earley, 1970] Jay Earley. An efficient
 context-free parsing algorithm. Communications of the
 Association for Computing Machinery, 13:94–102, 1970.
[Emele and Zajac, 1990] Martin C. Emele and Rémi
 Zajac. Typed unification grammars. In Proceedings of the 13th
 Conference on Computational Linguistics, pages 293–298.
 Association for Computational Linguistics, Morristown, NJ, 1990.
[Farghaly, 2003] Ali Farghaly, editor.
 Handbook for Language Engineers. CSLI Publications,
 Stanford, CA, 2003.
[Feldman and Sanger, 2007] Ronen Feldman and James
 Sanger. The Text Mining Handbook: Advanced Approaches in
 Analyzing Unstructured Data. Cambridge University Press,
 2007.
[Fellbaum, 1998] Christiane Fellbaum, editor.
 WordNet: An Electronic Lexical Database. MIT Press,
 1998. http://wordnet.princeton.edu/.
[Finegan, 2007] Edward Finegan.
 Language: Its Structure and Use. Wadsworth, Fifth
 edition, 2007.
[Forsyth and Martell, 2007] Eric N. Forsyth and
 Craig H. Martell. Lexical and discourse analysis of online chat dialog. In
 Proceedings of the First IEEE International Conference on
 Semantic Computing, pages 19–26, 2007.
[Friedl, 2002] Jeffrey E. F. Friedl.
 Mastering Regular Expressions. O’Reilly, second
 edition, 2002.
[Gamut, 1991a] L. T. F. Gamut.
 Intensional Logic and Logical Grammar, volume 2 of
 Logic, Language and Meaning. University of Chicago
 Press, Chicago, 1991.
[Gamut, 1991b] L. T. F. Gamut.
 Introduction to Logic, volume 1 of
 Logic, Language and Meaning. University of Chicago
 Press, 1991.
[Garofolo et al., 1986] John S. Garofolo,
 Lori F. Lamel, William M. Fisher, Jonathon G. Fiscus, David S. Pallett,
 and Nancy L. Dahlgren. The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus
 CDROM. NIST, 1986.
[Gazdar et al., 1985] Gerald Gazdar, Ewan Klein,
 Geoffrey Pullum, and Ivan Sag (1985). Generalized Phrase
 Structure Grammar. Basil Blackwell, 1985.
[Gomes et al., 2006] Bruce Gomes, William Hayes,
 and Raf Podowski. Text mining. In Darryl Leon and Scott Markel, editors,
 In Silico Technologies in Drug Target Identification and
 Validation, Taylor & Francis, 2006.
[Gries, 2009] Stefan Gries. Quantitative
 Corpus Linguistics with R: A Practical Introduction.
 Routledge, 2009.
[Guzdial, 2005] Mark Guzdial.
 Introduction to Computing and Programming in Python: A
 Multimedia Approach. Prentice Hall, 2005.
[Harel, 2004] David Harel. Algorithmics:
 The Spirit of Computing. Addison Wesley, 2004.
[Hastie et al., 2009] Trevor Hastie, Robert
 Tibshirani, and Jerome Friedman. The Elements of Statistical
 Learning: Data Mining, Inference, and Prediction. Springer,
 second edition, 2009.
[Hearst, 1992] Marti Hearst. Automatic
 acquisition of hyponyms from large text corpora. In Proceedings
 of the 14th Conference on Computational Linguistics (COLING),
 pages 539–545, 1992.
[Heim and Kratzer, 1998] Irene Heim and Angelika
 Kratzer. Semantics in Generative Grammar.
 Blackwell, 1998.
[Hirschman et al., 2005] Lynette Hirschman,
 Alexander Yeh, Christian Blaschke, and Alfonso Valencia. Overview of
 BioCreAtIvE: critical assessment of information extraction for
 biology. BMC Bioinformatics, 6, May 2005.
 Supplement 1.
[Hodges, 1977] Wilfred Hodges.
 Logic. Penguin Books, Harmondsworth, 1977.
[Huddleston and Pullum, 2002] Rodney D.
 Huddleston and Geoffrey K. Pullum. The Cambridge Grammar of the
 English Language. Cambridge University Press, 2002.
[Hunt and Thomas, 2000] Andrew Hunt and David Thomas.
 The Pragmatic Programmer: From Journeyman to
 Master. Addison Wesley, 2000.
[Indurkhya and Damerau, 2010] Nitin
 Indurkhya and Fred Damerau, editors. Handbook of Natural
 Language Processing. CRC Press, Taylor and Francis Group,
 second edition, 2010.
[Jackendoff, 1977] Ray Jackendoff.
 X-Syntax: a Study of Phrase Strucure. Number 2 in
 Linguistic Inquiry Monograph. MIT Press, Cambridge, MA, 1977.
[Johnson, 1988] Mark Johnson.
 Attribute Value Logic and Theory of Grammar. CSLI
 Lecture Notes Series. University of Chicago Press, 1988.
[Jurafsky and Martin, 2008] Daniel Jurafsky
 and James H. Martin. Speech and Language Processing. Prentice
 Hall, second edition, 2008.
[Kamp and Reyle, 1993] Hans Kamp and Uwe Reyle.
 From Discourse to the Lexicon: Introduction to Modeltheoretic
 Semantics of Natural Language, Formal Logic and Discourse Representation
 Theory. Kluwer Academic Publishers, 1993.
[Kaplan, 1989] Ronald Kaplan. The formal architecture of
 lexical-functional grammar. In Chu-Ren Huang and Keh-Jiann Chen, editors,
 Proceedings of ROCLING II, pages 1–18. CSLI, 1989.
 Reprinted in Dalrymple, Kaplan, Maxwell, and Zaenen (eds),
 Formal Issues in Lexical-Functional Grammar, pages
 7–27. CSLI Publications, Stanford, CA, 1995.
[Kaplan and Bresnan, 1982] Ronald Kaplan and Joan
 Bresnan. Lexical-functional grammar: A formal system for grammatical
 representation. In Joan Bresnan, editor, The Mental
 Representation of Grammatical Relations, pages 173–281. MIT
 Press, Cambridge, MA, 1982.
[Kasper and Rounds, 1986] Robert T. Kasper and
 William C. Rounds. A logical semantics for feature structures. In
 Proceedings of the 24th Annual Meeting of the Association for
 Computational Linguistics, pages 257–266. Association for
 Computational Linguistics, 1986.
[Kathol, 1999] Andreas Kathol. Agreement and the
 syntax-morphology interface in HPSG. In Robert D. Levine and Georgia M.
 Green, editors, Studies in Contemporary Phrase Structure
 Grammar, pages 223–274. Cambridge University Press,
 1999.
[Kay, 1985] Martin Kay. Unification in grammar. In
 Verónica Dahl and Patrick Saint-Dizier, editors, Natural
 Language Understanding and Logic Programming, pages 233–240.
 North-Holland, 1985. Proceedings of the First International Workshop on
 Natural Language Understanding and Logic Programming.
[Kiss and Strunk, 2006] Tibor Kiss and Jan
 Strunk. Unsupervised multilingual sentence boundary detection.
 Computational Linguistics, 32: 485–525,
 2006.
[Kiusalaas, 2005] Jaan Kiusalaas.
 Numerical Methods in Engineering with Python.
 Cambridge University Press, 2005.
[Klein and Manning, 2003] Dan Klein and
 Christopher D. Manning. A* parsing: Fast exact viterbi parse selection. In
 Proceedings of HLT-NAACL 03, 2003.
[Knuth, 2006] Donald E. Knuth. The
 Art of Computer Programming, Volume 4: Generating All Trees.
 Addison Wesley, 2006.
[Lappin, 1996] Shalom Lappin, editor.
 The Handbook of Contemporary Semantic Theory. Blackwell Publishers,
 Oxford, 1996.
[Larson and Segal, 1995] Richard Larson and
 Gabriel Segal. Knowledge of Meaning: An Introduction to
 Semantic Theory. MIT Press, Cambridge, MA, 1995.
[Levin, 1993] Beth Levin. English Verb
 Classes and Alternations. University of Chicago Press,
 1993.
[Levitin, 2004] Anany Levitin. The
 Design and Analysis of Algorithms. Addison Wesley,
 2004.
[Lutz and Ascher, 2003] Mark Lutz and David Ascher.
 Learning Python. O’Reilly, second edition,
 2003.
[MacWhinney, 1995] Brian MacWhinney.
 The CHILDES Project: Tools for Analyzing Talk.
 Mahwah, NJ: Lawrence Erlbaum, second edition, 1995. [http://childes.psy.cmu.edu/].
[Madnani, 2007] Nitin Madnani. Getting started on
 natural language processing with Python. ACM
 Crossroads, 13(4), 2007.
[Manning, 2003] Christopher Manning.
 Probabilistic syntax. In Probabilistic Linguistics,
 pages 289–341. MIT Press, Cambridge, MA, 2003.
[Manning and Schütze, 1999] Christopher Manning
 and Hinrich Schütze. Foundations of Statistical Natural
 Language Processing. MIT Press, Cambridge, MA, 1999.
[Manning et al., 2008] Christopher Manning,
 Prabhakar Raghavan, and Hinrich Schütze. Introduction to
 Information Retrieval. Cambridge University Press,
 2008.
[McCawley, 1998] James McCawley. The
 Syntactic Phenomena of English. University of Chicago Press,
 1998.
[McConnell, 2004] Steve McConnell.
 Code Complete: A Practical Handbook of Software
 Construction. Microsoft Press, 2004.
[McCune, 2008] William McCune. Prover9:
 Automated theorem prover for first-order and equational logic,
 2008.
[McEnery, 2006] Anthony McEnery.
 Corpus-Based Language Studies: An Advanced Resource
 Book. Routledge, 2006.
[Melamed, 2001] Dan Melamed. Empirical
 Methods for Exploiting Parallel Texts. MIT Press, 2001.
[Mertz, 2003] David Mertz. Text
 Processing in Python. Addison-Wesley, Boston, MA, 2003.
[Meyer, 2002] Charles Meyer. English
 Corpus Linguistics: An Introduction. Cambridge University
 Press, 2002.
[Miller and Charles, 1998] George Miller and
 Walter Charles. Contextual correlates of semantic similarity.
 Language and Cognitive Processes, 6:1–28,
 1998.
[Mitkov, 2002a] Ruslan Mitkov. Anaphora
 Resolution. Longman, 2002.
[Mitkov, 2002b] Ruslan Mitkov, editor.
 Oxford Handbook of Computational Linguistics.
 Oxford University Press, 2002.
[Müller, 2002] Stefan Müller. Complex
 Predicates: Verbal Complexes, Resultative Constructions, and Particle
 Verbs in German. Number 13 in Studies in Constraint-Based
 Lexicalism. Center for the Study of Language and Information, Stanford,
 2002. http://www.dfki.de/~stefan/Pub/complex.html.
[Nerbonne et al., 1994] John Nerbonne, Klaus
 Netter, and Carl Pollard. German in Head-Driven Phrase
 Structure Grammar. CSLI Publications, Stanford, CA,
 1994.
[Nespor and Vogel, 1986] Marina Nespor and Irene
 Vogel. Prosodic Phonology. Number 28 in Studies in
 Generative Grammar. Foris Publications, Dordrecht, 1986.
[Nivre et al., 2006] J. Nivre, J. Hall, and J.
 Nilsson. Maltparser:
 A data-driven parser-generator for dependency parsing. In
 Proceedings of LREC, pages 2216–2219, 2006.
[Niyogi, 2006] Partha Niyogi. The
 Computational Nature of Language Learning and Evolution. MIT
 Press, 2006.
[O’Grady et al., 2004] William O’Grady, John
 Archibald, Mark Aronoff, and Janie Rees-Miller. Contemporary
 Linguistics: An Introduction. St. Martin’s Press, fifth
 edition, 2004.
[OSU, 2007] OSU, editor. Language Files:
 Materials for an Introduction to Language and Linguistics.
 Ohio State University Press, tenth edition, 2007.
[Partee, 1995] Barbara Partee. Lexical semantics
 and compositionality. In L. R. Gleitman and M. Liberman, editors,
 An Invitation to Cognitive Science: Language,
 volume 1, pages 311–360. MIT Press, 1995.
[Pasca, 2003] Marius Pasca. Open-Domain
 Question Answering from Large Text Collections. CSLI
 Publications, Stanford, CA, 2003.
[Pevzner and Hearst, 2002] L. Pevzner and
 M. Hearst. A critique and improvement of an evaluation metric for text
 segmentation. Computational Linguistics, 28:19–36,
 2002.
[Pullum, 2005] Geoffrey K. Pullum. Fossilized
 prejudices about “however”, 2005.
[Radford, 1988] Andrew Radford.
 Transformational Grammar: An Introduction.
 Cambridge University Press, 1988.
[Ramshaw and Marcus, 1995] Lance A. Ramshaw and
 Mitchell P. Marcus. Text chunking using transformation-based learning. In
 Proceedings of the Third ACL Workshop on Very Large
 Corpora, pages 82–94, 1995.
[Reppen et al., 2005] Randi Reppen, Nancy Ide,
 and Keith Suderman. American
 National Corpus. Linguistic Data Consortium,
 2005.
[Robinson et al., 2007] Stuart Robinson,
 Greg Aumann, and Steven Bird. Managing
 fieldwork data with toolbox and the natural language toolkit.
 Language Documentation and Conservation, 1:44–57,
 2007.
[Sag and Wasow, 1999] Ivan A. Sag and Thomas Wasow.
 Syntactic Theory: A Formal Introduction. CSLI
 Publications, Stanford, CA, 1999.
[Sampson and McCarthy, 2005] Geoffrey Sampson and
 Diana McCarthy. Corpus Linguistics: Readings in a Widening
 Discipline. Continuum, 2005.
[Scott and Tribble, 2006] Mike Scott and Christopher
 Tribble. Textual Patterns: Key Words and Corpus Analysis in
 Language Education. John Benjamins, 2006.
[Segaran, 2007] Toby Segaran. Collective
 Intelligence. O’Reilly Media, 2007.
[Shatkay and Feldman, 2004] Hagit Shatkay and R.
 Feldman. Mining the biomedical literature in the genomic era: An overview.
 Journal of Computational Biology, 10:821–855,
 2004.
[Shieber, 1986] Stuart M. Shieber. An
 Introduction to Unification-Based Approaches to Grammar,
 volume 4 of CSLI Lecture Notes Series.CSLI
 Publications, Stanford, CA, 1986.
[Shieber et al., 1983] Stuart Shieber, Hans
 Uszkoreit, Fernando Pereira, Jane Robinson, and Mabry Tyson. The formalism
 and implementation of PATR-II. In Barbara J. Grosz and Mark Stickel,
 editors, Research on Interactive Acquisition and Use of
 Knowledge, techreport 4, pages 39–79. SRI International, Menlo
 Park, CA, November 1983. (http://www.eecs.harvard.edu/shieber/Biblio/Papers/Shieber-83-FIP.pdf)
[Simons and Bird, 2003] Gary Simons and
 Steven Bird. The Open Language Archives Community: An infrastructure for
 distributed archiving of language resources. Literary and
 Linguistic Computing, 18:117–128, 2003.
[Sproat et al., 2001] Richard Sproat, Alan Black,
 Stanley Chen, Shankar Kumar, Mari Ostendorf, and Christopher Richards.
 Normalization of non-standard words. Computer Speech and
 Language, 15:287–333, 2001.
[Strunk and White, 1999] William Strunk and E.
 B. White. The Elements of Style. Boston, Allyn and
 Bacon, 1999.
[Thompson and McKelvie, 1997] Henry S.
 Thompson and David McKelvie. Hyperlink semantics for standoff markup of
 read-only documents. In SGML Europe ’97, 1997.
 http://www.ltg.ed.ac.uk/~ht/sgmleu97.html.
[TLG, 1999] TLG. Thesaurus Linguae Graecae,
 1999.
[Turing, 1950] Alan M. Turing. Computing
 machinery and intelligence. Mind,
 59(236):433–460, 1950.
[van Benthem and ter Meulen, 1997] Johan van
 Benthem and Alice ter Meulen, editors. Handbook of Logic and
 Language. MIT Press, Cambridge, MA, 1997.
[van Rossum and Drake, 2006a] Guido van Rossum
 and Fred L. Drake. An Introduction to Python—The Python
 Tutorial. Network Theory Ltd, Bristol, 2006.
[van Rossum and Drake, 2006b] Guido van Rossum
 and Fred L. Drake. The Python Language Reference
 Manual. Network Theory Ltd, Bristol, 2006.
[Warren and Pereira, 1982] David H. D. Warren and
 Fernando C. N. Pereira. An efficient easily adaptable system for
 interpreting natural language queries. American Journal of
 Computational Linguistics, 8(3-4):110–122, 1982.
[Wechsler and Zlatic, 2003] Stephen Mark
 Wechsler and Larisa Zlatic. The Many Faces of
 Agreement. Stanford Monographs in Linguistics. CSLI
 Publications, Stanford, CA, 2003.
[Weiss et al., 2004] Sholom Weiss, Nitin Indurkhya,
 Tong Zhang, and Fred Damerau. Text Mining: Predictive Methods
 for Analyzing Unstructured Information. Springer, 2004.
[Woods et al., 1986] Anthony Woods, Paul Fletcher,
 and Arthur Hughes. Statistics in Language Studies.
 Cambridge University Press, 1986.
[Zhao and Zobel, 2007] Y. Zhao and J. Zobel. Search with
 style: Authorship attribution in classic literature. In
 Proceedings of the Thirtieth Australasian Computer Science
 Conference. Association for Computing Machinery, 2007.
NLTK Index

A
	abspath, Text Corpus Structure
	
	accuracy, Lining Things Up, Lining Things Up, Documenting Functions, Documenting Functions, Exercises
	
	AnaphoraResolutionException, Discourse Processing
	
	AndExpression, Propositional Logic
	
	append, Lists, The NLP Pipeline, Exercises, Inverting a Dictionary
	
	ApplicationExpression, Exercises
	
	apply, Lists
	
	apply_features, Gender Identification, Gender Identification, Gender Identification
	
	Assignment, Individual Variables and Assignments
	
	assumptions, Model Building
	

B
	babelize_shell, Machine Translation, Machine Translation
	
	background, Collocations and Bigrams
	
	backoff, The Lookup Tagger, The Lookup Tagger, Combining Taggers, Combining Taggers, Combining Taggers, Tagging Across Sentence Boundaries, Tagging Across Sentence Boundaries
	
	batch_evaluate, Transitive Verbs
	
	batch_interpret, Transitive Verbs, Transitive Verbs
	
	bigrams, Collocations and Bigrams, Collocations and Bigrams, Generating Random Text with Bigrams, Generating Random Text with Bigrams, Generating Random Text with Bigrams, Some Legitimate Uses for Counters
	
	BigramTagger, Simple Evaluation and Baselines
	
	BracketParseCorpusReader, Loading Your Own Corpus, Loading Your Own Corpus, Loading Your Own Corpus
	
	build_model, Model Building
	

C
	chart, Matplotlib
	
	Chat, Getting Started with NLTK
	
	chat, Searching Tokenized Text, Recursion, Further Reading
	
	chat80, Querying a Database
	
	chat80.sql_query, Querying a Database
	
	child, Dealing with HTML, Recursion, Recursion, NetworkX, NetworkX, Using a Tagger, Tree Traversal, Tree Traversal, Treebanks and Grammars, Treebanks and Grammars, Using Attributes and Constraints, Formatting Entries
	
	children, Unsimplified Tags, Using Attributes and Constraints, Using Attributes and Constraints, Using Attributes and Constraints, Standards and Tools
	
	chunk, Chunking with Regular Expressions, Chunking with Regular Expressions, Simple Evaluation and Baselines, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers
	
	ChunkParserI, Simple Evaluation and Baselines
	
	classifier, Gender Identification, Gender Identification, Choosing the Right Features, Choosing the Right Features, Choosing the Right Features, Choosing the Right Features, Choosing the Right Features, Choosing the Right Features, Document Classification, Document Classification, Part-of-Speech Tagging, Part-of-Speech Tagging, Exploiting Context, Exploiting Context, Sentence Segmentation, Sentence Segmentation, Identifying Dialogue Act Types, Identifying Dialogue Act Types, Accuracy, Accuracy
	
	classify, Document Classification, Document Classification, Document Classification, Document Classification, Document Classification
	
	collocations, Collocations and Bigrams, Collocations and Bigrams, Collocations and Bigrams
	
	common_contexts, Searching Text, Searching Text
	
	concordance, Searching Text, Stemmers
	
	ConditionalFreqDist, Conditional Frequency Distributions, Counting Words by Genre, Counting Words by Genre, Counting Words by Genre, Plotting and Tabulating Distributions, Generating Random Text with Bigrams
	
	conditions, Brown Corpus, Counting Words by Genre, Counting Words by Genre, Plotting and Tabulating Distributions, Plotting and Tabulating Distributions, Plotting and Tabulating Distributions, Generating Random Text with Bigrams, Generating Random Text with Bigrams
	
	conlltags2tree, Simple Evaluation and Baselines
	
	ConstantExpression, Syntax, Syntax
	
	context, Searching Text, Searching Text, Stemmers, Using a Tagger, Transformation-Based Tagging, Transformation-Based Tagging
	
	CooperStore, Quantifier Ambiguity Revisited
	
	cooper_storage, Quantifier Ambiguity Revisited
	
	corpora, Loading Your Own Corpus, Loading Your Own Corpus, Reading Local Files, Extracting Encoded Text from Files, Reading IOB Format and the CoNLL-2000 Chunking Corpus, Querying a Database, The ElementTree Interface, Validating a Toolbox Lexicon
	
	corpus, Gutenberg Corpus, Loading Your Own Corpus, Loading Your Own Corpus, Loading Your Own Corpus, Confusion Matrices, Confusion Matrices, Relation Extraction, Relation Extraction, Treebanks and Grammars
	
	correct, Transformation-Based Tagging, Transformation-Based Tagging, Choosing the Right Features, Choosing the Right Features, Choosing the Right Features, Choosing the Right Features, Choosing the Right Features, Choosing the Right Features, Choosing the Right Features, Choosing the Right Features
	
	count, Counting Vocabulary, Counting Vocabulary, Counting Vocabulary, Lining Things Up, Lining Things Up, Procedural Versus Declarative Style, Procedural Versus Declarative Style, Procedural Versus Declarative Style, Procedural Versus Declarative Style, Choosing the Right Features, Choosing the Right Features, Choosing the Right Features
	

D
	data, Annotated Text Corpora, Functional Decomposition, Functional Decomposition, Exploring Tagged Corpora, Exploring Tagged Corpora, Exploring Tagged Corpora
	
	default, Default Dictionaries, The Regular Expression Tagger
	
	display, The Lookup Tagger, The Lookup Tagger, Well-Formed Substring Tables, Well-Formed Substring Tables, Well-Formed Substring Tables, Well-Formed Substring Tables
	
	distance, Structure of a Python Module
	
	draw, Noun Phrase Chunking, Trees, Exercises, Discourse Representation Theory, Discourse Representation Theory, The ElementTree Interface
	
	draw_trees, Exercises, Exercises, Exercises
	
	DRS, Discourse Representation Theory
	
	DrtParser, Discourse Representation Theory
	

E
	edit_distance, Structure of a Python Module
	
	Element, The ElementTree Interface, The ElementTree Interface, The ElementTree Interface, The ElementTree Interface, The ElementTree Interface, The ElementTree Interface, The ElementTree Interface, The ElementTree Interface, The ElementTree Interface, The ElementTree Interface, The ElementTree Interface, The ElementTree Interface, The ElementTree Interface, The ElementTree Interface, The ElementTree Interface, Using ElementTree for Accessing Toolbox Data, Exercises
	
	ElementTree, The ElementTree Interface, The ElementTree Interface, The ElementTree Interface, Using ElementTree for Accessing Toolbox Data, Using ElementTree for Accessing Toolbox Data, Using ElementTree for Accessing Toolbox Data, Validating a Toolbox Lexicon, Validating a Toolbox Lexicon
	
	ellipsis, NLTK’s Regular Expression Tokenizer
	
	em, Shoebox and Toolbox Lexicons
	
	encoding, Text Corpus Structure, Extracting Encoded Text from Files, Extracting Encoded Text from Files, Extracting Encoded Text from Files, Validating a Toolbox Lexicon, Validating a Toolbox Lexicon, OLAC: Open Language Archives Community
	
	entries, A Pronouncing Dictionary, A Pronouncing Dictionary, A Pronouncing Dictionary, A Pronouncing Dictionary, A Pronouncing Dictionary, A Pronouncing Dictionary, A Pronouncing Dictionary, A Pronouncing Dictionary, A Pronouncing Dictionary, A Pronouncing Dictionary, A Pronouncing Dictionary, Comparative Wordlists, Treebanks and Grammars, Treebanks and Grammars, Validating a Toolbox Lexicon, Validating a Toolbox Lexicon
	
	entropy, Entropy and Information Gain, Entropy and Information Gain, Entropy and Information Gain, Entropy and Information Gain, Entropy and Information Gain, Entropy and Information Gain
	
	entry, A Pronouncing Dictionary, A Pronouncing Dictionary, A Pronouncing Dictionary, A Pronouncing Dictionary, Treebanks and Grammars, Obtaining Data from Word Processor Files, Converting Data Formats, Using XML for Linguistic Structures, Using XML for Linguistic Structures, Using XML for Linguistic Structures, Using XML for Linguistic Structures, Using XML for Linguistic Structures, Using XML for Linguistic Structures, Using XML for Linguistic Structures, Using XML for Linguistic Structures, The Role of XML, Formatting Entries, Working with Toolbox Data, Working with Toolbox Data, Adding a Field to Each Entry, Adding a Field to Each Entry, Adding a Field to Each Entry, Validating a Toolbox Lexicon, Validating a Toolbox Lexicon, Validating a Toolbox Lexicon, Validating a Toolbox Lexicon
	
	error, Indexing Lists, A Pronouncing Dictionary
	
	evaluate, Word Segmentation, Word Segmentation, Word Segmentation, Word Segmentation, Word Segmentation, Word Segmentation, Word Segmentation, Exercises, Exercises, Propositional Logic, Individual Variables and Assignments, Quantification
	
	Expression, Propositional Logic, Syntax, Summarizing the Language of First-Order Logic, Discourse Representation Theory
	
	extract_property, Functions As Arguments, Functions As Arguments, Functions As Arguments, Functions As Arguments, Higher-Order Functions
	

F
	FeatStruct, Processing Feature Structures
	
	feed, Processing RSS Feeds, Processing RSS Feeds
	
	fileid, Gutenberg Corpus, Gutenberg Corpus, Gutenberg Corpus, Gutenberg Corpus, Gutenberg Corpus, Gutenberg Corpus, Gutenberg Corpus, Web and Chat Text, Web and Chat Text, Web and Chat Text, Inaugural Address Corpus, Inaugural Address Corpus, Inaugural Address Corpus, Inaugural Address Corpus, Text Corpus Structure, Text Corpus Structure, Text Corpus Structure, Plotting and Tabulating Distributions, Plotting and Tabulating Distributions, Plotting and Tabulating Distributions, Wordlist Corpora, Wordlist Corpora, Wordlist Corpora, Document Classification, Document Classification, Exercises
	
	filename, Exercises, Exercises
	
	findall, Searching Tokenized Text, Exercises, Using ElementTree for Accessing Toolbox Data
	
	fol, Discourse Representation Theory, Discourse Representation Theory
	
	format, Strings and Formats, Text Wrapping, Text Wrapping, Sources of Error, Converting Data Formats, OLAC: Open Language Archives Community, OLAC: Open Language Archives Community
	
	freq, Frequency Distributions, Frequency Distributions, Frequency Distributions, Frequency Distributions, Counting Other Things, Counting Other Things, Summary
	
	FreqDist, Frequency Distributions, Frequency Distributions, Frequency Distributions, Frequency Distributions, Frequency Distributions, Counting Other Things, Counting Other Things, Counting Other Things, Counting Other Things, Counting Other Things, Exercises, Conditional Frequency Distributions, Counting Words by Genre, Counting Words by Genre, Counting Words by Genre, Generating Random Text with Bigrams, Lexical Resources, Wordlist Corpora, Operating on Sequence Types, Functional Decomposition, Named Arguments, Exercises, Nouns, Validating a Toolbox Lexicon
	
	freqdist, Wordlist Corpora, Functional Decomposition, Functional Decomposition, Functional Decomposition, Named Arguments, Named Arguments, Entropy and Information Gain
	

G
	generate, Searching Text, Searching Text
	
	get, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, Verbs, Default Dictionaries
	
	getchildren, The ElementTree Interface, The ElementTree Interface
	
	grammar, Noun Phrase Chunking, Noun Phrase Chunking, Noun Phrase Chunking, Chunking with Regular Expressions, Chunking with Regular Expressions, Chunking with Regular Expressions, Chunking with Regular Expressions, Chinking, Chinking, Simple Evaluation and Baselines, Simple Evaluation and Baselines, Building Nested Structure with Cascaded Chunkers, Building Nested Structure with Cascaded Chunkers, Building Nested Structure with Cascaded Chunkers, Well-Formed Substring Tables, Well-Formed Substring Tables, Dependencies and Dependency Grammar, Pernicious Ambiguity, Pernicious Ambiguity, Weighted Grammar, Weighted Grammar, Weighted Grammar, Quantifier Ambiguity Revisited, Validating a Toolbox Lexicon, Validating a Toolbox Lexicon, Validating a Toolbox Lexicon, Validating a Toolbox Lexicon, Validating a Toolbox Lexicon, Validating a Toolbox Lexicon, OLAC: Open Language Archives Community, OLAC: Open Language Archives Community
	
	Grammar, Weighted Grammar, Using Attributes and Constraints, Unbounded Dependency Constructions, Case and Gender in German, OLAC: Open Language Archives Community
	

H
	hole, Ranges and Closures
	
	hyp_extra, Recognizing Textual Entailment
	

I
	ic, Exercises
	
	ieer, Relation Extraction
	
	IffExpression, Propositional Logic
	
	index, Indexing Lists, Indexing Lists, Strings, Conditionals, Accessing Individual Characters, Exercises, Exercises, Sequences, Well-Formed Substring Tables, Well-Formed Substring Tables, Well-Formed Substring Tables, Well-Formed Substring Tables
	
	inference, Propositional Logic
	

J
	jaccard_distance, Structure of a Python Module
	

K
	keys, Frequency Distributions, Frequency Distributions, Dictionaries in Python
	

L
	LambdaExpression, The λ-Calculus
	
	lancaster, Stemmers
	
	leaves, Text Corpus Structure, More Lexical Relations, More Lexical Relations, Standards and Tools
	
	Lemma, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, More Lexical Relations, More Lexical Relations, More Lexical Relations, More Lexical Relations, More Lexical Relations
	
	lemma, Senses and Synonyms, The WordNet Hierarchy, Further Reading
	
	lemmas, Senses and Synonyms
	
	length, Nested Code Blocks, Nested Code Blocks, Nested Code Blocks, Wordlist Corpora, Combining Different Sequence Types, Documenting Functions
	
	load, Exercises, Storing Taggers, Storing Taggers
	
	load_corpus, Functional Decomposition
	
	load_earley, Using Attributes and Constraints, Using Attributes and Constraints, Unbounded Dependency Constructions, Unbounded Dependency Constructions, Case and Gender in German, Case and Gender in German, Case and Gender in German, Querying a Database, Querying a Database, Querying a Database, Transitive Verbs, Transitive Verbs, Discourse Representation Theory, Discourse Representation Theory, Discourse Representation Theory
	
	load_parser, Using Attributes and Constraints
	
	logic, Summarizing the Language of First-Order Logic, The λ-Calculus, The λ-Calculus
	
	LogicParser, Propositional Logic, Propositional Logic, Syntax, Syntax, The λ-Calculus, Discourse Representation Theory, Exercises
	

M
	Mace, Model Building
	
	MaceCommand, Model Building
	
	maxent, Training Classifier-Based Chunkers
	
	megam, Training Classifier-Based Chunkers
	
	member_holonyms, More Lexical Relations, Exercises
	
	member_meronyms, Exercises
	
	metrics, Structure of a Python Module, Structure of a Python Module, Structure of a Python Module
	
	model, The Lookup Tagger, The Lookup Tagger, The Lookup Tagger
	
	Model, The Lookup Tagger, The Lookup Tagger, Quantifier Scope Ambiguity
	

N
	nbest_parse, Using Attributes and Constraints
	
	ne, Recognizing Textual Entailment, Recognizing Textual Entailment, Recognizing Textual Entailment, Recognizing Textual Entailment, Named Entity Recognition
	
	NegatedExpression, Propositional Logic
	
	ngrams, Some Legitimate Uses for Counters
	
	NgramTagger, General N-Gram Tagging
	
	nltk.chat.chatbots, Spoken Dialogue Systems
	
	nltk.classify, Gender Identification
	
	nltk.classify.rte_classify, Recognizing Textual Entailment
	
	nltk.cluster, NumPy, NumPy
	
	nltk.corpus, Gutenberg Corpus, Gutenberg Corpus, Web and Chat Text, Web and Chat Text, Brown Corpus, Brown Corpus, Reuters Corpus, Inaugural Address Corpus, Corpora in Other Languages, Loading Your Own Corpus, Loading Your Own Corpus, Counting Words by Genre, Plotting and Tabulating Distributions, Plotting and Tabulating Distributions, Wordlist Corpora, Comparative Wordlists, Shoebox and Toolbox Lexicons, Senses and Synonyms, Accessing Individual Characters, Searching Tokenized Text, Searching Tokenized Text, Lining Things Up, Recursion, NetworkX, A Simplified Part-of-Speech Tagset, Exploring Tagged Corpora, Incrementally Updating a Dictionary, Automatic Tagging, Unigram Tagging, Gender Identification, Document Classification, Exercises, Exercises, Reading IOB Format and the CoNLL-2000 Chunking Corpus, Simple Evaluation and Baselines, Relation Extraction, Treebanks and Grammars, Treebanks and Grammars, Standards and Tools, Standards and Tools, Using ElementTree for Accessing Toolbox Data, Working with Toolbox Data
	
	nltk.data.find, Reading Local Files, Reading Local Files, Extracting Encoded Text from Files, Extracting Encoded Text from Files, The ElementTree Interface, Validating a Toolbox Lexicon
	
	nltk.data.load, Sentence Segmentation, Writing Your Own Grammars, Using Attributes and Constraints
	
	nltk.data.show_cfg, Using Attributes and Constraints, Unbounded Dependency Constructions, Case and Gender in German, Querying a Database
	
	nltk.downloader, Treebanks and Grammars
	
	nltk.draw.tree, Exercises
	
	nltk.etree.ElementTree, The ElementTree Interface, Using ElementTree for Accessing Toolbox Data, Adding a Field to Each Entry, Validating a Toolbox Lexicon
	
	nltk.grammar, A Simple Grammar
	
	nltk.help.brown_tagset, Further Reading
	
	nltk.help.upenn_tagset, Using a Tagger, Further Reading
	
	nltk.inference.discourse, Discourse Processing
	
	nltk.metrics.agreement, Quality Control
	
	nltk.metrics.distance, Structure of a Python Module
	
	nltk.parse, Using Attributes and Constraints, Unbounded Dependency Constructions, Querying a Database, Transitive Verbs, Discourse Representation Theory
	
	nltk.probability, Exercises
	
	nltk.sem, Querying a Database, Quantifier Ambiguity Revisited
	
	nltk.sem.cooper_storage, Quantifier Ambiguity Revisited
	
	nltk.sem.drt_resolve_anaphora, Discourse Representation Theory
	
	nltk.tag, Discourse Processing
	
	nltk.tag.brill.demo, Transformation-Based Tagging, Exercises
	
	nltk.text.Text, Electronic Books
	
	node, NetworkX
	
	nps_chat, Web and Chat Text, Searching Tokenized Text, Identifying Dialogue Act Types
	

O
	olac, OLAC: Open Language Archives Community, OLAC: Open Language Archives Community, OLAC: Open Language Archives Community, OLAC: Open Language Archives Community, OLAC: Open Language Archives Community, OLAC: Open Language Archives Community, OLAC: Open Language Archives Community, OLAC: Open Language Archives Community, OLAC: Open Language Archives Community, OLAC: Open Language Archives Community, OLAC: Open Language Archives Community, OLAC: Open Language Archives Community, OLAC: Open Language Archives Community
	
	OrExpression, Propositional Logic
	

P
	packages, Structure of a Python Module
	
	parse, Simple Evaluation and Baselines, Simple Evaluation and Baselines, Simple Evaluation and Baselines, Simple Evaluation and Baselines, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers, Weighted Grammar, Syntax, Discourse Representation Theory, The ElementTree Interface, The ElementTree Interface
	
	parsed, Loading Your Own Corpus, Syntax, Syntax
	
	ParseI, Exercises
	
	parse_valuation, Truth in Model
	
	part_holonyms, Exercises
	
	part_meronyms, More Lexical Relations, Exercises
	
	path, Reading Local Files, Reading Local Files, Extracting Encoded Text from Files, Extracting Encoded Text from Files, Extracting Encoded Text from Files, Extracting Encoded Text from Files
	
	path_similarity, Semantic Similarity
	
	phones, The Structure of TIMIT
	
	phonetic, The Structure of TIMIT, The Structure of TIMIT, The Structure of TIMIT
	
	PlaintextCorpusReader, Loading Your Own Corpus, Loading Your Own Corpus, Loading Your Own Corpus, Loading Your Own Corpus
	
	porter, Stemmers, Stemmers, Stemmers
	
	posts, A Pronouncing Dictionary, Identifying Dialogue Act Types, Identifying Dialogue Act Types
	
	ppattach, Exercises
	
	PPAttachment, Exercises, Exercises
	
	productions, Well-Formed Substring Tables, Well-Formed Substring Tables, Dependencies and Dependency Grammar, Weighted Grammar, Using Attributes and Constraints, Using Attributes and Constraints, Using Attributes and Constraints
	
	prove, First-Order Theorem Proving, First-Order Theorem Proving
	
	Prover9, First-Order Theorem Proving
	
	punkt, Sentence Segmentation
	

R
	RecursiveDescentParser, Recursion in Syntactic Structure, Recursive Descent Parsing
	
	regexp, Useful Applications of Regular Expressions, Doing More with Word Pieces, Doing More with Word Pieces, Finding Word Stems, Finding Word Stems, Summary
	
	RegexpChunk, Exercises
	
	RegexpParser, Chunking with Regular Expressions, Summary
	
	RegexpTagger, Exercises, Exercises, Discourse Processing, Discourse Processing
	
	regexp_tokenize, NLTK’s Regular Expression Tokenizer
	
	resolve_anaphora, Discourse Representation Theory
	
	reverse, Incrementally Updating a Dictionary, Incrementally Updating a Dictionary
	
	rte_features, Recognizing Textual Entailment
	

S
	samples, Counting Other Things, Brown Corpus, Plotting and Tabulating Distributions, Plotting and Tabulating Distributions, Plotting and Tabulating Distributions, Generating Random Text with Bigrams, Generating Random Text with Bigrams
	
	satisfiers, Quantification, Quantifier Scope Ambiguity
	
	satisfy, Structure of a Python Module
	
	score, Word Segmentation, Word Segmentation, Word Segmentation, Word Segmentation, Simple Evaluation and Baselines, Simple Evaluation and Baselines, Simple Evaluation and Baselines, Simple Evaluation and Baselines, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers
	
	search, Exercises
	
	SEM, Querying a Database, Querying a Database, Compositional Semantics in Feature-Based Grammar, Compositional Semantics in Feature-Based Grammar, Compositional Semantics in Feature-Based Grammar, Compositional Semantics in Feature-Based Grammar, Compositional Semantics in Feature-Based Grammar, Compositional Semantics in Feature-Based Grammar, Compositional Semantics in Feature-Based Grammar, Compositional Semantics in Feature-Based Grammar, Compositional Semantics in Feature-Based Grammar, Quantified NPs, Transitive Verbs, Quantifier Ambiguity Revisited, Quantifier Ambiguity Revisited, Summary, Summary, Summary
	
	sem, Querying a Database, Quantifier Ambiguity Revisited, Discourse Representation Theory
	
	sem.evaluate, Exercises
	
	Senseval, Exercises
	
	senseval, Exercises
	
	ShiftReduceParser, Shift-Reduce Parsing
	
	show_clause, Relation Extraction
	
	show_most_informative_features, Document Classification
	
	show_raw_rtuple, Relation Extraction
	
	similar, Searching Text, Searching Text, Collocations and Bigrams, Weighted Grammar
	
	simplify, The λ-Calculus, The λ-Calculus
	
	sort, Indexing Lists, Combining Different Sequence Types, Combining Different Sequence Types, Dictionaries in Python
	
	SpeakerInfo, The Structure of TIMIT
	
	sr, Comparative Wordlists
	
	State, Collocations and Bigrams, Unsimplified Tags
	
	stem, Finding Word Stems, Finding Word Stems, Finding Word Stems, Finding Word Stems, Finding Word Stems
	
	str2tuple, Representing Tagged Tokens, Representing Tagged Tokens
	
	SubElement, Adding a Field to Each Entry, Adding a Field to Each Entry
	
	substance_holonyms, Exercises
	
	substance_meronyms, More Lexical Relations, Exercises
	
	Synset, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, Senses and Synonyms, The WordNet Hierarchy, The WordNet Hierarchy, The WordNet Hierarchy, More Lexical Relations, More Lexical Relations, More Lexical Relations, More Lexical Relations, More Lexical Relations, More Lexical Relations, More Lexical Relations, More Lexical Relations, More Lexical Relations, More Lexical Relations, More Lexical Relations, More Lexical Relations, More Lexical Relations, More Lexical Relations, More Lexical Relations, Semantic Similarity, Semantic Similarity, Semantic Similarity, Semantic Similarity
	
	synset, Senses and Synonyms, Senses and Synonyms, The WordNet Hierarchy, The WordNet Hierarchy, The WordNet Hierarchy, More Lexical Relations, Using XML for Linguistic Structures, Using XML for Linguistic Structures, Using XML for Linguistic Structures, Using XML for Linguistic Structures, Using XML for Linguistic Structures, Using XML for Linguistic Structures
	
	s_retrieve, Quantifier Ambiguity Revisited
	

T
	tabulate, Plotting and Tabulating Distributions, Plotting and Tabulating Distributions, Lining Things Up, Lining Things Up
	
	tag, Checking Parameter Types, Checking Parameter Types, Checking Parameter Types, Checking Parameter Types, Checking Parameter Types, Checking Parameter Types, Checking Parameter Types, Checking Parameter Types, Space-Time Trade-offs, Space-Time Trade-offs, Representing Tagged Tokens, A Simplified Part-of-Speech Tagset, A Simplified Part-of-Speech Tagset, Verbs, Verbs, Verbs, Verbs, Unsimplified Tags, Unsimplified Tags, Unsimplified Tags, Unsimplified Tags, Unsimplified Tags, Unsimplified Tags, Unsimplified Tags, Unsimplified Tags, Exploring Tagged Corpora, Exploring Tagged Corpora, Mapping Words to Properties Using Python Dictionaries, Incrementally Updating a Dictionary, Incrementally Updating a Dictionary, Complex Keys and Values, The Default Tagger, The Default Tagger, Performance Limitations, Performance Limitations, Performance Limitations, Performance Limitations, Transformation-Based Tagging, Transformation-Based Tagging, Transformation-Based Tagging, Transformation-Based Tagging, Transformation-Based Tagging, Choosing the Right Features, Choosing the Right Features, Choosing the Right Features, Choosing the Right Features, Choosing the Right Features, Exploiting Context, Exploiting Context, Exploiting Context, Sequence Classification, Sequence Classification, Sequence Classification, Sequence Classification, Sequence Classification, Sequence Classification, Sequence Classification, Sequence Classification, Sequence Classification, Confusion Matrices, Confusion Matrices, Simple Evaluation and Baselines, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers
	
	tagged_sents, Reading Tagged Corpora, Exploiting Context, Exploiting Context, Sequence Classification, Sequence Classification, Sequence Classification, The Test Set, The Test Set, The Test Set, The Test Set, The Test Set, Confusion Matrices, Confusion Matrices, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers
	
	tagged_words, Reading Tagged Corpora, Exploring Tagged Corpora, Part-of-Speech Tagging, Part-of-Speech Tagging
	
	tags, Operating on Sequence Types, Operating on Sequence Types, Space-Time Trade-offs, Space-Time Trade-offs, Exploring Tagged Corpora, Exploring Tagged Corpora, Exploring Tagged Corpora, Exploring Tagged Corpora, The Default Tagger, The Default Tagger, Transformation-Based Tagging, Transformation-Based Tagging, Transformation-Based Tagging, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers, Training Classifier-Based Chunkers, Validating a Toolbox Lexicon
	
	Text, Getting Started with NLTK, Getting Started with NLTK, Relation Extraction, OLAC: Open Language Archives Community
	
	token, Looping with Conditions, Looping with Conditions, Looping with Conditions, Looping with Conditions, Searching Tokenized Text, Procedural Versus Declarative Style, Procedural Versus Declarative Style, Weighted Grammar, Weighted Grammar, Weighted Grammar, Deciding Which Layers of Annotation to Include
	
	tokenize, Information Extraction Architecture
	
	tokens, Computing with Language: Simple Statistics, Computing with Language: Simple Statistics, Computing with Language: Simple Statistics, Computing with Language: Simple Statistics, Electronic Books, Electronic Books, Electronic Books, Electronic Books, Electronic Books, Dealing with HTML, Dealing with HTML, Dealing with HTML, Dealing with HTML, Dealing with HTML, The NLP Pipeline, The NLP Pipeline, The NLP Pipeline, Finding Word Stems, Finding Word Stems, Normalizing Text, Stemmers, Stemmers, Lemmatization, NLTK’s Regular Expression Tokenizer, NLTK’s Regular Expression Tokenizer, Procedural Versus Declarative Style, Procedural Versus Declarative Style, Procedural Versus Declarative Style, Procedural Versus Declarative Style, Procedural Versus Declarative Style, Procedural Versus Declarative Style, Procedural Versus Declarative Style, Procedural Versus Declarative Style, Procedural Versus Declarative Style, Named Arguments, Named Arguments, The Default Tagger, The Default Tagger, Storing Taggers, Storing Taggers, Sentence Segmentation, Sentence Segmentation, Sentence Segmentation, Sentence Segmentation, Sentence Segmentation, Sentence Segmentation, Sentence Segmentation, Sentence Segmentation, Sentence Segmentation, Sentence Segmentation, Well-Formed Substring Tables, Well-Formed Substring Tables, Well-Formed Substring Tables, Well-Formed Substring Tables, Well-Formed Substring Tables, Well-Formed Substring Tables, Well-Formed Substring Tables, Well-Formed Substring Tables, Well-Formed Substring Tables, Well-Formed Substring Tables, Well-Formed Substring Tables, Well-Formed Substring Tables, Pernicious Ambiguity, Pernicious Ambiguity, Grammatical Features, Grammatical Features, Grammatical Features, Grammatical Features, Using Attributes and Constraints, Using Attributes and Constraints, Unbounded Dependency Constructions, Unbounded Dependency Constructions, Unbounded Dependency Constructions, Unbounded Dependency Constructions, Unbounded Dependency Constructions, Unbounded Dependency Constructions, Case and Gender in German, Case and Gender in German, Case and Gender in German, Case and Gender in German, Transitive Verbs, Transitive Verbs
	
	toolbox, Shoebox and Toolbox Lexicons, Shoebox and Toolbox Lexicons, Using ElementTree for Accessing Toolbox Data, Working with Toolbox Data, Validating a Toolbox Lexicon, Validating a Toolbox Lexicon, Further Reading
	
	toolbox.ToolboxData, Validating a Toolbox Lexicon
	
	train, Sentence Segmentation, Choosing the Right Features
	
	translate, Comparative Wordlists, Comparative Wordlists, Comparative Wordlists, Comparative Wordlists, Comparative Wordlists, Comparative Wordlists, Exercises
	
	tree, Exploring Text Corpora, Ubiquitous Ambiguity, Ubiquitous Ambiguity, A Simple Grammar, A Simple Grammar, Writing Your Own Grammars, Writing Your Own Grammars, Writing Your Own Grammars, Recursion in Syntactic Structure, Dependencies and Dependency Grammar, Dependencies and Dependency Grammar, Treebanks and Grammars, Treebanks and Grammars, Treebanks and Grammars, Pernicious Ambiguity, Pernicious Ambiguity, Weighted Grammar, Using Attributes and Constraints, Using Attributes and Constraints, Unbounded Dependency Constructions, Unbounded Dependency Constructions, Unbounded Dependency Constructions, Unbounded Dependency Constructions, Unbounded Dependency Constructions, Unbounded Dependency Constructions, Case and Gender in German, Case and Gender in German, Case and Gender in German, Case and Gender in German, Transitive Verbs, Using ElementTree for Accessing Toolbox Data, Validating a Toolbox Lexicon
	
	Tree, Treebanks and Grammars, Treebanks and Grammars, Treebanks and Grammars, Treebanks and Grammars, Exercises, Exercises, Exercises
	
	Tree.productions, Exercises
	
	tree2conlltags, Simple Evaluation and Baselines
	
	treebank, Loading Your Own Corpus, Treebanks and Grammars, Treebanks and Grammars, Treebanks and Grammars
	
	trees, Ubiquitous Ambiguity, Ubiquitous Ambiguity, Dependencies and Dependency Grammar, Dependencies and Dependency Grammar, Using Attributes and Constraints, Using Attributes and Constraints, Using Attributes and Constraints, Using Attributes and Constraints, Querying a Database, Querying a Database, Transitive Verbs, Transitive Verbs, Quantifier Ambiguity Revisited, Quantifier Ambiguity Revisited, Discourse Representation Theory, Discourse Representation Theory
	
	trigrams, Some Legitimate Uses for Counters
	
	TrigramTagger, Combining Taggers
	
	tuples, Dictionaries in Python
	
	turns, Indexing Lists
	
	Type, Getting Started with Python, Getting Started with NLTK, Getting Started with NLTK, Matplotlib
	

U
	Undefined, Individual Variables and Assignments
	
	unify, Subsumption and Unification
	
	UnigramTagger, The Lookup Tagger, Unigram Tagging, Exercises, Simple Evaluation and Baselines
	
	url, Electronic Books, Electronic Books, Electronic Books, Dealing with HTML, Dealing with HTML, Functional Decomposition, Functional Decomposition, Functional Decomposition, Functional Decomposition, Functional Decomposition
	

V
	Valuation, Propositional Logic, Propositional Logic, Truth in Model
	
	values, Documenting Functions, Documenting Functions, Documenting Functions, Documenting Functions, Dictionaries in Python
	
	Variable, Syntax, Syntax, Syntax
	
	VariableBinderExpression, The λ-Calculus
	

W
	wordlist, Wordlist Corpora, Wordlist Corpora, A Pronouncing Dictionary, A Pronouncing Dictionary, Regular Expressions for Detecting Word Patterns, Using Basic Metacharacters, Using Basic Metacharacters, Ranges and Closures, NLTK’s Regular Expression Tokenizer, The Lookup Tagger, The Lookup Tagger, Special Considerations When Working with Endangered
 Languages, Special Considerations When Working with Endangered
 Languages
	
	wordnet, Senses and Synonyms, Recursion, Recursion, NetworkX
	

X
	xml, The ElementTree Interface, The ElementTree Interface, The ElementTree Interface, OLAC: Open Language Archives Community
	
	xml_posts, Identifying Dialogue Act Types
	

General Index

Symbols
	! (exclamation mark)
		!= (not equal to) operator, Conditionals, Summarizing the Language of First-Order Logic
	

	" " (quotation marks, double), in strings, Basic Operations with Strings
	
	$ (dollar sign) in regular expressions, Using Basic Metacharacters, Ranges and Closures
	
	% (percent sign)
		%% in string formatting, Lining Things Up
	
	%*s formatting string, Stemmers, Lining Things Up
	
	%s and %d conversion specifiers, Strings and Formats
	

	& (ampersand), and operator, Propositional Logic
	
	' ' (quotation marks, single) in strings, Basic Operations with Strings
	
	' ' (quotation marks, single), in strings, Basic Operations with Strings
	
	' (apostrophe) in tokenization, Simple Approaches to Tokenization
	
	() (parentheses)
		adding extra to break lines of code, Python Coding Style
	
	enclosing expressions in Python, Getting Started with Python
	
	in function names, Counting Vocabulary
	
	in regular expressions, Ranges and Closures, Finding Word Stems
	
	in tuples, Sequences
	
	use with strings, Basic Operations with Strings
	

	* (asterisk)
		*? non-greedy matching in regular
 expressions, Finding Word Stems
	
	multiplication operator, Getting Started with Python
		multiplying strings, Basic Operations with Strings
	

	in regular
 expressions, Ranges and Closures, Ranges and Closures
	

	+ (plus sign)
		+= (addition and assignment) operator, Incrementally Updating a Dictionary
	
	concatenating lists, Lists
	
	concatenating strings, Strings, Basic Operations with Strings
	
	in regular expressions, Ranges and Closures, Ranges and Closures
	

	, (comma) operator, Sequences
	
	- (hyphen) in tokenization, Simple Approaches to Tokenization
	
	- (minus sign), negation operator, Propositional Logic
	
	-> (implication) operator, Propositional Logic
	
	. (dot) wildcard character in regular
 expressions, Using Basic Metacharacters, Ranges and Closures
	
	/ (slash),
		division operator, Getting Started with Python
	

	: (colon), ending Python statements, Looping with Conditions
	
	< (less than) operator, Conditionals
	
	<-> (equivalence) operator, Propositional Logic
	
	<= (less than or equal to) operator, Conditionals
	
	= (equals sign)
		== (equal to) operator, Conditionals
	
	== (identity) operator, Equality
	
	assignment operator, Variables, Assignment
	
	equality operator, Summarizing the Language of First-Order Logic
	

	> (greater than) operator, Conditionals
	
	>= (greater than or equal to) operator, Conditionals
	
	? (question mark) in regular expressions, Using Basic Metacharacters, Ranges and Closures
	
	\ (backslash)
		ending broken line of code, Python Coding Style
	
	escaping string literals, Basic Operations with Strings
	
	in regular expressions, Ranges and Closures, Ranges and Closures
	
	use with multiline strings, Basic Operations with Strings
	

	^ (caret)
		character class negation in regular
 expressions, Ranges and Closures
	
	end of string matching in regular
 expressions, Using Basic Metacharacters
	
	regular expression metacharacter, Ranges and Closures
	

	{ } (curly braces) in regular expressions, Ranges and Closures
	
	| (pipe character)
		alternation in regular expressions, Ranges and Closures, Ranges and Closures
	
	or operator, Propositional Logic
	

	α-conversion, The λ-Calculus
	
	α-equivalents, The λ-Calculus
	
	β-reduction, The λ-Calculus
	
	λ (lambda operator), The λ-Calculus–The λ-Calculus
	

A
	accumulative functions, Accumulative Functions
	
	accuracy of classification, Accuracy
	
	ACL (Association for Computational Linguistics), Further Reading
		Special Interest Group on Web as Corpus
 (SIGWAC), Obtaining Data from the Web
	

	adjectives, categorizing and tagging, Adjectives and Adverbs
	
	adjuncts of lexical head, Heads Revisited
	
	adverbs, categorizing and tagging, Adjectives and Adverbs
	
	agreement, Syntactic Agreement–Syntactic Agreement
		resources for further reading, Further Reading
	

	algorithm design, Algorithm Design–Dynamic Programming
		dynamic programming, Dynamic Programming
	
	recursion, Recursion
	
	resources for further information, Further Reading
	

	all operator, Summarizing the Language of First-Order Logic
	
	alphabetic variants, The λ-Calculus
	
	ambiguity
		broad-coverage grammars and, Pernicious Ambiguity
	
	capturing structural ambiguity with dependency
 parser, Dependencies and Dependency Grammar
	
	quantifier scope, Quantifier Scope Ambiguity, Quantifier Ambiguity Revisited–Discourse Semantics
	
	scope of modifier, Valency and the Lexicon
	
	structurally ambiguous sentences, A Simple Grammar
	
	ubiquitous ambiguity in sentence structure, Ubiquitous Ambiguity
	

	anagram dictionary, creating, Incrementally Updating a Dictionary
	
	anaphora resolution, Pronoun Resolution
	
	anaphoric antecedent, Discourse Representation Theory
	
	AND (in SQL), Querying a Database
	
	and operator, Conditionals
	
	annotated text corpora, Annotated Text Corpora–Corpora in Other Languages
	
	annotation layers
		creating, The Life Cycle of a Corpus
	
	deciding which to include when acquiring
 data, Deciding Which Layers of Annotation to Include
	
	quality control for, Quality Control
	
	survey of annotation software, Further Reading
	

	annotation, inline, Deciding Which Layers of Annotation to Include
	
	antecedent, Pronoun Resolution
	
	antonymy, More Lexical Relations
	
	apostrophes in tokenization, Simple Approaches to Tokenization
	
	appending, Lists
	
	arguments
		functions as, Functions As Arguments
	
	named, Named Arguments
	
	passing to functions (example), Function Inputs and Outputs
	

	arguments in logic, Propositional Logic, Syntax
	
	arity, Truth in Model
	
	articles, Adjectives and Adverbs
	
	assert statements
		using in defensive programming, Defensive Programming
	
	using to find logical errors, Checking Parameter Types
	

	assignment, Assignment, Individual Variables and Assignments
		defined, Variables
	
	to list index values, Indexing Lists
	

	Association for Computational Linguistics (see ACL)
	
	associative arrays, Mapping Words to Properties Using Python Dictionaries
	
	assumptions, Propositional Logic
	
	atomic values, Terminology
	
	attribute value matrix, Terminology
	
	attribute-value pairs (Toolbox lexicon), Shoebox and Toolbox Lexicons
	
	attributes, XML, Using XML for Linguistic Structures
	
	auxiliaries, Auxiliary Verbs and Inversion
	
	auxiliary verbs, Terminology
		inversion and, Auxiliary Verbs and Inversion
	

B
	\b word boundary in regular
 expressions, Simple Approaches to Tokenization
	
	backoff, The Lookup Tagger
	
	backtracking, Recursive Descent Parsing
	
	bar charts, Matplotlib
	
	base case, Recursion
	
	basic types, Syntax
	
	Bayes classifier (see naive Bayes classifier)
	
	bigram taggers, General N-Gram Tagging
	
	bigrams, Collocations and Bigrams
		generating random text with, Generating Random Text with Bigrams
	

	binary formats, text, Extracting Text from PDF, MSWord, and Other Binary
 Formats
	
	binary predicate, Syntax
	
	binary search, Algorithm Design
	
	binding variables, Syntax
	
	binning, Non-Binary Features
	
	BIO Format, Further Reading
	
	book module (NLTK), downloading, Getting Started with NLTK
	
	Boolean operators, Propositional Logic
		in propositional logic, truth conditions for, Propositional Logic
	

	Boolean values, Terminology
	
	bottom-up approach to dynamic programming, Dynamic Programming
	
	bottom-up parsing, Recursive Descent Parsing
	
	bound, Syntax, Syntax
	
	breakpoints, Debugging Techniques
	
	Brill tagging, Transformation-Based Tagging
		demonstration of NLTK Brill tagger, Transformation-Based Tagging
	
	steps in, Transformation-Based Tagging
	

	Brown Corpus, Brown Corpus–Brown Corpus
	
	bugs, Sources of Error
	

C
	call structure, Dynamic Programming
	
	call-by-value, Parameter Passing
	
	carriage return and linefeed characters, Electronic Books
	
	case in German, Case and Gender in German–Case and Gender in German
	
	Catalan numbers, Pernicious Ambiguity
	
	categorical grammar, Subcategorization
	
	categorizing and tagging words, Categorizing and Tagging Words–Exercises
		adjectives and adverbs, Adjectives and Adverbs
	
	automatically adding POS tags to text, Automatic Tagging–Unigram Tagging
	
	determining word category, How to Determine the Category of a Word–Morphology in Part-of-Speech Tagsets
	
	differences in POS tagsets, Morphology in Part-of-Speech Tagsets
	
	exploring tagged corpora using POS tags, Exploring Tagged Corpora–Mapping Words to Properties Using Python Dictionaries
	
	mapping words to properties using Python
 dictionaries, Mapping Words to Properties Using Python Dictionaries–Automatic Tagging
	
	n-gram tagging, Unigram Tagging–Transformation-Based Tagging
	
	nouns, Nouns
	
	resources for further reading, Further Reading
	
	tagged corpora, Representing Tagged Tokens–Mapping Words to Properties Using Python Dictionaries
	
	transformation-based tagging, Transformation-Based Tagging–How to Determine the Category of a Word
	
	using POS (part-of-speech) tagger, Using a Tagger
	
	using unsimplified POS tags, Unsimplified Tags
	
	verbs, Verbs
	

	character class symbols in regular expressions, Simple Approaches to Tokenization
	
	character encodings, Corpora in Other Languages, Plotting and Tabulating Distributions, What Is Unicode?
		(see also Unicode)
	
	using your local encoding in Python, Using Your Local Encoding in Python
	

	characteristic function, Truth in Model
	
	chart, Well-Formed Substring Tables
	
	chart parsing, Well-Formed Substring Tables
		Earley chart parser, Using Attributes and Constraints
	

	charts, displaying information in, Matplotlib
	
	chat text, Web and Chat Text
	
	chatbots, Spoken Dialogue Systems
	
	child nodes, Trees
	
	chink, Chinking, Further Reading
	
	chinking, Chinking
	
	chunk grammar, Noun Phrase Chunking
	
	chunking, Further Reading, Chunking–Developing and Evaluating Chunkers
		building nested structure with cascaded
 chunkers, Building Nested Structure with Cascaded Chunkers–Trees
	
	chinking, Chinking
	
	developing and evaluating chunkers, Developing and Evaluating Chunkers–Building Nested Structure with Cascaded Chunkers
		reading IOB format and CoNLL 2000 corpus, Reading IOB Format and the CoNLL-2000 Chunking Corpus–Simple Evaluation and Baselines
	
	simple evaluation and baselines, Simple Evaluation and Baselines–Training Classifier-Based Chunkers
	
	training classifier-based chunkers, Training Classifier-Based Chunkers–Building Nested Structure with Cascaded Chunkers
	

	exploring text corpora with NP chunker, Exploring Text Corpora
	
	noun phrase (NP), Noun Phrase Chunking
	
	representing chunks, tags versus trees, Representing Chunks: Tags Versus Trees
	
	resources for further reading, Further Reading
	
	tag patterns, Tag Patterns
	
	Toolbox lexicon, Validating a Toolbox Lexicon
	
	using regular expressions, Chunking with Regular Expressions
	

	chunks, Chunking
	
	class labels, Supervised Classification
	
	classification, Learning to Classify Text–Exercises
		classifier trained to recognize named
 entities, Named Entity Recognition
	
	decision trees, Decision Trees–Entropy and Information Gain
	
	defined, Supervised Classification
	
	evaluating models, Evaluation–Cross-Validation
		accuracy, Accuracy
	
	confusion matrices, Confusion Matrices
	
	cross-validation, Cross-Validation
	
	precision and recall, Precision and Recall
	
	test set, The Test Set
	

	generative versus conditional, Generative Versus Conditional Classifiers
	
	Maximum Entropy classifiers, Maximum Entropy Classifiers–Generative Versus Conditional Classifiers
	
	modelling linguistic patterns, Modeling Linguistic Patterns
	
	naive Bayes classifiers, Naive Bayes Classifiers–The Cause of Double-Counting
	
	supervised (see supervised classification)
	

	classifier-based chunkers, Training Classifier-Based Chunkers–Building Nested Structure with Cascaded Chunkers
	
	closed class, New Words
	
	closed formula, Syntax
	
	closures (+ and *), Ranges and Closures
	
	clustering package (nltk.cluster), NumPy
	
	CMU Pronouncing Dictionary for U.S. English, A Pronouncing Dictionary
	
	code blocks, nested, Nested Code Blocks
	
	code examples, downloading, Creating Programs with a Text Editor
	
	code points, What Is Unicode?
	
	codecs module, Extracting Encoded Text from Files
	
	coindex (in feature structure), Processing Feature Structures
	
	collocations, Collocations and Bigrams, Electronic Books
	
	comma operator (,), Sequences
	
	comparative wordlists, Comparative Wordlists
	
	comparison operators
		numerical, Conditionals
	
	for words, Conditionals
	

	complements of lexical head, Heads Revisited
	
	complements of verbs, Valency and the Lexicon
	
	complex types, Syntax
	
	complex values, Terminology
	
	components, language understanding, Spoken Dialogue Systems
	
	computational linguistics, challenges of natural
 language, Afterword: The Language Challenge
	
	computer understanding of sentence meaning, Natural Language, Semantics, and Logic
	
	concatenation, Lists, Basic Operations with Strings
		lists and strings, The NLP Pipeline
	
	strings, Strings
	

	conclusions in logic, Propositional Logic
	
	concordances
		creating, Gutenberg Corpus
	
	graphical POS-concordance tool, A Simplified Part-of-Speech Tagset
	

	conditional classifiers, Generative Versus Conditional Classifiers
	
	conditional expressions, Nested Code Blocks
	
	conditional frequency distributions, Brown Corpus, Conditional Frequency Distributions–More Python: Reusing Code
		combining with regular expressions, Doing More with Word Pieces
	
	condition and event pairs, Conditions and Events
	
	counting words by genre, Counting Words by Genre
	
	generating random text with bigrams, Generating Random Text with Bigrams
	
	male and female names ending in each alphabet
 letter, Wordlist Corpora
	
	plotting and tabulating distributions, Plotting and Tabulating Distributions
	
	using to find minimally contrasting set of
 words, A Pronouncing Dictionary
	

	ConditionalFreqDist, Conditional Frequency Distributions
		commonly used methods, Generating Random Text with Bigrams
	

	conditionals, Conditionals, Conditionals
	
	confusion matrix, Performance Limitations, Confusion Matrices
	
	consecutive classification, Sequence Classification
		non phrase chunking with consecutive
 classifier, Training Classifier-Based Chunkers
	

	consistent, Natural Language, Semantics, and Logic
	
	constituent structure, Beyond n-grams
	
	constituents, Beyond n-grams
	
	context
		exploiting in part-of-speech classifier, Exploiting Context
	
	for taggers, General N-Gram Tagging
	

	context-free grammar, A Simple Grammar, Writing Your Own Grammars
		(see also grammars)
	
	probabilistic context-free grammar, Weighted Grammar
	

	contractions in tokenization, Further Issues with Tokenization
	
	control, Back to Python: Making Decisions and Taking Control
	
	control structures, Nested Code Blocks
	
	conversion specifiers, Strings and Formats
	
	conversions of data formats, Converting Data Formats
	
	coordinate structures, Beyond n-grams
	
	coreferential, Syntax
	
	corpora, Accessing Text Corpora and Lexical
 Resources–Conditional Frequency Distributions
		annotated text corpora, Annotated Text Corpora–Corpora in Other Languages
	
	Brown Corpus, Brown Corpus–Brown Corpus
	
	creating and accessing, resources for further
 reading, Further Reading
	
	defined, Accessing Text Corpora and Lexical
 Resources
	
	differences in corpus access methods, Text Corpus Structure
	
	exploring text corpora using a chunker, Exploring Text Corpora
	
	Gutenberg Corpus, Accessing Text Corpora–Web and Chat Text
	
	Inaugural Address Corpus, Inaugural Address Corpus
	
	from languages other than
 English, Corpora in Other Languages
	
	loading your own corpus, Loading Your Own Corpus
	
	obtaining from Web, Obtaining Data from the Web
	
	Reuters Corpus, Reuters Corpus
	
	sources of, Further Reading
	
	tagged, Representing Tagged Tokens–Mapping Words to Properties Using Python Dictionaries
	
	text corpus structure, Text Corpus Structure–Loading Your Own Corpus
	
	web and chat text, Web and Chat Text
	
	wordlists, Wordlist Corpora–A Pronouncing Dictionary
	

	corpora, included with NLTK, Annotated Text Corpora
	
	corpus
		case study, structure of TIMIT, Corpus Structure: A Case Study–Fundamental Data Types
	
	corpus HOWTOs, Further Reading
	
	life cycle of, The Life Cycle of a Corpus–Curation Versus Evolution
		creation scenarios, Three Corpus Creation Scenarios
	
	curation versus evolution, Curation Versus Evolution
	
	quality control, Quality Control
	

	widely-used format for, Standards and Tools
	

	counters, legitimate uses of, Some Legitimate Uses for Counters
	
	cross-validation, Cross-Validation
	
	CSV (comma-separated value) format, Obtaining Data from Word Processor Files
	
	CSV (comma-separated-value) format, csv
	

D
	\d decimal digits in regular
 expressions, Simple Approaches to Tokenization
	
	\D nondigit characters in regular
 expressions, Simple Approaches to Tokenization
	
	data formats, converting, Converting Data Formats
	
	data types
		dictionary, Dictionaries in Python
	
	documentation for Python standard types, Further Reading
	
	finding type of Python objects, The NLP Pipeline
	
	function parameter, Checking Parameter Types
	
	operations on objects, The NLP Pipeline
	

	database query via natural language, Querying a Database–Querying a Database
	
	databases, obtaining data from, Obtaining Data from Spreadsheets and Databases
	
	debugger (Python), Debugging Techniques
	
	debugging techniques, Debugging Techniques
	
	decimal integers, formatting, Lining Things Up
	
	decision nodes, Decision Trees
	
	decision stumps, Decision Trees
	
	decision trees, Decision Trees–Entropy and Information Gain
		entropy and information gain, Entropy and Information Gain
	

	decision-tree classifier, Part-of-Speech Tagging
	
	declarative style, Procedural Versus Declarative Style
	
	decoding, What Is Unicode?
	
	def keyword, Counting Vocabulary
	
	defaultdict, Default Dictionaries
	
	defensive programming, Defensive Programming
	
	demonstratives, agreement with noun, Syntactic Agreement
	
	dependencies, Dependencies and Dependency Grammar
		criteria for, Dependencies and Dependency Grammar
	
	existential dependencies, modeling in XML, The Role of XML
	
	non-projective, Dependencies and Dependency Grammar
	
	projective, Dependencies and Dependency Grammar
	
	unbounded dependency constructions, Unbounded Dependency Constructions–Case and Gender in German
	

	dependency grammars, Dependencies and Dependency Grammar–Scaling Up
		valency and the lexicon, Valency and the Lexicon
	

	dependents, Dependencies and Dependency Grammar
	
	descriptive models, What Do Models Tell Us?
	
	determiners, Adjectives and Adverbs
		agreement with nouns, Using Attributes and Constraints
	

	dev-test set, Choosing the Right Features
	
	development set, Choosing the Right Features
		similarity to test set, The Test Set
	

	dialogue act tagging, Further Reading
	
	dialogue acts, identifying types, Identifying Dialogue Act Types
	
	dialogue systems (see spoken dialogue systems)
	
	dictionaries
		feature set, Gender Identification
	
	feature structures as, Processing Feature Structures
	
	pronouncing dictionary, A Pronouncing Dictionary–Comparative Wordlists
	
	Python, Mapping Words to Properties Using Python Dictionaries–Automatic Tagging
		default, Default Dictionaries
	
	defining, Defining Dictionaries
	
	dictionary data type, Dictionaries in Python
	
	finding key given a value, Inverting a Dictionary
	
	indexing lists versus, Indexing Lists Versus Dictionaries
	
	summary of dictionary methods, Inverting a Dictionary
	
	updating incrementally, Incrementally Updating a Dictionary
	

	storing features and values, Grammatical Features
	
	translation, Comparative Wordlists
	

	dictionary
		methods, Inverting a Dictionary
	

	dictionary data structure (Python), A Pronouncing Dictionary
	
	directed acyclic graphs (DAGs), Processing Feature Structures
	
	discourse module, Discourse Processing
	
	discourse semantics, Discourse Semantics–Discourse Processing
		discourse processing, Discourse Processing–Discourse Processing
	
	discourse referents, Discourse Representation Theory
	
	discourse representation structure (DRS), Discourse Representation Theory
	
	Discourse Representation Theory (DRT), Discourse Representation Theory–Discourse Processing
	

	dispersion plot, Searching Text
	
	divide-and-conquer strategy, Algorithm Design
	
	docstrings, Functions: The Foundation of Structured Programming
		contents and structure of, Documenting Functions
	
	example of complete docstring, Documenting Functions
	
	module-level, Structure of a Python Module
	

	doctest block, Documenting Functions
	
	doctest module, Defensive Programming
	
	document classification, Document Classification
	
	documentation
		functions, Documenting Functions
	
	online Python documentation, versions and, Further Reading
	
	Python, resources for further information, Further Reading
	

	docutils module, Documenting Functions
	
	domain (of a model), Truth in Model
	
	DRS (discourse representation structure), Discourse Representation Theory
	
	DRS conditions, Discourse Representation Theory
	
	DRT (Discourse Representation Theory), Discourse Representation Theory–Discourse Processing
	
	Dublin Core Metadata initiative, What Is Metadata?
	
	duck typing, Tree Traversal
	
	dynamic programming, Dynamic Programming
		application to parsing with context-free
 grammar, Well-Formed Substring Tables
	
	different approaches to, Dynamic Programming
	

E
	Earley chart parser, Using Attributes and Constraints
	
	electronic books, Electronic Books
	
	elements, XML, Using XML for Linguistic Structures
	
	ElementTree interface, The ElementTree Interface–The ElementTree Interface
		using to access Toolbox data, Using ElementTree for Accessing Toolbox Data
	

	elif clause, if . . . elif statement, Conditionals
	
	elif statements, Looping with Conditions
	
	else statements, Looping with Conditions
	
	encoding, What Is Unicode?
	
	encoding features, Gender Identification
	
	encoding parameters, codecs module, Extracting Encoded Text from Files
	
	endangered languages, special considerations
 with, Special Considerations When Working with Endangered
 Languages–Special Considerations When Working with Endangered
 Languages
	
	entities, Syntax
	
	entity detection, using chunking, Chunking–Developing and Evaluating Chunkers
	
	entries
		adding field to, in Toolbox, Adding a Field to Each Entry
	
	contents of, Lexical Resources
	
	converting data formats, Converting Data Formats
	
	formatting in XML, Formatting Entries
	

	entropy, Maximum Entropy Classifiers
		(see also Maximum Entropy classifiers)
	
	calculating for gender prediction task, Entropy and Information Gain
	
	maximizing in Maximum Entropy classifier, Maximizing Entropy
	

	epytext markup language, Documenting Functions
	
	equality, Equality, Syntax
	
	equivalence (<->) operator, Propositional Logic
	
	equivalent, Processing Feature Structures
	
	error analysis, Choosing the Right Features
	
	errors
		runtime, Indexing Lists
	
	sources of, Sources of Error
	
	syntax, Getting Started with Python
	

	evaluation sets, The Test Set
	
	events, pairing with conditions in conditional frequency
 distribution, Conditions and Events
	
	exceptions, Debugging Techniques
	
	existential quantifier, Syntax
	
	exists operator, Summarizing the Language of First-Order Logic
	
	Expected Likelihood Estimation, Zero Counts and Smoothing
	
	exporting data, Strings and Formats
	

F
	f-structure, Further Reading
	
	feature extractors
		defining for dialogue acts, Identifying Dialogue Act Types
	
	defining for document classification, Document Classification
	
	defining for noun phrase (NP) chunker, Training Classifier-Based Chunkers–Building Nested Structure with Cascaded Chunkers
	
	defining for punctuation, Sentence Segmentation
	
	defining for suffix checking, Part-of-Speech Tagging
	
	Recognizing Textual Entailment (RTE), Recognizing Textual Entailment
	
	selecting relevant features, Choosing the Right Features–Choosing the Right Features
	

	feature paths, Processing Feature Structures
	
	feature sets, Gender Identification
	
	feature structures, Grammatical Features
		order of features, Terminology
	
	resources for further reading, Further Reading
	

	feature-based grammars, Building Feature-Based Grammars–Exercises
		auxiliary verbs and inversion, Auxiliary Verbs and Inversion
	
	case and gender in German, Case and Gender in German
	
	example grammar, Using Attributes and Constraints
	
	extending, Extending a Feature-Based Grammar–Case and Gender in German
	
	lexical heads, Heads Revisited
	
	parsing using Earley chart parser, Using Attributes and Constraints
	
	processing feature structures, Processing Feature Structures–Extending a Feature-Based Grammar
		subsumption and unification, Subsumption and Unification–Extending a Feature-Based Grammar
	

	resources for further reading, Further Reading
	
	subcategorization, Subcategorization–Heads Revisited
	
	syntactic agreement, Syntactic Agreement–Syntactic Agreement
	
	terminology, Terminology
	
	translating from English to SQL, Querying a Database
	
	unbounded dependency constructions, Unbounded Dependency Constructions–Case and Gender in German
	
	using attributes and constraints, Using Attributes and Constraints–Terminology
	

	features, Gender Identification
		non-binary features in naive Bayes
 classifier, Non-Binary Features
	

	fields, Combining Different Sequence Types
	
	file formats, libraries for, Other Python Libraries
	
	files
		opening and reading local files, Reading Local Files
	
	writing program output to, Writing Results to a File
	

	fillers, Unbounded Dependency Constructions
	
	first-order logic, First-Order Logic–Compositional Semantics in Feature-Based Grammar
		individual variables and assignments, Individual Variables and Assignments
	
	model building, Model Building
	
	quantifier scope ambiguity, Quantifier Scope Ambiguity
	
	summary of language, Summarizing the Language of First-Order Logic
	
	syntax, Syntax–First-Order Theorem Proving
	
	theorem proving, First-Order Theorem Proving
	
	truth in model, Truth in Model, Truth in Model
	

	floating-point numbers, formatting, Lining Things Up
	
	folds, Cross-Validation
	
	for statements, Nested Code Blocks
		combining with if statements, Looping with Conditions
	
	inside a list comprehension, A Pronouncing Dictionary
	
	iterating over characters in strings, Accessing Individual Characters
	

	format strings, Strings and Formats
	
	formatting program output, Formatting: From Lists to Strings–Text Wrapping
		converting from lists to strings, From Lists to Strings
	
	strings and formats, Strings and Formats–Strings and Formats
	
	text wrapping, Text Wrapping
	
	writing results to file, Writing Results to a File
	

	formulas of propositional logic, Propositional Logic
	
	formulas, type (t), Syntax
	
	free, Syntax
	
	Frege’s Principle, Compositional Semantics in Feature-Based Grammar
	
	frequency distributions, Frequency Distributions, Counting Other Things
		conditional (see conditional frequency distributions)
	
	functions defined for, Counting Other Things
	
	letters, occurrence in strings, Accessing Individual Characters
	

	functions, Functions: The Foundation of Structured Programming–Program Development
		abstraction provided by, Functional Decomposition
	
	accumulative, Accumulative Functions
	
	as arguments to another function, Functions As Arguments
	
	call-by-value parameter passing, Parameter Passing
	
	checking parameter types, Checking Parameter Types
	
	defined, Counting Vocabulary, Functions
	
	documentation for Python built-in functions, Further Reading
	
	documenting, Documenting Functions
	
	errors from, Sources of Error
	
	for frequency distributions, Counting Other Things
	
	for iteration over sequences, Operating on Sequence Types
	
	generating plurals of nouns (example), Functions
	
	higher-order, Higher-Order Functions
	
	inputs and outputs, Function Inputs and Outputs
	
	named arguments, Named Arguments
	
	naming, Functions: The Foundation of Structured Programming
	
	poorly-designed, Functional Decomposition
	
	recursive, call structure, Dynamic Programming
	
	saving in modules, Modules
	
	variable scope, Variable Scope
	
	well-designed, Functional Decomposition
	

G
	gaps, Unbounded Dependency Constructions
	
	gazetteer, Named Entity Recognition
	
	gender identification, Gender Identification
		Decision Tree model for, Decision Trees
	

	gender in German, Case and Gender in German–Case and Gender in German
	
	Generalized Phrase Structure Grammar (GPSG), Subcategorization
	
	generate_model () function, Generating Random Text with Bigrams
	
	generation of language output, Generating Language Output
	
	generative classifiers, Generative Versus Conditional Classifiers
	
	generator expressions, Generator Expressions
		functions exemplifying, Accumulative Functions
	

	genres, systematic differences between, Brown Corpus–Brown Corpus
	
	German, case and gender in, Case and Gender in German–Case and Gender in German
	
	gerunds, Morphological Clues
	
	glyphs, What Is Unicode?
	
	gold standard, Evaluation
	
	government-sponsored challenges to machine learning
 application in NLP, Further Reading
	
	gradient (grammaticality), Weighted Grammar
	
	grammars, Building Feature-Based Grammars
		(see also feature-based grammars)
	
	chunk grammar, Noun Phrase Chunking
	
	context-free, A Simple Grammar–Recursion in Syntactic Structure
		parsing with, Parsing with Context-Free Grammar–Well-Formed Substring Tables
	
	validating Toolbox entries with, Validating a Toolbox Lexicon
	
	writing your own, Writing Your Own Grammars
	

	dependency, Dependencies and Dependency Grammar–Scaling Up
	
	development, Grammar Development–Weighted Grammar
		problems with ambiguity, Pernicious Ambiguity
	
	treebanks and grammars, Treebanks and Grammars–Pernicious Ambiguity
	
	weighted grammar, Weighted Grammar–Weighted Grammar
	

	dilemmas in sentence structure analysis, Linguistic Data and Unlimited Possibilities–Ubiquitous Ambiguity
	
	resources for further reading, Further Reading
	
	scaling up, Scaling Up
	

	grammatical category, Grammatical Features
	
	graphical displays of data
		conditional frequency distributions, Generating Random Text with Bigrams
	
	Matplotlib, Matplotlib–NetworkX
	

	graphs
		defining and manipulating, NetworkX
	
	directed acyclic graphs, Processing Feature Structures
	

	greedy sequence classification, Sequence Classification
	
	Gutenberg Corpus, Gutenberg Corpus–Web and Chat Text, Electronic Books
	

H
	hapaxes, Frequency Distributions
	
	hash arrays, Mapping Words to Properties Using Python Dictionaries, Indexing Lists Versus Dictionaries
		(see also dictionaries)
	

	head of a sentence, Dependencies and Dependency Grammar
		criteria for head and dependencies, Dependencies and Dependency Grammar
	

	heads, lexical, Heads Revisited
	
	headword (lemma), Lexical Resources
	
	Heldout Estimation, Zero Counts and Smoothing
	
	hexadecimal notation for Unicode string literal, Extracting Encoded Text from Files
	
	Hidden Markov Models, Other Methods for Sequence Classification
	
	higher-order functions, Higher-Order Functions
	
	holonyms, More Lexical Relations
	
	homonyms, Lexical Resources
	
	HTML documents, Dealing with HTML
	
	HTML markup, stripping out, Obtaining Data from Word Processor Files
	
	hypernyms, The WordNet Hierarchy
		searching corpora for, Searching Tokenized Text
	
	semantic similarity and, Semantic Similarity
	

	hyphens in tokenization, Simple Approaches to Tokenization
	
	hyponyms, The WordNet Hierarchy
	

I
	identifiers for variables, Variables
	
	idioms, Python, Operating on Every Element
	
	IDLE (Interactive DeveLopment Environment), Getting Started with Python
	
	if . . . elif statements, Conditionals
	
	if statements, Nested Code Blocks
		combining with for statements, Looping with Conditions
	
	conditions in, Conditionals
	

	immediate constituents, Beyond n-grams
	
	immutable, The Difference Between Lists and Strings
	
	implication (->) operator, Propositional Logic
	
	in operator, Accessing Substrings
	
	Inaugural Address Corpus, Inaugural Address Corpus
	
	inconsistent, Natural Language, Semantics, and Logic
	
	indenting code, Python Coding Style
	
	independence assumption, Underlying Probabilistic Model
		naivete of, The Naivete of Independence
	

	indexes
		counting from zero (0), Indexing Lists
	
	list, Indexing Lists–Variables
	
	mapping dictionary definition to lexeme, Converting Data Formats
	
	speeding up program by using, Space-Time Trade-offs
	
	string, Strings, Accessing Individual Characters, Accessing Substrings
	
	text index created using a stemmer, Stemmers
	
	words containing a given consonant-vowel
 pair, Doing More with Word Pieces
	

	inference, Propositional Logic
	
	information extraction, Extracting Information from Text–Exercises
		architecture of system, Information Extraction Architecture
	
	chunking, Chunking–Developing and Evaluating Chunkers
	
	defined, Information Extraction
	
	developing and evaluating chunkers, Developing and Evaluating Chunkers–Building Nested Structure with Cascaded Chunkers
	
	named entity recognition, Named Entity Recognition–Relation Extraction
	
	recursion in linguistic structure, Building Nested Structure with Cascaded Chunkers–Named Entity Recognition
	
	relation extraction, Relation Extraction
	
	resources for further reading, Further Reading
	

	information gain, Entropy and Information Gain
	
	inside, outside, begin tags (see IOB tags)
	
	integer ordinal, finding for character, Extracting Encoded Text from Files
	
	interpreter
		>>> prompt, Getting Started with Python
	
	accessing, Getting Started with Python
	
	using text editor instead of to write
 programs, Creating Programs with a Text Editor
	

	inverted clauses, Auxiliary Verbs and Inversion
	
	IOB tags, Representing Chunks: Tags Versus Trees, Further Reading
		reading, Reading IOB Format and the CoNLL-2000 Chunking Corpus–Simple Evaluation and Baselines
	

	is operator, Parameter Passing
		testing for object identity, Equality
	

	ISO 639 language codes, Comparative Wordlists
	
	iterative optimization techniques, Maximum Entropy Classifiers
	

J
	joint classifier models, Sequence Classification
	
	joint-features (maximum entropy model), The Maximum Entropy Model
	

K
	Kappa coefficient (k), Quality Control
	
	keys, A Pronouncing Dictionary, Dictionaries in Python
		complex, Complex Keys and Values
	

	keyword arguments, Named Arguments
	
	Kleene closures, Ranges and Closures
	

L
	lambda expressions, Functions As Arguments, The λ-Calculus–The λ-Calculus
		example, Higher-Order Functions
	

	lambda operator (λ), The λ-Calculus
	
	Lancaster stemmer, Stemmers
	
	language codes, Comparative Wordlists
	
	language output, generating, Generating Language Output
	
	language processing, symbol processing versus, Language Processing Versus Symbol Processing
	
	language resources
		describing using OLAC metadata, Describing Language Resources Using OLAC Metadata–OLAC: Open Language Archives Community
	

	LanguageLog (linguistics blog), Further Reading
	
	latent semantic analysis, NumPy
	
	Latin-2 character encoding, Extracting Encoded Text from Files
	
	leaf nodes, Decision Trees
	
	left-corner parser, The Left-Corner Parser
	
	left-recursive, Recursion in Syntactic Structure
	
	lemmas, Lexical Resources
		lexical relationships between, More Lexical Relations
	
	pairing of synset with a word, Senses and Synonyms
	

	lemmatization, Normalizing Text
		example of, Lemmatization
	

	length of a text, Counting Vocabulary
	
	letter trie, Recursion
	
	lexical categories, Categorizing and Tagging Words
	
	lexical entry, Lexical Resources
	
	lexical relations, More Lexical Relations
	
	lexical resources
		comparative wordlists, Comparative Wordlists
	
	pronouncing dictionary, A Pronouncing Dictionary–Comparative Wordlists
	
	Shoebox and Toolbox lexicons, Shoebox and Toolbox Lexicons
	
	wordlist corpora, Wordlist Corpora–A Pronouncing Dictionary
	

	lexicon, Lexical Resources
		(see also lexical resources)
	
	chunking Toolbox lexicon, Validating a Toolbox Lexicon
	
	defined, Lexical Resources
	
	validating in Toolbox, Validating a Toolbox Lexicon–Describing Language Resources Using OLAC Metadata
	

	LGB rule of name resolution, Variable Scope
	
	licensed, Unbounded Dependency Constructions
	
	likelihood ratios, Gender Identification
	
	Linear-Chain Conditional Random Field Models, Other Methods for Sequence Classification
	
	linguistic objects, mappings from keys to
 values, Indexing Lists Versus Dictionaries
	
	linguistic patterns, modeling, Modeling Linguistic Patterns
	
	linguistics and NLP-related concepts, resources
 for, Further Reading
	
	list comprehensions, Operating on Every Element
		for statement in, A Pronouncing Dictionary
	
	function invoked in, A Pronouncing Dictionary
	
	used as function parameters, Plotting and Tabulating Distributions
	

	lists, Lists
		appending item to, Lists
	
	concatenating, using + operator, Lists
	
	converting to strings, From Lists to Strings
	
	indexing, Indexing Lists–Variables
	
	indexing, dictionaries versus, Indexing Lists Versus Dictionaries
	
	normalizing and sorting, The NLP Pipeline
	
	Python list type, The NLP Pipeline
	
	sorted, Variables
	
	strings versus, The Difference Between Lists and Strings
	
	tuples versus, Combining Different Sequence Types
	

	local variables, Functions
	
	logic
		first-order, First-Order Logic–Compositional Semantics in Feature-Based Grammar
	
	natural language, semantics, and, Natural Language, Semantics, and Logic–Natural Language, Semantics, and Logic
	
	propositional, Propositional Logic–Propositional Logic
	
	resources for further reading, Further Reading
	

	logical constants, Syntax
	
	logical form, Propositional Logic
	
	logical proofs, Propositional Logic
	
	loops, Nested Code Blocks
		looping with conditions, Looping with Conditions
	

	lowercase, converting text to, Inaugural Address Corpus, Normalizing Text
	

M
	machine learning
		application to NLP, web pages for government
 challenges, Further Reading
	
	decision trees, Decision Trees–Entropy and Information Gain
	
	Maximum Entropy classifiers, Maximum Entropy Classifiers–Generative Versus Conditional Classifiers
	
	naive Bayes classifiers, Naive Bayes Classifiers–The Cause of Double-Counting
	
	packages, Scaling Up to Large Datasets
	
	resources for further reading, Further Reading
	
	supervised classification, Supervised Classification–Scaling Up to Large Datasets
	

	machine translation (MT)
		limitations of, Machine Translation
	
	using NLTK’s babelizer, Machine Translation
	

	mapping, Mapping Words to Properties Using Python Dictionaries
	
	Matplotlib package, Matplotlib–NetworkX
	
	maximal projection, Heads Revisited
	
	Maximum Entropy classifiers, Maximum Entropy Classifiers–Generative Versus Conditional Classifiers
	
	Maximum Entropy Markov Models, Other Methods for Sequence Classification
	
	Maximum Entropy principle, Maximizing Entropy
	
	memoization, Dynamic Programming
	
	meronyms, More Lexical Relations
	
	metadata, Describing Language Resources Using OLAC Metadata
		OLAC (Open Language Archives Community), OLAC: Open Language Archives Community
	

	modals, Adjectives and Adverbs
	
	model building, Model Building
	
	model checking, Individual Variables and Assignments
	
	models
		interpretation of sentences of logical
 language, Propositional Logic
	
	of linguistic patterns, Modeling Linguistic Patterns
	
	representation using set theory, Natural Language, Semantics, and Logic
	
	truth-conditional semantics in first-order
 logic, Truth in Model
	
	what can be learned from models of language, What Do Models Tell Us?
	

	modifiers, Valency and the Lexicon
	
	modules
		defined, Modules
	
	multimodule programs, Multimodule Programs
	
	structure of Python module, Structure of a Python Module
	

	morphological analysis, Morphology in Part-of-Speech Tagsets
	
	morphological cues to word category, Morphological Clues
	
	morphological tagging, Further Reading
	
	morphosyntactic information in tagsets, Morphology in Part-of-Speech Tagsets
	
	MSWord, text from, Extracting Text from PDF, MSWord, and Other Binary
 Formats
	
	mutable, The Difference Between Lists and Strings
	

N
	\n newline character in regular
 expressions, Simple Approaches to Tokenization
	
	n-gram tagging, Unigram Tagging–Transformation-Based Tagging
		across sentence boundaries, Tagging Across Sentence Boundaries
	
	combining taggers, Combining Taggers
	
	n-gram tagger as generalization of unigram
 tagger, General N-Gram Tagging
	
	performance limitations, Performance Limitations
	
	separating training and test data, Separating the Training and Testing Data
	
	storing taggers, Storing Taggers
	
	unigram tagging, Unigram Tagging
	
	unknown words, Tagging Unknown Words
	

	naive Bayes assumption, Underlying Probabilistic Model
	
	naive Bayes classifier, Naive Bayes Classifiers–The Cause of Double-Counting
		developing for gender identification task, Gender Identification
	
	double-counting problem, The Cause of Double-Counting
	
	as generative
 classifier, Generative Versus Conditional Classifiers
	
	naivete of independence assumption, The Naivete of Independence
	
	non-binary features, Non-Binary Features
	
	underlying probabilistic model, Underlying Probabilistic Model
	
	zero counts and smoothing, Zero Counts and Smoothing
	

	name resolution, LGB rule for, Variable Scope
	
	named arguments, Named Arguments
	
	named entities
		commonly used types of, Named Entity Recognition
	
	relations between, Relation Extraction
	

	named entity recognition (NER), Named Entity Recognition–Relation Extraction
	
	Names Corpus, Wordlist Corpora
	
	negative lookahead assertion, Relation Extraction
	
	NER (see named entity recognition)
	
	nested code blocks, Nested Code Blocks
	
	NetworkX package, NetworkX
	
	new words in languages, New Words
	
	newlines, Reading Local Files
		matching in regular expressions, Simple Approaches to Tokenization
	
	printing with print statement, Accessing Individual Characters
	
	resources for further information, Further Reading
	

	non-logical constants, Syntax
	
	non-standard words, Lemmatization
	
	normalizing text, Normalizing Text–Lemmatization
		lemmatization, Lemmatization
	
	using stemmers, Stemmers
	

	noun phrase (NP), Beyond n-grams
	
	noun phrase (NP) chunking, Noun Phrase Chunking
		regular expression–based NP chunker, Chunking with Regular Expressions
	
	using unigram tagger, Simple Evaluation and Baselines
	

	noun phrases, quantified, Quantified NPs
	
	nouns
		categorizing and tagging, Nouns
	
	program to find most frequent noun tags, Unsimplified Tags
	
	syntactic agreement, Syntactic Agreement
	

	numerically intense algorithms in Python, increasing
 efficiency of, Further Reading
	
	NumPy package, NumPy
	

O
	object references, Assignment
		copying, Assignment
	

	objective function, Word Segmentation
	
	objects, finding data type for, The NLP Pipeline
	
	OLAC metadata, Further Reading, Describing Language Resources Using OLAC Metadata
		definition of metadata, What Is Metadata?
	
	Open Language Archives Community, OLAC: Open Language Archives Community
	

	Open Archives Initiative (OAI), What Is Metadata?
	
	open class, New Words
	
	open formula, Syntax
	
	Open Language Archives Community (OLAC), OLAC: Open Language Archives Community
	
	operators, Propositional Logic
		(see also names of individual operators)
	
	addition and multiplication, Basic Operations with Strings
	
	Boolean, Propositional Logic
	
	numerical comparison, Conditionals
	
	scope of, Sources of Error
	
	word comparison, Conditionals
	

	or operator, Conditionals
	
	orthography, Grammatical Features
	
	out-of-vocabulary items, Tagging Unknown Words
	
	overfitting, Choosing the Right Features, Entropy and Information Gain
	

P
	packages, Modules
	
	parameters, Functions
		call-by-value parameter passing, Parameter Passing
	
	checking types of, Checking Parameter Types
	
	defined, Counting Vocabulary
	
	defining for functions, Function Inputs and Outputs
	

	parent nodes, Trees
	
	parsing, Weighted Grammar
		(see also grammars)
	
	with context-free
 grammar
		left-corner parser, The Left-Corner Parser
	
	recursive descent parsing, Recursive Descent Parsing
	
	shift-reduce parsing, Shift-Reduce Parsing
	
	well-formed substring tables, Well-Formed Substring Tables–Well-Formed Substring Tables
	

	Earley chart parser, parsing feature-based
 grammars, Using Attributes and Constraints
	
	parsers, Parsing with Context-Free Grammar
	
	projective dependency parser, Dependencies and Dependency Grammar
	

	part-of-speech tagging (see POS tagging)
	
	partial information, Subsumption and Unification
	
	parts of speech, Categorizing and Tagging Words
	
	PDF text, Extracting Text from PDF, MSWord, and Other Binary
 Formats
	
	Penn Treebank Corpus, Loading Your Own Corpus, Treebanks and Grammars
	
	personal pronouns, Adjectives and Adverbs
	
	philosophical divides in contemporary NLP, Contemporary Philosophical Divides
	
	phonetics
		computer-readable phonetic alphabet (SAMPA), Combining Different Sequence Types
	
	phones, A Pronouncing Dictionary
	
	resources for further information, Further Reading
	

	phrasal level, Heads Revisited
	
	phrasal projections, Heads Revisited
	
	pipeline for NLP, Spoken Dialogue Systems
	
	pixel images, Matplotlib
	
	plotting functions, Matplotlib, Matplotlib
	
	Porter stemmer, Stemmers
	
	POS (part-of-speech) tagging, Categorizing and Tagging Words, Performance Limitations, Part-of-Speech Tagging
		(see also tagging)
	
	differences in POS tagsets, Morphology in Part-of-Speech Tagsets
	
	examining word context, Exploiting Context
	
	finding IOB chunk tag for word’s POS tag, Simple Evaluation and Baselines
	
	in information retrieval, Information Extraction Architecture
	
	morphology in POS tagsets, Morphology in Part-of-Speech Tagsets
	
	resources for further reading, Further Reading
	
	simplified tagset, A Simplified Part-of-Speech Tagset
	
	storing POS tags in tagged corpora, Reading Tagged Corpora
	
	tagged data from four Indian languages, Reading Tagged Corpora
	
	unsimplifed tags, Unsimplified Tags
	
	use in noun phrase chunking, Noun Phrase Chunking
	
	using consecutive classifier, Sequence Classification
	

	pre-sorting, Algorithm Design
	
	precision, evaluating search tasks for, Precision and Recall
	
	precision/recall trade-off in information
 retrieval, General N-Gram Tagging
	
	predicates (first-order logic), Syntax
	
	prepositional phrase (PP), Beyond n-grams
	
	prepositional phrase attachment ambiguity, A Simple Grammar
	
	Prepositional Phrase Attachment Corpus, Treebanks and Grammars
	
	prepositions, Adjectives and Adverbs
	
	present participles, Morphological Clues
	
	Principle of Compositionality, Compositional Semantics in Feature-Based Grammar, Language Processing Versus Symbol Processing
	
	print statements, Printing Strings
		newline at end, Accessing Individual Characters
	
	string formats and, Strings and Formats
	

	prior probability, Naive Bayes Classifiers
	
	probabilistic context-free grammar (PCFG), Weighted Grammar
	
	probabilistic model, naive Bayes classifier, Underlying Probabilistic Model
	
	probabilistic parsing, Pernicious Ambiguity
	
	procedural style, Procedural Versus Declarative Style
	
	processing pipeline (NLP), The NLP Pipeline
	
	productions in grammars, Linguistic Data and Unlimited Possibilities
		rules for writing CFGs for parsing in NLTK, Writing Your Own Grammars
	

	program development, Program Development–Defensive Programming
		debugging techniques, Debugging Techniques
	
	defensive programming, Defensive Programming
	
	multimodule programs, Multimodule Programs
	
	Python module structure, Structure of a Python Module
	
	sources of error, Sources of Error
	

	programming style, Procedural Versus Declarative Style
	
	programs, writing, Writing Structured Programs–Exercises
		advanced features of functions, Functions As Arguments–Program Development
	
	algorithm design, Algorithm Design–Dynamic Programming
	
	assignment, Assignment
	
	conditionals, Conditionals
	
	equality, Equality
	
	functions, Functions: The Foundation of Structured Programming–Doing More with Functions
	
	resources for further reading, Further Reading
	
	sequences, Sequences–Generator Expressions
	
	style considerations, Questions of Style–Some Legitimate Uses for Counters
		legitimate uses for counters, Some Legitimate Uses for Counters
	
	procedural versus declarative style, Procedural Versus Declarative Style
	
	Python coding style, Python Coding Style
	

	summary of important points, Summary
	
	using Python libraries, A Sample of Python Libraries–Other Python Libraries
	

	Project Gutenberg, Electronic Books
	
	projections, Heads Revisited
	
	projective, Dependencies and Dependency Grammar
	
	pronouncing dictionary, A Pronouncing Dictionary–Comparative Wordlists
	
	pronouns
		anaphoric antecedents, Discourse Representation Theory
	
	interpreting in first-order logic, Syntax
	
	resolving in discourse processing, Discourse Processing
	

	proof goal, First-Order Theorem Proving
	
	properties of linguistic categories, Using Attributes and Constraints
	
	propositional logic, Propositional Logic–Propositional Logic
		Boolean operators, Propositional Logic
	

	propositional symbols, Propositional Logic
	
	pruning decision nodes, Entropy and Information Gain
	
	punctuation, classifier for, Sentence Segmentation
	
	Python
		carriage return and linefeed characters, Electronic Books
	
	codecs module, Extracting Encoded Text from Files
	
	dictionary data structure, A Pronouncing Dictionary
	
	dictionary methods, summary of, Inverting a Dictionary
	
	documentation, Further Reading
	
	documentation and information resources, Further Reading
	
	ElementTree module, The ElementTree Interface
	
	errors in understanding semantics of, Sources of Error
	
	finding type of any object, The NLP Pipeline
	
	getting started, Getting Started with Python
	
	increasing efficiency of numerically intense
 algorithms, Further Reading
	
	libraries, A Sample of Python Libraries–Other Python Libraries
		CSV, csv
	
	Matplotlib, Matplotlib–NetworkX
	
	NetworkX, NetworkX
	
	NumPy, NumPy
	
	other, Other Python Libraries
	

	reference materials, Further Reading
	
	style guide for Python code, Python Coding Style
	
	textwrap module, Text Wrapping
	

	Python Package Index, Other Python Libraries
	

Q
	quality control in corpus creation, Quality Control
	
	quantification
		first-order logic, Syntax, Quantification
	
	quantified noun phrases, Quantified NPs
	
	scope ambiguity, Quantifier Scope Ambiguity, Quantifier Ambiguity Revisited–Discourse Semantics
	

	quantified formulas, interpretation of, Quantification
	
	questions, answering, Generating Language Output
	
	quotation marks in strings, Basic Operations with Strings
	

R
	random text
		generating in various styles, Searching Text
	
	generating using bigrams, Generating Random Text with Bigrams
	

	raster (pixel) images, Matplotlib
	
	raw strings, Ranges and Closures
	
	raw text, processing, Processing Raw Text–Exercises
		capturing user input, Capturing User Input
	
	detecting word patterns with regular
 expressions, Regular Expressions for Detecting Word Patterns–Ranges and Closures
	
	formatting from lists to strings, Formatting: From Lists to Strings–Text Wrapping
	
	HTML documents, Dealing with HTML
	
	NLP pipeline, The NLP Pipeline
	
	normalizing text, Normalizing Text–Lemmatization
	
	reading local files, Reading Local Files
	
	regular expressions for tokenizing text, Regular Expressions for Tokenizing Text–Further Issues with Tokenization
	
	resources for further reading, Further Reading
	
	RSS feeds, Processing RSS Feeds
	
	search engine results, Processing Search Engine Results
	
	segmentation, Segmentation–Word Segmentation
	
	strings, lowest level text processing, Strings: Text Processing at the Lowest Level–The Difference Between Lists and Strings
	
	summary of important points, Text Wrapping
	
	text from web and from disk, Electronic Books
	
	text in binary formats, Extracting Text from PDF, MSWord, and Other Binary
 Formats
	
	useful applications of regular expressions, Useful Applications of Regular Expressions–Searching Tokenized Text
	
	using Unicode, Text Processing with Unicode–Using Your Local Encoding in Python
	

	raw() function, Gutenberg Corpus
	
	re module, Ranges and Closures, Simple Approaches to Tokenization
	
	recall, evaluating search tasks for, Precision and Recall
	
	Recognizing Textual Entailment (RTE), Textual Entailment, Recognizing Textual Entailment
		exploiting word context, Exploiting Context
	

	records, Combining Different Sequence Types
	
	recursion, Recursion
		function to compute Sanskrit meter
 (example), Dynamic Programming
	
	in linguistic structure, Building Nested Structure with Cascaded Chunkers–Named Entity Recognition
		tree traversal, Tree Traversal
	
	trees, Trees–Tree Traversal
	

	performance and, Recursion
	
	in syntactic structure, Recursion in Syntactic Structure
	

	recursive, Recursion in Syntactic Structure
	
	recursive descent parsing, Recursive Descent Parsing
	
	reentrancy, Processing Feature Structures
	
	references (see object references)
	
	regression testing framework, Defensive Programming
	
	regular expressions, Regular Expressions for Detecting Word Patterns–Searching Tokenized Text
		character class and other symbols, Simple Approaches to Tokenization
	
	chunker based on, evaluating, Simple Evaluation and Baselines
	
	extracting word pieces, Extracting Word Pieces
	
	finding word stems, Finding Word Stems
	
	matching initial and final vowel sequences and all
 consonants, Doing More with Word Pieces
	
	metacharacters, Ranges and Closures
	
	metacharacters, summary of, Ranges and Closures
	
	noun phrase (NP) chunker based on, Noun Phrase Chunking
	
	ranges and closures, Ranges and Closures
	
	resources for further information, Further Reading
	
	searching tokenized text, Searching Tokenized Text
	
	symbols, Simple Approaches to Tokenization
	
	tagger, The Regular Expression Tagger
	
	tokenizing text, Regular Expressions for Tokenizing Text–Further Issues with Tokenization
	
	use in PlaintextCorpusReader, Loading Your Own Corpus
	
	using basic metacharacters, Using Basic Metacharacters
	
	using for relation extraction, Relation Extraction
	
	using with conditional frequency
 distributions, Doing More with Word Pieces
	

	relation detection, Information Extraction Architecture
	
	relation extraction, Relation Extraction
	
	relational operators, Conditionals
	
	reserved words, Variables
	
	return statements, Function Inputs and Outputs
	
	return value, Functions
	
	reusing code, More Python: Reusing Code–Modules
		creating programs using a text editor, Creating Programs with a Text Editor
	
	functions, Functions
	
	modules, Modules
	

	Reuters Corpus, Reuters Corpus
	
	root element (XML), The ElementTree Interface
	
	root hypernyms, The WordNet Hierarchy
	
	root node, Decision Trees
	
	root synsets, The WordNet Hierarchy
	
	Rotokas language, Shoebox and Toolbox Lexicons
		extracting all consonant-vowel sequences from
 words, Doing More with Word Pieces
	
	Toolbox file containing lexicon, Using ElementTree for Accessing Toolbox Data
	

	RSS feeds, Processing RSS Feeds
		feedparser library, Other Python Libraries
	

	RTE (Recognizing Textual Entailment), Textual Entailment, Recognizing Textual Entailment
		exploiting word context, Exploiting Context
	

	runtime errors, Indexing Lists
	

S
	\S nonwhitespace characters in regular
 expressions, Simple Approaches to Tokenization
	
	\s whitespace characters in regular
 expressions, Simple Approaches to Tokenization
	
	SAMPA computer-readable phonetic alphabet, Combining Different Sequence Types
	
	Sanskrit meter, computing, Dynamic Programming
	
	satisfies, Individual Variables and Assignments
	
	scope of quantifiers, Quantifier Scope Ambiguity
	
	scope of variables, Variable Scope
	
	searches
		binary search, Algorithm Design
	
	evaluating for precision and recall, Precision and Recall
	
	processing search engine results, Processing Search Engine Results
	
	using POS tags, Exploring Tagged Corpora
	

	segmentation, Segmentation–Word Segmentation
		in chunking and
 tokenization, Chunking
	
	sentence, Sentence Segmentation
	
	word, Word Segmentation–Word Segmentation
	

	semantic cues to word category, Semantic Clues
	
	semantic interpretations, NLTK functions for, Transitive Verbs
	
	semantic role labeling, Pronoun Resolution
	
	semantics
		natural language, logic and, Natural Language, Semantics, and Logic–Natural Language, Semantics, and Logic
	
	natural language, resources for information, Further Reading
	

	semantics of English sentences, Compositional Semantics in Feature-Based Grammar–Discourse Semantics
		quantifier ambiguity, Quantifier Ambiguity Revisited–Discourse Semantics
	
	transitive verbs, Transitive Verbs–Quantifier Ambiguity Revisited
	
	⋏-calculus, The λ-Calculus–The λ-Calculus
	

	SemCor tagging, Further Reading
	
	sentence boundaries, tagging across, Tagging Across Sentence Boundaries
	
	sentence segmentation, Sentence Segmentation, Sentence Segmentation
		in chunking, Chunking
	
	in information retrieval process, Information Extraction Architecture
	

	sentence structure, analyzing, Analyzing Sentence Structure–Exercises
		context-free grammar, A Simple Grammar–Recursion in Syntactic Structure
	
	dependencies and dependency grammar, Dependencies and Dependency Grammar–Scaling Up
	
	grammar development, Grammar Development–Weighted Grammar
	
	grammatical dilemmas, Linguistic Data and Unlimited Possibilities
	
	parsing with context-free grammar, Parsing with Context-Free Grammar–Well-Formed Substring Tables
	
	resources for further reading, Further Reading
	
	summary of important points, Weighted Grammar
	
	syntax, Beyond n-grams–A Simple Grammar
	

	sents() function, Gutenberg Corpus
	
	sequence classification, Sequence Classification–Other Methods for Sequence Classification
		other methods, Other Methods for Sequence Classification
	
	POS tagging with consecutive classifier, Sequence Classification
	

	sequence iteration, Operating on Sequence Types
	
	sequences, Sequences–Generator Expressions
		combining different sequence types, Combining Different Sequence Types
	
	converting between sequence types, Operating on Sequence Types
	
	operations on sequence types, Operating on Sequence Types
	
	processing using generator expressions, Generator Expressions
	
	strings and lists as, The Difference Between Lists and Strings
	

	shift operation, Shift-Reduce Parsing
	
	shift-reduce parsing, Shift-Reduce Parsing
	
	Shoebox, Shoebox and Toolbox Lexicons, Three Corpus Creation Scenarios
	
	sibling nodes, Trees
	
	signature, Syntax
	
	similarity, semantic, Semantic Similarity
	
	Sinica Treebank Corpus, Treebanks and Grammars
	
	slash categories, Unbounded Dependency Constructions
	
	slicing
		lists, Indexing Lists, Indexing Lists
	
	strings, Strings, Accessing Substrings
	

	smoothing, Zero Counts and Smoothing
	
	space-time trade-offs in algorihm design, Space-Time Trade-offs
	
	spaces, matching in regular expressions, Simple Approaches to Tokenization
	
	Speech Synthesis Markup Language (W3C SSML), Further Reading
	
	spellcheckers, Words Corpus used by, Wordlist Corpora
	
	spoken dialogue systems, Spoken Dialogue Systems
	
	spreadsheets, obtaining data from, Obtaining Data from Spreadsheets and Databases
	
	SQL (Structured Query Language), Querying a Database
		translating English sentence to, Querying a Database
	

	stack trace, Debugging Techniques
	
	standards for linguistic data creation, Standards and Tools
	
	standoff annotation, Curation Versus Evolution, Deciding Which Layers of Annotation to Include
	
	start symbol for grammars, A Simple Grammar, Using Attributes and Constraints
	
	startswith() function, Inaugural Address Corpus
	
	stemming, Normalizing Text
		NLTK HOWTO, Further Reading
	
	stemmers, Stemmers
	
	using regular expressions, Finding Word Stems
	
	using stem() fuinction, Finding Word Stems
	

	stopwords, Wordlist Corpora
	
	stress (in pronunciation), A Pronouncing Dictionary
	
	string formatting expressions, Strings and Formats
	
	string literals, Unicode string literal in
 Python, Extracting Encoded Text from Files
	
	strings, Strings, Strings: Text Processing at the Lowest Level–The Difference Between Lists and Strings
		accessing individual characters, Accessing Individual Characters
	
	accessing substrings, Accessing Substrings
	
	basic operations with, Basic Operations with Strings–Basic Operations with Strings
	
	converting lists to, From Lists to Strings
	
	formats, Strings and Formats–Strings and Formats
	
	formatting
		lining things up, Lining Things Up
	
	tabulating data, Lining Things Up
	

	immutability of, The Difference Between Lists and Strings
	
	lists versus, The Difference Between Lists and Strings
	
	methods, More Operations on Strings
	
	more operations on, useful string methods, More Operations on Strings
	
	printing, Printing Strings
	
	Python’s str data type, The NLP Pipeline
	
	regular expressions as, Ranges and Closures
	
	tokenizing, The NLP Pipeline
	

	structurally ambiguous sentences, A Simple Grammar
	
	structure sharing, Processing Feature Structures
		interaction with unification, Subsumption and Unification
	

	structured data, Information Extraction
	
	style guide for Python code, Python Coding Style
	
	stylistics, Brown Corpus
	
	subcategories of verbs, Valency and the Lexicon
	
	subcategorization, Subcategorization–Heads Revisited
	
	substrings (WFST), Well-Formed Substring Tables
	
	substrings, accessing, Accessing Substrings
	
	subsumes, Subsumption and Unification
	
	subsumption, Subsumption and Unification–Extending a Feature-Based Grammar
	
	suffixes, classifier for, Part-of-Speech Tagging
	
	supervised classification, Supervised Classification–Scaling Up to Large Datasets
		choosing features, Choosing the Right Features–Choosing the Right Features
	
	documents, Document Classification
	
	exploiting context, Exploiting Context
	
	gender identification, Gender Identification
	
	identifying dialogue act types, Identifying Dialogue Act Types
	
	part-of-speech tagging, Part-of-Speech Tagging
	
	Recognizing Textual Entailment (RTE), Recognizing Textual Entailment
	
	scaling up to large datasets, Scaling Up to Large Datasets
	
	sentence segmentation, Sentence Segmentation
	
	sequence classification, Sequence Classification–Other Methods for Sequence Classification
	

	Swadesh wordlists, Comparative Wordlists
	
	symbol processing, language processing versus, Language Processing Versus Symbol Processing
	
	synonyms, Senses and Synonyms
	
	synsets, Senses and Synonyms
		semantic similarity, Semantic Similarity
	
	in WordNet concept
 hierarchy, The WordNet Hierarchy
	

	syntactic agreement, Syntactic Agreement–Syntactic Agreement
	
	syntactic cues to word category, Syntactic Clues
	
	syntactic structure, recursion in, Recursion in Syntactic Structure
	
	syntax, Beyond n-grams–A Simple Grammar
	
	syntax errors, Getting Started with Python
	

T
	\t tab character in regular
 expressions, Simple Approaches to Tokenization
	
	T9 system, entering text on mobile phones, Ranges and Closures
	
	tabs
		avoiding in code indentation, Python Coding Style
	
	matching in regular expressions, Simple Approaches to Tokenization
	

	tag patterns, Tag Patterns
		matching, precedence in, Chunking with Regular Expressions
	

	tagging, Categorizing and Tagging Words–Exercises
		adjectives and adverbs, Adjectives and Adverbs
	
	combining taggers, Combining Taggers
	
	default tagger, The Default Tagger
	
	evaluating tagger performance, Evaluation
	
	exploring tagged corpora, Exploring Tagged Corpora–Mapping Words to Properties Using Python Dictionaries
	
	lookup tagger, The Lookup Tagger–The Lookup Tagger
	
	mapping words to tags using Python
 dictionaries, Mapping Words to Properties Using Python Dictionaries–Automatic Tagging
	
	nouns, Nouns
	
	part-of-speech (POS) tagging, Part-of-Speech Tagging
	
	performance limitations, Performance Limitations
	
	reading tagged corpora, Reading Tagged Corpora
	
	regular expression tagger, The Regular Expression Tagger
	
	representing tagged tokens, Representing Tagged Tokens
	
	resources for further reading, Further Reading
	
	across sentence
 boundaries, Tagging Across Sentence Boundaries
	
	separating training and testing data, Separating the Training and Testing Data
	
	simplified part-of-speech tagset, A Simplified Part-of-Speech Tagset
	
	storing taggers, Storing Taggers
	
	transformation-based, Transformation-Based Tagging–How to Determine the Category of a Word
	
	unigram tagging, Unigram Tagging
	
	unknown words, Tagging Unknown Words
	
	unsimplified POS tags, Unsimplified Tags
	
	using POS (part-of-speech) tagger, Using a Tagger
	
	verbs, Verbs
	

	tags
		in feature
 structures, Processing Feature Structures
	
	IOB tags representing chunk structures, Representing Chunks: Tags Versus Trees
	
	XML, Using XML for Linguistic Structures
	

	tagsets, Categorizing and Tagging Words
		morphosyntactic information in POS tagsets, Morphology in Part-of-Speech Tagsets
	
	simplified POS tagset, A Simplified Part-of-Speech Tagset
	

	terms (first-order logic), Syntax
	
	test sets, Reuters Corpus, Gender Identification
		choosing for classification models, The Test Set
	

	testing classifier for document classification, Document Classification
	
	text, Computing with Language: Texts and Words
		computing statistics from, Computing with Language: Simple Statistics–Counting Other Things
	
	counting vocabulary, Counting Vocabulary–A Closer Look at Python: Texts as Lists of Words
	
	entering on mobile phones (T9 system), Ranges and Closures
	
	as lists of words, A Closer Look at Python: Texts as Lists of Words–Strings
	
	searching, Searching Text–Searching Text
		examining common contexts, Searching Text
	

	text alignment, Machine Translation
	
	text editor, creating programs with, Creating Programs with a Text Editor
	
	textonyms, Ranges and Closures
	
	textual entailment, Textual Entailment
	
	textwrap module, Text Wrapping
	
	theorem proving in first order logic, First-Order Theorem Proving
	
	timeit module, Space-Time Trade-offs
	
	TIMIT Corpus, Corpus Structure: A Case Study–Fundamental Data Types
	
	tokenization, Electronic Books
		chunking and, Chunking
	
	in information retrieval, Information Extraction Architecture
	
	issues with, Further Issues with Tokenization
	
	list produced from tokenizing string, The NLP Pipeline
	
	regular expressions for, Regular Expressions for Tokenizing Text–Further Issues with Tokenization
	
	representing tagged tokens, Representing Tagged Tokens
	
	segmentation and, Segmentation
	
	with Unicode strings as input and
 output, Extracting Encoded Text from Files
	

	tokenized text, searching, Searching Tokenized Text
	
	tokens, Counting Vocabulary
	
	Toolbox, Shoebox and Toolbox Lexicons, Three Corpus Creation Scenarios, Working with Toolbox Data–Describing Language Resources Using OLAC Metadata
		accessing data from XML, using ElementTree, Using ElementTree for Accessing Toolbox Data
	
	adding field to each entry, Adding a Field to Each Entry
	
	resources for further reading, Further Reading
	
	validating lexicon, Validating a Toolbox Lexicon–Describing Language Resources Using OLAC Metadata
	

	tools for creation, publication, and use of linguistic
 data, Standards and Tools
	
	top-down approach to dynamic programming, Dynamic Programming
	
	top-down parsing, Recursive Descent Parsing
	
	total likelihood, Maximum Entropy Classifiers
	
	training
		classifier, Gender Identification
	
	classifier for document classification, Document Classification
	
	classifier-based chunkers, Training Classifier-Based Chunkers–Building Nested Structure with Cascaded Chunkers
	
	taggers, Unigram Tagging
	
	unigram chunker using CoNLL 2000 Chunking
 Corpus, Simple Evaluation and Baselines
	

	training sets, Gender Identification, Choosing the Right Features
	
	transformation-based tagging, Transformation-Based Tagging–How to Determine the Category of a Word
	
	transitive verbs, Valency and the Lexicon, Transitive Verbs–Quantifier Ambiguity Revisited
	
	translations
		comparative wordlists, Comparative Wordlists
	
	machine (see machine translation)
	

	treebanks, Treebanks and Grammars–Pernicious Ambiguity
	
	trees, Trees–Named Entity Recognition
		representing chunks, Representing Chunks: Tags Versus Trees
	
	traversal of, Tree Traversal
	

	trie, Recursion
	
	trigram taggers, General N-Gram Tagging
	
	truth conditions, Propositional Logic
	
	truth-conditional semantics in first-order
 logic, Truth in Model
	
	tuples, Sequences
		lists versus, Combining Different Sequence Types
	
	parentheses with, Sequences
	
	representing tagged tokens, Representing Tagged Tokens
	

	Turing Test, Spoken Dialogue Systems, Natural Language, Semantics, and Logic
	
	type-raising, Quantified NPs
	
	type-token distinction, Counting Vocabulary
	
	TypeError, Sources of Error
	
	types, Counting Vocabulary, The NLP Pipeline
		(see also data types)
	

	types (first-order logic), Syntax
	

U
	unary predicate, Syntax
	
	unbounded dependency constructions, Unbounded Dependency Constructions–Case and Gender in German
		defined, Unbounded Dependency Constructions
	

	underspecified, Using Attributes and Constraints
	
	Unicode, Text Processing with Unicode–Using Your Local Encoding in Python
		decoding and encoding, What Is Unicode?
	
	definition and description of, What Is Unicode?
	
	extracting gfrom files, Extracting Encoded Text from Files
	
	resources for further information, Further Reading
	
	using your local encoding in Python, Using Your Local Encoding in Python
	

	unicodedata module, Extracting Encoded Text from Files
	
	unification, Subsumption and Unification–Extending a Feature-Based Grammar
	
	unigram taggers
		confusion matrix for, Confusion Matrices
	
	noun phrase chunking with, Simple Evaluation and Baselines
	

	unigram tagging, Unigram Tagging
		lookup tagger (example), The Lookup Tagger
	
	separating training and test data, Separating the Training and Testing Data
	

	unique beginners, The WordNet Hierarchy
	
	Universal Feed Parser, Processing RSS Feeds
	
	universal quantifier, Syntax
	
	unknown words, tagging, Tagging Unknown Words
	
	updating dictionary incrementally, Incrementally Updating a Dictionary
	
	US Presidential Inaugural Addresses Corpus, Inaugural Address Corpus
	
	user input, capturing, Capturing User Input
	

V
	valencies, Valency and the Lexicon
	
	validity of arguments, Propositional Logic
	
	validity of XML documents, Using XML for Linguistic Structures
	
	valuation, Truth in Model
		examining quantifier scope ambiguity, Quantifier Scope Ambiguity
	
	Mace4 model converted to, Model Building
	

	valuation function, Truth in Model
	
	values, Dictionaries in Python
		complex, Complex Keys and Values
	

	variables
		arguments of predicates in first-order
 logic, Syntax
	
	assignment, Individual Variables and Assignments
	
	bound by quantifiers in first-order logic, Syntax
	
	defining, Variables
	
	local, Functions
	
	naming, Variables
	
	relabeling bound variables, The λ-Calculus
	
	satisfaction of, using to interpret quantified
 formulas, Quantification
	
	scope of, Variable Scope
	

	verb phrase (VP), Beyond n-grams
	
	verbs
		agreement paradigm for English regular
 verbs, Syntactic Agreement
	
	auxiliary, Terminology
	
	auxiliary verbs and inversion of subject and
 verb, Auxiliary Verbs and Inversion
	
	categorizing and tagging, Verbs
	
	examining for dependency grammar, Valency and the Lexicon
	
	head of sentence and dependencies, Dependencies and Dependency Grammar
	
	present participle, Morphological Clues
	
	transitive, Transitive Verbs–Quantifier Ambiguity Revisited
	

W
	\w alphanumeric characters in regular
 expressions, Simple Approaches to Tokenization
	
	\W non-word characters in Python, Simple Approaches to Tokenization
	
	\W nonalphanumeric characters in
 regular expressions, Simple Approaches to Tokenization
	
	\w word characters in Python, Simple Approaches to Tokenization
	
	web text, Web and Chat Text
	
	Web, obtaining data from, Obtaining Data from the Web
	
	websites, obtaining corpora from, Obtaining Data from the Web
	
	weighted grammars, Weighted Grammar–Weighted Grammar
		probabilistic context-free grammar (PCFG), Weighted Grammar
	

	well-formed (XML), Using XML for Linguistic Structures
	
	well-formed formulas, Propositional Logic
	
	well-formed substring tables (WFST), Well-Formed Substring Tables–Well-Formed Substring Tables
	
	whitespace
		regular expression characters for, Simple Approaches to Tokenization
	
	tokenizing text on, Simple Approaches to Tokenization
	

	wildcard symbol (.), Using Basic Metacharacters
	
	windowdiff scorer, Quality Control
	
	word classes, Categorizing and Tagging Words
	
	word comparison operators, Conditionals
	
	word occurrence, counting in text, Counting Vocabulary
	
	word offset, Inaugural Address Corpus
	
	word processor files, obtaining data from, Obtaining Data from Word Processor Files
	
	word segmentation, Word Segmentation–Word Segmentation
	
	word sense disambiguation, Word Sense Disambiguation
	
	word sequences, Searching Text
	
	wordlist corpora, Wordlist Corpora–A Pronouncing Dictionary
	
	WordNet, WordNet–Summary
		concept hierarchy, The WordNet Hierarchy
	
	lemmatizer, Lemmatization
	
	more lexical relations, More Lexical Relations
	
	semantic similarity, Semantic Similarity
	
	visualization of hypernym hierarchy using Matplotlib
 and NetworkX, NetworkX
	

	Words Corpus, Wordlist Corpora
	
	words() function, Gutenberg Corpus
	
	wrapping text, Text Wrapping
	

X
	XML, Working with XML–Working with Toolbox Data
		ElementTree interface, The ElementTree Interface–The ElementTree Interface
	
	formatting entries, Formatting Entries
	
	representation of lexical entry from chunk parsing
 Toolbox record, Validating a Toolbox Lexicon
	
	resources for further reading, Further Reading
	
	role of, in using to represent linguistic
 structures, The Role of XML
	
	using ElementTree to access Toolbox data, Using ElementTree for Accessing Toolbox Data
	
	using for linguistic structures, Using XML for Linguistic Structures
	
	validity of documents, Using XML for Linguistic Structures
	

Z
	zero counts (naive Bayes classifier), Zero Counts and Smoothing
	
	zero projection, Heads Revisited
	

About the Authors
Steven Bird is Associate Professor in the Department of Computer Science and Software Engineering at the University of Melbourne, and Senior Research Associate in the Linguistic Data Consortium at the University of Pennsylvania. He completed a PhD on computational phonology at the University of Edinburgh in 1990, supervised by Ewan Klein. He later moved to Cameroon to conduct linguistic fieldwork on the Grassfields Bantu languages under the auspices of the Summer Institute of Linguistics. More recently, he spent several years as Associate Director of the Linguistic Data Consortium where he led an R&D team to create models and tools for large databases of annotated text. At Melbourne University, he established a language technology research group and has taught at all levels of the undergraduate computer science curriculum. In 2009, Steven is President of the Association for Computational Linguistics.
Ewan Klein is Professor of Language Technology in the School of Informatics at the University of Edinburgh. He completed a PhD on formal semantics at the University of Cambridge in 1978. After some years working at the Universities of Sussex and Newcastle upon Tyne, Ewan took up a teaching position at Edinburgh. He was involved in the establishment of Edinburgh's Language Technology Group in 1993, and has been closely associated with it ever since. From 2000-2002, he took leave from the University to act as Research Manager for the Edinburgh-based Natural Language Research Group of Edify Corporation, Santa Clara, and was responsible for spoken dialogue processing. Ewan is a past President of the European Chapter of the Association for Computational Linguistics and was a founding member and Coordinator of the European Network of Excellence in Human Language Technologies (ELSNET).
Edward Loper has recently completed a PhD on machine learning for natural language processing at the the University of Pennsylvania. Edward was a student in Steven's graduate course on computational linguistics in the fall of 2000, and went on to be a TA and share in the development of NLTK. In addition to NLTK, he has helped develop two packages for documenting and testing Python software, epydoc, and doctest.

Colophon
The animal on the cover of Natural Language Processing
 with Python is a right whale, the rarest of all large whales.
 It is identifiable by its enormous head, which can measure up to one-third
 of its total body length. It lives in temperate and cool seas in both
 hemispheres at the surface of the ocean. It’s believed that the right
 whale may have gotten its name from whalers who thought that it was the
 “right” whale to kill for oil. Even though it has been protected since the
 1930s, the right whale is still the most endangered of all the great
 whales.
The large and bulky right whale is easily distinguished from other
 whales by the calluses on its head. It has a broad back without a dorsal
 fin and a long arching mouth that begins above the eye. Its body is black,
 except for a white patch on its belly. Wounds and scars may appear bright
 orange, often becoming infested with whale lice or cyamids. The calluses—which are also found
 near the blowholes, above the eyes, and on the chin, and upper lip—are
 black or gray. It has large flippers that are shaped like paddles, and a
 distinctive V-shaped blow, caused by the widely spaced blowholes on the
 top of its head, which rises to 16 feet above the ocean’s surface.
The right whale feeds on planktonic organisms, including shrimp-like
 krill and copepods. As baleen whales, they have a series of 225–250
 fringed overlapping plates hanging from each side of the upper jaw, where
 teeth would otherwise be located. The plates are black and can be as long
 as 7.2 feet. Right whales are “grazers of the sea,” often swimming slowly
 with their mouths open. As water flows into the mouth and through the
 baleen, prey is trapped near the tongue.
Because females are not sexually mature until 10 years of age and
 they give birth to a single calf after a year-long pregnancy, populations
 grow slowly. The young right whale stays with its mother for one
 year.
Right whales are found worldwide but in very small numbers. A right
 whale is commonly found alone or in small groups of 1 to 3, but when
 courting, they may form groups of up to 30. Like most baleen whales, they
 are seasonally migratory. They inhabit colder waters for feeding and then
 migrate to warmer waters for breeding and calving. Although they may move
 far out to sea during feeding seasons, right whales give birth in coastal
 areas. Interestingly, many of the females do not return to these coastal
 breeding areas every year, but visit the area only in calving years. Where
 they go in other years remains a mystery.
The right whale’s only predators are orcas and humans. When danger
 lurks, a group of right whales may come together in a circle, with their
 tails pointing outward, to deter a predator. This defense is not always
 successful and calves are occasionally separated from their mother and
 killed.
Right whales are among the slowest swimming whales, although they
 may reach speeds up to 10 mph in short spurts. They can dive to at least
 1,000 feet and can stay submerged for up to 40 minutes. The right whale is
 extremely endangered, even after years of protected status. Only in the
 past 15 years is there evidence of a population recovery in the Southern
 Hemisphere, and it is still not known if the right whale will survive at
 all in the Northern Hemisphere. Although not presently hunted, current
 conservation problems include collisions with ships, conflicts with
 fishing activities, habitat destruction, oil drilling, and possible
 competition from other whale species. Right whales have no teeth, so ear
 bones and, in some cases, eye lenses can be used to estimate the age of a
 right whale at death. It is believed that right whales live at least 50
 years, but there is little data on their longevity.
The cover image is from the Dover Pictorial Archive. The cover font
 is Adobe ITC Garamond. The text font is Linotype Birka; the heading font
 is Adobe Myriad Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

Natural Language Processing with
 Python

Steven Bird

Ewan Klein

Edward Loper

Editor
Tatiana Apandi

Copyright © 2009 Steven Bird, Ewan Klein and Edward Loper

O’Reilly books may be purchased for educational, business, or
 sales promotional use. Online editions are also available for most
 titles (http://my.safaribooksonline.com). For more
 information, contact our corporate/institutional sales department: (800)
 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly
 logo are registered trademarks of O’Reilly Media, Inc. Natural
 Language Processing with Python, the image of a right whale,
 and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of
 a trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-03-31T21:19:50-07:00

OEBPS/httpatomoreillycomsourceoreillyimages302042.png
SEGMENTATION REPRESENTATION OBJECTIVE
LEXICON DERIVATION

1.d LEXICON:

-aoyou 6+4+5+8+8+2 =33

2.see

3. like DERIVATION:

4. thekitt 4+3+4+3=14

5. thedo

6.y 99 TOTAL:
33+14=47

OEBPS/httpatomoreillycomsourceoreillyimages302046.png
my_program.py

display.py
inf_corpus.py

OEBPS/httpatomoreillycomsourceoreillyimages302092.png
S

e U————

N VED NP N N P) P
| | P I N s
R accepted OT NN of NN NN of NNP NP . OT NN MWW
| | | | | | [| |

he the position vice chairman Calyle Goup a merchant banking concern

OEBPS/httpatomoreillycomsourceoreillyimages302174.png
SPOUSE

AGE
NAME
ADDRESS
33 NAME
ADDRESS
Lee'
'Kim'
NUMBER STREET

74 'rue Pascal'

OEBPS/httpatomoreillycomsourceoreillyimages302186.png
S

Det N'
| /\)
|

student of French

OEBPS/oreilly_large.png.jpg

OEBPS/bk01-toc.html
Natural Language Processing with
 Python

Table of Contents
		Preface		Audience

		Emphasis

		What You Will Learn

		Organization

		Why Python?

		Software Requirements

		Natural Language Toolkit (NLTK)

		For Instructors

		Conventions Used in This Book

		Using Code Examples

		Safari® Books Online

		How to Contact Us

		Acknowledgments

		Royalties

		1. Language Processing and Python		Computing with Language: Texts and Words		Getting Started with Python

		Getting Started with NLTK

		Searching Text

		Counting Vocabulary

		A Closer Look at Python: Texts as Lists of Words		Lists

		Indexing Lists

		Variables

		Strings

		Computing with Language: Simple Statistics		Frequency Distributions

		Fine-Grained Selection of Words

		Collocations and Bigrams

		Counting Other Things

		Back to Python: Making Decisions and Taking Control		Conditionals

		Operating on Every Element

		Nested Code Blocks

		Looping with Conditions

		Automatic Natural Language Understanding		Word Sense Disambiguation

		Pronoun Resolution

		Generating Language Output

		Machine Translation

		Spoken Dialogue Systems

		Textual Entailment

		Limitations of NLP

		Summary

		Further Reading

		Exercises

		2. Accessing Text Corpora and Lexical
 Resources		Accessing Text Corpora		Gutenberg Corpus

		Web and Chat Text

		Brown Corpus

		Reuters Corpus

		Inaugural Address Corpus

		Annotated Text Corpora

		Corpora in Other Languages

		Text Corpus Structure

		Loading Your Own Corpus

		Conditional Frequency Distributions		Conditions and Events

		Counting Words by Genre

		Plotting and Tabulating Distributions

		Generating Random Text with Bigrams

		More Python: Reusing Code		Creating Programs with a Text Editor

		Functions

		Modules

		Lexical Resources		Wordlist Corpora

		A Pronouncing Dictionary

		Comparative Wordlists

		Shoebox and Toolbox Lexicons

		WordNet		Senses and Synonyms

		The WordNet Hierarchy

		More Lexical Relations

		Semantic Similarity

		Summary

		Further Reading

		Exercises

		3. Processing Raw Text		Accessing Text from the Web and from Disk		Electronic Books

		Dealing with HTML

		Processing Search Engine Results

		Processing RSS Feeds

		Reading Local Files

		Extracting Text from PDF, MSWord, and Other Binary
 Formats

		Capturing User Input

		The NLP Pipeline

		Strings: Text Processing at the Lowest Level		Basic Operations with Strings

		Printing Strings

		Accessing Individual Characters

		Accessing Substrings

		More Operations on Strings

		The Difference Between Lists and Strings

		Text Processing with Unicode		What Is Unicode?

		Extracting Encoded Text from Files

		Using Your Local Encoding in Python

		Regular Expressions for Detecting Word Patterns		Using Basic Metacharacters

		Ranges and Closures

		Useful Applications of Regular Expressions		Extracting Word Pieces

		Doing More with Word Pieces

		Finding Word Stems

		Searching Tokenized Text

		Normalizing Text		Stemmers

		Lemmatization

		Regular Expressions for Tokenizing Text		Simple Approaches to Tokenization

		NLTK’s Regular Expression Tokenizer

		Further Issues with Tokenization

		Segmentation		Sentence Segmentation

		Word Segmentation

		Formatting: From Lists to Strings		From Lists to Strings

		Strings and Formats

		Lining Things Up

		Writing Results to a File

		Text Wrapping

		Summary

		Further Reading

		Exercises

		4. Writing Structured Programs		Back to the Basics		Assignment

		Equality

		Conditionals

		Sequences		Operating on Sequence Types

		Combining Different Sequence Types

		Generator Expressions

		Questions of Style		Python Coding Style

		Procedural Versus Declarative Style

		Some Legitimate Uses for Counters

		Functions: The Foundation of Structured Programming		Function Inputs and Outputs

		Parameter Passing

		Variable Scope

		Checking Parameter Types

		Functional Decomposition

		Documenting Functions

		Doing More with Functions		Functions As Arguments

		Accumulative Functions

		Higher-Order Functions

		Named Arguments

		Program Development		Structure of a Python Module

		Multimodule Programs

		Sources of Error

		Debugging Techniques

		Defensive Programming

		Algorithm Design		Recursion

		Space-Time Trade-offs

		Dynamic Programming

		A Sample of Python Libraries		Matplotlib

		NetworkX

		csv

		NumPy

		Other Python Libraries

		Summary

		Further Reading

		Exercises

		5. Categorizing and Tagging Words		Using a Tagger

		Tagged Corpora		Representing Tagged Tokens

		Reading Tagged Corpora

		A Simplified Part-of-Speech Tagset

		Nouns

		Verbs

		Adjectives and Adverbs

		Unsimplified Tags

		Exploring Tagged Corpora

		Mapping Words to Properties Using Python Dictionaries		Indexing Lists Versus Dictionaries

		Dictionaries in Python

		Defining Dictionaries

		Default Dictionaries

		Incrementally Updating a Dictionary

		Complex Keys and Values

		Inverting a Dictionary

		Automatic Tagging		The Default Tagger

		The Regular Expression Tagger

		The Lookup Tagger

		Evaluation

		N-Gram Tagging		Unigram Tagging

		Separating the Training and Testing Data

		General N-Gram Tagging

		Combining Taggers

		Tagging Unknown Words

		Storing Taggers

		Performance Limitations

		Tagging Across Sentence Boundaries

		Transformation-Based Tagging

		How to Determine the Category of a Word		Morphological Clues

		Syntactic Clues

		Semantic Clues

		New Words

		Morphology in Part-of-Speech Tagsets

		Summary

		Further Reading

		Exercises

		6. Learning to Classify Text		Supervised Classification		Gender Identification

		Choosing the Right Features

		Document Classification

		Part-of-Speech Tagging

		Exploiting Context

		Sequence Classification

		Other Methods for Sequence Classification

		Further Examples of Supervised Classification		Sentence Segmentation

		Identifying Dialogue Act Types

		Recognizing Textual Entailment

		Scaling Up to Large Datasets

		Evaluation		The Test Set

		Accuracy

		Precision and Recall

		Confusion Matrices

		Cross-Validation

		Decision Trees		Entropy and Information Gain

		Naive Bayes Classifiers		Underlying Probabilistic Model

		Zero Counts and Smoothing

		Non-Binary Features

		The Naivete of Independence

		The Cause of Double-Counting

		Maximum Entropy Classifiers		The Maximum Entropy Model

		Maximizing Entropy

		Generative Versus Conditional Classifiers

		Modeling Linguistic Patterns		What Do Models Tell Us?

		Summary

		Further Reading

		Exercises

		7. Extracting Information from Text		Information Extraction		Information Extraction Architecture

		Chunking		Noun Phrase Chunking

		Tag Patterns

		Chunking with Regular Expressions

		Exploring Text Corpora

		Chinking

		Representing Chunks: Tags Versus Trees

		Developing and Evaluating Chunkers		Reading IOB Format and the CoNLL-2000 Chunking Corpus

		Simple Evaluation and Baselines

		Training Classifier-Based Chunkers

		Recursion in Linguistic Structure		Building Nested Structure with Cascaded Chunkers

		Trees

		Tree Traversal

		Named Entity Recognition

		Relation Extraction

		Summary

		Further Reading

		Exercises

		8. Analyzing Sentence Structure		Some Grammatical Dilemmas		Linguistic Data and Unlimited Possibilities

		Ubiquitous Ambiguity

		What’s the Use of Syntax?		Beyond n-grams

		Context-Free Grammar		A Simple Grammar

		Writing Your Own Grammars

		Recursion in Syntactic Structure

		Parsing with Context-Free Grammar		Recursive Descent Parsing

		Shift-Reduce Parsing

		The Left-Corner Parser

		Well-Formed Substring Tables

		Dependencies and Dependency Grammar		Valency and the Lexicon

		Scaling Up

		Grammar Development		Treebanks and Grammars

		Pernicious Ambiguity

		Weighted Grammar

		Summary

		Further Reading

		Exercises

		9. Building Feature-Based Grammars		Grammatical Features		Syntactic Agreement

		Using Attributes and Constraints

		Terminology

		Processing Feature Structures		Subsumption and Unification

		Extending a Feature-Based Grammar		Subcategorization

		Heads Revisited

		Auxiliary Verbs and Inversion

		Unbounded Dependency Constructions

		Case and Gender in German

		Summary

		Further Reading

		Exercises

		10. Analyzing the Meaning of Sentences		Natural Language Understanding		Querying a Database

		Natural Language, Semantics, and Logic

		Propositional Logic

		First-Order Logic		Syntax

		First-Order Theorem Proving

		Summarizing the Language of First-Order Logic

		Truth in Model

		Individual Variables and Assignments

		Quantification

		Quantifier Scope Ambiguity

		Model Building

		The Semantics of English Sentences		Compositional Semantics in Feature-Based Grammar

		The λ-Calculus

		Quantified NPs

		Transitive Verbs

		Quantifier Ambiguity Revisited

		Discourse Semantics		Discourse Representation Theory

		Discourse Processing

		Summary

		Further Reading

		Exercises

		11. Managing Linguistic Data		Corpus Structure: A Case Study		The Structure of TIMIT

		Notable Design Features

		Fundamental Data Types

		The Life Cycle of a Corpus		Three Corpus Creation Scenarios

		Quality Control

		Curation Versus Evolution

		Acquiring Data		Obtaining Data from the Web

		Obtaining Data from Word Processor Files

		Obtaining Data from Spreadsheets and Databases

		Converting Data Formats

		Deciding Which Layers of Annotation to Include

		Standards and Tools

		Special Considerations When Working with Endangered
 Languages

		Working with XML		Using XML for Linguistic Structures

		The Role of XML

		The ElementTree Interface

		Using ElementTree for Accessing Toolbox Data

		Formatting Entries

		Working with Toolbox Data		Adding a Field to Each Entry

		Validating a Toolbox Lexicon

		Describing Language Resources Using OLAC Metadata		What Is Metadata?

		OLAC: Open Language Archives Community

		Summary

		Further Reading

		Exercises

		A. Afterword: The Language Challenge		Language Processing Versus Symbol Processing

		Contemporary Philosophical Divides

		NLTK Roadmap

		Envoi...

		B. Bibliography

		NLTK Index

		General Index

		About the Authors

		Colophon

		Copyright

OEBPS/httpatomoreillycomsourceoreillyimages302108.png
/\
NP VP
/\ /\
Det Nom VP PP
[N N
the Adj N v NP P NP
N I\
little bear saw Det Nom in Dlet Nlim
the Adj Adj N the N

fine fat trout brook

OEBPS/httpatomoreillycomsourceoreillyimages302034.png
11

n

10

Ply|t|h o

y

OEBPS/httpatomoreillycomsourceoreillyimages302050.png
V4

3 2
P VAN
2o

Vi Vo

OEBPS/httpatomoreillycomsourceoreillyimages302154.png
——
NPINUM=pl] VPINUM=pl]
Det[NlIJM=pI] N[NU?/(:pI] V[NUA|/I=pI]

these dogs run

OEBPS/httpatomoreillycomsourceoreillyimages302156.png
POSN

PER 3
AGR | NUM pl/
GND fem

OEBPS/httpatomoreillycomsourceoreillyimages302208.png
Xy Xyuz

Angus(x) Angus(x)
dog(y) » dog(y)

own(x,y) own(x,y)
u=y
Irene(z)
bite(u,z)
Angus owns a dog. Angus owns a dog.

It bit Irene.

OEBPS/httpatomoreillycomsourceoreillyimages302040.png
(1) 2a8c) (3o)
(Ac) (5] (6mno)

(Zrars] (8Tuv] (9 wxvz)

OEBPS/httpatomoreillycomsourceoreillyimages302102.png
/\
NP VP

| T T

| VP PP
/\ /\
v NP P NP
(N PN

shot Det N in

an elephant my pajamas

OEBPS/httpatomoreillycomsourceoreillyimages302176.png
74

NUMBER

STREET

'rue Pascal

OEBPS/httpatomoreillycomsourceoreillyimages302146.png
NP[NUM=sq]
Det[NUM=sg] ~ N[NUM=sg]
this dog

OEBPS/httpatomoreillycomsourceoreillyimages302216.png
Lexicon

Abstraction: fielded records

Text

Abstraction: time series

key | field | field | field | field

key | field | field | field | field

Eg: dictionary
wake: weik, [v], cease tosleep...

walk: wotk, [v], progress by lifting
and setting down each foot...

Eg: comparative wordlist

wake; aufwecken; acordar
walk; gehen; andar
write; schreiben; enscrever

Eg: verb paradigm

wake woke woken
write wrote written
wring wrung wrung

token | token | token
attrs | attrs | attrs

time ——————————
Eg: written text

Along time ago, Sun and Moon
lived together. They were good
brothers. ...

Eg: POS-tagged text

A/DT long/JJ time/NN ago/RB ./,
Sun/NNP and/CC Moon/NNP
lived/VBD together/RB ./.

Eg: interlinear text

Ragaipa irai vateri
ragai -pa ira -i vate-ri

PP.1.5G -BEN RP.3.5G.M -ABS give -2.5G

OEBPS/callouts/1.png

OEBPS/httpatomoreillycomsourceoreillyimages302018.png
—— Chickasaw
—— English

—— German_Deutsch

— Greenlandic_Inuktikut

—— Hungarian_Magyar

Ibibio Efik

100

afejuadiag aArRIMWIND)

TR

~
o

L

©
o~

T S M R
o= N
NN~

L

L

[o)f=}
—

VRO HANMIH IO
NN MMMM

lehul'el
NN A

N FH DO 00D
o

—
—

—NMYIN O

(=]

Samples

OEBPS/httpatomoreillycomsourceoreillyimages302038.png
O O O polish-utf8.py - /Users/ewan/svn/nitk/doc/images polish-utf8.py

-*- coding: utf-s -*-

import
sent =
Praeviezione przez Niemcow pod koniec II wojny Swiatowej na Dolny
Slask, zostaly odnalezione po 1945 r. na terytorium Polaki.

u = sent.decode("ut£a’)
u.lover()
print u.encode('utfa’)

SACUTE = re.compile('s|5')
replaced = re.sub(SACUTE, '[sacute]’, sent)
rint replaced

ILn: 17/Col28

OEBPS/callouts/4.png

OEBPS/httpatomoreillycomsourceoreillyimages302030.png
\
\

motor vehicle '

(motorcar) (go-kart) (truck)
(hatchrback) (compact) (gas guzz/er)

OEBPS/httpatomoreillycomsourceoreillyimages302120.png
2. Second production 3. Matching the

1. Initial stage
s s s
™

.
3

7

TiE

4. Cannot match man 5. Completed parse 6. Backtracking

. . x
- " -
o o \Irm-?,r\ P
man Det WP NP Lo B 4
\ o o
I e dog saw a moa i the

OEBPS/httpatomoreillycomsourceoreillyimages302094.png
/\
NP WP
| N

chased the rabbit

OEBPS/httpatomoreillycomsourceoreillyimages302096.png
VP

NP

saw

man

the

OEBPS/httpatomoreillycomsourceoreillyimages302198.png.jpg
Margrietje Brunoke

Beertje

OEBPS/httpatomoreillycomsourceoreillyimages302132.png
shot

| elephant in

pajamas my

OEBPS/httpatomoreillycomsourceoreillyimages302056.png
Bangla: &, “gtasel & f</'NN' 9% T8/ 'NN' IT<E T8/ 'NNP' 97/'CC" S 18973/ 'NNP" ?/None

A .3/'33" 7/None & ba1Ta/'NN' o #be1 f5/' 31" &, T/ 'NN' Wa/'NN' @15/ 'VM' [/ 'SYM'

Hindi: wrfF=a ™/ 'NNP' F7/'PREP' ¥ @/'1J" s ™ 71/ 'NN' 3=st7%/ 'NNPC' 1 Z7/"NNP'
9%/ 'PREP' =/ 'VFM' sre = 1%/ 'NN' %/'PREP" sz Ta1/'NN' %/'PREP' f&@ ™/ 'PREP' & z1/'NNP'
ZTT1/'PREP' ™7/ 'NVB' F7/'VFM' w&/ '"VAUX' aaTRF1/"'NN' F7/'PREP' & Aa 18/ 'NN'

7 a1/ 'NN' F1/'PREP' a® T 1/ 'NN' F1/'PREP' geam/'NN' %/'PREP' % 1w/ 'PREP'

€7 fira/ " VB FT/'VFM' 31/ "VAUX' T/ VAUX' 1/ "PUNC"

Marathi: smm/'3]" fegTem/ NN @@ rga/ 'NNPC' st/ 'NNP' = i=11/'PRP' ?/None
o 1/ NN ®r =T/ NN" s/ NN @7 ?/None &/ 'NN" @@/ "WM' . /'SYM'

Telugu: gewtoe/ 'NN' S0/ "PREP' $258/'V1]" S ae/ 'NN' %/ "PREP' %z a/"'NN"

OEBPS/httpatomoreillycomsourceoreillyimages302196.png
SEINVI
NP[+WH] SIHINVI/NP
wlho V[+AUX] NP[-WH] VP/NP
ﬂIO you V[-AUX, SUBCAT=clause] SBar/NP
dalim Comp S[-INVI/NP
thlal NP[-WH] VP/NP
you V['AUX,SURIKAT:UM\S] NP/NP

like

OEBPS/httpatomoreillycomsourceoreillyimages302010.png
Word Tally

the - - 1111
been - |
message 1
persevere |

nation HH 1l

OEBPS/orm_front_cover.jpg
Analyzing Text with the Natural Language Toolkit

Natural Language
Processing with
Python

Steven Bird, Ewan Klein

O’REILLY® & Edward Loper

OEBPS/httpatomoreillycomsourceoreillyimages302058.png
Call

me

Ishmael

wlN|k|o

OEBPS/httpatomoreillycomsourceoreillyimages302136.png

OEBPS/httpatomoreillycomsourceoreillyimages302080.png

OEBPS/httpatomoreillycomsourceoreillyimages302220.png
Published
corpus:
tokenized
and tagged

Research Group 1: Research Group 3:
discard tags, retokenize, —#- select subset of sentences

_y- @nnotate named-entities and annotate coreference

Research Group 2: Research Group 4:
sentence segmentation, —#- select subset of sentences
discard punctuation, parse and label semantic roles

Discourse
Research:
combining
sources???

OEBPS/httpatomoreillycomsourceoreillyimages302222.png
Tool

Common format

Common interface via
three-layer architecture

INTERFACE

OEBPS/httpatomoreillycomsourceoreillyimages302048.png
| _fsh | cat | dog | lion | bird | pig | rat | ant

S"“T////\.\\\

[fish [cat [dog [lion | [bird | pig rat | ant |
st A /A A
fish cat do lion bird i rat ant
SPLIT
[“fish | [cat | [dog | [Tion | [“bird | [pig | [rat | [ant |
MERGE a a
[cat [fish | [dog | fion | bird | pi ant | rat
MERGE
[cat [dog | fish n_| ant__| bird | pig [rat |
MERGE

[“ant | bird | cat | dog | fsh | lion | pig | rat |

OEBPS/httpatomoreillycomsourceoreillyimages302140.png
Det{NUM=pl]

these

OEBPS/httpatomoreillycomsourceoreillyimages302161.png
AGE

NAME
TELNO

33

Lee'
‘0127 864296'

OEBPS/httpatomoreillycomsourceoreillyimages302086.png
S
T
NP VBD N NP
P [VAN
DlT JIJ) NIN barked at DlT N|N

the little yellow dog the cat

OEBPS/httpatomoreillycomsourceoreillyimages302184.png
V[SUBCAT=<>]
NP V[SUBCAT=<NP>]
Kim V[SUB(AT=<|NP, NP, PP>] NP PP

put thebook onthe table

OEBPS/httpatomoreillycomsourceoreillyimages302082.png
raw text
(string)

sentence
segmentation

sentences
(list of strings)

tokenization

tokenized sentences
(list of lists of strings)

part of speech

pos-tagged sentences

tagging

-

(list of lists of tuples)

entity
recognition

chunked sentences
(Jist of trees)

relation
recognition

v
relations
(list of tuples)

OEBPS/callouts/6.png

OEBPS/httpatomoreillycomsourceoreillyimages302134.png

OEBPS/httpatomoreillycomsourceoreillyimages302148.png
NPINUM=pl]
Det[NUM=pl] N[NUM=pl]

these dogs

OEBPS/httpatomoreillycomsourceoreillyimages302118.png
/\
NIP VP
/\
ProIpN \ll N
/\
Chatterer said NIP VP
/\
PropN v S
Buster thought NP vp

Dt NV Ad

the tree was tall

OEBPS/httpatomoreillycomsourceoreillyimages302202.png

OEBPS/httpatomoreillycomsourceoreillyimages302052.png
Frequency

Frequency of 5ix Modal Verbs by Genre

[press: reportage
I religion

E skill and hobbies
[miscellaneous: gov

B fiction: adventure

OEBPS/httpatomoreillycomsourceoreillyimages302026.png
How many words of four letters or more can you make from those
shown here? Each letter may be used once per word. Each word

must contain the center letter and there must be at least one nine-letter
word. No plurals ending in "s"; no foreign words; no proper names.

21 words, good; 32 words, very good; 42 words, excellent.

OEBPS/httpatomoreillycomsourceoreillyimages302068.png
Corpus

Development Set

Training Set Dev-Test Set Test Set

OEBPS/httpatomoreillycomsourceoreillyimages302022.png
Condition: News

Condition: Romance

the A | [the A 1
cute cute 1]

Monday HHE 1111 Monday |

could | could - -
will 11 will i

OEBPS/httpatomoreillycomsourceoreillyimages302126.png
pajamas

VP

OEBPS/httpatomoreillycomsourceoreillyimages302142.png
N[NUM=sg]

OEBPS/httpatomoreillycomsourceoreillyimages302150.png
NP[NUM=FAIL]
Det[NUlM=sg] N[NUr|w=pI]
this dogs

OEBPS/httpatomoreillycomsourceoreillyimages302020.png
Isolated Categorized Overlapping Temporal

2 HHE 63D 2em,

eg. gutenberg, eg.brown e.g. reuters e.g.inaugural
webtext, udhr

OEBPS/httpatomoreillycomsourceoreillyimages302200.png
nnnnnnnnn

OEBPS/httpatomoreillycomsourceoreillyimages302152.png
NPINUM=FAIL]
Det[NUM=pl] ~ N[NUM=sq]

these dog

OEBPS/httpatomoreillycomsourceoreillyimages302116.png
/\
NP VP
Det Nom V/\NP
the Adj Nom chased Det Nom
angry T the Aldj Nom

bear frightened AIdj N

little squirrel

OEBPS/httpatomoreillycomsourceoreillyimages302212.png
Gender Speaker Id Sentence Id
dr1 |- | f | vmhO sx | 206
Sentence Type:

Dialect Region:
dr1: New England
dr2: Northern
dr3: North Midland
dr4: South Midland
dr5: Southern
dr6: New York City
dr7: Western

dr8: Army Brat
(moved around)

sa: read by all speakers,
chosen to reveal dialect
variation

si: read by individual
speakers, chosen from
diverse text sources
including Brown Corpus
sx: read by subset of
speakers, chosen for
phonetic complexity

OEBPS/callouts/2.png

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/httpatomoreillycomsourceoreillyimages302054.png

OEBPS/httpatomoreillycomsourceoreillyimages302060.png
Phone List

Domain Name Resolution Word Frequency Table
Alex |x154 aclweb.org 128.231.23.4 computational 25
Dana |x642 amazon.com 12.118.92.43 language 196
Kim X911 google.com 28.31.23.124 linguistics 17
Les x120 python.org 18.21.3.144 natural 56
Sandy |x124 sourceforge.net 51.98.23.53 processing 57

OEBPS/DejaVuSerif.otf

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/httpatomoreillycomsourceoreillyimages302188.png
NP

/\

Det Nom
I /\
a N PP

student of French

OEBPS/UbuntuMono-Bold.otf

OEBPS/httpatomoreillycomsourceoreillyimages302204.png
S[SEM=<bark(cyril)>]
NP[SEM=<(cyril)>] VP[SEM=<bark>]
Cyril IV[SEM=<\X.bark >]

X barks

OEBPS/httpatomoreillycomsourceoreillyimages302214.png
doc:
phoncode
prompts train
spkrinfo
spkrsent
testset
timitdic dri dr2 .. dr dr1 dr2 .. dr8
IN
I\ I\ \\\
(A}) \
[LN
R
faks0:
sal.phn sal.txt satl.wav sal.urd
" saz.phn saz.txt saz.wav saz.wrd
fcjfo fetbo fsaho i1573.phn si1573.txt si1573.wav si1573.wrd
5i2203.phn 512203.txt 512203.wav 512203.wrd
5i943.phn 5i943.txt si943.wav s$i943.wrd
sx43.phn sx43.txt sx43.wav sx43.wrd
sx133.phn sx133.txt sx133.wav sx133.wrd
$x223.phn sx223.txt sx223.wav sx223.wrd
sx313.phn sx313.txt sx313.wav sx313.wrd
5x403.phn 5x403.txt sx403.wav $x403.wrd

OEBPS/httpatomoreillycomsourceoreillyimages302072.png
lastletter=vowel

lastletter=I? lastletter=t? | count(f)=2?] Iength 37 |

/\ /\ /\ A

OEBPS/httpatomoreillycomsourceoreillyimages302112.png

OEBPS/httpatomoreillycomsourceoreillyimages302192.png
S[+INV]

V[+AUX, SUBCAT=3] NP VP
| | T~
do you V[-AUX, SlUB(AT:ﬂ NlP

like children

OEBPS/httpatomoreillycomsourceoreillyimages302064.png
Tokens:

Tags:

OEBPS/httpatomoreillycomsourceoreillyimages302190.png
N"

/\
Det N
| T~
a V B
|

hf' PI with good grades

N from France

student

OEBPS/httpatomoreillycomsourceoreillyimages302078.png
Label Likelihoods

PIf |label) Pllabelf,..f)
x -

@
2
2
5
2
H
S
S
2
2
E
3
&

Prior Probabi

onnowoine
a5 opinu
spods.

sanowoine
Kioshuw sapinu
suiods

label)
x

aanowoine
fionsuw sapinu
suods

annowoine
fionsuw sapinu
suods

P(label) P(f,|
x

OEBPS/httpatomoreillycomsourceoreillyimages302070.png
system output:
retrieved documents

information need:
relevant documents

75 x N
true false
positive positive

relevant, retrieved

irrelevant, retrieved

I N
X v
false true
negative negative,

relevant, not retrieved

irrelevant, not retrieved

Document Collection

OEBPS/httpatomoreillycomsourceoreillyimages302066.png
(a) Training
label

)

feature
extractor

input

(b) Prediction

e

feature
extractor

input

features

features

A 4

machine
learning
algorithm

classifier
model

OEBPS/httpatomoreillycomsourceoreillyimages302194.png
NP[+WH] S[+INVI/NP
|
who V[+AUX] NP[-WH] VP/NP
| | T~
do you V[-AUX, SUBCAT=trans] NP/NP
|

like

OEBPS/httpatomoreillycomsourceoreillyimages302004.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages302088.png
el
PRP
B-NP

1B

VBD

[t he

B-NP

ylellow

J]
I-NP

dlo g

NN
I-NP

OEBPS/httpatomoreillycomsourceoreillyimages302006.png
Identifier Status

all Al packages n/a not installed
all-corpora Al the corpora n/a not installed

[Everything used in the NLTK Book n/a not installed

Download Refresh

Server Index: http://nltk.googlecode. con/svn/trunk/nltk_data/index.xml]

Download Directory: C:\nltk_data |

OEBPS/httpatomoreillycomsourceoreillyimages302169.png
SPOUSE

AGE
NAME
ADDRESS
33 NAME
ADDRESS
Lee'
NUMBER STREET
NUMBER STREET
74 ‘rue Pascal'

74 'rue Pascal’

OEBPS/httpatomoreillycomsourceoreillyimages302076.png
Sports

Automotive Murder Mystery

OEBPS/httpatomoreillycomsourceoreillyimages302098.png
KEEP UP (ON] YOUR WITH AUDIO
Louisiana, USA

Vietnam

Audio [books] are highly [popular] with[library]patrons inthe
S.Carolina, USA Pennsylvania, USA Mass, USA

O.] "People are [mobile]
Alabama, USA

Louisiana, USA
[Springfield,) [Greene] County, [M

Turkey ~ Virginia, USA Maine, USA Norway
and busier, and audio fitinto that lifestyle” says
Louisiana, USA Indiana, USA
budget...

who oversees the
Pennsylvania, USA

Dominican Republic Kentucky, USA

OEBPS/httpatomoreillycomsourceoreillyimages302110.png
VP

NP

PP

NP

v

N

Det

P

dog saw Det N

the

man in Dlet

a

park

the

OEBPS/httpatomoreillycomsourceoreillyimages302144.png
N[NUM=pl]

dogs

OEBPS/callouts/3.png

OEBPS/httpatomoreillycomsourceoreillyimages302014.png
Morphological -
Speech 0 Contextual
and lexical Parsing
analysis e reasoning
Application
reasoning and
execution
Speech Morphological Syntactic Utterance
synthesis realization realization planning
Pronunc: Morpho- Lexicon and Discourse Domain
Toodel e grammar context knowledge
Phonology Morphology Syntax Semantics Reasoning

OEBPS/httpatomoreillycomsourceoreillyimages302074.png

OEBPS/httpatomoreillycomsourceoreillyimages302044.png
3130 3140 3150
Memory

PN
LT T T T o n e Iy[[P TyTefhlofn] [T]
—

Name Value
foo 3133
bar 3133

OEBPS/httpatomoreillycomsourceoreillyimages302084.png
wliellll[sfalw[[[thlel]|lyle[1]1]o]w]||[d[o]g
PRP VBD DT JJ NN
NP NP

OEBPS/httpatomoreillycomsourceoreillyimages302012.png
140000

120000

100000

80000)
60000)

Sunod aApeinwnd

40000

20000

OEBPS/callouts/5.png

OEBPS/httpatomoreillycomsourceoreillyimages302090.png
wlell|[slalw[][[t[h[e[]]lyle[1[1]ow]||[d[o]g
PRP VBD DT 1] NN
N‘P NP

OEBPS/httpatomoreillycomsourceoreillyimages302138.png
Det[NUlM=sg]
this

OEBPS/httpatomoreillycomsourceoreillyimages302032.png
html = urlopen(url).read() Download web page,
raw = nltk.clean_html(html) strip HTML if necessary,
raw = raw[750:23506] trim to desired content

tokens = nltk.wordpunct_tokenize(raw) [Tokenize the text,
tokens = tokens[20:1834] select tokens of interest,
text = nltk.Text(tokens) create an NLTK text

words = [w.lower() for w in text] Normalize the words,
vocab = sorted(set(words))

build the vocabulary

OEBPS/httpatomoreillycomsourceoreillyimages302128.png
OBJ PMOD
DETMOD NMOD DETMOD

vl oyl v

an elephant in my pajamas

OEBPS/httpatomoreillycomsourceoreillyimages1156527.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages302210.png
Xy
[angus)
[dog(y)

Jown(x.y)

OEBPS/httpatomoreillycomsourceoreillyimages302100.png
| 7T
shot Det N PP
| | PN
an elephant P NP
(NN
in Dlet llw

my pajamas

OEBPS/httpatomoreillycomsourceoreillyimages302024.png
Headword,

orlemma Sense definition,

o orgloss
saw, [verb], past tense of see.
Homonyms
saw, [noun], cutting instrument.
Part of speech, or lexical category
Lexical entry

OEBPS/httpatomoreillycomsourceoreillyimages302114.png
006006 X! Recursive Descent Parser Demo

Fle Edit Apply View Animate Help

Available Expansions.

s
5> NP VP T

NP > Det N PP np v
NP - Det N
VP>V NP PP
VPV NP
VP

PP - P NP
NP>

Dt > the'
Det--x

N> rar
N> park
N> dog’

N> telescope’
Vot

Vo saw the
P

P - under
P - it K =

Lot Operaton: [t e

et 1 PP

the dog saw a man in the park

i) R Evpand | ot | JERGRTRER]]

OEBPS/httpatomoreillycomsourceoreillyimages302180.png
NUMBER STREET
ary

74 ‘rue Pascal
'Paris'

OEBPS/httpatomoreillycomsourceoreillyimages302130.png
shot
] eleplham
in

pajamas my

OEBPS/httpatomoreillycomsourceoreillyimages302124.png
shot an elephant in my pajamas

|
)) Q) G) (@) G)

OEBPS/httpatomoreillycomsourceoreillyimages302182.png
N

/\
NP vp
y(l)u V[-AUX, SUBCAT=clause] SBar
clalim Comp N
wor

you V[-AUX, SU?(AT:lranx] NP

like children

OEBPS/httpatomoreillycomsourceoreillyimages302224.png
<record>
<lx>ceuv jiax</lx>
<hm />
<sense>
<sm />
<ps>vobj</ps>
<dv>nzaeng jiax</dv>
<ge>quarrel</ge>
<de />
<gn>WZ2 </gn>
<gp>chao3 jia4</gp>
<dn>% W </dn>
<example>
<xv>Ninh mbuo i hmuangv mv ~ jiex jiax.</xv>
<xe>That husband and wife have never quarrelled.</xe>
<xn>f IR EBMRTBE, </xn>
</example><example>
<xv>Gorngv duh leiz mv dugv ~.</xv>
<xe>Have some common sense, don't quarrel.</xe>
<xn>HEE, FIMWE. </xn>
</example><lexfunc>
<1lf />
<lv />
</lexfunc>
</sense><dt>18/Feb/2004</dt>
</record>

OEBPS/httpatomoreillycomsourceoreillyimages302036.png
GB2312 Do some Python rocessing GB2312
L -
Latin-2 decode Unicode encode Latin-2
P —
UTF-8 UTF-8
L L

File / Terminal In-memory program File / Terminal

OEBPS/httpatomoreillycomsourceoreillyimages302218.png
S1DI][I[I[II]I]lIIIIIIIIII|IIIIIII
szDI][I[I[II]I]DlIIIIIIII|IIIIIIII
S3DI][I[IlIIIIIIIIIIIIIIII|IIII

OEBPS/httpatomoreillycomsourceoreillyimages302008.png

OEBPS/httpatomoreillycomsourceoreillyimages302206.png
V x.(girl(x)— ¢) Jy.dogy) A)

N

Jy.(dogly) A §) V x(gifl(x)»)

chase(x, y) chase(x, y)

OEBPS/httpatomoreillycomsourceoreillyimages302165.png
AGE

NAME
ADDRESS

33

Lee'

NUMBER STREET

74 'rue Pascal

OEBPS/httpatomoreillycomsourceoreillyimages302062.png
Performance

1.0

Lookup Tagger Pertor:

mance with Varying Model Size

T T T

o

2000

4000

6000

8000 10000
Model Size

12000 14000 16000 18000

OEBPS/httpatomoreillycomsourceoreillyimages302106.png
Det Adj N v Det Adj Adj N P Det N
the | little | bear | saw | the | fine | fat | trout| in the | brook
Det Nom v Det Nom P NP
the bear saw the trout in it

NP v NP PP

He saw. it there

NP VP PP

He ran there

NP VP

OEBPS/httpatomoreillycomsourceoreillyimages302122.png
1. Initial state 2. Aiter one shiit
Stack Remaining Text Stack Remaining Text
the dog saw a man in the park

3. After reduce shift reduce

Stack | Remaining Text

Det N saw a man in the park
L

the dog

5. After building a complex NP 6. Built a complete parse tree

Stack | Remaining Text Stack | Remaining Text

OEBPS/httpatomoreillycomsourceoreillyimages302028.png
400

200

— female.txt
— male.txt ||

Samples

OEBPS/httpatomoreillycomsourceoreillyimages302104.png
the | little | bear | saw [the | fine | fat | trout| in the | brook
the bear saw | the trout in it

He saw it there

He ran there

He

ran

OEBPS/httpatomoreillycomsourceoreillyimages302178.png.jpg
ary

'Paris'

OEBPS/httpatomoreillycomsourceoreillyimages302016.png
america
citizen

40|

35|
30
5
0

10}

