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Preface



This is a book about Natural Language Processing. By “natural
    language” we mean a language that is used for everyday communication by
    humans; languages such as English, Hindi, or Portuguese. In contrast to
    artificial languages such as programming languages and mathematical
    notations, natural languages have evolved as they pass from generation to
    generation, and are hard to pin down with explicit rules. We will take
    Natural Language Processing—or NLP for short—in a wide sense to cover any
    kind of computer manipulation of natural language. At one extreme, it
    could be as simple as counting word frequencies to compare different
    writing styles. At the other extreme, NLP involves “understanding”
    complete human utterances, at least to the extent of being able to give
    useful responses to them.
Technologies based on NLP are becoming increasingly widespread. For
    example, phones and handheld computers support predictive text and
    handwriting recognition; web search engines give access to information
    locked up in unstructured text; machine translation allows us to retrieve
    texts written in Chinese and read them in Spanish. By providing more
    natural human-machine interfaces, and more sophisticated access to stored
    information, language processing has come to play a central role in the
    multilingual information society.
This book provides a highly accessible introduction to the field of
    NLP. It can be used for individual study or as the textbook for a course
    on natural language processing or computational linguistics, or as a
    supplement to courses in artificial intelligence, text mining, or corpus
    linguistics. The book is intensely practical, containing hundreds of fully
    worked examples and graded exercises.
The book is based on the Python programming language together with
    an open source library called the Natural Language
    Toolkit (NLTK). NLTK includes extensive software, data, and
    documentation, all freely downloadable from http://www.nltk.org/. Distributions are provided for
    Windows, Macintosh, and Unix platforms. We strongly encourage you to
    download Python and NLTK, and try out the examples and exercises along the
    way.
Audience



NLP is important for scientific, economic, social, and cultural
      reasons. NLP is experiencing rapid growth as its theories and methods
      are deployed in a variety of new language technologies. For this reason
      it is important for a wide range of people to have a working knowledge
      of NLP. Within industry, this includes people in human-computer
      interaction, business information analysis, and web software
      development. Within academia, it includes people in areas from
      humanities computing and corpus linguistics through to computer science
      and artificial intelligence. (To many people in academia, NLP is known
      by the name of “Computational Linguistics.”)
This book is intended for a diverse range of people who want to
      learn how to write programs that analyze written language, regardless of
      previous programming experience:
	New to programming?
	The early chapters of the book are suitable for readers with
            no prior knowledge of programming, so long as you aren’t afraid to
            tackle new concepts and develop new computing skills. The book is
            full of examples that you can copy and try for yourself, together
            with hundreds of graded exercises. If you need a more general
            introduction to Python, see the list of Python resources at http://docs.python.org/.

	New to Python?
	Experienced programmers can quickly learn enough Python
            using this book to get immersed in natural language processing.
            All relevant Python features are carefully explained and
            exemplified, and you will quickly come to appreciate Python’s
            suitability for this application area. The language index will
            help you locate relevant discussions in the book.

	Already dreaming in Python?
	Skim the Python examples and dig into the interesting
            language analysis material that starts in Chapter 1. You’ll soon be applying your skills to this
            fascinating domain.




Emphasis



This book is a practical
      introduction to NLP. You will learn by example, write real programs, and
      grasp the value of being able to test an idea through implementation. If
      you haven’t learned already, this book will teach you programming. Unlike other programming books, we
      provide extensive illustrations and exercises from NLP. The approach we
      have taken is also principled, in
      that we cover the theoretical underpinnings and don’t shy away from
      careful linguistic and computational analysis. We have tried to be
      pragmatic in striking a balance
      between theory and application, identifying the connections and the
      tensions. Finally, we recognize that you won’t get through this unless
      it is also pleasurable, so we have
      tried to include many applications and examples that are interesting and
      entertaining, and sometimes whimsical.
Note that this book is not a reference work. Its coverage of
      Python and NLP is selective, and presented in a tutorial style. For
      reference material, please consult the substantial quantity of
      searchable resources available at http://python.org/ and http://www.nltk.org/.
This book is not an advanced computer science text. The content
      ranges from introductory to intermediate, and is directed at readers who
      want to learn how to analyze text using Python and the Natural Language
      Toolkit. To learn about advanced algorithms implemented in NLTK, you can
      examine the Python code linked from http://www.nltk.org/, and consult the other materials
      cited in this book.

What You Will Learn



By digging into the material presented here, you will
      learn:
	How simple programs can help you manipulate and analyze
          language data, and how to write these programs

	How key concepts from NLP and linguistics are used to describe
          and analyze language

	How data structures and algorithms are used in NLP

	How language data is stored in standard formats, and how data
          can be used to evaluate the performance of NLP techniques



Depending on your background, and your motivation for being
      interested in NLP, you will gain different kinds of skills and knowledge
      from this book, as set out in Table 1.
Table 1. Skills and knowledge to be gained from reading this book,
        depending on readers’ goals and background
	Goals
	Background in arts and humanities
	Background in science and
              engineering

	Language analysis
	Manipulating large corpora, exploring linguistic
              models, and testing empirical claims.
	Using techniques in data modeling, data mining, and
              knowledge discovery to analyze natural language.

	Language technology
	Building robust systems to perform linguistic tasks
              with technological applications.
	Using linguistic algorithms and data structures in
              robust language processing software.





Organization



The early chapters are organized in order of conceptual
      difficulty, starting with a practical introduction to language
      processing that shows how to explore interesting bodies of text using
      tiny Python programs (Chapters 1–3). This is followed by a chapter on
      structured programming (Chapter 4) that consolidates
      the programming topics scattered across the preceding chapters. After
      this, the pace picks up, and we move on to a series of chapters covering
      fundamental topics in language processing: tagging, classification, and
      information extraction (Chapters 5–7). The next three chapters look at
      ways to parse a sentence, recognize its syntactic structure, and
      construct representations of meaning (Chapters 8–10). The final chapter is devoted to
      linguistic data and how it can be managed effectively (Chapter 11). The book concludes with an Afterword, briefly
      discussing the past and future of the field.
Within each chapter, we switch between different styles of
      presentation. In one style, natural language is the driver. We analyze
      language, explore linguistic concepts, and use programming examples to
      support the discussion. We often employ Python constructs that have not
      been introduced systematically, so you can see their purpose before
      delving into the details of how and why they work. This is just like
      learning idiomatic expressions in a foreign language: you’re able to buy
      a nice pastry without first having learned the intricacies of question
      formation. In the other style of presentation, the programming language
      will be the driver. We’ll analyze programs, explore algorithms, and the
      linguistic examples will play a supporting role.
Each chapter ends with a series of graded exercises, which are
      useful for consolidating the material. The exercises are graded
      according to the following scheme: ○ is for easy exercises that involve
      minor modifications to supplied code samples or other simple activities; [image: ] is for intermediate exercises that explore an aspect of the material
      in more depth, requiring careful analysis and design; ● is for
      difficult, open-ended tasks that will challenge your understanding of
      the material and force you to think independently (readers new to
      programming should skip these).
Each chapter has a further reading section and an online “extras”
      section at http://www.nltk.org/, with pointers to
      more advanced materials and online resources. Online versions of all the
      code examples are also available there.

Why Python?



Python is a simple yet powerful programming language with
      excellent functionality for processing linguistic data. Python can be
      downloaded for free from http://www.python.org/.
      Installers are available for all platforms.
Here is a five-line Python program that processes file.txt and prints all the words ending in
      ing:
>>> for line in open("file.txt"):
...     for word in line.split():
...         if word.endswith('ing'):
...             print word
This program illustrates some of the main features of Python.
      First, whitespace is used to nest lines of code;
      thus the line starting with if falls
      inside the scope of the previous line starting with for; this ensures that the ing test is performed for each word. Second,
      Python is object-oriented; each variable is an
      entity that has certain defined attributes and methods. For example, the
      value of the variable line is more
      than a sequence of characters. It is a string object that has a “method”
      (or operation) called split() that we
      can use to break a line into its words. To apply a method to an object,
      we write the object name, followed by a period, followed by the method
      name, i.e., line.split(). Third,
      methods have arguments expressed inside
      parentheses. For instance, in the example, word.endswith('ing') had the argument 'ing' to indicate that we wanted words ending
      with ing and not something else. Finally—and most
      importantly—Python is highly
      readable, so much so that it is fairly easy to guess what this program
      does even if you have never written a program before.
We chose Python because it has a shallow learning curve, its
      syntax and semantics are transparent, and it has good string-handling
      functionality. As an interpreted language, Python facilitates
      interactive exploration. As an object-oriented language, Python permits
      data and methods to be encapsulated and re-used easily. As a dynamic
      language, Python permits attributes to be added to objects on the fly,
      and permits variables to be typed dynamically, facilitating rapid
      development. Python comes with an extensive standard library, including
      components for graphical programming, numerical processing, and web
      connectivity.
Python is heavily used in industry, scientific research, and
      education around the world. Python is often praised for the way it
      facilitates productivity, quality, and maintainability of software. A collection of
      Python success stories is posted at http://www.python.org/about/success/.
NLTK defines an infrastructure that can be used to build NLP
      programs in Python. It provides basic classes for representing data
      relevant to natural language processing; standard interfaces for
      performing tasks such as part-of-speech tagging, syntactic parsing, and
      text classification; and standard implementations for each task that can
      be combined to solve complex problems.
NLTK comes with extensive documentation. In addition to this book,
      the website at http://www.nltk.org/ provides API
      documentation that covers every module, class, and function in the
      toolkit, specifying parameters and giving examples of usage. The website
      also provides many HOWTOs with extensive examples and test cases,
      intended for users, developers, and instructors.

Software Requirements



To get the most out of this book, you should install several free
      software packages. Current download pointers and instructions are
      available at http://www.nltk.org/.
	Python
	The material presented in this book assumes that you are
            using Python version 2.4 or 2.5. We are committed to porting NLTK
            to Python 3.0 once the libraries that NLTK depends on have been
            ported.

	NLTK
	The code examples in this book use NLTK version 2.0.
            Subsequent releases of NLTK will be backward-compatible.

	NLTK-Data
	This contains the linguistic corpora that are analyzed and
            processed in the book.

	NumPy (recommended)
	This is a scientific computing library with support for
            multidimensional arrays and linear algebra, required for certain
            probability, tagging, clustering, and classification tasks.

	Matplotlib (recommended)
	This is a 2D plotting library for data visualization, and is
            used in some of the book’s code samples that produce line graphs
            and bar charts.

	NetworkX (optional)
	This is a library for storing and manipulating network
            structures with nodes and
            edges. For visualizing semantic networks, also install the
            Graphviz library.

	Prover9 (optional)
	This is an automated theorem prover for first-order and
            equational logic, used to support inference in language
            processing.




Natural Language Toolkit (NLTK)



NLTK was originally created in 2001 as part of a computational
      linguistics course in the Department of Computer and Information Science
      at the University of Pennsylvania. Since then it has been developed and
      expanded with the help of dozens of contributors. It has now been
      adopted in courses in dozens of universities, and serves as the basis of
      many research projects. Table 2 lists the most
      important NLTK modules.
Table 2. Language processing tasks and corresponding NLTK modules with
        examples of functionality
	Language processing task
	NLTK modules
	Functionality

	Accessing corpora
	nltk.corpus
	Standardized interfaces to corpora and
              lexicons

	String processing
	nltk.tokenize, nltk.stem
	Tokenizers, sentence tokenizers,
              stemmers

	Collocation discovery
	nltk.collocations
	t-test, chi-squared, point-wise mutual
              information

	Part-of-speech tagging
	nltk.tag
	n-gram, backoff, Brill, HMM, TnT

	Classification
	nltk.classify, nltk.cluster
	Decision tree, maximum entropy, naive Bayes, EM,
              k-means

	Chunking
	nltk.chunk
	Regular expression, n-gram, named
              entity

	Parsing
	nltk.parse
	Chart, feature-based, unification, probabilistic,
              dependency

	Semantic interpretation
	nltk.sem, nltk.inference
	Lambda calculus, first-order logic, model
              checking

	Evaluation metrics
	nltk.metrics
	Precision, recall, agreement
              coefficients

	Probability and estimation
	nltk.probability
	Frequency distributions, smoothed probability
              distributions

	Applications
	nltk.app, nltk.chat
	Graphical concordancer, parsers, WordNet browser,
              chatbots

	Linguistic fieldwork
	nltk.toolbox
	Manipulate data in SIL Toolbox
              format




NLTK was designed with four primary goals in mind:
	Simplicity
	To provide an intuitive framework along with substantial
            building blocks, giving users a practical knowledge of NLP without
            getting bogged down in the tedious house-keeping usually
            associated with processing annotated language data

	Consistency
	To provide a uniform framework with consistent interfaces
            and data structures, and easily guessable method names

	Extensibility
	To provide a structure into which new software modules can
            be easily accommodated, including alternative implementations and
            competing approaches to the same task

	Modularity
	To provide components that can be used independently without
            needing to understand the rest of the toolkit



Contrasting with these goals are three
      non-requirements—potentially useful qualities that we have deliberately
      avoided. First, while the toolkit provides a wide range of functions, it
      is not encyclopedic; it is a toolkit, not a system, and it will continue
      to evolve with the field of NLP. Second, while the toolkit is efficient
      enough to support meaningful tasks, it is not highly optimized for
      runtime performance; such optimizations often involve more complex
      algorithms, or implementations in lower-level programming languages such
      as C or C++. This would make the software less readable and more
      difficult to install. Third, we have tried to avoid clever programming
      tricks, since we believe that clear implementations are preferable to
      ingenious yet indecipherable ones.

For Instructors



Natural Language Processing is often taught within the confines of
      a single-semester course at the advanced undergraduate level or
      postgraduate level. Many instructors have found that it is difficult to
      cover both the theoretical and practical sides of the subject in such a
      short span of time. Some courses focus on theory to the exclusion of
      practical exercises, and deprive students of the challenge and
      excitement of writing programs to automatically process language. Other
      courses are simply designed to teach programming for linguists, and do
      not manage to cover any significant NLP content. NLTK was originally
      developed to address this problem, making it feasible to cover a
      substantial amount of theory and practice within a single-semester
      course, even if students have no prior programming experience.
A significant fraction of any NLP syllabus deals with algorithms
      and data structures. On their own these can be rather dry, but NLTK
      brings them to life with the help of interactive graphical user
      interfaces that make it possible to view algorithms step-by-step. Most
      NLTK components include a demonstration that performs an interesting
      task without requiring any special input from the user. An effective way
      to deliver the materials is through interactive presentation of the
      examples in this book, entering them in a Python session, observing what
      they do, and modifying them to explore some empirical or theoretical
      issue.
This book contains hundreds of exercises that can be used as the
      basis for student assignments. The simplest exercises involve modifying
      a supplied program fragment in a specified way in order to answer a
      concrete question. At the other end of the spectrum, NLTK provides a
      flexible framework for graduate-level research projects, with standard
      implementations of all the basic data structures and algorithms,
      interfaces to dozens of widely used datasets (corpora), and a flexible
      and extensible architecture. Additional support for teaching using NLTK
      is available on the NLTK website.
We believe this book is unique in providing a comprehensive
      framework for students to learn about NLP in the context of learning to
      program. What sets these materials apart is the tight coupling of the
      chapters and exercises with NLTK, giving students—even those with no
      prior programming experience—a practical introduction to NLP. After
      completing these materials, students will be ready to attempt one of the
      more advanced textbooks, such as Speech and Language
      Processing, by Jurafsky and Martin (Prentice Hall,
      2008).
This book presents programming concepts in an unusual order,
      beginning with a non-trivial data type—lists of strings—then introducing
      non-trivial control structures such as comprehensions and conditionals.
      These idioms permit us to do useful language processing from the start.
      Once this motivation is in place, we return to a systematic presentation
      of fundamental concepts such as strings, loops, files, and so forth. In
      this way, we cover the same ground as more conventional approaches,
      without expecting readers to be interested in the programming language
      for its own sake.
Two possible course plans are illustrated in Table 3. The first one presumes an arts/humanities
      audience, whereas the second one presumes a science/engineering
      audience. Other course plans could cover the first five chapters, then
      devote the remaining time to a single area, such as text classification
      (Chapters 6
      and 7), syntax
      (Chapters 8
      and 9),
      semantics (Chapter 10), or linguistic data management
      (Chapter 11).
Table 3. Suggested course plans; approximate number of lectures per
        chapter
	Chapter
	Arts and Humanities
	Science and Engineering

	Chapter 1, Language Processing and Python
	2–4
	2

	Chapter 2, Accessing Text Corpora and Lexical
    Resources
	2–4
	2

	Chapter 3, Processing Raw Text
	2–4
	2

	Chapter 4, Writing Structured Programs
	2–4
	1–2

	Chapter 5, Categorizing and Tagging Words
	2–4
	2–4

	Chapter 6, Learning to Classify Text
	0–2
	2–4

	Chapter 7, Extracting Information from Text
	2
	2–4

	Chapter 8, Analyzing Sentence Structure
	2–4
	2–4

	Chapter 9, Building Feature-Based Grammars
	2–4
	1–4

	Chapter 10, Analyzing the Meaning of Sentences
	1–2
	1–4

	Chapter 11, Managing Linguistic Data
	1–2
	1–4

	Total
	18–36
	18–36





Conventions Used in This Book



The following typographical conventions are used in this
      book:
	Bold
	Indicates new terms.

	Italic
	Used within paragraphs to refer to linguistic examples, the
            names of texts, and URLs; also used for filenames and file
            extensions.

	Constant
          width
	Used for program listings, as well as within paragraphs to
            refer to program elements such as variable or function names,
            statements, and keywords; also used for program names.

	Constant width
          italic
	Shows text that should be replaced with user-supplied values
            or by values determined by context; also used for metavariables
            within program code examples.



Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.


Using Code Examples



This book is here to help you get your job done. In general, you
      may use the code in this book in your programs and documentation. You do
      not need to contact us for permission unless you’re reproducing a
      significant portion of the code. For example, writing a program that
      uses several chunks of code from this book does not require permission.
      Selling or distributing a CD-ROM of examples from O’Reilly books does
      require permission. Answering a question by citing this book and quoting
      example code does not require permission. Incorporating a significant
      amount of example code from this book into your product’s documentation
      does require permission.
We appreciate, but do not require, attribution. An attribution
      usually includes the title, author, publisher, and ISBN. For example:
      “Natural Language Processing with Python, by Steven
      Bird, Ewan Klein, and Edward Loper. Copyright 2009 Steven Bird, Ewan
      Klein, and Edward Loper, 978-0-596-51649-9.”
If you feel your use of code examples falls outside fair use or
      the permission given above, feel free to contact us at
      permissions@oreilly.com.

Safari® Books Online



Note
When you see a Safari® Books Online icon on the cover of your
        favorite technology book, that means the book is available online
        through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a
      virtual library that lets you easily search thousands of top tech books,
      cut and paste code samples, download chapters, and find quick answers
      when you need the most accurate, current information. Try it for free at
      http://my.safaribooksonline.com.

How to Contact Us



Please address comments and questions concerning this book to the
      publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
      and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9780596516499

The authors provide additional materials for each chapter via the
      NLTK website at:
	http://www.nltk.org/ 

To comment or ask technical questions about this book, send email
      to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
      Centers, and the O’Reilly Network,
      see our website at:
	http://www.oreilly.com
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Chapter 1. Language Processing and Python



It is easy to get our hands on millions of words of text. What can
    we do with it, assuming we can write some simple programs? In this
    chapter, we’ll address the following questions:
	What can we achieve by combining simple programming techniques
        with large quantities of text?

	How can we automatically extract key words and phrases that sum
        up the style and content of a text?

	What tools and techniques does the Python programming language
        provide for such work?

	What are some of the interesting challenges of natural language
        processing?



This chapter is divided into sections that skip between two quite
    different styles. In the “computing with language” sections, we will take
    on some linguistically motivated programming tasks without necessarily
    explaining how they work. In the “closer look at Python” sections we will
    systematically review key programming concepts. We’ll flag the two styles
    in the section titles, but later chapters will mix both styles without
    being so up-front about it. We hope this style of introduction gives you
    an authentic taste of what will come later, while covering a range of
    elementary concepts in linguistics and computer science. If you have basic
    familiarity with both areas, you can skip to Automatic Natural Language Understanding; we will repeat
    any important points in later chapters, and if you miss anything you can
    easily consult the online reference material at http://www.nltk.org/. If the material is completely new to
    you, this chapter will raise more questions than it answers, questions
    that are addressed in the rest of this book.
Computing with Language: Texts and Words



We’re all very familiar with text, since we read and write it
      every day. Here we will treat text as raw data for
      the programs we write, programs that manipulate and analyze it in a
      variety of interesting ways. But before we can do this, we have to get
      started with the Python interpreter.
Getting Started with Python



One of the friendly things about Python is that it allows you to
        type directly into the interactive interpreter—the program that will be running
        your Python programs. You can access the Python interpreter using a
        simple graphical interface called the Interactive DeveLopment Environment (IDLE).
        On a Mac you can find this under Applications→MacPython, and on
        Windows under All Programs→Python. Under Unix you can run Python from
        the shell by typing idle (if this
        is not installed, try typing python). The interpreter will print a blurb
        about your Python version; simply check that you are running Python
        2.4 or 2.5 (here it is 2.5.1):
Python 2.5.1 (r251:54863, Apr 15 2008, 22:57:26)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
Note
If you are unable to run the Python interpreter, you probably
          don’t have Python installed correctly. Please visit http://python.org/ for detailed instructions.

The >>> prompt
        indicates that the Python interpreter is now waiting for input. When
        copying examples from this book, don’t type the “>>>” yourself. Now, let’s begin by
        using Python as a calculator:
>>> 1 + 5 * 2 - 3
8
>>>
Once the interpreter has finished calculating the answer and
        displaying it, the prompt reappears. This means the Python interpreter
        is waiting for another instruction.
Note
Your Turn: Enter a few more
          expressions of your own. You can use asterisk (*) for multiplication and slash (/) for division, and parentheses for
          bracketing expressions. Note that division doesn’t always behave as
          you might expect—it does integer division (with rounding of
          fractions downwards) when you type 1/3 and “floating-point” (or decimal)
          division when you type 1.0/3.0.
          In order to get the expected behavior of division (standard in
          Python 3.0), you need to type: from
          __future__ import division.

The preceding examples demonstrate how you can work
        interactively with the Python interpreter, experimenting with various
        expressions in the language to see what they do. Now let’s try a
        non-sensical expression to see how the interpreter handles
        it:
>>> 1 +
  File "<stdin>", line 1
    1 +
      ^
SyntaxError: invalid syntax
>>>
This produced a syntax error.
        In Python, it doesn’t make sense to end an instruction with a plus
        sign. The Python interpreter indicates the line where the problem
        occurred (line 1 of <stdin>,
        which stands for “standard input”).
Now that we can use the Python interpreter, we’re ready to start
        working with language data.

Getting Started with NLTK



Before going further you should install NLTK, downloadable for
        free from http://www.nltk.org/. Follow the
        instructions there to download the version required for your
        platform.
Once you’ve installed NLTK, start up the Python interpreter as
        before, and install the data required for the book by typing the
        following two commands at the Python prompt, then selecting the
        book collection as shown in Figure 1-1.
>>> import nltk
>>> nltk.download()
[image: Downloading the NLTK Book Collection: Browse the available packages using nltk.download(). The Collections tab on the downloader shows how the packages are grouped into sets, and you should select the line labeled book to obtain all data required for the examples and exercises in this book. It consists of about 30 compressed files requiring about 100Mb disk space. The full collection of data (i.e., all in the downloader) is about five times this size (at the time of writing) and continues to expand.]

Figure 1-1. Downloading the NLTK Book Collection:
          Browse the available packages using nltk.download(). The Collections tab on the downloader shows how
          the packages are grouped into sets, and you should select the line
          labeled book to obtain all data
          required for the examples and exercises in this book. It consists of
          about 30 compressed files requiring about 100Mb disk space. The full
          collection of data (i.e., all in
          the downloader) is about five times this size (at the time of
          writing) and continues to expand.


Once the data is downloaded to your machine, you can load some
        of it using the Python interpreter. The first step is to type a
        special command at the Python prompt, which tells the interpreter to
        load some texts for us to explore: from
        nltk.book import *. This says “from NLTK’s book module, load all items.” The book module contains all the data you will
        need as you read this chapter. After printing a welcome message, it
        loads the text of several books (this will take a few seconds). Here’s
        the command again, together with the output that you will see. Take
        care to get spelling and punctuation right, and remember that you
        don’t type the >>>.
>>> from nltk.book import *
*** Introductory Examples for the NLTK Book ***
Loading text1, ..., text9 and sent1, ..., sent9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.
text1: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G . K . Chesterton 1908
>>>
Any time we want to find out about these texts, we just have to
        enter their names at the Python prompt:
>>> text1
<Text: Moby Dick by Herman Melville 1851>
>>> text2
<Text: Sense and Sensibility by Jane Austen 1811>
>>>
Now that we can use the Python interpreter, and have some data
        to work with, we’re ready to get started.

Searching Text



There are many ways to examine the context of a text apart from
        simply reading it. A concordance view shows us every occurrence of a
        given word, together with some context. Here we look up the word
        monstrous in Moby Dick by
        entering text1 followed by a
        period, then the term concordance, and then placing "monstrous" in parentheses:
>>> text1.concordance("monstrous")
Building index...
Displaying 11 of 11 matches:
ong the former , one was of a most monstrous size . ... This came towards us ,
ON OF THE PSALMS . " Touching that monstrous bulk of the whale or ork we have r
ll over with a heathenish array of monstrous clubs and spears . Some were thick
d as you gazed , and wondered what monstrous cannibal and savage could ever hav
that has survived the flood ; most monstrous and most mountainous ! That Himmal
they might scout at Moby Dick as a monstrous fable , or still worse and more de
th of Radney .'" CHAPTER 55 Of the monstrous Pictures of Whales . I shall ere l
ing Scenes . In connexion with the monstrous pictures of whales , I am strongly
ere to enter upon those still more monstrous stories of them which are to be fo
ght have been rummaged out of this monstrous cabinet there is no telling . But
of Whale - Bones ; for Whales of a monstrous size are oftentimes cast up dead u
>>>
Note
Your Turn: Try searching
          for other words; to save re-typing, you might be able to use
          up-arrow, Ctrl-up-arrow, or Alt-p to access the previous command and
          modify the word being searched. You can also try searches on some of
          the other texts we have included. For example, search
          Sense and Sensibility for the word
          affection, using text2.concordance("affection"). Search the
          book of Genesis to find out how long some people lived, using:
          text3.concordance("lived"). You
          could look at text4, the
          Inaugural Address Corpus, to see examples of
          English going back to 1789, and search for words like
          nation, terror,
          god to see how these words have been used
          differently over time. We’ve also included text5, the NPS Chat
          Corpus: search this for unconventional words like
          im, ur,
          lol. (Note that this corpus is
          uncensored!)

Once you’ve spent a little while examining these texts, we hope
        you have a new sense of the richness and diversity of language. In the
        next chapter you will learn how to access a broader range of text,
        including text in languages other than English.
A concordance permits us to see words in context. For example,
        we saw that monstrous occurred in contexts such
        as the ___ pictures and the ___
        size. What other words appear in a similar range of
        contexts? We can find out by appending the term similar to the name of the text in question, then inserting the
        relevant word in parentheses:
>>> text1.similar("monstrous")
Building word-context index...
subtly impalpable pitiable curious imperial perilous trustworthy
abundant untoward singular lamentable few maddens horrible loving lazy
mystifying christian exasperate puzzled
>>> text2.similar("monstrous")
Building word-context index...
very exceedingly so heartily a great good amazingly as sweet
remarkably extremely vast
>>>
Observe that we get different results for different texts.
        Austen uses this word quite differently from Melville; for her,
        monstrous has positive connotations, and
        sometimes functions as an intensifier like the word
        very.
The term common_contexts allows us to examine just the contexts that are shared
        by two or more words, such as monstrous and
        very. We have to enclose these words by square
        brackets as well as parentheses, and separate them with a
        comma:
>>> text2.common_contexts(["monstrous", "very"])
be_glad am_glad a_pretty is_pretty a_lucky
>>>
Note
Your Turn: Pick another
          pair of words and compare their usage in two different texts, using
          the similar() and common_contexts() functions.

It is one thing to automatically detect that a particular word
        occurs in a text, and to display some words that appear in the same
        context. However, we can also determine the
        location of a word in the text: how many words
        from the beginning it appears. This positional information can be
        displayed using a dispersion plot.
        Each stripe represents an instance of a word, and each row represents
        the entire text. In Figure 1-2 we see some
        striking patterns of word usage over the last 220 years (in an
        artificial text constructed by joining the texts of the Inaugural
        Address Corpus end-to-end). You can produce this plot as shown below.
        You might like to try more words (e.g., liberty,
        constitution) and different texts. Can you
        predict the dispersion of a word before you view it? As before, take
        care to get the quotes, commas, brackets, and parentheses exactly
        right.
>>> text4.dispersion_plot(["citizens", "democracy", "freedom", "duties", "America"])
>>>
[image: Lexical dispersion plot for words in U.S. Presidential Inaugural Addresses: This can be used to investigate changes in language use over time.]

Figure 1-2. Lexical dispersion plot for words in U.S. Presidential
          Inaugural Addresses: This can be used to investigate changes in
          language use over time.

Note
Important: You need to have
          Python’s NumPy and Matplotlib packages installed in order to produce
          the graphical plots used in this book. Please see http://www.nltk.org/ for installation
          instructions.

Now, just for fun, let’s try generating some random text in the
        various styles we have just seen. To do this, we type the name of the
        text followed by the term generate. (We need to include the parentheses, but there’s
        nothing that goes between them.)
>>> text3.generate()
In the beginning of his brother is a hairy man , whose top may reach
unto heaven ; and ye shall sow the land of Egypt there was no bread in
all that he was taken out of the month , upon the earth . So shall thy
wages be ? And they made their father ; and Isaac was old , and kissed
him : and Laban with his cattle in the midst of the hands of Esau thy
first born , and Phichol the chief butler unto his son Isaac , she
>>>
Note that the first time you run this command, it is slow
        because it gathers statistics about word sequences. Each time you run
        it, you will get different output text. Now try generating random text
        in the style of an inaugural address or an Internet chat room.
        Although the text is random, it reuses common words and phrases from
        the source text and gives us a sense of its style and content. (What
        is lacking in this randomly generated text?)
Note
When generate produces its output, punctuation is split off from
          the preceding word. While this is not correct formatting for English
          text, we do it to make clear that words and punctuation are
          independent of one another. You will learn more about this in Chapter 3.


Counting Vocabulary



The most obvious fact about texts that emerges from the
        preceding examples is that they differ in the vocabulary they use. In
        this section, we will see how to use the computer to count the words
        in a text in a variety of useful ways. As before, you will jump right
        in and experiment with the Python interpreter, even though you may not
        have studied Python systematically yet. Test your understanding by
        modifying the examples, and trying the exercises at the end of the
        chapter.
Let’s begin by finding out the length of a text from start to
        finish, in terms of the words and punctuation symbols that appear. We
        use the term len to get the length
        of something, which we’ll apply here to the book of Genesis:
>>> len(text3)
44764
>>>
So Genesis has 44,764 words and punctuation symbols, or
        “tokens.” A token is the technical
        name for a sequence of characters—such as hairy, his, or :)—that we want to treat as a group. When we
        count the number of tokens in a text, say, the phrase to be
        or not to be, we are counting occurrences of these
        sequences. Thus, in our example phrase there are two occurrences of
        to, two of be, and one each
        of or and not. But there are
        only four distinct vocabulary items in this phrase. How many distinct
        words does the book of Genesis contain? To work this out in Python, we
        have to pose the question slightly differently. The vocabulary of a
        text is just the set of tokens that it uses,
        since in a set, all duplicates are collapsed together. In Python we
        can obtain the vocabulary items of text3 with the command: set(text3). When you do this, many screens
        of words will fly past. Now try the following:
>>> sorted(set(text3)) [image: 1]
['!', "'", '(', ')', ',', ',)', '.', '.)', ':', ';', ';)', '?', '?)',
'A', 'Abel', 'Abelmizraim', 'Abidah', 'Abide', 'Abimael', 'Abimelech',
'Abr', 'Abrah', 'Abraham', 'Abram', 'Accad', 'Achbor', 'Adah', ...]
>>> len(set(text3)) [image: 2]
2789
>>>
By wrapping sorted() around
        the Python expression set(text3)
        [image: 1], we obtain a sorted list of
        vocabulary items, beginning with various punctuation symbols and
        continuing with words starting with A. All
        capitalized words precede lowercase words. We discover the size of the
        vocabulary indirectly, by asking for the number of items in the set,
        and again we can use len to obtain
        this number [image: 2]. Although it has 44,764
        tokens, this book has only 2,789 distinct words, or “word types.” A
        word type is the form or spelling
        of the word independently of its specific occurrences in a text—that
        is, the word considered as a unique item of vocabulary. Our count of
        2,789 items will include punctuation symbols, so we will generally
        call these unique items types
        instead of word types.
Now, let’s calculate a measure of the lexical richness of the
        text. The next example shows us that each word is used 16 times on
        average (we need to make sure Python uses floating-point
        division):
>>> from __future__ import division
>>> len(text3) / len(set(text3))
16.050197203298673
>>>
Next, let’s focus on particular words. We can count how often a
        word occurs in a text, and compute what percentage of the text is
        taken up by a specific word:
>>> text3.count("smote")
5
>>> 100 * text4.count('a') / len(text4)
1.4643016433938312
>>>
Note
Your Turn: How many times
          does the word lol appear in text5? How much is this as a percentage of
          the total number of words in this text?

You may want to repeat such calculations on several texts, but
        it is tedious to keep retyping the formula. Instead, you can come up
        with your own name for a task, like “lexical_diversity” or
        “percentage”, and associate it with a block of code. Now you only have
        to type a short name instead of one or more complete lines of Python
        code, and you can reuse it as often as you like. The block of code
        that does a task for us is called a function, and we define a short name for our
        function with the keyword def. The
        next example shows how to define two new functions, lexical_diversity() and percentage():
>>> def lexical_diversity(text): [image: 1]
...     return len(text) / len(set(text)) [image: 2]
...
>>> def percentage(count, total): [image: 3]
...     return 100 * count / total
...
Caution!
The Python interpreter changes the prompt from >>> to ... after encountering the colon at the
          end of the first line. The ...
          prompt indicates that Python expects an indented code block to appear next. It is
          up to you to do the indentation, by typing four spaces or hitting
          the Tab key. To finish the indented block, just enter a blank
          line.

In the definition of lexical_diversity() [image: 1], we specify a parameter labeled text. This parameter is a “placeholder” for
        the actual text whose lexical diversity we want to compute, and
        reoccurs in the block of code that will run when the function is used,
        in line [image: 2]. Similarly, percentage() is defined to take two
        parameters, labeled count and total [image: 3].
Once Python knows that lexical_diversity() and percentage() are the names for specific
        blocks of code, we can go ahead and use these functions:
>>> lexical_diversity(text3)
16.050197203298673
>>> lexical_diversity(text5)
7.4200461589185629
>>> percentage(4, 5)
80.0
>>> percentage(text4.count('a'), len(text4))
1.4643016433938312
>>>
To recap, we use or call a
        function such as lexical_diversity() by typing its name,
        followed by an open parenthesis, the name of the text, and then a
        close parenthesis. These parentheses will show up often; their role is
        to separate the name of a task—such as lexical_diversity()—from the data that the
        task is to be performed on—such as text3. The data value that we place in the
        parentheses when we call a function is an argument to the function.
You have already encountered several functions in this chapter,
        such as len(), set(), and sorted(). By convention, we will always add
        an empty pair of parentheses after a function name, as in len(), just to make clear that what we are
        talking about is a function rather than some other kind of Python
        expression. Functions are an important concept in programming, and we
        only mention them at the outset to give newcomers a sense of the power
        and creativity of programming. Don’t worry if you find it a bit
        confusing right now.
Later we’ll see how to use functions when tabulating data, as in
        Table 1-1. Each row of the table will involve
        the same computation but with different data, and we’ll do this
        repetitive work using a function.
Table 1-1. Lexical diversity of various genres in the Brown
          Corpus
	Genre
	Tokens
	Types
	Lexical diversity

	skill and hobbies
	82345
	11935
	6.9

	humor
	21695
	5017
	4.3

	fiction: science
	14470
	3233
	4.5

	press: reportage
	100554
	14394
	7.0

	fiction: romance
	70022
	8452
	8.3

	religion
	39399
	6373
	6.2






A Closer Look at Python: Texts as Lists of Words



You’ve seen some important elements of the Python programming
      language. Let’s take a few moments to review them
      systematically.
Lists



What is a text? At one level, it is a sequence of symbols on a
        page such as this one. At another level, it is a sequence of chapters,
        made up of a sequence of sections, where each section is a sequence of
        paragraphs, and so on. However, for our purposes, we will think of a
        text as nothing more than a sequence of words and punctuation. Here’s
        how we represent text in Python, in this case the opening sentence of
        Moby Dick:
>>> sent1 = ['Call', 'me', 'Ishmael', '.']
>>>
After the prompt we’ve given a name we made up, sent1, followed by the equals sign, and then
        some quoted words, separated with commas, and surrounded with
        brackets. This bracketed material is known as a list in Python: it is how we store a text. We
        can inspect it by typing the name [image: 1].
        We can ask for its length [image: 2]. We can even
        apply our own lexical_diversity()
        function to it [image: 3].
>>> sent1 [image: 1]
['Call', 'me', 'Ishmael', '.']
>>> len(sent1) [image: 2]
4
>>> lexical_diversity(sent1) [image: 3]
1.0
>>>
Some more lists have been defined for you, one for the opening
        sentence of each of our texts, sent2 … sent9. We inspect two of them here; you can
        see the rest for yourself using the Python interpreter (if you get an
        error saying that sent2 is not
        defined, you need to first type from
        nltk.book import *).
>>> sent2
['The', 'family', 'of', 'Dashwood', 'had', 'long',
'been', 'settled', 'in', 'Sussex', '.']
>>> sent3
['In', 'the', 'beginning', 'God', 'created', 'the',
'heaven', 'and', 'the', 'earth', '.']
>>>
Note
Your Turn: Make up a few
          sentences of your own, by typing a name, equals sign, and a list of
          words, like this: ex1 = ['Monty', 'Python',
          'and', 'the', 'Holy', 'Grail']. Repeat some of the other
          Python operations we saw earlier in Computing with Language: Texts and Words, e.g.,
          sorted(ex1), len(set(ex1)), ex1.count('the').

A pleasant surprise is that we can use Python’s addition
        operator on lists. Adding two lists [image: 1] creates a new list with everything
        from the first list, followed by everything from the second
        list:
>>> ['Monty', 'Python'] + ['and', 'the', 'Holy', 'Grail'] [image: 1]
['Monty', 'Python', 'and', 'the', 'Holy', 'Grail']
Note
This special use of the addition operation is called concatenation; it combines the lists
          together into a single list. We can concatenate sentences to build
          up a text.

We don’t have to literally type the lists either; we can use
        short names that refer to pre-defined lists.
>>> sent4 + sent1
['Fellow', '-', 'Citizens', 'of', 'the', 'Senate', 'and', 'of', 'the',
'House', 'of', 'Representatives', ':', 'Call', 'me', 'Ishmael', '.']
>>>
What if we want to add a single item to a list? This is known as
        appending. When we append() to a list, the list itself is updated as a result of
        the operation.
>>> sent1.append("Some")
>>> sent1
['Call', 'me', 'Ishmael', '.', 'Some']
>>>

Indexing Lists



As we have seen, a text in Python is a list of words,
        represented using a combination of brackets and quotes. Just as with
        an ordinary page of text, we can count up the total number of words in
        text1 with len(text1), and count the occurrences in a
        text of a particular word—say, heaven—using
        text1.count('heaven').
With some patience, we can pick out the 1st, 173rd, or even
        14,278th word in a printed text. Analogously, we can identify the
        elements of a Python list by their order of occurrence in the list.
        The number that represents this position is the item’s index. We instruct Python to show us the item
        that occurs at an index such as 173
        in a text by writing the name of the text followed by the index inside
        square brackets:
>>> text4[173]
'awaken'
>>>
We can do the converse; given a word, find the index of when it
        first occurs:
>>> text4.index('awaken')
173
>>>
Indexes are a common way to access the words of a text, or, more
        generally, the elements of any list. Python permits us to access
        sublists as well, extracting manageable pieces of language from large
        texts, a technique known as slicing.
>>> text5[16715:16735]
['U86', 'thats', 'why', 'something', 'like', 'gamefly', 'is', 'so', 'good',
'because', 'you', 'can', 'actually', 'play', 'a', 'full', 'game', 'without',
'buying', 'it']
>>> text6[1600:1625]
['We', "'", 're', 'an', 'anarcho', '-', 'syndicalist', 'commune', '.', 'We',
'take', 'it', 'in', 'turns', 'to', 'act', 'as', 'a', 'sort', 'of', 'executive',
'officer', 'for', 'the', 'week']
>>>
Indexes have some subtleties, and we’ll explore these with the
        help of an artificial sentence:
>>> sent = ['word1', 'word2', 'word3', 'word4', 'word5',
...         'word6', 'word7', 'word8', 'word9', 'word10']
>>> sent[0]
'word1'
>>> sent[9]
'word10'
>>>
Notice that our indexes start from zero: sent element zero, written sent[0], is the first word, 'word1', whereas sent element 9 is 'word10'. The reason is simple: the moment
        Python accesses the content of a list from the computer’s memory, it
        is already at the first element; we have to tell it how many elements
        forward to go. Thus, zero steps forward leaves it at the first
        element.
Note
This practice of counting from zero is initially confusing,
          but typical of modern programming languages. You’ll quickly get the
          hang of it if you’ve mastered the system of counting centuries where
          19XY is a year in the 20th century, or if you live in a country
          where the floors of a building are numbered from 1, and so walking
          up n-1 flights of stairs takes you to level
          n.

Now, if we accidentally use an index that is too large, we get
        an error:
>>> sent[10]
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
IndexError: list index out of range
>>>
This time it is not a syntax error, because the program fragment
        is syntactically correct. Instead, it is a runtime error, and it produces a Traceback message that shows the context of
        the error, followed by the name of the error, IndexError, and a brief explanation.
Let’s take a closer look at slicing, using our artificial
        sentence again. Here we verify that the slice 5:8 includes sent elements at indexes 5, 6, and
        7:
>>> sent[5:8]
['word6', 'word7', 'word8']
>>> sent[5]
'word6'
>>> sent[6]
'word7'
>>> sent[7]
'word8'
>>>
By convention, m:n means
        elements m…n-1. As the next
        example shows, we can omit the first number if the slice begins at the
        start of the list [image: 1], and we can omit the
        second number if the slice goes to the end [image: 2]:
>>> sent[:3] [image: 1]
['word1', 'word2', 'word3']
>>> text2[141525:] [image: 2]
['among', 'the', 'merits', 'and', 'the', 'happiness', 'of', 'Elinor', 'and', 'Marianne',
',', 'let', 'it', 'not', 'be', 'ranked', 'as', 'the', 'least', 'considerable', ',',
'that', 'though', 'sisters', ',', 'and', 'living', 'almost', 'within', 'sight', 'of',
'each', 'other', ',', 'they', 'could', 'live', 'without', 'disagreement', 'between',
'themselves', ',', 'or', 'producing', 'coolness', 'between', 'their', 'husbands', '.',
'THE', 'END']
>>>
We can modify an element of a list by assigning to one of its
        index values. In the next example, we put sent[0] on the left of the equals sign [image: 1]. We can also replace an entire slice
        with new material [image: 2]. A
        consequence of this last change is that the list only has four
        elements, and accessing a later value generates an error [image: 3].
>>> sent[0] = 'First' [image: 1]
>>> sent[9] = 'Last'
>>> len(sent)
10
>>> sent[1:9] = ['Second', 'Third'] [image: 2]
>>> sent
['First', 'Second', 'Third', 'Last']
>>> sent[9] [image: 3]
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
IndexError: list index out of range
>>>
Note
Your Turn: Take a few
          minutes to define a sentence of your own and modify individual words
          and groups of words (slices) using the same methods used earlier.
          Check your understanding by trying the exercises on lists at the end
          of this chapter.


Variables



From the start of Computing with Language: Texts and Words, you have had
        access to texts called text1,
        text2, and so on. It saved a lot of
        typing to be able to refer to a 250,000-word book with a short name
        like this! In general, we can make up names for anything we care to
        calculate. We did this ourselves in the previous sections, e.g.,
        defining a variable sent1, as follows:
>>> sent1 = ['Call', 'me', 'Ishmael', '.']
>>>
Such lines have the form: variable =
        expression. Python will evaluate the expression, and save
        its result to the variable. This process is called assignment. It does not generate any output;
        you have to type the variable on a line of its own to inspect its
        contents. The equals sign is slightly misleading, since information is
        moving from the right side to the left. It might help to think of it
        as a left-arrow. The name of the variable can be anything you like,
        e.g., my_sent, sentence, xyzzy. It must start with a letter, and can
        include numbers and underscores. Here are some examples of variables
        and assignments:
>>> my_sent = ['Bravely', 'bold', 'Sir', 'Robin', ',', 'rode',
... 'forth', 'from', 'Camelot', '.']
>>> noun_phrase = my_sent[1:4]
>>> noun_phrase
['bold', 'Sir', 'Robin']
>>> wOrDs = sorted(noun_phrase)
>>> wOrDs
['Robin', 'Sir', 'bold']
>>>
Remember that capitalized words appear before lowercase words in
        sorted lists.
Note
Notice in the previous example that we split the definition of
          my_sent over two lines. Python
          expressions can be split across multiple lines, so long as this
          happens within any kind of brackets. Python uses the ... prompt to indicate that more input is
          expected. It doesn’t matter how much indentation is used in these
          continuation lines, but some indentation usually makes them easier
          to read.

It is good to choose meaningful variable names to remind you—and
        to help anyone else who reads your Python code—what your code is meant
        to do. Python does not try to make sense of the names; it blindly
        follows your instructions, and does not object if you do something
        confusing, such as one = 'two' or
        two = 3. The only restriction is
        that a variable name cannot be any of Python’s reserved words, such as
        def, if, not,
        and import. If you use a reserved
        word, Python will produce a syntax error:
>>> not = 'Camelot'
File "<stdin>", line 1
    not = 'Camelot'
        ^
SyntaxError: invalid syntax
>>>
We will often use variables to hold intermediate steps of a
        computation, especially when this makes the code easier to follow.
        Thus len(set(text1)) could also be
        written:
>>> vocab = set(text1)
>>> vocab_size = len(vocab)
>>> vocab_size
19317
>>>
Caution!
Take care with your choice of names (or identifiers) for Python variables. First,
          you should start the name with a letter, optionally followed by
          digits (0 to 9) or letters. Thus, abc23 is fine, but 23abc will cause a syntax error. Names are
          case-sensitive, which means that myVar and myvar are distinct variables. Variable
          names cannot contain whitespace, but you can separate words using an
          underscore, e.g., my_var. Be
          careful not to insert a hyphen instead of an underscore: my-var is wrong, since Python interprets
          the - as a minus sign.


Strings



Some of the methods we used to access the elements of a list
        also work with individual words, or strings. For example, we can assign a string
        to a variable [image: 1], index a string
        [image: 2], and slice a string [image: 3].
>>> name = 'Monty' [image: 1]
>>> name[0] [image: 2]
'M'
>>> name[:4] [image: 3]
'Mont'
>>>
We can also perform multiplication and addition with
        strings:
>>> name * 2
'MontyMonty'
>>> name + '!'
'Monty!'
>>>
We can join the words of a list to make a single string, or
        split a string into a list, as follows:
>>> ' '.join(['Monty', 'Python'])
'Monty Python'
>>> 'Monty Python'.split()
['Monty', 'Python']
>>>
We will come back to the topic of strings in Chapter 3. For the
        time being, we have two important building blocks—lists and
        strings—and are ready to get back to some language analysis.


Computing with Language: Simple Statistics



Let’s return to our exploration of the ways we can bring our
      computational resources to bear on large quantities of text. We began
      this discussion in Computing with Language: Texts and Words, and saw how to
      search for words in context, how to compile the vocabulary of a text,
      how to generate random text in the same style, and so on.
In this section, we pick up the question of what makes a text
      distinct, and use automatic methods to find characteristic words and
      expressions of a text. As in Computing with Language: Texts and Words, you can try
      new features of the Python language by copying them into the
      interpreter, and you’ll learn about these features systematically in the
      following section.
Before continuing further, you might like to check your
      understanding of the last section by predicting the output of the
      following code. You can use the interpreter to check whether you got it
      right. If you’re not sure how to do this task, it would be a good idea
      to review the previous section before continuing further.
>>> saying = ['After', 'all', 'is', 'said', 'and', 'done',
...           'more', 'is', 'said', 'than', 'done']
>>> tokens = set(saying)
>>> tokens = sorted(tokens)
>>> tokens[-2:]
what output do you expect here?
>>>
Frequency Distributions



How can we automatically identify the words of a text that are
        most informative about the topic and genre of the text? Imagine how
        you might go about finding the 50 most frequent words of a book. One
        method would be to keep a tally for each vocabulary item, like that
        shown in Figure 1-3. The tally would need thousands
        of rows, and it would be an exceedingly laborious process—so laborious
        that we would rather assign the task to a machine.
[image: Counting words appearing in a text (a frequency distribution).]

Figure 1-3. Counting words appearing in a text (a frequency
          distribution).


The table in Figure 1-3 is known as a
        frequency distribution , and it tells us the frequency of each vocabulary item
        in the text. (In general, it could count any kind of observable
        event.) It is a “distribution” since it tells us how the total number
        of word tokens in the text are distributed across the vocabulary
        items. Since we often need frequency distributions in language
        processing, NLTK provides built-in support for them. Let’s use a
        FreqDist to find the 50 most frequent words of Moby
        Dick. Try to work out what is going on here, then read the
        explanation that follows.
>>> fdist1 = FreqDist(text1) [image: 1]
>>> fdist1 [image: 2]
<FreqDist with 260819 outcomes>
>>> vocabulary1 = fdist1.keys() [image: 3]
>>> vocabulary1[:50] [image: 4]
[',', 'the', '.', 'of', 'and', 'a', 'to', ';', 'in', 'that', "'", '-',
'his', 'it', 'I', 's', 'is', 'he', 'with', 'was', 'as', '"', 'all', 'for',
'this', '!', 'at', 'by', 'but', 'not', '--', 'him', 'from', 'be', 'on',
'so', 'whale', 'one', 'you', 'had', 'have', 'there', 'But', 'or', 'were',
'now', 'which', '?', 'me', 'like']
>>> fdist1['whale']
906
>>>
When we first invoke FreqDist, we pass the name of the text as an argument [image: 1]. We can inspect the total number of
        words (“outcomes”) that have been counted up [image: 2]—260,819 in the case of
        Moby Dick. The expression keys() gives us a list of all the distinct types in the text
        [image: 3], and we can look at the first 50
        of these by slicing the list [image: 4].
Note
Your Turn: Try the
          preceding frequency distribution example for yourself, for text2. Be careful to use the correct
          parentheses and uppercase letters. If you get an error message
          NameError: name 'FreqDist' is not
          defined, you need to start your work with from nltk.book import *.

Do any words produced in the last example help us grasp the
        topic or genre of this text? Only one word,
        whale, is slightly informative! It occurs over
        900 times. The rest of the words tell us nothing about the text;
        they’re just English “plumbing.” What proportion of the text is taken
        up with such words? We can generate a cumulative frequency plot for
        these words, using fdist1.plot(50,
        cumulative=True), to produce the graph in Figure 1-4. These 50 words account for nearly half
        the book!
[image: Cumulative frequency plot for the 50 most frequently used words in Moby Dick, which account for nearly half of the tokens.]

Figure 1-4. Cumulative frequency plot for the 50 most frequently used
          words in Moby Dick, which account for
          nearly half of the tokens.


If the frequent words don’t help us, how about the words that
        occur once only, the so-called hapaxes? View them by typing fdist1.hapaxes(). This list contains
        lexicographer,
        cetological, contraband,
        expostulations, and about 9,000 others. It seems
        that there are too many rare words, and without seeing the context we
        probably can’t guess what half of the hapaxes mean in any case! Since
        neither frequent nor infrequent words help, we need to try something
        else.

Fine-Grained Selection of Words



Next, let’s look at the long words of a
        text; perhaps these will be more characteristic and informative. For
        this we adapt some notation from set theory. We would like to find the
        words from the vocabulary of the text that are more than 15 characters
        long. Let’s call this property P, so that
        P(w) is true if and only if
        w is more than 15 characters long. Now we can
        express the words of interest using mathematical set notation as shown
        in a. This means “the set
        of all w such that w is an
        element of V (the vocabulary) and
        w has property P.”
Example 1-1. 
	{w | w ∈
              V &
              P(w)}

	[w for w in V if
              p(w)]





The corresponding Python expression is given in b. (Note that it produces a
        list, not a set, which means that duplicates are possible.) Observe
        how similar the two notations are. Let’s go one more step and write
        executable Python code:
>>> V = set(text1)
>>> long_words = [w for w in V if len(w) > 15]
>>> sorted(long_words)
['CIRCUMNAVIGATION', 'Physiognomically', 'apprehensiveness', 'cannibalistically',
'characteristically', 'circumnavigating', 'circumnavigation', 'circumnavigations',
'comprehensiveness', 'hermaphroditical', 'indiscriminately', 'indispensableness',
'irresistibleness', 'physiognomically', 'preternaturalness', 'responsibilities',
'simultaneousness', 'subterraneousness', 'supernaturalness', 'superstitiousness',
'uncomfortableness', 'uncompromisedness', 'undiscriminating', 'uninterpenetratingly']
>>>
For each word w in the
        vocabulary V, we check whether
        len(w) is greater than 15; all
        other words will be ignored. We will discuss this syntax more
        carefully later.
Note
Your Turn: Try out the
          previous statements in the Python interpreter, and experiment with
          changing the text and changing the length condition. Does it make an
          difference to your results if you change the variable names, e.g.,
          using [word for word in vocab if
          ...]?

Let’s return to our task of finding words that characterize a
        text. Notice that the long words in text4 reflect its national
        focus—constitutionally,
        transcontinental—whereas those in text5 reflect its informal content:
        boooooooooooglyyyyyy and
        yuuuuuuuuuuuummmmmmmmmmmm. Have we succeeded in
        automatically extracting words that typify a text? Well, these very
        long words are often hapaxes (i.e., unique) and perhaps it would be
        better to find frequently occurring long words.
        This seems promising since it eliminates frequent short words (e.g.,
        the) and infrequent long words (e.g.,
        antiphilosophists). Here are all words from the
        chat corpus that are longer than seven characters, that occur more
        than seven times:
>>> fdist5 = FreqDist(text5)
>>> sorted([w for w in set(text5) if len(w) > 7 and fdist5[w] > 7])
['#14-19teens', '#talkcity_adults', '((((((((((', '........', 'Question',
'actually', 'anything', 'computer', 'cute.-ass', 'everyone', 'football',
'innocent', 'listening', 'remember', 'seriously', 'something', 'together',
'tomorrow', 'watching']
>>>
Notice how we have used two conditions: len(w) > 7 ensures that the words are
        longer than seven letters, and fdist5[w] >
        7 ensures that these words occur more than seven times. At
        last we have managed to automatically identify the frequently
        occurring content-bearing words of the text. It is a modest but
        important milestone: a tiny piece of code, processing tens of
        thousands of words, produces some informative output.

Collocations and Bigrams



A collocation is a sequence
        of words that occur together unusually often. Thus red
        wine is a collocation, whereas the
        wine is not. A characteristic of collocations is that they
        are resistant to substitution with words that have similar senses; for
        example, maroon wine sounds very odd.
To get a handle on collocations, we start off by extracting from
        a text a list of word pairs, also known as bigrams. This is easily accomplished with the
        function bigrams():
>>> bigrams(['more', 'is', 'said', 'than', 'done'])
[('more', 'is'), ('is', 'said'), ('said', 'than'), ('than', 'done')]
>>>
Here we see that the pair of words
        than-done is a bigram, and we write it in Python
        as ('than', 'done'). Now,
        collocations are essentially just frequent bigrams, except that we
        want to pay more attention to the cases that involve rare words. In
        particular, we want to find bigrams that occur more often than we
        would expect based on the frequency of individual words. The collocations() function does this for us (we will see how it works
        later):
>>> text4.collocations()
Building collocations list
United States; fellow citizens; years ago; Federal Government; General
Government; American people; Vice President; Almighty God; Fellow
citizens; Chief Magistrate; Chief Justice; God bless; Indian tribes;
public debt; foreign nations; political parties; State governments;
National Government; United Nations; public money
>>> text8.collocations()
Building collocations list
medium build; social drinker; quiet nights; long term; age open;
financially secure; fun times; similar interests; Age open; poss
rship; single mum; permanent relationship; slim build; seeks lady;
Late 30s; Photo pls; Vibrant personality; European background; ASIAN
LADY; country drives
>>>
The collocations that emerge are very specific to the genre of
        the texts. In order to find red wine as a
        collocation, we would need to process a much larger body of
        text.

Counting Other Things



Counting words is useful, but we can count other things too. For
        example, we can look at the distribution of word lengths in a text, by
        creating a FreqDist out of a long list of numbers, where each number is the
        length of the corresponding word in the text:
>>> [len(w) for w in text1] [image: 1]
[1, 4, 4, 2, 6, 8, 4, 1, 9, 1, 1, 8, 2, 1, 4, 11, 5, 2, 1, 7, 6, 1, 3, 4, 5, 2, ...]
>>> fdist = FreqDist([len(w) for w in text1])  [image: 2]
>>> fdist  [image: 3]
<FreqDist with 260819 outcomes>
>>> fdist.keys()
[3, 1, 4, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20]
>>>
We start by deriving a list of the lengths of words in text1 [image: 1],
        and the FreqDist then counts the number of times each of these occurs
        [image: 2]. The result [image: 3] is a distribution containing a
        quarter of a million items, each of which is a number corresponding to
        a word token in the text. But there are only 20 distinct items being
        counted, the numbers 1 through 20, because there are only 20 different
        word lengths. I.e., there are words consisting of just 1 character, 2
        characters, ..., 20 characters, but none with 21 or more characters.
        One might wonder how frequent the different lengths of words are
        (e.g., how many words of length 4 appear in the text, are there more
        words of length 5 than length 4, etc.). We can do this as
        follows:
>>> fdist.items()
[(3, 50223), (1, 47933), (4, 42345), (2, 38513), (5, 26597), (6, 17111), (7, 14399),
(8, 9966), (9, 6428), (10, 3528), (11, 1873), (12, 1053), (13, 567), (14, 177),
(15, 70), (16, 22), (17, 12), (18, 1), (20, 1)]
>>> fdist.max()
3
>>> fdist[3]
50223
>>> fdist.freq(3)
0.19255882431878046
>>>
From this we see that the most frequent word length is 3, and
        that words of length 3 account for roughly 50,000 (or 20%) of the
        words making up the book. Although we will not pursue it here, further
        analysis of word length might help us understand differences between authors, genres, or
        languages. Table 1-2 summarizes the functions defined in frequency
        distributions.
Table 1-2. Functions defined for NLTK’s frequency distributions
	Example
	Description

	fdist =
                FreqDist(samples)
	Create a frequency distribution containing the
                given samples

	fdist.inc(sample)
	Increment the count for this
                sample

	fdist['monstrous']
	Count of the number of times a given sample
                occurred

	fdist.freq('monstrous')
	Frequency of a given sample

	fdist.N()
	Total number of samples

	fdist.keys()
	The samples sorted in order of decreasing
                frequency

	for sample in
                fdist:
	Iterate over the samples, in order of decreasing
                frequency

	fdist.max()
	Sample with the greatest count

	fdist.tabulate()
	Tabulate the frequency
                distribution

	fdist.plot()
	Graphical plot of the frequency
                distribution

	fdist.plot(cumulative=True)
	Cumulative plot of the frequency
                distribution

	fdist1 <
                fdist2
	Test if samples in fdist1 occur less frequently than in
                fdist2




Our discussion of frequency distributions has introduced some
        important Python concepts, and we will look at them systematically in
        Back to Python: Making Decisions and Taking Control.


Back to Python: Making Decisions and Taking Control



So far, our little programs have had some interesting qualities:
      the ability to work with language, and the potential to save human
      effort through automation. A key feature of programming is the ability
      of machines to make decisions on our behalf, executing instructions when
      certain conditions are met, or repeatedly looping through text data
      until some condition is satisfied. This feature is known as control, and is the focus of this
      section.
Conditionals



Python supports a wide range of operators, such as < and >=, for testing the relationship between
        values. The full set of these relational
        operators are shown in Table 1-3.
Table 1-3. Numerical comparison operators
	Operator
	Relationship

	<
	Less than

	<=
	Less than or equal to

	==
	Equal to (note this is two “=”signs, not one)

	!=
	Not equal to

	>
	Greater than

	>=
	Greater than or equal to




We can use these to select different words from a sentence of
        news text. Here are some examples—notice only the operator is changed
        from one line to the next. They all use sent7, the first sentence from text7 (Wall Street
        Journal). As before, if you get an error saying that
        sent7 is undefined, you need to
        first type: from nltk.book import
        *.
>>> sent7
['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', 'will', 'join', 'the',
'board', 'as', 'a', 'nonexecutive', 'director', 'Nov.', '29', '.']
>>> [w for w in sent7 if len(w) < 4]
[',', '61', 'old', ',', 'the', 'as', 'a', '29', '.']
>>> [w for w in sent7 if len(w) <= 4]
[',', '61', 'old', ',', 'will', 'join', 'the', 'as', 'a', 'Nov.', '29', '.']
>>> [w for w in sent7 if len(w) == 4]
['will', 'join', 'Nov.']
>>> [w for w in sent7 if len(w) != 4]
['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', 'the', 'board',
'as', 'a', 'nonexecutive', 'director', '29', '.']
>>>
There is a common pattern to all of these examples: [w for w in text if
        condition], where
        condition is a Python
        “test” that yields either true or false. In the cases shown in the
        previous code example, the condition is always a numerical comparison.
        However, we can also test various properties of words, using the
        functions listed in Table 1-4.
Table 1-4. Some word comparison operators
	Function
	Meaning

	s.startswith(t)
	Test if s
                starts with t

	s.endswith(t)
	Test if s ends
                with t

	t in
                s
	Test if t is
                contained inside s

	s.islower()
	Test if all cased characters in s are lowercase

	s.isupper()
	Test if all cased characters in s are uppercase

	s.isalpha()
	Test if all characters in s are alphabetic

	s.isalnum()
	Test if all characters in s are alphanumeric

	s.isdigit()
	Test if all characters in s are digits

	s.istitle()
	Test if s is
                titlecased (all words in s
                have initial capitals)




Here are some examples of these operators being used to select
        words from our texts: words ending with
        -ableness; words containing
        gnt; words having an initial capital; and words
        consisting entirely of digits.
>>> sorted([w for w in set(text1) if w.endswith('ableness')])
['comfortableness', 'honourableness', 'immutableness', 'indispensableness', ...]
>>> sorted([term for term in set(text4) if 'gnt' in term])
['Sovereignty', 'sovereignties', 'sovereignty']
>>> sorted([item for item in set(text6) if item.istitle()])
['A', 'Aaaaaaaaah', 'Aaaaaaaah', 'Aaaaaah', 'Aaaah', 'Aaaaugh', 'Aaagh', ...]
>>> sorted([item for item in set(sent7) if item.isdigit()])
['29', '61']
>>>
We can also create more complex conditions. If
        c is a condition, then not c is also a
        condition. If we have two conditions
        c1 and
        c2, then we can combine
        them to form a new condition using conjunction and disjunction:
        c1 and
        c2,
        c1 or
        c2.
Note
Your Turn: Run the
          following examples and try to explain what is going on in each one.
          Next, try to make up some conditions of your own.
>>> sorted([w for w in set(text7) if '-' in w and 'index' in w])
>>> sorted([wd for wd in set(text3) if wd.istitle() and len(wd) > 10])
>>> sorted([w for w in set(sent7) if not w.islower()])
>>> sorted([t for t in set(text2) if 'cie' in t or 'cei' in t])


Operating on Every Element



In Computing with Language: Simple Statistics, we saw
        some examples of counting items other than words. Let’s take a closer
        look at the notation we used:
>>> [len(w) for w in text1]
[1, 4, 4, 2, 6, 8, 4, 1, 9, 1, 1, 8, 2, 1, 4, 11, 5, 2, 1, 7, 6, 1, 3, 4, 5, 2, ...]
>>> [w.upper() for w in text1]
['[', 'MOBY', 'DICK', 'BY', 'HERMAN', 'MELVILLE', '1851', ']', 'ETYMOLOGY', '.', ...]
>>>
These expressions have the form [f(w)
        for ...] or [w.f() for
        ...], where f is a
        function that operates on a word to compute its length, or to convert
        it to uppercase. For now, you don’t need to understand the difference
        between the notations f(w) and
        w.f(). Instead, simply learn this
        Python idiom which performs the same operation on every element of a
        list. In the preceding examples, it goes through each word in text1, assigning each one in turn to the
        variable w and performing the
        specified operation on the variable.
Note
The notation just described is called a “list comprehension.”
          This is our first example of a Python idiom, a fixed notation that
          we use habitually without bothering to analyze each time. Mastering
          such idioms is an important part of becoming a fluent Python
          programmer.

Let’s return to the question of vocabulary size, and apply the
        same idiom here:
>>> len(text1)
260819
>>> len(set(text1))
19317
>>> len(set([word.lower() for word in text1]))
17231
>>>
Now that we are not double-counting words like
        This and this, which differ
        only in capitalization, we’ve wiped 2,000 off the vocabulary count! We
        can go a step further and eliminate numbers and punctuation from the
        vocabulary count by filtering out any non-alphabetic items:
>>> len(set([word.lower() for word in text1 if word.isalpha()]))
16948
>>>
This example is slightly complicated: it lowercases all the
        purely alphabetic items. Perhaps it would have been simpler just to
        count the lowercase-only items, but this gives the wrong answer
        (why?).
Don’t worry if you don’t feel confident with list comprehensions
        yet, since you’ll see many more examples along with explanations in
        the following chapters.

Nested Code Blocks



Most programming languages permit us to execute a block of code
        when a conditional expression, or
        if statement, is satisfied. We
        already saw examples of conditional tests in code like [w for w in sent7 if len(w) < 4]. In the
        following program, we have created a variable called word containing the string value 'cat'. The if statement checks whether the test
        len(word) < 5 is true. It is, so
        the body of the if statement is
        invoked and the print statement is
        executed, displaying a message to the user. Remember to indent the
        print statement by typing four
        spaces.
>>> word = 'cat'
>>> if len(word) < 5:
...     print 'word length is less than 5'
...   [image: 1]
word length is less than 5
>>>
When we use the Python interpreter we have to add an extra blank
        line [image: 1] in order for it to detect that
        the nested block is complete.
If we change the conditional test to len(word) >= 5, to check that the length
        of word is greater than or equal to
        5, then the test will no longer be
        true. This time, the body of the if
        statement will not be executed, and no message is shown to the
        user:
>>> if len(word) >= 5:
...   print 'word length is greater than or equal to 5'
...
>>>
An if statement is known as a
        control structure because it
        controls whether the code in the indented block will be run. Another
        control structure is the for loop.
        Try the following, and remember to include the colon and the four
        spaces:
>>> for word in ['Call', 'me', 'Ishmael', '.']:
...     print word
...
Call
me
Ishmael
.
>>>
This is called a loop because Python executes the code in
        circular fashion. It starts by performing the assignment word = 'Call', effectively using the
        word variable to name the first
        item of the list. Then, it displays the value of word to the user. Next, it goes back to the
        for statement, and performs the
        assignment word = 'me' before
        displaying this new value to the user, and so on. It continues in this
        fashion until every item of the list has been processed.

Looping with Conditions



Now we can combine the if and
        for statements. We will loop over
        every item of the list, and print the item only if it ends with the
        letter l. We’ll pick another name for the
        variable to demonstrate that Python doesn’t try to make sense of
        variable names.
>>> sent1 = ['Call', 'me', 'Ishmael', '.']
>>> for xyzzy in sent1:
...     if xyzzy.endswith('l'):
...         print xyzzy
...
Call
Ishmael
>>>
You will notice that if and
        for statements have a colon at the
        end of the line, before the indentation begins. In fact, all Python
        control structures end with a colon. The colon indicates that the
        current statement relates to the indented block that
        follows.
We can also specify an action to be taken if the condition of
        the if statement is not met. Here
        we see the elif (else if)
        statement, and the else statement.
        Notice that these also have colons before the indented code.
>>> for token in sent1:
...     if token.islower():
...         print token, 'is a lowercase word'
...     elif token.istitle():
...         print token, 'is a titlecase word'
...     else:
...         print token, 'is punctuation'
...
Call is a titlecase word
me is a lowercase word
Ishmael is a titlecase word
. is punctuation
>>>
As you can see, even with this small amount of Python knowledge,
        you can start to build multiline Python programs. It’s important to
        develop such programs in pieces, testing that each piece does what you
        expect before combining them into a program. This is why the Python
        interactive interpreter is so invaluable, and why you should get
        comfortable using it.
Finally, let’s combine the idioms we’ve been exploring. First,
        we create a list of cie and
        cei words, then we loop over each item and print
        it. Notice the comma at the end of the print statement, which tells
        Python to produce its output on a single line.
>>> tricky = sorted([w for w in set(text2) if 'cie' in w or 'cei' in w])
>>> for word in tricky:
...     print word,
ancient ceiling conceit conceited conceive conscience
conscientious conscientiously deceitful deceive ...
>>>


Automatic Natural Language Understanding



We have been exploring language bottom-up, with the help of texts
      and the Python programming language. However, we’re also interested in
      exploiting our knowledge of language and computation by building useful
      language technologies. We’ll take the opportunity now to step back from
      the nitty-gritty of code in order to paint a bigger picture of natural
      language processing.
At a purely practical level, we all need help to navigate the
      universe of information locked up in text on the Web. Search engines
      have been crucial to the growth and popularity of the Web, but have some
      shortcomings. It takes skill, knowledge, and some luck, to extract
      answers to such questions as: What tourist sites can I visit
      between Philadelphia and Pittsburgh on a limited budget?
      What do experts say about digital SLR cameras?
      What predictions about the steel market were made by credible
      commentators in the past week? Getting a computer to answer
      them automatically involves a range of language processing tasks,
      including information extraction, inference, and summarization, and
      would need to be carried out on a scale and with a level of robustness
      that is still beyond our current capabilities.
On a more philosophical level, a long-standing challenge within
      artificial intelligence has been to build intelligent machines, and a
      major part of intelligent behavior is understanding language. For many
      years this goal has been seen as too difficult. However, as NLP
      technologies become more mature, and robust methods for analyzing
      unrestricted text become more widespread, the prospect of natural
      language understanding has re-emerged as a plausible goal.
In this section we describe some language understanding
      technologies, to give you a sense of the interesting challenges that are
      waiting for you.
Word Sense Disambiguation



In word sense disambiguation
        we want to work out which sense of a word was intended in a given
        context. Consider the ambiguous words serve and
        dish:
Example 1-2. 
	serve: help with food or drink; hold
              an office; put ball into play

	dish: plate; course of a meal;
              communications device





In a sentence containing the phrase: he served the
        dish, you can detect that both serve
        and dish are being used with their food meanings.
        It’s unlikely that the topic of discussion shifted from sports to
        crockery in the space of three words. This would force you to invent
        bizarre images, like a tennis pro taking out his frustrations on a
        china tea-set laid out beside the court. In other words, we
        automatically disambiguate words using context, exploiting the simple
        fact that nearby words have closely related meanings. As another
        example of this contextual effect, consider the word
        by, which has several meanings, for example,
        the book by Chesterton (agentive—Chesterton was
        the author of the book); the cup by the stove
        (locative—the stove is where the cup is); and submit by
        Friday (temporal—Friday is the time of the submitting).
        Observe in Example 1-3 that the meaning of the
        italicized word helps us interpret the meaning of
        by.
Example 1-3. 
	The lost children were found by the
              searchers (agentive)

	The lost children were found by the
              mountain (locative)

	The lost children were found by the
              afternoon (temporal)






Pronoun Resolution



A deeper kind of language understanding is to work out “who did
        what to whom,” i.e., to detect the subjects and objects of verbs. You
        learned to do this in elementary school, but it’s harder than you
        might think. In the sentence the thieves stole the
        paintings, it is easy to tell who performed the stealing
        action. Consider three possible following sentences in Example 1-4, and try to determine what was sold, caught,
        and found (one case is ambiguous).
Example 1-4. 
	The thieves stole the paintings. They were subsequently
              sold.

	The thieves stole the paintings. They were subsequently
              caught.

	The thieves stole the paintings. They were subsequently
              found.





Answering this question involves finding the antecedent of the pronoun
        they, either thieves or paintings. Computational
        techniques for tackling this problem include anaphora resolution—identifying what a
        pronoun or noun phrase refers to—and semantic role
        labeling—identifying how a noun phrase relates to the verb
        (as agent, patient, instrument, and so on).

Generating Language Output



If we can automatically solve such problems of language
        understanding, we will be able to move on to tasks that involve
        generating language output, such as question
        answering and
        machine translation. In the first
        case, a machine should be able to answer a user’s questions relating
        to collection of texts:
Example 1-5. 
	Text: ... The thieves stole the
              paintings. They were subsequently sold. ...

	Human: Who or what was sold?

	Machine: The paintings.





The machine’s answer demonstrates that it has correctly worked
        out that they refers to paintings and not to
        thieves. In the second case, the machine should be able to translate
        the text into another language, accurately conveying the meaning of
        the original text. In translating the example text into French, we are
        forced to choose the gender of the pronoun in the second sentence:
        ils (masculine) if the thieves are sold, and
        elles (feminine) if the paintings are sold.
        Correct translation actually depends on correct understanding of the
        pronoun.
Example 1-6. 
	The thieves stole the paintings. They were subsequently
              found.

	Les voleurs ont volé les peintures. Ils ont été trouvés
              plus tard. (the thieves)

	Les voleurs ont volé les peintures. Elles ont été trouvées
              plus tard. (the paintings)





In all of these examples, working out the sense of a word, the
        subject of a verb, and the antecedent of a pronoun are steps in
        establishing the meaning of a sentence, things we would expect a
        language understanding system to be able to do.

Machine Translation



For a long time now, machine translation (MT) has been the holy
        grail of language understanding, ultimately seeking to provide
        high-quality, idiomatic translation between any pair of languages. Its
        roots go back to the early days of the Cold War, when the promise of
        automatic translation led to substantial government sponsorship, and
        with it, the genesis of NLP itself.
Today, practical translation systems exist for particular pairs
        of languages, and some are integrated into web search engines.
        However, these systems have some serious shortcomings. We can explore
        them with the help of NLTK’s “babelizer” (which is automatically
        loaded when you import this chapter’s materials using from nltk.book import *). This program
        submits a sentence for translation into a specified language, then
        submits the resulting sentence for translation back into English. It
        stops after 12 iterations, or if it receives a translation that was
        produced already (indicating a loop):
>>> babelize_shell()
NLTK Babelizer: type 'help' for a list of commands.
Babel> how long before the next flight to Alice Springs?
Babel> german
Babel> run
0> how long before the next flight to Alice Springs?
1> wie lang vor dem folgenden Flug zu Alice Springs?
2> how long before the following flight to Alice jump?
3> wie lang vor dem folgenden Flug zu Alice springen Sie?
4> how long before the following flight to Alice do you jump?
5> wie lang, bevor der folgende Flug zu Alice tun, Sie springen?
6> how long, before the following flight to Alice does, do you jump?
7> wie lang bevor der folgende Flug zu Alice tut, tun Sie springen?
8> how long before the following flight to Alice does, do you jump?
9> wie lang, bevor der folgende Flug zu Alice tut, tun Sie springen?
10> how long, before the following flight does to Alice, do do you jump?
11> wie lang bevor der folgende Flug zu Alice tut, Sie tun Sprung?
12> how long before the following flight does leap to Alice, does you?
Observe that the system correctly translates Alice
        Springs from English to German (in the line starting
        1>), but on the way back to
        English, this ends up as Alice jump (line 2). The preposition
        before is initially translated into the
        corresponding German preposition vor, but later
        into the conjunction bevor (line 5). After line
        5 the sentences become non-sensical
        (but notice the various phrasings indicated by the commas, and the
        change from jump to leap).
        The translation system did not recognize when a word was part of a
        proper name, and it misinterpreted the grammatical structure. The
        grammatical problems are more obvious in the following example. Did
        John find the pig, or did the pig find John?
>>> babelize_shell()
Babel> The pig that John found looked happy
Babel> german
Babel> run
0> The pig that John found looked happy
1> Das Schwein, das John fand, schaute gl?cklich
2> The pig, which found John, looked happy
Machine translation is difficult because a given word could have
        several possible translations (depending on its meaning), and because
        word order must be changed in keeping with the grammatical structure
        of the target language. Today these difficulties are being faced by
        collecting massive quantities of parallel texts from news and
        government websites that publish documents in two or more languages.
        Given a document in German and English, and possibly a bilingual
        dictionary, we can automatically pair up the sentences, a process
        called text alignment. Once we have
        a million or more sentence pairs, we can detect corresponding words
        and phrases, and build a model that can be used for translating new
        text.

Spoken Dialogue Systems



In the history of artificial intelligence, the chief measure of
        intelligence has been a linguistic one, namely the Turing Test: can a dialogue system,
        responding to a user’s text input, perform so naturally that we cannot
        distinguish it from a human-generated response? In contrast, today’s
        commercial dialogue systems are very limited, but still perform useful
        functions in narrowly defined domains, as we see here:
	S: How may I help you?
	U: When is Saving Private Ryan playing?
	S: For what theater?
	U: The Paramount theater.
	S: Saving Private Ryan is not playing at the Paramount
          theater, but
	it’s playing at the Madison theater at 3:00, 5:30, 8:00, and
          10:30.

You could not ask this system to provide driving instructions or
        details of nearby restaurants unless the required information had
        already been stored and suitable question-answer pairs had been
        incorporated into the language processing system.
Observe that this system seems to understand the user’s goals:
        the user asks when a movie is showing and the system correctly
        determines from this that the user wants to see the movie. This
        inference seems so obvious that you probably didn’t notice it was
        made, yet a natural language system needs to be endowed with this
        capability in order to interact naturally. Without it, when asked,
        Do you know when Saving Private Ryan is
        playing?, a system might unhelpfully respond with a cold
        Yes. However, the developers of commercial dialogue systems use
        contextual assumptions and business logic to ensure that the different
        ways in which a user might express requests or provide information are
        handled in a way that makes sense for the particular application. So,
        if you type When is ..., or I want to
        know when ..., or Can you tell me when
        ..., simple rules will always yield screening times. This
        is enough for the system to provide a useful service.
Dialogue systems give us an opportunity to mention the commonly
        assumed pipeline for NLP. Figure 1-5 shows the
        architecture of a simple dialogue system. Along the top of the
        diagram, moving from left to right, is a “pipeline” of some language
        understanding components. These map
        from speech input via syntactic parsing to some kind of meaning
        representation. Along the middle, moving from right to left, is the
        reverse pipeline of components for converting concepts to speech.
        These components make up the dynamic aspects of the system. At the
        bottom of the diagram are some representative bodies of static
        information: the repositories of language-related data that the
        processing components draw on to do their work.
[image: Simple pipeline architecture for a spoken dialogue system: Spoken input (top left) is analyzed, words are recognized, sentences are parsed and interpreted in context, application-specific actions take place (top right); a response is planned, realized as a syntactic structure, then to suitably inflected words, and finally to spoken output; different types of linguistic knowledge inform each stage of the process.]

Figure 1-5. Simple pipeline architecture for a spoken dialogue system:
          Spoken input (top left) is analyzed, words are recognized, sentences
          are parsed and interpreted in context, application-specific actions
          take place (top right); a response is planned, realized as a
          syntactic structure, then to suitably inflected words, and finally
          to spoken output; different types of linguistic knowledge inform
          each stage of the process.

Note
Your Turn: For an example
          of a primitive dialogue system, try having a conversation with an
          NLTK chatbot. To see the available chatbots, run nltk.chat.chatbots(). (Remember to import
          nltk first.)


Textual Entailment



The challenge of language understanding has been brought into
        focus in recent years by a public “shared task” called Recognizing
        Textual Entailment (RTE). The basic scenario is simple. Suppose you
        want to find evidence to support the hypothesis: Sandra
        Goudie was defeated by Max Purnell, and that you have
        another short text that seems to be relevant, for example,
        Sandra Goudie was first elected to Parliament in the 2002
        elections, narrowly winning the seat of Coromandel by defeating Labour
        candidate Max Purnell and pushing incumbent Green MP Jeanette
        Fitzsimons into third place. Does the text provide enough
        evidence for you to accept the hypothesis? In this particular case,
        the answer will be “No.” You can draw this conclusion easily, but it
        is very hard to come up with automated methods for making the right
        decision. The RTE Challenges provide data that allow competitors to
        develop their systems, but not enough data for “brute force” machine
        learning techniques (a topic we will cover in Chapter 6). Consequently, some linguistic analysis is
        crucial. In the previous example, it is important for the system to
        note that Sandra Goudie names the person being
        defeated in the hypothesis, not the person doing the defeating in the
        text. As another illustration of the difficulty of the task, consider
        the following text-hypothesis pair:
Example 1-7. 
	Text: David Golinkin is the editor or author of 18 books,
              and over 150 responsa, articles, sermons and books

	Hypothesis: Golinkin has written 18 books





In order to determine whether the hypothesis is supported by the
        text, the system needs the following background knowledge: (i) if
        someone is an author of a book, then he/she has written that book;
        (ii) if someone is an editor of a book, then he/she has not written
        (all of) that book; (iii) if someone is editor or author of 18 books,
        then one cannot conclude that he/she is author of 18 books.

Limitations of NLP



Despite the research-led advances in tasks such as RTE, natural
        language systems that have been deployed for real-world applications
        still cannot perform common-sense reasoning or draw on world knowledge
        in a general and robust manner. We can wait for these difficult
        artificial intelligence problems to be solved, but in the meantime it
        is necessary to live with some severe limitations on the reasoning and
        knowledge capabilities of natural language systems. Accordingly, right
        from the beginning, an important goal of NLP research has been to make
        progress on the difficult task of building technologies that
        “understand language,” using superficial yet powerful techniques
        instead of unrestricted knowledge and reasoning capabilities. Indeed,
        this is one of the goals of this book, and we hope to equip you with
        the knowledge and skills to build useful NLP systems, and to
        contribute to the long-term aspiration of building intelligent
        machines.


Summary



	Texts are represented in Python using lists: ['Monty', 'Python']. We can use indexing,
          slicing, and the len() function
          on lists.

	A word “token” is a particular appearance of a given word in a
          text; a word “type” is the unique form of the word as a particular
          sequence of letters. We count word tokens using len(text) and word types using len(set(text)).

	We obtain the vocabulary of a text t using sorted(set(t)).

	We operate on each item of a text using [f(x) for x in text].

	To derive the vocabulary, collapsing case distinctions and
          ignoring punctuation, we can write set([w.lower() for w in text if
          w.isalpha()]).

	We process each word in a text using a for statement, such as for w in t: or for word in text:. This must be followed
          by the colon character and an indented block of code, to be executed
          each time through the loop.

	We test a condition using an if statement: if
          len(word) < 5:. This must be followed by the colon
          character and an indented block of code, to be executed only if the
          condition is true.

	A frequency distribution is a collection of items along with
          their frequency counts (e.g., the words of a text and their
          frequency of appearance).

	A function is a block of code that has been assigned a name
          and can be reused. Functions are defined using the def keyword, as in def mult(x,
          y); x and y are
          parameters of the function, and act as placeholders for actual data
          values.

	A function is called by specifying its name followed by one or
          more arguments inside parentheses, like this: mult(3, 4), e.g., len(text1).




Further Reading



This chapter has introduced new concepts in programming, natural
      language processing, and linguistics, all mixed in together. Many of
      them are consolidated in the following chapters. However, you may also
      want to consult the online materials provided with this chapter (at
      http://www.nltk.org/), including links to
      additional background materials, and links to online NLP systems. You
      may also like to read up on some linguistics and NLP-related concepts in
      Wikipedia (e.g., collocations, the Turing Test, the type-token
      distinction).
You should acquaint yourself with the Python documentation
      available at http://docs.python.org/, including
      the many tutorials and comprehensive reference materials linked there. A
      Beginner’s Guide to Python is available at http://wiki.python.org/moin/BeginnersGuide. Miscellaneous
      questions about Python might be answered in the FAQ at http://www.python.org/doc/faq/general/.
As you delve into NLTK, you might want to subscribe to the mailing
      list where new releases of the toolkit are announced. There is also an
      NLTK-Users mailing list, where users help each other as they learn how
      to use Python and NLTK for language analysis work. Details of these
      lists are available at http://www.nltk.org/.
For more information on the topics covered in Automatic Natural Language Understanding, and on NLP
      more generally, you might like to consult one of the following excellent
      books:
	Indurkhya, Nitin and Fred Damerau (eds., 2010)
          Handbook of Natural Language Processing (second
          edition), Chapman & Hall/CRC.

	Jurafsky, Daniel and James Martin (2008) Speech and
          Language Processing (second edition), Prentice
          Hall.

	Mitkov, Ruslan (ed., 2002) The Oxford Handbook of
          Computational Linguistics. Oxford University Press.
          (second edition expected in 2010).



The Association for Computational Linguistics is the international
      organization that represents the field of NLP. The ACL website hosts many useful
      resources, including: information about international and regional
      conferences and workshops; the ACL Wiki with links
      to hundreds of useful resources; and the ACL
      Anthology, which contains most of the NLP research literature
      from the past 50 years, fully indexed and freely downloadable.
Some excellent introductory linguistics textbooks are: (Finegan,
      2007), (O’Grady et al., 2004), (OSU, 2007). You might like to consult
      LanguageLog, a popular linguistics blog with
      occasional posts that use the techniques described in this
      book.

Exercises



	○ Try using the Python interpreter as a calculator, and typing
          expressions like 12 / (4 +
          1).

	○ Given an alphabet of 26 letters, there are 26 to the power
          10, or 26 ** 10, 10-letter
          strings we can form. That works out to 141167095653376L (the L at the end just indicates that this is
          Python’s long-number format). How many hundred-letter strings are
          possible?

	○ The Python multiplication operation can be applied to lists.
          What happens when you type ['Monty',
          'Python'] * 20, or 3 *
          sent1?

	○ Review Computing with Language: Texts and Words on
          computing with language. How many words are there in text2? How many distinct words are
          there?

	○ Compare the lexical diversity scores for humor and romance
          fiction in Table 1-1. Which genre is more
          lexically diverse?

	○ Produce a dispersion plot of the four main protagonists in
          Sense and Sensibility: Elinor, Marianne,
          Edward, and Willoughby. What can you observe about the different roles played by the males
          and females in this novel? Can you identify the couples?

	○ Find the collocations in text5.

	○ Consider the following Python expression: len(set(text4)). State the purpose of this
          expression. Describe the two steps involved in performing this
          computation.

	○ Review A Closer Look at Python: Texts as Lists of Words on
          lists and strings.
	Define a string and assign it to a variable, e.g.,
              my_string = 'My String' (but
              put something more interesting in the string). Print the
              contents of this variable in two ways, first by simply typing
              the variable name and pressing Enter, then by using the print statement.

	Try adding the string to itself using my_string + my_string, or multiplying
              it by a number, e.g., my_string *
              3. Notice that the strings are joined together without
              any spaces. How could you fix this?




	○ Define a variable my_sent
          to be a list of words, using the syntax my_sent = ["My", "sent"] (but with your
          own words, or a favorite saying).
	Use ' '.join(my_sent)
              to convert this into a string.

	Use split() to split
              the string back into the list form you had to start with.




	○ Define several variables containing lists of words, e.g.,
          phrase1, phrase2, and so on. Join them together in
          various combinations (using the plus operator) to form whole
          sentences. What is the relationship between len(phrase1 + phrase2) and len(phrase1) + len(phrase2)?

	○ Consider the following two expressions, which have the same
          value. Which one will typically be more relevant in NLP? Why?
	"Monty
              Python"[6:12]

	["Monty",
              "Python"][1]




	○ We have seen how to represent a sentence as a list of words,
          where each word is a sequence of characters. What does sent1[2][2] do? Why? Experiment with other
          index values.

	○ The first sentence of text3 is provided to you in the variable
          sent3. The index of
          the in sent3
          is 1, because sent3[1] gives us
          'the'. What are the indexes of
          the two other occurrences of this word in sent3?

	○ Review the discussion of conditionals in Back to Python: Making Decisions and Taking Control. Find all words in the Chat Corpus
          (text5) starting with the letter
          b. Show them in alphabetical order.

	○ Type the expression range(10) at the interpreter prompt. Now
          try range(10, 20), range(10, 20, 2), and range(20, 10, -2). We will see a variety
          of uses for this built-in function in later chapters.

	[image: ] Use text9.index() to find
          the index of the word sunset. You’ll need to
          insert this word as an argument between the parentheses. By a
          process of trial and error, find the slice for the complete sentence
          that contains this word.

	[image: ] Using list addition, and the set and sorted operations, compute the vocabulary
          of the sentences sent1 ...
          sent8.

	[image: ] What is the difference between the following two lines?
          Which one will give a larger value? Will this be the case for other
          texts?
>>> sorted(set([w.lower() for w in text1]))
>>> sorted([w.lower() for w in set(text1)])

	[image: ] What is the difference between the following two tests:
          w.isupper() and not w.islower()?

	[image: ] Write the slice expression that extracts the last two words
          of text2.

	[image: ] Find all the four-letter words in the Chat Corpus (text5). With the help of a frequency
          distribution (FreqDist), show these words in decreasing order of
          frequency.

	[image: ] Review the discussion of looping with conditions in Back to Python: Making Decisions and Taking Control. Use a combination of for and if statements to loop over the words of
          the movie script for Monty Python and the Holy
          Grail (text6) and
          print all the uppercase words,
          one per line.

	[image: ] Write expressions for finding all words in text6 that meet the following conditions.
          The result should be in the form of a list of words: ['word1', 'word2', ...].
	Ending in ize

	Containing the letter z

	Containing the sequence of letters
              pt

	All lowercase letters except for an initial capital (i.e.,
              titlecase)




	[image: ] Define sent to be the
          list of words ['she', 'sells', 'sea',
          'shells', 'by', 'the', 'sea', 'shore']. Now write code to
          perform the following tasks:
	Print all words beginning with
              sh.

	Print all words longer than four characters




	[image: ] What does the following Python code do? sum([len(w) for w in text1]) Can you use
          it to work out the average word length of a text?

	[image: ] Define a function called vocab_size(text) that has a single
          parameter for the text, and which returns the vocabulary size of the
          text.

	[image: ] Define a function percent(word,
          text) that calculates how often a given word occurs in a
          text and expresses the result as a percentage.

	[image: ] We have been using sets to store vocabularies. Try the
          following Python expression: set(sent3)
          < set(text1). Experiment with this using different
          arguments to set(). What does it
          do? Can you think of a practical application for this?




Chapter 2. Accessing Text Corpora and Lexical
    Resources



Practical work in Natural Language Processing typically uses large
    bodies of linguistic data, or corpora.
    The goal of this chapter is to answer the following questions:
	What are some useful text corpora and lexical resources, and how
        can we access them with Python?

	Which Python constructs are most helpful for this work?

	How do we avoid repeating ourselves when writing Python
        code?



This chapter continues to present programming concepts by example,
    in the context of a linguistic processing task. We will wait until later
    before exploring each Python construct systematically. Don’t worry if you
    see an example that contains something unfamiliar; simply try it out and
    see what it does, and—if you’re game—modify it by substituting some part
    of the code with a different text or word. This way you will associate a
    task with a programming idiom, and learn the hows and whys
    later.
Accessing Text Corpora



As just mentioned, a text corpus is a large body of text. Many
      corpora are designed to contain a careful balance of material in one or
      more genres. We examined some small text collections in Chapter 1, such as the speeches known as the US Presidential
      Inaugural Addresses. This particular corpus actually contains dozens of
      individual texts—one per address—but for convenience we glued them
      end-to-end and treated them as a single text. Chapter 1 also used various predefined texts that we
      accessed by typing from book import
      *. However, since we want to be able to work with other texts,
      this section examines a variety of text corpora. We’ll see how to select
      individual texts, and how to work with them.
Gutenberg Corpus



NLTK includes a small selection of texts from the Project
        Gutenberg electronic text archive, which contains some 25,000 free
        electronic books, hosted at http://www.gutenberg.org/. We begin by getting the
        Python interpreter to load the NLTK package, then ask to see nltk.corpus.gutenberg.fileids(), the file
        identifiers in this corpus:
>>> import nltk
>>> nltk.corpus.gutenberg.fileids()
['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', 'bible-kjv.txt',
'blake-poems.txt', 'bryant-stories.txt', 'burgess-busterbrown.txt',
'carroll-alice.txt', 'chesterton-ball.txt', 'chesterton-brown.txt',
'chesterton-thursday.txt', 'edgeworth-parents.txt', 'melville-moby_dick.txt',
'milton-paradise.txt', 'shakespeare-caesar.txt', 'shakespeare-hamlet.txt',
'shakespeare-macbeth.txt', 'whitman-leaves.txt']
Let’s pick out the first of these
        texts—Emma by Jane Austen—and give it a short
        name, emma, then find out how many
        words it contains:
>>> emma = nltk.corpus.gutenberg.words('austen-emma.txt')
>>> len(emma)
192427
Note
In Computing with Language: Texts and Words, we showed
          how you could carry out concordancing of a text such as text1 with the command text1.concordance(). However, this assumes
          that you are using one of the nine texts obtained as a result of
          doing from nltk.book import *.
          Now that you have started examining data from nltk.corpus, as in the previous example, you have to employ the
          following pair of statements to perform concordancing and other
          tasks from Computing with Language: Texts and Words:
>>> emma = nltk.Text(nltk.corpus.gutenberg.words('austen-emma.txt'))
>>> emma.concordance("surprize")

When we defined emma, we
        invoked the words() function of the
        gutenberg object in NLTK’s corpus package. But since it is cumbersome to type such long
        names all the time, Python provides another version of the import statement, as follows:
>>> from nltk.corpus import gutenberg
>>> gutenberg.fileids()
['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', ...]
>>> emma = gutenberg.words('austen-emma.txt')
Let’s write a short program to display other information about
        each text, by looping over all the values of fileid corresponding to the gutenberg file identifiers listed earlier
        and then computing statistics for each text. For a compact output
        display, we will make sure that the numbers are all integers, using
        int().
>>> for fileid in gutenberg.fileids():
...     num_chars = len(gutenberg.raw(fileid)) [image: 1]
...     num_words = len(gutenberg.words(fileid))
...     num_sents = len(gutenberg.sents(fileid))
...     num_vocab = len(set([w.lower() for w in gutenberg.words(fileid)]))
...     print int(num_chars/num_words), int(num_words/num_sents), int(num_words/num_vocab), 
        fileid
...
4 21 26 austen-emma.txt
4 23 16 austen-persuasion.txt
4 24 22 austen-sense.txt
4 33 79 bible-kjv.txt
4 18 5 blake-poems.txt
4 17 14 bryant-stories.txt
4 17 12 burgess-busterbrown.txt
4 16 12 carroll-alice.txt
4 17 11 chesterton-ball.txt
4 19 11 chesterton-brown.txt
4 16 10 chesterton-thursday.txt
4 18 24 edgeworth-parents.txt
4 24 15 melville-moby_dick.txt
4 52 10 milton-paradise.txt
4 12 8 shakespeare-caesar.txt
4 13 7 shakespeare-hamlet.txt
4 13 6 shakespeare-macbeth.txt
4 35 12 whitman-leaves.txt
This program displays three statistics for each text: average
        word length, average sentence length, and the number of times each
        vocabulary item appears in the text on average (our lexical diversity
        score). Observe that average word length appears to be a general
        property of English, since it has a recurrent value of
        4. (In fact, the average word length is really
        3, not 4, since the num_chars variable counts space characters.)
        By contrast average sentence length and lexical diversity appear to be
        characteristics of particular authors.
The previous example also showed how we can access the “raw”
        text of the book [image: 1], not split up into
        tokens. The raw() function gives us
        the contents of the file without any linguistic processing. So, for
        example, len(gutenberg.raw('blake-poems.txt') tells
        us how many letters occur in the text, including
        the spaces between words. The sents() function divides the text up into
        its sentences, where each sentence is a list of words:
>>> macbeth_sentences = gutenberg.sents('shakespeare-macbeth.txt')
>>> macbeth_sentences
[['[', 'The', 'Tragedie', 'of', 'Macbeth', 'by', 'William', 'Shakespeare',
'1603', ']'], ['Actus', 'Primus', '.'], ...]
>>> macbeth_sentences[1037]
['Double', ',', 'double', ',', 'toile', 'and', 'trouble', ';',
'Fire', 'burne', ',', 'and', 'Cauldron', 'bubble']
>>> longest_len = max([len(s) for s in macbeth_sentences])
>>> [s for s in macbeth_sentences if len(s) == longest_len]
[['Doubtfull', 'it', 'stood', ',', 'As', 'two', 'spent', 'Swimmers', ',', 'that',
'doe', 'cling', 'together', ',', 'And', 'choake', 'their', 'Art', ':', 'The',
'mercilesse', 'Macdonwald', ...], ...]
Note
Most NLTK corpus readers include a variety of access methods
          apart from words(), raw(), and sents(). Richer linguistic content is
          available from some corpora, such as part-of-speech tags, dialogue
          tags, syntactic trees, and so forth; we will see these in later
          chapters.


Web and Chat Text



Although Project Gutenberg
        contains thousands of books, it represents established literature. It
        is important to consider less formal language as well. NLTK’s small
        collection of web text includes content from a Firefox discussion
        forum, conversations overheard in New York, the movie script of
        Pirates of the Carribean, personal
        advertisements, and wine reviews:
>>> from nltk.corpus import webtext
>>> for fileid in webtext.fileids():
...     print fileid, webtext.raw(fileid)[:65], '...'
...
firefox.txt Cookie Manager: "Don't allow sites that set removed cookies to se...
grail.txt SCENE 1: [wind] [clop clop clop] KING ARTHUR: Whoa there!  [clop...
overheard.txt White guy: So, do you have any plans for this evening? Asian girl...
pirates.txt PIRATES OF THE CARRIBEAN: DEAD MAN'S CHEST, by Ted Elliott & Terr...
singles.txt 25 SEXY MALE, seeks attrac older single lady, for discreet encoun...
wine.txt Lovely delicate, fragrant Rhone wine. Polished leather and strawb...
There is also a corpus of instant messaging chat sessions,
        originally collected by the Naval Postgraduate School for research on
        automatic detection of Internet predators. The corpus contains over
        10,000 posts, anonymized by replacing usernames with generic names of the form “UserNNN”, and
        manually edited to remove any other identifying information. The
        corpus is organized into 15 files, where each file contains several
        hundred posts collected on a given date, for an age-specific chatroom
        (teens, 20s, 30s, 40s, plus a generic adults chatroom). The filename
        contains the date, chatroom, and number of posts; e.g., 10-19-20s_706posts.xml contains 706 posts
        gathered from the 20s chat room on 10/19/2006.
>>> from nltk.corpus import nps_chat
>>> chatroom = nps_chat.posts('10-19-20s_706posts.xml')
>>> chatroom[123]
['i', 'do', "n't", 'want', 'hot', 'pics', 'of', 'a', 'female', ',',
'I', 'can', 'look', 'in', 'a', 'mirror', '.']

Brown Corpus



The Brown Corpus was the first million-word electronic corpus of
        English, created in 1961 at Brown University. This corpus contains
        text from 500 sources, and the sources have been categorized by genre,
        such as news, editorial, and
        so on. Table 2-1 gives an example of each
        genre (for a complete list, see http://icame.uib.no/brown/bcm-los.html).
Table 2-1. Example document for each section of the Brown Corpus
	ID
	File
	Genre
	Description

	A16
	ca16
	news
	Chicago Tribune: Society
                Reportage

	B02
	cb02
	editorial
	Christian Science Monitor:
                Editorials

	C17
	cc17
	reviews
	Time Magazine:
                Reviews

	D12
	cd12
	religion
	Underwood: Probing the Ethics of
                Realtors

	E36
	ce36
	hobbies
	Norling: Renting a Car in
                Europe

	F25
	cf25
	lore
	Boroff: Jewish Teenage
                Culture

	G22
	cg22
	belles_lettres
	Reiner: Coping with Runaway
                Technology

	H15
	ch15
	government
	US Office of Civil and Defence Mobilization:
                The Family Fallout Shelter

	J17
	cj19
	learned
	Mosteller: Probability with Statistical
                Applications

	K04
	ck04
	fiction
	W.E.B. Du Bois: Worlds of
                Color

	L13
	cl13
	mystery
	Hitchens: Footsteps in the
                Night

	M01
	cm01
	science_fiction
	Heinlein: Stranger in a Strange
                Land

	N14
	cn15
	adventure
	Field: Rattlesnake
                Ridge

	P12
	cp12
	romance
	Callaghan: A Passion in
                Rome

	R06
	cr06
	humor
	Thurber: The Future, If Any, of
                Comedy




We can access the corpus as a list of words or a list of
        sentences (where each sentence is itself just a list of words). We can
        optionally specify particular categories or files to read:
>>> from nltk.corpus import brown
>>> brown.categories()
['adventure', 'belles_lettres', 'editorial', 'fiction', 'government', 'hobbies',
'humor', 'learned', 'lore', 'mystery', 'news', 'religion', 'reviews', 'romance',
'science_fiction']
>>> brown.words(categories='news')
['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', ...]
>>> brown.words(fileids=['cg22'])
['Does', 'our', 'society', 'have', 'a', 'runaway', ',', ...]
>>> brown.sents(categories=['news', 'editorial', 'reviews'])
[['The', 'Fulton', 'County'...], ['The', 'jury', 'further'...], ...]
The Brown Corpus is a convenient resource for studying
        systematic differences between genres, a kind of linguistic inquiry
        known as stylistics. Let’s compare
        genres in their usage of modal verbs. The first step is to produce the
        counts for a particular genre. Remember to import nltk before doing the
        following:
>>> from nltk.corpus import brown
>>> news_text = brown.words(categories='news')
>>> fdist = nltk.FreqDist([w.lower() for w in news_text])
>>> modals = ['can', 'could', 'may', 'might', 'must', 'will']
>>> for m in modals:
...     print m + ':', fdist[m],
...
can: 94 could: 87 may: 93 might: 38 must: 53 will: 389
Note
Your Turn: Choose a
          different section of the Brown Corpus, and adapt the preceding
          example to count a selection of wh words, such
          as what, when,
          where, who and
          why.

Next, we need to obtain counts for each genre of interest. We’ll
        use NLTK’s support for conditional frequency distributions. These are
        presented systematically in Conditional Frequency Distributions, where we also
        unpick the following code line by line. For the moment, you can ignore
        the details and just concentrate on the output.
>>> cfd = nltk.ConditionalFreqDist(
...           (genre, word)
...           for genre in brown.categories()
...           for word in brown.words(categories=genre))
>>> genres = ['news', 'religion', 'hobbies', 'science_fiction', 'romance', 'humor']
>>> modals = ['can', 'could', 'may', 'might', 'must', 'will']
>>> cfd.tabulate(conditions=genres, samples=modals)
                 can could  may might must will
           news   93   86   66   38   50  389
       religion   82   59   78   12   54   71
        hobbies  268   58  131   22   83  264
science_fiction   16   49    4   12    8   16
        romance   74  193   11   51   45   43
          humor   16   30    8    8    9   13
Observe that the most frequent modal in the news genre is
        will, while the most frequent modal in the
        romance genre is could. Would you have predicted
        this? The idea that word counts might distinguish genres will be taken
        up again in Chapter 6.

Reuters Corpus



The Reuters Corpus contains 10,788 news documents totaling 1.3
        million words. The documents have been classified into 90 topics, and
        grouped into two sets, called “training” and “test”; thus, the text
        with fileid 'test/14826' is a
        document drawn from the test set. This split is for training and
        testing algorithms that automatically detect the topic of a document,
        as we will see in Chapter 6.
>>> from nltk.corpus import reuters
>>> reuters.fileids()
['test/14826', 'test/14828', 'test/14829', 'test/14832', ...]
>>> reuters.categories()
['acq', 'alum', 'barley', 'bop', 'carcass', 'castor-oil', 'cocoa',
'coconut', 'coconut-oil', 'coffee', 'copper', 'copra-cake', 'corn',
'cotton', 'cotton-oil', 'cpi', 'cpu', 'crude', 'dfl', 'dlr', ...]
Unlike the Brown Corpus, categories in the Reuters Corpus
        overlap with each other, simply because a news story often covers
        multiple topics. We can ask for the topics covered by one or more
        documents, or for the documents included in one or more categories.
        For convenience, the corpus methods accept a single fileid or a list
        of fileids.
>>> reuters.categories('training/9865')
['barley', 'corn', 'grain', 'wheat']
>>> reuters.categories(['training/9865', 'training/9880'])
['barley', 'corn', 'grain', 'money-fx', 'wheat']
>>> reuters.fileids('barley')
['test/15618', 'test/15649', 'test/15676', 'test/15728', 'test/15871', ...]
>>> reuters.fileids(['barley', 'corn'])
['test/14832', 'test/14858', 'test/15033', 'test/15043', 'test/15106',
'test/15287', 'test/15341', 'test/15618', 'test/15618', 'test/15648', ...]
Similarly, we can specify the words or sentences we want in
        terms of files or categories. The first handful of words in each of
        these texts are the titles, which by convention are stored as
        uppercase.
>>> reuters.words('training/9865')[:14]
['FRENCH', 'FREE', 'MARKET', 'CEREAL', 'EXPORT', 'BIDS',
'DETAILED', 'French', 'operators', 'have', 'requested', 'licences', 'to', 'export']
>>> reuters.words(['training/9865', 'training/9880'])
['FRENCH', 'FREE', 'MARKET', 'CEREAL', 'EXPORT', ...]
>>> reuters.words(categories='barley')
['FRENCH', 'FREE', 'MARKET', 'CEREAL', 'EXPORT', ...]
>>> reuters.words(categories=['barley', 'corn'])
['THAI', 'TRADE', 'DEFICIT', 'WIDENS', 'IN', 'FIRST', ...]

Inaugural Address Corpus



In Computing with Language: Texts and Words, we looked at
        the Inaugural Address Corpus, but treated it as a single text. The
        graph in Figure 1-2 used “word offset” as one of
        the axes; this is the numerical index of the word in the corpus,
        counting from the first word of the first address. However, the corpus
        is actually a collection of 55 texts, one for each presidential
        address. An interesting property of this collection is its time
        dimension:
>>> from nltk.corpus import inaugural
>>> inaugural.fileids()
['1789-Washington.txt', '1793-Washington.txt', '1797-Adams.txt', ...]
>>> [fileid[:4] for fileid in inaugural.fileids()]
['1789', '1793', '1797', '1801', '1805', '1809', '1813', '1817', '1821', ...]
Notice that the year of each text appears in its filename. To
        get the year out of the filename, we extracted the first four
        characters, using fileid[:4].
Let’s look at how the words America and
        citizen are used over time. The following code
        converts the words in the Inaugural corpus to lowercase using w.lower() [image: 1], then checks whether they start
        with either of the “targets” america or citizen using startswith() [image: 1]. Thus it will count words such
        as American’s and Citizens.
        We’ll learn about conditional frequency distributions in Conditional Frequency Distributions; for now, just
        consider the output, shown in Figure 2-1.
>>> cfd = nltk.ConditionalFreqDist(
...           (target, fileid[:4])
...           for fileid in inaugural.fileids()
...           for w in inaugural.words(fileid)
...           for target in ['america', 'citizen']
...           if w.lower().startswith(target)) [image: 1]
>>> cfd.plot()
[image: Plot of a conditional frequency distribution: All words in the Inaugural Address Corpus that begin with america or citizen are counted; separate counts are kept for each address; these are plotted so that trends in usage over time can be observed; counts are not normalized for document length.]

Figure 2-1. Plot of a conditional frequency distribution: All words in
          the Inaugural Address Corpus that begin with america or citizen are counted; separate counts are kept
          for each address; these are plotted so that trends in usage over
          time can be observed; counts are not normalized for document
          length.



Annotated Text Corpora



Many text corpora contain linguistic annotations, representing
        part-of-speech tags, named entities, syntactic structures, semantic
        roles, and so forth. NLTK provides convenient ways to access several of
        these corpora, and has data packages containing corpora and corpus
        samples, freely downloadable for use in teaching and research. Table 2-2  lists some of the corpora. For information about
        downloading them, see http://www.nltk.org/data. For more examples of how to access NLTK corpora,
        please consult the Corpus HOWTO at http://www.nltk.org/howto.
Table 2-2. Some of the corpora and corpus samples distributed with
          NLTK
	Corpus
	Compiler
	Contents

	Brown Corpus
	Francis, Kucera
	15 genres, 1.15M words, tagged,
                categorized

	CESS Treebanks
	CLiC-UB
	1M words, tagged and parsed (Catalan,
                Spanish)

	Chat-80 Data Files
	Pereira & Warren
	World Geographic Database

	CMU Pronouncing Dictionary
	CMU
	127k entries

	CoNLL 2000 Chunking Data
	CoNLL
	270k words, tagged and chunked

	CoNLL 2002 Named Entity
	CoNLL
	700k words, POS and named entity tagged (Dutch,
                Spanish)

	CoNLL 2007 Dependency Parsed Treebanks
                (selections)
	CoNLL
	150k words, dependency parsed (Basque,
                Catalan)

	Dependency Treebank
	Narad
	Dependency parsed version of Penn Treebank
                sample

	Floresta Treebank
	Diana Santos et al.
	9k sentences, tagged and parsed
                (Portuguese)

	Gazetteer Lists
	Various
	Lists of cities and countries

	Genesis Corpus
	Misc web sources
	6 texts, 200k words, 6 languages

	Gutenberg (selections)
	Hart, Newby, et al.
	18 texts, 2M words

	Inaugural Address Corpus
	CSpan
	U.S. Presidential Inaugural Addresses
                (1789–present)

	Indian POS Tagged Corpus
	Kumaran et al.
	60k words, tagged (Bangla, Hindi, Marathi,
                Telugu)

	MacMorpho Corpus
	NILC, USP, Brazil
	1M words, tagged (Brazilian
                Portuguese)

	Movie Reviews
	Pang, Lee
	2k movie reviews with sentiment polarity
                classification

	Names Corpus
	Kantrowitz, Ross
	8k male and female names

	NIST 1999 Info Extr (selections)
	Garofolo
	63k words, newswire and named entity SGML
                markup

	NPS Chat Corpus
	Forsyth, Martell
	10k IM chat posts, POS and dialogue-act
                tagged

	Penn Treebank (selections)	LDC	40k words, tagged and parsed
	PP Attachment Corpus
	Ratnaparkhi
	28k prepositional phrases, tagged as noun or verb
                modifiers

	Proposition Bank
	Palmer
	113k propositions, 3,300 verb
                frames

	Question Classification
	Li, Roth
	6k questions, categorized

	Reuters Corpus
	Reuters
	1.3M words, 10k news documents,
                categorized

	Roget’s Thesaurus
	Project Gutenberg
	200k words, formatted text

	RTE Textual Entailment
	Dagan et al.
	8k sentence pairs, categorized

	SEMCOR
	Rus, Mihalcea
	880k words, POS and sense tagged

	Senseval 2 Corpus
	Pedersen
	600k words, POS and sense tagged

	Shakespeare texts (selections)
	Bosak
	8 books in XML format

	State of the Union Corpus	CSpan	485k words, formatted text
	Stopwords Corpus
	Porter et al.
	2,400 stopwords for 11 languages

	Swadesh Corpus
	Wiktionary
	Comparative wordlists in 24
                languages

	Switchboard Corpus (selections)
	LDC
	36 phone calls, transcribed,
                parsed

	TIMIT Corpus (selections)	NIST/LDC	Audio files and transcripts for 16 speakers
	Univ Decl of Human Rights
	United Nations
	480k words, 300+ languages

	VerbNet 2.1
	Palmer et al.
	5k verbs, hierarchically organized, linked to
                WordNet

	Wordlist Corpus
	OpenOffice.org et al.
	960k words and 20k affixes for 8
                languages

	WordNet 3.0 (English)
	Miller, Fellbaum
	145k synonym sets





Corpora in Other Languages



NLTK comes with corpora for many languages, though in some cases
        you will need to learn how to manipulate character encodings in Python
        before using these corpora (see Text Processing with Unicode).
>>> nltk.corpus.cess_esp.words()
['El', 'grupo', 'estatal', 'Electricit\xe9_de_France', ...]
>>> nltk.corpus.floresta.words()
['Um', 'revivalismo', 'refrescante', 'O', '7_e_Meio', ...]
>>> nltk.corpus.indian.words('hindi.pos')
['\xe0\xa4\xaa\xe0\xa5\x82\xe0\xa4\xb0\xe0\xa5\x8d\xe0\xa4\xa3',
'\xe0\xa4\xaa\xe0\xa5\x8d\xe0\xa4\xb0\xe0\xa4\xa4\xe0\xa4\xbf\xe0\xa4\xac\xe0\xa4
\x82\xe0\xa4\xa7', ...]
>>> nltk.corpus.udhr.fileids()
['Abkhaz-Cyrillic+Abkh', 'Abkhaz-UTF8', 'Achehnese-Latin1', 'Achuar-Shiwiar-Latin1',
'Adja-UTF8', 'Afaan_Oromo_Oromiffa-Latin1', 'Afrikaans-Latin1', 'Aguaruna-Latin1',
'Akuapem_Twi-UTF8', 'Albanian_Shqip-Latin1', 'Amahuaca', 'Amahuaca-Latin1', ...]
>>> nltk.corpus.udhr.words('Javanese-Latin1')[11:]
[u'Saben', u'umat', u'manungsa', u'lair', u'kanthi', ...]
The last of these corpora, udhr, contains the Universal Declaration of
        Human Rights in over 300 languages. The fileids for this corpus
        include information about the character encoding used in the file,
        such as UTF8 or Latin1. Let’s use a conditional frequency
        distribution to examine the differences in word lengths for a
        selection of languages included in the udhr corpus. The output is shown in Figure 2-2 (run the program yourself to see a
        color plot). Note that True and
        False are Python’s built-in Boolean
        values.
>>> from nltk.corpus import udhr
>>> languages = ['Chickasaw', 'English', 'German_Deutsch',
...     'Greenlandic_Inuktikut', 'Hungarian_Magyar', 'Ibibio_Efik']
>>> cfd = nltk.ConditionalFreqDist(
...           (lang, len(word))
...           for lang in languages
...           for word in udhr.words(lang + '-Latin1'))
>>> cfd.plot(cumulative=True)
[image: Cumulative word length distributions: Six translations of the Universal Declaration of Human Rights are processed; this graph shows that words having five or fewer letters account for about 80% of Ibibio text, 60% of German text, and 25% of Inuktitut text.]

Figure 2-2. Cumulative word length distributions: Six translations of the
          Universal Declaration of Human Rights are processed; this graph
          shows that words having five or fewer letters account for about 80%
          of Ibibio text, 60% of German text, and 25% of Inuktitut
          text.

Note
Your Turn: Pick a language
          of interest in udhr.fileids(),
          and define a variable raw_text =
          udhr.raw(Language-Latin1). Now
          plot a frequency distribution of the letters of the text
          using
nltk.FreqDist(raw_text).plot().

Unfortunately, for many languages, substantial corpora are not
        yet available. Often there is insufficient government or industrial
        support for developing language resources, and individual efforts are
        piecemeal and hard to discover or reuse. Some languages have no
        established writing system, or are endangered. (See Further Reading for suggestions on how to
        locate language resources.)

Text Corpus Structure



We have seen a variety of corpus structures so far; these are
        summarized in Figure 2-3. The
        simplest kind lacks any structure: it is just a collection of texts.
        Often, texts are grouped into categories that might correspond to
        genre, source, author, language, etc. Sometimes these categories
        overlap, notably in the case of topical categories, as a text can be
        relevant to more than one topic. Occasionally, text collections have
        temporal structure, news collections being the most common
        example.
NLTK’s corpus readers support efficient access to a variety of
        corpora, and can be used to work with new corpora. Table 2-3 lists functionality provided by the corpus
        readers.
[image: Common structures for text corpora: The simplest kind of corpus is a collection of isolated texts with no particular organization; some corpora are structured into categories, such as genre (Brown Corpus); some categorizations overlap, such as topic categories (Reuters Corpus); other corpora represent language use over time (Inaugural Address Corpus).]

Figure 2-3. Common structures for text corpora: The simplest kind of
          corpus is a collection of isolated texts with no particular
          organization; some corpora are structured into categories, such as
          genre (Brown Corpus); some categorizations overlap, such as topic
          categories (Reuters Corpus); other corpora represent language use
          over time (Inaugural Address Corpus).


Table 2-3. Basic corpus functionality defined in NLTK: More
          documentation can be found using help(nltk.corpus.reader) and by
          reading the online Corpus HOWTO at
          http://www.nltk.org/howto.
	Example
	Description

	fileids()
	The files of the corpus

	fileids([categories])
	The files of the corpus corresponding to these
                categories

	categories()
	The categories of the corpus

	categories([fileids])
	The categories of the corpus corresponding to
                these files

	raw()
	The raw content of the corpus

	raw(fileids=[f1,f2,f3])
	The raw content of the specified
                files

	raw(categories=[c1,c2])
	The raw content of the specified
                categories

	words()
	The words of the whole corpus

	words(fileids=[f1,f2,f3])
	The words of the specified fileids

	words(categories=[c1,c2])
	The words of the specified
                categories

	sents()
	The sentences of the specified
                categories

	sents(fileids=[f1,f2,f3])
	The sentences of the specified
                fileids

	sents(categories=[c1,c2])
	The sentences of the specified
                categories

	abspath(fileid)
	The location of the given file on
                disk

	encoding(fileid)
	The encoding of the file (if
                known)

	open(fileid)
	Open a stream for reading the given corpus
                file

	root()
	The path to the root of locally installed
                corpus

	readme()
	The contents of the README file of the
                corpus




We illustrate the difference between some of the corpus access
        methods here:
>>> raw = gutenberg.raw("burgess-busterbrown.txt")
>>> raw[1:20]
'The Adventures of B'
>>> words = gutenberg.words("burgess-busterbrown.txt")
>>> words[1:20]
['The', 'Adventures', 'of', 'Buster', 'Bear', 'by', 'Thornton', 'W', '.',
'Burgess', '1920', ']', 'I', 'BUSTER', 'BEAR', 'GOES', 'FISHING', 'Buster',
'Bear']
>>> sents = gutenberg.sents("burgess-busterbrown.txt")
>>> sents[1:20]
[['I'], ['BUSTER', 'BEAR', 'GOES', 'FISHING'], ['Buster', 'Bear', 'yawned', 'as',
'he', 'lay', 'on', 'his', 'comfortable', 'bed', 'of', 'leaves', 'and', 'watched',
'the', 'first', 'early', 'morning', 'sunbeams', 'creeping', 'through', ...], ...]

Loading Your Own Corpus



If you have a your own collection of text files that you would
        like to access using the methods discussed earlier, you can easily
        load them with the help of NLTK’s PlaintextCorpusReader. Check the location of your files on your file system;
        in the following example, we have taken this to be the directory
        /usr/share/dict. Whatever the
        location, set this to be the value of corpus_root [image: 1]. The second parameter of the
        PlaintextCorpusReader initializer [image: 2] can be
        a list of fileids, like ['a.txt',
        'test/b.txt'], or a pattern that matches all fileids, like
        '[abc]/.*\.txt' (see Regular Expressions for Detecting Word Patterns for information
        about regular expressions).
>>> from nltk.corpus import PlaintextCorpusReader
>>> corpus_root = '/usr/share/dict' [image: 1]
>>> wordlists = PlaintextCorpusReader(corpus_root, '.*') [image: 2]
>>> wordlists.fileids()
['README', 'connectives', 'propernames', 'web2', 'web2a', 'words']
>>> wordlists.words('connectives')
['the', 'of', 'and', 'to', 'a', 'in', 'that', 'is', ...]
As another example, suppose you have your own local copy of Penn
        Treebank (release 3), in C:\corpora. We can use the BracketParseCorpusReader to access this corpus. We specify the corpus_root to be the location of the parsed
        Wall Street Journal component of the corpus [image: 1], and give a file_pattern that matches the files
        contained within its subfolders [image: 2]
        (using forward slashes).
>>> from nltk.corpus import BracketParseCorpusReader
>>> corpus_root = r"C:\corpora\penntreebank\parsed\mrg\wsj" [image: 1]
>>> file_pattern = r".*/wsj_.*\.mrg" [image: 2]
>>> ptb = BracketParseCorpusReader(corpus_root, file_pattern)
>>> ptb.fileids()
['00/wsj_0001.mrg', '00/wsj_0002.mrg', '00/wsj_0003.mrg', '00/wsj_0004.mrg', ...]
>>> len(ptb.sents())
49208
>>> ptb.sents(fileids='20/wsj_2013.mrg')[19]
['The', '55-year-old', 'Mr.', 'Noriega', 'is', "n't", 'as', 'smooth', 'as', 'the',
'shah', 'of', 'Iran', ',', 'as', 'well-born', 'as', 'Nicaragua', "'s", 'Anastasio',
'Somoza', ',', 'as', 'imperial', 'as', 'Ferdinand', 'Marcos', 'of', 'the', 'Philippines',
'or', 'as', 'bloody', 'as', 'Haiti', "'s", 'Baby', Doc', 'Duvalier', '.']


Conditional Frequency Distributions



We introduced frequency distributions in Computing with Language: Simple Statistics. We saw that
      given some list mylist of words or
      other items, FreqDist(mylist) would compute the number of occurrences of each item in the list. Here
      we will generalize this idea.
When the texts of a corpus are divided into several categories (by
      genre, topic, author, etc.), we can maintain separate frequency
      distributions for each category. This will allow us to study systematic
      differences between the categories. In the previous section, we achieved
      this using NLTK’s ConditionalFreqDist data type. A conditional
      frequency distribution is a collection of frequency
      distributions, each one for a different “condition.” The condition will
      often be the category of the text. Figure 2-4 depicts
      a fragment of a conditional frequency distribution having just two
      conditions, one for news text and one for romance text.
[image: Counting words appearing in a text collection (a conditional frequency distribution).]

Figure 2-4. Counting words appearing in a text collection (a conditional
        frequency distribution).


Conditions and Events



A frequency distribution counts observable events, such as the
        appearance of words in a text. A conditional frequency distribution
        needs to pair each event with a condition. So instead of processing a
        sequence of words [image: 1], we have to process
        a sequence of pairs [image: 2]:
>>> text = ['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', ...] [image: 1]
>>> pairs = [('news', 'The'), ('news', 'Fulton'), ('news', 'County'), ...] [image: 2]
Each pair has the form (condition,
        event).
        If we were processing the entire Brown Corpus by genre, there would be
        15 conditions (one per genre) and 1,161,192 events (one per
        word).

Counting Words by Genre



In Accessing Text Corpora, we saw a
        conditional frequency distribution where the condition was the section
        of the Brown Corpus, and for each condition we counted words. Whereas
        FreqDist() takes a simple list as input, ConditionalFreqDist() takes a list of pairs.
>>> from nltk.corpus import brown
>>> cfd = nltk.ConditionalFreqDist(
...           (genre, word)
...           for genre in brown.categories()
...           for word in brown.words(categories=genre))
Let’s break this down, and look at just two genres, news and
        romance. For each genre [image: 2], we loop over every word in the
        genre [image: 3], producing pairs consisting of
        the genre and the word [image: 1]:
>>> genre_word = [(genre, word) [image: 1]
...               for genre in ['news', 'romance'] [image: 2]
...               for word in brown.words(categories=genre)] [image: 3]
>>> len(genre_word)
170576
So, as we can see in the following code, pairs at the beginning
        of the list genre_word will be of
        the form ('news',
        word) [image: 1],
        whereas those at the end will be of the form ('romance', word)
        [image: 2].
>>> genre_word[:4]
[('news', 'The'), ('news', 'Fulton'), ('news', 'County'), ('news', 'Grand')] [image: 1]
>>> genre_word[-4:]
[('romance', 'afraid'), ('romance', 'not'), ('romance', "''"), ('romance', '.')] [image: 2]
We can now use this list of pairs to create a ConditionalFreqDist, and save it in a variable cfd. As usual, we can type the name of the
        variable to inspect it [image: 1], and verify
        it has two conditions [image: 2]:
>>> cfd = nltk.ConditionalFreqDist(genre_word)
>>> cfd [image: 1]
<ConditionalFreqDist with 2 conditions>
>>> cfd.conditions()
['news', 'romance'] [image: 2]
Let’s access the two conditions, and satisfy ourselves that each
        is just a frequency distribution:
>>> cfd['news']
<FreqDist with 100554 outcomes>
>>> cfd['romance']
<FreqDist with 70022 outcomes>
>>> list(cfd['romance'])
[',', '.', 'the', 'and', 'to', 'a', 'of', '``', "''", 'was', 'I', 'in', 'he', 'had',
'?', 'her', 'that', 'it', 'his', 'she', 'with', 'you', 'for', 'at', 'He', 'on', 'him',
'said', '!', '--', 'be', 'as', ';', 'have', 'but', 'not', 'would', 'She', 'The', ...]
>>> cfd['romance']['could']
193

Plotting and Tabulating Distributions



Apart from combining two or more frequency distributions, and
        being easy to initialize, a ConditionalFreqDist provides some useful methods for tabulation and
        plotting.
The plot in Figure 2-1 was based on a
        conditional frequency distribution reproduced in the following code.
        The condition is either of the words america or
        citizen [image: 2],
        and the counts being plotted are the number of times the word occurred
        in a particular speech. It exploits the fact that the filename for
        each speech—for example, 1865-Lincoln.txt—contains the year as
        the first four characters [image: 1].
        This code generates the pair ('america', '1865') for every instance
        of a word whose lowercased form starts with
        america—such as Americans—in
        the file 1865-Lincoln.txt.
>>> from nltk.corpus import inaugural
>>> cfd = nltk.ConditionalFreqDist(
...           (target, fileid[:4]) [image: 1]
...           for fileid in inaugural.fileids()
...           for w in inaugural.words(fileid)
...           for target in ['america', 'citizen'] [image: 2]
...           if w.lower().startswith(target))
The plot in Figure 2-2 was also based
        on a conditional frequency distribution, reproduced in the following
        code. This time, the condition is the name of the language, and the
        counts being plotted are derived from word lengths [image: 1]. It exploits the fact that the filename
        for each language is the language name followed by '-Latin1' (the character
        encoding).
>>> from nltk.corpus import udhr
>>> languages = ['Chickasaw', 'English', 'German_Deutsch',
...     'Greenlandic_Inuktikut', 'Hungarian_Magyar', 'Ibibio_Efik']
>>> cfd = nltk.ConditionalFreqDist(
...           (lang, len(word)) [image: 1]
...           for lang in languages
...           for word in udhr.words(lang + '-Latin1'))
In the plot() and tabulate() methods, we can optionally specify which conditions to
        display with a conditions= parameter. When we omit it, we get all the conditions.
        Similarly, we can limit the samples to display with a samples= parameter. This makes it possible to load a large
        quantity of data into a conditional frequency distribution, and then
        to explore it by plotting or tabulating selected conditions and
        samples. It also gives us full control over the order of conditions
        and samples in any displays. For example, we can tabulate the
        cumulative frequency data just for two languages, and for words less
        than 10 characters long, as shown next. We interpret the last cell on
        the top row to mean that 1,638 words of the English text have nine or
        fewer letters.
>>> cfd.tabulate(conditions=['English', 'German_Deutsch'],
...              samples=range(10), cumulative=True)
                  0    1    2    3    4    5    6    7    8    9
       English    0  185  525  883  997 1166 1283 1440 1558 1638
German_Deutsch    0  171  263  614  717  894 1013 1110 1213 1275
Note
Your Turn: Working with the
          news and romance genres from the Brown Corpus, find out which days
          of the week are most newsworthy, and which are most romantic. Define
          a variable called days containing
          a list of days of the week, i.e., ['Monday', ...]. Now tabulate the counts
          for these words using cfd.tabulate(samples=days). Now try the same thing using plot in place of tabulate. You may control the output order of days with the
          help of an extra parameter: conditions=['Monday', ...].

You may have noticed that the multiline expressions we have been
        using with conditional frequency distributions look like list
        comprehensions, but without the brackets. In general, when we use a
        list comprehension as a parameter to a function, like set([w.lower for w in t]), we are permitted
        to omit the square brackets and just write set(w.lower() for w in t). (See the
        discussion of “generator expressions” in Sequences for more about this.)

Generating Random Text with Bigrams



We can use a conditional frequency distribution to create a
        table of bigrams (word pairs, introduced in Computing with Language: Simple Statistics). The
        bigrams() function takes a list of words and builds a list of
        consecutive word pairs:
>>> sent = ['In', 'the', 'beginning', 'God', 'created', 'the', 'heaven',
...   'and', 'the', 'earth', '.']
>>> nltk.bigrams(sent)
[('In', 'the'), ('the', 'beginning'), ('beginning', 'God'), ('God', 'created'),
('created', 'the'), ('the', 'heaven'), ('heaven', 'and'), ('and', 'the'),
('the', 'earth'), ('earth', '.')]
In Example 2-1, we treat each word as a
        condition, and for each one we effectively create a frequency
        distribution over the following words. The function generate_model() contains a simple loop to
        generate text. When we call the function, we choose a word (such as
        'living') as our initial context.
        Then, once inside the loop, we print the current value of the variable
        word, and reset word to be the most likely token in that
        context (using max()); next time
        through the loop, we use that word as our new context. As you can see
        by inspecting the output, this simple approach to text generation
        tends to get stuck in loops. Another method would be to randomly
        choose the next word from among the available words.
Example 2-1. Generating random text: This program obtains all bigrams from
          the text of the book of Genesis, then constructs a conditional
          frequency distribution to record which words are most likely to
          follow a given word; e.g., after the word living, the most likely word is creature; the generate_model() function uses
          this data, and a seed word, to generate random text.
def generate_model(cfdist, word, num=15):
    for i in range(num):
        print word,
        word = cfdist[word].max()

text = nltk.corpus.genesis.words('english-kjv.txt')
bigrams = nltk.bigrams(text)
cfd = nltk.ConditionalFreqDist(bigrams) [image: 1]
>>> print cfd['living']
<FreqDist: 'creature': 7, 'thing': 4, 'substance': 2, ',': 1, '.': 1, 'soul': 1>
>>> generate_model(cfd, 'living')
living creature that he said , and the land of the land of the land


Conditional frequency distributions are a useful data structure
        for many NLP tasks. Their commonly used methods are summarized in
        Table 2-4.
Table 2-4. NLTK’s conditional frequency distributions: Commonly used
          methods and idioms for defining, accessing, and visualizing a
          conditional frequency distribution of counters
	Example
	Description

	cfdist =
                ConditionalFreqDist(pairs)
	Create a conditional frequency distribution from
                a list of pairs

	cfdist.conditions()
	Alphabetically sorted list of
                conditions

	cfdist[condition]
	The frequency distribution for this
                condition

	cfdist[condition][sample]
	Frequency for the given sample for this
                condition

	cfdist.tabulate()
	Tabulate the conditional frequency
                distribution

	cfdist.tabulate(samples,
                conditions)
	Tabulation limited to the specified samples and
                conditions

	cfdist.plot()
	Graphical plot of the conditional frequency
                distribution

	cfdist.plot(samples,
                conditions)
	Graphical plot limited to the specified samples
                and conditions

	cfdist1 <
                cfdist2
	Test if samples in cfdist1 occur less frequently than
                in cfdist2






More Python: Reusing Code



By this time you’ve probably typed and retyped a lot of code in
      the Python interactive interpreter. If you mess up when retyping a
      complex example, you have to enter it again. Using the arrow keys to
      access and modify previous commands is helpful but only goes so far. In
      this section, we see two important ways to reuse code: text editors and
      Python functions.
Creating Programs with a Text Editor



The Python interactive interpreter performs your instructions as
        soon as you type them. Often, it is better to compose a multiline
        program using a text editor, then ask Python to run the whole program
        at once. Using IDLE, you can do this by going to the File menu and
        opening a new window. Try this now, and enter the following one-line
        program:
print 'Monty Python'
Save this program in a file called monty.py, then go to the Run menu and
        select the command Run Module. (We’ll learn what modules are shortly.)
        The result in the main IDLE window should look like this:
>>> ================================ RESTART ================================
>>>
Monty Python
>>>
You can also type from monty import
        * and it will do the same thing.
From now on, you have a choice of using the interactive
        interpreter or a text editor to create your programs. It is often
        convenient to test your ideas using the interpreter, revising a line
        of code until it does what you expect. Once you’re ready, you can
        paste the code (minus any >>> or ... prompts) into the text editor, continue
        to expand it, and finally save the program in a file so that you don’t
        have to type it in again later. Give the file a short but descriptive
        name, using all lowercase letters and separating words with
        underscore, and using the .py
        filename extension, e.g., monty_python.py.
Note
Important: Our inline code
          examples include the >>>
          and ... prompts as if we are
          interacting directly with the interpreter. As they get more
          complicated, you should instead type them into the editor, without
          the prompts, and run them from the editor as shown earlier. When we
          provide longer programs in this book, we will leave out the prompts
          to remind you to type them into a file rather than using the
          interpreter. You can see this already in Example 2-1. Note that the example still includes
          a couple of lines with the Python prompt; this is the interactive
          part of the task where you inspect some data and invoke a function.
          Remember that all code samples like Example 2-1 are downloadable from http://www.nltk.org/.


Functions



Suppose that you work on analyzing text that involves different
        forms of the same word, and that part of your program needs to work
        out the plural form of a given singular noun. Suppose it needs to do
        this work in two places, once when it is processing some texts and
        again when it is processing user input.
Rather than repeating the same code several times over, it is
        more efficient and reliable to localize this work inside a function. A function is just a named block of
        code that performs some well-defined task, as we saw in Computing with Language: Texts and Words. A function
        is usually defined to take some inputs, using special variables known
        as parameters, and it may produce a
        result, also known as a return
        value. We define a function using the keyword def followed by the function name and any
        input parameters, followed by the body of the function. Here’s the
        function we saw in Computing with Language: Texts and Words (including
        the import statement that makes
        division behave as expected):
>>> from __future__ import division
>>> def lexical_diversity(text):
...     return len(text) / len(set(text))
We use the keyword return to
        indicate the value that is produced as output by the function. In this
        example, all the work of the function is done in the return statement. Here’s an equivalent
        definition that does the same work using multiple lines of code. We’ll
        change the parameter name from text
        to my_text_data to remind you that
        this is an arbitrary choice:
>>> def lexical_diversity(my_text_data):
...     word_count = len(my_text_data)
...     vocab_size = len(set(my_text_data))
...     diversity_score = word_count / vocab_size
...     return diversity_score
Notice that we’ve created some new variables inside the body of
        the function. These are local
        variables and are not accessible outside the function. So
        now we have defined a function with the name lexical_diversity. But just defining it
        won’t produce any output! Functions do nothing until they are “called”
        (or “invoked”).
Let’s return to our earlier scenario, and actually define a
        simple function to work out English plurals. The function plural() in Example 2-2
        takes a singular noun and generates a plural form, though it is not
        always correct. (We’ll discuss functions at greater length in Functions: The Foundation of Structured Programming.)
Example 2-2. A Python function: This function tries to work out the plural
          form of any English noun; the keyword def (define) is followed by
          the function name, then a parameter inside parentheses, and a colon;
          the body of the function is the indented block of code; it tries to
          recognize patterns within the word and process the word accordingly;
          e.g., if the word ends with y, delete the y and add ies.
def plural(word):
    if word.endswith('y'):
        return word[:-1] + 'ies'
    elif word[-1] in 'sx' or word[-2:] in ['sh', 'ch']:
        return word + 'es'
    elif word.endswith('an'):
        return word[:-2] + 'en'
    else:
        return word + 's'
>>> plural('fairy')
'fairies'
>>> plural('woman')
'women'


The endswith() function is
        always associated with a string object (e.g., word in Example 2-2). To
        call such functions, we give the name of the object, a period, and
        then the name of the function. These functions are usually known as
        methods.

Modules



Over time you will find that you create a variety of useful
        little text-processing functions, and you end up copying them from old
        programs to new ones. Which file contains the latest version of the
        function you want to use? It makes life a lot easier if you can
        collect your work into a single place, and access previously defined
        functions without making copies.
To do this, save your function(s) in a file called (say)
        textproc.py. Now, you can access
        your work simply by importing it from the file:
>>> from textproc import plural
>>> plural('wish')
wishes
>>> plural('fan')
fen
Our plural function obviously has an error, since the plural of
        fan is fans. Instead of
        typing in a new version of the function, we can simply edit the
        existing one. Thus, at every stage, there is only one version of our
        plural function, and no confusion about which one is being
        used.
A collection of variable and function definitions in a file is
        called a Python module. A
        collection of related modules is called a package. NLTK’s code for processing the Brown
        Corpus is an example of a module, and its collection of code for
        processing all the different corpora is an example of a package. NLTK
        itself is a set of packages, sometimes called a library.
Caution!
If you are creating a file to contain some of your Python
          code, do not name your file nltk.py: it may get imported in place of
          the “real” NLTK package. When it imports modules, Python first looks
          in the current directory (folder).



Lexical Resources



A lexicon, or lexical resource, is a collection of words and/or
      phrases along with associated information, such as part-of-speech and
      sense definitions. Lexical resources are secondary to texts, and are
      usually created and enriched with the help of texts. For example, if we
      have defined a text my_text, then
      vocab = sorted(set(my_text)) builds
      the vocabulary of my_text, whereas
      word_freq =
      FreqDist(my_text) counts the frequency of each word in the text. Both
      vocab and word_freq are simple lexical resources.
      Similarly, a concordance like the one we saw in Computing with Language: Texts and Words gives us
      information about word usage that might help in the preparation of a
      dictionary. Standard terminology for lexicons is illustrated in Figure 2-5. A lexical
      entry consists of a headword (also known as a lemma) along with additional information, such
      as the part-of-speech and the sense definition. Two distinct words
      having the same spelling are called homonyms.
[image: Lexicon terminology: Lexical entries for two lemmas having the same spelling (homonyms), providing part-of-speech and gloss information.]

Figure 2-5. Lexicon terminology: Lexical entries for two lemmas having the
        same spelling (homonyms), providing part-of-speech and gloss
        information.

The simplest kind of lexicon is nothing more than a sorted list of
      words. Sophisticated lexicons include complex structure within and
      across the individual entries. In this section, we’ll look at some
      lexical resources included with NLTK.
Wordlist Corpora



NLTK includes some corpora that are nothing more than wordlists.
        The Words Corpus is the /usr/dict/words file from Unix, used by
        some spellcheckers. We can use it to find unusual or misspelled words
        in a text corpus, as shown in Example 2-3.
Example 2-3. Filtering a text: This program computes the vocabulary of a
          text, then removes all items that occur in an existing wordlist,
          leaving just the uncommon or misspelled words.
def unusual_words(text):
    text_vocab = set(w.lower() for w in text if w.isalpha())
    english_vocab = set(w.lower() for w in nltk.corpus.words.words())
    unusual = text_vocab.difference(english_vocab)
    return sorted(unusual)
>>> unusual_words(nltk.corpus.gutenberg.words('austen-sense.txt'))
['abbeyland', 'abhorrence', 'abominably', 'abridgement', 'accordant', 'accustomary',
'adieus', 'affability', 'affectedly', 'aggrandizement', 'alighted', 'allenham',
'amiably', 'annamaria', 'annuities', 'apologising', 'arbour', 'archness', ...]
>>> unusual_words(nltk.corpus.nps_chat.words())
['aaaaaaaaaaaaaaaaa', 'aaahhhh', 'abou', 'abourted', 'abs', 'ack', 'acros',
'actualy', 'adduser', 'addy', 'adoted', 'adreniline', 'ae', 'afe', 'affari', 'afk',
'agaibn', 'agurlwithbigguns', 'ahah', 'ahahah', 'ahahh', 'ahahha', 'ahem', 'ahh', ...]


There is also a corpus of stopwords, that is, high-frequency words such
        as the, to, and
        also that we sometimes want to filter out of a
        document before further processing. Stopwords usually have little
        lexical content, and their presence in a text fails to distinguish it
        from other texts.
>>> from nltk.corpus import stopwords
>>> stopwords.words('english')
['a', "a's", 'able', 'about', 'above', 'according', 'accordingly', 'across',
'actually', 'after', 'afterwards', 'again', 'against', "ain't", 'all', 'allow',
'allows', 'almost', 'alone', 'along', 'already', 'also', 'although', 'always', ...]
Let’s define a function to compute what fraction of words in a
        text are not in the stopwords list:
>>> def content_fraction(text):
...     stopwords = nltk.corpus.stopwords.words('english')
...     content = [w for w in text if w.lower() not in stopwords]
...     return len(content) / len(text)
...
>>> content_fraction(nltk.corpus.reuters.words())
0.65997695393285261
Thus, with the help of stopwords, we filter out a third of the
        words of the text. Notice that we’ve combined two different kinds of
        corpus here, using a lexical resource to filter the content of a text
        corpus.
[image: A word puzzle: A grid of randomly chosen letters with rules for creating words out of the letters; this puzzle is known as “Target.”]

Figure 2-6. A word puzzle: A grid of randomly chosen letters with rules
          for creating words out of the letters; this puzzle is known as
          “Target.”


A wordlist is useful for solving word puzzles, such as the one
        in Figure 2-6. Our program iterates through every
        word and, for each one, checks whether it meets the conditions. It is
        easy to check obligatory letter [image: 2] and length [image: 1] constraints (and we’ll only look
        for words with six or more letters here). It is trickier to check that
        candidate solutions only use combinations of the supplied letters,
        especially since some of the supplied letters appear twice (here, the
        letter v). The FreqDist comparison method [image: 3] permits us to check that the
        frequency of each letter in the candidate word is
        less than or equal to the frequency of the corresponding letter in the
        puzzle.
>>> puzzle_letters = nltk.FreqDist('egivrvonl')
>>> obligatory = 'r'
>>> wordlist = nltk.corpus.words.words()
>>> [w for w in wordlist if len(w) >= 6 [image: 1]
...                      and obligatory in w [image: 2]
...                      and nltk.FreqDist(w) <= puzzle_letters] [image: 3]
['glover', 'gorlin', 'govern', 'grovel', 'ignore', 'involver', 'lienor',
'linger', 'longer', 'lovering', 'noiler', 'overling', 'region', 'renvoi',
'revolving', 'ringle', 'roving', 'violer', 'virole']
One more wordlist corpus is the Names Corpus, containing 8,000
        first names categorized by gender. The male and female names are
        stored in separate files. Let’s find names that appear in both files,
        i.e., names that are ambiguous for gender:
>>> names = nltk.corpus.names
>>> names.fileids()
['female.txt', 'male.txt']
>>> male_names = names.words('male.txt')
>>> female_names = names.words('female.txt')
>>> [w for w in male_names if w in female_names]
['Abbey', 'Abbie', 'Abby', 'Addie', 'Adrian', 'Adrien', 'Ajay', 'Alex', 'Alexis',
'Alfie', 'Ali', 'Alix', 'Allie', 'Allyn', 'Andie', 'Andrea', 'Andy', 'Angel',
'Angie', 'Ariel', 'Ashley', 'Aubrey', 'Augustine', 'Austin', 'Averil', ...]
It is well known that names ending in the letter
        a are almost always female. We can see this and
        some other patterns in the graph in Figure 2-7,
        produced by the following code. Remember that name[-1] is the last letter of name.
>>> cfd = nltk.ConditionalFreqDist(
...           (fileid, name[-1])
...           for fileid in names.fileids()
...           for name in names.words(fileid))
>>> cfd.plot()
[image: Conditional frequency distribution: This plot shows the number of female and male names ending with each letter of the alphabet; most names ending with a, e, or i are female; names ending in h and l are equally likely to be male or female; names ending in k, o, r, s, and t are likely to be male.]

Figure 2-7. Conditional frequency distribution: This plot shows the
          number of female and male names ending with each letter of the
          alphabet; most names ending with a,
          e, or i
          are female; names ending in h and
          l are equally likely to be male or
          female; names ending in k, o, r, s, and t are
          likely to be male.



A Pronouncing Dictionary



A slightly richer kind of lexical resource is a table (or
        spreadsheet), containing a word plus some properties in each row. NLTK
        includes the CMU Pronouncing Dictionary for U.S. English, which was
        designed for use by speech synthesizers.
>>> entries = nltk.corpus.cmudict.entries()
>>> len(entries)
127012
>>> for entry in entries[39943:39951]:
...     print entry
...
('fir', ['F', 'ER1'])
('fire', ['F', 'AY1', 'ER0'])
('fire', ['F', 'AY1', 'R'])
('firearm', ['F', 'AY1', 'ER0', 'AA2', 'R', 'M'])
('firearm', ['F', 'AY1', 'R', 'AA2', 'R', 'M'])
('firearms', ['F', 'AY1', 'ER0', 'AA2', 'R', 'M', 'Z'])
('firearms', ['F', 'AY1', 'R', 'AA2', 'R', 'M', 'Z'])
('fireball', ['F', 'AY1', 'ER0', 'B', 'AO2', 'L'])
For each word, this lexicon provides a list of phonetic codes—distinct labels for each contrastive
        sound—known as phones. Observe that
        fire has two pronunciations (in U.S. English):
        the one-syllable F AY1 R, and the
        two-syllable F AY1 ER0. The symbols
        in the CMU Pronouncing Dictionary are from the
        Arpabet, described in more detail at http://en.wikipedia.org/wiki/Arpabet.
Each entry consists of two parts, and we can process these
        individually using a more complex version of the for statement. Instead of writing for entry in entries:, we replace entry with two variable names, word, pron [image: 1].
        Now, each time through the loop, word is assigned the first part of the
        entry, and pron is assigned the
        second part of the entry:
>>> for word, pron in entries: [image: 1]
...     if len(pron) == 3: [image: 2]
...         ph1, ph2, ph3 = pron [image: 3]
...         if ph1 == 'P' and ph3 == 'T':
...             print word, ph2,
...
pait EY1 pat AE1 pate EY1 patt AE1 peart ER1 peat IY1 peet IY1 peete IY1 pert ER1
pet EH1 pete IY1 pett EH1 piet IY1 piette IY1 pit IH1 pitt IH1 pot AA1 pote OW1
pott AA1 pout AW1 puett UW1 purt ER1 put UH1 putt AH1
The program just shown scans the lexicon looking for entries
        whose pronunciation consists of three phones [image: 2]. If the condition is true, it assigns
        the contents of pron to three new
        variables: ph1, ph2, and ph3. Notice the unusual form of the
        statement that does that work [image: 3].
Here’s another example of the same for statement, this time used inside a list
        comprehension. This program finds all words whose pronunciation ends
        with a syllable sounding like nicks. You could
        use this method to find rhyming words.
>>> syllable = ['N', 'IH0', 'K', 'S']
>>> [word for word, pron in entries if pron[-4:] == syllable]
["atlantic's", 'audiotronics', 'avionics', 'beatniks', 'calisthenics', 'centronics',
'chetniks', "clinic's", 'clinics', 'conics', 'cynics', 'diasonics', "dominic's",
'ebonics', 'electronics', "electronics'", 'endotronics', "endotronics'", 'enix', ...]
Notice that the one pronunciation is spelled in several ways:
        nics, niks,
        nix, and even ntic’s with a
        silent t, for the word
        atlantic’s. Let’s look for some other mismatches
        between pronunciation and writing. Can you summarize the purpose of
        the following examples and explain how they work?
>>> [w for w, pron in entries if pron[-1] == 'M' and w[-1] == 'n']
['autumn', 'column', 'condemn', 'damn', 'goddamn', 'hymn', 'solemn']
>>> sorted(set(w[:2] for w, pron in entries if pron[0] == 'N' and w[0] != 'n'))
['gn', 'kn', 'mn', 'pn']
The phones contain digits to represent primary stress (1), secondary stress (2), and no stress (0). As our final example, we define a
        function to extract the stress digits and then scan our lexicon to
        find words having a particular stress pattern.
>>> def stress(pron):
...     return [char for phone in pron for char in phone if char.isdigit()]
>>> [w for w, pron in entries if stress(pron) == ['0', '1', '0', '2', '0']]
['abbreviated', 'abbreviating', 'accelerated', 'accelerating', 'accelerator',
'accentuated', 'accentuating', 'accommodated', 'accommodating', 'accommodative',
'accumulated', 'accumulating', 'accumulative', 'accumulator', 'accumulators', ...]
>>> [w for w, pron in entries if stress(pron) == ['0', '2', '0', '1', '0']]
['abbreviation', 'abbreviations', 'abomination', 'abortifacient', 'abortifacients',
'academicians', 'accommodation', 'accommodations', 'accreditation', 'accreditations',
'accumulation', 'accumulations', 'acetylcholine', 'acetylcholine', 'adjudication', ...]
Note
A subtlety of this program is that our user-defined function
          stress() is invoked inside the
          condition of a list comprehension. There is also a doubly nested
          for loop. There’s a lot going on
          here, and you might want to return to this once you’ve had more
          experience using list comprehensions.

We can use a conditional frequency distribution to help us find
        minimally contrasting sets of words. Here we find all the
        p words consisting of three sounds [image: 2], and group them according to their first and
        last sounds [image: 1].
>>> p3 = [(pron[0]+'-'+pron[2], word) [image: 1]
...       for (word, pron) in entries
...       if pron[0] == 'P' and len(pron) == 3] [image: 2]
>>> cfd = nltk.ConditionalFreqDist(p3)
>>> for template in cfd.conditions():
...     if len(cfd[template]) > 10:
...         words = cfd[template].keys()
...         wordlist = ' '.join(words)
...         print template, wordlist[:70] + "..."
...
P-CH perch puche poche peach petsche poach pietsch putsch pautsch piche pet...
P-K pik peek pic pique paque polk perc poke perk pac pock poch purk pak pa...
P-L pil poehl pille pehl pol pall pohl pahl paul perl pale paille perle po...
P-N paine payne pon pain pin pawn pinn pun pine paign pen pyne pane penn p...
P-P pap paap pipp paup pape pup pep poop pop pipe paape popp pip peep pope...
P-R paar poor par poore pear pare pour peer pore parr por pair porr pier...
P-S pearse piece posts pasts peace perce pos pers pace puss pesce pass pur...
P-T pot puett pit pete putt pat purt pet peart pott pett pait pert pote pa...
P-Z pays p.s pao's pais paws p.'s pas pez paz pei's pose poise peas paiz p...
Rather than iterating over the whole dictionary, we can also
        access it by looking up particular words. We will use Python’s
        dictionary data structure, which we will study systematically in Mapping Words to Properties Using Python Dictionaries. We look up a dictionary by specifying
        its name, followed by a key (such
        as the word 'fire') inside square
        brackets [image: 1].
>>> prondict = nltk.corpus.cmudict.dict()
>>> prondict['fire'] [image: 1]
[['F', 'AY1', 'ER0'], ['F', 'AY1', 'R']]
>>> prondict['blog'] [image: 2]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'blog'
>>> prondict['blog'] = [['B', 'L', 'AA1', 'G']] [image: 3]
>>> prondict['blog']
[['B', 'L', 'AA1', 'G']]
If we try to look up a non-existent key [image: 2], we get a KeyError. This is similar to what happens
        when we index a list with an integer that is too large, producing an
        IndexError. The word
        blog is missing from the pronouncing dictionary,
        so we tweak our version by assigning a value for this key [image: 3] (this has no effect on the NLTK corpus;
        next time we access it, blog will still be
        absent).
We can use any lexical resource to process a text, e.g., to
        filter out words having some lexical property (like nouns), or mapping
        every word of the text. For example, the following text-to-speech
        function looks up each word of the text in the pronunciation
        dictionary:
>>> text = ['natural', 'language', 'processing']
>>> [ph for w in text for ph in prondict[w][0]]
['N', 'AE1', 'CH', 'ER0', 'AH0', 'L', 'L', 'AE1', 'NG', 'G', 'W', 'AH0', 'JH',
'P', 'R', 'AA1', 'S', 'EH0', 'S', 'IH0', 'NG']

Comparative Wordlists



Another example of a
        tabular lexicon is the comparative
        wordlist. NLTK includes so-called Swadesh wordlists, lists of about 200 common
        words in several languages. The languages are identified using an ISO
        639 two-letter code.
>>> from nltk.corpus import swadesh
>>> swadesh.fileids()
['be', 'bg', 'bs', 'ca', 'cs', 'cu', 'de', 'en', 'es', 'fr', 'hr', 'it', 'la', 'mk',
'nl', 'pl', 'pt', 'ro', 'ru', 'sk', 'sl', 'sr', 'sw', 'uk']
>>> swadesh.words('en')
['I', 'you (singular), thou', 'he', 'we', 'you (plural)', 'they', 'this', 'that',
'here', 'there', 'who', 'what', 'where', 'when', 'how', 'not', 'all', 'many', 'some',
'few', 'other', 'one', 'two', 'three', 'four', 'five', 'big', 'long', 'wide', ...]
We can access cognate words from multiple languages using the
        entries() method, specifying a list of languages. With one
        further step we can convert this into a simple dictionary (we’ll learn
        about dict() in Mapping Words to Properties Using Python Dictionaries).
>>> fr2en = swadesh.entries(['fr', 'en'])
>>> fr2en
[('je', 'I'), ('tu, vous', 'you (singular), thou'), ('il', 'he'), ...]
>>> translate = dict(fr2en)
>>> translate['chien']
'dog'
>>> translate['jeter']
'throw'
We can make our simple translator more useful by adding other
        source languages. Let’s get the German-English and Spanish-English
        pairs, convert each to a dictionary using dict(), then update our
        original translate dictionary with these additional mappings:
>>> de2en = swadesh.entries(['de', 'en'])    # German-English
>>> es2en = swadesh.entries(['es', 'en'])    # Spanish-English
>>> translate.update(dict(de2en))
>>> translate.update(dict(es2en))
>>> translate['Hund']
'dog'
>>> translate['perro']
'dog'
We can compare words in various Germanic and Romance
        languages:
>>> languages = ['en', 'de', 'nl', 'es', 'fr', 'pt', 'la']
>>> for i in [139, 140, 141, 142]:
...     print swadesh.entries(languages)[i]
...
('say', 'sagen', 'zeggen', 'decir', 'dire', 'dizer', 'dicere')
('sing', 'singen', 'zingen', 'cantar', 'chanter', 'cantar', 'canere')
('play', 'spielen', 'spelen', 'jugar', 'jouer', 'jogar, brincar', 'ludere')
('float', 'schweben', 'zweven', 'flotar', 'flotter', 'flutuar, boiar', 'fluctuare')

Shoebox and Toolbox Lexicons



Perhaps the single most popular tool used by linguists for
        managing data is Toolbox, previously known as
        Shoebox since it replaces the field linguist’s
        traditional shoebox full of file cards. Toolbox is freely downloadable
        from http://www.sil.org/computing/toolbox/.
A Toolbox file consists of a collection of entries, where each
        entry is made up of one or more fields. Most fields are optional or
        repeatable, which means that this kind of lexical resource cannot be
        treated as a table or spreadsheet.
Here is a dictionary for the Rotokas language. We see just the
        first entry, for the word kaa, meaning “to
        gag”:
>>> from nltk.corpus import toolbox
>>> toolbox.entries('rotokas.dic')
[('kaa', [('ps', 'V'), ('pt', 'A'), ('ge', 'gag'), ('tkp', 'nek i pas'),
('dcsv', 'true'), ('vx', '1'), ('sc', '???'), ('dt', '29/Oct/2005'),
('ex', 'Apoka ira kaaroi aioa-ia reoreopaoro.'),
('xp', 'Kaikai i pas long nek bilong Apoka bikos em i kaikai na toktok.'),
('xe', 'Apoka is gagging from food while talking.')]), ...]
Entries consist of a series of attribute-value pairs, such as
        ('ps', 'V') to indicate that the
        part-of-speech is 'V' (verb), and
        ('ge', 'gag') to indicate that the
        gloss-into-English is 'gag'. The last three pairs contain an
        example sentence in Rotokas and its translations into Tok Pisin and
        English.
The loose structure of Toolbox files makes it hard for us to do
        much more with them at this stage. XML provides a powerful way to
        process this kind of corpus, and we will return to this topic in Chapter 11.
Note
The Rotokas language is spoken on the island of Bougainville,
          Papua New Guinea. This lexicon was contributed to NLTK by Stuart
          Robinson. Rotokas is notable for having an inventory of just 12
          phonemes (contrastive sounds); see http://en.wikipedia.org/wiki/Rotokas_language



WordNet



WordNet is a semantically
      oriented dictionary of English, similar to a traditional thesaurus but
      with a richer structure. NLTK includes the English WordNet, with 155,287
      words and 117,659 synonym sets. We’ll begin by looking at synonyms and
      how they are accessed in WordNet.
Senses and Synonyms



Consider the sentence in a. If we
        replace the word motorcar in a with automobile, to get
        b, the meaning of the sentence stays pretty
        much the same:
Example 2-4. 
	Benz is credited with the invention of the
              motorcar.

	Benz is credited with the invention of the
              automobile.





Since everything else in the sentence has remained unchanged, we
        can conclude that the words motorcar and
        automobile have the same meaning, i.e., they are
        synonyms. We can explore these
        words with the help of WordNet:
>>> from nltk.corpus import wordnet as wn
>>> wn.synsets('motorcar')
[Synset('car.n.01')]
Thus, motorcar has just one possible
        meaning and it is identified as car.n.01, the first noun sense of
        car. The entity car.n.01 is called a synset, or “synonym set,” a collection of
        synonymous words (or “lemmas”):
>>> wn.synset('car.n.01').lemma_names
['car', 'auto', 'automobile', 'machine', 'motorcar']
Each word of a synset can have several meanings, e.g.,
        car can also signify a train carriage, a gondola,
        or an elevator car. However, we are only interested in the single
        meaning that is common to all words of this synset. Synsets also come
        with a prose definition and some example sentences:
>>> wn.synset('car.n.01').definition
'a motor vehicle with four wheels; usually propelled by an internal combustion engine'
>>> wn.synset('car.n.01').examples
['he needs a car to get to work']
Although definitions help humans to understand the intended
        meaning of a synset, the words of the synset are
        often more useful for our programs. To eliminate ambiguity, we will
        identify these words as car.n.01.automobile, car.n.01.motorcar, and so on. This pairing
        of a synset with a word is called a lemma. We can get all the lemmas
        for a given synset [image: 1], look up a
        particular lemma [image: 2], get the synset
        corresponding to a lemma [image: 3], and get
        the “name” of a lemma [image: 4]:
>>> wn.synset('car.n.01').lemmas [image: 1]
[Lemma('car.n.01.car'), Lemma('car.n.01.auto'), Lemma('car.n.01.automobile'),
Lemma('car.n.01.machine'), Lemma('car.n.01.motorcar')]
>>> wn.lemma('car.n.01.automobile') [image: 2]
Lemma('car.n.01.automobile')
>>> wn.lemma('car.n.01.automobile').synset [image: 3]
Synset('car.n.01')
>>> wn.lemma('car.n.01.automobile').name [image: 4]
'automobile'
Unlike the words automobile and
        motorcar, which are unambiguous and have one
        synset, the word car is ambiguous, having five
        synsets:
>>> wn.synsets('car')
[Synset('car.n.01'), Synset('car.n.02'), Synset('car.n.03'), Synset('car.n.04'),
Synset('cable_car.n.01')]
>>> for synset in wn.synsets('car'):
...     print synset.lemma_names
...
['car', 'auto', 'automobile', 'machine', 'motorcar']
['car', 'railcar', 'railway_car', 'railroad_car']
['car', 'gondola']
['car', 'elevator_car']
['cable_car', 'car']
For convenience, we can access all the lemmas involving the word
        car as follows:
>>> wn.lemmas('car')
[Lemma('car.n.01.car'), Lemma('car.n.02.car'), Lemma('car.n.03.car'),
Lemma('car.n.04.car'), Lemma('cable_car.n.01.car')]
Note
Your Turn: Write down all
          the senses of the word dish that you can think
          of. Now, explore this word with the help of WordNet, using the same
          operations shown earlier.


The WordNet Hierarchy



WordNet synsets correspond to abstract concepts, and they don’t
        always have corresponding words in English. These concepts are linked
        together in a hierarchy. Some concepts are very general, such as
        Entity, State,
        Event; these are called unique beginners or root synsets. Others,
        such as gas guzzler and
        hatchback, are much more specific. A small
        portion of a concept hierarchy is illustrated in Figure 2-8.
[image: Fragment of WordNet concept hierarchy: Nodes correspond to synsets; edges indicate the hypernym/hyponym relation, i.e., the relation between superordinate and subordinate concepts.]

Figure 2-8. Fragment of WordNet concept hierarchy: Nodes correspond to
          synsets; edges indicate the hypernym/hyponym relation, i.e., the
          relation between superordinate and subordinate concepts.


WordNet makes it easy to navigate between concepts. For example,
        given a concept like motorcar, we can look at the
        concepts that are more specific—the (immediate) hyponyms.
>>> motorcar = wn.synset('car.n.01')
>>> types_of_motorcar = motorcar.hyponyms()
>>> types_of_motorcar[26]
Synset('ambulance.n.01')
>>> sorted([lemma.name for synset in types_of_motorcar for lemma in synset.lemmas])
['Model_T', 'S.U.V.', 'SUV', 'Stanley_Steamer', 'ambulance', 'beach_waggon',
'beach_wagon', 'bus', 'cab', 'compact', 'compact_car', 'convertible',
'coupe', 'cruiser', 'electric', 'electric_automobile', 'electric_car',
'estate_car', 'gas_guzzler', 'hack', 'hardtop', 'hatchback', 'heap',
'horseless_carriage', 'hot-rod', 'hot_rod', 'jalopy', 'jeep', 'landrover',
'limo', 'limousine', 'loaner', 'minicar', 'minivan', 'pace_car', 'patrol_car',
'phaeton', 'police_car', 'police_cruiser', 'prowl_car', 'race_car', 'racer',
'racing_car', 'roadster', 'runabout', 'saloon', 'secondhand_car', 'sedan',
'sport_car', 'sport_utility', 'sport_utility_vehicle', 'sports_car', 'squad_car',
'station_waggon', 'station_wagon', 'stock_car', 'subcompact', 'subcompact_car',
'taxi', 'taxicab', 'tourer', 'touring_car', 'two-seater', 'used-car', 'waggon',
'wagon']
We can also navigate up the hierarchy by visiting hypernyms.
        Some words have multiple paths, because they can be classified in more
        than one way. There are two paths between car.n.01 and entity.n.01 because wheeled_vehicle.n.01 can be classified as
        both a vehicle and a container.
>>> motorcar.hypernyms()
[Synset('motor_vehicle.n.01')]
>>> paths = motorcar.hypernym_paths()
>>> len(paths)
2
>>> [synset.name for synset in paths[0]]
['entity.n.01', 'physical_entity.n.01', 'object.n.01', 'whole.n.02', 'artifact.n.01',
'instrumentality.n.03', 'container.n.01', 'wheeled_vehicle.n.01',
'self-propelled_vehicle.n.01', 'motor_vehicle.n.01', 'car.n.01']
>>> [synset.name for synset in paths[1]]
['entity.n.01', 'physical_entity.n.01', 'object.n.01', 'whole.n.02', 'artifact.n.01',
'instrumentality.n.03', 'conveyance.n.03', 'vehicle.n.01', 'wheeled_vehicle.n.01',
'self-propelled_vehicle.n.01', 'motor_vehicle.n.01', 'car.n.01']
We can get the most general hypernyms (or root hypernyms) of a
        synset as follows:
>>> motorcar.root_hypernyms()
[Synset('entity.n.01')]
Note
Your Turn: Try out NLTK’s
          convenient graphical WordNet browser: nltk.app.wordnet(). Explore the WordNet
          hierarchy by following the hypernym and hyponym links.


More Lexical Relations



Hypernyms and hyponyms are called lexical relations because they relate one
        synset to another. These two relations navigate up and down the “is-a”
        hierarchy. Another important way to navigate the WordNet network is
        from items to their components (meronyms) or to the things they are contained
        in (holonyms). For example, the
        parts of a tree are its
        trunk, crown, and so on;
        these are the part_meronyms(). The substance a tree is made of
        includes heartwood and
        sapwood, i.e., the substance_meronyms(). A collection of trees forms a
        forest, i.e., the member_holonyms():
>>> wn.synset('tree.n.01').part_meronyms()
[Synset('burl.n.02'), Synset('crown.n.07'), Synset('stump.n.01'),
Synset('trunk.n.01'), Synset('limb.n.02')]
>>> wn.synset('tree.n.01').substance_meronyms()
[Synset('heartwood.n.01'), Synset('sapwood.n.01')]
>>> wn.synset('tree.n.01').member_holonyms()
[Synset('forest.n.01')]
To see just how intricate things can get, consider the word
        mint, which has several closely related senses.
        We can see that mint.n.04 is part
        of mint.n.02 and the substance from
        which mint.n.05 is made.
>>> for synset in wn.synsets('mint', wn.NOUN):
...     print synset.name + ':', synset.definition
...
batch.n.02: (often followed by `of') a large number or amount or extent
mint.n.02: any north temperate plant of the genus Mentha with aromatic leaves and
           small mauve flowers
mint.n.03: any member of the mint family of plants
mint.n.04: the leaves of a mint plant used fresh or candied
mint.n.05: a candy that is flavored with a mint oil
mint.n.06: a plant where money is coined by authority of the government
>>> wn.synset('mint.n.04').part_holonyms()
[Synset('mint.n.02')]
>>> wn.synset('mint.n.04').substance_holonyms()
[Synset('mint.n.05')]
There are also relationships between verbs. For example, the act
        of walking involves the act of
        stepping, so walking entails stepping. Some verbs have multiple
        entailments:
>>> wn.synset('walk.v.01').entailments()
[Synset('step.v.01')]
>>> wn.synset('eat.v.01').entailments()
[Synset('swallow.v.01'), Synset('chew.v.01')]
>>> wn.synset('tease.v.03').entailments()
[Synset('arouse.v.07'), Synset('disappoint.v.01')]
Some lexical relationships hold between lemmas, e.g., antonymy:
>>> wn.lemma('supply.n.02.supply').antonyms()
[Lemma('demand.n.02.demand')]
>>> wn.lemma('rush.v.01.rush').antonyms()
[Lemma('linger.v.04.linger')]
>>> wn.lemma('horizontal.a.01.horizontal').antonyms()
[Lemma('vertical.a.01.vertical'), Lemma('inclined.a.02.inclined')]
>>> wn.lemma('staccato.r.01.staccato').antonyms()
[Lemma('legato.r.01.legato')]
You can see the lexical relations, and the other methods defined
        on a synset, using dir(). For
        example, try dir(wn.synset('harmony.n.02')).

Semantic Similarity



We have seen that synsets are linked by a complex network of
        lexical relations. Given a particular synset, we can traverse the
        WordNet network to find synsets with related meanings. Knowing which
        words are semantically related is useful for indexing a collection of
        texts, so that a search for a general term such as
        vehicle will match documents containing specific
        terms such as limousine.
Recall that each synset has one or more hypernym paths that link
        it to a root hypernym such as entity.n.01. Two synsets linked to the same
        root may have several hypernyms in common (see Figure 2-8). If two synsets share a very specific
        hypernym—one that is low down in the hypernym hierarchy—they must be
        closely related.
>>> right = wn.synset('right_whale.n.01')
>>> orca = wn.synset('orca.n.01')
>>> minke = wn.synset('minke_whale.n.01')
>>> tortoise = wn.synset('tortoise.n.01')
>>> novel = wn.synset('novel.n.01')
>>> right.lowest_common_hypernyms(minke)
[Synset('baleen_whale.n.01')]
>>> right.lowest_common_hypernyms(orca)
[Synset('whale.n.02')]
>>> right.lowest_common_hypernyms(tortoise)
[Synset('vertebrate.n.01')]
>>> right.lowest_common_hypernyms(novel)
[Synset('entity.n.01')]
Of course we know that whale is very
        specific (and baleen whale even more so), whereas
        vertebrate is more general and
        entity is completely general. We can quantify
        this concept of generality by looking up the depth of each
        synset:
>>> wn.synset('baleen_whale.n.01').min_depth()
14
>>> wn.synset('whale.n.02').min_depth()
13
>>> wn.synset('vertebrate.n.01').min_depth()
8
>>> wn.synset('entity.n.01').min_depth()
0
Similarity measures have been defined over
        the collection of WordNet synsets that incorporate this insight. For
        example, path_similarity assigns a score in the range 0–1 based on the shortest path that
        connects the concepts in the hypernym hierarchy (-1 is returned in those cases where a path
        cannot be found). Comparing a synset with itself will return 1. Consider the following similarity scores,
        relating right whale to minke
        whale, orca,
        tortoise, and novel.
        Although the numbers won’t mean much, they decrease as we move away
        from the semantic space of sea creatures to inanimate objects.
>>> right.path_similarity(minke)
0.25
>>> right.path_similarity(orca)
0.16666666666666666
>>> right.path_similarity(tortoise)
0.076923076923076927
>>> right.path_similarity(novel)
0.043478260869565216
Note
Several other similarity measures are available; you can type
          help(wn) for more information.
          NLTK also includes VerbNet, a hierarchical verb lexicon linked to
          WordNet. It can be accessed with nltk.corpus.verbnet.



Summary



	A text corpus is a large, structured collection of texts. NLTK
          comes with many corpora, e.g., the Brown Corpus, nltk.corpus.brown.

	Some text corpora are categorized, e.g., by genre or topic;
          sometimes the categories of a corpus overlap each other.

	A conditional frequency distribution is a collection of
          frequency distributions, each one for a different condition. They
          can be used for counting word frequencies, given a context or a
          genre.

	Python programs more than a few lines long should be entered
          using a text editor, saved to a file with a .py extension, and accessed using an
          import statement.

	Python functions permit you to associate a name with a
          particular block of code, and reuse that code as often as
          necessary.

	Some functions, known as “methods,” are associated with an
          object, and we give the object name followed by a period followed by
          the method name, like this: x.funct(y), e.g., word.isalpha().

	To find out about some variable v, type help(v) in the Python interactive
          interpreter to read the help entry for this kind of object.

	WordNet is a semantically oriented dictionary of English,
          consisting of synonym sets—or synsets—and organized into a
          network.

	Some functions are not available by default, but must be
          accessed using Python’s import
          statement.




Further Reading



Extra materials for this chapter are posted at http://www.nltk.org/, including links to freely available
      resources on the Web. The corpus methods are summarized in the Corpus
      HOWTO, at http://www.nltk.org/howto, and
      documented extensively in the online API documentation.
Significant sources of published corpora are the
      Linguistic Data Consortium (LDC) and the
      European Language Resources Agency (ELRA). Hundreds
      of annotated text and speech corpora are available in dozens of
      languages. Non-commercial licenses permit the data to be used in
      teaching and research. For some corpora, commercial licenses are also
      available (but for a higher fee).
These and many other language resources have been documented using
      OLAC Metadata, and can be searched via the OLAC home page at http://www.language-archives.org/. Corpora
      List (see http://gandalf.aksis.uib.no/corpora/sub.html) is a
      mailing list for discussions about corpora, and you can find resources
      by searching the list archives or posting to the list. The most complete
      inventory of the world’s languages is Ethnologue,
      http://www.ethnologue.com/. Of 7,000 languages,
      only a few dozen have substantial digital resources suitable for use in
      NLP.
This chapter has touched on the field of Corpus Linguistics. Other useful books in this
      area include (Biber, Conrad, & Reppen, 1998), (McEnery, 2006),
      (Meyer, 2002), (Sampson & McCarthy, 2005), and (Scott & Tribble,
      2006). Further readings in quantitative data analysis in linguistics
      are: (Baayen, 2008), (Gries, 2009), and (Woods, Fletcher, & Hughes,
      1986).
The original description of WordNet is (Fellbaum, 1998). Although
      WordNet was originally developed for research in psycholinguistics, it
      is now widely used in NLP and Information Retrieval. WordNets are being
      developed for many other languages, as documented at http://www.globalwordnet.org/. For a study of WordNet
      similarity measures, see (Budanitsky & Hirst, 2006).
Other topics touched on in this chapter were phonetics and lexical
      semantics, and we refer readers to Chapters 7 and 20 of (Jurafsky &
      Martin, 2008).

Exercises



	○ Create a variable phrase
          containing a list of words. Experiment with the operations described
          in this chapter, including addition, multiplication, indexing,
          slicing, and sorting.

	○ Use the corpus module to explore austen-persuasion.txt. How many word
          tokens does this book have?
          How many word types?

	○ Use the Brown Corpus reader nltk.corpus.brown.words() or the Web Text
          Corpus reader nltk.corpus.webtext.words() to access some
          sample text in two different genres.

	○ Read in the texts of the State of the
          Union addresses, using the state_union corpus reader. Count
          occurrences of men, women, and people in each document. What has happened
          to the usage of these words over time?

	○ Investigate the holonym-meronym relations for some nouns.
          Remember that there are three kinds of holonym-meronym relation, so
          you need to use member_meronyms(), part_meronyms(), substance_meronyms(), member_holonyms(), part_holonyms(), and substance_holonyms().

	○ In the discussion of comparative wordlists, we created an
          object called translate, which you could look up using words in both German
          and Italian in order to get corresponding words in English. What
          problem might arise with this approach? Can you suggest a way to
          avoid this problem?

	○ According to Strunk and White’s Elements of
          Style, the word however, used at the
          start of a sentence, means “in whatever way” or “to whatever
          extent,” and not “nevertheless.” They give this example of correct
          usage: However you advise him, he will probably do as he
          thinks best. (http://www.bartleby.com/141/strunk3.html) Use the
          concordance tool to study actual usage of this word in the various
          texts we have been considering. See also the
          LanguageLog posting “Fossilized prejudices
          about ‘however’” at http://itre.cis.upenn.edu/~myl/languagelog/archives/001913.html.

	[image: ] Define a conditional frequency distribution over the Names
          Corpus that allows you to see which initial
          letters are more frequent for males versus females (see Figure 2-7).

	[image: ] Pick a pair of texts and study the differences between them,
          in terms of vocabulary, vocabulary richness, genre, etc. Can you
          find pairs of words that have quite different meanings across the
          two texts, such as monstrous in Moby
          Dick and in Sense and
          Sensibility?

	[image: ] Read the BBC News article: “UK’s Vicky Pollards ‘left
          behind’” at http://news.bbc.co.uk/1/hi/education/6173441.stm. The
          article gives the following statistic about teen language: “the top
          20 words used, including yeah, no, but and like, account for around
          a third of all words.” How many word types account for a third of
          all word tokens, for a variety of text sources? What do you conclude
          about this statistic? Read more about this on
          LanguageLog, at http://itre.cis.upenn.edu/~myl/languagelog/archives/003993.html.

	[image: ] Investigate the table of modal distributions and look for
          other patterns. Try to explain them in terms of your own
          impressionistic understanding of the different genres. Can you find
          other closed classes of words that exhibit significant differences
          across different genres?

	[image: ] The CMU Pronouncing Dictionary contains multiple
          pronunciations for certain words. How many distinct words does it
          contain? What fraction of words in this dictionary have more than
          one possible pronunciation?

	[image: ] What percentage of noun synsets have no hyponyms? You can
          get all noun synsets using wn.all_synsets('n').

	[image: ] Define a function supergloss(s) that takes a synset s as its argument and returns a string
          consisting of the concatenation of the definition of s, and the definitions of all the
          hypernyms and hyponyms of s.

	[image: ] Write a program to find all words that occur at least three
          times in the Brown Corpus.

	[image: ] Write a program to generate a table of lexical diversity
          scores (i.e., token/type ratios), as we saw in Table 1-1. Include the full set of Brown Corpus
          genres (nltk.corpus.brown.categories()). Which
          genre has the lowest diversity (greatest number of tokens per type)?
          Is this what you would have expected?

	[image: ] Write a function that finds the 50 most frequently occurring
          words of a text that are not stopwords.

	[image: ] Write a program to print the 50 most frequent bigrams (pairs
          of adjacent words) of a text, omitting bigrams that contain
          stopwords.

	[image: ] Write a program to create a table of word frequencies by
          genre, like the one given in Accessing Text Corpora for modals. Choose
          your own words and try to find words whose presence (or absence) is
          typical of a genre. Discuss your findings.

	[image: ] Write a function word_freq() that takes a word and the name
          of a section of the Brown Corpus as arguments, and computes the
          frequency of the word in that section of the corpus.

	[image: ] Write a program to guess the number of syllables contained
          in a text, making use of the CMU Pronouncing Dictionary.

	[image: ] Define a function hedge(text) that processes a text and
          produces a new version with the word 'like' between every third word.

	● Zipf’s Law: Let
          f(w) be the frequency of a
          word w in free text. Suppose that all the words
          of a text are ranked according to their frequency, with the most
          frequent word first. Zipf’s Law states that the frequency of a word
          type is inversely proportional
          to its rank (i.e., f × r =
          k, for some constant k).
          For example, the 50th most common word type should occur three times
          as frequently as the 150th most common word type.
	Write a function to process a large text and plot word
              frequency against word rank using pylab.plot. Do you confirm Zipf’s law?
              (Hint: it helps to use a logarithmic scale.) What is going on at
              the extreme ends of the plotted line?

	Generate random text, e.g., using random.choice("abcdefg "), taking care
              to include the space character. You will need to import random first. Use the string
              concatenation operator to accumulate characters into a (very)
              long string. Then tokenize this string, generate the Zipf plot
              as before, and compare the two plots. What do you make of Zipf’s
              Law in the light of this?




	● Modify the text generation program in Example 2-1 further, to do the following
          tasks:
	Store the n most likely words in a
              list words, then randomly
              choose a word from the list using random.choice(). (You will need to
              import random first.)

	Select a particular genre, such as a section of the Brown
              Corpus or a Genesis translation, one of the Gutenberg texts, or
              one of the Web texts. Train the model on this corpus and get it
              to generate random text. You may have to experiment with
              different start words. How intelligible is the text? Discuss the
              strengths and weaknesses of this method of generating random
              text.

	Now train your system using two distinct genres and
              experiment with generating text in the hybrid genre. Discuss
              your observations.




	● Define a function find_language() that takes a string as its
          argument and returns a list of languages that have that string as a
          word. Use the udhr corpus and
          limit your searches to files in the Latin-1 encoding.

	● What is the branching factor of the noun hypernym hierarchy?
          I.e., for every noun synset that has hyponyms—or children in the
          hypernym hierarchy—how many do they have on average? You can get all
          noun synsets using wn.all_synsets('n').

	● The polysemy of a word is the number of senses it has. Using
          WordNet, we can determine that the noun dog has
          seven senses with len(wn.synsets('dog',
          'n')). Compute the average polysemy of nouns, verbs,
          adjectives, and adverbs according to WordNet.

	● Use one of the predefined similarity measures to score the
          similarity of each of the following pairs of words. Rank the pairs
          in order of decreasing similarity. How close is your ranking to the
          order given here, an order that was established experimentally by
          (Miller & Charles, 1998): car-automobile, gem-jewel,
          journey-voyage, boy-lad, coast-shore, asylum-madhouse,
          magician-wizard, midday-noon, furnace-stove, food-fruit, bird-cock,
          bird-crane, tool-implement, brother-monk, lad-brother, crane-implement, journey-car,
          monk-oracle, cemetery-woodland, food-rooster, coast-hill, forest-graveyard,
          shore-woodland, monk-slave, coast-forest, lad-wizard, chord-smile,
          glass-magician, rooster-voyage, noon-string.




Chapter 3. Processing Raw Text



The most important source of texts is undoubtedly the Web. It’s
    convenient to have existing text collections to explore, such as the
    corpora we saw in the previous chapters. However, you probably have your
    own text sources in mind, and need to learn how to access them.
The goal of this chapter is to answer the following
    questions:
	How can we write programs to access text from local files and
        from the Web, in order to get hold of an unlimited range of language
        material?

	How can we split documents up into individual words and
        punctuation symbols, so we can carry out the same kinds of analysis we
        did with text corpora in earlier chapters?

	How can we write programs to produce formatted output and save
        it in a file?



In order to address these questions, we will be covering key
    concepts in NLP, including tokenization and stemming. Along the way you
    will consolidate your Python knowledge and learn about strings, files, and
    regular expressions. Since so much text on the Web is in HTML format, we
    will also see how to dispense with markup.
Note
Important: From this chapter
      onwards, our program samples will assume you begin your interactive
      session or your program with the following import statements:
>>> from __future__ import division
>>> import nltk, re, pprint

Accessing Text from the Web and from Disk



Electronic Books



A small sample of texts from Project Gutenberg appears in the
        NLTK corpus collection. However, you may be interested in analyzing
        other texts from Project Gutenberg. You can browse the catalog of
        25,000 free online books at http://www.gutenberg.org/catalog/, and obtain a URL to
        an ASCII text file. Although 90% of the texts in Project Gutenberg are
        in English, it includes material in over 50 other languages, including
        Catalan, Chinese, Dutch, Finnish, French, German, Italian, Portuguese,
        and Spanish (with more than 100 texts each).
Text number 2554 is an English translation of Crime
        and Punishment, and we can access it as follows.
>>> from urllib import urlopen
>>> url = "http://www.gutenberg.org/files/2554/2554.txt"
>>> raw = urlopen(url).read()
>>> type(raw)
<type 'str'>
>>> len(raw)
1176831
>>> raw[:75]
'The Project Gutenberg EBook of Crime and Punishment, by Fyodor Dostoevsky\r\n'
Note
The read() process will
          take a few seconds as it downloads this large book. If you’re using
          an Internet proxy that is not correctly detected by Python, you may
          need to specify the proxy manually as follows:
>>> proxies = {'http': 'http://www.someproxy.com:3128'}
>>> raw = urlopen(url, proxies=proxies).read()

The variable raw contains a
        string with 1,176,831 characters. (We can see that it is a string,
        using type(raw).) This is the raw
        content of the book, including many details we are not interested in,
        such as whitespace, line breaks, and blank lines. Notice the \r and \n
        in the opening line of the file, which is how Python displays the
        special carriage return and line-feed characters (the file must have
        been created on a Windows machine). For our language processing, we
        want to break up the string into words and punctuation, as we saw in
        Chapter 1. This step is called tokenization, and it produces our familiar
        structure, a list of words and punctuation.
>>> tokens = nltk.word_tokenize(raw)
>>> type(tokens)
<type 'list'>
>>> len(tokens)
255809
>>> tokens[:10]
['The', 'Project', 'Gutenberg', 'EBook', 'of', 'Crime', 'and', 'Punishment', ',', 'by']
Notice that NLTK was needed for tokenization, but not for any of
        the earlier tasks of opening a URL and reading it into a string. If we
        now take the further step of creating an NLTK text from this list, we
        can carry out all of the other linguistic processing we saw in Chapter
        1, along with the regular list operations, such as slicing:
>>> text = nltk.Text(tokens)
>>> type(text)
<type 'nltk.text.Text'>
>>> text[1020:1060]
['CHAPTER', 'I', 'On', 'an', 'exceptionally', 'hot', 'evening', 'early', 'in',
'July', 'a', 'young', 'man', 'came', 'out', 'of', 'the', 'garret', 'in',
'which', 'he', 'lodged', 'in', 'S', '.', 'Place', 'and', 'walked', 'slowly',
',', 'as', 'though', 'in', 'hesitation', ',', 'towards', 'K', '.', 'bridge', '.']
>>> text.collocations()
Katerina Ivanovna; Pulcheria Alexandrovna; Avdotya Romanovna; Pyotr
Petrovitch; Project Gutenberg; Marfa Petrovna; Rodion Romanovitch;
Sofya Semyonovna; Nikodim Fomitch; did not; Hay Market; Andrey
Semyonovitch; old woman; Literary Archive; Dmitri Prokofitch; great
deal; United States; Praskovya Pavlovna; Porfiry Petrovitch; ear rings
Notice that Project Gutenberg appears as a
        collocation. This is because each text downloaded from Project
        Gutenberg contains a header with the name of the text, the author, the
        names of people who scanned and corrected the text, a license, and so
        on. Sometimes this information appears in a footer at the end of the
        file. We cannot reliably detect where the content begins and ends, and
        so have to resort to manual inspection of the file, to discover unique
        strings that mark the beginning and the end, before trimming raw to be just the content and nothing
        else:
>>> raw.find("PART I")
5303
>>> raw.rfind("End of Project Gutenberg's Crime")
1157681
>>> raw = raw[5303:1157681] [image: 1]
>>> raw.find("PART I")
0
The find() and rfind() (“reverse find”) methods help us get
        the right index values to use for slicing the string [image: 1]. We overwrite raw with this slice, so now it begins with
        “PART I” and goes up to (but not including) the phrase that marks the
        end of the content.
This was our first brush with the reality of the Web: texts
        found on the Web may contain unwanted material, and there may not be
        an automatic way to remove it. But with a small amount of extra work
        we can extract the material we need.

Dealing with HTML



Much of the text on the Web is in the form of HTML documents.
        You can use a web browser to save a page as text to a local file, then
        access this as described in the later section on files. However, if
        you’re going to do this often, it’s easiest to get Python to do the
        work directly. The first step is the same as before, using urlopen. For fun we’ll pick a BBC News story
        called “Blondes to die out in 200 years,” an urban legend passed along
        by the BBC as established scientific fact:
>>> url = "http://news.bbc.co.uk/2/hi/health/2284783.stm"
>>> html = urlopen(url).read()
>>> html[:60]
'<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN'
You can type print html to
        see the HTML content in all its glory, including meta tags, an image
        map, JavaScript, forms, and tables.
Getting text out of HTML is a sufficiently common task that NLTK
        provides a helper function nltk.clean_html(), which takes an HTML
        string and returns raw text. We can then tokenize this to get our
        familiar text structure:
>>> raw = nltk.clean_html(html)
>>> tokens = nltk.word_tokenize(raw)
>>> tokens
['BBC', 'NEWS', '|', 'Health', '|', 'Blondes', "'", 'to', 'die', 'out', ...]
This still contains unwanted material concerning site navigation
        and related stories. With some trial and error you can find the start
        and end indexes of the content and select the tokens of interest, and
        initialize a text as before.
>>> tokens = tokens[96:399]
>>> text = nltk.Text(tokens)
>>> text.concordance('gene')
 they say too few people now carry the gene for blondes to last beyond the next tw
t blonde hair is caused by a recessive gene . In order for a child to have blonde
to have blonde hair , it must have the gene on both sides of the family in the gra
there is a disadvantage of having that gene or by chance . They don ' t disappear
ondes would disappear is if having the gene was a disadvantage and I do not think
Note
For more sophisticated processing of HTML, use the
          Beautiful Soup package, available at http://www.crummy.com/software/BeautifulSoup/.


Processing Search Engine Results



The Web can be thought of as a huge corpus of unannotated text.
        Web search engines provide an efficient means of searching this large
        quantity of text for relevant linguistic examples. The main advantage
        of search engines is size: since you are searching such a large set of
        documents, you are more likely to find any linguistic pattern you are
        interested in. Furthermore, you can make use of very specific
        patterns, which would match only one or two examples on a smaller
        example, but which might match tens of thousands of examples when run
        on the Web. A second advantage of web search engines is that they are
        very easy to use. Thus, they provide a very convenient tool for
        quickly checking a theory, to see if it is reasonable. See Table 3-1 for an example.
Table 3-1. Google hits for collocations: The number of hits for
          collocations involving the words absolutely or definitely, followed by one of adore, love,
          like, or prefer. (Liberman, in LanguageLog,
          2005)
	Google hits
	adore
	love
	like
	prefer

	absolutely
	289,000
	905,000
	16,200
	644

	definitely
	1,460
	51,000
	158,000
	62,600

	ratio
	198:1
	18:1
	1:10
	1:97




Unfortunately, search engines have some significant
        shortcomings. First, the allowable range of search patterns is
        severely restricted. Unlike local corpora, where you write programs to
        search for arbitrarily complex patterns, search engines generally only
        allow you to search for individual words or strings of words,
        sometimes with wildcards. Second, search engines give inconsistent
        results, and can give widely different figures when used at different
        times or in different geographical regions. When content has been
        duplicated across multiple sites, search results may be boosted.
        Finally, the markup in the result returned by a search engine may
        change unpredictably, breaking any pattern-based method of locating
        particular content (a problem which is ameliorated by the use of
        search engine APIs).
Note
Your Turn: Search the Web
          for "the of" (inside quotes).
          Based on the large count, can we conclude that the
          of is a frequent collocation in English?


Processing RSS Feeds



The blogosphere is an important source of text, in both formal
        and informal registers. With the help of a third-party Python library
        called the Universal Feed Parser, freely
        downloadable from http://feedparser.org/, we can
        access the content of a blog, as shown here:
>>> import feedparser
>>> llog = feedparser.parse("http://languagelog.ldc.upenn.edu/nll/?feed=atom")
>>> llog['feed']['title']
u'Language Log'
>>> len(llog.entries)
15
>>> post = llog.entries[2]
>>> post.title
u"He's My BF"
>>> content = post.content[0].value
>>> content[:70]
u'<p>Today I was chatting with three of our visiting graduate students f'
>>> nltk.word_tokenize(nltk.html_clean(content))
>>> nltk.word_tokenize(nltk.clean_html(llog.entries[2].content[0].value))
[u'Today', u'I', u'was', u'chatting', u'with', u'three', u'of', u'our', u'visiting',
u'graduate', u'students', u'from', u'the', u'PRC', u'.', u'Thinking', u'that', u'I',
u'was', u'being', u'au', u'courant', u',', u'I', u'mentioned', u'the', u'expression',
u'DUI4XIANG4', u'\u5c0d\u8c61', u'("', u'boy', u'/', u'girl', u'friend', u'"', ...]
Note that the resulting strings have a u prefix to indicate that they are Unicode
        strings (see Text Processing with Unicode). With some further work,
        we can write programs to create a small corpus of blog posts, and use
        this as the basis for our NLP work.

Reading Local Files



In order to read a local file, we need to use Python’s built-in
        open() function, followed by the
        read() method. Supposing you have a
        file document.txt, you can load
        its contents like this:
>>> f = open('document.txt')
>>> raw = f.read()
Note
Your Turn: Create a file
          called document.txt using a
          text editor, and type in a few lines of text, and save it as plain
          text. If you are using IDLE, select the New Window command in the
          File menu, typing the required text into this window, and then
          saving the file as document.txt
          inside the directory that IDLE offers in the pop-up dialogue box.
          Next, in the Python interpreter, open the file using f = open('document.txt'), then inspect its
          contents using print
          f.read().

Various things might have gone wrong when you tried this. If the
        interpreter couldn’t find your file, you would have seen an error like
        this:
>>> f = open('document.txt')
Traceback (most recent call last):
File "<pyshell#7>", line 1, in -toplevel-
f = open('document.txt')
IOError: [Errno 2] No such file or directory: 'document.txt'
To check that the file that you are trying to open is really in
        the right directory, use IDLE’s Open command in the File menu; this
        will display a list of all the files in the directory where IDLE is
        running. An alternative is to examine the current directory from
        within Python:
>>> import os
>>> os.listdir('.')
Another possible problem you might have encountered when
        accessing a text file is the newline conventions, which are different
        for different operating systems. The built-in open() function has a second parameter for
        controlling how the file is opened: open('document.txt', 'rU'). 'r' means to open the file for reading (the
        default), and 'U' stands for
        “Universal”, which lets us ignore the different conventions used for
        marking newlines.
Assuming that you can open the file, there are several methods
        for reading it. The read() method
        creates a string with the contents of the entire file:
>>> f.read()
'Time flies like an arrow.\nFruit flies like a banana.\n'
Recall that the '\n'
        characters are newlines; this is
        equivalent to pressing Enter on a keyboard and starting a new
        line.
We can also read a file one line at a time using a for loop:
>>> f = open('document.txt', 'rU')
>>> for line in f:
...     print line.strip()
Time flies like an arrow.
Fruit flies like a banana.
Here we use the strip()
        method to remove the newline character at the end of the input
        line.
NLTK’s corpus files can also be accessed using these methods. We
        simply have to use nltk.data.find() to get the filename for any corpus item. Then we can
        open and read it in the way we just demonstrated:
>>> path = nltk.data.find('corpora/gutenberg/melville-moby_dick.txt')
>>> raw = open(path, 'rU').read()

Extracting Text from PDF, MSWord, and Other Binary
        Formats



ASCII text and HTML text are human-readable formats. Text often
        comes in binary formats—such as PDF and MSWord—that can only be opened
        using specialized software. Third-party libraries such as pypdf and pywin32 provide access to these formats.
        Extracting text from multicolumn documents is particularly
        challenging. For one-off conversion of a few documents, it is simpler
        to open the document with a suitable application, then save it as text
        to your local drive, and access it as described below. If the document
        is already on the Web, you can enter its URL in Google’s search box.
        The search result often includes a link to an HTML version of the
        document, which you can save as text.

Capturing User Input



Sometimes we want to capture the text that a user inputs when
        she is interacting with our program. To prompt the user to type a line
        of input, call the Python function raw_input(). After saving the input to a
        variable, we can manipulate it just as we have done for other
        strings.
>>> s = raw_input("Enter some text: ")
Enter some text: On an exceptionally hot evening early in July
>>> print "You typed", len(nltk.word_tokenize(s)), "words."
You typed 8 words.

The NLP Pipeline



Figure 3-1 summarizes what we have covered
        in this section, including the process of building a vocabulary that
        we saw in Chapter 1. (One step, normalization, will be discussed in
        Normalizing Text.)
[image: The processing pipeline: We open a URL and read its HTML content, remove the markup and select a slice of characters; this is then tokenized and optionally converted into an nltk.Text object; we can also lowercase all the words and extract the vocabulary.]

Figure 3-1. The processing pipeline: We open a URL and read its HTML
          content, remove the markup and select a slice of characters; this is
          then tokenized and optionally converted into an nltk.Text
          object; we can also lowercase all the words and extract the
          vocabulary.


There’s a lot going on in this pipeline. To understand it
        properly, it helps to be clear about the type of each variable that it
        mentions. We find out the type of any Python object x using type(x); e.g.,
        type(1) is <int> since 1 is an integer.
When we load the contents of a URL or file, and when we strip
        out HTML markup, we are dealing with strings, Python’s <str> data type (we will learn more
        about strings in Strings: Text Processing at the Lowest Level):
>>> raw = open('document.txt').read()
>>> type(raw)
<type 'str'>
When we tokenize a string we produce a list (of words), and this
        is Python’s <list> type.
        Normalizing and sorting lists produces other lists:
>>> tokens = nltk.word_tokenize(raw)
>>> type(tokens)
<type 'list'>
>>> words = [w.lower() for w in tokens]
>>> type(words)
<type 'list'>
>>> vocab = sorted(set(words))
>>> type(vocab)
<type 'list'>
The type of an object determines what operations you can perform
        on it. So, for example, we can append to a list but not to a
        string:
>>> vocab.append('blog')
>>> raw.append('blog')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'str' object has no attribute 'append'
Similarly, we can concatenate strings with strings, and lists
        with lists, but we cannot concatenate strings with lists:
>>> query = 'Who knows?'
>>> beatles = ['john', 'paul', 'george', 'ringo']
>>> query + beatles
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'list' objects
In the next section, we examine strings more closely and further
        explore the relationship between strings and lists.


Strings: Text Processing at the Lowest Level



It’s time to study a fundamental data type that we’ve been
      studiously avoiding so far. In earlier chapters we focused on a text as
      a list of words. We didn’t look too closely at words and how they are
      handled in the programming language. By using NLTK’s corpus interface we
      were able to ignore the files that these texts had come from. The
      contents of a word, and of a file, are represented by programming
      languages as a fundamental data type known as a string. In this section, we explore strings in
      detail, and show the connection between strings, words, texts, and
      files.
Basic Operations with Strings



Strings are specified using single quotes [image: 1] or double quotes [image: 2], as shown in the following code
        example. If a string contains a single quote, we must backslash-escape
        the quote [image: 3] so Python knows a
        literal quote character is intended, or else put the string in double
        quotes [image: 2]. Otherwise, the quote
        inside the string [image: 4] will be
        interpreted as a close quote, and the Python interpreter will report a
        syntax error:
>>> monty = 'Monty Python' [image: 1]
>>> monty
'Monty Python'
>>> circus = "Monty Python's Flying Circus" [image: 2]
>>> circus
"Monty Python's Flying Circus"
>>> circus = 'Monty Python\'s Flying Circus' [image: 3]
>>> circus
"Monty Python's Flying Circus"
>>> circus = 'Monty Python's Flying Circus' [image: 4]
  File "<stdin>", line 1
    circus = 'Monty Python's Flying Circus'
                           ^
SyntaxError: invalid syntax
Sometimes strings go over several lines. Python provides us with
        various ways of entering them. In the next example, a sequence of two
        strings is joined into a single string. We need to use backslash [image: 1] or parentheses [image: 2] so that the interpreter knows that
        the statement is not complete after the first line.
>>> couplet = "Shall I compare thee to a Summer's day?"\
...           "Thou are more lovely and more temperate:" [image: 1]
>>> print couplet
Shall I compare thee to a Summer's day?Thou are more lovely and more temperate:
>>> couplet = ("Rough winds do shake the darling buds of May,"
...           "And Summer's lease hath all too short a date:") [image: 2]
>>> print couplet
Rough winds do shake the darling buds of May,And Summer's lease hath all too short a date:
Unfortunately these methods do not give us a newline between the
        two lines of the sonnet. Instead, we can use a triple-quoted string as
        follows:
>>> couplet = """Shall I compare thee to a Summer's day?
... Thou are more lovely and more temperate:"""
>>> print couplet
Shall I compare thee to a Summer's day?
Thou are more lovely and more temperate:
>>> couplet = '''Rough winds do shake the darling buds of May,
... And Summer's lease hath all too short a date:'''
>>> print couplet
Rough winds do shake the darling buds of May,
And Summer's lease hath all too short a date:
Now that we can define strings, we can try some simple
        operations on them. First let’s look at the + operation, known as concatenation [image: 1]. It produces a new string that
        is a copy of the two original strings pasted together end-to-end.
        Notice that concatenation doesn’t do anything clever like insert a
        space between the words. We can even multiply strings [image: 2]:
>>> 'very' + 'very' + 'very' [image: 1]
'veryveryvery'
>>> 'very' * 3 [image: 2]
'veryveryvery'
Note
Your Turn: Try running the
          following code, then try to use your understanding of the string
          + and * operations to figure out how it works.
          Be careful to distinguish between the string ' ', which is a single whitespace
          character, and '', which is the
          empty string.
>>> a = [1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1]
>>> b = [' ' * 2 * (7 - i) + 'very' * i for i in a]
>>> for line in b:
...     print line

We’ve seen that the addition and multiplication operations apply
        to strings, not just numbers. However, note that we cannot use
        subtraction or division with strings:
>>> 'very' - 'y'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'
>>> 'very' / 2
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for /: 'str' and 'int'
These error messages are another example of Python telling us
        that we have got our data types in a muddle. In the first case, we are
        told that the operation of subtraction (i.e., -) cannot apply to objects of type str (strings), while in the second, we are
        told that division cannot take str
        and int as its two
        operands.

Printing Strings



So far, when we have wanted to look at the contents of a
        variable or see the result of a calculation, we have just typed the
        variable name into the interpreter. We can also see the contents of a
        variable using the print
        statement:
>>> print monty
Monty Python
Notice that there are no quotation marks this time. When we
        inspect a variable by typing its name in the interpreter, the
        interpreter prints the Python representation of its value. Since it’s
        a string, the result is quoted. However, when we tell the interpreter
        to print the contents of the
        variable, we don’t see quotation characters, since there are none
        inside the string.
The print statement allows us
        to display more than one item on a line in various ways, as shown
        here:
>>> grail = 'Holy Grail'
>>> print monty + grail
Monty PythonHoly Grail
>>> print monty, grail
Monty Python Holy Grail
>>> print monty, "and the", grail
Monty Python and the Holy Grail

Accessing Individual Characters



As we saw in A Closer Look at Python: Texts as Lists of Words for
        lists, strings are indexed, starting from zero. When we index a
        string, we get one of its characters (or letters). A single character
        is nothing special—it’s just a string of length 1.
>>> monty[0]
'M'
>>> monty[3]
't'
>>> monty[5]
' '
As with lists, if we try to access an index that is outside of
        the string, we get an error:
>>> monty[20]
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
IndexError: string index out of range
Again as with lists, we can use negative indexes for strings,
        where -1 is the index of the last
        character [image: 1]. Positive and negative
        indexes give us two ways to refer to any position in a string. In this
        case, when the string had a length of 12, indexes 5 and -7
        both refer to the same character (a space). (Notice that 5 = len(monty) - 7.)
>>> monty[-1] [image: 1]
'n'
>>> monty[5]
' '
>>> monty[-7]
' '
We can write for loops to
        iterate over the characters in strings. This print statement ends with a trailing comma,
        which is how we tell Python not to print a newline at the
        end.
>>> sent = 'colorless green ideas sleep furiously'
>>> for char in sent:
...     print char,
...
c o l o r l e s s   g r e e n   i d e a s   s l e e p   f u r i o u s l y
We can count individual characters as well. We should ignore the
        case distinction by normalizing everything to lowercase, and filter
        out non-alphabetic characters:
>>> from nltk.corpus import gutenberg
>>> raw = gutenberg.raw('melville-moby_dick.txt')
>>> fdist = nltk.FreqDist(ch.lower() for ch in raw if ch.isalpha())
>>> fdist.keys()
['e', 't', 'a', 'o', 'n', 'i', 's', 'h', 'r', 'l', 'd', 'u', 'm', 'c', 'w',
'f', 'g', 'p', 'b', 'y', 'v', 'k', 'q', 'j', 'x', 'z']
This gives us the letters of the alphabet, with the most
        frequently occurring letters listed first (this is quite complicated
        and we’ll explain it more carefully later). You might like to
        visualize the distribution using fdist.plot(). The relative character
        frequencies of a text can be used in automatically identifying the
        language of the text.

Accessing Substrings



[image: String slicing: The string Monty Python is shown along with its positive and negative indexes; two substrings are selected using “slice” notation. The slice [m,n] contains the characters from position m through n-1.]

Figure 3-2. String slicing: The string Monty
          Python is shown along with its positive and negative
          indexes; two substrings are selected using “slice” notation. The
          slice [m,n] contains the
          characters from position m through n-1.

A substring is any continuous section of a string that we want
        to pull out for further processing. We can easily access substrings
        using the same slice notation we used for lists (see Figure 3-2). For example, the following code
        accesses the substring starting at index 6, up to (but not including) index 10:
>>> monty[6:10]
'Pyth'
Here we see the characters are 'P', 'y',
        't', and 'h', which correspond to monty[6] ... monty[9] but not monty[10]. This is because a slice
        starts at the first index but finishes
        one before the end index.
We can also slice with negative indexes—the same basic rule of
        starting from the start index and stopping one before the end index
        applies; here we stop before the space character.
>>> monty[-12:-7]
'Monty'
As with list slices, if we omit the first value, the substring
        begins at the start of the string. If we omit the second value, the
        substring continues to the end of the string:
>>> monty[:5]
'Monty'
>>> monty[6:]
'Python'
We test if a string contains a particular substring using the
        in operator, as follows:
>>> phrase = 'And now for something completely different'
>>> if 'thing' in phrase:
...     print 'found "thing"'
found "thing"
We can also find the position of a substring within a string,
        using find():
>>> monty.find('Python')
6
Note
Your Turn: Make up a
          sentence and assign it to a variable, e.g., sent = 'my sentence...'. Now write slice
          expressions to pull out individual words. (This is obviously not a
          convenient way to process the words of a text!)


More Operations on Strings



Python has comprehensive support for processing strings. A
        summary, including some operations we haven’t seen yet, is shown in
        Table 3-2. For more information on
        strings, type help(str) at the
        Python prompt.
Table 3-2. Useful string methods: Operations on strings in addition to
          the string tests shown in Table 1-4; all
          methods produce a new string or list
	Method
	Functionality

	s.find(t)
	Index of first instance of string t inside s (-1 if not found)

	s.rfind(t)
	Index of last instance of string t inside s (-1 if not found)

	s.index(t)
	Like s.find(t), except it raises ValueError if not
                found

	s.rindex(t)
	Like s.rfind(t), except it raises
                ValueError if not
                found

	s.join(text)
	Combine the words of the text into a string using
                s as the
                glue

	s.split(t)
	Split s into a
                list wherever a t is found
                (whitespace by default)

	s.splitlines()
	Split s into a
                list of strings, one per line

	s.lower()
	A lowercased version of the string s

	s.upper()
	An uppercased version of the string s

	s.title()
	A titlecased version of the string s

	s.strip()
	A copy of s
                without leading or trailing whitespace

	s.replace(t,
                u)
	Replace instances of t with u inside s





The Difference Between Lists and Strings



Strings and lists are both kinds of sequence. We can pull them apart by indexing
        and slicing them, and we can join them together by concatenating them.
        However, we cannot join strings and lists:
>>> query = 'Who knows?'
>>> beatles = ['John', 'Paul', 'George', 'Ringo']
>>> query[2]
'o'
>>> beatles[2]
'George'
>>> query[:2]
'Wh'
>>> beatles[:2]
['John', 'Paul']
>>> query + " I don't"
"Who knows? I don't"
>>> beatles + 'Brian'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "str") to list
>>> beatles + ['Brian']
['John', 'Paul', 'George', 'Ringo', 'Brian']
When we open a file for reading into a Python program, we get a
        string corresponding to the contents of the whole file. If we use a
        for loop to process the elements of
        this string, all we can pick out are the individual characters—we
        don’t get to choose the granularity. By contrast, the elements of a
        list can be as big or small as we like: for example, they could be
        paragraphs, sentences, phrases, words, characters. So lists have the
        advantage that we can be flexible about the elements they contain, and
        correspondingly flexible about any downstream processing.
        Consequently, one of the first things we are likely to do in a piece
        of NLP code is tokenize a string into a list of strings (Regular Expressions for Tokenizing Text). Conversely, when we want to write our
        results to a file, or to a terminal, we will usually format them as a
        string (Formatting: From Lists to Strings).
Lists and strings do not have exactly the same functionality.
        Lists have the added power that you can change their elements:
>>> beatles[0] = "John Lennon"
>>> del beatles[-1]
>>> beatles
['John Lennon', 'Paul', 'George']
On the other hand, if we try to do that with a
        string—changing the 0th character in query to 'F'—we get:
>>> query[0] = 'F'
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
TypeError: object does not support item assignment
This is because strings are immutable: you can’t change a string once you
        have created it. However, lists are mutable, and their contents can be modified
        at any time. As a result, lists support operations that modify the
        original value rather than producing a new value.
Note
Your Turn: Consolidate your
          knowledge of strings by trying some of the exercises on strings at
          the end of this chapter.



Text Processing with Unicode



Our programs will often need to deal with different languages, and
      different character sets. The concept of “plain text” is a fiction. If
      you live in the English-speaking world you probably use ASCII, possibly
      without realizing it. If you live in Europe you might use one of the
      extended Latin character sets, containing such characters as
      “ø” for Danish and Norwegian, “ő” for Hungarian, “ñ”
      for Spanish and Breton, and “ň” for Czech and Slovak. In this section,
      we will give an overview of how to use Unicode for processing texts that
      use non-ASCII character sets.
What Is Unicode?



Unicode supports over a million characters. Each character is
        assigned a number, called a code
        point. In Python, code points are written in the form
        \uXXXX, where
        XXXX is the number in four-digit hexadecimal
        form.
Within a program, we can manipulate Unicode strings just like
        normal strings. However, when Unicode characters are stored in files
        or displayed on a terminal, they must be encoded as a stream of bytes.
        Some encodings (such as ASCII and Latin-2) use a single byte per code
        point, so they can support only a small subset of Unicode, enough for
        a single language. Other encodings (such as UTF-8) use multiple bytes
        and can represent the full range of Unicode characters.
Text in files will be in a particular encoding, so we need some
        mechanism for translating it into Unicode—translation into Unicode is
        called decoding. Conversely, to
        write out Unicode to a file or a terminal, we first need to translate
        it into a suitable encoding—this translation out of Unicode is called
        encoding, and is illustrated in
        Figure 3-3.
[image: Unicode decoding and encoding.]

Figure 3-3. Unicode decoding and encoding.


From a Unicode perspective, characters are abstract entities
        that can be realized as one or more glyphs. Only glyphs can appear on a screen or
        be printed on paper. A font is a mapping from characters to
        glyphs.

Extracting Encoded Text from Files



Let’s assume that we have a small text file, and that we know
        how it is encoded. For example, polish-lat2.txt, as the name suggests, is a
        snippet of Polish text (from the Polish Wikipedia; see http://pl.wikipedia.org/wiki/Biblioteka_Pruska). This
        file is encoded as Latin-2, also known as ISO-8859-2. The function
        nltk.data.find() locates the file for us.
>>> path = nltk.data.find('corpora/unicode_samples/polish-lat2.txt')
The Python codecs module
        provides functions to read encoded data into Unicode strings, and to
        write out Unicode strings in encoded form. The codecs.open() function takes an encoding
        parameter to specify the encoding of the file being read or written.
        So let’s import the codecs module,
        and call it with the encoding 'latin2' to open our Polish file as
        Unicode:
>>> import codecs
>>> f = codecs.open(path, encoding='latin2')
For a list of encoding parameters allowed by codecs, see http://docs.python.org/lib/standard-encodings.html.
        Note that we can write Unicode-encoded data to a file using f = codecs.open(path, 'w', encoding='utf-8').
Text read from the file object f will be returned in Unicode. As we pointed
        out earlier, in order to view this text on a terminal, we need to
        encode it, using a suitable encoding. The Python-specific encoding
        unicode_escape is a dummy encoding
        that converts all non-ASCII characters into their \uXXXX representations.
        Code points above the ASCII 0–127 range but below 256 are represented
        in the two-digit form \xXX.
>>> for line in f:
...     line = line.strip()
...     print line.encode('unicode_escape')
Pruska Biblioteka Pa\u0144stwowa. Jej dawne zbiory znane pod nazw\u0105
"Berlinka" to skarb kultury i sztuki niemieckiej. Przewiezione przez
Niemc\xf3w pod koniec II wojny \u015bwiatowej na Dolny \u015al\u0105sk, zosta\u0142y
odnalezione po 1945 r. na terytorium Polski. Trafi\u0142y do Biblioteki
Jagiello\u0144skiej w Krakowie, obejmuj\u0105 ponad 500 tys. zabytkowych
archiwali\xf3w, m.in. manuskrypty Goethego, Mozarta, Beethovena, Bacha.
The first line in this output illustrates a Unicode escape
        string preceded by the \u escape
        string, namely \u0144. The relevant
        Unicode character will be displayed on the screen as the glyph ń. In
        the third line of the preceding example, we see \xf3, which corresponds to the glyph ó, and
        is within the 128–255 range.
In Python, a Unicode string literal can be specified by
        preceding an ordinary string literal with a u, as in u'hello'. Arbitrary Unicode characters are
        defined using the \uXXXX escape sequence
        inside a Unicode string literal. We find the integer ordinal of a
        character using ord(). For
        example:
>>> ord('a')
97
The hexadecimal four-digit notation for 97 is 0061, so we can
        define a Unicode string literal with the appropriate escape
        sequence:
>>> a = u'\u0061'
>>> a
u'a'
>>> print a
a
Notice that the Python print
        statement is assuming a default encoding of the Unicode character,
        namely ASCII. However, ń is outside the ASCII range, so cannot be
        printed unless we specify an encoding. In the following example, we
        have specified that print should
        use the repr() of the string, which
        outputs the UTF-8 escape sequences (of the form \xXX) rather than
        trying to render the glyphs.
>>> nacute = u'\u0144'
>>> nacute
u'\u0144'
>>> nacute_utf = nacute.encode('utf8')
>>> print repr(nacute_utf)
'\xc5\x84'
If your operating system and locale are set up to render UTF-8
        encoded characters, you ought to be able to give the Python command
        print nacute_utf and see ń on your
        screen.
Note
There are many factors determining what glyphs are rendered on
          your screen. If you are sure that you have the correct encoding, but
          your Python code is still failing to produce the glyphs you
          expected, you should also check that you have the necessary fonts
          installed on your system.

The module unicodedata lets
        us inspect the properties of Unicode characters. In the following
        example, we select all characters in the third line of our Polish text
        outside the ASCII range and print their UTF-8 escaped value, followed
        by their code point integer using the standard Unicode convention
        (i.e., prefixing the hex digits with U+), followed by their Unicode
        name.
>>> import unicodedata
>>> lines = codecs.open(path, encoding='latin2').readlines()
>>> line = lines[2]
>>> print line.encode('unicode_escape')
Niemc\xf3w pod koniec II wojny \u015bwiatowej na Dolny \u015al\u0105sk, zosta\u0142y\n
>>> for c in line:
...     if ord(c) > 127:
...         print '%r U+%04x %s' % (c.encode('utf8'), ord(c), unicodedata.name(c))
'\xc3\xb3' U+00f3 LATIN SMALL LETTER O WITH ACUTE
'\xc5\x9b' U+015b LATIN SMALL LETTER S WITH ACUTE
'\xc5\x9a' U+015a LATIN CAPITAL LETTER S WITH ACUTE
'\xc4\x85' U+0105 LATIN SMALL LETTER A WITH OGONEK
'\xc5\x82' U+0142 LATIN SMALL LETTER L WITH STROKE
If you replace the %r (which
        yields the repr() value) by
        %s in the format string of the
        preceding code sample, and if your system supports UTF-8, you should
        see an output like the following:
ó U+00f3 LATIN SMALL LETTER O WITH ACUTE
ś U+015b LATIN SMALL LETTER S WITH ACUTE
Ś U+015a LATIN CAPITAL LETTER S WITH ACUTE
ą U+0105 LATIN SMALL LETTER A WITH OGONEK
ł U+0142 LATIN SMALL LETTER L WITH STROKE

Alternatively, you may need to replace the encoding 'utf8' in the example by 'latin2', again depending on the details of
        your system.
The next examples illustrate how Python string methods and the
        re module accept Unicode
        strings.
>>> line.find(u'zosta\u0142y')
54
>>> line = line.lower()
>>> print line.encode('unicode_escape')
niemc\xf3w pod koniec ii wojny \u015bwiatowej na dolny \u015bl\u0105sk, zosta\u0142y\n
>>> import re
>>> m = re.search(u'\u015b\w*', line)
>>> m.group()
u'\u015bwiatowej'
NLTK tokenizers allow Unicode strings as input, and
        correspondingly yield Unicode strings as output.
>>> nltk.word_tokenize(line)  
[u'niemc\xf3w', u'pod', u'koniec', u'ii', u'wojny', u'\u015bwiatowej',
u'na', u'dolny', u'\u015bl\u0105sk', u'zosta\u0142y']

Using Your Local Encoding in Python



If you are used to working with characters in a particular local
        encoding, you probably want to be able to use your standard methods
        for inputting and editing strings in a Python file. In order to do
        this, you need to include the string '# -*-
        coding: <coding> -*-' as the first or second line of
        your file. Note that <coding>
        has to be a string like 'latin-1',
        'big5', or 'utf-8' (see Figure 3-4).
[image: Unicode and IDLE: UTF-8 encoded string literals in the IDLE editor; this requires that an appropriate font is set in IDLE’s preferences; here we have chosen Courier CE.]

Figure 3-4. Unicode and IDLE: UTF-8 encoded string literals in the IDLE
          editor; this requires that an appropriate font is set in IDLE’s
          preferences; here we have chosen Courier CE.

Figure 3-4 also illustrates how regular
        expressions can use encoded strings.


Regular Expressions for Detecting Word Patterns



Many linguistic processing tasks involve pattern matching. For
      example, we can find words ending with ed using
      endswith('ed'). We saw a variety of
      such “word tests” in Table 1-4. Regular
      expressions give us a more powerful and flexible method for describing
      the character patterns we are interested in.
Note
There are many other published introductions to regular
        expressions, organized around the syntax of regular expressions and
        applied to searching text files. Instead of doing this again, we focus
        on the use of regular expressions at different stages of linguistic
        processing. As usual, we’ll adopt a problem-based approach and present
        new features only as they are needed to solve practical problems. In
        our discussion we will mark regular expressions using chevrons like
        this: «patt».

To use regular expressions in Python, we need to import the
      re library using: import re. We also need a list of words to
      search; we’ll use the Words Corpus again (Lexical Resources). We will preprocess it to remove any
      proper names.
>>> import re
>>> wordlist = [w for w in nltk.corpus.words.words('en') if w.islower()]
Using Basic Metacharacters



Let’s find words ending with ed using the
        regular expression «ed$». We will
        use the re.search(p, s) function to
        check whether the pattern p can be
        found somewhere inside the string s. We need to specify the characters of
        interest, and use the dollar sign, which has a special behavior in the
        context of regular expressions in that it matches the end of the
        word:
>>> [w for w in wordlist if re.search('ed$', w)]
['abaissed', 'abandoned', 'abased', 'abashed', 'abatised', 'abed', 'aborted', ...]
The . wildcard symbol matches any single character.
        Suppose we have room in a crossword puzzle for an eight-letter word,
        with j as its third letter and
        t as its sixth letter. In place of each blank
        cell we use a period:
>>> [w for w in wordlist if re.search('^..j..t..$', w)]
['abjectly', 'adjuster', 'dejected', 'dejectly', 'injector', 'majestic', ...]
Note
Your Turn: The caret symbol
          ^ matches the start of a string,
          just like the $ matches the end.
          What results do we get with the example just shown if we leave out
          both of these, and search for «..j..t..»?

Finally, the ? symbol
        specifies that the previous character is optional. Thus «^e-?mail$» will match both
        email and e-mail. We could
        count the total number of occurrences of this word (in either
        spelling) in a text using sum(1 for w in text
        if re.search('^e-?mail$', w)).

Ranges and Closures



The T9 system is used for
        entering text on mobile phones (see Figure 3-5). Two or
        more words that are entered with the same sequence of keystrokes are
        known as textonyms. For example, both
        hole and golf are entered by
        pressing the sequence 4653. What other words could be produced with
        the same sequence? Here we use the regular expression «^[ghi][mno][jlk][def]$»:
>>> [w for w in wordlist if re.search('^[ghi][mno][jlk][def]$', w)]
['gold', 'golf', 'hold', 'hole']
The first part of the expression, «^[ghi]», matches the start of a word
        followed by g, h, or
        i. The next part of the expression, «[mno]», constrains the second character to
        be m, n, or
        o. The third and fourth characters are also
        constrained. Only four words satisfy all these constraints. Note that
        the order of characters inside the square brackets is not significant,
        so we could have written «^[hig][nom][ljk][fed]$» and matched the same
        words.
[image: T9: Text on 9 keys.]

Figure 3-5. T9: Text on 9 keys.


Note
Your Turn: Look for some
          “finger-twisters,” by searching for words that use only part of the
          number-pad. For example «^[ghijklmno]+$», or more concisely,
          «^[g-o]+$», will match words that
          only use keys 4, 5, 6 in the center row, and «^[a-fj-o]+$» will match words that use
          keys 2, 3, 5, 6 in the top-right corner. What do - and +
          mean?

Let’s explore the + symbol a
        bit further. Notice that it can be applied to individual letters, or
        to bracketed sets of letters:
>>> chat_words = sorted(set(w for w in nltk.corpus.nps_chat.words()))
>>> [w for w in chat_words if re.search('^m+i+n+e+$', w)]
['miiiiiiiiiiiiinnnnnnnnnnneeeeeeeeee', 'miiiiiinnnnnnnnnneeeeeeee', 'mine',
'mmmmmmmmiiiiiiiiinnnnnnnnneeeeeeee']
>>> [w for w in chat_words if re.search('^[ha]+$', w)]
['a', 'aaaaaaaaaaaaaaaaa', 'aaahhhh', 'ah', 'ahah', 'ahahah', 'ahh',
'ahhahahaha', 'ahhh', 'ahhhh', 'ahhhhhh', 'ahhhhhhhhhhhhhh', 'h', 'ha', 'haaa',
'hah', 'haha', 'hahaaa', 'hahah', 'hahaha', 'hahahaa', 'hahahah', 'hahahaha', ...]
It should be clear that +
        simply means “one or more instances of the preceding item,” which
        could be an individual character like m, a set like [fed], or a range like [d-f]. Now let’s replace + with *,
        which means “zero or more instances of the preceding item.” The
        regular expression «^m*i*n*e*$»
        will match everything that we found using «^m+i+n+e+$», but also words where some of
        the letters don’t appear at all, e.g., me,
        min, and mmmmm. Note that
        the + and * symbols are sometimes referred to as
        Kleene closures, or simply
        closures.
The ^ operator has another
        function when it appears as the first character inside square
        brackets. For example, «[^aeiouAEIOU]» matches any character other
        than a vowel. We can search the NPS Chat Corpus for words that are
        made up entirely of non-vowel characters using «^[^aeiouAEIOU]+$» to find items like these:
        :):):), grrr, cyb3r, and zzzzzzzz. Notice this includes
        non-alphabetic characters.
Here are some more examples of regular expressions being used to
        find tokens that match a particular pattern, illustrating the use of
        some new symbols: \, {}, (),
        and |.
>>> wsj = sorted(set(nltk.corpus.treebank.words()))
>>> [w for w in wsj if re.search('^[0-9]+\.[0-9]+$', w)]
['0.0085', '0.05', '0.1', '0.16', '0.2', '0.25', '0.28', '0.3', '0.4', '0.5',
'0.50', '0.54', '0.56', '0.60', '0.7', '0.82', '0.84', '0.9', '0.95', '0.99',
'1.01', '1.1', '1.125', '1.14', '1.1650', '1.17', '1.18', '1.19', '1.2', ...]
>>> [w for w in wsj if re.search('^[A-Z]+\$$', w)]
['C$', 'US$']
>>> [w for w in wsj if re.search('^[0-9]{4}$', w)]
['1614', '1637', '1787', '1901', '1903', '1917', '1925', '1929', '1933', ...]
>>> [w for w in wsj if re.search('^[0-9]+-[a-z]{3,5}$', w)]
['10-day', '10-lap', '10-year', '100-share', '12-point', '12-year', ...]
>>> [w for w in wsj if re.search('^[a-z]{5,}-[a-z]{2,3}-[a-z]{,6}$', w)]
['black-and-white', 'bread-and-butter', 'father-in-law', 'machine-gun-toting',
'savings-and-loan']
>>> [w for w in wsj if re.search('(ed|ing)$', w)]
['62%-owned', 'Absorbed', 'According', 'Adopting', 'Advanced', 'Advancing', ...]
Note
Your Turn: Study the
          previous examples and try to work out what the \, {},
          (), and | notations mean before you read
          on.

You probably worked out that a backslash means that the
        following character is deprived of its special powers and must
        literally match a specific character in the word. Thus, while . is special, \. only matches a period. The braced
        expressions, like {3,5}, specify
        the number of repeats of the previous item. The pipe character
        indicates a choice between the material on its left or its right.
        Parentheses indicate the scope of an operator, and they can be used
        together with the pipe (or disjunction) symbol like this: «w(i|e|ai|oo)t», matching
        wit, wet,
        wait, and woot. It is
        instructive to see what happens when you omit the parentheses from the
        last expression in the example, and search for «ed|ing$».
The metacharacters we have seen are summarized in Table 3-3.
Table 3-3. Basic regular expression metacharacters, including wildcards,
          ranges, and closures
	Operator
	Behavior

	.
	Wildcard, matches any character

	^abc
	Matches some pattern abc at
                the start of a string

	abc$
	Matches some pattern abc at
                the end of a string

	[abc]
	Matches one of a set of characters

	[A-Z0-9]
	Matches one of a range of
                characters

	ed|ing|s
	Matches one of the specified strings
                (disjunction)

	*
	Zero or more of previous item, e.g., a*, [a-z]* (also known as
                Kleene Closure)

	+
	One or more of previous item, e.g., a+, [a-z]+

	?
	Zero or one of the previous item (i.e.,
                optional), e.g., a?,
                [a-z]?

	{n}
	Exactly n repeats where
                n is a non-negative
                integer

	{n,}
	At least n
                repeats

	{,n}
	No more than n
                repeats

	{m,n}
	At least m and no more than
                n repeats

	a(b|c)+
	Parentheses that indicate the scope of the
                operators




To the Python interpreter, a regular expression is just like any
        other string. If the string contains a backslash followed by
        particular characters, it will interpret these specially. For example,
        \b would be interpreted as the
        backspace character. In general, when using regular expressions
        containing backslash, we should instruct the interpreter not to look
        inside the string at all, but simply to pass it directly to the
        re library for processing. We do
        this by prefixing the string with the letter r, to indicate that it is a raw string. For example, the raw string
        r'\band\b' contains two \b symbols that are interpreted by the re library as matching word boundaries
        instead of backspace characters. If you get into the habit of using
        r'...' for regular expressions—as
        we will do from now on—you will avoid having to think about these
        complications.


Useful Applications of Regular Expressions



The previous examples all involved searching for words
      w that match some regular expression
      regexp using re.search(regexp, w). Apart from checking whether a regular expression matches
      a word, we can use regular expressions to extract material from words,
      or to modify words in specific ways.
Extracting Word Pieces



The re.findall() (“find all”)
        method finds all (non-overlapping) matches of the given regular
        expression. Let’s find all the vowels in a word, then count
        them:
>>> word = 'supercalifragilisticexpialidocious'
>>> re.findall(r'[aeiou]', word)
['u', 'e', 'a', 'i', 'a', 'i', 'i', 'i', 'e', 'i', 'a', 'i', 'o', 'i', 'o', 'u']
>>> len(re.findall(r'[aeiou]', word))
16
Let’s look for all sequences of two or more vowels in some text,
        and determine their relative frequency:
>>> wsj = sorted(set(nltk.corpus.treebank.words()))
>>> fd = nltk.FreqDist(vs for word in wsj
...                       for vs in re.findall(r'[aeiou]{2,}', word))
>>> fd.items()
[('io', 549), ('ea', 476), ('ie', 331), ('ou', 329), ('ai', 261), ('ia', 253),
('ee', 217), ('oo', 174), ('ua', 109), ('au', 106), ('ue', 105), ('ui', 95),
('ei', 86), ('oi', 65), ('oa', 59), ('eo', 39), ('iou', 27), ('eu', 18), ...]
Note
Your Turn: In the W3C Date
          Time Format, dates are represented like this: 2009-12-31. Replace
          the ? in the following Python
          code with a regular expression, in order to convert the string
          '2009-12-31' to a list of
          integers [2009, 12, 31]:
[int(n) for n in re.findall(?,
          '2009-12-31')]


Doing More with Word Pieces



Once we can use re.findall()
        to extract material from words, there are interesting things to do
        with the pieces, such as glue them back together or plot them.
It is sometimes noted that English text is highly redundant, and
        it is still easy to read when word-internal vowels are left out. For
        example, declaration becomes
        dclrtn, and inalienable
        becomes inlnble, retaining any initial or final
        vowel sequences. The regular expression in our next example matches
        initial vowel sequences, final vowel sequences, and all consonants;
        everything else is ignored. This three-way disjunction is processed
        left-to-right, and if one of the three parts matches the word, any
        later parts of the regular expression are ignored. We use re.findall() to extract all the matching
        pieces, and ''.join() to join them
        together (see Formatting: From Lists to Strings for more about the
        join operation).
>>> regexp = r'^[AEIOUaeiou]+|[AEIOUaeiou]+$|[^AEIOUaeiou]'
>>> def compress(word):
...     pieces = re.findall(regexp, word)
...     return ''.join(pieces)
...
>>> english_udhr = nltk.corpus.udhr.words('English-Latin1')
>>> print nltk.tokenwrap(compress(w) for w in english_udhr[:75])
Unvrsl Dclrtn of Hmn Rghts Prmble Whrs rcgntn of the inhrnt dgnty and
of the eql and inlnble rghts of all mmbrs of the hmn fmly is the fndtn
of frdm , jstce and pce in the wrld , Whrs dsrgrd and cntmpt fr hmn
rghts hve rsltd in brbrs acts whch hve outrgd the cnscnce of mnknd ,
and the advnt of a wrld in whch hmn bngs shll enjy frdm of spch and
Next, let’s combine regular expressions with conditional
        frequency distributions. Here we will extract all consonant-vowel
        sequences from the words of Rotokas, such as ka
        and si. Since each of these is a pair, it can be
        used to initialize a conditional frequency distribution. We then
        tabulate the frequency of each pair:
>>> rotokas_words = nltk.corpus.toolbox.words('rotokas.dic')
>>> cvs = [cv for w in rotokas_words for cv in re.findall(r'[ptksvr][aeiou]', w)]
>>> cfd = nltk.ConditionalFreqDist(cvs)
>>> cfd.tabulate()
     a    e    i    o    u
k  418  148   94  420  173
p   83   31  105   34   51
r  187   63   84   89   79
s    0    0  100    2    1
t   47    8    0  148   37
v   93   27  105   48   49
Examining the rows for s and
        t, we see they are in partial “complementary
        distribution,” which is evidence that they are not distinct phonemes
        in the language. Thus, we could conceivably drop
        s from the Rotokas alphabet and simply have a
        pronunciation rule that the letter t is
        pronounced s when followed by
        i. (Note that the single entry having
        su, namely kasuari,
        ‘cassowary’ is borrowed from English).
If we want to be able to inspect the words behind the numbers in
        that table, it would be helpful to have an index, allowing us to
        quickly find the list of words that contains a given consonant-vowel
        pair. For example, cv_index['su']
        should give us all words containing su. Here’s
        how we can do this:
>>> cv_word_pairs = [(cv, w) for w in rotokas_words
...                          for cv in re.findall(r'[ptksvr][aeiou]', w)]
>>> cv_index = nltk.Index(cv_word_pairs)
>>> cv_index['su']
['kasuari']
>>> cv_index['po']
['kaapo', 'kaapopato', 'kaipori', 'kaiporipie', 'kaiporivira', 'kapo', 'kapoa',
'kapokao', 'kapokapo', 'kapokapo', 'kapokapoa', 'kapokapoa', 'kapokapora', ...]
This program processes each word w in turn, and for each one, finds every
        substring that matches the regular expression «[ptksvr][aeiou]». In the case of the word
        kasuari, it finds ka,
        su, and ri. Therefore, the
        cv_word_pairs list will contain
        ('ka',
        'kasuari'), ('su',
        'kasuari'), and ('ri',
        'kasuari'). One further step, using nltk.Index(), converts this into a useful
        index.

Finding Word Stems



When we use a web search engine, we usually don’t mind (or even
        notice) if the words in the document differ from our search terms in
        having different endings. A query for laptops
        finds documents containing laptop and vice versa.
        Indeed, laptop and laptops
        are just two forms of the same dictionary word (or lemma). For some
        language processing tasks we want to ignore word endings, and just
        deal with word stems.
There are various ways we can pull out the stem of a word.
        Here’s a simple-minded approach that just strips off anything that
        looks like a suffix:
>>> def stem(word):
...     for suffix in ['ing', 'ly', 'ed', 'ious', 'ies', 'ive', 'es', 's', 'ment']:
...         if word.endswith(suffix):
...             return word[:-len(suffix)]
...     return word
Although we will ultimately use NLTK’s built-in stemmers, it’s
        interesting to see how we can use regular expressions for this task.
        Our first step is to build up a disjunction of all the suffixes. We
        need to enclose it in parentheses in order to limit the scope of the
        disjunction.
>>> re.findall(r'^.*(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processing')
['ing']
Here, re.findall() just gave
        us the suffix even though the regular expression matched the entire
        word. This is because the parentheses have a second function, to
        select substrings to be extracted. If we want to use the parentheses
        to specify the scope of the disjunction, but not to select the
        material to be output, we have to add ?:, which is just one of many arcane
        subtleties of regular expressions. Here’s the revised
        version.
>>> re.findall(r'^.*(?:ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processing')
['processing']
However, we’d actually like to split the word into stem and
        suffix. So we should just parenthesize both parts of the regular
        expression:
>>> re.findall(r'^(.*)(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processing')
[('process', 'ing')]
This looks promising, but still has a problem. Let’s look at a
        different word, processes:
>>> re.findall(r'^(.*)(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processes')
[('processe', 's')]
The regular expression incorrectly found an
        -s suffix instead of an -es
        suffix. This demonstrates another subtlety: the star operator is
        “greedy” and so the .* part of the
        expression tries to consume as much of the input as possible. If we
        use the “non-greedy” version of the star operator, written *?, we get what we want:
>>> re.findall(r'^(.*?)(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processes')
[('process', 'es')]
This works even when we allow an empty suffix, by making the
        content of the second parentheses optional:
>>> re.findall(r'^(.*?)(ing|ly|ed|ious|ies|ive|es|s|ment)?$', 'language')
[('language', '')]
This approach still has many problems (can you spot them?), but
        we will move on to define a function to perform stemming, and apply it
        to a whole text:
>>> def stem(word):
...     regexp = r'^(.*?)(ing|ly|ed|ious|ies|ive|es|s|ment)?$'
...     stem, suffix = re.findall(regexp, word)[0]
...     return stem
...
>>> raw = """DENNIS: Listen, strange women lying in ponds distributing swords
... is no basis for a system of government.  Supreme executive power derives from
... a mandate from the masses, not from some farcical aquatic ceremony."""
>>> tokens = nltk.word_tokenize(raw)
>>> [stem(t) for t in tokens]
['DENNIS', ':', 'Listen', ',', 'strange', 'women', 'ly', 'in', 'pond',
'distribut', 'sword', 'i', 'no', 'basi', 'for', 'a', 'system', 'of', 'govern',
'.', 'Supreme', 'execut', 'power', 'deriv', 'from', 'a', 'mandate', 'from',
'the', 'mass', ',', 'not', 'from', 'some', 'farcical', 'aquatic', 'ceremony', '.']
Notice that our regular expression removed the
        s from ponds but also from
        is and basis. It produced
        some non-words, such as distribut and
        deriv, but these are acceptable stems in some
        applications.

Searching Tokenized Text



You can use a special kind of regular expression for searching
        across multiple words in a text (where a text is a list of tokens).
        For example, "<a>
        <man>" finds all instances of a
        man in the text. The angle brackets are used to mark token
        boundaries, and any whitespace between the angle brackets is ignored
        (behaviors that are unique to NLTK’s findall() method for texts). In the following example, we include
        <.*> [image: 1], which will match any single
        token, and enclose it in parentheses so only the matched word (e.g.,
        monied) and not the matched phrase (e.g.,
        a monied man) is produced. The second example
        finds three-word phrases ending with the word bro
        [image: 2]. The last example finds
        sequences of three or more words starting with the letter
        l [image: 3].
>>> from nltk.corpus import gutenberg, nps_chat
>>> moby = nltk.Text(gutenberg.words('melville-moby_dick.txt'))
>>> moby.findall(r"<a> (<.*>) <man>") [image: 1]
monied; nervous; dangerous; white; white; white; pious; queer; good;
mature; white; Cape; great; wise; wise; butterless; white; fiendish;
pale; furious; better; certain; complete; dismasted; younger; brave;
brave; brave; brave
>>> chat = nltk.Text(nps_chat.words())
>>> chat.findall(r"<.*> <.*> <bro>") [image: 2]
you rule bro; telling you bro; u twizted bro
>>> chat.findall(r"<l.*>{3,}") [image: 3]
lol lol lol; lmao lol lol; lol lol lol; la la la la la; la la la; la
la la; lovely lol lol love; lol lol lol.; la la la; la la la
Note
Your Turn: Consolidate your
          understanding of regular expression patterns and substitutions using
          nltk.re_show(p, s), which annotates the string s to show every
          place where pattern p was matched,
          and nltk.app.nemo(), which
          provides a graphical interface for exploring regular expressions.
          For more practice, try some of the exercises on regular expressions
          at the end of this chapter.

It is easy to build search patterns when the linguistic
        phenomenon we’re studying is tied to particular words. In some cases,
        a little creativity will go a long way. For instance, searching a
        large text corpus for expressions of the form x and other
        ys allows us to discover hypernyms (see WordNet):
>>> from nltk.corpus import brown
>>> hobbies_learned = nltk.Text(brown.words(categories=['hobbies', 'learned']))
>>> hobbies_learned.findall(r"<\w*> <and> <other> <\w*s>")
speed and other activities; water and other liquids; tomb and other
landmarks; Statues and other monuments; pearls and other jewels;
charts and other items; roads and other features; figures and other
objects; military and other areas; demands and other factors;
abstracts and other compilations; iron and other metals
With enough text, this approach would give us a useful store of
        information about the taxonomy of objects, without the need for any
        manual labor. However, our search results will usually contain false
        positives, i.e., cases that we would want to exclude. For example, the
        result demands and other factors suggests that
        demand is an instance of the type
        factor, but this sentence is actually about wage
        demands. Nevertheless, we could construct our own ontology of English
        concepts by manually correcting the output of such searches.
Note
This combination of automatic and manual processing is the
          most common way for new corpora to be constructed. We will return to
          this in Chapter 11.

Searching corpora also suffers from the problem of false
        negatives, i.e., omitting cases that we would want to include. It is
        risky to conclude that some linguistic phenomenon doesn’t exist in a
        corpus just because we couldn’t find any instances of a search
        pattern. Perhaps we just didn’t think carefully enough about suitable
        patterns.
Note
Your Turn: Look for
          instances of the pattern as x as y to discover
          information about entities and their properties.



Normalizing Text



In earlier program examples we have often converted text to
      lowercase before doing anything with its words, e.g., set(w.lower() for w in text). By using
      lower(), we have normalized the text to lowercase so that the
      distinction between The and
      the is ignored. Often we want to go further than
      this and strip off any affixes, a task known as stemming. A further step
      is to make sure that the resulting form is a known word in a dictionary,
      a task known as lemmatization. We discuss each of these in turn. First,
      we need to define the data we will use in this section:
>>> raw = """DENNIS: Listen, strange women lying in ponds distributing swords
... is no basis for a system of government.  Supreme executive power derives from
... a mandate from the masses, not from some farcical aquatic ceremony."""
>>> tokens = nltk.word_tokenize(raw)
Stemmers



NLTK includes several off-the-shelf stemmers, and if you ever
        need a stemmer, you should use one of these in preference to crafting
        your own using regular expressions, since NLTK’s stemmers handle a
        wide range of irregular cases. The Porter and Lancaster stemmers
        follow their own rules for stripping affixes. Observe that the Porter
        stemmer correctly handles the word lying (mapping
        it to lie), whereas the Lancaster stemmer does
        not.
>>> porter = nltk.PorterStemmer()
>>> lancaster = nltk.LancasterStemmer()
>>> [porter.stem(t) for t in tokens]
['DENNI', ':', 'Listen', ',', 'strang', 'women', 'lie', 'in', 'pond',
'distribut', 'sword', 'is', 'no', 'basi', 'for', 'a', 'system', 'of', 'govern',
'.', 'Suprem', 'execut', 'power', 'deriv', 'from', 'a', 'mandat', 'from',
'the', 'mass', ',', 'not', 'from', 'some', 'farcic', 'aquat', 'ceremoni', '.']
>>> [lancaster.stem(t) for t in tokens]
['den', ':', 'list', ',', 'strange', 'wom', 'lying', 'in', 'pond', 'distribut',
'sword', 'is', 'no', 'bas', 'for', 'a', 'system', 'of', 'govern', '.', 'suprem',
'execut', 'pow', 'der', 'from', 'a', 'mand', 'from', 'the', 'mass', ',', 'not',
'from', 'som', 'farc', 'aqu', 'ceremony', '.']
Stemming is not a well-defined process, and we typically pick
        the stemmer that best suits the application we have in mind. The
        Porter Stemmer is a good choice if you are indexing some texts and
        want to support search using alternative forms of words (illustrated
        in Example 3-1, which uses
        object-oriented programming techniques that are
        outside the scope of this book, string formatting techniques to be
        covered in Formatting: From Lists to Strings, and the enumerate() function to be explained in
        Sequences).
Example 3-1. Indexing a text using a stemmer.
class IndexedText(object):

    def __init__(self, stemmer, text):
        self._text = text
        self._stemmer = stemmer
        self._index = nltk.Index((self._stem(word), i)
                                 for (i, word) in enumerate(text))

    def concordance(self, word, width=40):
        key = self._stem(word)
        wc = width/4                # words of context
        for i in self._index[key]:
            lcontext = ' '.join(self._text[i-wc:i])
            rcontext = ' '.join(self._text[i:i+wc])
            ldisplay = '%*s'  % (width, lcontext[-width:])
            rdisplay = '%-*s' % (width, rcontext[:width])
            print ldisplay, rdisplay

    def _stem(self, word):
        return self._stemmer.stem(word).lower()
>>> porter = nltk.PorterStemmer()
>>> grail = nltk.corpus.webtext.words('grail.txt')
>>> text = IndexedText(porter, grail)
>>> text.concordance('lie')
r king ! DENNIS : Listen , strange women lying in ponds distributing swords is no
 beat a very brave retreat . ROBIN : All lies ! MINSTREL : [ singing ] Bravest of
       Nay . Nay . Come . Come . You may lie here . Oh , but you are wounded !
doctors immediately ! No , no , please ! Lie down . [ clap clap ] PIGLET : Well
ere is much danger , for beyond the cave lies the Gorge of Eternal Peril , which
   you . Oh ... TIM : To the north there lies a cave -- the cave of Caerbannog --
h it and lived ! Bones of full fifty men lie strewn about its lair . So , brave k
not stop our fight ' til each one of you lies dead , and the Holy Grail returns t



Lemmatization



The WordNet lemmatizer removes affixes only if the resulting
        word is in its dictionary. This additional checking process makes the
        lemmatizer slower than the stemmers just mentioned. Notice that it
        doesn’t handle lying, but it converts
        women to woman.
>>> wnl = nltk.WordNetLemmatizer()
>>> [wnl.lemmatize(t) for t in tokens]
['DENNIS', ':', 'Listen', ',', 'strange', 'woman', 'lying', 'in', 'pond',
'distributing', 'sword', 'is', 'no', 'basis', 'for', 'a', 'system', 'of',
'government', '.', 'Supreme', 'executive', 'power', 'derives', 'from', 'a',
'mandate', 'from', 'the', 'mass', ',', 'not', 'from', 'some', 'farcical',
'aquatic', 'ceremony', '.']
The WordNet lemmatizer is a good choice if you want to compile
        the vocabulary of some texts and want a list of valid lemmas (or
        lexicon headwords).
Note
Another normalization task involves identifying non-standard words, including numbers,
          abbreviations, and dates, and mapping any such tokens to a special
          vocabulary. For example, every decimal number could be mapped to a
          single token 0.0, and every
          acronym could be mapped to AAA.
          This keeps the vocabulary small and improves the accuracy of many
          language modeling tasks.



Regular Expressions for Tokenizing Text



Tokenization is the task of cutting a string into identifiable
      linguistic units that constitute a piece of language data. Although it
      is a fundamental task, we have been able to delay it until now because
      many corpora are already tokenized, and because NLTK includes some
      tokenizers. Now that you are familiar with regular expressions, you can
      learn how to use them to tokenize text, and to have much more control
      over the process.
Simple Approaches to Tokenization



The very simplest method for tokenizing text is to split on
        whitespace. Consider the following text from Alice’s
        Adventures in Wonderland:
>>> raw = """'When I'M a Duchess,' she said to herself, (not in a very hopeful tone
... though), 'I won't have any pepper in my kitchen AT ALL. Soup does very
... well without--Maybe it's always pepper that makes people hot-tempered,'..."""
We could split this raw text on whitespace using raw.split(). To do the same using a regular
        expression, it is not enough to match any space characters in the
        string [image: 1], since this results in
        tokens that contain a \n newline
        character; instead, we need to match any number of spaces, tabs, or
        newlines [image: 2]:
>>> re.split(r' ', raw) [image: 1]
["'When", "I'M", 'a', "Duchess,'", 'she', 'said', 'to', 'herself,', '(not', 'in',
'a', 'very', 'hopeful', 'tone\nthough),', "'I", "won't", 'have', 'any', 'pepper',
'in', 'my', 'kitchen', 'AT', 'ALL.', 'Soup', 'does', 'very\nwell', 'without--Maybe',
"it's", 'always', 'pepper', 'that', 'makes', 'people', "hot-tempered,'..."]
>>> re.split(r'[ \t\n]+', raw) [image: 2]
["'When", "I'M", 'a', "Duchess,'", 'she', 'said', 'to', 'herself,', '(not', 'in',
'a', 'very', 'hopeful', 'tone', 'though),', "'I", "won't", 'have', 'any', 'pepper',
'in', 'my', 'kitchen', 'AT', 'ALL.', 'Soup', 'does', 'very', 'well', 'without--Maybe',
"it's", 'always', 'pepper', 'that', 'makes', 'people', "hot-tempered,'..."]
The regular expression «[
        \t\n]+» matches one or more spaces, tabs (\t), or newlines (\n). Other whitespace characters, such as
        carriage return and form feed, should really be included too. Instead,
        we will use a built-in re
        abbreviation, \s, which means any
        whitespace character. The second statement in the preceding example
        can be rewritten as re.split(r'\s+',
        raw).
Note
Important: Remember to
          prefix regular expressions with the letter r (meaning “raw”), which instructs the
          Python interpreter to treat the string literally, rather than
          processing any backslashed characters it contains.

Splitting on whitespace gives us tokens like '(not' and 'herself,'. An alternative is to use the
        fact that Python provides us with a character class \w for word characters, equivalent to
        [a-zA-Z0-9_]. It also defines the
        complement of this class, \W, i.e.,
        all characters other than letters, digits, or underscore. We can use
        \W in a simple regular expression
        to split the input on anything other than a word
        character:
>>> re.split(r'\W+', raw)
['', 'When', 'I', 'M', 'a', 'Duchess', 'she', 'said', 'to', 'herself', 'not', 'in',
'a', 'very', 'hopeful', 'tone', 'though', 'I', 'won', 't', 'have', 'any', 'pepper',
'in', 'my', 'kitchen', 'AT', 'ALL', 'Soup', 'does', 'very', 'well', 'without',
'Maybe', 'it', 's', 'always', 'pepper', 'that', 'makes', 'people', 'hot', 'tempered',
'']
Observe that this gives us empty strings at the start and the
        end (to understand why, try doing 'xx'.split('x')). With re.findall(r'\w+', raw), we get the same
        tokens, but without the empty strings, using a pattern that matches
        the words instead of the spaces. Now that we’re matching the words,
        we’re in a position to extend the regular expression to cover a wider
        range of cases. The regular expression «\w+|\S\w*» will first try to match any
        sequence of word characters. If no match is found, it will try to
        match any non-whitespace character (\S is the complement of \s) followed by further word characters.
        This means that punctuation is grouped with any following letters
        (e.g., ’s) but that sequences of two or more
        punctuation characters are separated.
>>> re.findall(r'\w+|\S\w*', raw)
["'When", 'I', "'M", 'a', 'Duchess', ',', "'", 'she', 'said', 'to', 'herself', ',',
'(not', 'in', 'a', 'very', 'hopeful', 'tone', 'though', ')', ',', "'I", 'won', "'t",
'have', 'any', 'pepper', 'in', 'my', 'kitchen', 'AT', 'ALL', '.', 'Soup', 'does',
'very', 'well', 'without', '-', '-Maybe', 'it', "'s", 'always', 'pepper', 'that',
'makes', 'people', 'hot', '-tempered', ',', "'", '.', '.', '.']
Let’s generalize the \w+ in
        the preceding expression to permit word-internal hyphens and
        apostrophes: «\w+([-']\w+)*». This
        expression means \w+ followed by
        zero or more instances of [-']\w+;
        it would match hot-tempered and
        it’s. (We need to include ?: in this expression for reasons discussed
        earlier.) We’ll also add a pattern to match quote characters so these
        are kept separate from the text they enclose.
>>> print re.findall(r"\w+(?:[-']\w+)*|'|[-.(]+|\S\w*", raw)
["'", 'When', "I'M", 'a', 'Duchess', ',', "'", 'she', 'said', 'to', 'herself', ',',
'(', 'not', 'in', 'a', 'very', 'hopeful', 'tone', 'though', ')', ',', "'", 'I',
"won't", 'have', 'any', 'pepper', 'in', 'my', 'kitchen', 'AT', 'ALL', '.', 'Soup',
'does', 'very', 'well', 'without', '--', 'Maybe', "it's", 'always', 'pepper',
'that', 'makes', 'people', 'hot-tempered', ',', "'", '...']
The expression in this example also included «[-.(]+», which causes the double hyphen,
        ellipsis, and open parenthesis to be tokenized separately.
Table 3-4 lists the regular expression
        character class symbols we have seen in this section, in addition to
        some other useful symbols.
Table 3-4. Regular expression symbols
	Symbol
	Function

	\b
	Word boundary (zero width)

	\d
	Any decimal digit (equivalent to [0-9])

	\D
	Any non-digit character (equivalent to [^0-9])

	\s
	Any whitespace character (equivalent to [ \t\n\r\f\v]

	\S
	Any non-whitespace character (equivalent to
                [^
                \t\n\r\f\v])

	\w
	Any alphanumeric character (equivalent to
                [a-zA-Z0-9_])

	\W
	Any non-alphanumeric character (equivalent to
                [^a-zA-Z0-9_])

	\t
	The tab character

	\n
	The newline character





NLTK’s Regular Expression Tokenizer



The function nltk.regexp_tokenize() is similar to
        re.findall() (as we’ve been using
        it for tokenization). However, nltk.regexp_tokenize() is more efficient for
        this task, and avoids the need for special treatment of parentheses.
        For readability we break up the regular expression over several lines
        and add a comment about each line. The special (?x) “verbose flag” tells Python to strip
        out the embedded whitespace and comments.
>>> text = 'That U.S.A. poster-print costs $12.40...'
>>> pattern = r'''(?x)    # set flag to allow verbose regexps
...     ([A-Z]\.)+        # abbreviations, e.g. U.S.A.
...   | \w+(-\w+)*        # words with optional internal hyphens
...   | \$?\d+(\.\d+)?%?  # currency and percentages, e.g. $12.40, 82%
...   | \.\.\.            # ellipsis
...   | [][.,;"'?():-_`]  # these are separate tokens
... '''
>>> nltk.regexp_tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']
When using the verbose flag, you can no longer use ' ' to match a space character; use \s instead. The regexp_tokenize() function has an optional gaps parameter. When set to True, the regular expression specifies the
        gaps between tokens, as with re.split().
Note
We can evaluate a tokenizer by comparing the resulting tokens
          with a wordlist, and then report any tokens that don’t appear in the
          wordlist, using set(tokens).difference(wordlist). You’ll probably want to lowercase all the tokens first.


Further Issues with Tokenization



Tokenization turns out to be a far more difficult task than you
        might have expected. No single solution works well across the board,
        and we must decide what counts as a token depending on the application
        domain.
When developing a tokenizer it helps to have access to raw text
        which has been manually tokenized, in order to compare the output of
        your tokenizer with high-quality (or “gold-standard”) tokens. The NLTK
        corpus collection includes a sample of Penn Treebank data, including
        the raw Wall Street Journal text (nltk.corpus.treebank_raw.raw()) and the
        tokenized version (nltk.corpus.treebank.words()).
A final issue for tokenization is the presence of contractions,
        such as didn’t. If we are analyzing the meaning
        of a sentence, it would probably be more useful to normalize this form
        to two separate forms: did and
        n’t (or not). We can do this
        work with the help of a lookup table.


Segmentation



This section discusses more advanced concepts, which you may
      prefer to skip on the first time through this chapter.
Tokenization is an instance of a more general problem of segmentation. In this section, we will look at
      two other instances of this problem, which use radically different
      techniques to the ones we have seen so far in this chapter.
Sentence Segmentation



Manipulating texts at the level of individual words often
        presupposes the ability to divide a text into individual sentences. As
        we have seen, some corpora already provide access at the sentence
        level. In the following example, we compute the average number of
        words per sentence in the Brown Corpus:
>>> len(nltk.corpus.brown.words()) / len(nltk.corpus.brown.sents())
20.250994070456922
In other cases, the text is available only as a stream of
        characters. Before tokenizing the text into words, we need to segment
        it into sentences. NLTK facilitates this by including the Punkt
        sentence segmenter (Kiss & Strunk, 2006). Here is an example of
        its use in segmenting the text of a novel. (Note that if the
        segmenter’s internal data has been updated by the time you read this,
        you will see different output.)
>>> sent_tokenizer=nltk.data.load('tokenizers/punkt/english.pickle')
>>> text = nltk.corpus.gutenberg.raw('chesterton-thursday.txt')
>>> sents = sent_tokenizer.tokenize(text)
>>> pprint.pprint(sents[171:181])
['"Nonsense!',
 '" said Gregory, who was very rational when anyone else\nattempted paradox.',
 '"Why do all the clerks and navvies in the\nrailway trains look so sad and tired,...',
 'I will\ntell you.',
 'It is because they know that the train is going right.',
 'It\nis because they know that whatever place they have taken a ticket\nfor that ...',
 'It is because after they have\npassed Sloane Square they know that the next stat...',
 'Oh, their wild rapture!',
 'oh,\ntheir eyes like stars and their souls again in Eden, if the next\nstation w...'
 '"\n\n"It is you who are unpoetical," replied the poet Syme.']
Notice that this example is really a single sentence, reporting
        the speech of Mr. Lucian Gregory. However, the quoted speech contains
        several sentences, and these have been split into individual strings.
        This is reasonable behavior for most applications.
Sentence segmentation is difficult because a period is used to
        mark abbreviations, and some periods simultaneously mark an
        abbreviation and terminate a sentence, as often happens with acronyms
        like U.S.A.
For another approach to sentence segmentation, see Further Examples of Supervised Classification.

Word Segmentation



For some writing systems, tokenizing text is made more difficult
        by the fact that there is no visual representation of word boundaries.
        For example, in Chinese, the three-character string: 爱国人 (ai4 “love”
        [verb], guo3 “country”, ren2 “person”) could be tokenized as 爱国 / 人,
        “country-loving person,” or as 爱 / 国人, “love
        country-person.”
A similar problem arises in the processing of spoken language,
        where the hearer must segment a continuous speech stream into
        individual words. A particularly challenging version of this problem
        arises when we don’t know the words in advance. This is the problem
        faced by a language learner, such as a child hearing utterances from a
        parent. Consider the following artificial example, where word
        boundaries have been removed:
Example 3-2. 
	doyouseethekitty

	seethedoggy

	doyoulikethekitty

	likethedoggy





Our first challenge is simply to represent the problem: we need
        to find a way to separate text content from the segmentation. We can
        do this by annotating each character with a boolean value to indicate
        whether or not a word-break appears after the character (an idea that
        will be used heavily for “chunking” in Chapter 7). Let’s assume that
        the learner is given the utterance breaks, since these often
        correspond to extended pauses. Here is a possible representation,
        including the initial and target segmentations:
>>> text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
>>> seg1 = "0000000000000001000000000010000000000000000100000000000"
>>> seg2 = "0100100100100001001001000010100100010010000100010010000"
Observe that the segmentation strings consist of zeros and ones.
        They are one character shorter than the source text, since a text of
        length n can be broken up in only
        n–1 places. The segment() function in Example 3-3 demonstrates that we can get back to the
        original segmented text from its representation.
Example 3-3. Reconstruct segmented text from string representation:
          seg1 and seg2
          represent the initial and final segmentations of some hypothetical
          child-directed speech; the segment() function can use them
          to reproduce the segmented text.
def segment(text, segs):
    words = []
    last = 0
    for i in range(len(segs)):
        if segs[i] == '1':
            words.append(text[last:i+1])
            last = i+1
    words.append(text[last:])
    return words
>>> text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
>>> seg1 = "0000000000000001000000000010000000000000000100000000000"
>>> seg2 = "0100100100100001001001000010100100010010000100010010000"
>>> segment(text, seg1)
['doyouseethekitty', 'seethedoggy', 'doyoulikethekitty', 'likethedoggy']
>>> segment(text, seg2)
['do', 'you', 'see', 'the', 'kitty', 'see', 'the', 'doggy', 'do', 'you',
 'like', 'the', kitty', 'like', 'the', 'doggy']


Now the segmentation task becomes a search problem: find the bit
        string that causes the text string to be correctly segmented into
        words. We assume the learner is acquiring words and storing them in an
        internal lexicon. Given a suitable lexicon, it is possible to
        reconstruct the source text as a sequence of lexical items. Following
        (Brent & Cartwright, 1995), we can define an objective function, a scoring function whose
        value we will try to optimize, based on the size of the lexicon and
        the amount of information needed to reconstruct the source text from
        the lexicon. We illustrate this in Figure 3-6.
[image: Calculation of objective function: Given a hypothetical segmentation of the source text (on the left), derive a lexicon and a derivation table that permit the source text to be reconstructed, then total up the number of characters used by each lexical item (including a boundary marker) and each derivation, to serve as a score of the quality of the segmentation; smaller values of the score indicate a better segmentation.]

Figure 3-6. Calculation of objective function: Given a hypothetical
          segmentation of the source text (on the left), derive a lexicon and
          a derivation table that permit the source text to be reconstructed,
          then total up the number of characters used by each lexical item
          (including a boundary marker) and each derivation, to serve as a
          score of the quality of the segmentation; smaller values of the
          score indicate a better segmentation.


It is a simple matter to implement this objective function, as
        shown in Example 3-4.
Example 3-4. Computing the cost of storing the lexicon and reconstructing
          the source text.
def evaluate(text, segs):
    words = segment(text, segs)
    text_size = len(words)
    lexicon_size = len(' '.join(list(set(words))))
    return text_size + lexicon_size
>>> text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
>>> seg1 = "0000000000000001000000000010000000000000000100000000000"
>>> seg2 = "0100100100100001001001000010100100010010000100010010000"
>>> seg3 = "0000100100000011001000000110000100010000001100010000001"
>>> segment(text, seg3)
['doyou', 'see', 'thekitt', 'y', 'see', 'thedogg', 'y', 'doyou', 'like',
 'thekitt', 'y', 'like', 'thedogg', 'y']
>>> evaluate(text, seg3)
46
>>> evaluate(text, seg2)
47
>>> evaluate(text, seg1)
63


The final step is to search for the pattern of zeros and ones
        that minimizes this objective function, shown in Example 3-5. Notice that the best segmentation includes
        “words” like thekitty, since there’s not enough
        evidence in the data to split this any further.
Example 3-5. Non-deterministic search using simulated annealing: Begin
          searching with phrase segmentations only; randomly perturb the zeros
          and ones proportional to the “temperature”; with each iteration the
          temperature is lowered and the perturbation of boundaries is
          reduced.
from random import randint

def flip(segs, pos):
    return segs[:pos] + str(1-int(segs[pos])) + segs[pos+1:] 

def flip_n(segs, n):
    for i in range(n):
        segs = flip(segs, randint(0,len(segs)-1))
    return segs

def anneal(text, segs, iterations, cooling_rate):
    temperature = float(len(segs))
    while temperature > 0.5:
        best_segs, best = segs, evaluate(text, segs)
        for i in range(iterations):
            guess = flip_n(segs, int(round(temperature)))
            score = evaluate(text, guess)
            if score < best:
                best, best_segs = score, guess
        score, segs = best, best_segs
        temperature = temperature / cooling_rate
        print evaluate(text, segs), segment(text, segs)
    print
    return segs
>>> text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
>>> seg1 = "0000000000000001000000000010000000000000000100000000000"
>>> anneal(text, seg1, 5000, 1.2)
60 ['doyouseetheki', 'tty', 'see', 'thedoggy', 'doyouliketh', 'ekittylike', 'thedoggy']
58 ['doy', 'ouseetheki', 'ttysee', 'thedoggy', 'doy', 'o', 'ulikethekittylike', 'thedoggy']
56 ['doyou', 'seetheki', 'ttysee', 'thedoggy', 'doyou', 'liketh', 'ekittylike', 'thedoggy']
54 ['doyou', 'seethekit', 'tysee', 'thedoggy', 'doyou', 'likethekittylike', 'thedoggy']
53 ['doyou', 'seethekit', 'tysee', 'thedoggy', 'doyou', 'like', 'thekitty', 'like', 'thedoggy']
51 ['doyou', 'seethekittysee', 'thedoggy', 'doyou', 'like', 'thekitty', 'like', 'thedoggy']
42 ['doyou', 'see', 'thekitty', 'see', 'thedoggy', 'doyou', 'like', 'thekitty', 'like', 'thedoggy']
'0000100100000001001000000010000100010000000100010000000'


With enough data, it is possible to automatically segment text
        into words with a reasonable degree of accuracy. Such methods can be
        applied to tokenization for writing systems that don’t have any visual
        representation of word boundaries.


Formatting: From Lists to Strings



Often we write a program to report a single data item, such as a
      particular element in a corpus that meets some complicated criterion, or
      a single summary statistic such as a word-count or the performance of a
      tagger. More often, we write a program to produce a structured result;
      for example, a tabulation of numbers or linguistic forms, or a
      reformatting of the original data. When the results to be presented are
      linguistic, textual output is usually the most natural choice. However,
      when the results are numerical, it may be preferable to produce
      graphical output. In this section, you will learn about a variety of
      ways to present program output.
From Lists to Strings



The simplest kind of structured object we use for text
        processing is lists of words. When we want to output these to a
        display or a file, we must convert these lists into strings. To do
        this in Python we use the join()
        method, and specify the string to be used as the “glue”:
>>> silly = ['We', 'called', 'him', 'Tortoise', 'because', 'he', 'taught', 'us', '.']
>>> ' '.join(silly)
'We called him Tortoise because he taught us .'
>>> ';'.join(silly)
'We;called;him;Tortoise;because;he;taught;us;.'
>>> ''.join(silly)
'WecalledhimTortoisebecausehetaughtus.'
So ' '.join(silly) means:
        take all the items in silly and
        concatenate them as one big string, using '
        ' as a spacer between the items. I.e., join() is a method of the string that you
        want to use as the glue. (Many people find this notation for join() counter-intuitive.) The join() method only works on a list of
        strings—what we have been calling a text—a complex type that enjoys
        some privileges in Python.

Strings and Formats



We have seen that there are two ways to display the contents of
        an object:
>>> word = 'cat'
>>> sentence = """hello
... world"""
>>> print word
cat
>>> print sentence
hello
world
>>> word
'cat'
>>> sentence
'hello\nworld'
The print command yields
        Python’s attempt to produce the most human-readable form of an object.
        The second method—naming the variable at a prompt—shows us a string
        that can be used to recreate this object. It is important to keep in
        mind that both of these are just strings, displayed for the benefit of
        you, the user. They do not give us any clue as to the actual internal
        representation of the object.
There are many other useful ways to display an object as a
        string of characters. This may be for the benefit of a human reader,
        or because we want to export our
        data to a particular file format for use in an external
        program.
Formatted output typically contains a combination of variables
        and pre-specified strings. For example, given a frequency distribution
        fdist, we could do:
>>> fdist = nltk.FreqDist(['dog', 'cat', 'dog', 'cat', 'dog', 'snake', 'dog', 'cat'])
>>> for word in fdist:
...     print word, '->', fdist[word], ';',
dog -> 4 ; cat -> 3 ; snake -> 1 ;
Apart from the problem of unwanted whitespace, print statements
        that contain alternating variables and constants can be difficult to
        read and maintain. A better solution is to use string formatting expressions.
>>> for word in fdist:
...    print '%s->%d;' % (word, fdist[word]),
dog->4; cat->3; snake->1;
To understand what is going on here, let’s test out the string
        formatting expression on its own. (By now this will be your usual
        method of exploring new syntax.)
>>> '%s->%d;' % ('cat', 3)
'cat->3;'
>>> '%s->%d;' % 'cat'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: not enough arguments for format string
The special symbols %s and
        %d are placeholders for strings and
        (decimal) integers. We can embed these inside a string, then use the
        % operator to combine them. Let’s
        unpack this code further, in order to see this behavior up
        close:
>>> '%s->' % 'cat'
'cat->'
>>> '%d' % 3
'3'
>>> 'I want a %s right now' % 'coffee'
'I want a coffee right now'
We can have a number of placeholders, but following the % operator we need to specify a tuple with
        exactly the same number of values:
>>> "%s wants a %s %s" % ("Lee", "sandwich", "for lunch")
'Lee wants a sandwich for lunch'
We can also provide the values for the placeholders indirectly.
        Here’s an example using a for
        loop:
>>> template = 'Lee wants a %s right now'
>>> menu = ['sandwich', 'spam fritter', 'pancake']
>>> for snack in menu:
...     print template % snack
...
Lee wants a sandwich right now
Lee wants a spam fritter right now
Lee wants a pancake right now
The %s and %d symbols are called conversion specifiers. They start with the
        % character and end with a
        conversion character such as s (for
        string) or d (for decimal integer)
        The string containing conversion specifiers is called a format string. We combine a format string
        with the % operator and a tuple of
        values to create a complete string formatting expression.

Lining Things Up



So far our formatting strings generated output of arbitrary
        width on the page (or screen), such as %s and %d. We can specify a width as well, such as
        %6s, producing a string that is
        padded to width 6. It is right-justified by default [image: 1], but we can include a minus sign to
        make it left-justified [image: 2]. In case
        we don’t know in advance how wide a displayed value should be, the
        width value can be replaced with a star in the formatting string, then
        specified using a variable [image: 3].
>>> '%6s' % 'dog' [image: 1]
'   dog'
>>> '%-6s' % 'dog' [image: 2]
'dog   '
>>> width = 6
>>> '%-*s' % (width, 'dog') [image: 3]
'dog   '
Other control characters are used for decimal integers and
        floating-point numbers. Since the percent character % has a special interpretation in formatting
        strings, we have to precede it with another % to get it in the output.
>>> count, total = 3205, 9375
>>> "accuracy for %d words: %2.4f%%" % (total, 100 * count / total)
'accuracy for 9375 words: 34.1867%'
An important use of formatting strings is for tabulating data.
        Recall that in Accessing Text Corpora we
        saw data being tabulated from a conditional frequency distribution.
        Let’s perform the tabulation ourselves, exercising full control of
        headings and column widths, as shown in Example 3-6. Note the clear separation between
        the language processing work, and the tabulation of results.
Example 3-6. Frequency of modals in different sections of the Brown
          Corpus.
def tabulate(cfdist, words, categories):
    print '%-16s' % 'Category',
    for word in words:                                  # column headings
        print '%6s' % word,
    print
    for category in categories:
        print '%-16s' % category,                       # row heading
        for word in words:                              # for each word
            print '%6d' % cfdist[category][word],       # print table cell
        print                                           # end the row
>>> from nltk.corpus import brown
>>> cfd = nltk.ConditionalFreqDist(
...           (genre, word)
...           for genre in brown.categories()
...           for word in brown.words(categories=genre))
>>> genres = ['news', 'religion', 'hobbies', 'science_fiction', 'romance', 'humor']
>>> modals = ['can', 'could', 'may', 'might', 'must', 'will']
>>> tabulate(cfd, modals, genres)
Category            can  could    may  might   must   will
news                 93     86     66     38     50    389
religion             82     59     78     12     54     71
hobbies             268     58    131     22     83    264
science_fiction      16     49      4     12      8     16
romance              74    193     11     51     45     43
humor                16     30      8      8      9     13


Recall from the listing in Example 3-1 that we used a formatting string
        "%*s". This allows us to specify
        the width of a field using a variable.
>>> '%*s' % (15, "Monty Python")
'   Monty Python'
We could use this to automatically customize the column to be
        just wide enough to accommodate all the words, using width = max(len(w) for w in words). Remember
        that the comma at the end of print statements adds an extra space, and
        this is sufficient to prevent the column headings from running into
        each other.

Writing Results to a File



We have seen how to read text from files (Accessing Text from the Web and from Disk). It is often useful to write output
        to files as well. The following code opens a file output.txt for writing, and saves the
        program output to the file.
>>> output_file = open('output.txt', 'w')
>>> words = set(nltk.corpus.genesis.words('english-kjv.txt'))
>>> for word in sorted(words):
...     output_file.write(word + "\n")
Note
Your Turn: What is the
          effect of appending \n to each
          string before we write it to the file? If you’re using a Windows
          machine, you may want to use word +
          "\r\n" instead. What happens if we do
output_file.write(word)

When we write non-text data to a file, we must convert it to a
        string first. We can do this conversion using formatting strings, as
        we saw earlier. Let’s write the total number of words to our file,
        before closing it.
>>> len(words)
2789
>>> str(len(words))
'2789'
>>> output_file.write(str(len(words)) + "\n")
>>> output_file.close()
Caution!
You should avoid filenames that contain space characters, such
          as output
          file.txt, or that are identical except for case
          distinctions, e.g., Output.txt
          and output.TXT.


Text Wrapping



When the output of our program is text-like, instead of tabular,
        it will usually be necessary to wrap it so that it can be displayed
        conveniently. Consider the following output, which overflows its line,
        and which uses a complicated print
        statement:
>>> saying = ['After', 'all', 'is', 'said', 'and', 'done', ',',
...           'more', 'is', 'said', 'than', 'done', '.']
>>> for word in saying:
...     print word, '(' + str(len(word)) + '),',
After (5), all (3), is (2), said (4), and (3), done (4), , (1), more (4), is (2), said (4), 
We can take care of line wrapping with the help of Python’s
        textwrap module. For maximum
        clarity we will separate each step onto its own line:
>>> from textwrap import fill
>>> format = '%s (%d),'
>>> pieces = [format % (word, len(word)) for word in saying]
>>> output = ' '.join(pieces)
>>> wrapped = fill(output)
>>> print wrapped
After (5), all (3), is (2), said (4), and (3), done (4), , (1), more
(4), is (2), said (4), than (4), done (4), . (1),
Notice that there is a linebreak between more and its following number. If we wanted
        to avoid this, we could redefine the formatting string so that it
        contained no spaces (e.g., '%s_(%d),'), then instead of printing the
        value of wrapped, we could print
        wrapped.replace('_', '
        ').


Summary



	In this book we view a text as a list of words. A “raw text”
          is a potentially long string containing words and whitespace
          formatting, and is how we typically store and visualize a
          text.

	A string is specified in Python using single or double quotes:
          'Monty Python', "Monty Python".

	The characters of a string are accessed using indexes,
          counting from zero: 'Monty
          Python'[0] gives the value M. The length of a string is found using
          len().

	Substrings are accessed using slice notation: 'Monty Python'[1:5] gives the value
          onty. If the start index is
          omitted, the substring begins at the start of the string; if the end
          index is omitted, the slice continues to the end of the
          string.

	Strings can be split into lists: 'Monty Python'.split() gives ['Monty', 'Python']. Lists can be joined
          into strings: '/'.join(['Monty',
          'Python']) gives 'Monty/Python'.

	We can read text from a file f using text =
          open(f).read(). We can read text from a URL u using text =
          urlopen(u).read(). We can iterate over the lines of a text
          file using for line in
          open(f).

	Texts found on the Web may contain unwanted material (such as
          headers, footers, and markup), that need to be removed before we do
          any linguistic processing.

	Tokenization is the segmentation of a text into basic units—or
          tokens—such as words and punctuation. Tokenization based on
          whitespace is inadequate for many applications because it bundles
          punctuation together with words. NLTK provides an off-the-shelf
          tokenizer nltk.word_tokenize().

	Lemmatization is a process that maps the various forms of a
          word (such as appeared,
          appears) to the canonical or citation form of
          the word, also known as the lexeme or lemma (e.g.,
          appear).

	Regular expressions are a powerful and flexible method of
          specifying patterns. Once we have imported the re module, we can use re.findall() to find all substrings in a
          string that match a pattern.

	If a regular expression string includes a backslash, you
          should tell Python not to preprocess the string, by using a raw
          string with an r prefix: r'regexp'.

	When backslash is used before certain characters, e.g.,
          \n, this takes on a special
          meaning (newline character); however, when backslash is used before
          regular expression wildcards and operators, e.g., \., \|,
          \$, these characters
          lose their special meaning and are matched
          literally.

	A string formatting expression template % arg_tuple consists of a format
          string template that contains
          conversion specifiers like %-6s
          and %0.2d.




Further Reading



Extra materials for this chapter are posted at http://www.nltk.org/, including links to freely available
      resources on the Web. Remember to consult the Python reference materials
      at http://docs.python.org/. (For example, this
      documentation covers “universal newline support,” explaining how to work
      with the different newline conventions used by various operating
      systems.)
For more examples of processing words with NLTK, see the
      tokenization, stemming, and corpus HOWTOs at http://www.nltk.org/howto. Chapters 2 and 3 of (Jurafsky
      & Martin, 2008) contain more advanced material on regular
      expressions and morphology. For more extensive discussion of text
      processing with Python, see (Mertz, 2003). For information about
      normalizing non-standard words, see (Sproat et al., 2001).
There are many references for regular expressions, both practical
      and theoretical. For an introductory tutorial to using regular
      expressions in Python, see Kuchling’s Regular Expression
      HOWTO, http://www.amk.ca/python/howto/regex/. For a
      comprehensive and detailed manual in using regular expressions, covering
      their syntax in most major programming languages, including Python, see
      (Friedl, 2002). Other presentations include Section 2.1 of (Jurafsky
      & Martin, 2008), and Chapter 3 of (Mertz, 2003).
There are many online resources for Unicode. Useful discussions of
      Python’s facilities for handling Unicode are:
	PEP-100 http://www.python.org/dev/peps/pep-0100/

	Jason Orendorff, Unicode for Programmers,
          http://www.jorendorff.com/articles/unicode/

	A. M. Kuchling, Unicode HOWTO, http://www.amk.ca/python/howto/unicode

	Frederik Lundh, Python Unicode Objects,
          http://effbot.org/zone/unicode-objects.htm

	Joel Spolsky, The Absolute Minimum Every Software
          Developer Absolutely, Positively Must Know About Unicode and
          Character Sets (No Excuses!), http://www.joelonsoftware.com/articles/Unicode.html



The problem of tokenizing Chinese text is a major focus of SIGHAN,
      the ACL Special Interest Group on Chinese Language Processing (http://sighan.org/). Our method for segmenting English
      text follows (Brent & Cartwright, 1995); this work falls in the area
      of language acquisition (Niyogi, 2006).
Collocations are a special case of multiword expressions. A
      multiword expression is a small
      phrase whose meaning and other properties cannot be predicted from its
      words alone, e.g., part-of-speech (Baldwin &
      Kim, 2010).
Simulated annealing is a heuristic for finding a good
      approximation to the optimum value of a function in a large, discrete
      search space, based on an analogy with annealing in metallurgy. The
      technique is described in many Artificial Intelligence texts.
The approach to discovering hyponyms in text using search patterns
      like x and other ys is described by (Hearst,
      1992).

Exercises



	○ Define a string s =
          'colorless'. Write a Python statement that changes this to
          “colourless” using only the slice and concatenation
          operations.

	○ We can use the slice notation to remove morphological
          endings on words. For example, 'dogs'[:-1] removes the last character of
          dogs, leaving dog. Use slice notation to remove the
          affixes from these words (we’ve inserted a hyphen to indicate the
          affix boundary, but omit this from your strings): dish-es, run-ning, nation-ality, un-do, pre-heat.

	○ We saw how we can generate an IndexError by indexing beyond the end of a
          string. Is it possible to construct an index that goes too far to
          the left, before the start of the string?

	○ We can specify a “step” size for the slice. The following
          returns every second character within the slice: monty[6:11:2]. It also works in the
          reverse direction: monty[10:5:-2]. Try these for yourself,
          and then experiment with different step values.

	○ What happens if you ask the interpreter to evaluate monty[::-1]? Explain why this is a
          reasonable result.

	○ Describe the class of strings matched by the following
          regular expressions:
	[a-zA-Z]+

	[A-Z][a-z]*

	p[aeiou]{,2}t

	\d+(\.\d+)?

	([^aeiou][aeiou][^aeiou])*

	\w+|[^\w\s]+



Test your answers using nltk.re_show().

	○ Write regular expressions to match the following classes of
          strings:
	A single determiner (assume that a,
              an, and the are the
              only determiners)

	An arithmetic expression using integers, addition, and
              multiplication, such as 2*3+8




	○ Write a utility function that takes a URL as its argument,
          and returns the contents of the URL, with all HTML markup removed.
          Use urllib.urlopen to access the
          contents of the URL, e.g.:
raw_contents = urllib.urlopen('http://www.nltk.org/').read()

	○ Save some text into a file corpus.txt. Define a function load(f) that reads from the file named in its sole argument,
          and returns a string containing the text of the file.
	Use nltk.regexp_tokenize() to create a
              tokenizer that tokenizes the various kinds of punctuation in
              this text. Use one multiline regular expression inline comments,
              using the verbose flag (?x).

	Use nltk.regexp_tokenize() to create a
              tokenizer that tokenizes the following kinds of expressions:
              monetary amounts; dates; names of people and organizations.




	○ Rewrite the following loop as a list comprehension:
>>> sent = ['The', 'dog', 'gave', 'John', 'the', 'newspaper']
>>> result = []
>>> for word in sent:
...     word_len = (word, len(word))
...     result.append(word_len)
>>> result
[('The', 3), ('dog', 3), ('gave', 4), ('John', 4), ('the', 3), ('newspaper', 9)]

	○ Define a string raw
          containing a sentence of your own choosing. Now, split raw on some character other than space,
          such as 's'.

	○ Write a for loop to print
          out the characters of a string, one per line.

	○ What is the difference between calling split on a string with no argument and one
          with ' ' as the argument, e.g.,
          sent.split() versus sent.split(' ')? What happens when the
          string being split contains tab characters, consecutive space
          characters, or a sequence of tabs and spaces? (In IDLE you will need
          to use '\t' to enter a tab
          character.)

	○ Create a variable words
          containing a list of words. Experiment with words.sort() and sorted(words). What is the
          difference?

	○ Explore the difference between strings and integers by
          typing the following at a Python prompt: "3" * 7 and 3 *
          7. Try converting between strings and integers using
          int("3") and str(3).

	○ Earlier, we asked you to use a text editor to create a file
          called test.py, containing the
          single line monty = 'Monty
          Python'. If you haven’t already done this (or can’t find
          the file), go ahead and do it now. Next, start up a new session with
          the Python interpreter, and enter the expression monty at the prompt. You will get an error
          from the interpreter. Now, try the following (note that you have to
          leave off the .py part of the
          filename):
>>> from test import msg
>>> msg
This time, Python should return with a value. You can also try
          import test, in which case Python
          should be able to evaluate the expression test.monty at the prompt.

	○ What happens when the formatting strings %6s and %-6s are used to display strings that are
          longer than six characters?

	[image: ] Read in some text from a corpus, tokenize it, and print the
          list of all wh-word types that occur.
          (wh-words in English are used in questions,
          relative clauses, and exclamations: who,
          which, what, and so on.)
          Print them in order. Are any words duplicated in this list, because
          of the presence of case distinctions or punctuation?

	[image: ] Create a file consisting of words and (made up) frequencies,
          where each line consists of a word, the space character, and a
          positive integer, e.g., fuzzy 53.
          Read the file into a Python list using open(filename).readlines(). Next, break each line into its two fields using
          split(), and convert the number
          into an integer using int(). The
          result should be a list of the form: [['fuzzy', 53], ...].

	[image: ] Write code to access a favorite web page and extract some
          text from it. For example, access a weather site and extract the
          forecast top temperature for your town or city today.

	[image: ] Write a function unknown() that takes a URL as its
          argument, and returns a list of unknown words that occur on that web
          page. In order to do this, extract all substrings consisting of
          lowercase letters (using re.findall()) and remove any items from
          this set that occur in the Words Corpus (nltk.corpus.words). Try to categorize
          these words manually and discuss your findings.

	[image: ] Examine the results of processing the URL http://news.bbc.co.uk/ using the regular expressions
          suggested above. You will see that there is still a fair amount of
          non-textual data there, particularly JavaScript commands. You may
          also find that sentence breaks have not been properly preserved.
          Define further regular expressions that improve the extraction of
          text from this web page.

	[image: ] Are you able to write a regular expression to tokenize text
          in such a way that the word don’t is tokenized
          into do and n’t? Explain
          why this regular expression won’t work: «n't|\w+».

	[image: ] Try to write code to convert text into
          hAck3r, using regular expressions and
          substitution, where e → 3, i →
          1, o → 0,
          l → |, s →
          5, . → 5w33t!, ate → 8. Normalize the text to lowercase before
          converting it. Add more substitutions of your own. Now try to map
          s to two different values:
          $ for word-initial s, and 5 for word-internal s.

	[image: ] Pig Latin is a simple transformation of
          English text. Each word of the text is converted as follows: move
          any consonant (or consonant cluster) that appears at the start of
          the word to the end, then append ay, e.g.,
          string → ingstray,
          idle → idleay (see http://en.wikipedia.org/wiki/Pig_Latin).
	Write a function to convert a word to Pig Latin.

	Write code that converts text, instead of individual
              words.

	Extend it further to preserve capitalization, to keep
              qu together (so that quiet becomes ietquay, for example), and to detect
              when y is used as a consonant
              (e.g., yellow) versus a vowel
              (e.g., style).




	[image: ] Download some text from a language that has vowel harmony
          (e.g., Hungarian), extract the vowel sequences of words, and create
          a vowel bigram table.

	[image: ] Python’s random module
          includes a function choice()
          which randomly chooses an item from a sequence; e.g., choice("aehh ") will produce one of four
          possible characters, with the letter h being twice as frequent as the others.
          Write a generator expression that produces a sequence of 500
          randomly chosen letters drawn from the string "aehh ", and put this expression inside a
          call to the ''.join() function,
          to concatenate them into one long string. You should get a result
          that looks like uncontrolled sneezing or maniacal laughter: he haha ee heheeh eha. Use split() and join() again to normalize the whitespace
          in this string.

	[image: ] Consider the numeric expressions in the following sentence
          from the MedLine Corpus: The corresponding free cortisol
          fractions in these sera were 4.53 +/- 0.15% and 8.16 +/- 0.23%,
          respectively. Should we say that the numeric expression
          4.53 +/- 0.15% is three words? Or should we say
          that it’s a single compound word? Or should we say that it is
          actually nine words, since it’s read “four
          point five three, plus or minus fifteen percent”? Or should we say
          that it’s not a “real” word at all, since it wouldn’t appear in any
          dictionary? Discuss these different possibilities. Can you think of
          application domains that motivate at least two of these
          answers?

	[image: ] Readability measures are used to score the reading
          difficulty of a text, for the purposes of selecting texts of
          appropriate difficulty for language learners. Let us define
          μw to be the average number of letters per
          word, and μs to be the average number of
          words per sentence, in a given text. The Automated Readability Index
          (ARI) of the text is defined to be: 4.71
          μw + 0.5
          μs - 21.43. Compute the
          ARI score for various sections of the Brown Corpus, including
          section f (popular lore) and
          j (learned). Make use of the fact
          that nltk.corpus.brown.words()
          produces a sequence of words, whereas nltk.corpus.brown.sents() produces a
          sequence of sentences.

	[image: ] Use the Porter Stemmer to normalize some tokenized text,
          calling the stemmer on each word. Do the same thing with the
          Lancaster Stemmer, and see if you observe any differences.

	[image: ] Define the variable saying to contain the list ['After',
          'all',
          'is', 'said',
          'and',
          'done',
          ',', 'more',
          'is',
          'said',
          'than',
          'done',
          '.']. Process the list using a for loop, and store the result in a new
          list lengths. Hint: begin by
          assigning the empty list to lengths, using lengths = []. Then each time through the
          loop, use append() to add another length value to the list.

	[image: ] Define a variable silly
          to contain the string: 'newly formed bland
          ideas are inexpressible in an infuriating way'. (This
          happens to be the legitimate interpretation that bilingual
          English-Spanish speakers can assign to Chomsky’s famous nonsense
          phrase colorless green ideas sleep furiously,
          according to Wikipedia). Now write code to perform the following
          tasks:
	Split silly into a list
              of strings, one per word, using Python’s split() operation, and save this to a
              variable called bland.

	Extract the second letter of each word in silly and join them into a string, to
              get 'eoldrnnnna'.

	Combine the words in bland back into a single string, using
              join(). Make sure the words
              in the resulting string are separated with whitespace.

	Print the words of silly in alphabetical order, one per
              line.




	[image: ] The index() function can be used to look up items in sequences.
          For example, 'inexpressible'.index('e') tells us the
          index of the first position of the letter e.
	What happens when you look up a substring, e.g., 'inexpressible'.index('re')?

	Define a variable words
              containing a list of words. Now use words.index() to look up the position
              of an individual word.

	Define a variable silly
              as in Exercise 32. Use the index() function in combination with list slicing to
              build a list phrase
              consisting of all the words up to (but not including) in in silly.




	[image: ] Write code to convert nationality adjectives such as
          Canadian and Australian to
          their corresponding nouns Canada and
          Australia (see http://en.wikipedia.org/wiki/List_of_adjectival_forms_of_place_names).

	[image: ] Read the LanguageLog post on phrases of the form
          as best as p can and as best p
          can, where p is a pronoun.
          Investigate this phenomenon with the help of a corpus and the
          findall() method for searching tokenized text described in
          Useful Applications of Regular Expressions.
          The post is at http://itre.cis.upenn.edu/~myl/languagelog/archives/002733.html.

	[image: ] Study the lolcat version of the book of
          Genesis, accessible as nltk.corpus.genesis.words('lolcat.txt'),
          and the rules for converting text into lolspeak
          at http://www.lolcatbible.com/index.php?title=How_to_speak_lolcat.
          Define regular expressions to convert English words into
          corresponding lolspeak words.

	[image: ] Read about the re.sub()
          function for string substitution using regular expressions, using
          help(re.sub) and by consulting
          the further readings for this chapter. Use re.sub in writing code to remove HTML tags
          from an HTML file, and to normalize whitespace.

	● An interesting challenge for tokenization is words that have
          been split across a linebreak. E.g., if
          long-term is split, then we have the string
          long-\nterm.
	Write a regular expression that identifies words that are
              hyphenated at a line-break. The expression will need to include
              the \n character.

	Use re.sub() to remove
              the \n character from these
              words.

	How might you identify words that should not remain
              hyphenated once the newline is removed, e.g., 'encyclo-\npedia'?




	● Read the Wikipedia entry on Soundex.
          Implement this algorithm in Python.

	● Obtain raw texts from two or more genres and compute their
          respective reading difficulty scores as in the earlier exercise on
          reading difficulty. E.g., compare ABC Rural News and ABC Science
          News (nltk.corpus.abc). Use Punkt
          to perform sentence segmentation.

	● Rewrite the following nested loop as a nested list
          comprehension:
>>> words = ['attribution', 'confabulation', 'elocution',
...          'sequoia', 'tenacious', 'unidirectional']
>>> vsequences = set()
>>> for word in words:
...     vowels = []
...     for char in word:
...         if char in 'aeiou':
...             vowels.append(char)
...     vsequences.add(''.join(vowels))
>>> sorted(vsequences)
['aiuio', 'eaiou', 'eouio', 'euoia', 'oauaio', 'uiieioa']

	● Use WordNet to create a semantic index for a text
          collection. Extend the concordance search program in Example 3-1, indexing each word using the
          offset of its first synset, e.g., wn.synsets('dog')[0].offset (and
          optionally the offset of some of its ancestors in the hypernym
          hierarchy).

	● With the help of a multilingual corpus such as the Universal
          Declaration of Human Rights Corpus (nltk.corpus.udhr), along with NLTK’s
          frequency distribution and rank correlation functionality (nltk.FreqDist, nltk.spearman_correlation), develop a
          system that guesses the language of a previously unseen text. For
          simplicity, work with a single character encoding and just a few
          languages.

	● Write a program that processes a text and discovers cases
          where a word has been used with a novel sense. For each word,
          compute the WordNet similarity between all synsets of the word and
          all synsets of the words in its context. (Note that this is a crude
          approach; doing it well is a difficult, open research
          problem.)

	● Read the article on normalization of non-standard words
          (Sproat et al., 2001), and implement a similar system for text
          normalization.




Chapter 4. Writing Structured Programs



By now you will have a sense of the capabilities of the Python
    programming language for processing natural language. However, if you’re
    new to Python or to programming, you may still be wrestling with Python
    and not feel like you are in full control yet. In this chapter we’ll
    address the following questions:
	How can you write well-structured, readable programs that you
        and others will be able to reuse easily?

	How do the fundamental building blocks work, such as loops,
        functions, and assignment?

	What are some of the pitfalls with Python programming, and how
        can you avoid them?



Along the way, you will consolidate your knowledge of fundamental
    programming constructs, learn more about using features of the Python
    language in a natural and concise way, and learn some useful techniques in
    visualizing natural language data. As before, this chapter contains many
    examples and exercises (and as before, some exercises introduce new
    material). Readers new to programming should work through them carefully
    and consult other introductions to programming if necessary; experienced
    programmers can quickly skim this chapter.
In the other chapters of this book, we have organized the
    programming concepts as dictated by the needs of NLP. Here we revert to a
    more conventional approach, where the material is more closely tied to the
    structure of the programming language. There’s not room for a complete
    presentation of the language, so we’ll just focus on the language
    constructs and idioms that are most important for NLP.
Back to the Basics



Assignment



Assignment would seem to be the most elementary programming
        concept, not deserving a separate discussion. However, there are some
        surprising subtleties here. Consider the following code
        fragment:
>>> foo = 'Monty'
>>> bar = foo [image: 1]
>>> foo = 'Python' [image: 2]
>>> bar
'Monty'
This behaves exactly as expected. When we write bar = foo in the code [image: 1], the value of foo (the string 'Monty') is assigned to bar. That is, bar is a copy of foo, so when we overwrite foo with a new string 'Python' on line [image: 2], the value of bar is not affected.
However, assignment statements do not always involve making
        copies in this way. Assignment always copies the value of an
        expression, but a value is not always what you might expect it to be.
        In particular, the “value” of a structured object such as a list is
        actually just a reference to the object. In the
        following example, [image: 1] assigns the
        reference of foo to the new
        variable bar. Now when we modify
        something inside foo on line [image: 2], we can see that the contents of bar have also been changed.
>>> foo = ['Monty', 'Python']
>>> bar = foo [image: 1]
>>> foo[1] = 'Bodkin' [image: 2]
>>> bar
['Monty', 'Bodkin']
The line bar = foo [image: 1] does not copy the contents of the
        variable, only its “object reference.” To understand what is going on
        here, we need to know how lists are stored in the computer’s memory.
        In Figure 4-1, we see that a list foo is a reference to an object stored at
        location 3133 (which is itself a series of pointers to other locations
        holding strings). When we assign bar =
        foo, it is just the object reference 3133 that gets copied.
        This behavior extends to other aspects of the language, such as
        parameter passing (Functions: The Foundation of Structured Programming).
[image: List assignment and computer memory: Two list objects foo and bar reference the same location in the computer’s memory; updating foo will also modify bar, and vice versa.]

Figure 4-1. List assignment and computer memory: Two list objects foo and
          bar
          reference the same location in the computer’s memory; updating
          foo
          will also modify bar, and vice versa.

Let’s experiment some more, by creating a variable empty holding the empty list, then using it
        three times on the next line.
>>> empty = []
>>> nested = [empty, empty, empty]
>>> nested
[[], [], []]
>>> nested[1].append('Python')
>>> nested
[['Python'], ['Python'], ['Python']]
Observe that changing one of the items inside our nested list of
        lists changed them all. This is because each of the three elements is
        actually just a reference to one and the same list in memory.
Note
Your Turn: Use
          multiplication to create a list of lists: nested = [[]] * 3. Now modify one of the
          elements of the list, and observe that all the elements are changed.
          Use Python’s id() function to
          find out the numerical identifier for any object, and verify that
          id(nested[0]), id(nested[1]), and
          id(nested[2]) are all the
          same.

Now, notice that when we assign a new value to one of the
        elements of the list, it does not propagate to the others:
>>> nested = [[]] * 3
>>> nested[1].append('Python')
>>> nested[1] = ['Monty']
>>> nested
[['Python'], ['Monty'], ['Python']]
We began with a list containing three references to a single
        empty list object. Then we modified that object by appending 'Python' to it, resulting in a list
        containing three references to a single list object ['Python']. Next, we
        overwrote one of those references with a
        reference to a new object ['Monty']. This last step modified one of
        the three object references inside the nested list. However, the
        ['Python'] object wasn’t changed,
        and is still referenced from two places in our nested list of lists.
        It is crucial to appreciate this difference between modifying an
        object via an object reference and overwriting an object
        reference.
Note
Important: To copy the
          items from a list foo to a new
          list bar, you can write bar = foo[:]. This copies the object
          references inside the list. To copy a structure without copying any
          object references, use copy.deepcopy().


Equality



Python provides two ways to check that a pair of items are the
        same. The is operator tests for
        object identity. We can use it to verify our earlier observations
        about objects. First, we create a list containing several copies of
        the same object, and demonstrate that they are not only identical
        according to ==, but also that they
        are one and the same object:
>>> size = 5
>>> python = ['Python']
>>> snake_nest = [python] * size
>>> snake_nest[0] == snake_nest[1] == snake_nest[2] == snake_nest[3] == snake_nest[4]
True
>>> snake_nest[0] is snake_nest[1] is snake_nest[2] is snake_nest[3] is snake_nest[4]
True
Now let’s put a new python in this nest. We can easily show that
        the objects are not all identical:
>>> import random
>>> position = random.choice(range(size))
>>> snake_nest[position] = ['Python']
>>> snake_nest
[['Python'], ['Python'], ['Python'], ['Python'], ['Python']]
>>> snake_nest[0] == snake_nest[1] == snake_nest[2] == snake_nest[3] == snake_nest[4]
True
>>> snake_nest[0] is snake_nest[1] is snake_nest[2] is snake_nest[3] is snake_nest[4]
False
You can do several pairwise tests to discover which position
        contains the interloper, but the id() function makes detection easier:
>>> [id(snake) for snake in snake_nest]
[513528, 533168, 513528, 513528, 513528]
This reveals that the second item of the list has a distinct
        identifier. If you try running this code snippet yourself, expect to
        see different numbers in the resulting list, and don’t be surprised if
        the interloper is in a different position.
Having two kinds of equality might seem strange. However, it’s
        really just the type-token distinction, familiar from natural
        language, here showing up in a programming language.

Conditionals



In the condition part of an if statement, a non-empty string or list is
        evaluated as true, while an empty string or list evaluates as
        false.
>>> mixed = ['cat', '', ['dog'], []]
>>> for element in mixed:
...     if element:
...         print element
...
cat
['dog']
That is, we don’t need to say if len(element) > 0: in the
        condition.
What’s the difference between using if...elif as opposed to using a couple of
        if statements in a row? Well,
        consider the following situation:
>>> animals = ['cat', 'dog']
>>> if 'cat' in animals:
...     print 1
... elif 'dog' in animals:
...     print 2
...
1
Since the if clause of the
        statement is satisfied, Python never tries to evaluate the elif clause, so we never get to print out
        2. By contrast, if we replaced the
        elif by an if, then we would print out both 1 and 2.
        So an elif clause potentially gives
        us more information than a bare if
        clause; when it evaluates to true, it tells us not only that the
        condition is satisfied, but also that the condition of the main
        if clause was
        not satisfied.
The functions all() and
        any() can be applied to a list (or
        other sequence) to check whether all or any items meet some
        condition:
>>> sent = ['No', 'good', 'fish', 'goes', 'anywhere', 'without', 'a', 'porpoise', '.']
>>> all(len(w) > 4 for w in sent)
False
>>> any(len(w) > 4 for w in sent)
True


Sequences



So far, we have seen two kinds of sequence object: strings and
      lists. Another kind of sequence is called a tuple. Tuples are formed with the comma
      operator [image: 1], and typically enclosed
      using parentheses. We’ve actually seen them in the previous chapters,
      and sometimes referred to them as “pairs,” since there were always two
      members. However, tuples can have any number of members. Like lists and
      strings, tuples can be indexed [image: 2] and
      sliced [image: 3], and have a length [image: 4].
>>> t = 'walk', 'fem', 3 [image: 1]
>>> t
('walk', 'fem', 3)
>>> t[0] [image: 2]
'walk'
>>> t[1:] [image: 3]
('fem', 3)
>>> len(t) [image: 4]
Caution!
Tuples are constructed using the comma operator. Parentheses are
        a more general feature of Python syntax, designed for grouping. A
        tuple containing the single element 'snark' is defined by adding a trailing
        comma, like this: 'snark',. The
        empty tuple is a special case, and is defined using empty parentheses
        ().

Let’s compare strings, lists, and tuples directly, and do the
      indexing, slice, and length operation on each type:
>>> raw = 'I turned off the spectroroute'
>>> text = ['I', 'turned', 'off', 'the', 'spectroroute']
>>> pair = (6, 'turned')
>>> raw[2], text[3], pair[1]
('t', 'the', 'turned')
>>> raw[-3:], text[-3:], pair[-3:]
('ute', ['off', 'the', 'spectroroute'], (6, 'turned'))
>>> len(raw), len(text), len(pair)
(29, 5, 2)
Notice in this code sample that we computed multiple values on a
      single line, separated by commas. These comma-separated expressions are
      actually just tuples—Python allows us to omit the parentheses around
      tuples if there is no ambiguity. When we print a tuple, the parentheses
      are always displayed. By using tuples in this way, we are implicitly
      aggregating items together.
Note
Your Turn: Define a set,
        e.g., using set(text), and see what
        happens when you convert it to a list or iterate over its
        members.

Operating on Sequence Types



We can iterate over the items in a sequence s in a variety of useful ways, as shown in
        Table 4-1.
Table 4-1. Various ways to iterate over sequences
	Python expression
	Comment

	for item in
                s
	Iterate over the items of s

	for item in
                sorted(s)
	Iterate over the items of s in order

	for item in
                set(s)
	Iterate over unique elements of s

	for item in
                reversed(s)
	Iterate over elements of s in reverse

	for item in
                set(s).difference(t)
	Iterate over elements of s not in t

	for item in
                random.shuffle(s)
	Iterate over elements of s in random order




The sequence functions illustrated in Table 4-1 can be combined in various ways; for
        example, to get unique elements of s sorted in reverse, use reversed(sorted(set(s))).
We can convert between these sequence types. For example,
        tuple(s) converts any kind of
        sequence into a tuple, and list(s)
        converts any kind of sequence into a list. We can convert a list of
        strings to a single string using the join() function, e.g., ':'.join(words).
Some other objects, such as a FreqDist, can be converted into a sequence (using list()) and support iteration:
>>> raw = 'Red lorry, yellow lorry, red lorry, yellow lorry.'
>>> text = nltk.word_tokenize(raw)
>>> fdist = nltk.FreqDist(text)
>>> list(fdist)
['lorry', ',', 'yellow', '.', 'Red', 'red']
>>> for key in fdist:
...     print fdist[key],
...
4 3 2 1 1 1
In the next example, we use tuples to re-arrange the contents of
        our list. (We can omit the parentheses because the comma has higher
        precedence than assignment.)
>>> words = ['I', 'turned', 'off', 'the', 'spectroroute']
>>> words[2], words[3], words[4] = words[3], words[4], words[2]
>>> words
['I', 'turned', 'the', 'spectroroute', 'off']
This is an idiomatic and readable way to move items inside a
        list. It is equivalent to the following traditional way of doing such
        tasks that does not use tuples (notice that this method needs a
        temporary variable tmp).
>>> tmp = words[2]
>>> words[2] = words[3]
>>> words[3] = words[4]
>>> words[4] = tmp
As we have seen, Python has sequence functions such as sorted() and reversed() that rearrange the items of a
        sequence. There are also functions that modify the
        structure of a sequence, which can be handy for
        language processing. Thus, zip()
        takes the items of two or more sequences and “zips” them together into
        a single list of pairs. Given a sequence s, enumerate(s) returns pairs consisting of an
        index and the item at that index.
>>> words = ['I', 'turned', 'off', 'the', 'spectroroute']
>>> tags = ['noun', 'verb', 'prep', 'det', 'noun']
>>> zip(words, tags)
[('I', 'noun'), ('turned', 'verb'), ('off', 'prep'),
('the', 'det'), ('spectroroute', 'noun')]
>>> list(enumerate(words))
[(0, 'I'), (1, 'turned'), (2, 'off'), (3, 'the'), (4, 'spectroroute')]
For some NLP tasks it is necessary to cut up a sequence into two
        or more parts. For instance, we might want to “train” a system on 90%
        of the data and test it on the remaining 10%. To do this we decide the
        location where we want to cut the data [image: 1], then cut the sequence at that location
        [image: 2].
>>> text = nltk.corpus.nps_chat.words()
>>> cut = int(0.9 * len(text)) [image: 1]
>>> training_data, test_data = text[:cut], text[cut:] [image: 2]
>>> text == training_data + test_data [image: 3]
True
>>> len(training_data) / len(test_data) [image: 4]
9
We can verify that none of the original data is lost during this
        process, nor is it duplicated [image: 3]. We
        can also verify that the ratio of the sizes of the two pieces is what
        we intended [image: 4].

Combining Different Sequence Types



Let’s combine our knowledge of these three sequence types,
        together with list comprehensions, to perform the task of sorting the
        words in a string by their length.
>>> words = 'I turned off the spectroroute'.split() [image: 1]
>>> wordlens = [(len(word), word) for word in words] [image: 2]
>>> wordlens.sort() [image: 3]
>>> ' '.join(w for (_, w) in wordlens) [image: 4]
'I off the turned spectroroute'
Each of the preceding lines of code contains a significant
        feature. A simple string is actually an object with methods defined on
        it, such as split() [image: 1]. We use a list comprehension to build a
        list of tuples [image: 2], where each
        tuple consists of a number (the word length) and the word, e.g.,
        (3, 'the'). We use the sort() method [image: 3] to sort the
        list in place. Finally, we discard the length information and join the
        words back into a single string [image: 4].
        (The underscore [image: 4] is just a
        regular Python variable, but we can use underscore by convention to
        indicate that we will not use its value.)
We began by talking about the commonalities in these sequence
        types, but the previous code illustrates important differences in
        their roles. First, strings appear at the beginning and the end: this
        is typical in the context where our program is reading in some text
        and producing output for us to read. Lists and tuples are used in the
        middle, but for different purposes. A list is typically a sequence of
        objects all having the same type, of
        arbitrary length. We often use lists to hold
        sequences of words. In contrast, a tuple is typically a collection of
        objects of different types, of fixed
        length. We often use a tuple to hold a record, a collection of different fields relating to some entity. This
        distinction between the use of lists and tuples takes some getting
        used to, so here is another example:
>>> lexicon = [
...     ('the', 'det', ['Di:', 'D@']),
...     ('off', 'prep', ['Qf', 'O:f'])
... ]
Here, a lexicon is represented as a list because it is a
        collection of objects of a single type—lexical entries—of no
        predetermined length. An individual entry is represented as a tuple
        because it is a collection of objects with different interpretations,
        such as the orthographic form, the part-of-speech, and the
        pronunciations (represented in the SAMPA computer-readable phonetic
        alphabet; see http://www.phon.ucl.ac.uk/home/sampa/). Note that these
        pronunciations are stored using a list. (Why?)
Note
A good way to decide when to use tuples versus lists is to ask
          whether the interpretation of an item depends on its position. For
          example, a tagged token combines two strings having different
          interpretations, and we choose to interpret the first item as the
          token and the second item as the tag. Thus we use tuples like this:
          ('grail', 'noun'). A tuple of the
          form ('noun', 'grail') would be
          non-sensical since it would be a word noun tagged grail. In contrast, the elements of a text
          are all tokens, and position is not significant. Thus we use lists
          like this: ['venetian', 'blind'].
          A list of the form ['blind',
          'venetian'] would be equally valid. The linguistic meaning
          of the words might be different, but the interpretation of list
          items as tokens is unchanged.

The distinction between lists and tuples has been described in
        terms of usage. However, there is a more fundamental difference: in
        Python, lists are mutable, whereas
        tuples are immutable. In other
        words, lists can be modified, whereas tuples cannot. Here are some of
        the operations on lists that do in-place modification of the
        list:
>>> lexicon.sort()
>>> lexicon[1] = ('turned', 'VBD', ['t3:nd', 't3`nd'])
>>> del lexicon[0]
Note
Your Turn: Convert lexicon to a tuple, using lexicon =
          tuple(lexicon), then try each of the
          operations, to confirm that none of them is permitted on
          tuples.


Generator Expressions



We’ve been making heavy use of list comprehensions, for compact
        and readable processing of texts. Here’s an example where we tokenize
        and normalize a text:
>>> text = '''"When I use a word," Humpty Dumpty said in rather a scornful tone,
... "it means just what I choose it to mean - neither more nor less."'''
>>> [w.lower() for w in nltk.word_tokenize(text)]
['"', 'when', 'i', 'use', 'a', 'word', ',', '"', 'humpty', 'dumpty', 'said', ...]
Suppose we now want to process these words further. We can do
        this by inserting the preceding expression inside a call to some other
        function [image: 1], but Python allows
        us to omit the brackets [image: 2].
>>> max([w.lower() for w in nltk.word_tokenize(text)]) [image: 1]
'word'
>>> max(w.lower() for w in nltk.word_tokenize(text)) [image: 2]
'word'
The second line uses a generator
        expression. This is more than a notational convenience: in
        many language processing situations, generator expressions will be
        more efficient. In [image: 1], storage
        for the list object must be allocated before the value of max() is computed. If the text is very
        large, this could be slow. In [image: 2],
        the data is streamed to the calling function. Since the calling
        function simply has to find the maximum value—the word that comes
        latest in lexicographic sort order—it can process the stream of data
        without having to store anything more than the maximum value seen so
        far.


Questions of Style



Programming is as much an art as a science. The undisputed “bible”
      of programming, a 2,500 page multivolume work by Donald Knuth, is called
      The Art of Computer Programming. Many books have
      been written on Literate Programming, recognizing
      that humans, not just computers, must read and understand programs. Here
      we pick up on some issues of programming style that have important
      ramifications for the readability of your code, including code layout,
      procedural versus declarative style, and the use of loop
      variables.
Python Coding Style



When writing programs you make many subtle choices about names,
        spacing, comments, and so on. When you look at code written by other
        people, needless differences in style make it harder to interpret the
        code. Therefore, the designers of the Python language have published a
        style guide for Python code, available at http://www.python.org/dev/peps/pep-0008/. The
        underlying value presented in the style guide is
        consistency, for the purpose of maximizing the
        readability of code. We briefly review some of its key recommendations
        here, and refer readers to the full guide for detailed discussion with
        examples.
Code layout should use four spaces per indentation level. You
        should make sure that when you write Python code in a file, you avoid
        tabs for indentation, since these can be misinterpreted by different
        text editors and the indentation can be messed up. Lines should be
        less than 80 characters long; if necessary, you can break a line
        inside parentheses, brackets, or braces, because Python is able to
        detect that the line continues over to the next line, as in the
        following examples:
>>> cv_word_pairs = [(cv, w) for w in rotokas_words
...                          for cv in re.findall('[ptksvr][aeiou]', w)]
>>> cfd = nltk.ConditionalFreqDist(
...           (genre, word)
...           for genre in brown.categories()
...           for word in brown.words(categories=genre))
>>> ha_words = ['aaahhhh', 'ah', 'ahah', 'ahahah', 'ahh', 'ahhahahaha',
...             'ahhh', 'ahhhh', 'ahhhhhh', 'ahhhhhhhhhhhhhh', 'ha',
...             'haaa', 'hah', 'haha', 'hahaaa', 'hahah', 'hahaha']
If you need to break a line outside parentheses, brackets, or
        braces, you can often add extra parentheses, and you can always add a
        backslash at the end of the line that is broken:
>>> if (len(syllables) > 4 and len(syllables[2]) == 3 and
...    syllables[2][2] in [aeiou] and syllables[2][3] == syllables[1][3]):
...     process(syllables)
>>> if len(syllables) > 4 and len(syllables[2]) == 3 and \
...    syllables[2][2] in [aeiou] and syllables[2][3] == syllables[1][3]:
...     process(syllables)
Note
Typing spaces instead of tabs soon becomes a chore. Many
          programming editors have built-in support for Python, and can
          automatically indent code and highlight any syntax errors (including
          indentation errors). For a list of Python-aware editors, please see
          http://wiki.python.org/moin/PythonEditors.


Procedural Versus Declarative Style



We have just seen how the same task can be performed in
        different ways, with implications for efficiency. Another factor
        influencing program development is programming
        style. Consider the following program to compute the
        average length of words in the Brown Corpus:
>>> tokens = nltk.corpus.brown.words(categories='news')
>>> count = 0
>>> total = 0
>>> for token in tokens:
...     count += 1
...     total += len(token)
>>> print total / count
4.2765382469
In this program we use the variable count to keep track of the number of tokens seen, and
        total to store the combined length
        of all words. This is a low-level style, not far removed from machine
        code, the primitive operations performed by the computer’s CPU. The
        two variables are just like a CPU’s registers, accumulating values at
        many intermediate stages, values that are meaningless until the end.
        We say that this program is written in a
        procedural style, dictating the machine
        operations step by step. Now consider the following program that
        computes the same thing:
>>> total = sum(len(t) for t in tokens)
>>> print total / len(tokens)
4.2765382469
The first line uses a generator expression to sum the token
        lengths, while the second line computes the average as before. Each
        line of code performs a complete, meaningful task, which can be
        understood in terms of high-level properties like: “total is the sum of the lengths of the
        tokens.” Implementation details are left to the Python interpreter.
        The second program uses a built-in function, and constitutes
        programming at a more abstract level; the resulting code is more
        declarative. Let’s look at an extreme example:
>>> word_list = []
>>> len_word_list = len(word_list)
>>> i = 0
>>> while i < len(tokens):
...     j = 0
...     while j < len_word_list and word_list[j] < tokens[i]:
...         j += 1
...     if j == 0 or tokens[i] != word_list[j]:
...         word_list.insert(j, tokens[i])
...         len_word_list += 1
...     i += 1
The equivalent declarative version uses familiar built-in
        functions, and its purpose is instantly recognizable:
>>> word_list = sorted(set(tokens))
Another case where a loop counter seems to be necessary is for
        printing a counter with each line of output. Instead, we can use
        enumerate(), which processes a
        sequence s and produces a tuple of
        the form (i, s[i]) for each item in
        s, starting with (0, s[0]). Here we enumerate the keys of the
        frequency distribution, and capture the integer-string pair in the
        variables rank and word. We print rank+1 so that the counting appears to start
        from 1, as required when producing
        a list of ranked items.
>>> fd = nltk.FreqDist(nltk.corpus.brown.words())
>>> cumulative = 0.0
>>> for rank, word in enumerate(fd):
...     cumulative += fd[word] * 100 / fd.N()
...     print "%3d %6.2f%% %s" % (rank+1, cumulative, word)
...     if cumulative > 25:
...         break
...
  1   5.40% the
  2  10.42% ,
  3  14.67% .
  4  17.78% of
  5  20.19% and
  6  22.40% to
  7  24.29% a
  8  25.97% in
It’s sometimes tempting to use loop variables to store a maximum
        or minimum value seen so far. Let’s use this method to find the
        longest word in a text.
>>> text = nltk.corpus.gutenberg.words('milton-paradise.txt')
>>> longest = ''
>>> for word in text:
...     if len(word) > len(longest):
...         longest = word
>>> longest
'unextinguishable'
However, a more transparent solution uses two list
        comprehensions, both having forms that should be familiar by
        now:
>>> maxlen = max(len(word) for word in text)
>>> [word for word in text if len(word) == maxlen]
['unextinguishable', 'transubstantiate', 'inextinguishable', 'incomprehensible']
Note that our first solution found the first word having the
        longest length, while the second solution found
        all of the longest words (which is usually what
        we would want). Although there’s a theoretical efficiency difference
        between the two solutions, the main overhead is reading the data into
        main memory; once it’s there, a second pass through the data is
        effectively instantaneous. We also need to balance our concerns about
        program efficiency with programmer efficiency. A fast but cryptic
        solution will be harder to understand and maintain.

Some Legitimate Uses for Counters



There are cases where we still want to use loop variables in a
        list comprehension. For example, we need to use a loop variable to
        extract successive overlapping n-grams from a list:
>>> sent = ['The', 'dog', 'gave', 'John', 'the', 'newspaper']
>>> n = 3
>>> [sent[i:i+n] for i in range(len(sent)-n+1)]
[['The', 'dog', 'gave'],
 ['dog', 'gave', 'John'],
 ['gave', 'John', 'the'],
 ['John', 'the', 'newspaper']]
It is quite tricky to get the range of the loop variable right.
        Since this is a common operation in NLP, NLTK supports it with
        functions bigrams(text) and trigrams(text), and a general-purpose ngrams(text, n).
Here’s an example of how we can use loop variables in building
        multidimensional structures. For example, to build an array with
        m rows and n columns, where
        each cell is a set, we could use a nested list comprehension:
>>> m, n = 3, 7
>>> array = [[set() for i in range(n)] for j in range(m)]
>>> array[2][5].add('Alice')
>>> pprint.pprint(array)
[[set([]), set([]), set([]), set([]), set([]), set([]), set([])],
 [set([]), set([]), set([]), set([]), set([]), set([]), set([])],
 [set([]), set([]), set([]), set([]), set([]), set(['Alice']), set([])]]
Observe that the loop variables i and j
        are not used anywhere in the resulting object; they are just needed
        for a syntactically correct for
        statement. As another example of this usage, observe that the
        expression ['very' for i in
        range(3)] produces a list containing three instances of
        'very', with no integers in
        sight.
Note that it would be incorrect to do this work using
        multiplication, for reasons concerning object copying that were
        discussed earlier in this section.
>>> array = [[set()] * n] * m
>>> array[2][5].add(7)
>>> pprint.pprint(array)
[[set([7]), set([7]), set([7]), set([7]), set([7]), set([7]), set([7])],
 [set([7]), set([7]), set([7]), set([7]), set([7]), set([7]), set([7])],
 [set([7]), set([7]), set([7]), set([7]), set([7]), set([7]), set([7])]]
Iteration is an important programming device. It is tempting to
        adopt idioms from other languages. However, Python offers some elegant
        and highly readable alternatives, as we have seen.


Functions: The Foundation of Structured Programming



Functions provide an effective way to package and reuse program
      code, as already explained in More Python: Reusing Code. For
      example, suppose we find that we often want to read text from an HTML
      file. This involves several steps: opening the file, reading it in,
      normalizing whitespace, and stripping HTML markup. We can collect these
      steps into a function, and give it a name such as get_text(), as shown in Example 4-1.
Example 4-1. Read text from a file.
import re
def get_text(file):
    """Read text from a file, normalizing whitespace and stripping HTML markup."""
    text = open(file).read()
    text = re.sub('\s+', ' ', text)
    text = re.sub(r'<.*?>', ' ', text)
    return text


Now, any time we want to get cleaned-up text from an HTML file, we
      can just call get_text() with the
      name of the file as its only argument. It will return a string, and we
      can assign this to a variable, e.g., contents =
      get_text("test.html"). Each time we want to use this series of
      steps, we only have to call the function.
Using functions has the benefit of saving space in our program.
      More importantly, our choice of name for the function helps make the
      program readable. In the case of the preceding
      example, whenever our program needs to read cleaned-up text from a file
      we don’t have to clutter the program with four lines of code; we simply
      need to call get_text(). This naming
      helps to provide some “semantic interpretation”—it helps a reader of our
      program to see what the program “means.”
Notice that this example function definition contains a string.
      The first string inside a function definition is called a docstring. Not only does it document the
      purpose of the function to someone reading the code, it is accessible to
      a programmer who has loaded the code from a file:
>>> help(get_text)
Help on function get_text:

get_text(file)
    Read text from a file, normalizing whitespace
    and stripping HTML markup.
We have seen that functions help to make our work reusable and
      readable. They also help make it reliable. When we
      reuse code that has already been developed and tested, we can be more
      confident that it handles a variety of cases correctly. We also remove
      the risk of forgetting some important step or introducing a bug. The
      program that calls our function also has increased reliability. The
      author of that program is dealing with a shorter program, and its
      components behave transparently.
To summarize, as its name suggests, a function captures
      functionality. It is a segment of code that can be given a meaningful
      name and which performs a well-defined task. Functions allow us to
      abstract away from the details, to see a bigger picture, and to program
      more effectively.
The rest of this section takes a closer look at functions,
      exploring the mechanics and discussing ways to make your programs easier
      to read.
Function Inputs and Outputs



We pass information to functions using a function’s parameters,
        the parenthesized list of variables and constants following the
        function’s name in the function definition. Here’s a complete
        example:
>>> def repeat(msg, num):  [image: 1]
...     return ' '.join([msg] * num)
>>> monty = 'Monty Python'
>>> repeat(monty, 3) [image: 2]
'Monty Python Monty Python Monty Python'
We first define the function to take two parameters, msg and num [image: 1]. Then, we
        call the function and pass it two arguments, monty and 3 [image: 2]; these
        arguments fill the “placeholders” provided by the parameters and
        provide values for the occurrences of msg and num in the function body.
It is not necessary to have any parameters, as we see in the
        following example:
>>> def monty():
...     return "Monty Python"
>>> monty()
'Monty Python'
A function usually communicates its results back to the calling
        program via the return statement,
        as we have just seen. To the calling program, it looks as if the
        function call had been replaced with the function’s result:
>>> repeat(monty(), 3)
'Monty Python Monty Python Monty Python'
>>> repeat('Monty Python', 3)
'Monty Python Monty Python Monty Python'
A Python function is not required to have a return statement.
        Some functions do their work as a side effect, printing a result,
        modifying a file, or updating the contents of a parameter to the
        function (such functions are called “procedures” in some other programming languages).
Consider the following three sort functions. The third one is
        dangerous because a programmer could use it without realizing that it
        had modified its input. In general, functions should modify the
        contents of a parameter (my_sort1()), or return a value (my_sort2()), but not both (my_sort3()).
>>> def my_sort1(mylist):      # good: modifies its argument, no return value
...     mylist.sort()
>>> def my_sort2(mylist):      # good: doesn't touch its argument, returns value
...     return sorted(mylist)
>>> def my_sort3(mylist):      # bad: modifies its argument and also returns it
...     mylist.sort()
...     return mylist

Parameter Passing



Back in Back to the Basics, you saw that
        assignment works on values, but that the value of a structured object
        is a reference to that object. The same is true
        for functions. Python interprets function parameters as values (this
        is known as call-by-value). In the
        following code, set_up() has two
        parameters, both of which are modified inside the function. We begin
        by assigning an empty string to w
        and an empty list to p. After
        calling the function, w is
        unchanged, while p is
        changed:
>>> def set_up(word, properties):
...     word = 'lolcat'
...     properties.append('noun')
...     properties = 5
...
>>> w = ''
>>> p = []
>>> set_up(w, p)
>>> w
''
>>> p
['noun']
Notice that w was not changed
        by the function. When we called set_up(w,
        p), the value of w (an
        empty string) was assigned to a new variable word. Inside the function, the value of
        word was modified. However, that
        change did not propagate to w. This
        parameter passing is identical to the following sequence of
        assignments:
>>> w = ''
>>> word = w
>>> word = 'lolcat'
>>> w
''
Let’s look at what happened with the list p. When we called set_up(w, p), the value of p (a reference to an empty list) was
        assigned to a new local variable properties, so both variables now reference
        the same memory location. The function modifies properties, and this
        change is also reflected in the value of p, as we saw. The function also assigned a
        new value to properties (the number 5); this did not modify the contents at that
        memory location, but created a new local variable. This behavior is
        just as if we had done the following sequence of assignments:
>>> p = []
>>> properties = p
>>> properties.append['noun']
>>> properties = 5
>>> p
['noun']
Thus, to understand Python’s call-by-value parameter passing, it
        is enough to understand how assignment works. Remember that you can
        use the id() function and is operator to check your understanding of
        object identity after each statement.

Variable Scope



Function definitions create a new local scope for variables. When you assign to a new
        variable inside the body of a function, the name is defined only
        within that function. The name is not visible outside the function, or
        in other functions. This behavior means you can choose variable names
        without being concerned about collisions with names used in your other
        function definitions.
When you refer to an existing name from within the body of a
        function, the Python interpreter first tries to resolve the name with
        respect to the names that are local to the function. If nothing is
        found, the interpreter checks whether it is a global name within the
        module. Finally, if that does not succeed, the interpreter checks
        whether the name is a Python built-in. This is the so-called LGB rule of name resolution: local, then
        global, then built-in.
Caution!
A function can create a new global variable, using the
          global declaration. However, this
          practice should be avoided as much as possible. Defining global
          variables inside a function introduces dependencies on context and
          limits the portability (or reusability) of the function. In general
          you should use parameters for function inputs and return values for
          function outputs.


Checking Parameter Types



Python does not force us to declare the type of a variable when
        we write a program, and this permits us to define functions that are
        flexible about the type of their arguments. For example, a tagger
        might expect a sequence of words, but it wouldn’t care whether this
        sequence is expressed as a list, a tuple, or an iterator (a new
        sequence type that we’ll discuss later).
However, often we want to write programs for later use by
        others, and want to program in a defensive style, providing useful
        warnings when functions have not been invoked correctly. The author of
        the following tag() function assumed that its argument would always be a
        string.
>>> def tag(word):
...     if word in ['a', 'the', 'all']:
...         return 'det'
...     else:
...         return 'noun'
...
>>> tag('the')
'det'
>>> tag('knight')
'noun'
>>> tag(["'Tis", 'but', 'a', 'scratch']) [image: 1]
'noun'
The function returns sensible values for the arguments 'the' and 'knight', but look what happens when it is
        passed a list [image: 1]—it fails to complain,
        even though the result which it returns is clearly incorrect. The
        author of this function could take some extra steps to ensure that the
        word parameter of the tag() function is a string. A naive approach would be to
        check the type of the argument using if not
        type(word) is str, and if word is not a string, to simply return
        Python’s special empty value, None.
        This is a slight improvement, because the function is checking the
        type of the argument, and trying to return a “special” diagnostic
        value for the wrong input. However, it is also dangerous because the
        calling program may not detect that None is intended as a “special” value, and
        this diagnostic return value may then be propagated to other parts of
        the program with unpredictable consequences. This approach also fails
        if the word is a Unicode string, which has type unicode, not str. Here’s a better solution, using an
        assert statement together with
        Python’s basestring type that
        generalizes over both unicode and
        str.
>>> def tag(word):
...     assert isinstance(word, basestring), "argument to tag() must be a string"
...     if word in ['a', 'the', 'all']:
...         return 'det'
...     else:
...         return 'noun'
If the assert statement
        fails, it will produce an error that cannot be ignored, since it halts
        program execution. Additionally, the error message is easy to
        interpret. Adding assertions to a program helps you find logical
        errors, and is a kind of defensive
        programming. A more fundamental approach is to document the
        parameters to each function using docstrings, as described later in
        this section.

Functional Decomposition



Well-structured programs usually make extensive use of
        functions. When a block of program code grows longer than 10–20 lines,
        it is a great help to readability if the code is broken up into one or
        more functions, each one having a clear purpose. This is analogous to
        the way a good essay is divided into paragraphs, each expressing one
        main idea.
Functions provide an important kind of abstraction. They allow
        us to group multiple actions into a single, complex action, and
        associate a name with it. (Compare this with the way we combine the
        actions of go and bring back
        into a single more complex action fetch.) When we
        use functions, the main program can be written at a higher level of
        abstraction, making its structure transparent, as in the
        following:
>>> data = load_corpus()
>>> results = analyze(data)
>>> present(results)
Appropriate use of functions makes programs more readable and
        maintainable. Additionally, it becomes possible to reimplement a
        function—replacing the function’s body with more efficient
        code—without having to be concerned with the rest of the
        program.
Consider the freq_words
        function in Example 4-2. It updates the
        contents of a frequency distribution that is passed in as a parameter,
        and it also prints a list of the n most frequent
        words.
Example 4-2. Poorly designed function to compute frequent words.
def freq_words(url, freqdist, n):
    text = nltk.clean_url(url)
    for word in nltk.word_tokenize(text):
        freqdist.inc(word.lower())
    print freqdist.keys()[:n]
>>> constitution = "http://www.archives.gov/national-archives-experience" \
...                "/charters/constitution_transcript.html"
>>> fd = nltk.FreqDist()
>>> freq_words(constitution, fd, 20)
['the', 'of', 'charters', 'bill', 'constitution', 'rights', ',',
'declaration', 'impact', 'freedom', '-', 'making', 'independence']


This function has a number of problems. The function has two
        side effects: it modifies the contents of its second parameter, and it
        prints a selection of the results it has computed. The function would
        be easier to understand and to reuse elsewhere if we initialize the
        FreqDist() object inside the function (in the same place it is
        populated), and if we moved the selection and display of results to
        the calling program. In Example 4-3 we
        refactor this function, and
        simplify its interface by providing a single url parameter.
Example 4-3. Well-designed function to compute frequent words.
def freq_words(url):
    freqdist = nltk.FreqDist()
    text = nltk.clean_url(url)
    for word in nltk.word_tokenize(text):
        freqdist.inc(word.lower())
    return freqdist
>>> fd = freq_words(constitution)
>>> print fd.keys()[:20]
['the', 'of', 'charters', 'bill', 'constitution', 'rights', ',',
'declaration', 'impact', 'freedom', '-', 'making', 'independence']


Note that we have now simplified the work of freq_words to the point that we can do its
        work with three lines of code:
>>> words = nltk.word_tokenize(nltk.clean_url(constitution))
>>> fd = nltk.FreqDist(word.lower() for word in words)
>>> fd.keys()[:20]
['the', 'of', 'charters', 'bill', 'constitution', 'rights', ',',
'declaration', 'impact', 'freedom', '-', 'making', 'independence']

Documenting Functions



If we have done a good job at decomposing our program into
        functions, then it should be easy to describe the purpose of each
        function in plain language, and provide this in the docstring at the
        top of the function definition. This statement should not explain how
        the functionality is implemented; in fact, it should be possible to
        reimplement the function using a different method without changing
        this statement.
For the simplest functions, a one-line docstring is usually
        adequate (see Example 4-1). You should provide a
        triple-quoted string containing
        a complete sentence on a single line. For non-trivial functions, you
        should still provide a one-sentence summary on the first line, since
        many docstring processing tools index this string. This should be
        followed by a blank line, then a more detailed description of the
        functionality (see http://www.python.org/dev/peps/pep-0257/ for more
        information on docstring conventions).
Docstrings can include a doctest
        block, illustrating the use of the function and the
        expected output. These can be tested automatically using Python’s
        docutils module. Docstrings should
        document the type of each parameter to the function, and the return
        type. At a minimum, that can be done in plain text. However, note that
        NLTK uses the “epytext” markup language to document parameters. This
        format can be automatically converted into richly structured API
        documentation (see http://www.nltk.org/), and
        includes special handling of certain “fields,” such as @param, which allow the inputs and outputs
        of functions to be clearly documented. Example 4-4
        illustrates a complete docstring.
Example 4-4. Illustration of a complete docstring, consisting of a
          one-line summary, a more detailed explanation, a doctest example,
          and epytext markup specifying the parameters, types, return type,
          and exceptions.
def accuracy(reference, test):
    """
    Calculate the fraction of test items that equal the corresponding reference items.

    Given a list of reference values and a corresponding list of test values,
    return the fraction of corresponding values that are equal.
    In particular, return the fraction of indexes
    {0<i<=len(test)} such that C{test[i] == reference[i]}.
    >>> accuracy(['ADJ', 'N', 'V', 'N'], ['N', 'N', 'V', 'ADJ'])
    0.5

@param reference: An ordered list of reference values.
@type reference: C{list}
@param test: A list of values to compare against the corresponding
    reference values.
@type test: C{list}
@rtype: C{float}
@raise ValueError: If C{reference} and C{length} do not have the
    same length.
"""

if len(reference) != len(test):
    raise ValueError("Lists must have the same length.")
num_correct = 0
for x, y in izip(reference, test):
    if x == y:
        num_correct += 1
return float(num_correct) / len(reference)




Doing More with Functions



This section discusses more advanced features, which you may
      prefer to skip on the first time through this chapter.
Functions As Arguments



So far the arguments we have passed into functions have been
        simple objects, such as strings, or structured objects, such as lists.
        Python also lets us pass a function as an argument to another
        function. Now we can abstract out the operation, and apply a
        different operation on the same
        data. As the following examples show, we can pass the
        built-in function len() or a
        user-defined function last_letter()
        as arguments to another function:
>>> sent = ['Take', 'care', 'of', 'the', 'sense', ',', 'and', 'the',
...         'sounds', 'will', 'take', 'care', 'of', 'themselves', '.']
>>> def extract_property(prop):
...     return [prop(word) for word in sent]
...
>>> extract_property(len)
[4, 4, 2, 3, 5, 1, 3, 3, 6, 4, 4, 4, 2, 10, 1]
>>> def last_letter(word):
...     return word[-1]
>>> extract_property(last_letter)
['e', 'e', 'f', 'e', 'e', ',', 'd', 'e', 's', 'l', 'e', 'e', 'f', 's', '.']
The objects len and last_letter can be passed around like lists
        and dictionaries. Notice that parentheses are used after a function
        name only if we are invoking the function; when we are simply treating
        the function as an object, these are omitted.
Python provides us with one more way to define functions as
        arguments to other functions, so-called lambda
        expressions. Supposing there was no need to use the
        last_letter() function in multiple
        places, and thus no need to give it a name. Let’s suppose we can
        equivalently write the following:
>>> extract_property(lambda w: w[-1])
['e', 'e', 'f', 'e', 'e', ',', 'd', 'e', 's', 'l', 'e', 'e', 'f', 's', '.']
Our next example illustrates passing a function to the sorted() function. When we call the latter
        with a single argument (the list to be sorted), it uses the built-in
        comparison function cmp(). However,
        we can supply our own sort function, e.g., to sort by decreasing
        length.
>>> sorted(sent)
[',', '.', 'Take', 'and', 'care', 'care', 'of', 'of', 'sense', 'sounds',
'take', 'the', 'the', 'themselves', 'will']
>>> sorted(sent, cmp)
[',', '.', 'Take', 'and', 'care', 'care', 'of', 'of', 'sense', 'sounds',
'take', 'the', 'the', 'themselves', 'will']
>>> sorted(sent, lambda x, y: cmp(len(y), len(x)))
['themselves', 'sounds', 'sense', 'Take', 'care', 'will', 'take', 'care',
'the', 'and', 'the', 'of', 'of', ',', '.']

Accumulative Functions



These functions start by initializing some storage, and iterate
        over input to build it up, before returning some final object (a large
        structure or aggregated result). A standard way to do this is to
        initialize an empty list, accumulate the material, then return the
        list, as shown in function search1() in Example 4-5.
Example 4-5. Accumulating output into a list.
def search1(substring, words):
    result = []
    for word in words:
        if substring in word:
            result.append(word)
    return result

def search2(substring, words):
    for word in words:
        if substring in word:
            yield word

print "search1:"
for item in search1('zz', nltk.corpus.brown.words()):
    print item
print "search2:"
for item in search2('zz', nltk.corpus.brown.words()):
    print item


The function search2() is a
        generator. The first time this function is called, it gets as far as
        the yield statement and pauses. The
        calling program gets the first word and does any necessary processing.
        Once the calling program is ready for another word, execution of the
        function is continued from where it stopped, until the next time it
        encounters a yield statement. This
        approach is typically more efficient, as the function only generates
        the data as it is required by the calling program, and does not need
        to allocate additional memory to store the output (see the earlier
        discussion of generator expressions).
Here’s a more sophisticated example of a generator which
        produces all permutations of a list of words. In order to force the
        permutations() function to generate
        all its output, we wrap it with a call to list() [image: 1].
>>> def permutations(seq):
...     if len(seq) <= 1:
...         yield seq
...     else:
...         for perm in permutations(seq[1:]):
...             for i in range(len(perm)+1):
...                 yield perm[:i] + seq[0:1] + perm[i:]
...
>>> list(permutations(['police', 'fish', 'buffalo'])) [image: 1]
[['police', 'fish', 'buffalo'], ['fish', 'police', 'buffalo'],
 ['fish', 'buffalo', 'police'], ['police', 'buffalo', 'fish'],
 ['buffalo', 'police', 'fish'], ['buffalo', 'fish', 'police']]
Note
The permutations function
          uses a technique called recursion, discussed later in Algorithm Design. The ability to generate
          permutations of a set of words is useful for creating data to test a
          grammar (Chapter 8).


Higher-Order Functions



Python provides some higher-order functions that are standard
        features of functional programming languages such as Haskell. We
        illustrate them here, alongside the equivalent expression using list
        comprehensions.
Let’s start by defining a function is_content_word() which checks whether a
        word is from the open class of content words. We use this function as
        the first parameter of filter(),
        which applies the function to each item in the sequence contained in
        its second parameter, and retains only the items for which the
        function returns True.
>>> def is_content_word(word):
...     return word.lower() not in ['a', 'of', 'the', 'and', 'will', ',', '.']
>>> sent = ['Take', 'care', 'of', 'the', 'sense', ',', 'and', 'the',
...         'sounds', 'will', 'take', 'care', 'of', 'themselves', '.']
>>> filter(is_content_word, sent)
['Take', 'care', 'sense', 'sounds', 'take', 'care', 'themselves']
>>> [w for w in sent if is_content_word(w)]
['Take', 'care', 'sense', 'sounds', 'take', 'care', 'themselves']
Another higher-order function is map(), which applies a function to every
        item in a sequence. It is a general version of the extract_property() function we saw earlier in this section. Here is a
        simple way to find the average length of a sentence in the news
        section of the Brown Corpus, followed by an equivalent version with
        list comprehension calculation:
>>> lengths = map(len, nltk.corpus.brown.sents(categories='news'))
>>> sum(lengths) / len(lengths)
21.7508111616
>>> lengths = [len(w) for w in nltk.corpus.brown.sents(categories='news'))]
>>> sum(lengths) / len(lengths)
21.7508111616
In the previous examples, we specified a user-defined function
        is_content_word() and a built-in
        function len(). We can also provide
        a lambda expression. Here’s a pair of equivalent examples that count
        the number of vowels in each word.
>>> map(lambda w: len(filter(lambda c: c.lower() in "aeiou", w)), sent)
[2, 2, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 1, 3, 0]
>>> [len([c for c in w if c.lower() in "aeiou"]) for w in sent]
[2, 2, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 1, 3, 0]
The solutions based on list comprehensions are usually more
        readable than the solutions based on higher-order functions, and we
        have favored the former approach throughout this book.

Named Arguments



When there are a lot of parameters it is easy to get confused
        about the correct order. Instead we can refer to parameters by name,
        and even assign them a default value just in case one was not provided
        by the calling program. Now the parameters can be specified in any
        order, and can be omitted.
>>> def repeat(msg='<empty>', num=1):
...     return msg * num
>>> repeat(num=3)
'<empty><empty><empty>'
>>> repeat(msg='Alice')
'Alice'
>>> repeat(num=5, msg='Alice')
'AliceAliceAliceAliceAlice'
These are called keyword arguments.
        If we mix these two kinds of parameters, then we must ensure that the
        unnamed parameters precede the named ones. It has to be this way,
        since unnamed parameters are defined by position. We can define a
        function that takes an arbitrary number of unnamed and named
        parameters, and access them via an in-place list of arguments *args and an “in-place dictionary” of
        keyword arguments **kwargs.
        (Dictionaries will be presented in Mapping Words to Properties Using Python Dictionaries.)
>>> def generic(*args, **kwargs):
...     print args
...     print kwargs
...
>>> generic(1, "African swallow", monty="python")
(1, 'African swallow')
{'monty': 'python'}
When *args appears as a
        function parameter, it actually corresponds to all the unnamed
        parameters of the function. As another illustration of this aspect of
        Python syntax, consider the zip()
        function, which operates on a variable number of arguments. We’ll use
        the variable name *song to
        demonstrate that there’s nothing special about the name *args.
>>> song = [['four', 'calling', 'birds'],
...         ['three', 'French', 'hens'],
...         ['two', 'turtle', 'doves']]
>>> zip(song[0], song[1], song[2])
[('four', 'three', 'two'), ('calling', 'French', 'turtle'), ('birds', 'hens', 'doves')]
>>> zip(*song)
[('four', 'three', 'two'), ('calling', 'French', 'turtle'), ('birds', 'hens', 'doves')]
It should be clear from this example that typing *song is just a convenient shorthand, and
        equivalent to typing out song[0], song[1],
        song[2].
Here’s another example of the use of keyword arguments in a
        function definition, along with three equivalent ways to call the
        function:
>>> def freq_words(file, min=1, num=10):
...     text = open(file).read()
...     tokens = nltk.word_tokenize(text)
...     freqdist = nltk.FreqDist(t for t in tokens if len(t) >= min)
...     return freqdist.keys()[:num]
>>> fw = freq_words('ch01.rst', 4, 10)
>>> fw = freq_words('ch01.rst', min=4, num=10)
>>> fw = freq_words('ch01.rst', num=10, min=4)
A side effect of having named arguments is that they permit
        optionality. Thus we can leave out any arguments where we are happy
        with the default value: freq_words('ch01.rst', min=4), freq_words('ch01.rst', 4). Another common
        use of optional arguments is to permit a flag. Here’s a revised
        version of the same function that reports its progress if a verbose flag is set:
>>> def freq_words(file, min=1, num=10, verbose=False):
...     freqdist = FreqDist()
...     if verbose: print "Opening", file
...     text = open(file).read()
...     if verbose: print "Read in %d characters" % len(file)
...     for word in nltk.word_tokenize(text):
...         if len(word) >= min:
...             freqdist.inc(word)
...             if verbose and freqdist.N() % 100 == 0: print "."
...     if verbose: print
...     return freqdist.keys()[:num]
Caution!
Take care not to use a mutable object as the default value of
          a parameter. A series of calls to the function will use the same
          object, sometimes with bizarre results, as we will see in the
          discussion of debugging later.



Program Development



Programming is a skill that is acquired over several years of
      experience with a variety of programming languages and tasks. Key
      high-level abilities are algorithm design and its
      manifestation in structured programming. Key
      low-level abilities include familiarity with the syntactic constructs of
      the language, and knowledge of a variety of diagnostic methods for
      trouble-shooting a program which does not exhibit the expected
      behavior.
This section describes the internal structure of a program module
      and how to organize a multi-module program. Then it describes various
      kinds of error that arise during program development, what you can do to
      fix them and, better still, to avoid them in the first place.
Structure of a Python Module



The purpose of a program module is to bring logically related
        definitions and functions together in order to facilitate reuse and
        abstraction. Python modules are nothing more than individual .py files. For example, if you were working
        with a particular corpus format, the functions to read and write the
        format could be kept together. Constants used by both formats, such as
        field separators, or a EXTN =
        ".inf" filename extension, could be shared. If the format
        was updated, you would know that only one file needed to be changed.
        Similarly, a module could contain code for creating and manipulating a
        particular data structure such as syntax trees, or code for performing
        a particular processing task such as plotting corpus
        statistics.
When you start writing Python modules, it helps to have some
        examples to emulate. You can locate the code for any NLTK module on
        your system using the __file__
        variable:
>>> nltk.metrics.distance.__file__
'/usr/lib/python2.5/site-packages/nltk/metrics/distance.pyc'
This returns the location of the compiled .pyc file for the module, and you’ll
        probably see a different location on your machine. The file that you
        will need to open is the corresponding .py source file, and this will be in the
        same directory as the .pyc file.
        Alternatively, you can view the latest version of this module on the
        Web at http://code.google.com/p/nltk/source/browse/trunk/nltk/nltk/metrics/distance.py.
Like every other NLTK module, distance.py begins with a group of comment
        lines giving a one-line title of the module and identifying the
        authors. (Since the code is distributed, it also includes the URL
        where the code is available, a copyright statement, and license
        information.) Next is the module-level docstring, a triple-quoted
        multiline string containing information about the module that will be
        printed when someone types help(nltk.metrics.distance).
# Natural Language Toolkit: Distance Metrics
#
# Copyright (C) 2001-2009 NLTK Project
# Author: Edward Loper <edloper@gradient.cis.upenn.edu>
#         Steven Bird <sb@csse.unimelb.edu.au>
#         Tom Lippincott <tom@cs.columbia.edu>
# URL: <http://www.nltk.org/>
# For license information, see LICENSE.TXT
#

"""
Distance Metrics.

Compute the distance between two items (usually strings).
As metrics, they must satisfy the following three requirements:

1. d(a, a) = 0
2. d(a, b) >= 0
3. d(a, c) <= d(a, b) + d(b, c)
"""
After this comes all the import statements required for the
        module, then any global variables, followed by a series of function
        definitions that make up most of the module. Other modules define
        “classes,” the main building blocks of object-oriented programming,
        which falls outside the scope of this book. (Most NLTK modules also
        include a demo() function, which
        can be used to see examples of the module in use.)
Note
Some module variables and functions are only used within the
          module. These should have names beginning with an underscore, e.g.,
          _helper(), since this will hide
          the name. If another module imports this one, using the idiom:
          from module import *, these names
          will not be imported. You can optionally list the externally
          accessible names of a module using a special built-in variable like
          this: __all__ = ['edit_distance',
          'jaccard_distance'].


Multimodule Programs



Some programs bring together a diverse range of tasks, such as
        loading data from a corpus, performing some analysis tasks on the
        data, then visualizing it. We may already have stable modules that
        take care of loading data and producing visualizations. Our work might
        involve coding up the analysis task, and just invoking functions from
        the existing modules. This scenario is depicted in Figure 4-2.
[image: Structure of a multimodule program: The main program my_program.py imports functions from two other modules; unique analysis tasks are localized to the main program, while common loading and visualization tasks are kept apart to facilitate reuse and abstraction.]

Figure 4-2. Structure of a multimodule program: The main program my_program.py imports functions from two other
          modules; unique analysis tasks are localized to the main program,
          while common loading and visualization tasks are kept apart to
          facilitate reuse and abstraction.


By dividing our work into several modules and using import statements to access functions
        defined elsewhere, we can keep the individual modules simple and easy
        to maintain. This approach will also result in a growing collection of
        modules, and make it possible for us to build sophisticated systems
        involving a hierarchy of modules. Designing such systems well is a
        complex software engineering task, and beyond the scope of this
        book.

Sources of Error



Mastery of programming depends on having a variety of
        problem-solving skills to draw upon when the program doesn’t work as
        expected. Something as trivial as a misplaced symbol might cause the
        program to behave very differently. We call these “bugs” because they
        are tiny in comparison to the damage they can cause. They creep into
        our code unnoticed, and it’s only much later when we’re running the
        program on some new data that their presence is detected. Sometimes,
        fixing one bug only reveals another, and we get the distinct
        impression that the bug is on the move. The only reassurance we have
        is that bugs are spontaneous and not the fault of the
        programmer.
Flippancy aside, debugging code is hard because there are so
        many ways for it to be faulty. Our understanding of the input data,
        the algorithm, or even the programming language, may be at fault.
        Let’s look at examples of each of these.
First, the input data may contain some unexpected characters.
        For example, WordNet synset names have the form tree.n.01, with three components separated
        using periods. The NLTK WordNet module initially decomposed these
        names using split('.'). However,
        this method broke when someone tried to look up the word
        PhD, which has the synset name ph.d..n.01, containing four periods instead
        of the expected two. The solution was to use rsplit('.', 2) to do at most two splits,
        using the rightmost instances of the period, and leaving the ph.d. string intact. Although several people
        had tested the module before it was released, it was some weeks before
        someone detected the problem (see http://code.google.com/p/nltk/issues/detail?id=297).
Second, a supplied function might not behave as expected. For
        example, while testing NLTK’s interface to WordNet, one of the authors
        noticed that no synsets had any antonyms defined, even though the
        underlying database provided a large quantity of antonym information.
        What looked like a bug in the WordNet interface turned out to be a
        misunderstanding about WordNet itself: antonyms are defined for
        lemmas, not for synsets. The only “bug” was a misunderstanding of the
        interface (see http://code.google.com/p/nltk/issues/detail?id=98).
Third, our understanding of Python’s semantics may be at fault.
        It is easy to make the wrong assumption about the relative scope of
        two operators. For example, "%s.%s.%02d" %
        "ph.d.", "n", 1 produces a runtime error TypeError: not enough arguments for format
        string. This is because the percent operator has higher
        precedence than the comma operator. The fix is to add parentheses in
        order to force the required scope. As another example, suppose we are
        defining a function to collect all tokens of a text having a given
        length. The function has parameters for the text and the word length,
        and an extra parameter that allows the initial value of the result to
        be given as a parameter:
>>> def find_words(text, wordlength, result=[]):
...     for word in text:
...         if len(word) == wordlength:
...             result.append(word)
...     return result
>>> find_words(['omg', 'teh', 'lolcat', 'sitted', 'on', 'teh', 'mat'], 3) [image: 1]
['omg', 'teh', 'teh', 'mat']
>>> find_words(['omg', 'teh', 'lolcat', 'sitted', 'on', 'teh', 'mat'], 2, ['ur']) [image: 2]
['ur', 'on']
>>> find_words(['omg', 'teh', 'lolcat', 'sitted', 'on', 'teh', 'mat'], 3) [image: 3]
['omg', 'teh', 'teh', 'mat', 'omg', 'teh', 'teh', 'mat']
The first time we call find_words() [image: 1], we get all three-letter words as
        expected. The second time we specify an initial value for the result,
        a one-element list ['ur'], and as
        expected, the result has this word along with the other two-letter
        word in our text. Now, the next time we call find_words() [image: 3] we use the same parameters as in [image: 1], but we get a different result! Each
        time we call find_words() with no
        third parameter, the result will simply extend the result of the
        previous call, rather than start with the empty result list as
        specified in the function definition. The program’s behavior is not as
        expected because we incorrectly assumed that the default value was
        created at the time the function was invoked. However, it is created
        just once, at the time the Python interpreter loads the function. This
        one list object is used whenever no explicit value is provided to the
        function.

Debugging Techniques



Since most code errors result from the programmer making
        incorrect assumptions, the first thing to do when you detect a bug is
        to check your assumptions. Localize the problem
        by adding print statements to the
        program, showing the value of important variables, and showing how far
        the program has progressed.
If the program produced an “exception”—a runtime error—the
        interpreter will print a stack
        trace, pinpointing the location of program execution at the
        time of the error. If the program depends on input data, try to reduce
        this to the smallest size while still producing the error.
Once you have localized the problem to a particular function or
        to a line of code, you need to work out what is going wrong. It is
        often helpful to recreate the situation using the interactive command
        line. Define some variables, and then copy-paste the offending line of
        code into the session and see what happens. Check your understanding
        of the code by reading some documentation and examining other code
        samples that purport to do the same thing that you are trying to do.
        Try explaining your code to someone else, in case she can see where
        things are going wrong.
Python provides a debugger
        which allows you to monitor the execution of your program, specify
        line numbers where execution will stop (i.e., breakpoints), and step through sections of
        code and inspect the value of variables. You can invoke the debugger
        on your code as follows:
>>> import pdb
>>> import mymodule
>>> pdb.run('mymodule.myfunction()')
It will present you with a prompt (Pdb) where you can type instructions to the
        debugger. Type help to see the full
        list of commands. Typing step (or
        just s) will execute the current
        line and stop. If the current line calls a function, it will enter the
        function and stop at the first line. Typing next (or just n) is similar, but it stops execution at the
        next line in the current function. The break (or b) command can be used to create or list
        breakpoints. Type continue (or
        c) to continue execution as far as
        the next breakpoint. Type the name of any variable to inspect its
        value.
We can use the Python debugger to locate the problem in our
        find_words() function. Remember
        that the problem arose the second time the function was called. We’ll
        start by calling the function without using the debugger [image: 1], using the smallest possible input. The
        second time, we’ll call it with the debugger [image: 2].
>>> import pdb
>>> find_words(['cat'], 3) [image: 1]
['cat']
>>> pdb.run("find_words(['dog'], 3)") [image: 2]
> <string>(1)<module>()
(Pdb) step
--Call--
> <stdin>(1)find_words()
(Pdb) args
text = ['dog']
wordlength = 3
result = ['cat']
Here we typed just two commands into the debugger: step took us inside the function, and
        args showed the values of its
        arguments (or parameters). We see immediately that result has an initial value of ['cat'], and not the empty list as expected.
        The debugger has helped us to localize the problem, prompting us to
        check our understanding of Python functions.

Defensive Programming



In order to avoid some of the pain of debugging, it helps to
        adopt some defensive programming habits. Instead of writing a 20-line
        program and then testing it, build the program bottom-up out of small
        pieces that are known to work. Each time you combine these pieces to
        make a larger unit, test it carefully to see that it works as
        expected. Consider adding assert
        statements to your code, specifying properties of a variable, e.g.,
        assert(isinstance(text, list)). If
        the value of the text variable
        later becomes a string when your code is used in some larger context,
        this will raise an AssertionError and you will get
        immediate notification of the problem.
Once you think you’ve found the bug, view your solution as a
        hypothesis. Try to predict the effect of your bugfix before re-running
        the program. If the bug isn’t fixed, don’t fall into the trap of
        blindly changing the code in the hope that it will magically start
        working again. Instead, for each change, try to articulate a
        hypothesis about what is wrong and why the change will fix the
        problem. Then undo the change if the problem was not resolved.
As you develop your program, extend its functionality, and fix
        any bugs, it helps to maintain a suite of test cases. This is called
        regression testing, since it is
        meant to detect situations where the code “regresses”—where a change
        to the code has an unintended side effect of breaking something that
        used to work. Python provides a simple regression-testing framework in
        the form of the doctest module.
        This module searches a file of code or documentation for blocks of
        text that look like an interactive Python session, of the form you
        have already seen many times in this book. It executes the Python
        commands it finds, and tests that their output matches the output
        supplied in the original file. Whenever there is a mismatch, it
        reports the expected and actual values. For details, please consult
        the doctest documentation at
        http://docs.python.org/library/doctest.html.
        Apart from its value for regression testing, the doctest module is useful for ensuring that
        your software documentation stays in sync with your code.
Perhaps the most important defensive programming strategy is to
        set out your code clearly, choose meaningful variable and function
        names, and simplify the code wherever possible by decomposing it into
        functions and modules with well-documented interfaces.


Algorithm Design



This section discusses more advanced concepts, which you may
      prefer to skip on the first time through this chapter.
A major part of algorithmic problem solving is selecting or
      adapting an appropriate algorithm for the problem at hand. Sometimes
      there are several alternatives, and choosing the best one depends on
      knowledge about how each alternative performs as the size of the data
      grows. Whole books are written on this topic, and we only have space to
      introduce some key concepts and elaborate on the approaches that are
      most prevalent in natural language processing.
The best-known strategy is known as divide-and-conquer. We attack a problem of size
      n by dividing it into two problems of size
      n/2, solve these problems, and combine their
      results into a solution of the original problem. For example, suppose
      that we had a pile of cards with a single word written on each card. We
      could sort this pile by splitting it in half and giving it to two other
      people to sort (they could do the same in turn). Then, when two sorted
      piles come back, it is an easy task to merge them into a single sorted
      pile. See Figure 4-3 for an illustration of this
      process.
[image: Sorting by divide-and-conquer: To sort an array, we split it in half and sort each half (recursively); we merge each sorted half back into a whole list (again recursively); this algorithm is known as “Merge Sort.”]

Figure 4-3. Sorting by divide-and-conquer: To sort an array, we split it in
        half and sort each half (recursively); we merge each sorted half back
        into a whole list (again recursively); this algorithm is known as
        “Merge Sort.”

Another example is the process of looking up a word in a
      dictionary. We open the book somewhere around the middle and compare our
      word with the current page. If it’s earlier in the dictionary, we repeat
      the process on the first half; if it’s later, we use the second half.
      This search method is called binary search since it
      splits the problem in half at every step.
In another approach to algorithm design, we attack a problem by
      transforming it into an instance of a problem we already know how to
      solve. For example, in order to detect duplicate entries in a list, we
      can pre-sort the list, then scan
      through it once to check whether any adjacent pairs of elements are
      identical.
Recursion



The earlier examples of sorting and searching have a striking
        property: to solve a problem of size n, we have
        to break it in half and then work on one or more problems of size
        n/2. A common way to implement such methods uses
        recursion. We define a function
        f, which simplifies the problem, and
        calls itself to solve one or more easier
        instances of the same problem. It then combines the results into a
        solution for the original problem.
For example, suppose we have a set of n
        words, and want to calculate how many different ways they can be
        combined to make a sequence of words. If we have only one word
        (n=1), there is just one way to make it into a
        sequence. If we have a set of two words, there are two ways to put
        them into a sequence. For three words there are six possibilities. In
        general, for n words, there are
        n × n-1 × … ×
        2 × 1 ways (i.e., the factorial of
        n). We can code this up as follows:
>>> def factorial1(n):
...     result = 1
...     for i in range(n):
...         result *= (i+1)
...     return result
However, there is also a recursive algorithm for solving this
        problem, based on the following observation. Suppose we have a way to
        construct all orderings for n-1 distinct words.
        Then for each such ordering, there are n places
        where we can insert a new word: at the start, the end, or any of the
        n-2 boundaries between the words. Thus we simply
        multiply the number of solutions found for n-1 by
        the value of n. We also need the base case, to say that if we have a single
        word, there’s just one ordering. We can code this up as
        follows:
>>> def factorial2(n):
...     if n == 1:
...         return 1
...     else:
...         return n * factorial2(n-1)
These two algorithms solve the same problem. One uses iteration
        while the other uses recursion. We can use recursion to navigate a
        deeply nested object, such as the WordNet hypernym hierarchy. Let’s
        count the size of the hypernym hierarchy rooted at a given synset
        s. We’ll do this by finding the size of each
        hyponym of s, then adding these together (we will
        also add 1 for the synset itself). The following function size1() does this work; notice that the body
        of the function includes a recursive call to size1():
>>> def size1(s):
...     return 1 + sum(size1(child) for child in s.hyponyms())
We can also design an iterative solution to this problem which
        processes the hierarchy in layers. The first layer is the synset
        itself [image: 1], then all the hyponyms of
        the synset, then all the hyponyms of the hyponyms. Each time through
        the loop it computes the next layer by finding the hyponyms of
        everything in the last layer [image: 3]. It
        also maintains a total of the number of synsets encountered so far
        [image: 2].
>>> def size2(s):
...     layer = [s] [image: 1]
...     total = 0
...     while layer:
...         total += len(layer) [image: 2]
...         layer = [h for c in layer for h in c.hyponyms()] [image: 3]
...     return total
Not only is the iterative solution much longer, it is harder to
        interpret. It forces us to think procedurally, and keep track of what
        is happening with the layer and
        total variables through time. Let’s
        satisfy ourselves that both solutions give the same result. We’ll use
        a new form of the import statement, allowing us to abbreviate the name
        wordnet to wn:
>>> from nltk.corpus import wordnet as wn
>>> dog = wn.synset('dog.n.01')
>>> size1(dog)
190
>>> size2(dog)
190
As a final example of recursion, let’s use it to
        construct a deeply nested object. A letter trie is a data structure that can be
        used for indexing a lexicon, one letter at a time. (The name is based
        on the word retrieval.) For example, if trie contained a letter trie, then trie['c'] would be a smaller trie which held
        all words starting with c. Example 4-6 demonstrates the recursive process of building
        a trie, using Python dictionaries (Mapping Words to Properties Using Python Dictionaries). To insert the word
        chien (French for dog), we
        split off the c and recursively insert
        hien into the sub-trie trie['c']. The recursion continues until
        there are no letters remaining in the word, when we store the intended
        value (in this case, the word dog).
Example 4-6. Building a letter trie: A recursive function that builds a
          nested dictionary structure; each level of nesting contains all
          words with a given prefix, and a sub-trie containing all possible
          continuations.
def insert(trie, key, value):
    if key:
        first, rest = key[0], key[1:]
        if first not in trie:
            trie[first] = {}
        insert(trie[first], rest, value)
    else:
        trie['value'] = value
>>> trie = nltk.defaultdict(dict)
>>> insert(trie, 'chat', 'cat')
>>> insert(trie, 'chien', 'dog')
>>> insert(trie, 'chair', 'flesh')
>>> insert(trie, 'chic', 'stylish')
>>> trie = dict(trie)               # for nicer printing
>>> trie['c']['h']['a']['t']['value']
'cat'
>>> pprint.pprint(trie)
{'c': {'h': {'a': {'t': {'value': 'cat'}},
                  {'i': {'r': {'value': 'flesh'}}},
             'i': {'e': {'n': {'value': 'dog'}}}
                  {'c': {'value': 'stylish'}}}}}


Caution!
Despite the simplicity of recursive programming, it comes with
          a cost. Each time a function is called, some state information needs
          to be pushed on a stack, so that once the function has completed,
          execution can continue from where it left off. For this reason,
          iterative solutions are often more efficient than recursive
          solutions.


Space-Time Trade-offs



We can sometimes significantly speed up the execution of a
        program by building an auxiliary data structure, such as an index. The
        listing in Example 4-7 implements a
        simple text retrieval system for the Movie Reviews Corpus. By indexing
        the document collection, it provides much faster lookup.
Example 4-7. A simple text retrieval system.
def raw(file):
    contents = open(file).read()
    contents = re.sub(r'<.*?>', ' ', contents)
    contents = re.sub('\s+', ' ', contents)
    return contents

def snippet(doc, term): # buggy
    text = ' '*30 + raw(doc) + ' '*30
    pos = text.index(term)
    return text[pos-30:pos+30]

print "Building Index..."
files = nltk.corpus.movie_reviews.abspaths()
idx = nltk.Index((w, f) for f in files for w in raw(f).split())

query = ''
while query != "quit":
    query = raw_input("query> ")
    if query in idx:
        for doc in idx[query]:
            print snippet(doc, query)
    else:
        print "Not found"


A more subtle example of a space-time trade-off involves
        replacing the tokens of a corpus with integer identifiers. We create a
        vocabulary for the corpus, a list in which each word is stored once,
        then invert this list so that we can look up any word to find its
        identifier. Each document is preprocessed, so that a list of words
        becomes a list of integers. Any language models can now work with
        integers. See the listing in Example 4-8
        for an example of how to do this for a tagged corpus.
Example 4-8. Preprocess tagged corpus data, converting all words and tags
          to integers.
def preprocess(tagged_corpus):
    words = set()
    tags = set()
    for sent in tagged_corpus:
        for word, tag in sent:
            words.add(word)
            tags.add(tag)
    wm = dict((w,i) for (i,w) in enumerate(words))
    tm = dict((t,i) for (i,t) in enumerate(tags))
    return [[(wm[w], tm[t]) for (w,t) in sent] for sent in tagged_corpus]


Another example of a space-time trade-off is maintaining a
        vocabulary list. If you need to process an input text to check that
        all words are in an existing vocabulary, the vocabulary should be
        stored as a set, not a list. The elements of a set are automatically
        indexed, so testing membership of a large set will be much faster than
        testing membership of the corresponding list.
We can test this claim using the timeit module. The Timer class has two parameters: a statement
        that is executed multiple times, and setup code that is executed once
        at the beginning. We will simulate a vocabulary of 100,000 items using
        a list [image: 1] or set [image: 2] of integers. The test statement will
        generate a random item that has a 50% chance of being in the
        vocabulary [image: 3].
>>> from timeit import Timer
>>> vocab_size = 100000
>>> setup_list = "import random; vocab = range(%d)" % vocab_size [image: 1]
>>> setup_set = "import random; vocab = set(range(%d))" % vocab_size [image: 2]
>>> statement = "random.randint(0, %d) in vocab" % vocab_size * 2 [image: 3]
>>> print Timer(statement, setup_list).timeit(1000)
2.78092288971
>>> print Timer(statement, setup_set).timeit(1000)
0.0037260055542
Performing 1,000 list membership tests takes a total of 2.8
        seconds, whereas the equivalent tests on a set take a mere 0.0037
        seconds, or three orders of magnitude faster!

Dynamic Programming



Dynamic programming is a general technique for designing
        algorithms which is widely used in natural language processing. The
        term “programming” is used in a different sense to what you might
        expect, to mean planning or scheduling. Dynamic programming is used
        when a problem contains overlapping subproblems. Instead of computing
        solutions to these subproblems repeatedly, we simply store them in a
        lookup table. In the remainder of this section, we will introduce
        dynamic programming, but in a rather different context to syntactic
        parsing.
Pingala was an Indian author who lived around the 5th century
        B.C., and wrote a treatise on Sanskrit prosody called the
        Chandas Shastra. Virahanka extended this work
        around the 6th century A.D., studying the number of ways of combining
        short and long syllables to create a meter of length
        n. Short syllables, marked
        S, take up one unit of length, while long
        syllables, marked L, take two. Pingala found, for
        example, that there are five ways to construct a meter of length 4:
        V4 =
        {LL, SSL,
        SLS, LSS,
        SSSS}. Observe that we can split
        V4 into two subsets, those
        starting with L and those starting with
        S, as shown in Example 4-9.
Example 4-9. 
V4 =
  LL, LSS
    i.e. L prefixed to each item of V2 = {L, SS}
  SSL, SLS, SSSS
    i.e. S prefixed to each item of V3 = {SL, LS, SSS}


With this observation, we can write a little recursive function
        called virahanka1() to compute
        these meters, shown in Example 4-10. Notice that,
        in order to compute V4 we
        first compute V3 and
        V2. But to compute
        V3, we need to first
        compute V2 and
        V1. This call structure is depicted in Example 4-11.
Example 4-10. Four ways to compute Sanskrit meter: (i) iterative, (ii)
          bottom-up dynamic programming, (iii) top-down dynamic programming,
          and (iv) built-in memoization.
def virahanka1(n):
    if n == 0:
        return [""]
    elif n == 1:
        return ["S"]
    else:
        s = ["S" + prosody for prosody in virahanka1(n-1)]
        l = ["L" + prosody for prosody in virahanka1(n-2)]
        return s + l

def virahanka2(n):
    lookup = [[""], ["S"]]
    for i in range(n-1):
        s = ["S" + prosody for prosody in lookup[i+1]]
        l = ["L" + prosody for prosody in lookup[i]]
        lookup.append(s + l)
    return lookup[n]

def virahanka3(n, lookup={0:[""], 1:["S"]}):
    if n not in lookup:
        s = ["S" + prosody for prosody in virahanka3(n-1)]
        l = ["L" + prosody for prosody in virahanka3(n-2)]
        lookup[n] = s + l
    return lookup[n]

from nltk import memoize
@memoize
def virahanka4(n):
    if n == 0:
        return [""]
    elif n == 1:
        return ["S"]
    else:
        s = ["S" + prosody for prosody in virahanka4(n-1)]
        l = ["L" + prosody for prosody in virahanka4(n-2)]
        return s + l
>>> virahanka1(4)
['SSSS', 'SSL', 'SLS', 'LSS', 'LL']
>>> virahanka2(4)
['SSSS', 'SSL', 'SLS', 'LSS', 'LL']
>>> virahanka3(4)
['SSSS', 'SSL', 'SLS', 'LSS', 'LL']
>>> virahanka4(4)
['SSSS', 'SSL', 'SLS', 'LSS', 'LL']


Example 4-11. 
[image: image with no caption]



As you can see, V2
        is computed twice. This might not seem like a significant problem, but
        it turns out to be rather wasteful as n gets
        large: to compute V20
        using this recursive technique, we would compute
        V2 4,181 times; and for
        V40 we would compute
        V2 63,245,986 times! A
        much better alternative is to store the value of
        V2 in a table and look it
        up whenever we need it. The same goes for other values, such as
        V3 and so on. Function
        virahanka2() implements a dynamic
        programming approach to the problem. It works by filling up a table
        (called lookup) with solutions to
        all smaller instances of the problem, stopping as
        soon as we reach the value we’re interested in. At this point we read
        off the value and return it. Crucially, each subproblem is only ever
        solved once.
Notice that the approach taken in virahanka2() is to solve smaller problems on
        the way to solving larger problems. Accordingly, this is known as the
        bottom-up approach to dynamic
        programming. Unfortunately it turns out to be quite wasteful for some
        applications, since it may compute solutions to sub-problems that are
        never required for solving the main problem. This wasted computation
        can be avoided using the top-down
        approach to dynamic programming, which is illustrated in the function
        virahanka3() in Example 4-10. Unlike the bottom-up approach, this
        approach is recursive. It avoids the huge wastage of virahanka1() by checking whether it has
        previously stored the result. If not, it computes the result
        recursively and stores it in the table. The last step is to return the
        stored result. The final method, in virahanka4(), is to use a Python “decorator”
        called memoize, which takes care of
        the housekeeping work done by virahanka3() without cluttering up the
        program. This “memoization” process stores the result of each previous
        call to the function along with the parameters that were used. If the
        function is subsequently called with the same parameters, it returns
        the stored result instead of recalculating it. (This aspect of Python
        syntax is beyond the scope of this book.)
This concludes our brief introduction to dynamic programming. We
        will encounter it again in Parsing with Context-Free Grammar.


A Sample of Python Libraries



Python has hundreds of third-party libraries, specialized software
      packages that extend the functionality of Python. NLTK is one such
      library. To realize the full power of Python programming, you should
      become familiar with several other libraries. Most of these will need to
      be manually installed on your computer.
Matplotlib



Python has some libraries that are useful for visualizing
        language data. The Matplotlib package supports sophisticated plotting
        functions with a MATLAB-style interface, and is available from http://matplotlib.sourceforge.net/.
So far we have focused on textual presentation and the use of
        formatted print statements to get output lined up in columns. It is
        often very useful to display numerical data in graphical form, since
        this often makes it easier to detect patterns. For example, in Example 3-6, we saw a table of numbers showing
        the frequency of particular modal verbs in the Brown Corpus,
        classified by genre. The program in Example 4-12
        presents the same information in graphical format. The output is shown
        in Figure 4-4 (a color figure in the graphical
        display).
Example 4-12. Frequency of modals in different sections of the Brown
          Corpus.
colors = 'rgbcmyk' # red, green, blue, cyan, magenta, yellow, black
def bar_chart(categories, words, counts):
    "Plot a bar chart showing counts for each word by category"
    import pylab
    ind = pylab.arange(len(words))
    width = 1 / (len(categories) + 1)
    bar_groups = []
    for c in range(len(categories)):
        bars = pylab.bar(ind+c*width, counts[categories[c]], width,
                         color=colors[c % len(colors)])
        bar_groups.append(bars)
    pylab.xticks(ind+width, words)
    pylab.legend([b[0] for b in bar_groups], categories, loc='upper left')
    pylab.ylabel('Frequency')
    pylab.title('Frequency of Six Modal Verbs by Genre')
    pylab.show()
>>> genres = ['news', 'religion', 'hobbies', 'government', 'adventure']
>>> modals = ['can', 'could', 'may', 'might', 'must', 'will']
>>> cfdist = nltk.ConditionalFreqDist(
...              (genre, word)
...              for genre in genres
...              for word in nltk.corpus.brown.words(categories=genre)
...              if word in modals)
...
>>> counts = {}
>>> for genre in genres:
...     counts[genre] = [cfdist[genre][word] for word in modals]
>>> bar_chart(genres, modals, counts)


From the bar chart it is immediately obvious that
        may and must have almost
        identical relative frequencies. The same goes for
        could and might.
It is also possible to generate such data visualizations on the
        fly. For example, a web page with form input could permit visitors to
        specify search parameters, submit the form, and see a dynamically
        generated visualization. To do this we have to specify the Agg backend for matplotlib, which is a library for producing
        raster (pixel) images [image: 1]. Next, we use
        all the same PyLab methods as before, but instead of displaying the
        result on a graphical terminal using pylab.show(), we save it to a file using
        pylab.savefig() [image: 2]. We specify the filename and dpi, then
        print HTML markup that directs the web browser to load the
        file.
>>> import matplotlib
>>> matplotlib.use('Agg') [image: 1]
>>> pylab.savefig('modals.png') [image: 2]
>>> print 'Content-Type: text/html'
>>> print
>>> print '<html><body>'
>>> print '<img src="modals.png"/>'
>>> print '</body></html>'
[image: Bar chart showing frequency of modals in different sections of Brown Corpus: This visualization was produced by the program in .]

Figure 4-4. Bar chart showing frequency of modals in different sections
          of Brown Corpus: This visualization was produced by the program in
          Example 4-12.



NetworkX



The NetworkX package is for defining and manipulating structures
        consisting of nodes and edges, known as graphs. It is available from https://networkx.lanl.gov/. NetworkX can be used in
        conjunction with Matplotlib to visualize networks, such as WordNet
        (the semantic network we introduced in WordNet). The program in Example 4-13 initializes an empty graph [image: 3] and then traverses the WordNet hypernym
        hierarchy adding edges to the graph [image: 1].
        Notice that the traversal is recursive [image: 2], applying the programming
        technique discussed in Algorithm Design. The
        resulting display is shown in Figure 4-5.
Example 4-13. Using the NetworkX and Matplotlib libraries.
import networkx as nx
import matplotlib
from nltk.corpus import wordnet as wn

def traverse(graph, start, node):
    graph.depth[node.name] = node.shortest_path_distance(start)
    for child in node.hyponyms():
        graph.add_edge(node.name, child.name) [image: 1]
        traverse(graph, start, child) [image: 2]

def hyponym_graph(start):
    G = nx.Graph() [image: 3]
    G.depth = {}
    traverse(G, start, start)
    return G

def graph_draw(graph):
    nx.draw_graphviz(graph,
         node_size = [16 * graph.degree(n) for n in graph],
         node_color = [graph.depth[n] for n in graph],
         with_labels = False)
    matplotlib.pyplot.show()
>>> dog = wn.synset('dog.n.01')
>>> graph = hyponym_graph(dog)
>>> graph_draw(graph)



csv



Language analysis work often involves data tabulations,
        containing information about lexical items, the participants in an
        empirical study, or the linguistic features extracted from a corpus.
        Here’s a fragment of a simple lexicon, in CSV format:
sleep, sli:p, v.i, a condition of body and mind ...
walk, wo:k, v.intr, progress by lifting and setting down each foot ...
wake, weik, intrans, cease to sleep

We can use Python’s CSV library to read and write files stored
        in this format. For example, we can open a CSV file called lexicon.csv [image: 1]
        and iterate over its rows [image: 2]:
>>> import csv
>>> input_file = open("lexicon.csv", "rb") [image: 1]
>>> for row in csv.reader(input_file): [image: 2]
...     print row
['sleep', 'sli:p', 'v.i', 'a condition of body and mind ...']
['walk', 'wo:k', 'v.intr', 'progress by lifting and setting down each foot ...']
['wake', 'weik', 'intrans', 'cease to sleep']
Each row is just a list of strings. If any fields contain
        numerical data, they will appear as strings, and will have to be
        converted using int() or float().
[image: Visualization with NetworkX and Matplotlib: Part of the WordNet hypernym hierarchy is displayed, starting with dog.n.01 (the darkest node in the middle); node size is based on the number of children of the node, and color is based on the distance of the node from dog.n.01; this visualization was produced by the program in .]

Figure 4-5. Visualization with NetworkX and Matplotlib: Part of the
          WordNet hypernym hierarchy is displayed, starting with dog.n.01 (the
          darkest node in the middle); node size is based on the number of
          children of the node, and color is based on the distance of the node
          from dog.n.01; this visualization was produced by the program in
          Example 4-13.



NumPy



The NumPy package provides substantial support for numerical
        processing in Python. NumPy has a multidimensional array object, which
        is easy to initialize and access:
>>> from numpy import array
>>> cube = array([ [[0,0,0], [1,1,1], [2,2,2]],
...                [[3,3,3], [4,4,4], [5,5,5]],
...                [[6,6,6], [7,7,7], [8,8,8]] ])
>>> cube[1,1,1]
4
>>> cube[2].transpose()
array([[6, 7, 8],
       [6, 7, 8],
       [6, 7, 8]])
>>> cube[2,1:]
array([[7, 7, 7],
       [8, 8, 8]])
NumPy includes linear algebra functions. Here we perform
        singular value decomposition on a matrix, an operation used in
        latent semantic analysis to help
        identify implicit concepts in a document collection:
>>> from numpy import linalg
>>> a=array([[4,0], [3,-5]])
>>> u,s,vt = linalg.svd(a)
>>> u
array([[-0.4472136 , -0.89442719],
       [-0.89442719,  0.4472136 ]])
>>> s
array([ 6.32455532,  3.16227766])
>>> vt
array([[-0.70710678,  0.70710678],
       [-0.70710678, -0.70710678]])
NLTK’s clustering package nltk.cluster makes extensive use of NumPy arrays, and includes
        support for k-means clustering, Gaussian EM
        clustering, group average agglomerative clustering, and dendrogram
        plots. For details, type help(nltk.cluster).

Other Python Libraries



There are many other Python libraries, and you can search for
        them with the help of the Python Package Index at http://pypi.python.org/. Many libraries provide an
        interface to external software, such as relational databases (e.g.,
        mysql-python) and large document
        collections (e.g., PyLucene). Many
        other libraries give access to file formats such as PDF, MSWord, and
        XML (pypdf, pywin32, xml.etree), RSS feeds (e.g., feedparser), and electronic mail (e.g.,
        imaplib, email).


Summary



	Python’s assignment and parameter passing use object
          references; e.g., if a is a list
          and we assign b = a, then any
          operation on a will modify
          b, and vice versa.

	The is operation tests
          whether two objects are identical internal objects, whereas == tests whether two objects are
          equivalent. This distinction parallels the type-token
          distinction.

	Strings, lists, and tuples are different kinds of sequence
          object, supporting common operations such as indexing, slicing,
          len(), sorted(), and membership testing using
          in.

	We can write text to a file by opening the file for
          writing
ofile = open('output.txt', 'w'
then adding content to the file ofile.write("Monty Python"), and finally
          closing the file ofile.close().

	A declarative programming style usually produces more compact,
          readable code; manually incremented loop variables are usually
          unnecessary. When a sequence must be enumerated, use enumerate().

	Functions are an essential programming abstraction: key
          concepts to understand are parameter passing, variable scope, and
          docstrings.

	A function serves as a namespace: names defined inside a
          function are not visible outside that function, unless those names
          are declared to be global.

	Modules permit logically related material to be localized in a
          file. A module serves as a namespace: names defined in a module—such
          as variables and functions—are not visible to other modules, unless
          those names are imported.

	Dynamic programming is an algorithm design technique used
          widely in NLP that stores the results of previous computations in
          order to avoid unnecessary recomputation.




Further Reading



This chapter has touched on many topics in programming, some
      specific to Python, and some quite general. We’ve just scratched the
      surface, and you may want to read more about these topics, starting with
      the further materials for this chapter available at http://www.nltk.org/.
The Python website provides extensive documentation. It is
      important to understand the built-in functions and standard types,
      described at http://docs.python.org/library/functions.html and http://docs.python.org/library/stdtypes.html. We have
      learned about generators and their importance for efficiency; for
      information about iterators, a closely related topic, see http://docs.python.org/library/itertools.html. Consult
      your favorite Python book for more information on such topics. An
      excellent resource for using Python for multimedia processing, including
      working with sound files, is (Guzdial, 2005).
When using the online Python documentation, be aware that your
      installed version might be different from the version of the
      documentation you are reading. You can easily check what version you
      have, with import sys; sys.version.
      Version-specific documentation is available at http://www.python.org/doc/versions/.
Algorithm design is a rich field within computer science. Some
      good starting points are (Harel, 2004), (Levitin, 2004), and (Knuth,
      2006). Useful guidance on the practice of software development is
      provided in (Hunt & Thomas, 2000) and (McConnell, 2004).

Exercises



	○ Find out more about sequence objects using Python’s help
          facility. In the interpreter, type help(str), help(list), and help(tuple). This will give you a full
          list of the functions supported by each type. Some functions have
          special names flanked with underscores; as the help documentation
          shows, each such function corresponds to something more familiar.
          For example x.__getitem__(y) is
          just a long-winded way of saying x[y].

	○ Identify three operations that can be performed on both
          tuples and lists. Identify three list operations that cannot be
          performed on tuples. Name a context where using a list instead of a
          tuple generates a Python error.

	○ Find out how to create a tuple consisting of a single item.
          There are at least two ways to do this.

	○ Create a list words = ['is', 'NLP',
          'fun', '?']. Use a series of assignment statements (e.g.,
          words[1] = words[2]) and a
          temporary variable tmp to
          transform this list into the list ['NLP',
          'is', 'fun', '!']. Now do the same transformation using
          tuple assignment.

	○ Read about the built-in comparison function cmp, by typing help(cmp). How does it differ in behavior
          from the comparison operators?

	○ Does the method for creating a sliding window of n-grams
          behave correctly for the two limiting cases: n
          = 1 and n = len(sent)?

	○ We pointed out that when empty strings and empty lists occur
          in the condition part of an if
          clause, they evaluate to False.
          In this case, they are said to be occurring in a Boolean context.
          Experiment with different kinds of non-Boolean expressions in
          Boolean contexts, and see whether they evaluate as True or False.

	○ Use the inequality operators to compare strings, e.g.,
          'Monty' < 'Python'. What
          happens when you do 'Z' < 'a'?
          Try pairs of strings that have a common prefix, e.g., 'Monty' < 'Montague'. Read up on
          “lexicographical sort” in order to understand what is going on here.
          Try comparing structured objects, e.g., ('Monty', 1) < ('Monty', 2). Does this
          behave as expected?

	○ Write code that removes whitespace at the beginning and end
          of a string, and normalizes whitespace between words to be a
          single-space character.
	Do this task using split() and join().

	Do this task using regular expression
              substitutions.




	○ Write a program to sort words by length. Define a helper
          function cmp_len which uses the
          cmp comparison function on word
          lengths.

	[image: ] Create a list of words and store it in a variable sent1. Now assign sent2 = sent1. Modify one of the items in
          sent1 and verify that sent2 has changed.
	Now try the same exercise, but instead assign sent2 = sent1[:]. Modify sent1 again and see what happens to
              sent2. Explain.

	Now define text1 to be
              a list of lists of strings (e.g., to represent a text consisting
              of multiple sentences). Now assign text2 = text1[:], assign a new value
              to one of the words, e.g., text1[1][1]
              = 'Monty'. Check what this did to text2. Explain.

	Load Python’s deepcopy() function (i.e., from copy import deepcopy), consult
              its documentation, and test that it makes a fresh copy of any
              object.




	[image: ] Initialize an
          n-by-m list of lists of
          empty strings using list multiplication, e.g., word_table = [[''] * n] * m. What happens
          when you set one of its values, e.g., word_table[1][2] = "hello"? Explain why
          this happens. Now write an expression using range() to construct a list of lists, and
          show that it does not have this problem.

	[image: ] Write code to initialize a two-dimensional array of sets
          called word_vowels and process a
          list of words, adding each word to word_vowels[l][v] where l is the length of the word and v is the number of vowels it
          contains.

	[image: ] Write a function novel10(text) that prints any word that
          appeared in the last 10% of a text that had not been encountered
          earlier.

	[image: ] Write a program that takes a sentence expressed as a single
          string, splits it, and counts up the words. Get it to print out each
          word and the word’s frequency, one per line, in alphabetical
          order.

	[image: ] Read up on Gematria, a method for assigning numbers to
          words, and for mapping between words having the same number to
          discover the hidden meaning of texts (http://en.wikipedia.org/wiki/Gematria, http://essenes.net/gemcal.htm).
	Write a function gematria() that sums the numerical
              values of the letters of a word, according to the letter values
              in letter_vals:
>>> letter_vals = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5, 'f':80, 'g':3, 'h':8,
... 'i':10, 'j':10, 'k':20, 'l':30, 'm':40, 'n':50, 'o':70, 'p':80, 'q':100,
... 'r':200, 's':300, 't':400, 'u':6, 'v':6, 'w':800, 'x':60, 'y':10, 'z':7}

	Process a corpus (e.g., nltk.corpus.state_union) and for each
              document, count how many of its words have the number
              666.

	Write a function decode() to process a text, randomly
              replacing words with their Gematria equivalents, in order to
              discover the “hidden meaning” of the text.




	[image: ] Write a function shorten(text,
          n) to process a text, omitting the n
          most frequently occurring words of the text. How readable is
          it?

	[image: ] Write code to print out an index for a lexicon, allowing
          someone to look up words according to their meanings (or their
          pronunciations; whatever properties are contained in the lexical
          entries).

	[image: ] Write a list comprehension that sorts a list of WordNet
          synsets for proximity to a given synset. For example, given the
          synsets minke_whale.n.01,
          orca.n.01, novel.n.01, and tortoise.n.01, sort them according to
          their path_distance() from
          right_whale.n.01.

	[image: ] Write a function that takes a list of words (containing
          duplicates) and returns a list of words (with no duplicates) sorted
          by decreasing frequency. E.g., if the input list contained 10
          instances of the word table and 9
          instances of the word chair, then
          table would appear before
          chair in the output list.

	[image: ] Write a function that takes a text and a vocabulary as its
          arguments and returns the set of words that appear in the text but
          not in the vocabulary. Both arguments can be represented as lists of
          strings. Can you do this in a single line, using set.difference()?

	[image: ] Import the itemgetter()
          function from the operator module
          in Python’s standard library (i.e., from
          operator import itemgetter). Create a list words containing several words. Now try
          calling: sorted(words,
          key=itemgetter(1)), and sorted(words, key=itemgetter(-1)). Explain
          what itemgetter() is
          doing.

	[image: ] Write a recursive function lookup(trie, key) that looks up a key in a
          trie, and returns the value it finds. Extend the function to return
          a word when it is uniquely determined by its prefix (e.g., vanguard is the only word that starts with
          vang-, so lookup(trie, 'vang') should return the
          same thing as lookup(trie,
          'vanguard')).

	[image: ] Read up on “keyword linkage” (Chapter 5 of (Scott &
          Tribble, 2006)). Extract keywords from NLTK’s Shakespeare Corpus and
          using the NetworkX package, plot keyword linkage networks.

	[image: ] Read about string edit distance and the Levenshtein
          Algorithm. Try the implementation provided in nltk.edit_dist(). In what way is this
          using dynamic programming? Does it use the bottom-up or top-down
          approach? (See also http://norvig.com/spell-correct.html.)

	[image: ] The Catalan numbers arise in many applications of
          combinatorial mathematics, including the counting of parse trees
          (Grammar Development). The series can be
          defined as follows: C0
          = 1, and
          Cn+1
          =
          Σ0..n
          (CiCn-i).
	Write a recursive function to compute
              nth Catalan number
              Cn.

	Now write another function that does this computation
              using dynamic programming.

	Use the timeit module
              to compare the performance of these functions as
              n increases.




	● Reproduce some of the results of (Zhao & Zobel, 2007)
          concerning authorship identification.

	● Study gender-specific lexical choice, and see if you can
          reproduce some of the results of http://www.clintoneast.com/articles/words.php.

	● Write a recursive function that pretty prints a trie in
          alphabetically sorted order, for example:
chair: 'flesh'
---t: 'cat'
--ic: 'stylish'
---en: 'dog'

	● With the help of the trie data structure, write a recursive
          function that processes text, locating the uniqueness point in each
          word, and discarding the remainder of each word. How much
          compression does this give? How readable is the resulting
          text?

	● Obtain some raw text, in the form of a single, long string.
          Use Python’s textwrap module to
          break it up into multiple lines. Now write code to add extra spaces
          between words, in order to justify the output. Each line must have
          the same width, and spaces must be approximately evenly distributed
          across each line. No line can begin or end with a space.

	● Develop a simple extractive summarization tool, that prints
          the sentences of a document which contain the highest total word
          frequency. Use FreqDist() to count word frequencies, and use sum to sum the frequencies of the words in
          each sentence. Rank the sentences according to their score. Finally,
          print the n highest-scoring sentences in
          document order. Carefully review the design of your program, especially your approach to this
          double sorting. Make sure the program is written as clearly as
          possible.

	● Read the following article on semantic orientation of
          adjectives. Use the NetworkX package to visualize a network of
          adjectives with edges to indicate same versus different semantic
          orientation (see http://www.aclweb.org/anthology/P97-1023).

	● Design an algorithm to find the “statistically improbable
          phrases” of a document collection (see http://www.amazon.com/gp/search-inside/sipshelp.html).

	● Write a program to implement a brute-force algorithm for
          discovering word squares, a kind of n ×
          n: crossword in which the entry in the
          nth row is the same as the entry in the
          nth column. For discussion, see http://itre.cis.upenn.edu/~myl/languagelog/archives/002679.html.




Chapter 5. Categorizing and Tagging Words



Back in elementary school you learned the difference between nouns,
    verbs, adjectives, and adverbs. These “word classes” are not just the idle
    invention of grammarians, but are useful categories for many language
    processing tasks. As we will see, they arise from simple analysis of the
    distribution of words in text. The goal of this chapter is to answer the
    following questions:
	What are lexical categories, and how are they used in natural
        language processing?

	What is a good Python data structure for storing words and their
        categories?

	How can we automatically tag each word of a text with its word
        class?



Along the way, we’ll cover some fundamental techniques in NLP,
    including sequence labeling, n-gram models, backoff, and evaluation. These
    techniques are useful in many areas, and tagging gives us a simple context
    in which to present them. We will also see how tagging is the second step
    in the typical NLP pipeline, following tokenization.
The process of classifying words into their parts-of-speech and labeling them accordingly is
    known as part-of-speech tagging,
    POS tagging, or simply tagging. Parts-of-speech are also known as
    word classes or lexical categories. The collection of tags used
    for a particular task is known as a tagset. Our emphasis in this chapter is on
    exploiting tags, and tagging text automatically.
Using a Tagger



A part-of-speech tagger, or POS
      tagger, processes a sequence of words, and attaches a part of
      speech tag to each word (don’t forget to import
      nltk):
>>> text = nltk.word_tokenize("And now for something completely different")
>>> nltk.pos_tag(text)
[('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'),
('completely', 'RB'), ('different', 'JJ')]
Here we see that and is CC, a coordinating conjunction;
      now and completely are
      RB, or adverbs;
      for is IN, a
      preposition; something is NN, a noun; and different
      is JJ, an adjective.
Note
NLTK provides documentation for each tag, which can be queried
        using the tag, e.g., nltk.help.upenn_tagset('RB'), or a regular expression, e.g., nltk.help.upenn_brown_tagset('NN.*'). Some
        corpora have README files with tagset documentation; see nltk.name.readme(),
        substituting in the name of the corpus.

Let’s look at another example, this time including some
      homonyms:
>>> text = nltk.word_tokenize("They refuse to permit us to obtain the refuse permit")
>>> nltk.pos_tag(text)
[('They', 'PRP'), ('refuse', 'VBP'), ('to', 'TO'), ('permit', 'VB'), ('us', 'PRP'),
('to', 'TO'), ('obtain', 'VB'), ('the', 'DT'), ('refuse', 'NN'), ('permit', 'NN')]
Notice that refuse and
      permit both appear as a present tense verb
      (VBP) and a noun (NN). E.g., refUSE is a
      verb meaning “deny,” while REFuse is a noun meaning
      “trash” (i.e., they are not homophones). Thus, we need to know which
      word is being used in order to pronounce the text correctly. (For this
      reason, text-to-speech systems usually perform POS tagging.)
Note
Your Turn: Many words, like
        ski and race, can be used as
        nouns or verbs with no difference in pronunciation. Can you think of
        others? Hint: think of a commonplace object and try to put the word
        to before it to see if it can also be a verb, or
        think of an action and try to put the before it
        to see if it can also be a noun. Now make up a sentence with both uses
        of this word, and run the POS tagger on this sentence.

Lexical categories like “noun” and part-of-speech tags like
      NN seem to have their uses, but the
      details will be obscure to many readers. You might wonder what
      justification there is for introducing this extra level of information.
      Many of these categories arise from superficial analysis of the
      distribution of words in text. Consider the following analysis involving
      woman (a noun), bought (a
      verb), over (a preposition), and
      the (a determiner). The text.similar() method takes a word
      w, finds all contexts
      w1w
      w2, then finds all words
      w’ that appear in the same context, i.e.
      w1w’w2.
>>> text = nltk.Text(word.lower() for word in nltk.corpus.brown.words())
>>> text.similar('woman')
Building word-context index...
man time day year car moment world family house country child boy
state job way war girl place room word
>>> text.similar('bought')
made said put done seen had found left given heard brought got been
was set told took in felt that
>>> text.similar('over')
in on to of and for with from at by that into as up out down through
is all about
>>> text.similar('the')
a his this their its her an that our any all one these my in your no
some other and
Observe that searching for woman finds nouns;
      searching for bought mostly finds verbs; searching
      for over generally finds prepositions; searching
      for the finds several determiners. A tagger can
      correctly identify the tags on these words in the context of a sentence,
      e.g., The woman bought over $150,000 worth of
      clothes.
A tagger can also model our knowledge of unknown words; for
      example, we can guess that scrobbling is probably a
      verb, with the root scrobble, and likely to occur
      in contexts like he was scrobbling.

Tagged Corpora



Representing Tagged Tokens



By convention in NLTK, a tagged token is represented using a
        tuple consisting of the token and the tag. We can create one of these
        special tuples from the standard string representation of a tagged
        token, using the function str2tuple():
>>> tagged_token = nltk.tag.str2tuple('fly/NN')
>>> tagged_token
('fly', 'NN')
>>> tagged_token[0]
'fly'
>>> tagged_token[1]
'NN'
We can construct a list of tagged tokens directly from a string.
        The first step is to tokenize the string to access the individual
        word/tag strings, and then to convert each of these into a tuple
        (using str2tuple()).
>>> sent = '''
... The/AT grand/JJ jury/NN commented/VBD on/IN a/AT number/NN of/IN
... other/AP topics/NNS ,/, AMONG/IN them/PPO the/AT Atlanta/NP and/CC
... Fulton/NP-tl County/NN-tl purchasing/VBG departments/NNS which/WDT it/PPS
... said/VBD ``/`` ARE/BER well/QL operated/VBN and/CC follow/VB generally/RB
... accepted/VBN practices/NNS which/WDT inure/VB to/IN the/AT best/JJT
... interest/NN of/IN both/ABX governments/NNS ''/'' ./.
... '''
>>> [nltk.tag.str2tuple(t) for t in sent.split()]
[('The', 'AT'), ('grand', 'JJ'), ('jury', 'NN'), ('commented', 'VBD'),
('on', 'IN'), ('a', 'AT'), ('number', 'NN'), ... ('.', '.')]

Reading Tagged Corpora



Several of the corpora included with NLTK have been tagged for their part-of-speech. Here’s an
        example of what you might see if you opened a file from the Brown
        Corpus with a text editor:
The/at Fulton/np-tl County/nn-tl Grand/jj-tl Jury/nn-tl
          said/vbd Friday/nr an/at investigation/nn of/in Atlanta’s/np$
          recent/jj primary/nn election/nn produced/vbd / no/at evidence/nn ''/'' that/cs any/dti
          irregularities/nns took/vbd place/nn ./.


Other corpora use a variety of formats for storing
        part-of-speech tags. NLTK’s corpus readers provide a uniform interface
        so that you don’t have to be concerned with the different file
        formats. In contrast with the file extract just shown, the corpus
        reader for the Brown Corpus represents the data as shown next. Note
        that part-of-speech tags have been converted to uppercase; this has
        become standard practice since the Brown Corpus was published.
>>> nltk.corpus.brown.tagged_words()
[('The', 'AT'), ('Fulton', 'NP-TL'), ('County', 'NN-TL'), ...]
>>> nltk.corpus.brown.tagged_words(simplify_tags=True)
[('The', 'DET'), ('Fulton', 'N'), ('County', 'N'), ...]
Whenever a corpus contains tagged text, the NLTK corpus
        interface will have a tagged_words() method. Here are some more examples, again using the
        output format illustrated for the Brown Corpus:
>>> print nltk.corpus.nps_chat.tagged_words()
[('now', 'RB'), ('im', 'PRP'), ('left', 'VBD'), ...]
>>> nltk.corpus.conll2000.tagged_words()
[('Confidence', 'NN'), ('in', 'IN'), ('the', 'DT'), ...]
>>> nltk.corpus.treebank.tagged_words()
[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ...]
Not all corpora employ the same set of tags; see the tagset help
        functionality and the readme()
        methods mentioned earlier for documentation. Initially we want to
        avoid the complications of these tagsets, so we use a built-in mapping
        to a simplified tagset:
>>> nltk.corpus.brown.tagged_words(simplify_tags=True)
[('The', 'DET'), ('Fulton', 'NP'), ('County', 'N'), ...]
>>> nltk.corpus.treebank.tagged_words(simplify_tags=True)
[('Pierre', 'NP'), ('Vinken', 'NP'), (',', ','), ...]
Tagged corpora for several other languages are distributed with
        NLTK, including Chinese, Hindi, Portuguese, Spanish, Dutch, and
        Catalan. These usually contain non-ASCII text, and Python always displays
        this in hexadecimal when printing a larger structure such as a
        list.
>>> nltk.corpus.sinica_treebank.tagged_words()
[('\xe4\xb8\x80', 'Neu'), ('\xe5\x8f\x8b\xe6\x83\x85', 'Nad'), ...]
>>> nltk.corpus.indian.tagged_words()
[('\xe0\xa6\xae\xe0\xa6\xb9\xe0\xa6\xbf\xe0\xa6\xb7\xe0\xa7\x87\xe0\xa6\xb0', 'NN'),
('\xe0\xa6\xb8\xe0\xa6\xa8\xe0\xa7\x8d\xe0\xa6\xa4\xe0\xa6\xbe\xe0\xa6\xa8', 'NN'),
...]
>>> nltk.corpus.mac_morpho.tagged_words()
[('Jersei', 'N'), ('atinge', 'V'), ('m\xe9dia', 'N'), ...]
>>> nltk.corpus.conll2002.tagged_words()
[('Sao', 'NC'), ('Paulo', 'VMI'), ('(', 'Fpa'), ...]
>>> nltk.corpus.cess_cat.tagged_words()
[('El', 'da0ms0'), ('Tribunal_Suprem', 'np0000o'), ...]
If your environment is set up correctly, with appropriate
        editors and fonts, you should be able to display individual strings in
        a human-readable way. For example, Figure 5-1
        shows data accessed using nltk.corpus.indian.
If the corpus is also segmented into sentences, it will have a
        tagged_sents() method that divides up the tagged words into sentences
        rather than presenting them as one big list. This will be useful when
        we come to developing automatic taggers, as they are trained and
        tested on lists of sentences, not words.

A Simplified Part-of-Speech Tagset



Tagged corpora use many different conventions for tagging words.
        To help us get started, we will be looking at a simplified tagset
        (shown in Table 5-1).
Table 5-1. Simplified part-of-speech tagset
	Tag
	Meaning
	Examples

	ADJ
	adjective
	new, good, high, special, big,
                local

	ADV
	adverb
	really, already, still, early,
                now

	CNJ
	conjunction
	and, or, but, if, while,
                although

	DET
	determiner
	the, a, some, most, every,
                no

	EX
	existential
	there,
                there’s

	FW
	foreign word
	dolce, ersatz, esprit, quo,
                maitre

	MOD
	modal verb
	will, can, would, may, must,
                should

	N
	noun
	year, home, costs, time,
                education

	NP
	proper noun
	Alison, Africa, April,
                Washington

	NUM
	number
	twenty-four, fourth, 1991,
                14:24

	PRO
	pronoun
	he, their, her, its, my, I,
                us

	P
	preposition
	on, of, at, with, by, into,
                under

	TO
	the word to
	to

	UH
	interjection
	ah, bang, ha, whee, hmpf,
                oops

	V
	verb
	is, has, get, do, make, see,
                run

	VD
	past tense
	said, took, told, made,
                asked

	VG
	present participle
	making, going, playing,
                working

	VN
	past participle
	given, taken, begun,
                sung

	WH
	wh determiner
	who, which, when, what, where,
                how




[image: POS tagged data from four Indian languages: Bangla, Hindi, Marathi, and Telugu.]

Figure 5-1. POS tagged data from four Indian languages: Bangla, Hindi,
          Marathi, and Telugu.


Let’s see which of these tags are the most common in the news
        category of the Brown Corpus:
>>> from nltk.corpus import brown
>>> brown_news_tagged = brown.tagged_words(categories='news', simplify_tags=True)
>>> tag_fd = nltk.FreqDist(tag for (word, tag) in brown_news_tagged)
>>> tag_fd.keys()
['N', 'P', 'DET', 'NP', 'V', 'ADJ', ',', '.', 'CNJ', 'PRO', 'ADV', 'VD', ...]
Note
Your Turn: Plot the
          frequency distribution just shown using tag_fd.plot(cumulative=True). What
          percentage of words are tagged using the first five tags of the
          above list?

We can use these tags to do powerful searches using a graphical
        POS-concordance tool nltk.app.concordance(). Use it to search for
        any combination of words and POS tags, e.g., N N N N, hit/VD, hit/VN, or the ADJ
        man.

Nouns



Nouns generally refer to people, places, things, or concepts,
        e.g., woman, Scotland, book, intelligence. Nouns
        can appear after determiners and adjectives, and can be the subject or
        object of the verb, as shown in Table 5-2.
Table 5-2. Syntactic patterns involving some nouns
	Word
	After a determiner
	Subject of the verb

	woman
	the woman who I saw
                yesterday ...
	the woman sat
                down

	Scotland
	the Scotland I remember as a
                child ...
	Scotland has five million
                people

	book
	the book I bought yesterday
                ...
	this book recounts the
                colonization of Australia

	intelligence
	the intelligence displayed
                by the child ...
	Mary’s intelligence
                impressed her teachers




The simplified noun tags are N for common nouns like
        book, and NP
        for proper nouns like Scotland.
Let’s inspect some tagged text to see what parts-of-speech occur
        before a noun, with the most frequent ones first. To begin with, we
        construct a list of bigrams whose members are themselves word-tag
        pairs, such as (('The', 'DET'), ('Fulton',
        'NP')) and (('Fulton', 'NP'),
        ('County', 'N')). Then we construct a FreqDist from the tag parts of the bigrams.
>>> word_tag_pairs = nltk.bigrams(brown_news_tagged)
>>> list(nltk.FreqDist(a[1] for (a, b) in word_tag_pairs if b[1] == 'N'))
['DET', 'ADJ', 'N', 'P', 'NP', 'NUM', 'V', 'PRO', 'CNJ', '.', ',', 'VG', 'VN', ...]
This confirms our assertion that nouns occur after determiners
        and adjectives, including numeral adjectives (tagged as NUM).

Verbs



Verbs are words that describe events and actions, e.g.,
        fall and eat, as shown in
        Table 5-3. In the context of a sentence,
        verbs typically express a relation involving the referents of one or
        more noun phrases.
Table 5-3. Syntactic patterns involving some verbs
	Word
	Simple
	With modifiers and adjuncts
                (italicized)

	fall
	Rome fell
	Dot com stocks suddenly fell
                like a stone

	eat
	Mice eat cheese
	John ate the pizza with
                gusto




What are the most common verbs in news text? Let’s sort all the
        verbs by frequency:
>>> wsj = nltk.corpus.treebank.tagged_words(simplify_tags=True)
>>> word_tag_fd = nltk.FreqDist(wsj)
>>> [word + "/" + tag for (word, tag) in word_tag_fd if tag.startswith('V')]
['is/V', 'said/VD', 'was/VD', 'are/V', 'be/V', 'has/V', 'have/V', 'says/V',
'were/VD', 'had/VD', 'been/VN', "'s/V", 'do/V', 'say/V', 'make/V', 'did/VD',
'rose/VD', 'does/V', 'expected/VN', 'buy/V', 'take/V', 'get/V', 'sell/V',
'help/V', 'added/VD', 'including/VG', 'according/VG', 'made/VN', 'pay/V', ...]
Note that the items being counted in the frequency distribution
        are word-tag pairs. Since words and tags are paired, we can treat the
        word as a condition and the tag as an event, and initialize a
        conditional frequency distribution with a list of condition-event
        pairs. This lets us see a frequency-ordered list of tags given a
        word:
>>> cfd1 = nltk.ConditionalFreqDist(wsj)
>>> cfd1['yield'].keys()
['V', 'N']
>>> cfd1['cut'].keys()
['V', 'VD', 'N', 'VN']
We can reverse the order of the pairs, so that the tags are the
        conditions, and the words are the events. Now we can see likely words
        for a given tag:
>>> cfd2 = nltk.ConditionalFreqDist((tag, word) for (word, tag) in wsj)
>>> cfd2['VN'].keys()
['been', 'expected', 'made', 'compared', 'based', 'priced', 'used', 'sold',
'named', 'designed', 'held', 'fined', 'taken', 'paid', 'traded', 'said', ...]
To clarify the distinction between VD (past tense) and VN (past participle), let’s find words that
        can be both VD and VN, and see some surrounding text:
>>> [w for w in cfd1.conditions() if 'VD' in cfd1[w] and 'VN' in cfd1[w]]
['Asked', 'accelerated', 'accepted', 'accused', 'acquired', 'added', 'adopted', ...]
>>> idx1 = wsj.index(('kicked', 'VD'))
>>> wsj[idx1-4:idx1+1]
[('While', 'P'), ('program', 'N'), ('trades', 'N'), ('swiftly', 'ADV'),
('kicked', 'VD')]
>>> idx2 = wsj.index(('kicked', 'VN'))
>>> wsj[idx2-4:idx2+1]
[('head', 'N'), ('of', 'P'), ('state', 'N'), ('has', 'V'), ('kicked', 'VN')]
In this case, we see that the past participle of
        kicked is preceded by a form of the auxiliary
        verb have. Is this generally true?
Note
Your Turn: Given the list
          of past participles specified by cfd2['VN'].keys(), try to collect a list
          of all the word-tag pairs that immediately precede items in that
          list.


Adjectives and Adverbs



Two other important word classes are adjectives and adverbs. Adjectives describe nouns, and can
        be used as modifiers (e.g., large in
        the large pizza), or as predicates (e.g.,
        the pizza is large). English adjectives can have
        internal structure (e.g., fall+ing in
        the falling stocks). Adverbs modify verbs to
        specify the time, manner, place, or direction of the event described
        by the verb (e.g., quickly in the
        stocks fell quickly). Adverbs may also modify adjectives
        (e.g., really in Mary’s teacher was
        really nice).
English has several categories of closed class words in addition
        to prepositions, such as articles
        (also often called determiners)
        (e.g., the, a), modals (e.g., should,
        may), and personal
        pronouns (e.g., she,
        they). Each dictionary and grammar classifies
        these words differently.
Note
Your Turn: If you are
          uncertain about some of these parts-of-speech, study them using
          nltk.app.concordance(), or watch
          some of the Schoolhouse Rock! grammar videos
          available at YouTube, or consult Further Reading.


Unsimplified Tags



Let’s find the most frequent nouns of each noun part-of-speech
        type. The program in Example 5-1 finds all tags
        starting with NN, and provides a
        few example words for each one. You will see that there are many
        variants of NN; the most important
        contain $ for possessive nouns,
        S for plural nouns (since plural
        nouns typically end in s), and P for proper nouns. In addition, most of the
        tags have suffix modifiers: -NC for
        citations, -HL
        for words in headlines, and -TL for
        titles (a feature of Brown tags).
Example 5-1. Program to find the most frequent noun tags.
def findtags(tag_prefix, tagged_text):
    cfd = nltk.ConditionalFreqDist((tag, word) for (word, tag) in tagged_text
                                  if tag.startswith(tag_prefix))
    return dict((tag, cfd[tag].keys()[:5]) for tag in cfd.conditions())
>>> tagdict = findtags('NN', nltk.corpus.brown.tagged_words(categories='news'))
>>> for tag in sorted(tagdict):
...     print tag, tagdict[tag]
...
NN ['year', 'time', 'state', 'week', 'man']
NN$ ["year's", "world's", "state's", "nation's", "company's"]
NN$-HL ["Golf's", "Navy's"]
NN$-TL ["President's", "University's", "League's", "Gallery's", "Army's"]
NN-HL ['cut', 'Salary', 'condition', 'Question', 'business']
NN-NC ['eva', 'ova', 'aya']
NN-TL ['President', 'House', 'State', 'University', 'City']
NN-TL-HL ['Fort', 'City', 'Commissioner', 'Grove', 'House']
NNS ['years', 'members', 'people', 'sales', 'men']
NNS$ ["children's", "women's", "men's", "janitors'", "taxpayers'"]
NNS$-HL ["Dealers'", "Idols'"]
NNS$-TL ["Women's", "States'", "Giants'", "Officers'", "Bombers'"]
NNS-HL ['years', 'idols', 'Creations', 'thanks', 'centers']
NNS-TL ['States', 'Nations', 'Masters', 'Rules', 'Communists']
NNS-TL-HL ['Nations']


When we come to constructing part-of-speech taggers later in
        this chapter, we will use the unsimplified tags.

Exploring Tagged Corpora



Let’s briefly return to the kinds of exploration of corpora we
        saw in previous chapters, this time exploiting POS tags.
Suppose we’re studying the word often and
        want to see how it is used in text. We could ask to see the words that
        follow often:
>>> brown_learned_text = brown.words(categories='learned')
>>> sorted(set(b for (a, b) in nltk.ibigrams(brown_learned_text) if a == 'often'))
[',', '.', 'accomplished', 'analytically', 'appear', 'apt', 'associated', 'assuming',
'became', 'become', 'been', 'began', 'call', 'called', 'carefully', 'chose', ...]
However, it’s probably more instructive use the tagged_words() method to look at the part-of-speech tag of the
        following words:
>>> brown_lrnd_tagged = brown.tagged_words(categories='learned', simplify_tags=True)
>>> tags = [b[1] for (a, b) in nltk.ibigrams(brown_lrnd_tagged) if a[0] == 'often']
>>> fd = nltk.FreqDist(tags)
>>> fd.tabulate()
  VN    V   VD  DET  ADJ  ADV    P  CNJ    ,   TO   VG   WH  VBZ    .
  15   12    8    5    5    4    4    3    3    1    1    1    1    1
Notice that the most high-frequency parts-of-speech following
        often are verbs. Nouns never appear in this
        position (in this particular corpus).
Next, let’s look at some larger context, and find words
        involving particular sequences of tags and words (in this case
        "<Verb> to <Verb>"). In
        Example 5-2, we consider each three-word
        window in the sentence [image: 1], and check
        whether they meet our criterion [image: 2].
        If the tags match, we print the corresponding words [image: 3].
Example 5-2. Searching for three-word phrases using POS tags.
from nltk.corpus import brown
def process(sentence):
    for (w1,t1), (w2,t2), (w3,t3) in nltk.trigrams(sentence): [image: 1]
        if (t1.startswith('V') and t2 == 'TO' and t3.startswith('V')): [image: 2]
            print w1, w2, w3 [image: 3]
>>> for tagged_sent in brown.tagged_sents():
...     process(tagged_sent)
...
combined to achieve
continue to place
serve to protect
wanted to wait
allowed to place
expected to become
...


Finally, let’s look for words that are highly ambiguous as to
        their part-of-speech tag. Understanding why such words are tagged as
        they are in each context can help us clarify the distinctions between
        the tags.
>>> brown_news_tagged = brown.tagged_words(categories='news', simplify_tags=True)
>>> data = nltk.ConditionalFreqDist((word.lower(), tag)
...                                 for (word, tag) in brown_news_tagged)
>>> for word in data.conditions():
...     if len(data[word]) > 3:
...         tags = data[word].keys()
...         print word, ' '.join(tags)
...
best ADJ ADV NP V
better ADJ ADV V DET
close ADV ADJ V N
cut V N VN VD
even ADV DET ADJ V
grant NP N V -
hit V VD VN N
lay ADJ V NP VD
left VD ADJ N VN
like CNJ V ADJ P -
near P ADV ADJ DET
open ADJ V N ADV
past N ADJ DET P
present ADJ ADV V N
read V VN VD NP
right ADJ N DET ADV
second NUM ADV DET N
set VN V VD N -
that CNJ V WH DET
Note
Your Turn: Open the POS
          concordance tool nltk.app.concordance() and load the
          complete Brown Corpus (simplified tagset). Now pick some of the
          words listed at the end of the previous code example and see how the
          tag of the word correlates with the context of the word. E.g.,
          search for near to see all forms
          mixed together, near/ADJ to see
          it used as an adjective, near N
          to see just those cases where a noun follows, and so forth.



Mapping Words to Properties Using Python Dictionaries



As we have seen, a tagged word of the form (word, tag) is an association between a word and a part-of-speech
      tag. Once we start doing part-of-speech tagging, we will be creating
      programs that assign a tag to a word, the tag which is most likely in a
      given context. We can think of this process as mapping from words to tags. The most natural
      way to store mappings in Python uses the so-called dictionary data type (also known as an
      associative array or hash array in other programming languages). In
      this section, we look at dictionaries and see how they can represent a
      variety of language information, including parts-of-speech.
Indexing Lists Versus Dictionaries



A text, as we have seen, is treated in Python as a list of
        words. An important property of lists is that we can “look up” a
        particular item by giving its index, e.g., text1[100]. Notice how we specify a number
        and get back a word. We can think of a list as a simple kind of table,
        as shown in Figure 5-2.
[image: List lookup: We access the contents of a Python list with the help of an integer index.]

Figure 5-2. List lookup: We access the contents of a Python list with the
          help of an integer index.


Contrast this situation with frequency distributions (Computing with Language: Simple Statistics), where we
        specify a word and get back a number, e.g., fdist['monstrous'], which tells us the
        number of times a given word has occurred in a text. Lookup using
        words is familiar to anyone who has used a dictionary. Some more
        examples are shown in Figure 5-3.
[image: Dictionary lookup: we access the entry of a dictionary using a key such as someone’s name, a web domain, or an English word; other names for dictionary are map, hashmap, hash, and associative array.]

Figure 5-3. Dictionary lookup: we access the entry of a dictionary using
          a key such as someone’s name, a web domain, or an English word;
          other names for dictionary are map, hashmap, hash, and associative
          array.


In the case of a phonebook, we look up an entry using a
        name and get back a number. When we type a domain
        name in a web browser, the computer looks this up to get back an IP
        address. A word frequency table allows us to look up a word and find
        its frequency in a text collection. In all these cases, we are mapping
        from names to numbers, rather than the other way around as with a
        list. In general, we would like to be able to map between arbitrary
        types of information. Table 5-4 lists
        a variety of linguistic objects, along with what they map.
Table 5-4. Linguistic objects as mappings from keys to values
	Linguistic object
	Maps from
	Maps to

	Document Index
	Word
	List of pages (where word is
                found)

	Thesaurus
	Word sense
	List of synonyms

	Dictionary
	Headword
	Entry (part-of-speech, sense definitions,
                etymology)

	Comparative Wordlist
	Gloss term
	Cognates (list of words, one per
                language)

	Morph Analyzer
	Surface form
	Morphological analysis (list of component
                morphemes)




Most often, we are mapping from a “word” to some structured
        object. For example, a document index maps from a word (which we can
        represent as a string) to a list of pages (represented as a list of
        integers). In this section, we will see how to represent such mappings
        in Python.

Dictionaries in Python



Python provides a dictionary
        data type that can be used for mapping between arbitrary types. It is
        like a conventional dictionary, in that it gives you an efficient way
        to look things up. However, as we see from Table 5-4, it has a much wider range of
        uses.
To illustrate, we define pos
        to be an empty dictionary and then add four entries to it, specifying
        the part-of-speech of some words. We add entries to a dictionary using
        the familiar square bracket notation:
>>> pos = {}
>>> pos
{}
>>> pos['colorless'] = 'ADJ' [image: 1]
>>> pos
{'colorless': 'ADJ'}
>>> pos['ideas'] = 'N'
>>> pos['sleep'] = 'V'
>>> pos['furiously'] = 'ADV'
>>> pos [image: 2]
{'furiously': 'ADV', 'ideas': 'N', 'colorless': 'ADJ', 'sleep': 'V'}
So, for example, [image: 1] says that
        the part-of-speech of colorless is adjective, or
        more specifically, that the key
        'colorless' is assigned the
        value 'ADJ' in dictionary pos. When we inspect the value of pos [image: 2] we
        see a set of key-value pairs. Once we have populated the dictionary in
        this way, we can employ the keys to retrieve values:
>>> pos['ideas']
'N'
>>> pos['colorless']
'ADJ'
Of course, we might accidentally use a key that hasn’t been
        assigned a value.
>>> pos['green']
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
KeyError: 'green'
This raises an important question. Unlike lists and strings,
        where we can use len() to work out
        which integers will be legal indexes, how do we work out the legal
        keys for a dictionary? If the dictionary is not too big, we can simply
        inspect its contents by evaluating the variable pos. As we saw earlier in line [image: 2], this gives us the key-value pairs.
        Notice that they are not in the same order they were originally
        entered; this is because dictionaries are not sequences but mappings
        (see Figure 5-3), and the keys are not inherently
        ordered.
Alternatively, to just find the keys, we can either convert the
        dictionary to a list [image: 1] or use the
        dictionary in a context where a list is expected, as the parameter of
        sorted() [image: 2] or in a for loop [image: 3].
>>> list(pos) [image: 1]
['ideas', 'furiously', 'colorless', 'sleep']
>>> sorted(pos) [image: 2]
['colorless', 'furiously', 'ideas', 'sleep']
>>> [w for w in pos if w.endswith('s')] [image: 3]
['colorless', 'ideas']
Note
When you type list(pos),
          you might see a different order to the one shown here. If you want
          to see the keys in order, just sort them.

As well as iterating over all keys in the dictionary with a
        for loop, we can use the for loop as we did for printing
        lists:
>>> for word in sorted(pos):
...     print word + ":", pos[word]
...
colorless: ADJ
furiously: ADV
sleep: V
ideas: N
Finally, the dictionary methods keys(), values(), and items() allow us
        to access the keys, values, and key-value pairs as separate lists. We
        can even sort tuples [image: 1], which orders
        them according to their first element (and if the first elements are
        the same, it uses their second elements).
>>> pos.keys()
['colorless', 'furiously', 'sleep', 'ideas']
>>> pos.values()
['ADJ', 'ADV', 'V', 'N']
>>> pos.items()
[('colorless', 'ADJ'), ('furiously', 'ADV'), ('sleep', 'V'), ('ideas', 'N')]
>>> for key, val in sorted(pos.items()): [image: 1]
...     print key + ":", val
...
colorless: ADJ
furiously: ADV
ideas: N
sleep: V
We want to be sure that when we look something up in a
        dictionary, we get only one value for each key. Now suppose we try to
        use a dictionary to store the fact that the word
        sleep can be used as both a verb and a
        noun:
>>> pos['sleep'] = 'V'
>>> pos['sleep']
'V'
>>> pos['sleep'] = 'N'
>>> pos['sleep']
'N'
Initially, pos['sleep'] is
        given the value 'V'. But this is
        immediately overwritten with the new value, 'N'. In other words, there can be only one
        entry in the dictionary for 'sleep'. However, there is a way of storing
        multiple values in that entry: we use a list value, e.g., pos['sleep'] = ['N', 'V']. In fact, this is
        what we saw in Lexical Resources for the CMU
        Pronouncing Dictionary, which stores multiple pronunciations for a
        single word.

Defining Dictionaries



We can use the same key-value pair format to create a
        dictionary. There are a couple of ways to do this, and we will
        normally use the first:
>>> pos = {'colorless': 'ADJ', 'ideas': 'N', 'sleep': 'V', 'furiously': 'ADV'}
>>> pos = dict(colorless='ADJ', ideas='N', sleep='V', furiously='ADV')
Note that dictionary keys must be immutable types, such as
        strings and tuples. If we try to define a dictionary using a mutable
        key, we get a TypeError:
>>> pos = {['ideas', 'blogs', 'adventures']: 'N'}
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: list objects are unhashable

Default Dictionaries



If we try to access a key that is not in a dictionary, we get an
        error. However, it’s often useful if a dictionary can automatically
        create an entry for this new key and give it a default value, such as
        zero or the empty list. Since Python 2.5, a special kind of dictionary
        called a defaultdict has been
        available. (It is provided as nltk.defaultdict for the benefit of readers
        who are using Python 2.4.) In order to use it, we have to supply a
        parameter which can be used to create the default value, e.g.,
        int, float, str, list, dict, tuple.
>>> frequency = nltk.defaultdict(int)
>>> frequency['colorless'] = 4
>>> frequency['ideas']
0
>>> pos = nltk.defaultdict(list)
>>> pos['sleep'] = ['N', 'V']
>>> pos['ideas']
[]
Note
These default values are actually functions that convert other
          objects to the specified type (e.g., int("2"), list("2")). When they are called with no
          parameter—say, int(), list()—they return 0 and [] respectively.

The preceding examples specified the default value of a
        dictionary entry to be the default value of a particular data type.
        However, we can specify any default value we like, simply by providing
        the name of a function that can be called with no arguments to create
        the required value. Let’s return to our part-of-speech example, and
        create a dictionary whose default value for any entry is 'N' [image: 1].
        When we access a non-existent entry [image: 2], it is automatically added to the
        dictionary [image: 3].
>>> pos = nltk.defaultdict(lambda: 'N') [image: 1]
>>> pos['colorless'] = 'ADJ'
>>> pos['blog'] [image: 2]
'N'
>>> pos.items()
[('blog', 'N'), ('colorless', 'ADJ')] [image: 3]
Note
This example used a lambda expression,
          introduced in Functions: The Foundation of Structured Programming. This lambda
          expression specifies no parameters, so we call it using parentheses
          with no arguments. Thus, the following definitions of f and g
          are equivalent:
>>> f = lambda: 'N'
>>> f()
'N'
>>> def g():
...     return 'N'
>>> g()
'N'

Let’s see how default dictionaries could be used in a more
        substantial language processing task. Many language processing
        tasks—including tagging—struggle to correctly process the hapaxes of a
        text. They can perform better with a fixed vocabulary and a guarantee
        that no new words will appear. We can preprocess a text to replace
        low-frequency words with a special “out of vocabulary” token, UNK, with the help of a default dictionary.
        (Can you work out how to do this without reading on?)
We need to create a default dictionary that maps each word to
        its replacement. The most frequent n words will
        be mapped to themselves. Everything else will be mapped to UNK.
>>> alice = nltk.corpus.gutenberg.words('carroll-alice.txt')
>>> vocab = nltk.FreqDist(alice)
>>> v1000 = list(vocab)[:1000]
>>> mapping = nltk.defaultdict(lambda: 'UNK')
>>> for v in v1000:
...     mapping[v] = v
...
>>> alice2 = [mapping[v] for v in alice]
>>> alice2[:100]
['UNK', 'Alice', "'", 's', 'Adventures', 'in', 'Wonderland', 'by', 'UNK', 'UNK',
'UNK', 'UNK', 'CHAPTER', 'I', '.', 'UNK', 'the', 'Rabbit', '-', 'UNK', 'Alice',
'was', 'beginning', 'to', 'get', 'very', 'tired', 'of', 'sitting', 'by', 'her',
'sister', 'on', 'the', 'bank', ',', 'and', 'of', 'having', 'nothing', 'to', 'do',
':', 'once', 'or', 'twice', 'she', 'had', 'UNK', 'into', 'the', 'book', 'her',
'sister', 'was', 'UNK', ',', 'but', 'it', 'had', 'no', 'pictures', 'or', 'UNK',
'in', 'it', ',', "'", 'and', 'what', 'is', 'the', 'use', 'of', 'a', 'book', ",'",
'thought', 'Alice', "'", 'without', 'pictures', 'or', 'conversation', "?'", ...]
>>> len(set(alice2))
1001

Incrementally Updating a Dictionary



We can employ dictionaries to count occurrences, emulating the
        method for tallying words shown in Figure 1-3. We
        begin by initializing an empty defaultdict, then process each
        part-of-speech tag in the text. If the tag hasn’t been seen before, it
        will have a zero count by default. Each time we encounter a tag, we
        increment its count using the +=
        operator (see Example 5-3).
Example 5-3. Incrementally updating a dictionary, and sorting by
          value.
>>> counts = nltk.defaultdict(int)
>>> from nltk.corpus import brown
>>> for (word, tag) in brown.tagged_words(categories='news'):
...     counts[tag] += 1
...
>>> counts['N']
22226
>>> list(counts)
['FW', 'DET', 'WH', "''", 'VBZ', 'VB+PPO', "'", ')', 'ADJ', 'PRO', '*', '-', ...]

>>> from operator import itemgetter
>>> sorted(counts.items(), key=itemgetter(1), reverse=True)
[('N', 22226), ('P', 10845), ('DET', 10648), ('NP', 8336), ('V', 7313), ...]
>>> [t for t, c in sorted(counts.items(), key=itemgetter(1), reverse=True)]
['N', 'P', 'DET', 'NP', 'V', 'ADJ', ',', '.', 'CNJ', 'PRO', 'ADV', 'VD', ...]


The listing in Example 5-3 illustrates an
        important idiom for sorting a dictionary by its values, to show words
        in decreasing order of frequency. The first parameter of sorted() is the items
        to sort, which is a list of tuples consisting of a POS tag and a
        frequency. The second parameter specifies the sort key using a
        function itemgetter(). In general,
        itemgetter(n) returns a function
        that can be called on some other sequence object to obtain the
        nth element:
>>> pair = ('NP', 8336)
>>> pair[1]
8336
>>> itemgetter(1)(pair)
8336
The last parameter of sorted() specifies that the items should be
        returned in reverse order, i.e., decreasing values of
        frequency.
There’s a second useful programming idiom at the beginning of
        Example 5-3, where we initialize a defaultdict and then use a for loop to update its values. Here’s a
        schematic version:
>>> my_dictionary = nltk.defaultdict(function to create default value)
>>> for item in sequence:
...      my_dictionary[item_key] is updated with information about item

Here’s another instance of this pattern, where we index words
        according to their last two letters:
>>> last_letters = nltk.defaultdict(list)
>>> words = nltk.corpus.words.words('en')
>>> for word in words:
...     key = word[-2:]
...     last_letters[key].append(word)
...
>>> last_letters['ly']
['abactinally', 'abandonedly', 'abasedly', 'abashedly', 'abashlessly', 'abbreviately',
'abdominally', 'abhorrently', 'abidingly', 'abiogenetically', 'abiologically', ...]
>>> last_letters['zy']
['blazy', 'bleezy', 'blowzy', 'boozy', 'breezy', 'bronzy', 'buzzy', 'Chazy', ...]
The following example uses the same pattern to create an anagram
        dictionary. (You might experiment with the third line to get an idea
        of why this program works.)
>>> anagrams = nltk.defaultdict(list)
>>> for word in words:
...     key = ''.join(sorted(word))
...     anagrams[key].append(word)
...
>>> anagrams['aeilnrt']
['entrail', 'latrine', 'ratline', 'reliant', 'retinal', 'trenail']
Since accumulating words like this is such a common task, NLTK
        provides a more convenient way of creating a defaultdict(list), in the form of nltk.Index():
>>> anagrams = nltk.Index((''.join(sorted(w)), w) for w in words)
>>> anagrams['aeilnrt']
['entrail', 'latrine', 'ratline', 'reliant', 'retinal', 'trenail']
Note
nltk.Index is a defaultdict(list) with extra support for
          initialization. Similarly, nltk.FreqDist is essentially a defaultdict(int) with extra support for
          initialization (along with sorting and plotting methods).


Complex Keys and Values



We can use default dictionaries with complex keys and values.
        Let’s study the range of possible tags for a word, given the word
        itself and the tag of the previous word. We will see how this
        information can be used by a POS tagger.
>>> pos = nltk.defaultdict(lambda: nltk.defaultdict(int))
>>> brown_news_tagged = brown.tagged_words(categories='news', simplify_tags=True)
>>> for ((w1, t1), (w2, t2)) in nltk.ibigrams(brown_news_tagged): [image: 1]
...     pos[(t1, w2)][t2] += 1 [image: 2]
...
>>> pos[('DET', 'right')] [image: 3]
defaultdict(<type 'int'>, {'ADV': 3, 'ADJ': 9, 'N': 3})
This example uses a dictionary whose default value for an entry
        is a dictionary (whose default value is int(), i.e., zero). Notice how we iterated
        over the bigrams of the tagged corpus, processing a pair of word-tag
        pairs for each iteration [image: 1]. Each
        time through the loop we updated our pos dictionary’s entry for (t1, w2), a tag and its
        following word [image: 2]. When we look up an item in pos we must specify a compound key [image: 3], and we get back a dictionary object. A
        POS tagger could use such information to decide that the word
        right, when preceded by a determiner, should be
        tagged as ADJ.

Inverting a Dictionary



Dictionaries support efficient lookup, so long as you want to
        get the value for any key. If d is
        a dictionary and k is a key, we
        type d[k] and immediately obtain
        the value. Finding a key given a value is slower and more
        cumbersome:
>>> counts = nltk.defaultdict(int)
>>> for word in nltk.corpus.gutenberg.words('milton-paradise.txt'):
...     counts[word] += 1
...
>>> [key for (key, value) in counts.items() if value == 32]
['brought', 'Him', 'virtue', 'Against', 'There', 'thine', 'King', 'mortal',
'every', 'been']
If we expect to do this kind of “reverse lookup” often, it helps
        to construct a dictionary that maps values to keys. In the case that
        no two keys have the same value, this is an easy thing to do. We just
        get all the key-value pairs in the dictionary, and create a new
        dictionary of value-key pairs. The next example also illustrates
        another way of initializing a dictionary pos with key-value pairs.
>>> pos = {'colorless': 'ADJ', 'ideas': 'N', 'sleep': 'V', 'furiously': 'ADV'}
>>> pos2 = dict((value, key) for (key, value) in pos.items())
>>> pos2['N']
'ideas'
Let’s first make our part-of-speech dictionary a bit more
        realistic and add some more words to pos using the dictionary update() method, to create the situation
        where multiple keys have the same value. Then the technique just shown
        for reverse lookup will no longer work (why not?). Instead, we have to
        use append() to accumulate the words for each part-of-speech, as
        follows:
>>> pos.update({'cats': 'N', 'scratch': 'V', 'peacefully': 'ADV', 'old': 'ADJ'})
>>> pos2 = nltk.defaultdict(list)
>>> for key, value in pos.items():
...     pos2[value].append(key)
...
>>> pos2['ADV']
['peacefully', 'furiously']
Now we have inverted the pos
        dictionary, and can look up any part-of-speech and find all words
        having that part-of-speech. We can do the same thing even more simply
        using NLTK’s support for indexing, as follows:
>>> pos2 = nltk.Index((value, key) for (key, value) in pos.items())
>>> pos2['ADV']
['peacefully', 'furiously']
A summary of Python’s dictionary methods is given in Table 5-5.
Table 5-5. Python’s dictionary methods: A summary of commonly used
          methods and idioms involving dictionaries
	Example
	Description

	d =
                {}
	Create an empty dictionary and assign it to
                d

	d[key] =
                value
	Assign a value to a given dictionary
                key

	d.keys()
	The list of keys of the dictionary

	list(d)
	The list of keys of the dictionary

	sorted(d)
	The keys of the dictionary, sorted

	key in
                d
	Test whether a particular key is in the
                dictionary

	for key in
                d
	Iterate over the keys of the
                dictionary

	d.values()
	The list of values in the
                dictionary

	dict([(k1,v1), (k2,v2),
                ...])
	Create a dictionary from a list of key-value
                pairs

	d1.update(d2)
	Add all items from d2 to d1

	defaultdict(int)
	A dictionary whose default value is
                zero






Automatic Tagging



In the rest of this chapter we will explore various ways to
      automatically add part-of-speech tags to text. We will see that the tag
      of a word depends on the word and its context within a sentence. For
      this reason, we will be working with data at the level of (tagged)
      sentences rather than words. We’ll begin by loading the data we will be
      using.
>>> from nltk.corpus import brown
>>> brown_tagged_sents = brown.tagged_sents(categories='news')
>>> brown_sents = brown.sents(categories='news')
The Default Tagger



The simplest possible tagger assigns the same tag to each token.
        This may seem to be a rather banal step, but it establishes an
        important baseline for tagger performance. In order to get the best
        result, we tag each word with the most likely tag. Let’s find out
        which tag is most likely (now using the unsimplified
        tagset):
>>> tags = [tag for (word, tag) in brown.tagged_words(categories='news')]
>>> nltk.FreqDist(tags).max()
'NN'
Now we can create a tagger that tags everything as NN.
>>> raw = 'I do not like green eggs and ham, I do not like them Sam I am!'
>>> tokens = nltk.word_tokenize(raw)
>>> default_tagger = nltk.DefaultTagger('NN')
>>> default_tagger.tag(tokens)
[('I', 'NN'), ('do', 'NN'), ('not', 'NN'), ('like', 'NN'), ('green', 'NN'),
('eggs', 'NN'), ('and', 'NN'), ('ham', 'NN'), (',', 'NN'), ('I', 'NN'),
('do', 'NN'), ('not', 'NN'), ('like', 'NN'), ('them', 'NN'), ('Sam', 'NN'),
('I', 'NN'), ('am', 'NN'), ('!', 'NN')]
Unsurprisingly, this method performs rather poorly. On a typical
        corpus, it will tag only about an eighth of the tokens correctly, as
        we see here:
>>> default_tagger.evaluate(brown_tagged_sents)
0.13089484257215028
Default taggers assign their tag to every single word, even
        words that have never been encountered before. As it happens, once we
        have processed several thousand words of English text, most new words
        will be nouns. As we will see, this means that default taggers can
        help to improve the robustness of a language processing system. We
        will return to them shortly.

The Regular Expression Tagger



The regular expression tagger assigns tags to tokens on the
        basis of matching patterns. For instance, we might guess that any word
        ending in ed is the past participle of a verb,
        and any word ending with ’s is a possessive noun.
        We can express these as a list of regular expressions:
>>> patterns = [
...     (r'.*ing$', 'VBG'),               # gerunds
...     (r'.*ed$', 'VBD'),                # simple past
...     (r'.*es$', 'VBZ'),                # 3rd singular present
...     (r'.*ould$', 'MD'),               # modals
...     (r'.*\'s$', 'NN$'),               # possessive nouns
...     (r'.*s$', 'NNS'),                 # plural nouns
...     (r'^-?[0-9]+(.[0-9]+)?$', 'CD'),  # cardinal numbers
...     (r'.*', 'NN')                     # nouns (default)
... ]
Note that these are processed in order, and the first one that
        matches is applied. Now we can set up a tagger and use it to tag a
        sentence. After this step, it is correct about a fifth of the
        time.
>>> regexp_tagger = nltk.RegexpTagger(patterns)
>>> regexp_tagger.tag(brown_sents[3])
[('``', 'NN'), ('Only', 'NN'), ('a', 'NN'), ('relative', 'NN'), ('handful', 'NN'),
('of', 'NN'), ('such', 'NN'), ('reports', 'NNS'), ('was', 'NNS'), ('received', 'VBD'),
("''", 'NN'), (',', 'NN'), ('the', 'NN'), ('jury', 'NN'), ('said', 'NN'), (',', 'NN'),
('``', 'NN'), ('considering', 'VBG'), ('the', 'NN'), ('widespread', 'NN'), ...]
>>> regexp_tagger.evaluate(brown_tagged_sents)
0.20326391789486245
The final regular expression «.*» is a catch-all that tags everything as a
        noun. This is equivalent to the default tagger (only much less
        efficient). Instead of respecifying this as part of the regular
        expression tagger, is there a way to combine this tagger with the
        default tagger? We will see how to do this shortly.
Note
Your Turn: See if you can
          come up with patterns to improve the performance of the regular
          expression tagger just shown. (Note that Supervised Classification describes a way to
          partially automate such work.)


The Lookup Tagger



A lot of high-frequency words do not have the NN tag. Let’s find the hundred most frequent
        words and store their most likely tag. We can then use this
        information as the model for a “lookup tagger” (an NLTK UnigramTagger):
>>> fd = nltk.FreqDist(brown.words(categories='news'))
>>> cfd = nltk.ConditionalFreqDist(brown.tagged_words(categories='news'))
>>> most_freq_words = fd.keys()[:100]
>>> likely_tags = dict((word, cfd[word].max()) for word in most_freq_words)
>>> baseline_tagger = nltk.UnigramTagger(model=likely_tags)
>>> baseline_tagger.evaluate(brown_tagged_sents)
0.45578495136941344
It should come as no surprise by now that simply knowing the
        tags for the 100 most frequent words enables us to tag a large
        fraction of tokens correctly (nearly half, in fact). Let’s see what it
        does on some untagged input text:
>>> sent = brown.sents(categories='news')[3]
>>> baseline_tagger.tag(sent)
[('``', '``'), ('Only', None), ('a', 'AT'), ('relative', None),
('handful', None), ('of', 'IN'), ('such', None), ('reports', None),
('was', 'BEDZ'), ('received', None), ("''", "''"), (',', ','),
('the', 'AT'), ('jury', None), ('said', 'VBD'), (',', ','),
('``', '``'), ('considering', None), ('the', 'AT'), ('widespread', None),
('interest', None), ('in', 'IN'), ('the', 'AT'), ('election', None),
(',', ','), ('the', 'AT'), ('number', None), ('of', 'IN'),
('voters', None), ('and', 'CC'), ('the', 'AT'), ('size', None),
('of', 'IN'), ('this', 'DT'), ('city', None), ("''", "''"), ('.', '.')]
Many words have been assigned a tag of None, because they were not among the 100
        most frequent words. In these cases we would like to assign the
        default tag of NN. In other words,
        we want to use the lookup table first, and if it is unable to assign a
        tag, then use the default tagger, a process known as backoff (N-Gram Tagging). We do this by specifying one tagger
        as a parameter to the other, as shown next. Now the lookup tagger will
        only store word-tag pairs for words other than nouns, and whenever it
        cannot assign a tag to a word, it will invoke the default
        tagger.
>>> baseline_tagger = nltk.UnigramTagger(model=likely_tags,
...                                      backoff=nltk.DefaultTagger('NN'))
Let’s put all this together and write a program to create and
        evaluate lookup taggers having a range of sizes (Example 5-4).
Example 5-4. Lookup tagger performance with varying model size.
def performance(cfd, wordlist):
    lt = dict((word, cfd[word].max()) for word in wordlist)
    baseline_tagger = nltk.UnigramTagger(model=lt, backoff=nltk.DefaultTagger('NN'))
    return baseline_tagger.evaluate(brown.tagged_sents(categories='news'))

def display():
    import pylab
    words_by_freq = list(nltk.FreqDist(brown.words(categories='news')))
    cfd = nltk.ConditionalFreqDist(brown.tagged_words(categories='news'))
    sizes = 2 ** pylab.arange(15)
    perfs = [performance(cfd, words_by_freq[:size]) for size in sizes]
    pylab.plot(sizes, perfs, '-bo')
    pylab.title('Lookup Tagger Performance with Varying Model Size')
    pylab.xlabel('Model Size')
    pylab.ylabel('Performance')
    pylab.show()
>>> display()                                  


Observe in Figure 5-4 that performance
        initially increases rapidly as the model size grows, eventually
        reaching a plateau, when large increases in model size yield little
        improvement in performance. (This example used the pylab plotting package, discussed in A Sample of Python Libraries.)
[image: Lookup tagger]

Figure 5-4. Lookup tagger


Evaluation



In the previous examples, you will have noticed an emphasis on
        accuracy scores. In fact, evaluating the performance of such tools is
        a central theme in NLP. Recall the processing pipeline in Figure 1-5; any errors in the output of one module are
        greatly multiplied in the downstream modules.
We evaluate the performance of a tagger relative to the tags a
        human expert would assign. Since we usually don’t have access to an
        expert and impartial human judge, we make do instead with gold standard test data. This is a corpus
        which has been manually annotated and accepted as a standard against
        which the guesses of an automatic system are assessed. The tagger is
        regarded as being correct if the tag it guesses for a given word is
        the same as the gold standard tag.
Of course, the humans who designed and carried out the original
        gold standard annotation were only human. Further analysis might show
        mistakes in the gold standard, or may eventually lead to a revised
        tagset and more elaborate guidelines. Nevertheless, the gold standard
        is by definition “correct” as far as the evaluation of an automatic
        tagger is concerned.
Note
Developing an annotated corpus is a major undertaking. Apart
          from the data, it generates sophisticated tools, documentation, and
          practices for ensuring high-quality annotation. The tagsets and
          other coding schemes inevitably depend on some theoretical position
          that is not shared by all. However, corpus creators often go to
          great lengths to make their work as theory-neutral as possible in
          order to maximize the usefulness of their work. We will discuss the
          challenges of creating a corpus in Chapter 11.



N-Gram Tagging



Unigram Tagging



Unigram taggers are based on a simple statistical algorithm: for each
        token, assign the tag that is most likely for that particular token.
        For example, it will assign the tag JJ to any occurrence of the word
        frequent, since frequent is
        used as an adjective (e.g., a frequent word) more
        often than it is used as a verb (e.g., I frequent this
        cafe). A unigram tagger behaves just like a lookup tagger
        (Automatic Tagging), except there is a more
        convenient technique for setting it up, called training. In the following code sample, we
        train a unigram tagger, use it to tag a sentence, and then
        evaluate:
>>> from nltk.corpus import brown
>>> brown_tagged_sents = brown.tagged_sents(categories='news')
>>> brown_sents = brown.sents(categories='news')
>>> unigram_tagger = nltk.UnigramTagger(brown_tagged_sents)
>>> unigram_tagger.tag(brown_sents[2007])
[('Various', 'JJ'), ('of', 'IN'), ('the', 'AT'), ('apartments', 'NNS'),
('are', 'BER'), ('of', 'IN'), ('the', 'AT'), ('terrace', 'NN'), ('type', 'NN'),
(',', ','), ('being', 'BEG'), ('on', 'IN'), ('the', 'AT'), ('ground', 'NN'),
('floor', 'NN'), ('so', 'QL'), ('that', 'CS'), ('entrance', 'NN'), ('is', 'BEZ'),
('direct', 'JJ'), ('.', '.')]
>>> unigram_tagger.evaluate(brown_tagged_sents)
0.9349006503968017
We train a UnigramTagger by specifying tagged sentence data as a parameter when
        we initialize the tagger. The training process involves inspecting the
        tag of each word and storing the most likely tag for any word in a
        dictionary that is stored inside the tagger.

Separating the Training and Testing Data



Now that we are training a tagger on some data, we must be
        careful not to test it on the same data, as we did in the previous
        example. A tagger that simply memorized its training data and made no
        attempt to construct a general model would get a perfect score, but
        would be useless for tagging new text. Instead, we should split the
        data, training on 90% and testing on the remaining 10%:
>>> size = int(len(brown_tagged_sents) * 0.9)
>>> size
4160
>>> train_sents = brown_tagged_sents[:size]
>>> test_sents = brown_tagged_sents[size:]
>>> unigram_tagger = nltk.UnigramTagger(train_sents)
>>> unigram_tagger.evaluate(test_sents)
0.81202033290142528
Although the score is worse, we now have a better picture of the
        usefulness of this tagger, i.e., its performance on previously unseen
        text.

General N-Gram Tagging



When we perform a language processing task based on unigrams, we
        are using one item of context. In the case of tagging, we consider
        only the current token, in isolation from any larger context. Given
        such a model, the best we can do is tag each word with its a
        priori most likely tag. This means we would tag a word such
        as wind with the same tag, regardless of whether
        it appears in the context the wind or
        to wind.
An n-gram tagger is a
        generalization of a unigram tagger whose context is the current word
        together with the part-of-speech tags of the n-1
        preceding tokens, as shown in Figure 5-5. The
        tag to be chosen,
        tn,
        is circled, and the context is shaded in grey. In the example of an
        n-gram tagger shown in Figure 5-5, we have
        n=3; that is, we consider the tags of the two
        preceding words in addition to the current word. An n-gram tagger
        picks the tag that is most likely in the given context.
[image: Tagger context.]

Figure 5-5. Tagger context.

Note
A 1-gram tagger is another term for a unigram tagger: i.e.,
          the context used to tag a token is just the text of the token
          itself. 2-gram taggers are also called bigram
          taggers, and 3-gram taggers are called trigram
          taggers.

The NgramTagger class uses a tagged training corpus to determine which
        part-of-speech tag is most likely for each context. Here we see a
        special case of an n-gram tagger, namely a bigram tagger. First we
        train it, then use it to tag untagged sentences:
>>> bigram_tagger = nltk.BigramTagger(train_sents)
>>> bigram_tagger.tag(brown_sents[2007])
[('Various', 'JJ'), ('of', 'IN'), ('the', 'AT'), ('apartments', 'NNS'),
('are', 'BER'), ('of', 'IN'), ('the', 'AT'), ('terrace', 'NN'),
('type', 'NN'), (',', ','), ('being', 'BEG'), ('on', 'IN'), ('the', 'AT'),
('ground', 'NN'), ('floor', 'NN'), ('so', 'CS'), ('that', 'CS'),
('entrance', 'NN'), ('is', 'BEZ'), ('direct', 'JJ'), ('.', '.')]
>>> unseen_sent = brown_sents[4203]
>>> bigram_tagger.tag(unseen_sent)
[('The', 'AT'), ('population', 'NN'), ('of', 'IN'), ('the', 'AT'), ('Congo', 'NP'),
('is', 'BEZ'), ('13.5', None), ('million', None), (',', None), ('divided', None),
('into', None), ('at', None), ('least', None), ('seven', None), ('major', None),
('``', None), ('culture', None), ('clusters', None), ("''", None), ('and', None),
('innumerable', None), ('tribes', None), ('speaking', None), ('400', None),
('separate', None), ('dialects', None), ('.', None)]
Notice that the bigram tagger manages to tag every word in a
        sentence it saw during training, but does badly on an unseen sentence.
        As soon as it encounters a new word (i.e., 13.5),
        it is unable to assign a tag. It cannot tag the following word (i.e.,
        million), even if it was seen during training,
        simply because it never saw it during training with a None tag on the previous word. Consequently,
        the tagger fails to tag the rest of the sentence. Its overall accuracy
        score is very low:
>>> bigram_tagger.evaluate(test_sents)
0.10276088906608193
As n gets larger, the specificity of the
        contexts increases, as does the chance that the data we wish to tag
        contains contexts that were not present in the training data. This is
        known as the sparse data problem, and is quite
        pervasive in NLP. As a consequence, there is a trade-off between the
        accuracy and the coverage of our results (and this is related to the
        precision/recall trade-off in
        information retrieval).
Caution!
N-gram taggers should not consider context that crosses a
          sentence boundary. Accordingly, NLTK taggers are designed to work
          with lists of sentences, where each sentence is a list of words. At
          the start of a sentence,
          tn-1
          and preceding tags are set to None.


Combining Taggers



One way to address the trade-off between accuracy and coverage
        is to use the more accurate algorithms when we can, but to fall back
        on algorithms with wider coverage when necessary. For example, we
        could combine the results of a bigram tagger, a unigram tagger, and a default tagger, as
        follows:
	Try tagging the token with the bigram tagger.

	If the bigram tagger is unable to find a tag for the token,
            try the unigram tagger.

	If the unigram tagger is also unable to find a tag, use a
            default tagger.



Most NLTK taggers permit a backoff tagger to be specified. The
        backoff tagger may itself have a backoff tagger:
>>> t0 = nltk.DefaultTagger('NN')
>>> t1 = nltk.UnigramTagger(train_sents, backoff=t0)
>>> t2 = nltk.BigramTagger(train_sents, backoff=t1)
>>> t2.evaluate(test_sents)
0.84491179108940495
Note
Your Turn: Extend the
          preceding example by defining a TrigramTagger called t3, which
          backs off to t2.

Note that we specify the backoff tagger when the tagger is
        initialized so that training can take advantage of the backoff tagger.
        Thus, if the bigram tagger would assign the same tag as its unigram
        backoff tagger in a certain context, the bigram tagger discards the
        training instance. This keeps the bigram tagger model as small as
        possible. We can further specify that a tagger needs to see more than
        one instance of a context in order to retain it. For example, nltk.BigramTagger(sents, cutoff=2,
        backoff=t1) will discard contexts that have only been seen once or
        twice.

Tagging Unknown Words



Our approach to tagging unknown words still uses backoff to a
        regular expression tagger or a default tagger. These are unable to
        make use of context. Thus, if our tagger encountered the word
        blog, not seen during training, it would assign
        it the same tag, regardless of whether this word appeared in the
        context the blog or to blog.
        How can we do better with these unknown words, or out-of-vocabulary items?
A useful method to tag unknown words based on context is to
        limit the vocabulary of a tagger to the most frequent
        n words, and to replace every other word with a
        special word UNK using the method shown in Mapping Words to Properties Using Python Dictionaries. During training, a unigram tagger will
        probably learn that UNK is usually a noun.
        However, the n-gram taggers will detect contexts in which it has some
        other tag. For example, if the preceding word is
        to (tagged TO), then UNK will
        probably be tagged as a verb.

Storing Taggers



Training a tagger on a large corpus may take a significant time.
        Instead of training a tagger every time we need one, it is convenient
        to save a trained tagger in a file for later reuse. Let’s save our
        tagger t2 to a file t2.pkl:
>>> from cPickle import dump
>>> output = open('t2.pkl', 'wb')
>>> dump(t2, output, -1)
>>> output.close()
Now, in a separate Python process, we can load our saved
        tagger:
>>> from cPickle import load
>>> input = open('t2.pkl', 'rb')
>>> tagger = load(input)
>>> input.close()
Now let’s check that it can be used for tagging:
>>> text = """The board's action shows what free enterprise
...     is up against in our complex maze of regulatory laws ."""
>>> tokens = text.split()
>>> tagger.tag(tokens)
[('The', 'AT'), ("board's", 'NN$'), ('action', 'NN'), ('shows', 'NNS'),
('what', 'WDT'), ('free', 'JJ'), ('enterprise', 'NN'), ('is', 'BEZ'),
('up', 'RP'), ('against', 'IN'), ('in', 'IN'), ('our', 'PP$'), ('complex', 'JJ'),
('maze', 'NN'), ('of', 'IN'), ('regulatory', 'NN'), ('laws', 'NNS'), ('.', '.')]

Performance Limitations



What is the upper limit to the performance of an n-gram tagger?
        Consider the case of a trigram tagger. How many cases of
        part-of-speech ambiguity does it encounter? We can determine the
        answer to this question empirically:
>>> cfd = nltk.ConditionalFreqDist(
...            ((x[1], y[1], z[0]), z[1])
...            for sent in brown_tagged_sents
...            for x, y, z in nltk.trigrams(sent))
>>> ambiguous_contexts = [c for c in cfd.conditions() if len(cfd[c]) > 1]
>>> sum(cfd[c].N() for c in ambiguous_contexts) / cfd.N()
0.049297702068029296
Thus, 1 out of 20 trigrams is ambiguous. Given the current word
        and the previous two tags, in 5% of cases there is more than one tag
        that could be legitimately assigned to the current word according to
        the training data. Assuming we always pick the most likely tag in such
        ambiguous contexts, we can derive a lower bound on the performance of
        a trigram tagger.
Another way to investigate the performance of a tagger is to
        study its mistakes. Some tags may be harder than others to assign, and
        it might be possible to treat them specially by pre- or
        post-processing the data. A convenient way to look at tagging errors
        is the confusion matrix. It charts
        expected tags (the gold standard) against actual tags generated by a
        tagger:
>>> test_tags = [tag for sent in brown.sents(categories='editorial')
...                  for (word, tag) in t2.tag(sent)]
>>> gold_tags = [tag for (word, tag) in brown.tagged_words(categories='editorial')]
>>> print nltk.ConfusionMatrix(gold, test)                
Based on such analysis we may decide to modify the tagset.
        Perhaps a distinction between tags that is difficult to make can be
        dropped, since it is not important in the context of some larger
        processing task.
Another way to analyze the performance bound on a tagger comes
        from the less than 100% agreement between human annotators.
In general, observe that the tagging process collapses
        distinctions: e.g., lexical identity is usually lost when all personal
        pronouns are tagged PRP. At the
        same time, the tagging process introduces new distinctions and removes
        ambiguities: e.g., deal tagged as VB or NN.
        This characteristic of collapsing certain distinctions and introducing
        new distinctions is an important feature of tagging which facilitates
        classification and prediction. When we introduce finer distinctions in
        a tagset, an n-gram tagger gets more detailed information about the
        left-context when it is deciding what tag to assign to a particular
        word. However, the tagger simultaneously has to do more work to
        classify the current token, simply because there are more tags to
        choose from. Conversely, with fewer distinctions (as with the
        simplified tagset), the tagger has less information about context, and
        it has a smaller range of choices in classifying the current
        token.
We have seen that ambiguity in the training data leads to an
        upper limit in tagger performance. Sometimes more context will resolve
        the ambiguity. In other cases, however, as noted by (Abney, 1996), the
        ambiguity can be resolved only with reference to syntax or to world
        knowledge. Despite these imperfections, part-of-speech tagging has
        played a central role in the rise of statistical approaches to natural
        language processing. In the early 1990s, the surprising accuracy of
        statistical taggers was a striking demonstration that it was possible to
        solve one small part of the language understanding problem, namely
        part-of-speech disambiguation, without reference to deeper sources of
        linguistic knowledge. Can this idea be pushed further? In Chapter 7, we will see that it can.

Tagging Across Sentence Boundaries



An n-gram tagger uses recent tags to guide the choice of tag for
        the current word. When tagging the first word of a sentence, a trigram
        tagger will be using the part-of-speech tag of the previous two
        tokens, which will normally be the last word of the previous sentence
        and the sentence-ending punctuation. However, the lexical category
        that closed the previous sentence has no bearing on the one that
        begins the next sentence.
To deal with this situation, we can train, run, and evaluate
        taggers using lists of tagged sentences, as shown in Example 5-5.
Example 5-5. N-gram tagging at the sentence level.
brown_tagged_sents = brown.tagged_sents(categories='news')
brown_sents = brown.sents(categories='news')

size = int(len(brown_tagged_sents) * 0.9)
train_sents = brown_tagged_sents[:size]
test_sents = brown_tagged_sents[size:]

t0 = nltk.DefaultTagger('NN')
t1 = nltk.UnigramTagger(train_sents, backoff=t0)
t2 = nltk.BigramTagger(train_sents, backoff=t1)
>>> t2.evaluate(test_sents)
0.84491179108940495




Transformation-Based Tagging



A potential issue with n-gram taggers is the size of their n-gram
      table (or language model). If tagging is to be employed in a variety of
      language technologies deployed on mobile computing devices, it is
      important to strike a balance between model size and tagger performance.
      An n-gram tagger with backoff may store trigram and bigram tables, which
      are large, sparse arrays that may have hundreds of millions of
      entries.
A second issue concerns context. The only information an n-gram
      tagger considers from prior context is tags, even though words
      themselves might be a useful source of information. It is simply
      impractical for n-gram models to be conditioned on the identities of
      words in the context. In this section, we examine Brill tagging, an
      inductive tagging method which performs very well using models that are
      only a tiny fraction of the size of n-gram taggers.
Brill tagging is a kind of transformation-based
      learning, named after its inventor. The general idea is very
      simple: guess the tag of each word, then go back and fix the mistakes.
      In this way, a Brill tagger successively transforms a bad tagging of a
      text into a better one. As with n-gram tagging, this is a
      supervised learning method, since we need annotated
      training data to figure out whether the tagger’s guess is a mistake or
      not. However, unlike n-gram tagging, it does not count observations but
      compiles a list of transformational correction rules.
The process of Brill tagging is usually explained by analogy with
      painting. Suppose we were painting a tree, with all its details of
      boughs, branches, twigs, and leaves, against a uniform sky-blue
      background. Instead of painting the tree first and then trying to paint
      blue in the gaps, it is simpler to paint the whole canvas blue, then
      “correct” the tree section by over-painting the blue background. In the
      same fashion, we might paint the trunk a uniform brown before going back
      to over-paint further details with even finer brushes. Brill tagging
      uses the same idea: begin with broad brush strokes, and then fix up the
      details, with successively finer changes. Let’s look at an example
      involving the following sentence:
Example 5-6. 
The President said he will ask Congress to increase grants to
        states for vocational rehabilitation.


We will examine the operation of two rules: (a) replace NN with VB
      when the previous word is TO; (b)
      replace TO with IN when the next tag is NNS. Table 5-6
      illustrates this process, first tagging with the unigram tagger, then
      applying the rules to fix the errors.
Table 5-6. Steps in Brill tagging
	Phrase
	to
	increase
	grants
	to
	states
	for
	vocational
	rehabilitation

	Unigram
	TO
	NN
	NNS
	TO
	NNS
	IN
	JJ
	NN

	Rule
              1
	 	VB
	 	 	 	 	 	 
	Rule
              2
	 	 	 	IN
	 	 	 	 
	Output
	TO
	VB
	NNS
	IN
	NNS
	IN
	JJ
	NN

	Gold
	TO
	VB
	NNS
	IN
	NNS
	IN
	JJ
	NN




In this table, we see two rules. All such rules are generated from
      a template of the following form: “replace
      T1 with
      T2 in the context
      C.” Typical contexts are the identity or the tag of
      the preceding or following word, or the appearance of a specific tag
      within two to three words of the current word. During its training
      phase, the tagger guesses values for
      T1,
      T2, and
      C, to create thousands of candidate rules. Each
      rule is scored according to its net benefit: the number of incorrect
      tags that it corrects, less the number of correct tags it incorrectly
      modifies.
Brill taggers have another interesting property: the rules are
      linguistically interpretable. Compare this with the n-gram taggers,
      which employ a potentially massive table of n-grams. We cannot learn
      much from direct inspection of such a table, in comparison to the rules
      learned by the Brill tagger. Example 5-7
      demonstrates NLTK’s Brill tagger.
Example 5-7. Brill tagger demonstration: The tagger has a collection of
        templates of the form X → Y if the preceding word is Z; the variables
        in these templates are instantiated to particular words and tags to
        create “rules”; the score for a rule is the number of broken examples
        it corrects minus the number of correct cases it breaks; apart from
        training a tagger, the demonstration displays residual errors.
>>> nltk.tag.brill.demo()
Training Brill tagger on 80 sentences...
Finding initial useful rules...
    Found 6555 useful rules.

           B      |
   S   F   r   O  |        Score = Fixed - Broken
   c   i   o   t  |  R     Fixed = num tags changed incorrect -> correct
   o   x   k   h  |  u     Broken = num tags changed correct -> incorrect
   r   e   e   e  |  l     Other = num tags changed incorrect -> incorrect
   e   d   n   r  |  e
------------------+-------------------------------------------------------
  12  13   1   4  | NN -> VB if the tag of the preceding word is 'TO'
   8   9   1  23  | NN -> VBD if the tag of the following word is 'DT'
   8   8   0   9  | NN -> VBD if the tag of the preceding word is 'NNS'
   6   9   3  16  | NN -> NNP if the tag of words i-2...i-1 is '-NONE-'
   5   8   3   6  | NN -> NNP if the tag of the following word is 'NNP'
   5   6   1   0  | NN -> NNP if the text of words i-2...i-1 is 'like'
   5   5   0   3  | NN -> VBN if the text of the following word is '*-1'
   ...
>>> print(open("errors.out").read())
             left context |    word/test->gold     | right context
--------------------------+------------------------+--------------------------
                          |      Then/NN->RB       | ,/, in/IN the/DT guests/N
, in/IN the/DT guests/NNS |       '/VBD->POS       | honor/NN ,/, the/DT speed
'/POS honor/NN ,/, the/DT |    speedway/JJ->NN     | hauled/VBD out/RP four/CD
NN ,/, the/DT speedway/NN |     hauled/NN->VBD     | out/RP four/CD drivers/NN
DT speedway/NN hauled/VBD |      out/NNP->RP       | four/CD drivers/NNS ,/, c
dway/NN hauled/VBD out/RP |      four/NNP->CD      | drivers/NNS ,/, crews/NNS
hauled/VBD out/RP four/CD |    drivers/NNP->NNS    | ,/, crews/NNS and/CC even
P four/CD drivers/NNS ,/, |     crews/NN->NNS      | and/CC even/RB the/DT off
NNS and/CC even/RB the/DT |    official/NNP->JJ    | Indianapolis/NNP 500/CD a
                          |     After/VBD->IN      | the/DT race/NN ,/, Fortun
ter/IN the/DT race/NN ,/, |    Fortune/IN->NNP     | 500/CD executives/NNS dro
s/NNS drooled/VBD like/IN |  schoolboys/NNP->NNS   | over/IN the/DT cars/NNS a
olboys/NNS over/IN the/DT |      cars/NN->NNS      | and/CC drivers/NNS ./.



How to Determine the Category of a Word



Now that we have examined word classes in detail, we turn to a
      more basic question: how do we decide what category a word belongs to in
      the first place? In general, linguists use morphological, syntactic, and
      semantic clues to determine the category of a word.
Morphological Clues



The internal structure of a word may give useful clues as to the
        word’s category. For example, -ness is a suffix
        that combines with an adjective to produce a noun, e.g.,
        happy → happiness,
        ill → illness. So if we
        encounter a word that ends in -ness, this is very
        likely to be a noun. Similarly, -ment is a suffix
        that combines with some verbs to produce a noun, e.g.,
        govern → government and
        establish →
        establishment.
English verbs can also be morphologically complex. For instance,
        the present participle of a verb
        ends in -ing, and expresses the idea of ongoing,
        incomplete action (e.g., falling,
        eating). The -ing suffix
        also appears on nouns derived from verbs, e.g., the falling
        of the leaves (this is known as the gerund).

Syntactic Clues



Another source of information is the typical contexts in which a
        word can occur. For example, assume that we have already determined
        the category of nouns. Then we might say that a syntactic criterion
        for an adjective in English is that it can occur immediately before a
        noun, or immediately following the words be or
        very. According to these tests,
        near should be categorized as an
        adjective:
Example 5-8. 
	the near window

	The end is (very) near.






Semantic Clues



Finally, the meaning of a word is a useful clue as to its
        lexical category. For example, the best-known definition of a noun is
        semantic: “the name of a person, place, or thing.” Within modern
        linguistics, semantic criteria for word classes are treated with
        suspicion, mainly because they are hard to formalize. Nevertheless,
        semantic criteria underpin many of our intuitions about word classes,
        and enable us to make a good guess about the categorization of words
        in languages with which we are unfamiliar. For example, if all we know
        about the Dutch word verjaardag is that it means
        the same as the English word birthday, then we
        can guess that verjaardag is a noun in Dutch.
        However, some care is needed: although we might translate
        zij is vandaag jarig as it’s her
        birthday today, the word jarig is in
        fact an adjective in Dutch, and has no exact equivalent in
        English.

New Words



All languages acquire new lexical items. A list of words
        recently added to the Oxford Dictionary of English includes
        cyberslacker, fatoush,
        blamestorm, SARS,
        cantopop, bupkis,
        noughties, muggle, and
        robata. Notice that all these new words are
        nouns, and this is reflected in calling nouns an open class. By contrast, prepositions are
        regarded as a closed class. That
        is, there is a limited set of words belonging to the class (e.g.,
        above, along,
        at, below,
        beside, between,
        during, for,
        from, in,
        near, on,
        outside, over,
        past, through,
        towards, under,
        up, with), and membership of
        the set only changes very gradually over time.

Morphology in Part-of-Speech Tagsets



Common tagsets often capture some morphosyntactic information, that is,
        information about the kind of morphological markings that words
        receive by virtue of their syntactic role. Consider, for example, the
        selection of distinct grammatical forms of the word
        go illustrated in the following
        sentences:
Example 5-9. 
	Go away!

	He sometimes goes to the cafe.

	All the cakes have gone.

	We went on the excursion.





Each of these forms—go,
        goes, gone, and
        went—is morphologically distinct from the others.
        Consider the form goes. This occurs in a
        restricted set of grammatical contexts, and requires a third person
        singular subject. Thus, the following sentences are ungrammatical.
Example 5-10. 
	*They sometimes goes to the
              cafe.

	*I sometimes goes to the cafe.





By contrast, gone is the past participle
        form; it is required after have (and cannot be
        replaced in this context by goes), and cannot
        occur as the main verb of a clause.
Example 5-11. 
	*All the cakes have goes.

	*He sometimes gone to the
              cafe.





We can easily imagine a tagset in which the four distinct
        grammatical forms just discussed were all tagged as VB. Although this would be adequate for some
        purposes, a more fine-grained tagset provides useful information about
        these forms that can help other processors that try to detect patterns
        in tag sequences. The Brown tagset captures these distinctions, as
        summarized in Table 5-7.
Table 5-7. Some morphosyntactic distinctions in the Brown tagset
	Form
	Category
	Tag

	go
	base
	VB

	goes
	third singular present
	VBZ

	gone
	past participle
	VBN

	going
	gerund
	VBG

	went
	simple past
	VBD




In addition to this set of verb tags, the various forms of the
        verb to be have special tags: be/BE, being/BEG, am/BEM, are/BER, is/BEZ, been/BEN, were/BED, and was/BEDZ (plus extra tags for negative forms
        of the verb). All told, this fine-grained tagging of verbs means that
        an automatic tagger that uses this tagset is effectively carrying out
        a limited amount of morphological
        analysis.
Most part-of-speech tagsets make use of the same basic
        categories, such as noun, verb, adjective, and preposition. However,
        tagsets differ both in how finely they divide words into categories,
        and in how they define their categories. For example,
        is might be tagged simply as a verb in one
        tagset, but as a distinct form of the lexeme be
        in another tagset (as in the Brown Corpus). This variation in tagsets
        is unavoidable, since part-of-speech tags are used in different ways
        for different tasks. In other words, there is no one “right way” to
        assign tags, only more or less useful ways depending on one’s
        goals.


Summary



	Words can be grouped into classes, such as nouns, verbs,
          adjectives, and adverbs. These classes are known as lexical
          categories or parts-of-speech. Parts-of-speech are assigned short
          labels, or tags, such as NN and
          VB.

	The process of automatically assigning parts-of-speech to
          words in text is called part-of-speech tagging, POS tagging, or just
          tagging.

	Automatic tagging is an important step in the NLP pipeline,
          and is useful in a variety of situations, including predicting the
          behavior of previously unseen words, analyzing word usage in
          corpora, and text-to-speech systems.

	Some linguistic corpora, such as the Brown Corpus, have been
          POS tagged.

	A variety of tagging methods are possible, e.g., default
          tagger, regular expression tagger, unigram tagger, and n-gram
          taggers. These can be combined using a technique known as
          backoff.

	Taggers can be trained and evaluated using tagged
          corpora.

	Backoff is a method for combining models: when a more
          specialized model (such as a bigram tagger) cannot assign a tag in a
          given context, we back off to a more general model (such as a
          unigram tagger).

	Part-of-speech tagging is an important, early example of a
          sequence classification task in NLP: a classification decision at
          any one point in the sequence makes use of words and tags in the
          local context.

	A dictionary is used to map between arbitrary types of
          information, such as a string and a number: freq['cat'] = 12. We create dictionaries using the brace notation:
          pos = {}, pos = {'furiously': 'adv', 'ideas': 'n',
          'colorless': 'adj'}.

	N-gram taggers can be defined for large values of
          n, but once n is larger
          than 3, we usually encounter the sparse data problem; even with a
          large quantity of training data, we see only a tiny fraction of
          possible contexts.

	Transformation-based tagging involves learning a series of
          repair rules of the form “change tag s to tag
          t in context c,” where
          each rule fixes mistakes and possibly introduces a (smaller) number
          of errors.




Further Reading



Extra materials for this chapter are posted at http://www.nltk.org/, including links to freely available
      resources on the Web. For more examples of tagging with NLTK, please see
      the Tagging HOWTO at http://www.nltk.org/howto.
      Chapters 4 and 5 of (Jurafsky & Martin, 2008) contain more advanced
      material on n-grams and part-of-speech tagging. Other approaches to
      tagging involve machine learning methods (Chapter 6).
      In Chapter 7, we will see a generalization of tagging
      called chunking in which a contiguous sequence of
      words is assigned a single tag.
For tagset documentation, see nltk.help.upenn_tagset() and nltk.help.brown_tagset(). Lexical categories are introduced in linguistics
      textbooks, including those listed in Chapter 1 of this
      book.
There are many other kinds of tagging. Words can be tagged with
      directives to a speech synthesizer, indicating which words should be
      emphasized. Words can be tagged with sense numbers, indicating which
      sense of the word was used. Words can also be tagged with morphological
      features. Examples of each of these kinds of tags are shown in the
      following list. For space reasons, we only show the tag for a single
      word. Note also that the first two examples use XML-style tags, where
      elements in angle brackets enclose the word that is tagged.
	Speech Synthesis Markup Language (W3C SSML)
	That is a
            <emphasis>big</emphasis> car!

	SemCor: Brown Corpus tagged with WordNet senses
	Space in any <wf pos="NN"
            lemma="form" wnsn="4">form</wf> is completely measured by the three
            dimensions. (Wordnet form/nn sense 4: “shape, form,
            configuration, contour, conformation”)

	Morphological tagging, from the Turin University Italian
          Treebank
	E' italiano , come progetto e
            realizzazione , il primo (PRIMO ADJ ORDIN M SING) porto turistico
            dell' Albania .



Note that tagging is also performed at higher levels. Here is an
      example of dialogue act tagging, from the NPS Chat Corpus (Forsyth &
      Martell, 2007) included with NLTK. Each turn of the dialogue is
      categorized as to its communicative function:
Statement  User117 Dude..., I wanted some of that
ynQuestion User120 m I missing something?
Bye        User117 I'm gonna go fix food, I'll be back later.
System     User122 JOIN
System     User2   slaps User122 around a bit with a large trout.
Statement  User121 18/m pm me if u tryin to chat

Exercises



	○ Search the Web for “spoof newspaper headlines,” to find such
          gems as: British Left Waffles on Falkland
          Islands, and Juvenile Court to Try Shooting
          Defendant. Manually tag these headlines to see whether
          knowledge of the part-of-speech tags removes the ambiguity.

	○ Working with someone else, take turns picking a word that
          can be either a noun or a verb (e.g., contest);
          the opponent has to predict which one is likely to be the most
          frequent in the Brown Corpus. Check the opponent’s prediction, and
          tally the score over several turns.

	○ Tokenize and tag the following sentence: They wind
          back the clock, while we chase after the wind. What
          different pronunciations and parts-of-speech are involved?

	○ Review the mappings in Table 5-4. Discuss any other examples of
          mappings you can think of. What type of information do they map from
          and to?

	○ Using the Python interpreter in interactive mode, experiment
          with the dictionary examples in this chapter. Create a dictionary
          d, and add some entries. What
          happens whether you try to access a non-existent entry, e.g.,
          d['xyz']?

	○ Try deleting an element from a dictionary d, using the syntax del d['abc']. Check that the item was
          deleted.

	○ Create two dictionaries, d1 and d2, and add some entries to each. Now
          issue the command d1.update(d2).
          What did this do? What might it be useful for?

	○ Create a dictionary e, to
          represent a single lexical entry for some word of your choice.
          Define keys such as headword,
          part-of-speech, sense, and example, and assign them suitable
          values.

	○ Satisfy yourself that there are restrictions on the
          distribution of go and
          went, in the sense that they cannot be freely
          interchanged in the kinds of contexts illustrated in Example 5-9, How to Determine the Category of a Word.

	○ Train a unigram tagger and run it on some new text. Observe
          that some words are not assigned a tag. Why not?

	○ Learn about the affix tagger (type help(nltk.AffixTagger)). Train an affix
          tagger and run it on some new text. Experiment with different
          settings for the affix length and the minimum word length. Discuss
          your findings.

	○ Train a bigram tagger with no backoff tagger, and run it on
          some of the training data. Next, run it on some new data. What
          happens to the performance of the tagger? Why?

	○ We can use a dictionary to specify the values to be
          substituted into a formatting string. Read Python’s library
          documentation for formatting strings (http://docs.python.org/lib/typesseq-strings.html) and
          use this method to display today’s date in two different
          formats.

	[image: ] Use sorted() and set() to get a sorted list of tags used in
          the Brown Corpus, removing duplicates.

	[image: ] Write programs to process the Brown Corpus and find answers
          to the following questions:
	Which nouns are more common in their plural form, rather
              than their singular form? (Only consider regular plurals, formed
              with the -s suffix.)

	Which word has the greatest number of distinct tags? What
              are they, and what do they represent?

	List tags in order of decreasing frequency. What do the 20
              most frequent tags represent?

	Which tags are nouns most commonly found after? What do
              these tags represent?




	[image: ] Explore the following issues that arise in connection with
          the lookup tagger:
	What happens to the tagger performance for the various
              model sizes when a backoff tagger is omitted?

	Consider the curve in Figure 5-4;
              suggest a good size for a lookup tagger that balances memory and
              performance. Can you come up with scenarios where it would be
              preferable to minimize memory usage, or to maximize performance
              with no regard for memory usage?




	[image: ] What is the upper limit of performance for a lookup tagger,
          assuming no limit to the size of its table? (Hint: write a program
          to work out what percentage of tokens of a word are assigned the
          most likely tag for that word, on average.)

	[image: ] Generate some statistics for tagged data to answer the
          following questions:
	What proportion of word types are always assigned the same
              part-of-speech tag?

	How many words are ambiguous, in the sense that they
              appear with at least two tags?

	What percentage of word tokens in the
              Brown Corpus involve these ambiguous words?




	[image: ] The evaluate() method works out how accurately the tagger performs
          on this text. For example, if the supplied tagged text was [('the', 'DT'), ('dog', 'NN')] and the
          tagger produced the output [('the', 'NN'),
          ('dog', 'NN')], then the score would be 0.5. Let’s try to figure out how the
          evaluation method works:
	A tagger t takes a list
              of words as input, and produces a list of tagged words as
              output. However, t.evaluate()
              is given correctly tagged text as its only parameter. What must
              it do with this input before performing the tagging?

	Once the tagger has created newly tagged text, how might
              the evaluate() method go about comparing it with the original
              tagged text and computing the accuracy score?

	Now examine the source code to see how the method is
              implemented. Inspect nltk.tag.api.__file__ to discover the
              location of the source code, and open this file using an editor
              (be sure to use the api.py
              file and not the compiled api.pyc binary file).




	[image: ] Write code to search the Brown Corpus for particular words
          and phrases according to tags, to answer the following
          questions:
	Produce an alphabetically sorted list of the distinct
              words tagged as MD.

	Identify words that can be plural nouns or third person
              singular verbs (e.g., deals,
              flies).

	Identify three-word prepositional phrases of the form IN +
              DET + NN (e.g., in the lab).

	What is the ratio of masculine to feminine
              pronouns?




	[image: ] In Table 3-1, we saw a table
          involving frequency counts for the verbs adore,
          love, like, and
          prefer, and preceding qualifiers such as
          really. Investigate the full range of
          qualifiers (Brown tag QL) that
          appear before these four verbs.

	[image: ] We defined the regexp_tagger that can be used as a
          fall-back tagger for unknown words. This tagger only checks for
          cardinal numbers. By testing for particular prefix or suffix
          strings, it should be possible to guess other tags. For example, we
          could tag any word that ends with -s as a
          plural noun. Define a regular expression tagger (using RegexpTagger()) that tests for at least five other patterns in the
          spelling of words. (Use inline documentation to explain the
          rules.)

	[image: ] Consider the regular expression tagger developed in the
          exercises in the previous section. Evaluate the tagger using its
          accuracy() method, and try to come up with ways to improve its
          performance. Discuss your findings. How does objective evaluation
          help in the development process?

	[image: ] How serious is the sparse data problem? Investigate the
          performance of n-gram taggers as n increases
          from 1 to 6. Tabulate the accuracy score. Estimate the training data
          required for these taggers, assuming a vocabulary size of
          105 and a tagset size of
          102.

	[image: ] Obtain some tagged data for another language, and train and
          evaluate a variety of taggers on it. If the language is
          morphologically complex, or if there are any orthographic clues
          (e.g., capitalization) to word classes, consider developing a
          regular expression tagger for it (ordered after the unigram tagger,
          and before the default tagger). How does the accuracy of your
          tagger(s) compare with the same taggers run on English data? Discuss
          any issues you encounter in applying these methods to the
          language.

	[image: ] Example 5-4 plotted a curve
          showing change in the performance of a lookup tagger as the model
          size was increased. Plot the performance curve for a unigram tagger,
          as the amount of training data is varied.

	[image: ] Inspect the confusion matrix for the bigram tagger t2 defined in N-Gram Tagging, and identify one or more sets of
          tags to collapse. Define a dictionary to do the mapping, and
          evaluate the tagger on the simplified data.

	[image: ] Experiment with taggers using the simplified tagset (or make
          one of your own by discarding all but the first character of each
          tag name). Such a tagger has fewer distinctions to make, but much
          less information on which to base its work. Discuss your
          findings.

	[image: ] Recall the example of a bigram tagger which encountered a
          word it hadn’t seen during training, and tagged the rest of the
          sentence as None. It is possible
          for a bigram tagger to fail partway through a sentence even if it
          contains no unseen words (even if the sentence was used during
          training). In what circumstance can this happen? Can you write a
          program to find some examples of this?

	[image: ] Preprocess the Brown News data by replacing low-frequency
          words with UNK, but leaving the tags untouched.
          Now train and evaluate a bigram tagger on this data. How much does
          this help? What is the contribution of the unigram tagger and
          default tagger now?

	[image: ] Modify the program in Example 5-4 to use a logarithmic scale on the
          x-axis, by replacing pylab.plot() with pylab.semilogx(). What do you notice about
          the shape of the resulting plot? Does the gradient tell you
          anything?

	[image: ] Consult the documentation for the Brill tagger demo
          function, using help(nltk.tag.brill.demo). Experiment with the tagger by setting different
          values for the parameters. Is there any trade-off between training
          time (corpus size) and performance?

	[image: ] Write code that builds a dictionary of dictionaries of sets.
          Use it to store the set of POS tags that can follow a given word
          having a given POS tag, i.e.,
          wordi →
          tagi →
          tagi+1.

	● There are 264 distinct words in the Brown Corpus having
          exactly three possible tags.
	Print a table with the integers 1..10 in one column, and
              the number of distinct words in the corpus having 1..10 distinct
              tags in the other column.

	For the word with the greatest number of distinct tags,
              print out sentences from the corpus containing the word, one for
              each possible tag.




	● Write a program to classify contexts involving the word
          must according to the tag of the following
          word. Can this be used to discriminate between the epistemic and
          deontic uses of must?

	● Create a regular expression tagger and various unigram and
          n-gram taggers, incorporating backoff, and train them on part of the
          Brown Corpus.
	Create three different combinations of the taggers. Test
              the accuracy of each combined tagger. Which combination works
              best?

	Try varying the size of the training corpus. How does it
              affect your results?




	● Our approach for tagging an unknown word has been to
          consider the letters of the word (using RegexpTagger()), or to ignore the word altogether and tag it as a
          noun (using nltk.DefaultTagger()). These methods will
          not do well for texts having new words that are not nouns. Consider
          the sentence I like to blog on Kim’s blog. If
          blog is a new word, then looking at the
          previous tag (TO versus NP$) would probably be helpful, i.e., we
          need a default tagger that is sensitive to the preceding tag.
	Create a new kind of unigram tagger that looks at the tag
              of the previous word, and ignores the current word. (The best
              way to do this is to modify the source code for UnigramTagger(), which presumes knowledge of object-oriented
              programming in Python.)

	Add this tagger to the sequence of backoff taggers
              (including ordinary trigram and bigram taggers that look at
              words), right before the usual default tagger.

	Evaluate the contribution of this new unigram
              tagger.




	● Consider the code in N-Gram Tagging,
          which determines the upper bound for accuracy of a trigram tagger.
          Review Abney’s discussion concerning the impossibility of exact
          tagging (Abney, 2006). Explain why correct tagging of these examples
          requires access to other kinds of information than just words and
          tags. How might you estimate the scale of this problem?

	● Use some of the estimation techniques in nltk.probability, such as Lidstone or
          Laplace estimation, to develop a statistical
          tagger that does a better job than n-gram backoff taggers in cases
          where contexts encountered during testing were not seen during
          training.

	● Inspect the diagnostic files created by the Brill tagger
          rules.out and errors.out. Obtain the demonstration code
          by accessing the source code (at http://www.nltk.org/code) and create your own version
          of the Brill tagger. Delete some of the rule templates, based on
          what you learned from inspecting rules.out. Add some new rule templates
          which employ contexts that might help to correct the errors you saw
          in errors.out.

	● Develop an n-gram backoff tagger that permits “anti-n-grams”
          such as ["the", "the"] to be
          specified when a tagger is initialized. An anti-n-gram is assigned a
          count of zero and is used to prevent backoff for this n-gram (e.g.,
          to avoid estimating P(the |
          the) as just
          P(the)).

	● Investigate three different ways to define the split between
          training and testing data when developing a tagger using the Brown
          Corpus: genre (category), source
          (fileid), and sentence. Compare
          their relative performance and discuss which method is the most
          legitimate. (You might use n-fold cross validation, discussed in
          Evaluation, to improve the accuracy of the
          evaluations.)

	● Develop your own NgramTagger class that inherits from
          NLTK’s class, and which encapsulates the method of collapsing the
          vocabulary of the tagged training and testing data that was
          described in this chapter. Make sure that the unigram and default
          backoff taggers have access to the full vocabulary.




Chapter 6. Learning to Classify Text



Detecting patterns is a central part of Natural Language Processing.
    Words ending in -ed tend to be past tense verbs
    (Chapter 5). Frequent use of will
    is indicative of news text (Chapter 3). These observable
    patterns—word structure and word frequency—happen to correlate with
    particular aspects of meaning, such as tense and topic. But how did we
    know where to start looking, which aspects of form to associate with which
    aspects of meaning?
The goal of this chapter is to answer the following
    questions:
	How can we identify particular features of language data that
        are salient for classifying it?

	How can we construct models of language that can be used to
        perform language processing tasks automatically?

	What can we learn about language from these models?



Along the way we will study some important machine learning
    techniques, including decision trees, naive Bayes classifiers, and maximum
    entropy classifiers. We will gloss over the mathematical and statistical
    underpinnings of these techniques, focusing instead on how and when to use
    them (see Further Reading for more technical
    background). Before looking at these methods, we first need to appreciate
    the broad scope of this topic.
Supervised Classification



Classification is the task of
      choosing the correct class label for
      a given input. In basic classification tasks, each input is considered
      in isolation from all other inputs, and the set of labels is defined in
      advance. Some examples of classification tasks are:
	Deciding whether an email is spam or not.

	Deciding what the topic of a news article is, from a fixed
          list of topic areas such as “sports,” “technology,” and
          “politics.”

	Deciding whether a given occurrence of the word
          bank is used to refer to a river bank, a
          financial institution, the act of tilting to the side, or the act of
          depositing something in a financial institution.



The basic classification task has a number of interesting
      variants. For example, in multi-class classification, each instance may
      be assigned multiple labels; in open-class classification, the set of
      labels is not defined in advance; and in sequence classification, a list
      of inputs are jointly classified.
A classifier is called supervised if it is built based on training
      corpora containing the correct label for each input. The framework used
      by supervised classification is shown in Figure 6-1.
[image: Supervised classification. (a) During training, a feature extractor is used to convert each input value to a feature set. These feature sets, which capture the basic information about each input that should be used to classify it, are discussed in the next section. Pairs of feature sets and labels are fed into the machine learning algorithm to generate a model. (b) During prediction, the same feature extractor is used to convert unseen inputs to feature sets. These feature sets are then fed into the model, which generates predicted labels.]

Figure 6-1. Supervised classification. (a) During training, a feature
        extractor is used to convert each input value to a feature set. These
        feature sets, which capture the basic information about each input
        that should be used to classify it, are discussed in the next section.
        Pairs of feature sets and labels are fed into the machine learning
        algorithm to generate a model. (b) During prediction, the same feature
        extractor is used to convert unseen inputs to feature sets. These
        feature sets are then fed into the model, which generates predicted
        labels.


In the rest of this section, we will look at how classifiers can
      be employed to solve a wide variety of tasks. Our discussion is not
      intended to be comprehensive, but to give a representative sample of
      tasks that can be performed with the help of text classifiers.
Gender Identification



In Lexical Resources, we saw that male
        and female names have some distinctive characteristics. Names ending
        in a, e, and
        i are likely to be female, while names ending in
        k, o,
        r, s, and
        t are likely to be male. Let’s build a classifier
        to model these differences more precisely.
The first step in creating a classifier is deciding what
        features of the input are relevant,
        and how to encode those features.
        For this example, we’ll start by just looking at the final letter of a
        given name. The following feature
        extractor function builds a dictionary containing relevant
        information about a given name:
>>> def gender_features(word):
...     return {'last_letter': word[-1]}
>>> gender_features('Shrek')
{'last_letter': 'k'}
The dictionary that is returned by this function is called a
        feature set and maps from features’
        names to their values. Feature names are case-sensitive strings that
        typically provide a short human-readable description of the feature.
        Feature values are values with simple types, such as Booleans,
        numbers, and strings.
Note
Most classification methods require that features be encoded
          using simple value types, such as Booleans, numbers, and strings.
          But note that just because a feature has a simple type, this does
          not necessarily mean that the feature’s value is simple to express
          or compute; indeed, it is even possible to use very complex and
          informative values, such as the output of a second supervised
          classifier, as features.

Now that we’ve defined a feature extractor, we need to prepare a
        list of examples and corresponding class labels:
>>> from nltk.corpus import names
>>> import random
>>> names = ([(name, 'male') for name in names.words('male.txt')] +
...          [(name, 'female') for name in names.words('female.txt')])
>>> random.shuffle(names)
Next, we use the feature extractor to process the names data, and divide the resulting list of
        feature sets into a training set
        and a test set. The training set is
        used to train a new “naive Bayes” classifier.
>>> featuresets = [(gender_features(n), g) for (n,g) in names]
>>> train_set, test_set = featuresets[500:], featuresets[:500]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
We will learn more about the naive Bayes classifier later in the
        chapter. For now, let’s just test it out on some names that did not
        appear in its training data:
>>> classifier.classify(gender_features('Neo'))
'male'
>>> classifier.classify(gender_features('Trinity'))
'female'
Observe that these character names from The
        Matrix are correctly classified. Although this science
        fiction movie is set in 2199, it still conforms with our expectations
        about names and genders. We can systematically evaluate the classifier
        on a much larger quantity of unseen data:
>>> print nltk.classify.accuracy(classifier, test_set)
0.758
Finally, we can examine the classifier to determine which
        features it found most effective for distinguishing the names’
        genders:
>>> classifier.show_most_informative_features(5)
Most Informative Features
             last_letter = 'a'            female : male   =     38.3 : 1.0
             last_letter = 'k'              male : female =     31.4 : 1.0
             last_letter = 'f'              male : female =     15.3 : 1.0
             last_letter = 'p'              male : female =     10.6 : 1.0
             last_letter = 'w'              male : female =     10.6 : 1.0
This listing shows that the names in the training set that end
        in a are female 38 times more often than they are
        male, but names that end in k are male 31 times
        more often than they are female. These ratios are known as likelihood ratios, and can be useful for
        comparing different feature-outcome relationships.
Note
Your Turn: Modify the
          gender_features() function to
          provide the classifier with features encoding the length of the
          name, its first letter, and any other features that seem like they
          might be informative. Retrain the classifier with these new
          features, and test its accuracy.

When working with large corpora, constructing a single list that
        contains the features of every instance can use up a large amount of
        memory. In these cases, use the function nltk.classify.apply_features, which returns
        an object that acts like a list but does not store all the feature
        sets in memory:
>>> from nltk.classify import apply_features
>>> train_set = apply_features(gender_features, names[500:])
>>> test_set = apply_features(gender_features, names[:500])

Choosing the Right Features



Selecting relevant features and deciding how to encode them for
        a learning method can have an enormous impact on the learning method’s
        ability to extract a good model. Much of the interesting work in
        building a classifier is deciding what features might be relevant, and
        how we can represent them. Although it’s often possible to get decent
        performance by using a fairly simple and obvious set of features,
        there are usually significant gains to be had by using carefully
        constructed features based on a thorough understanding of the task at
        hand.
Typically, feature extractors are built through a process of
        trial-and-error, guided by intuitions about what information is
        relevant to the problem. It’s common to start with a “kitchen sink”
        approach, including all the features that you can think of, and then
        checking to see which features actually are helpful. We take this
        approach for name gender features in Example 6-1.
Example 6-1. A feature extractor that overfits gender features. The
          featuresets returned by this feature extractor contain a large
          number of specific features, leading to overfitting for the
          relatively small Names Corpus.
def gender_features2(name):
    features = {}
    features["firstletter"] = name[0].lower()
    features["lastletter"] = name[–1].lower()
    for letter in 'abcdefghijklmnopqrstuvwxyz':
        features["count(%s)" % letter] = name.lower().count(letter)
        features["has(%s)" % letter] = (letter in name.lower())
    return features
>>> gender_features2('John') 
{'count(j)': 1, 'has(d)': False, 'count(b)': 0, ...}


However, there are usually limits to the number of features that
        you should use with a given learning algorithm—if you provide too many
        features, then the algorithm will have a higher chance of relying on
        idiosyncrasies of your training data that don’t generalize well to new
        examples. This problem is known as overfitting, and can be especially
        problematic when working with small training sets. For example, if we
        train a naive Bayes classifier using the feature extractor shown in
        Example 6-1, it will overfit
        the relatively small training set, resulting in a system whose
        accuracy is about 1% lower than the accuracy of a classifier that only
        pays attention to the final letter of each name:
>>> featuresets = [(gender_features2(n), g) for (n,g) in names]
>>> train_set, test_set = featuresets[500:], featuresets[:500]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print nltk.classify.accuracy(classifier, test_set)
0.748
Once an initial set of features has been chosen, a very
        productive method for refining the feature set is error analysis. First, we select a development set, containing the corpus data
        for creating the model. This development set is then subdivided into
        the training set and the dev-test set.
>>> train_names = names[1500:]
>>> devtest_names = names[500:1500]
>>> test_names = names[:500]
The training set is used to train the model, and the dev-test
        set is used to perform error analysis. The test set serves in our
        final evaluation of the system. For reasons discussed later, it is
        important that we employ a separate dev-test set for error analysis,
        rather than just using the test set. The division of the corpus data
        into different subsets is shown in Figure 6-2.
Having divided the corpus into appropriate datasets, we train a
        model using the training set [image: 1], and then run it on the dev-test
        set [image: 2].
>>> train_set = [(gender_features(n), g) for (n,g) in train_names]
>>> devtest_set = [(gender_features(n), g) for (n,g) in devtest_names]
>>> test_set = [(gender_features(n), g) for (n,g) in test_names]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set) [image: 1]
>>> print nltk.classify.accuracy(classifier, devtest_set) [image: 2]
0.765
[image: Organization of corpus data for training supervised classifiers. The corpus data is divided into two sets: the development set and the test set. The development set is often further subdivided into a training set and a dev-test set.]

Figure 6-2. Organization of corpus data for training supervised
          classifiers. The corpus data is divided into two sets: the
          development set and the test set. The development set is often
          further subdivided into a training set and a dev-test set.


Using the dev-test set, we can generate a list of the errors
        that the classifier makes when predicting name genders:
>>> errors = []
>>> for (name, tag) in devtest_names:
...     guess = classifier.classify(gender_features(name))
...     if guess != tag:
...         errors.append( (tag, guess, name) )
We can then examine individual error cases where the model
        predicted the wrong label, and try to determine what additional pieces
        of information would allow it to make the right decision (or which
        existing pieces of information are tricking it into making the wrong
        decision). The feature set can then be adjusted accordingly. The names
        classifier that we have built generates about 100 errors on the
        dev-test corpus:
>>> for (tag, guess, name) in sorted(errors): # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE 
...     print 'correct=%-8s guess=%-8s name=%-30s' % 
(tag, guess, name)
       ...
correct=female   guess=male     name=Cindelyn
       ...
correct=female   guess=male     name=Katheryn
correct=female   guess=male     name=Kathryn
       ...
correct=male     guess=female   name=Aldrich
       ...
correct=male     guess=female   name=Mitch
       ...
correct=male     guess=female   name=Rich
       ...
Looking through this list of errors makes it clear that some
        suffixes that are more than one letter can be indicative of name
        genders. For example, names ending in yn appear
        to be predominantly female, despite the fact that names ending in
        n tend to be male; and names ending in
        ch are usually male, even though names that end
        in h tend to be female. We therefore adjust our
        feature extractor to include features for two-letter suffixes:
>>> def gender_features(word):
...     return {'suffix1': word[-1:],
...             'suffix2': word[-2:]}
Rebuilding the classifier with the new feature extractor, we see
        that the performance on the dev-test dataset improves by almost three
        percentage points (from 76.5% to 78.2%):
>>> train_set = [(gender_features(n), g) for (n,g) in train_names]
>>> devtest_set = [(gender_features(n), g) for (n,g) in devtest_names]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print nltk.classify.accuracy(classifier, devtest_set)
0.782
This error analysis procedure can then be repeated, checking for
        patterns in the errors that are made by the newly improved classifier.
        Each time the error analysis procedure is repeated, we should select a
        different dev-test/training split, to ensure that the classifier does
        not start to reflect idiosyncrasies in the dev-test set.
But once we’ve used the dev-test set to help us develop the
        model, we can no longer trust that it will give us an accurate idea of
        how well the model would perform on new data. It is therefore
        important to keep the test set separate, and unused, until our model
        development is complete. At that point, we can use the test set to
        evaluate how well our model will perform on new input
        values.

Document Classification



In Accessing Text Corpora, we saw
        several examples of corpora where documents have been labeled with
        categories. Using these corpora, we can build classifiers that will
        automatically tag new documents with appropriate category labels.
        First, we construct a list of documents, labeled with the appropriate
        categories. For this example, we’ve chosen the Movie Reviews Corpus,
        which categorizes each review as positive or negative.
>>> from nltk.corpus import movie_reviews
>>> documents = [(list(movie_reviews.words(fileid)), category)
...              for category in movie_reviews.categories()
...              for fileid in movie_reviews.fileids(category)]
>>> random.shuffle(documents)
Next, we define a feature extractor for documents, so the
        classifier will know which aspects of the data it should pay attention
        to (see Example 6-2). For document
        topic identification, we can define a feature for each word,
        indicating whether the document contains that word. To limit the
        number of features that the classifier needs to process, we begin by
        constructing a list of the 2,000 most frequent words in the overall
        corpus [image: 1]. We can then
        define a feature extractor [image: 2] that simply checks
        whether each of these words is present in a given document.
Example 6-2. A feature extractor for document classification, whose
          features indicate whether or not individual words are present in a
          given document.
all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words())
word_features = all_words.keys()[:2000] [image: 1]

def document_features(document): [image: 2]
    document_words = set(document) [image: 3]
    features = {}
    for word in word_features:
        features['contains(%s)' % word] = (word in document_words)
    return features
>>> print document_features(movie_reviews.words('pos/cv957_8737.txt')) 
{'contains(waste)': False, 'contains(lot)': False, ...}


Note
We compute the set of all words in a document in [image: 3], rather than just checking if
          word in document, because
          checking whether a word occurs in a set is much faster than checking
          whether it occurs in a list (see Algorithm Design).

Now that we’ve defined our feature extractor, we can use it to
        train a classifier to label new movie reviews (Example 6-3). To check how reliable the
        resulting classifier is, we compute its accuracy on the test set [image: 1]. And once again, we can use
        show_most_informative_features() to find out which features the classifier found to be
        most informative [image: 2].
Example 6-3. Training and testing a classifier for document
          classification.
featuresets = [(document_features(d), c) for (d,c) in documents]
train_set, test_set = featuresets[100:], featuresets[:100]
classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print nltk.classify.accuracy(classifier, test_set) [image: 1]
0.81
>>> classifier.show_most_informative_features(5) [image: 2]
Most Informative Features
   contains(outstanding) = True               pos : neg   =     11.1 : 1.0
        contains(seagal) = True               neg : pos   =      7.7 : 1.0
   contains(wonderfully) = True               pos : neg   =      6.8 : 1.0
         contains(damon) = True               pos : neg   =      5.9 : 1.0
        contains(wasted) = True               neg : pos   =      5.8 : 1.0


Apparently in this corpus, a review that mentions
        Seagal is almost 8 times more likely to be
        negative than positive, while a review that mentions
        Damon is about 6 times more likely to be
        positive.

Part-of-Speech Tagging



In Chapter 5, we built a regular expression
        tagger that chooses a part-of-speech tag for a word by looking at the
        internal makeup of the word. However, this regular expression tagger
        had to be handcrafted. Instead, we can train a classifier to work out
        which suffixes are most informative. Let’s begin by finding the most
        common suffixes:
>>> from nltk.corpus import brown
>>> suffix_fdist = nltk.FreqDist()
>>> for word in brown.words():
...     word = word.lower()
...     suffix_fdist.inc(word[-1:])
...     suffix_fdist.inc(word[-2:])
...     suffix_fdist.inc(word[-3:])
>>> common_suffixes = suffix_fdist.keys()[:100]
>>> print common_suffixes 
['e', ',', '.', 's', 'd', 't', 'he', 'n', 'a', 'of', 'the',
 'y', 'r', 'to', 'in', 'f', 'o', 'ed', 'nd', 'is', 'on', 'l',
 'g', 'and', 'ng', 'er', 'as', 'ing', 'h', 'at', 'es', 'or',
 're', 'it', '``', 'an', "''", 'm', ';', 'i', 'ly', 'ion', ...]
Next, we’ll define a feature extractor function that checks a
        given word for these suffixes:
>>> def pos_features(word):
...     features = {}
...     for suffix in common_suffixes:
...         features['endswith(%s)' % suffix] = word.lower().endswith(suffix)
...     return features
Feature extraction functions behave like tinted glasses,
        highlighting some of the properties (colors) in our data and making it
        impossible to see other properties. The classifier will rely
        exclusively on these highlighted properties when determining how to
        label inputs. In this case, the classifier will make its decisions
        based only on information about which of the common suffixes (if any)
        a given word has.
Now that we’ve defined our feature extractor, we can use it to
        train a new “decision tree” classifier (to be discussed in Decision Trees):
>>> tagged_words = brown.tagged_words(categories='news')
>>> featuresets = [(pos_features(n), g) for (n,g) in tagged_words]
>>> size = int(len(featuresets) * 0.1)
>>> train_set, test_set = featuresets[size:], featuresets[:size]
>>> classifier = nltk.DecisionTreeClassifier.train(train_set)
>>> nltk.classify.accuracy(classifier, test_set)
0.62705121829935351
>>> classifier.classify(pos_features('cats'))
'NNS'
One nice feature of decision tree models is that they are often
        fairly easy to interpret. We can even instruct NLTK to print them out
        as pseudocode:
>>> print classifier.pseudocode(depth=4)
if endswith(,) == True: return ','
if endswith(,) == False:
  if endswith(the) == True: return 'AT'
  if endswith(the) == False:
    if endswith(s) == True:
      if endswith(is) == True: return 'BEZ'
      if endswith(is) == False: return 'VBZ'
    if endswith(s) == False:
      if endswith(.) == True: return '.'
      if endswith(.) == False: return 'NN'
Here, we can see that the classifier begins by checking whether
        a word ends with a comma—if so, then it will receive the special tag
        ",". Next, the classifier checks
        whether the word ends in "the", in
        which case it’s almost certainly a determiner. This “suffix” gets used
        early by the decision tree because the word the
        is so common. Continuing on, the classifier checks if the word ends in
        s. If so, then it’s most likely to receive the
        verb tag VBZ (unless it’s the word
        is, which has the special tag BEZ), and if not, then it’s most likely a
        noun (unless it’s the punctuation mark “.”). The actual classifier
        contains further nested if-then statements below the ones shown here,
        but the depth=4 argument just
        displays the top portion of the decision tree.

Exploiting Context



By augmenting the feature extraction function, we could modify
        this part-of-speech tagger to leverage a variety of other
        word-internal features, such as the length of the word, the number of
        syllables it contains, or its prefix. However, as long as the feature
        extractor just looks at the target word, we have no way to add
        features that depend on the context in which the
        word appears. But contextual features often provide powerful clues
        about the correct tag—for example, when tagging the word
        fly, knowing that the previous word is
        a will allow us to determine that it is
        functioning as a noun, not a verb.
In order to accommodate features that depend on a word’s
        context, we must revise the pattern that we used to define our feature
        extractor. Instead of just passing in the word to be tagged, we will
        pass in a complete (untagged) sentence, along with the index of the
        target word. This approach is demonstrated in Example 6-4, which employs a context-dependent
        feature extractor to define a part-of-speech tag classifier.
Example 6-4. A part-of-speech classifier whose feature detector examines
          the context in which a word appears in order to determine which
          part-of-speech tag should be assigned. In particular, the identity
          of the previous word is included as a feature.
def pos_features(sentence, i): [image: 1]
    features = {"suffix(1)": sentence[i][-1:],
                "suffix(2)": sentence[i][-2:],
                "suffix(3)": sentence[i][-3:]}
    if i == 0:
        features["prev-word"] = "<START>"
    else:
        features["prev-word"] = sentence[i-1]
    return features
>>> pos_features(brown.sents()[0], 8)
{'suffix(3)': 'ion', 'prev-word': 'an', 'suffix(2)': 'on', 'suffix(1)': 'n'}
>>> tagged_sents = brown.tagged_sents(categories='news')
>>> featuresets = []
>>> for tagged_sent in tagged_sents:
...     untagged_sent = nltk.tag.untag(tagged_sent)
...     for i, (word, tag) in enumerate(tagged_sent):
...         featuresets.append( 
(pos_features(untagged_sent, i), tag) )

>>> size = int(len(featuresets) * 0.1)
>>> train_set, test_set = featuresets[size:], featuresets[:size]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)

>>> nltk.classify.accuracy(classifier, test_set)
0.78915962207856782


It’s clear that exploiting contextual features improves the
        performance of our part-of-speech tagger. For example, the classifier
        learns that a word is likely to be a noun if it comes immediately
        after the word large or the word
        gubernatorial. However, it is unable to learn the
        generalization that a word is probably a noun if it follows an
        adjective, because it doesn’t have access to the previous word’s
        part-of-speech tag. In general, simple classifiers always treat each
        input as independent from all other inputs. In many contexts, this
        makes perfect sense. For example, decisions about whether names tend
        to be male or female can be made on a case-by-case basis. However,
        there are often cases, such as part-of-speech tagging, where we are
        interested in solving classification problems that are closely related
        to one another.

Sequence Classification



In order to capture the dependencies between related
        classification tasks, we can use joint
        classifier models, which choose an appropriate labeling for
        a collection of related inputs. In the case of part-of-speech tagging,
        a variety of different sequence classifier models can be used
        to jointly choose part-of-speech tags for all the words in a given
        sentence.
One sequence classification strategy, known as consecutive classification or greedy sequence classification, is to find
        the most likely class label for the first input, then to use that
        answer to help find the best label for the next input. The process can
        then be repeated until all of the inputs have been labeled. This is
        the approach that was taken by the bigram tagger from N-Gram Tagging, which began by choosing a
        part-of-speech tag for the first word in the sentence, and then chose
        the tag for each subsequent word based on the word itself and the
        predicted tag for the previous word.
This strategy is demonstrated in Example 6-5. First, we must augment our
        feature extractor function to take a history argument, which provides a list of
        the tags that we’ve predicted for the sentence so far [image: 1]. Each tag in history corresponds with a word in sentence. But note that history will only contain tags for words
        we’ve already classified, that is, words to the left of the target
        word. Thus, although it is possible to look at some features of words
        to the right of the target word, it is not possible to look at the
        tags for those words (since we haven’t generated them yet).
Having defined a feature extractor, we can proceed to build our
        sequence classifier [image: 2]. During training, we use
        the annotated tags to provide the appropriate history to the feature
        extractor, but when tagging new sentences, we generate the history
        list based on the output of the tagger itself.
Example 6-5. Part-of-speech tagging with a consecutive classifier.
def pos_features(sentence, i, history): [image: 1]
    features = {"suffix(1)": sentence[i][-1:],
                "suffix(2)": sentence[i][-2:],
                "suffix(3)": sentence[i][-3:]}
    if i == 0:
        features["prev-word"] = "<START>"
        features["prev-tag"] = "<START>"
    else:
        features["prev-word"] = sentence[i-1]
        features["prev-tag"] = history[i-1]
    return features

class ConsecutivePosTagger(nltk.TaggerI): [image: 2]
    def __init__(self, train_sents):
        train_set = []
        for tagged_sent in train_sents:
            untagged_sent = nltk.tag.untag(tagged_sent)
            history = []
            for i, (word, tag) in enumerate(tagged_sent):
                featureset = pos_features(untagged_sent, i, history)
                train_set.append( (featureset, tag) )
                history.append(tag)
        self.classifier = nltk.NaiveBayesClassifier.train(train_set)
    def tag(self, sentence):
        history = []
        for i, word in enumerate(sentence):
            featureset = pos_features(sentence, i, history)
            tag = self.classifier.classify(featureset)
            history.append(tag)
        return zip(sentence, history)
>>> tagged_sents = brown.tagged_sents(categories='news')
>>> size = int(len(tagged_sents) * 0.1)
>>> train_sents, test_sents = tagged_sents[size:], tagged_sents[:size]
>>> tagger = ConsecutivePosTagger(train_sents)
>>> print tagger.evaluate(test_sents)
0.79796012981



Other Methods for Sequence Classification



One shortcoming of this approach is that we commit to every
        decision that we make. For example, if we decide to label a word as a
        noun, but later find evidence that it should have been a verb, there’s
        no way to go back and fix our mistake. One solution to this problem is
        to adopt a transformational strategy instead. Transformational joint
        classifiers work by creating an initial assignment of labels for the
        inputs, and then iteratively refining that assignment in an attempt to
        repair inconsistencies between related inputs. The Brill tagger,
        described in Transformation-Based Tagging, is a
        good example of this strategy.
Another solution is to assign scores to all of the possible
        sequences of part-of-speech tags, and to choose the sequence whose
        overall score is highest. This is the approach taken by Hidden Markov Models. Hidden Markov Models are
        similar to consecutive classifiers in that they look at both the
        inputs and the history of predicted tags. However, rather than simply
        finding the single best tag for a given word, they generate a
        probability distribution over tags. These probabilities are then
        combined to calculate probability scores for tag sequences, and the
        tag sequence with the highest probability is chosen. Unfortunately,
        the number of possible tag sequences is quite large. Given a tag set
        with 30 tags, there are about 600 trillion
        (3010) ways to label a 10-word sentence. In
        order to avoid considering all these possible sequences separately,
        Hidden Markov Models require that the feature extractor only look at
        the most recent tag (or the most recent n tags,
        where n is fairly small). Given that restriction,
        it is possible to use dynamic programming (Algorithm Design) to efficiently find the most likely
        tag sequence. In particular, for each consecutive word index
        i, a score is computed for each possible current
        and previous tag. This same basic approach is taken by two more
        advanced models, called Maximum Entropy Markov
        Models and Linear-Chain Conditional
        Random Field Models; but different algorithms are used to
        find scores for tag sequences.


Further Examples of Supervised Classification



Sentence Segmentation



Sentence segmentation can be viewed as a classification task for
        punctuation: whenever we encounter a symbol that could possibly end a
        sentence, such as a period or a question mark, we have to decide
        whether it terminates the preceding sentence.
The first step is to obtain some data that has already been
        segmented into sentences and convert it into a form that is suitable
        for extracting features:
>>> sents = nltk.corpus.treebank_raw.sents()
>>> tokens = []
>>> boundaries = set()
>>> offset = 0
>>> for sent in nltk.corpus.treebank_raw.sents():
...     tokens.extend(sent)
...     offset += len(sent)
...     boundaries.add(offset-1)
Here, tokens is a merged list of tokens from the individual
        sentences, and boundaries is a set
        containing the indexes of all sentence-boundary tokens. Next, we need
        to specify the features of the data that will be used in order to
        decide whether punctuation indicates a sentence boundary:
>>> def punct_features(tokens, i):
...     return {'next-word-capitalized': tokens[i+1][0].isupper(),
...             'prevword': tokens[i-1].lower(),
...             'punct': tokens[i],
...             'prev-word-is-one-char': len(tokens[i-1]) == 1}
Based on this feature extractor, we can create a list of labeled
        featuresets by selecting all the punctuation tokens, and tagging
        whether they are boundary tokens or not:
>>> featuresets = [(punct_features(tokens, i), (i in boundaries))
...                for i in range(1, len(tokens)-1)
...                if tokens[i] in '.?!']
Using these featuresets, we can train and evaluate a punctuation
        classifier:
>>> size = int(len(featuresets) * 0.1)
>>> train_set, test_set = featuresets[size:], featuresets[:size]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> nltk.classify.accuracy(classifier, test_set)
0.97419354838709682
To use this classifier to perform sentence segmentation, we
        simply check each punctuation mark to see whether it’s labeled as a
        boundary, and divide the list of words at the boundary marks. The
        listing in Example 6-6
        shows how this can be done.
Example 6-6. Classification-based sentence segmenter.
def segment_sentences(words):
    start = 0
    sents = []
    for i, word in enumerate(words):
        if word in '.?!' and classifier.classify(punct_features(words, i)) == True:
            sents.append(words[start:i+1])
            start = i+1
    if start < len(words):
        sents.append(words[start:])
    return sents



Identifying Dialogue Act Types



When processing dialogue, it can be useful to think of
        utterances as a type of action performed by the
        speaker. This interpretation is most straightforward for performative
        statements such as I forgive you or I
        bet you can’t climb that hill. But greetings, questions,
        answers, assertions, and clarifications can all be thought of as types
        of speech-based actions. Recognizing the dialogue acts underlying the utterances in a
        dialogue can be an important first step in understanding the
        conversation.
The NPS Chat Corpus, which was demonstrated in Accessing Text Corpora, consists of over 10,000
        posts from instant messaging sessions. These posts have all been
        labeled with one of 15 dialogue act types, such as “Statement,”
        “Emotion,” “ynQuestion,” and “Continuer.” We can therefore use this
        data to build a classifier that can identify the dialogue act types
        for new instant messaging posts. The first step is to extract the
        basic messaging data. We will call xml_posts() to get a data structure representing the XML annotation
        for each post:
>>> posts = nltk.corpus.nps_chat.xml_posts()[:10000]
Next, we’ll define a simple feature extractor that checks what
        words the post contains:
>>> def dialogue_act_features(post):
...     features = {}
...     for word in nltk.word_tokenize(post):
...         features['contains(%s)' % word.lower()] = True
...     return features
Finally, we construct the training and testing data by applying
        the feature extractor to each post (using post.get('class') to get a post’s dialogue
        act type), and create a new classifier:
>>> featuresets = [(dialogue_act_features(post.text), post.get('class'))
...                for post in posts]
>>> size = int(len(featuresets) * 0.1)
>>> train_set, test_set = featuresets[size:], featuresets[:size]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print nltk.classify.accuracy(classifier, test_set)
0.66

Recognizing Textual Entailment



Recognizing textual entailment (RTE) is the task of determining
        whether a given piece of text T entails another
        text called the “hypothesis” (as already discussed in Automatic Natural Language Understanding). To date,
        there have been four RTE Challenges, where shared development and test
        data is made available to competing teams. Here are a couple of
        examples of text/hypothesis pairs from the Challenge 3 development
        dataset. The label True indicates that the
        entailment holds, and False indicates that it
        fails to hold.
Challenge 3, Pair 34 (True)
	T: Parviz Davudi was
          representing Iran at a meeting of the Shanghai Co-operation
          Organisation (SCO), the fledgling association that binds Russia,
          China and four former Soviet republics of central Asia together to
          fight terrorism.

	H: China is a member of
          SCO.

Challenge 3, Pair 81 (False)
	T: According to NC
          Articles of Organization, the members of LLC company are H. Nelson
          Beavers, III, H. Chester Beavers and Jennie Beavers
          Stewart.

	H: Jennie Beavers Stewart
          is a share-holder of Carolina Analytical Laboratory.

It should be emphasized that the relationship between text and
        hypothesis is not intended to be logical entailment, but rather
        whether a human would conclude that the text provides reasonable
        evidence for taking the hypothesis to be true.
We can treat RTE as a classification task, in which we try to
        predict the True/False label
        for each pair. Although it seems likely that successful approaches to
        this task will involve a combination of parsing, semantics, and
        real-world knowledge, many early attempts at RTE achieved reasonably
        good results with shallow analysis, based on similarity between the
        text and hypothesis at the word level. In the ideal case, we would
        expect that if there is an entailment, then all the information
        expressed by the hypothesis should also be present in the text.
        Conversely, if there is information found in the hypothesis that is
        absent from the text, then there will be no entailment.
In our RTE feature detector (Example 6-7), we let words (i.e., word types) serve
        as proxies for information, and our features count the degree of word
        overlap, and the degree to which there are words in the hypothesis but
        not in the text (captured by the method hyp_extra()). Not all words are equally important—named entity
        mentions, such as the names of people, organizations, and places, are
        likely to be more significant, which motivates us to extract distinct
        information for words and nes (named entities). In addition, some high-frequency
        function words are filtered out as “stopwords.”
Example 6-7. “Recognizing Text Entailment” feature extractor: The RTEFeatureExtractor class builds
          a bag of words for both the text and the hypothesis after throwing
          away some stopwords, then calculates overlap and difference.
def rte_features(rtepair):
    extractor = nltk.RTEFeatureExtractor(rtepair)
    features = {}
    features['word_overlap'] = len(extractor.overlap('word'))
    features['word_hyp_extra'] = len(extractor.hyp_extra('word'))
    features['ne_overlap'] = len(extractor.overlap('ne'))
    features['ne_hyp_extra'] = len(extractor.hyp_extra('ne'))
    return features


To illustrate the content of these features, we examine some
        attributes of the text/hypothesis Pair 34 shown earlier:
>>> rtepair = nltk.corpus.rte.pairs(['rte3_dev.xml'])[33]
>>> extractor = nltk.RTEFeatureExtractor(rtepair)
>>> print extractor.text_words
set(['Russia', 'Organisation', 'Shanghai', 'Asia', 'four', 'at',
'operation', 'SCO', ...])
>>> print extractor.hyp_words
set(['member', 'SCO', 'China'])
>>> print extractor.overlap('word')
set([])
>>> print extractor.overlap('ne')
set(['SCO', 'China'])
>>> print extractor.hyp_extra('word')
set(['member'])
These features indicate that all important words in the
        hypothesis are contained in the text, and thus there is some evidence
        for labeling this as True.
The module nltk.classify.rte_classify reaches just over 58% accuracy on the combined RTE test
        data using methods like these. Although this figure is not very
        impressive, it requires
        significant effort, and more linguistic processing, to achieve much
        better results.

Scaling Up to Large Datasets



Python provides an excellent environment for performing basic
        text processing and feature extraction. However, it is not able to
        perform the numerically intensive calculations required by machine
        learning methods nearly as quickly as lower-level languages such as C.
        Thus, if you attempt to use the pure-Python machine learning
        implementations (such as nltk.NaiveBayesClassifier) on large
        datasets, you may find that the learning algorithm takes an
        unreasonable amount of time and memory to complete.
If you plan to train classifiers with large amounts of training
        data or a large number of features, we recommend that you explore
        NLTK’s facilities for interfacing with external machine learning
        packages. Once these packages have been installed, NLTK can
        transparently invoke them (via system calls) to train classifier
        models significantly faster than the pure-Python classifier
        implementations. See the NLTK web page for a list of recommended
        machine learning packages that are supported by NLTK.


Evaluation



In order to decide whether a classification model is accurately
      capturing a pattern, we must evaluate that model. The result of this
      evaluation is important for deciding how trustworthy the model is, and
      for what purposes we can use it. Evaluation can also be an effective
      tool for guiding us in making future improvements to the
      model.
The Test Set



Most evaluation techniques calculate a score for a model by
        comparing the labels that it generates for the inputs in a test set (or evaluation set) with the correct labels for
        those inputs. This test set typically has the same format as the
        training set. However, it is very important that the test set be
        distinct from the training corpus: if we simply reused the training
        set as the test set, then a model that simply memorized its input,
        without learning how to generalize to new examples, would receive
        misleadingly high scores.
When building the test set, there is often a trade-off between
        the amount of data available for testing and the amount available for
        training. For classification tasks that have a small number of
        well-balanced labels and a diverse test set, a meaningful evaluation
        can be performed with as few as 100 evaluation instances. But if a
        classification task has a large number of labels or includes very
        infrequent labels, then the size of the test set should be chosen to
        ensure that the least frequent label occurs at least 50 times.
        Additionally, if the test set contains many closely related
        instances—such as instances drawn from a single document—then the size
        of the test set should be increased to ensure that this lack of
        diversity does not skew the evaluation results. When large amounts of
        annotated data are available, it is common to err on the side of
        safety by using 10% of the overall data for evaluation.
Another consideration when choosing the test set is the degree
        of similarity between instances in the test set and those in the
        development set. The more similar these two datasets are, the less
        confident we can be that evaluation results will generalize to other
        datasets. For example, consider the part-of-speech tagging task. At
        one extreme, we could create the training set and test set by randomly
        assigning sentences from a data source that reflects a single genre,
        such as news:
>>> import random
>>> from nltk.corpus import brown
>>> tagged_sents = list(brown.tagged_sents(categories='news'))
>>> random.shuffle(tagged_sents)
>>> size = int(len(tagged_sents) * 0.1)
>>> train_set, test_set = tagged_sents[size:], tagged_sents[:size]
In this case, our test set will be very
        similar to our training set. The training set and test set are taken
        from the same genre, and so we cannot be confident that evaluation
        results would generalize to other genres. What’s worse, because of the
        call to random.shuffle(), the test set contains
        sentences that are taken from the same documents that were used for
        training. If there is any consistent pattern within a document (say,
        if a given word appears with a particular part-of-speech tag
        especially frequently), then that difference will be reflected in both
        the development set and the test set. A somewhat better approach is to
        ensure that the training set and test set are taken from different
        documents:
>>> file_ids = brown.fileids(categories='news')
>>> size = int(len(file_ids) * 0.1)
>>> train_set = brown.tagged_sents(file_ids[size:])
>>> test_set = brown.tagged_sents(file_ids[:size])
If we want to perform a more stringent evaluation, we can draw
        the test set from documents that are less closely related to those in
        the training set:
>>> train_set = brown.tagged_sents(categories='news')
>>> test_set = brown.tagged_sents(categories='fiction')
If we build a classifier that performs well on this test set,
        then we can be confident that it has the power to generalize well
        beyond the data on which it was trained.

Accuracy



The simplest metric that can be used to evaluate a classifier,
        accuracy, measures the percentage
        of inputs in the test set that the classifier correctly labeled. For
        example, a name gender classifier that predicts the correct name 60
        times in a test set containing 80 names would have an accuracy of
        60/80 = 75%. The function nltk.classify.accuracy() will calculate the
        accuracy of a classifier model on a given test set:
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print 'Accuracy: %4.2f' % nltk.classify.accuracy(classifier, test_set) 
0.75
When interpreting the accuracy score of a classifier, it is
        important to consider the frequencies of the individual class labels
        in the test set. For example, consider a classifier that determines
        the correct word sense for each occurrence of the word
        bank. If we evaluate this classifier on financial
        newswire text, then we may find that the financial-institution sense appears 19 times
        out of 20. In that case, an accuracy of 95% would hardly be
        impressive, since we could achieve that accuracy with a model that
        always returns the financial-institution sense. However, if we
        instead evaluate the classifier on a more balanced corpus, where the
        most frequent word sense has a frequency of 40%, then a 95% accuracy
        score would be a much more positive result. (A similar issue arises
        when measuring inter-annotator agreement in The Life Cycle of a Corpus.)

Precision and Recall



Another instance where accuracy scores can be misleading is in
        “search” tasks, such as information retrieval, where we are attempting
        to find documents that are relevant to a particular task. Since the
        number of irrelevant documents far outweighs the number of relevant
        documents, the accuracy score for a model that labels every document
        as irrelevant would be very close to 100%.
[image: True and false positives and negatives.]

Figure 6-3. True and false positives and negatives.

It is therefore conventional to employ a different set of
        measures for search tasks, based on the number of items in each of the
        four categories shown in Figure 6-3:
	True positives are
            relevant items that we correctly identified as relevant.

	True negatives are
            irrelevant items that we correctly identified as
            irrelevant.

	False positives (or
            Type I errors) are irrelevant
            items that we incorrectly identified as relevant.

	False negatives (or
            Type II errors) are relevant
            items that we incorrectly identified as irrelevant.



Given these four numbers, we can define the following
        metrics:
	Precision, which
            indicates how many of the items that we identified were relevant,
            is
            TP/(TP+FP).

	Recall, which indicates
            how many of the relevant items that we identified, is TP/(TP+FN).

	The F-Measure (or
            F-Score), which combines the
            precision and recall to give a single score, is defined to be the
            harmonic mean of the precision and recall (2 × Precision ×
            Recall)/(Precision+Recall).




Confusion Matrices



When performing classification tasks with three or more labels,
        it can be informative to subdivide the errors made by the model based
        on which types of mistake it made. A confusion
        matrix is a table where each cell
        [i,j] indicates how often
        label j was predicted when the correct label was
        i. Thus, the diagonal entries (i.e., cells
        [i,j]) indicate labels that
        were correctly predicted, and the off-diagonal entries indicate
        errors. In the following example, we generate a confusion matrix for
        the unigram tagger developed in Automatic Tagging:
>>> def tag_list(tagged_sents):
...     return [tag for sent in tagged_sents for (word, tag) in sent]
>>> def apply_tagger(tagger, corpus):
...     return [tagger.tag(nltk.tag.untag(sent)) for sent in corpus]
>>> gold = tag_list(brown.tagged_sents(categories='editorial'))
>>> test = tag_list(apply_tagger(t2, brown.tagged_sents(categories='editorial'))) 
>>> cm = nltk.ConfusionMatrix(gold, test)
    |                                         N                      |
    |      N      I      A      J             N             V      N |
    |      N      N      T      J      .      S      ,      B      P |
----+----------------------------------------------------------------+
 NN | <11.8%>  0.0%      .   0.2%      .   0.0%      .   0.3%   0.0% |
 IN |   0.0%  <9.0%>     .      .      .   0.0%      .      .      . |
 AT |      .      .  <8.6%>     .      .      .      .      .      . |
 JJ |   1.6%      .      .  <4.0%>     .      .      .   0.0%   0.0% |
  . |      .      .      .      .  <4.8%>     .      .      .      . |
 NS |   1.5%      .      .      .      .  <3.2%>     .      .   0.0% |
  , |      .      .      .      .      .      .  <4.4%>     .      . |
  B |   0.9%      .      .   0.0%      .      .      .  <2.4%>     . |
 NP |   1.0%      .      .   0.0%      .      .      .      .  <1.9%>|
----+----------------------------------------------------------------+
(row = reference; col = test)

The confusion matrix indicates that common errors include a
        substitution of NN for JJ (for 1.6% of words), and of NN for NNS (for 1.5% of words). Note that periods
        (.) indicate cells whose value is
        0, and that the diagonal entries—which correspond to correct
        classifications—are marked with angle brackets.

Cross-Validation



In order to evaluate our models, we must reserve a portion of
        the annotated data for the test set. As we already mentioned, if the
        test set is too small, our evaluation may not be accurate. However,
        making the test set larger usually means making the training set
        smaller, which can have a significant impact on performance if a
        limited amount of annotated data is available.
One solution to this problem is to perform multiple evaluations
        on different test sets, then to combine the scores from those
        evaluations, a technique known as cross-validation. In particular, we
        subdivide the original corpus into N subsets
        called folds. For each of these
        folds, we train a model using all of the data
        except the data in that fold, and then test that
        model on the fold. Even though the individual folds might be too small
        to give accurate evaluation scores on their own, the combined
        evaluation score is based on a large amount of data and is therefore
        quite reliable.
A second, and equally important, advantage of using
        cross-validation is that it allows us to examine how widely the
        performance varies across different training sets. If we get very
        similar scores for all N training sets, then we
        can be fairly confident that the score is accurate. On the other hand,
        if scores vary widely across the N training sets,
        then we should probably be skeptical about the accuracy of the
        evaluation score.


Decision Trees



In the next three sections, we’ll take a closer look at three
      machine learning methods that can be used to automatically build
      classification models: decision trees, naive Bayes classifiers, and
      Maximum Entropy classifiers. As we’ve seen, it’s possible to treat these
      learning methods as black boxes, simply training models and using them
      for prediction without understanding how they work. But there’s a lot to
      be learned from taking a closer look at how these learning methods
      select models based on the data in a training set. An understanding of
      these methods can help guide our selection of appropriate features, and
      especially our decisions about how those features should be encoded. And
      an understanding of the generated models can allow us to extract
      information about which features are most informative, and how those
      features relate to one another.
A decision tree is a simple
      flowchart that selects labels for input values. This flowchart consists
      of decision nodes, which check
      feature values, and leaf nodes, which
      assign labels. To choose the label for an input value, we begin at the
      flowchart’s initial decision node, known as its root node. This node contains a condition that
      checks one of the input value’s features, and selects a branch based on
      that feature’s value. Following the branch that describes our input
      value, we arrive at a new decision node, with a new condition on the
      input value’s features. We continue following the branch selected by
      each node’s condition, until we arrive at a leaf node which provides a
      label for the input value. Figure 6-4 shows an
      example decision tree model for the name gender task.
[image: Decision Tree model for the name gender task. Note that tree diagrams are conventionally drawn “upside down,” with the root at the top, and the leaves at the bottom.]

Figure 6-4. Decision Tree model for the name gender task. Note that tree
        diagrams are conventionally drawn “upside down,” with the root at the
        top, and the leaves at the bottom.

Once we have a decision tree, it is straightforward to use it to
      assign labels to new input values. What’s less straightforward is how we
      can build a decision tree that models a given training set. But before
      we look at the learning algorithm for building decision trees, we’ll
      consider a simpler task: picking the best “decision stump” for a corpus.
      A decision stump is a decision tree
      with a single node that decides how to classify inputs based on a single
      feature. It contains one leaf for each possible feature value,
      specifying the class label that should be assigned to inputs whose
      features have that value. In order to build a decision stump, we must
      first decide which feature should be used. The simplest method is to
      just build a decision stump for each possible feature, and see which one
      achieves the highest accuracy on the training data, although there are
      other alternatives that we will discuss later. Once we’ve picked a
      feature, we can build the decision stump by assigning a label to each
      leaf based on the most frequent label for the selected examples in the
      training set (i.e., the examples where the selected feature has that
      value).
Given the algorithm for choosing decision stumps, the algorithm
      for growing larger decision trees is straightforward. We begin by
      selecting the overall best decision stump for the classification task.
      We then check the accuracy of each of the leaves on the training set.
      Leaves that do not achieve sufficient accuracy are then replaced by new
      decision stumps, trained on the subset of the training corpus that is
      selected by the path to the leaf. For example, we could grow the
      decision tree in Figure 6-4 by replacing the
      leftmost leaf with a new decision stump, trained on the subset of the
      training set names that do not start with a k or
      end with a vowel or an l.
Entropy and Information Gain



As was mentioned before, there are several methods for
        identifying the most informative feature for a decision stump. One
        popular alternative, called information
        gain, measures how much more organized the input values
        become when we divide them up using a given feature. To measure how
        disorganized the original set of input values are, we calculate
        entropy of their labels, which will be high if the input values have
        highly varied labels, and low if many input values all have the same
        label. In particular, entropy is defined as the sum of the probability
        of each label times the log probability of that same label:
Example 6-8. 
H = − Σl
          ∈ labelsP(l)
          ×
          log2P(l).


For example, Figure 6-5 shows how the
        entropy of labels in the name gender prediction task depends on the
        ratio of male to female names. Note that if most input values have the
        same label (e.g., if P(male) is near 0 or near
        1), then entropy is low. In particular, labels that have low frequency
        do not contribute much to the entropy (since
        P(l) is small), and labels
        with high frequency also do not contribute much to the entropy (since
        log2P(l)
        is small). On the other hand, if the input values have a wide variety
        of labels, then there are many labels with a “medium” frequency, where
        neither P(l) nor
        log2P(l)
        is small, so the entropy is high. Example 6-9 demonstrates how to
        calculate the entropy of a list of labels.
[image: The entropy of labels in the name gender prediction task, as a function of the percentage of names in a given set that are male.]

Figure 6-5. The entropy of labels in the name gender prediction task, as
          a function of the percentage of names in a given set that are
          male.


Example 6-9. Calculating the entropy of a list of labels.
import math
def entropy(labels):
    freqdist = nltk.FreqDist(labels)
    probs = [freqdist.freq(l) for l in nltk.FreqDist(labels)]
    return -sum([p * math.log(p,2) for p in probs])
>>> print entropy(['male', 'male', 'male', 'male']) 
0.0
>>> print entropy(['male', 'female', 'male', 'male'])
0.811278124459
>>> print entropy(['female', 'male', 'female', 'male'])
1.0
>>> print entropy(['female', 'female', 'male', 'female'])
0.811278124459
>>> print entropy(['female', 'female', 'female', 'female'])
0.0


Once we have calculated the entropy of the labels of the
        original set of input values, we can determine how much more organized
        the labels become once we apply the decision stump. To do so, we
        calculate the entropy for each of the decision stump’s leaves, and
        take the average of those leaf entropy values (weighted by the number
        of samples in each leaf). The information gain is then equal to the
        original entropy minus this new, reduced entropy. The higher the
        information gain, the better job the decision stump does of dividing
        the input values into coherent groups, so we can build decision trees
        by selecting the decision stumps with the highest information
        gain.
Another consideration for decision trees is efficiency. The
        simple algorithm for selecting decision stumps described earlier must
        construct a candidate decision stump for every possible feature, and
        this process must be repeated for every node in the constructed
        decision tree. A number of algorithms have been developed to cut down
        on the training time by storing and reusing information about
        previously evaluated examples.
Decision trees have a number of useful qualities. To begin with,
        they’re simple to understand, and easy to interpret. This is
        especially true near the top of the decision tree, where it is usually
        possible for the learning algorithm to find very useful features.
        Decision trees are especially well suited to cases where many
        hierarchical categorical distinctions can be made. For example,
        decision trees can be very effective at capturing phylogeny
        trees.
However, decision trees also have a few disadvantages. One
        problem is that, since each branch in the decision tree splits the
        training data, the amount of training data available to train nodes
        lower in the tree can become quite small. As a result, these lower
        decision nodes may overfit the
        training set, learning patterns that reflect idiosyncrasies of the
        training set rather than linguistically significant patterns in the
        underlying problem. One solution to this problem is to stop dividing
        nodes once the amount of training data becomes too small. Another
        solution is to grow a full decision tree, but then to prune decision nodes that do not improve
        performance on a dev-test.
A second problem with decision trees is that they force features
        to be checked in a specific order, even when features may act
        relatively independently of one another. For example, when classifying
        documents into topics (such as sports, automotive, or murder mystery),
        features such as hasword(football)
        are highly indicative of a specific label, regardless of what the
        other feature values are. Since there is limited space near the top of
        the decision tree, most of these features will need to be repeated on
        many different branches in the tree. And since the number of branches
        increases exponentially as we go down the tree, the amount of
        repetition can be very large.
A related problem is that decision trees are not good at making
        use of features that are weak predictors of the correct label. Since
        these features make relatively small incremental improvements, they tend to
        occur very low in the decision tree. But by the time the decision tree
        learner has descended far enough to use these features, there is not
        enough training data left to reliably determine what effect they
        should have. If we could instead look at the effect of these features
        across the entire training set, then we might be able to make some
        conclusions about how they should affect the choice of label.
The fact that decision trees require that features be checked in
        a specific order limits their ability to exploit features that are
        relatively independent of one another. The naive Bayes classification
        method, which we’ll discuss next, overcomes this limitation by
        allowing all features to act “in parallel.”


Naive Bayes Classifiers



In naive Bayes classifiers,
      every feature gets a say in determining which label should be assigned
      to a given input value. To choose a label for an input value, the naive
      Bayes classifier begins by calculating the prior
      probability of each label, which is determined by checking
      the frequency of each label in the training set. The contribution from
      each feature is then combined with this prior probability, to arrive at
      a likelihood estimate for each label. The label whose likelihood
      estimate is the highest is then assigned to the input value. Figure 6-6 illustrates this
      process.
[image: An abstract illustration of the procedure used by the naive Bayes classifier to choose the topic for a document. In the training corpus, most documents are automotive, so the classifier starts out at a point closer to the “automotive” label. But it then considers the effect of each feature. In this example, the input document contains the word dark, which is a weak indicator for murder mysteries, but it also contains the word football, which is a strong indicator for sports documents. After every feature has made its contribution, the classifier checks which label it is closest to, and assigns that label to the input.]

Figure 6-6. An abstract illustration of the procedure used by the naive
        Bayes classifier to choose the topic for a document. In the training
        corpus, most documents are automotive, so the classifier starts out at
        a point closer to the “automotive” label. But it then considers the
        effect of each feature. In this example, the input document contains
        the word dark, which is a weak indicator
        for murder mysteries, but it also contains the word football, which is a strong indicator for sports
        documents. After every feature has made its contribution, the
        classifier checks which label it is closest to, and assigns that label
        to the input.


Individual features make their contribution to the overall
      decision by “voting against” labels that don’t occur with that feature
      very often. In particular, the likelihood score for each label is
      reduced by multiplying it by the probability that an input value with
      that label would have the feature. For example, if the word
      run occurs in 12% of the sports documents, 10% of
      the murder mystery documents, and 2% of the automotive documents, then
      the likelihood score for the sports label will be multiplied by 0.12,
      the likelihood score for the murder mystery label will be multiplied by
      0.1, and the likelihood score for the automotive label will be
      multiplied by 0.02. The overall effect will be to reduce the score of
      the murder mystery label slightly more than the score of the sports
      label, and to significantly reduce the automotive label with respect to
      the other two labels. This process is illustrated in Figures 6-7 and 6-8.
[image: Calculating label likelihoods with naive Bayes. Naive Bayes begins by calculating the prior probability of each label, based on how frequently each label occurs in the training data. Every feature then contributes to the likelihood estimate for each label, by multiplying it by the probability that input values with that label will have that feature. The resulting likelihood score can be thought of as an estimate of the probability that a randomly selected value from the training set would have both the given label and the set of features, assuming that the feature probabilities are all independent.]

Figure 6-7. Calculating label likelihoods with naive Bayes. Naive Bayes
        begins by calculating the prior probability of each label, based on
        how frequently each label occurs in the training data. Every feature
        then contributes to the likelihood estimate for each label, by
        multiplying it by the probability that input values with that label
        will have that feature. The resulting likelihood score can be thought
        of as an estimate of the probability that a randomly selected value
        from the training set would have both the given label and the set of
        features, assuming that the feature probabilities are all
        independent.


[image: A Bayesian Network Graph illustrating the generative process that is assumed by the naive Bayes classifier. To generate a labeled input, the model first chooses a label for the input, and then it generates each of the input’s features based on that label. Every feature is assumed to be entirely independent of every other feature, given the label.]

Figure 6-8. A Bayesian Network Graph illustrating the generative process
        that is assumed by the naive Bayes classifier. To generate a labeled
        input, the model first chooses a label for the input, and then it
        generates each of the input’s features based on that label. Every
        feature is assumed to be entirely independent of every other feature,
        given the label.


Underlying Probabilistic Model



Another way of understanding the naive Bayes classifier is that
        it chooses the most likely label for an input, under the assumption
        that every input value is generated by first choosing a class label
        for that input value, and then generating each feature, entirely
        independent of every other feature. Of course, this assumption is
        unrealistic; features are often highly dependent on one another. We’ll
        return to some of the consequences of this assumption at the end of
        this section. This simplifying assumption, known as the naive Bayes assumption (or independence assumption), makes it much
        easier to combine the contributions of the different features, since
        we don’t need to worry about how they should interact with one
        another.
Based on this assumption, we can calculate an expression for
        P(label|features), the
        probability that an input will have a particular label given that it
        has a particular set of features. To choose a label for a new input,
        we can then simply pick the label l that
        maximizes
        P(l|features).
To begin, we note that
        P(label|features) is equal
        to the probability that an input has a particular label
        and the specified set of features, divided by the
        probability that it has the specified set of features:
Example 6-10. 
P(label|features)
          =
          P(features,
          label)/P(features)


Next, we note that
        P(features) will be the same
        for every choice of label, so if we are simply interested in finding
        the most likely label, it suffices to calculate
        P(features,
        label), which we’ll call the label
        likelihood.
Note
If we want to generate a probability estimate for each label,
          rather than just choosing the most likely label, then the easiest
          way to compute P(features)
          is to simply calculate the sum over labels of
          P(features,
          label):
Example 6-11. 
 P(features) =
            Σlabel ∈
            labels
            P(features,
            label)



The label likelihood can be expanded out as the probability of
        the label times the probability of the features given the
        label:
Example 6-12. 
P(features,
          label) =
          P(label) ×
          P(features|label)


Furthermore, since the features are all independent of one
        another (given the label), we can separate out the probability of each
        individual feature:
Example 6-13. 
P(features,
          label) =
          P(label) ×
          ⊓f ∈
          featuresP(f|label)


This is exactly the equation we discussed earlier for
        calculating the label likelihood: P(label) is the
        prior probability for a given label, and each
        P(f|label) is the contribution of a single
        feature to the label likelihood.

Zero Counts and Smoothing



The simplest way to calculate P(f|label),
        the contribution of a feature f toward the label
        likelihood for a label label, is to take the
        percentage of training instances with the given label that also have
        the given feature:
Example 6-14. 
P(f|label) =
          count(f,
          label)/count(label)


However, this simple approach can become problematic when a
        feature never occurs with a given label in the
        training set. In this case, our calculated value for
        P(f|label) will be zero,
        which will cause the label likelihood for the given label to be zero.
        Thus, the input will never be assigned this label, regardless of how
        well the other features fit the label.
The basic problem here is with our calculation of
        P(f|label), the probability
        that an input will have a feature, given a label. In particular, just
        because we haven’t seen a feature/label combination occur in the
        training set, doesn’t mean it’s impossible for that combination to
        occur. For example, we may not have seen any murder mystery documents
        that contained the word football, but we wouldn’t
        want to conclude that it’s completely impossible for such documents to
        exist.
Thus, although
        count(f,label)/count(label)
        is a good estimate for
        P(f|label) when
        count(f,
        label) is relatively high, this estimate becomes
        less reliable when count(f)
        becomes smaller. Therefore, when building naive Bayes models, we
        usually employ more sophisticated techniques, known as smoothing techniques, for calculating
        P(f|label), the probability
        of a feature given a label. For example, the Expected Likelihood Estimation for the
        probability of a feature given a label basically adds 0.5 to each
        count(f,label)
        value, and the Heldout Estimation uses
        a heldout corpus to calculate the relationship between feature
        frequencies and feature probabilities. The nltk.probability module provides support for
        a wide variety of smoothing techniques.

Non-Binary Features



We have assumed here that each feature is binary, i.e., that
        each input either has a feature or does not. Label-valued features
        (e.g., a color feature, which could be red,
        green, blue,
        white, or orange) can be
        converted to binary features by replacing them with binary features,
        such as “color-is-red”. Numeric features can be converted to binary
        features by binning, which replaces
        them with features such as “4<x<6.”
Another alternative is to use regression methods to model the
        probabilities of numeric features. For example, if we assume that the
        height feature has a bell curve distribution, then we could estimate
        P(height|label)
        by finding the mean and variance of the heights of the inputs with
        each label. In this case,
        P(f=v|label) would not be a
        fixed value, but would vary depending on the value of
        v.

The Naivete of Independence



The reason that naive Bayes classifiers are called “naive” is
        that it’s unreasonable to assume that all features are independent of
        one another (given the label). In particular, almost all real-world
        problems contain features with varying degrees of dependence on one
        another. If we had to avoid any features that were dependent on one
        another, it would be very difficult to construct good feature sets
        that provide the required information to the machine learning
        algorithm.
So what happens when we ignore the independence assumption, and
        use the naive Bayes classifier with features that are not independent?
        One problem that arises is that the classifier can end up
        “double-counting” the effect of highly correlated features, pushing
        the classifier closer to a given label than is justified.
To see how this can occur, consider a name gender classifier
        that contains two identical features,
        f1 and
        f2. In other words,
        f2 is an exact copy of
        f1, and contains no new
        information. When the classifier is considering an input, it will
        include the contribution of both
        f1 and
        f2 when deciding which
        label to choose. Thus, the information content of these two features
        will be given more weight than it deserves.
Of course, we don’t usually build naive Bayes classifiers that
        contain two identical features. However, we do build classifiers that
        contain features which are dependent on one another. For example, the
        features ends-with(a) and ends-with(vowel) are dependent on one
        another, because if an input value has the first feature, then it must
        also have the second feature. For features like these, the duplicated
        information may be given more weight than is justified by the training
        set.

The Cause of Double-Counting



The reason for the double-counting problem is that during
        training, feature contributions are computed separately; but when
        using the classifier to choose labels for new inputs, those feature
        contributions are combined. One solution, therefore, is to consider
        the possible interactions between feature contributions during
        training. We could then use those interactions to adjust the
        contributions that individual features make.
To make this more precise, we can rewrite the equation used to
        calculate the likelihood of a label, separating out the contribution
        made by each feature (or label):
Example 6-15. 
P(features,
          label) =
          w[label] ×
          ⊓f ∈
          features
          w[f,
          label]


Here, w[label] is the
        “starting score” for a given label, and
        w[f,
        label] is the contribution made by a given
        feature towards a label’s likelihood. We call these values
        w[label] and
        w[f,
        label] the parameters or weights for the model. Using the naive Bayes
        algorithm, we set each of these parameters independently:
Example 6-16. 
w[label]
          =
          P(label)


Example 6-17. 
w[f,
          label] =
          P(f|label)


However, in the next section, we’ll look at a classifier that
        considers the possible interactions between these parameters when
        choosing their values.


Maximum Entropy Classifiers



The Maximum Entropy classifier
      uses a model that is very similar to the model employed by the naive
      Bayes classifier. But rather than using probabilities to set the model’s parameters, it uses search
      techniques to find a set of parameters that will maximize the
      performance of the classifier. In particular, it looks for the set of
      parameters that maximizes the total
      likelihood of the training corpus, which is defined
      as:
Example 6-18. 
P(features) =
        Σx ∈ corpus
        P(label(x)|features(x))


Where P(label|features),
      the probability that an input whose features are
      features will have class label
      label, is defined as:
Example 6-19. 
P(label|features)
        = P(label,
        features)/Σlabel
        P(label,
        features)


Because of the potentially complex interactions between the
      effects of related features, there is no way to directly calculate the
      model parameters that maximize the likelihood of the training set.
      Therefore, Maximum Entropy classifiers choose the model parameters using
      iterative optimization techniques,
      which initialize the model’s parameters to random values, and then
      repeatedly refine those parameters to bring them closer to the optimal
      solution. These iterative optimization techniques guarantee that each
      refinement of the parameters will bring them closer to the optimal
      values, but do not necessarily provide a means of determining when those
      optimal values have been reached. Because the parameters for Maximum
      Entropy classifiers are selected using iterative optimization
      techniques, they can take a long time to learn. This is especially true
      when the size of the training set, the number of features, and the
      number of labels are all large.
Note
Some iterative optimization techniques are much faster than
        others. When training Maximum Entropy models, avoid the use of
        Generalized Iterative Scaling (GIS) or Improved Iterative Scaling
        (IIS), which are both considerably slower than the Conjugate Gradient
        (CG) and the BFGS optimization methods.

The Maximum Entropy Model



The Maximum Entropy classifier model is a generalization of the
        model used by the naive Bayes classifier. Like the naive Bayes model,
        the Maximum Entropy classifier calculates the likelihood of each label
        for a given input value by multiplying together the parameters that
        are applicable for the input value and label. The naive Bayes
        classifier model defines a parameter for each label, specifying its
        prior probability, and a parameter for each (feature, label) pair,
        specifying the contribution of individual features toward a label’s
        likelihood.
In contrast, the Maximum Entropy classifier model leaves it up
        to the user to decide what combinations of labels and features should
        receive their own parameters. In particular, it is possible to use a
        single parameter to associate a feature with more than one label; or
        to associate more than one feature with a given label. This will
        sometimes allow the model to “generalize” over some of the differences
        between related labels or features.
Each combination of labels and features that receives its own
        parameter is called a joint-feature. Note that joint-features are
        properties of labeled values, whereas (simple)
        features are properties of unlabeled
        values.
Note
In literature that describes and discusses Maximum Entropy
          models, the term “features” often refers to joint-features; the term
          “contexts” refers to what we have been calling (simple)
          features.

Typically, the joint-features that are used to construct Maximum
        Entropy models exactly mirror those that are used by the naive Bayes
        model. In particular, a joint-feature is defined for each label,
        corresponding to
        w[label],
        and for each combination of (simple) feature and label, corresponding
        to w[f,
        label]. Given the joint-features for a Maximum
        Entropy model, the score assigned to a label for a given input is
        simply the product of the parameters associated with the
        joint-features that apply to that input and label:
Example 6-20. 
P(input,
          label) =
          ⊓joint-features(input,label)w[joint-feature]



Maximizing Entropy



The intuition that motivates Maximum Entropy classification is
        that we should build a model that captures the frequencies of
        individual joint-features, without making any unwarranted assumptions.
        An example will help to illustrate this principle.
Suppose we are assigned the task of picking the correct word
        sense for a given word, from a list of 10 possible senses (labeled
        A–J). At first, we are not told anything more about the word or the
        senses. There are many probability distributions that we could choose
        for the 10 senses, such as:
	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J

	(i)
	10%
	10%
	10%
	10%
	10%
	10%
	10%
	10%
	10%
	10%

	(ii)
	5%
	15%
	0%
	30%
	0%
	8%
	12%
	0%
	6%
	24%

	(iii)
	0%
	100%
	0%
	0%
	0%
	0%
	0%
	0%
	0%
	0%



Although any of these distributions might
        be correct, we are likely to choose distribution
        (i), because without any more information, there
        is no reason to believe that any word sense is more likely than any
        other. On the other hand, distributions (ii) and
        (iii) reflect assumptions that are not supported
        by what we know.
One way to capture this intuition that distribution
        (i) is more “fair” than the other two is to
        invoke the concept of entropy. In the discussion of decision trees, we
        described entropy as a measure of how “disorganized” a set of labels
        was. In particular, if a single label dominates then entropy is low,
        but if the labels are more evenly distributed then entropy is high. In
        our example, we chose distribution (i) because
        its label probabilities are evenly distributed—in other words, because
        its entropy is high. In general, the Maximum
        Entropy principle states that, among the distributions that
        are consistent with what we know, we should choose the distribution
        whose entropy is highest.
Next, suppose that we are told that sense A appears 55% of the
        time. Once again, there are many distributions that are consistent
        with this new piece of information, such as:
	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J

	(iv)
	55%
	45%
	0%
	0%
	0%
	0%
	0%
	0%
	0%
	0%

	(v)
	55%
	5%
	5%
	5%
	5%
	5%
	5%
	5%
	5%
	5%

	(vi)
	55%
	3%
	1%
	2%
	9%
	5%
	0%
	25%
	0%
	0%



But again, we will likely choose the distribution that makes the
        fewest unwarranted assumptions—in this case, distribution
        (v).
Finally, suppose that we are told that the word
        up appears in the nearby context 10% of the time,
        and that when it does appear in the context there’s an 80% chance that
        sense A or C will be used. In this case, we will have a harder time
        coming up with an appropriate distribution by hand; however, we can
        verify that the following distribution looks appropriate:
	
	 	A
	B
	C
	D
	E
	F
	G
	H
	I
	J

	(vii)
	+up
	5.1%
	0.25%
	2.9%
	0.25%
	0.25%
	0.25%
	0.25%
	0.25%
	0.25%
	0.25%

	
	–up
	49.9%
	4.46%
	4.46%
	4.46%
	4.46%
	4.46%
	4.46%
	4.46%
	4.46%
	4.46%



In particular, the distribution is consistent with what we know:
        if we add up the probabilities in column A, we get 55%; if we add up
        the probabilities of row 1, we get 10%; and if we add up the boxes for
        senses A and C in the +up row, we get 8% (or 80% of the +up cases).
        Furthermore, the remaining probabilities appear to be “evenly distributed.”
Throughout this example, we have restricted ourselves to
        distributions that are consistent with what we know; among these, we
        chose the distribution with the highest entropy. This is exactly what
        the Maximum Entropy classifier does as well. In particular, for each joint-feature, the
        Maximum Entropy model calculates the “empirical frequency” of that
        feature—i.e., the frequency with which it occurs in the training set.
        It then searches for the distribution which maximizes entropy, while
        still predicting the correct frequency for each joint-feature.

Generative Versus Conditional Classifiers



An important difference between the naive Bayes classifier and
        the Maximum Entropy classifier concerns the types of questions they
        can be used to answer. The naive Bayes classifier is an example of a
        generative classifier, which builds
        a model that predicts
        P(input,
        label), the joint probability of an
        (input, label) pair. As a
        result, generative models can be used to answer the following
        questions:
	What is the most likely label for a given input?

	How likely is a given label for a given input?

	What is the most likely input value?

	How likely is a given input value?

	How likely is a given input value with a given label?

	What is the most likely label for an input that might have
            one of two values (but we don’t know which)?



The Maximum Entropy classifier, on the other hand, is an example
        of a conditional classifier.
        Conditional classifiers build models that predict
        P(label|input)—the
        probability of a label given the input value.
        Thus, conditional models can still be used to answer questions 1 and
        2. However, conditional models cannot be used to
        answer the remaining questions 3–6.
In general, generative models are strictly more powerful than
        conditional models, since we can calculate the conditional probability
        P(label|input) from the
        joint probability P(input,
        label), but not vice versa. However, this additional power
        comes at a price. Because the model is more powerful, it has more
        “free parameters” that need to be learned. However, the size of the
        training set is fixed. Thus, when using a more powerful model, we end
        up with less data that can be used to train each parameter’s value,
        making it harder to find the best parameter values. As a result, a
        generative model may not do as good a job at answering questions 1 and
        2 as a conditional model, since the conditional model can focus its
        efforts on those two questions. However, if we do need answers to
        questions like 3–6, then we have no choice but to use a generative
        model.
The difference between a generative model and a conditional
        model is analogous to the difference between a topographical map and a
        picture of a skyline. Although the topographical map can be used to
        answer a wider variety of questions, it is significantly more
        difficult to generate an accurate topographical map than it is to
        generate an accurate skyline.


Modeling Linguistic Patterns



Classifiers can help us to understand the linguistic patterns that
      occur in natural language, by allowing us to create explicit models that capture those patterns. Typically,
      these models are using supervised classification techniques, but it is
      also possible to build analytically motivated models. Either way, these
      explicit models serve two important purposes: they help us to understand
      linguistic patterns, and they can be used to make predictions about new
      language data.
The extent to which explicit models can give us insights into
      linguistic patterns depends largely on what kind of model is used. Some
      models, such as decision trees, are relatively transparent, and give us
      direct information about which factors are important in making decisions
      and about which factors are related to one another. Other models, such
      as multilevel neural networks, are much more opaque. Although it can be
      possible to gain insight by studying them, it typically takes a lot more
      work.
But all explicit models can make predictions about new unseen language data that was not included in
      the corpus used to build the model. These predictions can be evaluated
      to assess the accuracy of the model. Once a model is deemed sufficiently
      accurate, it can then be used to automatically predict information about
      new language data. These predictive models can be combined into systems
      that perform many useful language processing tasks, such as document
      classification, automatic translation, and question answering.
What Do Models Tell Us?



It’s important to understand what we can learn about language
        from an automatically constructed model. One important consideration
        when dealing with models of language is the distinction between
        descriptive models and explanatory models. Descriptive models capture
        patterns in the data, but they don’t provide any information about
        why the data contains those patterns. For
        example, as we saw in Table 3-1, the synonyms
        absolutely and definitely
        are not interchangeable: we say absolutely adore
        not definitely adore, and definitely
        prefer, not absolutely prefer. In
        contrast, explanatory models attempt to capture properties and
        relationships that cause the linguistic patterns. For example, we
        might introduce the abstract concept of “polar adjective” as an
        adjective that has an extreme meaning, and categorize some adjectives,
        such as adore and detest as
        polar. Our explanatory model would contain the constraint that
        absolutely can combine only with polar
        adjectives, and definitely can only combine with
        non-polar adjectives. In summary, descriptive models provide
        information about correlations in the data, while explanatory models
        go further to postulate causal relationships.
Most models that are automatically constructed from a corpus are
        descriptive models; in other words, they can tell us what features are
        relevant to a given pattern or construction, but they can’t
        necessarily tell us how those features and patterns relate to one
        another. If our goal is to understand the linguistic patterns, then we
        can use this information about which features are related as a
        starting point for further experiments designed to tease apart the
        relationships between features and patterns. On the other hand, if
        we’re just interested in using the model to make predictions (e.g., as
        part of a language processing system), then we can use the model to
        make predictions about new data without worrying about the details of
        underlying causal relationships.


Summary



	Modeling the linguistic data found in corpora can help us to
          understand linguistic patterns, and can be used to make predictions
          about new language data.

	Supervised classifiers use labeled training corpora to build
          models that predict the label of an input based on specific features
          of that input.

	Supervised classifiers can perform a wide variety of NLP
          tasks, including document classification, part-of-speech tagging,
          sentence segmentation, dialogue act type identification, and
          determining entailment relations, and many other tasks.

	When training a supervised classifier, you should split your
          corpus into three datasets: a training set for building the
          classifier model, a dev-test set for helping select and tune the
          model’s features, and a test set for evaluating the final model’s
          performance.

	When evaluating a supervised classifier, it is important that
          you use fresh data that was not included in the training or dev-test
          set. Otherwise, your evaluation results may be unrealistically
          optimistic.

	Decision trees are automatically constructed tree-structured
          flowcharts that are used to assign labels to input values based on
          their features. Although they’re easy to interpret, they are not
          very good at handling cases where feature values interact in
          determining the proper label.

	In naive Bayes classifiers, each feature independently
          contributes to the decision of which label should be used. This
          allows feature values to interact, but can be problematic when two
          or more features are highly correlated with one another.

	Maximum Entropy classifiers use a basic model that is similar
          to the model used by naive Bayes; however, they employ iterative
          optimization to find the set of feature weights that maximizes the
          probability of the training set.

	Most of the models that are automatically constructed from a
          corpus are descriptive, that is, they let us know which features are
          relevant to a given pattern or construction, but they don’t give any
          information about causal relationships between those features and
          patterns.




Further Reading



Please consult http://www.nltk.org/ for
      further materials on this chapter and on how to install external machine
      learning packages, such as Weka, Mallet, TADM, and MegaM. For more
      examples of classification and machine learning with NLTK, please see
      the classification HOWTOs at http://www.nltk.org/howto.
For a general introduction to machine learning, we recommend
      (Alpaydin, 2004). For a more mathematically intense introduction to the
      theory of machine learning, see (Hastie, Tibshirani & Friedman,
      2009). Excellent books on using machine learning techniques for NLP
      include (Abney, 2008), (Daelemans & Bosch, 2005), (Feldman &
      Sanger, 2007), (Segaran, 2007), and (Weiss et al., 2004). For more on
      smoothing techniques for language problems, see (Manning & Schütze,
      1999). For more on sequence modeling, and especially hidden Markov
      models, see (Manning & Schütze, 1999) or (Jurafsky & Martin,
      2008). Chapter 13 of (Manning, Raghavan & Schütze, 2008) discusses
      the use of naive Bayes for classifying texts.
Many of the machine learning algorithms discussed in this chapter
      are numerically intensive, and as a result, they will run slowly when
      coded naively in Python. For information on increasing the efficiency of
      numerically intensive algorithms in Python, see (Kiusalaas,
      2005).
The classification techniques described in this chapter can be
      applied to a very wide variety of problems. For example, (Agirre &
      Edmonds, 2007) uses classifiers to perform word-sense disambiguation;
      and (Melamed, 2001) uses classifiers to create parallel texts. Recent
      textbooks that cover text classification include (Manning, Raghavan
      & Schütze, 2008) and (Croft, Metzler & Strohman, 2009).
Much of the current research in the application of machine
      learning techniques to NLP problems is driven by government-sponsored
      “challenges,” where a set of research organizations are all provided
      with the same development corpus and asked to build a system, and the
      resulting systems are compared based on a reserved test set. Examples of
      these challenge competitions include CoNLL Shared Tasks, the Recognizing
      Textual Entailment competitions, the ACE competitions, and the AQUAINT
      competitions. Consult http://www.nltk.org/ for a
      list of pointers to the web pages for these challenges.

Exercises



	○ Read up on one of the language technologies mentioned in
          this section, such as word sense disambiguation, semantic role
          labeling, question answering, machine translation, or named entity
          recognition. Find out what type and quantity of annotated data is
          required for developing such systems. Why do you think a large
          amount of data is required?

	○ Using any of the three classifiers described in this
          chapter, and any features you can think of, build the best name
          gender classifier you can. Begin by splitting the Names Corpus into
          three subsets: 500 words for the test set, 500 words for the
          dev-test set, and the remaining 6,900 words for the training set.
          Then, starting with the example name gender classifier, make
          incremental improvements. Use the dev-test set to check your
          progress. Once you are satisfied with your classifier, check its
          final performance on the test set. How does the performance on the
          test set compare to the performance on the dev-test set? Is this
          what you’d expect?

	○ The Senseval 2 Corpus contains data intended to train word-sense
          disambiguation classifiers. It contains data for four words:
          hard, interest,
          line, and serve. Choose
          one of these four words, and load the corresponding data:
>>> from nltk.corpus import senseval
>>> instances = senseval.instances('hard.pos')
>>> size = int(len(instances) * 0.1)
>>> train_set, test_set = instances[size:], instances[:size]
Using this dataset, build a classifier that predicts the
          correct sense tag for a given instance. See the corpus HOWTO at
          http://www.nltk.org/howto for information on
          using the instance objects returned by the Senseval 2 Corpus.

	○ Using the movie review document classifier discussed in this
          chapter, generate a list of the 30 features that the classifier
          finds to be most informative. Can you explain why these particular
          features are informative? Do you find any of them surprising?

	○ Select one of the classification tasks described in this
          chapter, such as name gender detection, document classification,
          part-of-speech tagging, or dialogue act classification. Using the
          same training and test data, and the same feature extractor, build
          three classifiers for the task: a decision tree, a naive Bayes
          classifier, and a Maximum Entropy classifier. Compare the
          performance of the three classifiers on your selected task. How do
          you think that your results might be different if you used a
          different feature extractor?

	○ The synonyms strong and
          powerful pattern differently (try combining
          them with chip and sales).
          What features are relevant in this distinction? Build a classifier
          that predicts when each word should be used.

	[image: ] The dialogue act classifier assigns labels to individual
          posts, without considering the context in which the post is found.
          However, dialogue acts are highly dependent on context, and some
          sequences of dialogue act are much more likely than others. For
          example, a ynQuestion dialogue act is much more likely to be
          answered by a yanswer than by a
          greeting. Make use of this fact
          to build a consecutive classifier for labeling dialogue acts. Be
          sure to consider what features might be useful. See the code for the
          consecutive classifier for part-of-speech tags in Example 6-5 to get some ideas.

	[image: ] Word features can be very useful for performing document
          classification, since the words that appear in a document give a
          strong indication about what its semantic content is. However, many
          words occur very infrequently, and some of the most informative
          words in a document may never have occurred in our training data.
          One solution is to make use of a lexicon, which describes how different
          words relate to one another. Using the WordNet lexicon, augment the
          movie review document classifier presented in this chapter to use
          features that generalize the words that appear in a document, making
          it more likely that they will match words found in the training
          data.

	● The PP Attachment Corpus is a corpus describing
          prepositional phrase attachment decisions. Each instance in the
          corpus is encoded as a PPAttachment object:
>>> from nltk.corpus import ppattach
>>> ppattach.attachments('training') 
[PPAttachment(sent='0', verb='join', noun1='board',
              prep='as', noun2='director', attachment='V'),
 PPAttachment(sent='1', verb='is', noun1='chairman',
              prep='of', noun2='N.V.', attachment='N'),
 ...]
>>> inst = ppattach.attachments('training')[1]
>>> (inst.noun1, inst.prep, inst.noun2)
('chairman', 'of', 'N.V.')
Select only the instances where inst.attachment is N:
>>> nattach = [inst for inst in ppattach.attachments('training')
...            if inst.attachment == 'N']
Using this subcorpus, build a classifier that attempts to
          predict which preposition is used to connect a given pair of nouns.
          For example, given the pair of nouns team and
          researchers, the classifier should predict the
          preposition of. See the corpus HOWTO at http://www.nltk.org/howto for more information on
          using the PP Attachment Corpus.

	● Suppose you wanted to automatically generate a prose
          description of a scene, and already had a word to uniquely describe
          each entity, such as the book, and simply
          wanted to decide whether to use in or
          on in relating various items, e.g.,
          the book is in the cupboard versus
          the book is on the shelf. Explore this issue by
          looking at corpus data and writing programs as needed. Consider the
          following examples:



Example 6-21. 
	in the car versus on the train

	in town versus on campus

	in the picture versus on the
            screen

	in Macbeth versus on
            Letterman






Chapter 7. Extracting Information from Text



For any given question, it’s likely that someone has written the
    answer down somewhere. The amount of natural language text that is
    available in electronic form is truly staggering, and is increasing every
    day. However, the complexity of natural language can make it very
    difficult to access the information in that text. The state of the art in
    NLP is still a long way from being able to build general-purpose
    representations of meaning from unrestricted text. If we instead focus our
    efforts on a limited set of questions or “entity relations,” such as
    “where are different facilities located” or “who is employed by what
    company,” we can make significant progress. The goal of this chapter is to
    answer the following questions:
	How can we build a system that extracts structured data from
        unstructured text?

	What are some robust methods for identifying the entities and
        relationships described in a text?

	Which corpora are appropriate for this work, and how do we use
        them for training and evaluating our models?



Along the way, we’ll apply techniques from the last two chapters to
    the problems of chunking and named entity recognition.
Information Extraction



Information comes in many shapes and sizes. One important form is
      structured data, where there is a regular
      and predictable organization of entities and relationships. For example,
      we might be interested in the relation between companies and locations.
      Given a particular company, we would like to be able to identify the
      locations where it does business; conversely, given a location, we would
      like to discover which companies do business in that location. If our
      data is in tabular form, such as the example in Table 7-1, then answering these queries is
      straightforward.
Table 7-1. Locations data
	OrgName
	LocationName

	Omnicom
	New York

	DDB Needham
	New York

	Kaplan Thaler Group
	New York

	BBDO South
	Atlanta

	Georgia-Pacific
	Atlanta




If this location data was stored in Python as a list of tuples
      (entity,
      relation,
      entity), then the question “Which
      organizations operate in Atlanta?” could be translated as
      follows:
>>> print [org for (e1, rel, e2) if rel=='IN' and e2=='Atlanta'] 
['BBDO South', 'Georgia-Pacific']
Things are more tricky if we try to get similar information out of
      text. For example, consider the following snippet (from nltk.corpus.ieer, for fileid NYT19980315.0085).
Example 7-1. 
The fourth Wells account moving to another agency is the
        packaged paper-products division of Georgia-Pacific Corp., which
        arrived at Wells only last fall. Like Hertz and the History Channel,
        it is also leaving for an Omnicom-owned agency, the BBDO South unit of
        BBDO Worldwide. BBDO South in Atlanta, which handles corporate
        advertising for Georgia-Pacific, will assume additional duties for
        brands like Angel Soft toilet tissue and Sparkle paper towels, said
        Ken Haldin, a spokesman for Georgia-Pacific in Atlanta.


If you read through Example 7-1, you will glean the
      information required to answer the example question. But how do we get a
      machine to understand enough about Example 7-1 to return
      the list ['BBDO South', ‘Georgia-Pacific'] as an answer? This is
      obviously a much harder task. Unlike Table 7-1, Example 7-1 contains no
      structure that links organization names with location names.
One approach to this problem involves building a very general
      representation of meaning (Chapter 10). In this
      chapter we take a different approach, deciding in advance that we will
      only look for very specific kinds of information in text, such as the
      relation between organizations and locations. Rather than trying to use
      text like Example 7-1 to answer the question directly, we
      first convert the unstructured data
      of natural language sentences into the structured data of Table 7-1. Then we reap the benefits of powerful
      query tools such as SQL. This method of getting meaning from text is
      called Information
      Extraction.
Information Extraction has many applications, including business
      intelligence, resume harvesting, media analysis, sentiment detection,
      patent search, and email scanning. A particularly important area of
      current research involves the attempt to extract structured data out of electronically
      available scientific literature, especially in the domain of biology and
      medicine.
Information Extraction Architecture



Figure 7-1 shows the architecture
        for a simple information extraction system. It begins by processing a
        document using several of the procedures discussed in Chapters 3 and 5: first, the raw
        text of the document is split into sentences using a sentence
        segmenter, and each sentence is further subdivided into words using a
        tokenizer. Next, each sentence is tagged with part-of-speech tags,
        which will prove very helpful in the next step, named entity recognition. In this step, we
        search for mentions of potentially interesting entities in each
        sentence. Finally, we use relation
        recognition to search for likely relations between
        different entities in the text.
[image: Simple pipeline architecture for an information extraction system. This system takes the raw text of a document as its input, and generates a list of (entity, relation, entity) tuples as its output. For example, given a document that indicates that the company Georgia-Pacific is located in Atlanta, it might generate the tuple ([ORG: 'Georgia-Pacific'] 'in' [LOC: 'Atlanta']).]

Figure 7-1. Simple pipeline architecture for an information extraction
          system. This system takes the raw text of a document as its input,
          and generates a list of (entity,
          relation, entity) tuples as its output. For example,
          given a document that indicates that the company Georgia-Pacific is
          located in Atlanta, it might generate the tuple ([ORG: 'Georgia-Pacific'] 'in'
          [LOC: 'Atlanta']).


To perform the first three tasks, we can define a function that
        simply connects together NLTK’s default sentence segmenter [image: 1], word tokenizer [image: 2], and part-of-speech tagger [image: 3]:
>>> def ie_preprocess(document):
...    sentences = nltk.sent_tokenize(document) [image: 1]
...    sentences = [nltk.word_tokenize(sent) for sent in sentences] [image: 2]
...    sentences = [nltk.pos_tag(sent) for sent in sentences] [image: 3]
Note
Remember that our program samples assume you begin your
          interactive session or your program with import nltk, re, pprint.

Next, in named entity recognition, we segment and label the
        entities that might participate in interesting relations with one
        another. Typically, these will be definite noun phrases such as
        the knights who say “ni”, or proper names such as
        Monty Python. In some tasks it is useful to also
        consider indefinite nouns or noun chunks, such as every
        student or cats, and these do not
        necessarily refer to entities in the same way as definite NPs and proper names.
Finally, in relation extraction, we search for specific patterns
        between pairs of entities that occur near one another in the text, and
        use those patterns to build tuples recording the relationships between
        the entities.


Chunking



The basic technique we will use for entity recognition is
      chunking, which segments and labels
      multitoken sequences as illustrated in Figure 7-2. The smaller boxes show the
      word-level tokenization and part-of-speech tagging, while the large
      boxes show higher-level chunking. Each of these larger boxes is called a
      chunk. Like tokenization, which omits
      whitespace, chunking usually selects a subset of the tokens. Also like
      tokenization, the pieces produced by a chunker do not overlap in the
      source text.
[image: Segmentation and labeling at both the Token and Chunk levels.]

Figure 7-2. Segmentation and labeling at both the Token and Chunk
        levels.

In this section, we will explore chunking in some depth, beginning
      with the definition and representation of chunks. We will see regular
      expression and n-gram approaches to chunking, and will develop and
      evaluate chunkers using the CoNLL-2000 Chunking Corpus. We will then
      return in Sections  and  to the tasks of named entity
      recognition and relation extraction.
Noun Phrase Chunking



We will begin by considering the task of noun phrase chunking, or NP-chunking, where we search for chunks
        corresponding to individual noun phrases. For example, here is some
        Wall Street Journal text with NP-chunks marked using brackets:
Example 7-2. 
[ The/DT market/NN ] for/IN [ system-management/NN software/NN
          ] for/IN [ Digital/NNP ] [ ’s/POS hardware/NN ] is/VBZ fragmented/JJ
          enough/RB that/IN [ a/DT giant/NN ] such/JJ as/IN [ Computer/NNP
          Associates/NNPS ] should/MD do/VB well/RB there/RB ./.


As we can see, NP-chunks are
        often smaller pieces than complete noun phrases. For example,
        the market for system-management software for Digital’s
        hardware is a single noun phrase (containing two nested
        noun phrases), but it is captured in NP-chunks by the simpler chunk the
        market. One of the motivations for this difference is that
        NP-chunks are defined so as not to
        contain other NP-chunks.
        Consequently, any prepositional phrases or subordinate clauses that
        modify a nominal will not be included in the corresponding NP-chunk, since they almost certainly
        contain further noun phrases.
One of the most useful sources of information for NP-chunking is part-of-speech tags. This is
        one of the motivations for performing part-of-speech tagging in our
        information extraction system. We demonstrate this approach using an
        example sentence that has been part-of-speech tagged in Example 7-3. In order to create an NP-chunker, we will first define a chunk grammar, consisting of rules that
        indicate how sentences should be chunked. In this case, we will define
        a simple grammar with a single regular expression rule [image: 2]. This rule says that an NP chunk
        should be formed whenever the chunker finds an optional determiner
        (DT) followed by any number of
        adjectives (JJ) and then a noun
        (NN). Using this grammar, we create
        a chunk parser [image: 3], and test it on our
        example sentence [image: 4]. The result is a
        tree, which we can either print [image: 5],
        or display graphically [image: 6].
Example 7-3. Example of a simple regular expression–based NP
          chunker.
>>> sentence = [("the", "DT"), ("little", "JJ"), ("yellow", "JJ"), [image: 1]
... ("dog", "NN"), ("barked", "VBD"), ("at", "IN"),  ("the", "DT"), ("cat", "NN")]

>>> grammar = "NP: {<DT>?<JJ>*<NN>}" [image: 2]

>>> cp = nltk.RegexpParser(grammar) [image: 3]
>>> result = cp.parse(sentence) [image: 4]
>>> print result [image: 5]
(S
  (NP the/DT little/JJ yellow/JJ dog/NN)
  barked/VBD
  at/IN
  (NP the/DT cat/NN))
>>> result.draw() [image: 6]


[image: image with no caption]


Tag Patterns



The rules that make up a chunk grammar use tag patterns to describe sequences of tagged
        words. A tag pattern is a sequence of part-of-speech tags delimited
        using angle brackets, e.g.,<DT>?<JJ>*<NN>. Tag
        patterns are similar to regular expression patterns (Regular Expressions for Detecting Word Patterns). Now, consider the
        following noun phrases from the Wall Street
        Journal:
another/DT sharp/JJ dive/NN
trade/NN figures/NNS
any/DT new/JJ policy/NN measures/NNS
earlier/JJR stages/NNS
Panamanian/JJ dictator/NN Manuel/NNP Noriega/NNP
We can match these noun phrases using a slight refinement of the
        first tag pattern above, i.e., <DT>?<JJ.*>*<NN.*>+. This
        will chunk any sequence of tokens beginning with an optional
        determiner, followed by zero or more adjectives of any type (including
        relative adjectives like earlier/JJR), followed by one or more nouns
        of any type. However, it is easy to find many more complicated
        examples which this rule will not cover:
his/PRP$ Mansion/NNP House/NNP speech/NN
the/DT price/NN cutting/VBG
3/CD %/NN to/TO 4/CD %/NN
more/JJR than/IN 10/CD %/NN
the/DT fastest/JJS developing/VBG trends/NNS
's/POS skill/NN
Note
Your Turn: Try to come up
          with tag patterns to cover these cases. Test them using the
          graphical interface nltk.app.chunkparser(). Continue to refine
          your tag patterns with the help of the feedback given by this
          tool.


Chunking with Regular Expressions



To find the chunk structure for a given sentence, the RegexpParser chunker begins with a flat structure in which no tokens
        are chunked. The chunking rules are applied in turn, successively
        updating the chunk structure. Once all of the rules have been invoked,
        the resulting chunk structure is returned.
Example 7-4 shows a simple chunk grammar
        consisting of two rules. The first rule matches an optional determiner
        or possessive pronoun, zero or more adjectives, then a noun. The
        second rule matches one or more proper nouns. We also define an
        example sentence to be chunked [image: 1], and run the chunker on this input
        [image: 1].
Example 7-4. Simple noun phrase chunker.
grammar = r"""
  NP: {<DT|PP\$>?<JJ>*<NN>}   # chunk determiner/possessive, adjectives and nouns
      {<NNP>+}                # chunk sequences of proper nouns
"""
cp = nltk.RegexpParser(grammar)
sentence = [("Rapunzel", "NNP"), ("let", "VBD"), ("down", "RP"), [image: 1]
                 ("her", "PP$"), ("long", "JJ"), ("golden", "JJ"), ("hair", "NN")]
>>> print cp.parse(sentence) [image: 1]
(S
  (NP Rapunzel/NNP)
  let/VBD
  down/RP
  (NP her/PP$ long/JJ golden/JJ hair/NN))


Note
The $ symbol is a special
          character in regular expressions, and must be backslash escaped in
          order to match the tag PP$.

If a tag pattern matches at overlapping locations, the leftmost
        match takes precedence. For example, if we apply a rule that matches
        two consecutive nouns to a text containing three consecutive nouns,
        then only the first two nouns will be chunked:
>>> nouns = [("money", "NN"), ("market", "NN"), ("fund", "NN")]
>>> grammar = "NP: {<NN><NN>}  # Chunk two consecutive nouns"
>>> cp = nltk.RegexpParser(grammar)
>>> print cp.parse(nouns)
(S (NP money/NN market/NN) fund/NN)
Once we have created the chunk for money
        market, we have removed the context that would have
        permitted fund to be included in a chunk. This
        issue would have been avoided with a more permissive chunk rule, e.g.,
        NP: {<NN>+}.
Note
We have added a comment to each of our chunk rules. These are
          optional; when they are present, the chunker prints these comments
          as part of its tracing output.


Exploring Text Corpora



In Tagged Corpora, we saw how we could
        interrogate a tagged corpus to extract phrases matching a particular
        sequence of part-of-speech tags. We can do the same work more easily
        with a chunker, as follows:
>>> cp = nltk.RegexpParser('CHUNK: {<V.*> <TO> <V.*>}')
>>> brown = nltk.corpus.brown
>>> for sent in brown.tagged_sents():
...     tree = cp.parse(sent)
...     for subtree in tree.subtrees():
...         if subtree.node == 'CHUNK': print subtree
...
(CHUNK combined/VBN to/TO achieve/VB)
(CHUNK continue/VB to/TO place/VB)
(CHUNK serve/VB to/TO protect/VB)
(CHUNK wanted/VBD to/TO wait/VB)
(CHUNK allowed/VBN to/TO place/VB)
(CHUNK expected/VBN to/TO become/VB)
...
(CHUNK seems/VBZ to/TO overtake/VB)
(CHUNK want/VB to/TO buy/VB)
Note
Your Turn: Encapsulate the
          previous example inside a function find_chunks() that takes a chunk string
          like "CHUNK: {<V.*> <TO>
          <V.*>}" as an argument. Use it to search the corpus
          for several other patterns, such as four or more nouns in a row,
          e.g., "NOUNS:
          {<N.*>{4,}}".


Chinking



Sometimes it is easier to define what we want to
        exclude from a chunk. We can define a chink to be a sequence of tokens that is not
        included in a chunk. In the following example, barked/VBD at/IN is a chink:
[ the/DT little/JJ yellow/JJ dog/NN ] barked/VBD at/IN [ the/DT cat/NN ]
Chinking is the process of removing a sequence of tokens from a
        chunk. If the matching sequence of tokens spans an entire chunk, then
        the whole chunk is removed; if the sequence of tokens appears in the
        middle of the chunk, these tokens are removed, leaving two chunks
        where there was only one before. If the sequence is at the periphery
        of the chunk, these tokens are removed, and a smaller chunk remains.
        These three possibilities are illustrated in Table 7-2.
Table 7-2. Three chinking rules applied to the same chunk
	
	Entire chunk
	Middle of a chunk
	End of a chunk

	Input
	[a/DT little/JJ dog/NN]
	[a/DT little/JJ dog/NN]
	[a/DT little/JJ dog/NN]

	Operation
	Chink “DT JJ NN”
	Chink “JJ”
	Chink “NN”

	Pattern
	}DT JJ NN{
	}JJ{
	}NN{

	Output
	a/DT little/JJ dog/NN
	[a/DT] little/JJ [dog/NN]
	[a/DT little/JJ] dog/NN




In Example 7-5, we put the entire sentence
        into a single chunk, then excise the chinks.
Example 7-5. Simple chinker.
grammar = r"""
  NP:
    {<.*>+}          # Chunk everything
    }<VBD|IN>+{      # Chink sequences of VBD and IN
  """
sentence = [("the", "DT"), ("little", "JJ"), ("yellow", "JJ"),
       ("dog", "NN"), ("barked", "VBD"), ("at", "IN"),  ("the", "DT"), ("cat", "NN")]
cp = nltk.RegexpParser(grammar)
>>> print cp.parse(sentence)
(S
  (NP the/DT little/JJ yellow/JJ dog/NN)
  barked/VBD
  at/IN
  (NP the/DT cat/NN))



Representing Chunks: Tags Versus Trees



As befits their intermediate status between tagging and parsing
        (Chapter 8), chunk structures can be represented
        using either tags or trees. The most widespread file representation
        uses IOB tags. In this scheme, each
        token is tagged with one of three special chunk tags, I (inside), O (outside), or B (begin). A token is tagged as B if it marks the beginning of a chunk.
        Subsequent tokens within the chunk are tagged I. All other tokens are tagged O. The B
        and I tags are suffixed with the
        chunk type, e.g., B-NP, I-NP. Of course, it is not necessary to
        specify a chunk type for tokens that appear outside a chunk, so these
        are just labeled O. An example of
        this scheme is shown in Figure 7-3.
[image: Tag representation of chunk structures.]

Figure 7-3. Tag representation of chunk structures.


IOB tags have become the standard way to represent chunk
        structures in files, and we will also be using this format. Here is
        how the information in Figure 7-3 would
        appear in a file:
We PRP B-NP
saw VBD O
the DT B-NP
little JJ I-NP
yellow JJ I-NP
dog NN I-NP
In this representation there is one token per line, each with
        its part-of-speech tag and chunk tag. This format permits us to
        represent more than one chunk type, so long as the chunks do not
        overlap. As we saw earlier, chunk structures can also be represented
        using trees. These have the benefit that each chunk is a constituent
        that can be manipulated directly. An example is shown in Figure 7-4.
[image: Tree representation of chunk structures.]

Figure 7-4. Tree representation of chunk structures.


Note
NLTK uses trees for its internal representation of chunks, but
          provides methods for converting between such trees and the IOB
          format.



Developing and Evaluating Chunkers



Now you have a taste of what chunking does, but we haven’t
      explained how to evaluate chunkers. As usual, this requires a suitably
      annotated corpus. We begin by looking at the mechanics of converting IOB
      format into an NLTK tree, then at how this is done on a larger scale
      using a chunked corpus. We will see how to score the accuracy of a
      chunker relative to a corpus, then look at some more data-driven ways to
      search for NP chunks. Our focus throughout will be on expanding the
      coverage of a chunker.
Reading IOB Format and the CoNLL-2000 Chunking Corpus



Using the corpora module we can load Wall Street
        Journal text that has been tagged then chunked using the
        IOB notation. The chunk categories provided in this corpus are
        NP, VP, and PP. As we have seen, each sentence is
        represented using multiple lines, as shown here:
he PRP B-NP
accepted VBD B-VP
the DT B-NP
position NN I-NP
...
A conversion function chunk.conllstr2tree() builds a tree
        representation from one of these multiline strings. Moreover, it
        permits us to choose any subset of the three chunk types to use, here
        just for NP chunks:
>>> text = '''
... he PRP B-NP
... accepted VBD B-VP
... the DT B-NP
... position NN I-NP
... of IN B-PP
... vice NN B-NP
... chairman NN I-NP
... of IN B-PP
... Carlyle NNP B-NP
... Group NNP I-NP
... , , O
... a DT B-NP
... merchant NN I-NP
... banking NN I-NP
... concern NN I-NP
... . . O
... '''
>>> nltk.chunk.conllstr2tree(text, chunk_types=['NP']).draw()
[image: image with no caption]

We can use the NLTK corpus module to access a larger amount of
        chunked text. The CoNLL-2000 Chunking Corpus contains 270k words of
        Wall Street Journal text, divided into “train”
        and “test” portions, annotated with part-of-speech tags and chunk tags
        in the IOB format. We can access the data using nltk.corpus.conll2000. Here is an example
        that reads the 100th sentence of the “train” portion of the
        corpus:
>>> from nltk.corpus import conll2000
>>> print conll2000.chunked_sents('train.txt')[99]
(S
  (PP Over/IN)
  (NP a/DT cup/NN)
  (PP of/IN)
  (NP coffee/NN)
  ,/,
  (NP Mr./NNP Stone/NNP)
  (VP told/VBD)
  (NP his/PRP$ story/NN)
  ./.)
As you can see, the CoNLL-2000 Chunking Corpus contains three
        chunk types: NP chunks, which we
        have already seen; VP chunks, such
        as has already delivered; and PP chunks, such as because
        of. Since we are only interested in the NP chunks right now, we can use the chunk_types argument to select them:
>>> print conll2000.chunked_sents('train.txt', chunk_types=['NP'])[99]
(S
  Over/IN
  (NP a/DT cup/NN)
  of/IN
  (NP coffee/NN)
  ,/,
  (NP Mr./NNP Stone/NNP)
  told/VBD
  (NP his/PRP$ story/NN)
  ./.)

Simple Evaluation and Baselines



Now that we can access a chunked corpus, we can evaluate
        chunkers. We start off by establishing a baseline for the trivial
        chunk parser cp that creates no
        chunks:
>>> from nltk.corpus import conll2000
>>> cp = nltk.RegexpParser("")
>>> test_sents = conll2000.chunked_sents('test.txt', chunk_types=['NP'])
>>> print cp.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  43.4%
    Precision:      0.0%
    Recall:         0.0%
    F-Measure:      0.0%
The IOB tag accuracy indicates that more than a third of the
        words are tagged with O, i.e., not
        in an NP chunk. However, since our
        tagger did not find any chunks, its precision,
        recall, and F-measure are all zero. Now let’s try a naive regular
        expression chunker that looks for tags beginning with letters that are
        characteristic of noun phrase tags (e.g., CD, DT,
        and JJ).
>>> grammar = r"NP: {<[CDJNP].*>+}"
>>> cp = nltk.RegexpParser(grammar)
>>> print cp.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  87.7%
    Precision:     70.6%
    Recall:        67.8%
    F-Measure:     69.2%
As you can see, this approach achieves decent results. However,
        we can improve on it by adopting a more data-driven approach, where we
        use the training corpus to find the chunk tag (I, O, or
        B) that is most likely for each
        part-of-speech tag. In other words, we can build a chunker using a
        unigram tagger (Automatic Tagging). But rather than trying to
        determine the correct part-of-speech tag for each word, we are trying
        to determine the correct chunk tag, given each word’s part-of-speech
        tag.
In Example 7-6, we define the
        UnigramChunker class, which uses a
        unigram tagger to label sentences with chunk tags. Most of the code in
        this class is simply used to convert back and forth between the chunk
        tree representation used by NLTK’s ChunkParserI interface, and the IOB representation used by the
        embedded tagger. The class defines two methods: a constructor [image: 1], which is called
        when we build a new UnigramChunker; and the parse method [image: 3], which is used to chunk
        new sentences.
Example 7-6. Noun phrase chunking with a unigram tagger.
class UnigramChunker(nltk.ChunkParserI):
    def __init__(self, train_sents): [image: 1]
        train_data = [[(t,c) for w,t,c in nltk.chunk.tree2conlltags(sent)]
                      for sent in train_sents]
        self.tagger = nltk.UnigramTagger(train_data) [image: 2]

    def parse(self, sentence): [image: 3]
        pos_tags = [pos for (word,pos) in sentence]
        tagged_pos_tags = self.tagger.tag(pos_tags)
        chunktags = [chunktag for (pos, chunktag) in tagged_pos_tags]
        conlltags = [(word, pos, chunktag) for ((word,pos),chunktag)
                     in zip(sentence, chunktags)]
        return nltk.chunk.conlltags2tree(conlltags)


The constructor [image: 1] expects a list of
        training sentences, which will be in the form of chunk trees. It first
        converts training data to a form that’s suitable for training the
        tagger, using tree2conlltags to map each chunk tree to a list of word,tag,chunk triples. It then uses that converted training data to
        train a unigram tagger, and stores it in self.tagger for later use.
The parse method [image: 3] takes a tagged sentence as
        its input, and begins by extracting the part-of-speech tags from that
        sentence. It then tags the part-of-speech tags with IOB chunk tags,
        using the tagger self.tagger that
        was trained in the constructor. Next, it extracts the chunk tags, and
        combines them with the original sentence, to yield conlltags. Finally, it
        uses conlltags2tree to convert the result back into a chunk tree.
Now that we have UnigramChunker, we can train it using the
        CoNLL-2000 Chunking Corpus, and test its resulting
        performance:
>>> test_sents = conll2000.chunked_sents('test.txt', chunk_types=['NP'])
>>> train_sents = conll2000.chunked_sents('train.txt', chunk_types=['NP'])
>>> unigram_chunker = UnigramChunker(train_sents)
>>> print unigram_chunker.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  92.9%
    Precision:     79.9%
    Recall:        86.8%
    F-Measure:     83.2%
This chunker does reasonably well, achieving an overall
        F-measure score of 83%. Let’s take a look at what it’s learned, by
        using its unigram tagger to assign a tag to each of the part-of-speech
        tags that appear in the corpus:
>>> postags = sorted(set(pos for sent in train_sents
...                      for (word,pos) in sent.leaves()))
>>> print unigram_chunker.tagger.tag(postags)
[('#', 'B-NP'), ('$', 'B-NP'), ("''", 'O'), ('(', 'O'), (')', 'O'),
 (',', 'O'), ('.', 'O'), (':', 'O'), ('CC', 'O'), ('CD', 'I-NP'),
 ('DT', 'B-NP'), ('EX', 'B-NP'), ('FW', 'I-NP'), ('IN', 'O'),
 ('JJ', 'I-NP'), ('JJR', 'B-NP'), ('JJS', 'I-NP'), ('MD', 'O'),
 ('NN', 'I-NP'), ('NNP', 'I-NP'), ('NNPS', 'I-NP'), ('NNS', 'I-NP'),
 ('PDT', 'B-NP'), ('POS', 'B-NP'), ('PRP', 'B-NP'), ('PRP$', 'B-NP'),
 ('RB', 'O'), ('RBR', 'O'), ('RBS', 'B-NP'), ('RP', 'O'), ('SYM', 'O'),
 ('TO', 'O'), ('UH', 'O'), ('VB', 'O'), ('VBD', 'O'), ('VBG', 'O'),
 ('VBN', 'O'), ('VBP', 'O'), ('VBZ', 'O'), ('WDT', 'B-NP'),
 ('WP', 'B-NP'), ('WP$', 'B-NP'), ('WRB', 'O'), ('``', 'O')]
It has discovered that most punctuation marks occur outside of
        NP chunks, with the exception of #
        and $, both of which are used as
        currency markers. It has also found that determiners (DT) and possessives (PRP$ and WP$) occur at the beginnings of NP chunks,
        while noun types (NN, NNP, NNPS, NNS) mostly occur inside of NP
        chunks.
Having built a unigram chunker, it is quite easy to build a
        bigram chunker: we simply change the class name to BigramChunker, and modify line [image: 2] in Example 7-6 to construct a BigramTagger rather than a UnigramTagger. The resulting chunker has slightly higher performance
        than the unigram chunker:
>>> bigram_chunker = BigramChunker(train_sents)
>>> print bigram_chunker.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  93.3%
    Precision:     82.3%
    Recall:        86.8%
    F-Measure:     84.5%

Training Classifier-Based Chunkers



Both the regular expression–based chunkers and the n-gram
        chunkers decide what chunks to create entirely based on part-of-speech
        tags. However, sometimes part-of-speech tags are insufficient to
        determine how a sentence should be chunked. For example, consider the
        following two statements:
Example 7-7. 
	Joey/NN sold/VBD the/DT farmer/NN rice/NN ./.

	Nick/NN broke/VBD my/DT computer/NN monitor/NN ./.





These two sentences have the same part-of-speech tags, yet they
        are chunked differently. In the first sentence, the
        farmer and rice are separate chunks,
        while the corresponding material in the second sentence, the
        computer monitor, is a single chunk. Clearly, we need to
        make use of information about the content of the words, in addition to
        just their part-of-speech tags, if we wish to maximize chunking
        performance.
One way that we can incorporate information about the content of
        words is to use a classifier-based tagger to chunk the sentence. Like
        the n-gram chunker considered in the previous section, this
        classifier-based chunker will work by assigning IOB tags to the words
        in a sentence, and then converting those tags to chunks. For the
        classifier-based tagger itself, we will use the same approach that we
        used in Supervised Classification to build a
        part-of-speech tagger.
The basic code for the classifier-based NP chunker is shown in
        Example 7-8. It consists of two
        classes. The first class [image: 1] is
        almost identical to the ConsecutivePosTagger class from Example 6-5. The only two differences are
        that it calls a different feature extractor [image: 2] and that it uses a MaxentClassifier rather than a NaiveBayesClassifier [image: 3]. The second class [image: 4] is basically a wrapper around the
        tagger class that turns it into a chunker. During training, this
        second class maps the chunk trees in the training corpus into tag
        sequences; in the parse() method, it converts the tag sequence provided by the
        tagger back into a chunk tree.
Example 7-8. Noun phrase chunking with a consecutive classifier.
class ConsecutiveNPChunkTagger(nltk.TaggerI): [image: 1]

    def __init__(self, train_sents):
        train_set = []
        for tagged_sent in train_sents:
            untagged_sent = nltk.tag.untag(tagged_sent)
            history = []
            for i, (word, tag) in enumerate(tagged_sent):
                featureset = npchunk_features(untagged_sent, i, history) [image: 2]
                train_set.append( (featureset, tag) )
                history.append(tag)
        self.classifier = nltk.MaxentClassifier.train( [image: 3]
            train_set, algorithm='megam', trace=0)

    def tag(self, sentence):
        history = []
        for i, word in enumerate(sentence):
            featureset = npchunk_features(sentence, i, history)
            tag = self.classifier.classify(featureset)
            history.append(tag)
        return zip(sentence, history)

class ConsecutiveNPChunker(nltk.ChunkParserI): [image: 4]
    def __init__(self, train_sents):
        tagged_sents = [[((w,t),c) for (w,t,c) in
                         nltk.chunk.tree2conlltags(sent)]
                        for sent in train_sents]
        self.tagger = ConsecutiveNPChunkTagger(tagged_sents)

    def parse(self, sentence):
        tagged_sents = self.tagger.tag(sentence)
        conlltags = [(w,t,c) for ((w,t),c) in tagged_sents]
        return nltk.chunk.conlltags2tree(conlltags)


The only piece left to fill in is the feature extractor. We
        begin by defining a simple feature extractor, which just provides the
        part-of-speech tag of the current token. Using this feature extractor,
        our classifier-based chunker is very similar to the unigram chunker,
        as is reflected in its performance:
>>> def npchunk_features(sentence, i, history):
...     word, pos = sentence[i]
...     return {"pos": pos}
>>> chunker = ConsecutiveNPChunker(train_sents)
>>> print chunker.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  92.9%
    Precision:     79.9%
    Recall:        86.7%
    F-Measure:     83.2%
We can also add a feature for the previous part-of-speech tag.
        Adding this feature allows the classifier to model interactions
        between adjacent tags, and results in a chunker that is closely
        related to the bigram chunker.
>>> def npchunk_features(sentence, i, history):
...     word, pos = sentence[i]
...     if i == 0:
...         prevword, prevpos = "<START>", "<START>"
...     else:
...         prevword, prevpos = sentence[i-1]
...     return {"pos": pos, "prevpos": prevpos}
>>> chunker = ConsecutiveNPChunker(train_sents)
>>> print chunker.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  93.6%
    Precision:     81.9%
    Recall:        87.1%
    F-Measure:     84.4%
Next, we’ll try adding a feature for the current word, since we
        hypothesized that word content should be useful for chunking. We find
        that this feature does indeed improve the chunker’s performance, by
        about 1.5 percentage points (which corresponds to about a 10%
        reduction in the error rate).
>>> def npchunk_features(sentence, i, history):
...     word, pos = sentence[i]
...     if i == 0:
...         prevword, prevpos = "<START>", "<START>"
...     else:
...         prevword, prevpos = sentence[i-1]
...     return {"pos": pos, "word": word, "prevpos": prevpos}
>>> chunker = ConsecutiveNPChunker(train_sents)
>>> print chunker.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  94.2%
    Precision:     83.4%
    Recall:        88.6%
    F-Measure:     85.9%
Finally, we can try extending the feature extractor with a
        variety of additional features, such as lookahead features [image: 1], paired features [image: 2], and complex contextual features
        [image: 3]. This last feature, called
        tags-since-dt, creates a string describing the set of all
        part-of-speech tags that have been encountered since the most recent
        determiner.
>>> def npchunk_features(sentence, i, history):
...     word, pos = sentence[i]
...     if i == 0:
...         prevword, prevpos = "<START>", "<START>"
...     else:
...         prevword, prevpos = sentence[i-1]
...     if i == len(sentence)-1:
...         nextword, nextpos = "<END>", "<END>"
...     else:
...         nextword, nextpos = sentence[i+1]
...     return {"pos": pos,
...             "word": word,
...             "prevpos": prevpos,
...             "nextpos": nextpos, [image: 1]
...             "prevpos+pos": "%s+%s" % (prevpos, pos),  [image: 2]
...             "pos+nextpos": "%s+%s" % (pos, nextpos),
...             "tags-since-dt": tags_since_dt(sentence, i)}  [image: 3]
>>> def tags_since_dt(sentence, i):
...     tags = set()
...     for word, pos in sentence[:i]:
...         if pos == 'DT':
...             tags = set()
...         else:
...             tags.add(pos)
...     return '+'.join(sorted(tags))
>>> chunker = ConsecutiveNPChunker(train_sents)
>>> print chunker.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  95.9%
    Precision:     88.3%
    Recall:        90.7%
    F-Measure:     89.5%
Note
Your Turn: Try adding
          different features to the feature extractor function npchunk_features, and see if you can
          further improve the performance of the NP chunker.



Recursion in Linguistic Structure



Building Nested Structure with Cascaded Chunkers



So far, our chunk structures have been relatively flat. Trees
        consist of tagged tokens, optionally grouped under a chunk node such
        as NP. However, it is possible to
        build chunk structures of arbitrary depth, simply by creating a
        multistage chunk grammar containing recursive rules. Example 7-9 has patterns for noun phrases,
        prepositional phrases, verb phrases, and sentences. This is a
        four-stage chunk grammar, and can be used to create structures having
        a depth of at most four.
Example 7-9. A chunker that handles NP, PP, VP, and S.
grammar = r"""
  NP: {<DT|JJ|NN.*>+}          # Chunk sequences of DT, JJ, NN
  PP: {<IN><NP>}               # Chunk prepositions followed by NP
  VP: {<VB.*><NP|PP|CLAUSE>+$} # Chunk verbs and their arguments
  CLAUSE: {<NP><VP>}           # Chunk NP, VP
  """
cp = nltk.RegexpParser(grammar)
sentence = [("Mary", "NN"), ("saw", "VBD"), ("the", "DT"), ("cat", "NN"),
    ("sit", "VB"), ("on", "IN"), ("the", "DT"), ("mat", "NN")]
>>> print cp.parse(sentence)
(S
  (NP Mary/NN)
  saw/VBD
  (CLAUSE
    (NP the/DT cat/NN)
    (VP sit/VB (PP on/IN (NP the/DT mat/NN)))))


Unfortunately this result misses the VP headed by saw. It
        has other shortcomings, too. Let’s see what happens when we apply this
        chunker to a sentence having deeper nesting. Notice that it fails to
        identify the VP chunk starting at
        [image: 1].
>>> sentence = [("John", "NNP"), ("thinks", "VBZ"), ("Mary", "NN"),
...     ("saw", "VBD"), ("the", "DT"), ("cat", "NN"), ("sit", "VB"),
...     ("on", "IN"), ("the", "DT"), ("mat", "NN")]
>>> print cp.parse(sentence)
(S
  (NP John/NNP)
  thinks/VBZ
  (NP Mary/NN)
  saw/VBD [image: 1]
  (CLAUSE
    (NP the/DT cat/NN)
    (VP sit/VB (PP on/IN (NP the/DT mat/NN)))))
The solution to these problems is to get the chunker to loop
        over its patterns: after trying all of them, it repeats the process.
        We add an optional second argument loop to specify the number of times the set
        of patterns should be run:
>>> cp = nltk.RegexpParser(grammar, loop=2)
>>> print cp.parse(sentence)
(S
  (NP John/NNP)
  thinks/VBZ
  (CLAUSE
    (NP Mary/NN)
    (VP
      saw/VBD
      (CLAUSE
        (NP the/DT cat/NN)
        (VP sit/VB (PP on/IN (NP the/DT mat/NN)))))))
Note
This cascading process enables us to create deep structures.
          However, creating and debugging a cascade is difficult, and there
          comes a point where it is more effective to do full parsing (see
          Chapter 8). Also, the cascading process can only
          produce trees of fixed depth (no deeper than the number of stages in
          the cascade), and this is insufficient for complete syntactic
          analysis.


Trees



A tree is a set of connected
        labeled nodes, each reachable by a unique path from a distinguished
        root node. Here’s an example of a tree (note that they are standardly
        drawn upside-down):
Example 7-10. 
[image: image with no caption]



We use a ‘family’ metaphor to talk about the relationships of
        nodes in a tree: for example, S is
        the parent of VP; conversely VP is a child of S. Also, since NP and VP
        are both children of S, they are
        also siblings. For convenience,
        there is also a text format for specifying trees:
(S
   (NP Alice)
   (VP
      (V chased)
      (NP
         (Det the)
         (N rabbit))))
Although we will focus on syntactic trees, trees can be used to
        encode any homogeneous hierarchical structure
        that spans a sequence of linguistic forms (e.g., morphological
        structure, discourse structure). In the general case, leaves and node
        values do not have to be strings.
In NLTK, we create a tree by giving a node label and a list of
        children:
>>> tree1 = nltk.Tree('NP', ['Alice'])
>>> print tree1
(NP Alice)
>>> tree2 = nltk.Tree('NP', ['the', 'rabbit'])
>>> print tree2
(NP the rabbit)
We can incorporate these into successively larger trees as
        follows:
>>> tree3 = nltk.Tree('VP', ['chased', tree2])
>>> tree4 = nltk.Tree('S', [tree1, tree3])
>>> print tree4
(S (NP Alice) (VP chased (NP the rabbit)))
Here are some of the methods available for tree objects:
>>> print tree4[1]
(VP chased (NP the rabbit))
>>> tree4[1].node
'VP'
>>> tree4.leaves()
['Alice', 'chased', 'the', 'rabbit']
>>> tree4[1][1][1]
'rabbit'
The bracketed representation for complex trees can be difficult
        to read. In these cases, the draw method can be very useful. It opens a new window,
        containing a graphical representation of the tree. The tree display
        window allows you to zoom in and out, to collapse and expand subtrees,
        and to print the graphical representation to a postscript file (for
        inclusion in a document).
>>> tree3.draw()
[image: image with no caption]


Tree Traversal



It is standard to use a recursive function to traverse a tree.
        The listing in Example 7-11 demonstrates
        this.
Example 7-11. A recursive function to traverse a tree.
def traverse(t):
    try:
        t.node
    except AttributeError:
        print t,
    else:
        # Now we know that t.node is defined
        print '(', t.node,
        for child in t:
            traverse(child)
        print ')',
>>> t = nltk.Tree('(S (NP Alice) (VP chased (NP the rabbit)))')
>>> traverse(t)
( S ( NP Alice ) ( VP chased ( NP the rabbit ) ) )


Note
We have used a technique called duck
          typing to detect that t is a tree (i.e., t.node is defined).



Named Entity Recognition



At the start of this chapter, we briefly introduced named entities
      (NEs). Named entities are definite noun phrases that refer to specific
      types of individuals, such as organizations, persons, dates, and so on.
      Table 7-3 lists some of the more commonly used
      types of NEs. These should be self-explanatory, except for “FACILITY”:
      human-made artifacts in the domains of architecture and civil
      engineering; and “GPE”: geo-political entities such as city,
      state/province, and country.
Table 7-3. Commonly used types of named entity
	NE type
	Examples

	ORGANIZATION
	Georgia-Pacific Corp.,
              WHO

	PERSON
	Eddy Bonte,
              President Obama

	LOCATION
	Murray River, Mount
              Everest

	DATE
	June,
              2008-06-29

	TIME
	two fifty a m, 1:30
              p.m.

	MONEY
	175 million Canadian Dollars,
              GBP 10.40

	PERCENT
	twenty pct, 18.75
              %

	FACILITY
	Washington Monument,
              Stonehenge

	GPE
	South East Asia,
              Midlothian




The goal of a named entity
      recognition (NER) system is to identify all textual mentions
      of the named entities. This can be broken down into two subtasks:
      identifying the boundaries of the NE, and identifying its type. While
      named entity recognition is frequently a prelude to identifying
      relations in Information Extraction, it can also contribute to other
      tasks. For example, in Question Answering (QA), we try to improve the
      precision of Information Retrieval by recovering not whole pages, but
      just those parts which contain an answer to the user’s question. Most QA
      systems take the documents
      returned by standard Information Retrieval, and then attempt to isolate
      the minimal text snippet in the document containing the answer. Now
      suppose the question was
      Who was the first President of the US?, and one of
      the documents that was retrieved contained the following
      passage:
Example 7-12. 
The Washington Monument is the most prominent structure in
        Washington, D.C. and one of the city’s early attractions. It was built
        in honor of George Washington, who led the country to independence and
        then became its first President.


Analysis of the question leads us to expect that an answer should
      be of the form X was the first President of the US,
      where X is not only a noun phrase, but also refers
      to a named entity of type PER. This
      should allow us to ignore the first sentence in the passage. Although it
      contains two occurrences of Washington, named
      entity recognition should tell us that neither of them has the correct
      type.
How do we go about identifying named entities? One option would be
      to look up each word in an appropriate list of names. For example, in
      the case of locations, we could use a gazetteer, or geographical dictionary, such as
      the Alexandria Gazetteer or the Getty Gazetteer. However, doing this
      blindly runs into problems, as shown in Figure 7-5.
[image: Location detection by simple lookup for a news story: Looking up every word in a gazetteer is error-prone; case distinctions may help, but these are not always present.]

Figure 7-5. Location detection by simple lookup for a news story: Looking
        up every word in a gazetteer is error-prone; case distinctions may
        help, but these are not always present.


Observe that the gazetteer has good coverage of locations in many
      countries, and incorrectly finds locations like Sanchez in the Dominican
      Republic and On in Vietnam. Of course we could omit such locations from
      the gazetteer, but then we won’t be able to identify them when they do
      appear in a document.
It gets even harder in the case of names for people or
      organizations. Any list of such names will probably have poor coverage.
      New organizations come into existence every day, so if we are trying to
      deal with contemporary newswire or blog entries, it is unlikely that we
      will be able to recognize many of the entities using gazetteer
      lookup.
Another major source of difficulty is caused by the fact that many
      named entity terms are ambiguous. Thus May and
      North are likely to be parts of named entities for
      DATE and LOCATION, respectively, but could both be part of a PERSON;
      conversely Christian Dior looks like a PERSON but
      is more likely to be of type ORGANIZATION. A term like
      Yankee will be an ordinary modifier in some
      contexts, but will be marked as an entity of type ORGANIZATION in the
      phrase Yankee infielders.
Further challenges are posed by multiword names like
      Stanford University, and by names that contain
      other names, such as Cecil H. Green Library and
      Escondido Village Conference Service Center. In
      named entity recognition, therefore, we need to be able to identify the
      beginning and end of multitoken sequences.
Named entity recognition is a task that is well suited to the type
      of classifier-based approach that we saw for noun phrase chunking. In
      particular, we can build a tagger that labels each word in a sentence
      using the IOB format, where chunks are labeled by their appropriate
      type. Here is part of the CONLL 2002 (conll2002) Dutch training data:
Eddy N B-PER
Bonte N I-PER
is V O
woordvoerder N O
van Prep O
diezelfde Pron O
Hogeschool N B-ORG
. Punc O
In this representation, there is one token per line, each with its
      part-of-speech tag and its named entity tag. Based on this training
      corpus, we can construct a tagger that can be used to label new
      sentences, and use the nltk.chunk.conlltags2tree() function to
      convert the tag sequences into a chunk tree.
NLTK provides a classifier that has already been trained to
      recognize named entities, accessed with the function nltk.ne_chunk(). If we set the parameter
      binary=True [image: 1], then named entities are just tagged as
      NE; otherwise, the classifier adds
      category labels such as PERSON, ORGANIZATION, and GPE.
>>> sent = nltk.corpus.treebank.tagged_sents()[22]
>>> print nltk.ne_chunk(sent, binary=True) [image: 1] 
(S
  The/DT
  (NE U.S./NNP)
  is/VBZ
  one/CD
  ...
  according/VBG
  to/TO
  (NE Brooke/NNP T./NNP Mossman/NNP)
  ...)
>>> print nltk.ne_chunk(sent) 
(S
  The/DT
  (GPE U.S./NNP)
  is/VBZ
  one/CD
  ...
  according/VBG
  to/TO
  (PERSON Brooke/NNP T./NNP Mossman/NNP)
  ...)

Relation Extraction



Once named entities have been identified in a text, we then want
      to extract the relations that exist between them. As indicated earlier,
      we will typically be looking for relations between specified types of
      named entity. One way of approaching this task is to initially look for
      all triples of the form (X, α,
      Y), where X and
      Y are named entities of the required types, and α
      is the string of words that intervenes between X
      and Y. We can then use regular expressions to pull
      out just those instances of α that express the relation that we are
      looking for. The following example searches for strings that contain the
      word in. The special regular expression (?!\b.+ing\b) is a negative lookahead
      assertion that allows us to disregard strings such as success
      in supervising the transition of, where
      in is followed by a gerund.
>>> IN = re.compile(r'.*\bin\b(?!\b.+ing)')
>>> for doc in nltk.corpus.ieer.parsed_docs('NYT_19980315'):
...     for rel in nltk.sem.extract_rels('ORG', 'LOC', doc,
...                                      corpus='ieer', pattern = IN):
...         print nltk.sem.show_raw_rtuple(rel)
[ORG: 'WHYY'] 'in' [LOC: 'Philadelphia']
[ORG: 'McGlashan &AMP; Sarrail'] 'firm in' [LOC: 'San Mateo']
[ORG: 'Freedom Forum'] 'in' [LOC: 'Arlington']
[ORG: 'Brookings Institution'] ', the research group in' [LOC: 'Washington']
[ORG: 'Idealab'] ', a self-described business incubator based in' [LOC: 'Los Angeles']
[ORG: 'Open Text'] ', based in' [LOC: 'Waterloo']
[ORG: 'WGBH'] 'in' [LOC: 'Boston']
[ORG: 'Bastille Opera'] 'in' [LOC: 'Paris']
[ORG: 'Omnicom'] 'in' [LOC: 'New York']
[ORG: 'DDB Needham'] 'in' [LOC: 'New York']
[ORG: 'Kaplan Thaler Group'] 'in' [LOC: 'New York']
[ORG: 'BBDO South'] 'in' [LOC: 'Atlanta']
[ORG: 'Georgia-Pacific'] 'in' [LOC: 'Atlanta']
Searching for the keyword in works reasonably
      well, though it will also retrieve false positives such as [ORG: House Transportation Committee] , secured the most
      money in the [LOC: New York]; there is unlikely to be a simple
      string-based method of excluding filler strings such as this.
As shown earlier, the Dutch section of the CoNLL 2002 Named Entity
      Corpus contains not just named entity annotation, but also
      part-of-speech tags. This allows us to devise patterns that are
      sensitive to these tags, as shown in the next example. The method
      show_clause() prints out the relations in a clausal form, where the
      binary relation symbol is specified as the value of parameter relsym [image: 1].
>>> from nltk.corpus import conll2002
>>> vnv = """
... (
... is/V|    # 3rd sing present and
... was/V|   # past forms of the verb zijn ('be')
... werd/V|  # and also present
... wordt/V  # past of worden ('become')
... )
... .*       # followed by anything
... van/Prep # followed by van ('of')
... """
>>> VAN = re.compile(vnv, re.VERBOSE)
>>> for doc in conll2002.chunked_sents('ned.train'):
...     for r in nltk.sem.extract_rels('PER', 'ORG', doc,
...                                    corpus='conll2002', pattern=VAN):
...         print  nltk.sem.show_clause(r, relsym="VAN") [image: 1]
VAN("cornet_d'elzius", 'buitenlandse_handel')
VAN('johan_rottiers', 'kardinaal_van_roey_instituut')
VAN('annie_lennox', 'eurythmics')
Note
Your Turn: Replace the last
        line [image: 1] with print
        show_raw_rtuple(rel, lcon=True, rcon=True). This will show you the actual words that intervene
        between the two NEs and also their left and right context, within a
        default 10-word window. With the help of a Dutch dictionary, you might
        be able to figure out why the result VAN('annie_lennox', 'eurythmics') is a false
        hit.


Summary



	Information extraction systems search large bodies of
          unrestricted text for specific types of entities and relations, and
          use them to populate well-organized databases. These databases can
          then be used to find answers for specific questions.

	The typical architecture for an information extraction system
          begins by segmenting, tokenizing, and part-of-speech tagging the
          text. The resulting data is then searched for specific types of
          entity. Finally, the information extraction system looks at entities
          that are mentioned near one another in the text, and tries to
          determine whether specific relationships hold between those
          entities.

	Entity recognition is often performed using chunkers, which
          segment multitoken sequences, and label them with the appropriate
          entity type. Common entity types include ORGANIZATION, PERSON,
          LOCATION, DATE, TIME, MONEY, and GPE (geo-political entity).

	Chunkers can be constructed using rule-based systems, such as
          the RegexpParser class provided by NLTK; or using machine learning
          techniques, such as the ConsecutiveNPChunker presented in
          this chapter. In either case, part-of-speech tags are often a very
          important feature when searching for chunks.

	Although chunkers are specialized to create relatively flat
          data structures, where no two chunks are allowed to overlap, they
          can be cascaded together to build nested structures.

	Relation extraction can be performed using either rule-based
          systems, which typically look for specific patterns in the text that
          connect entities and the intervening words; or using
          machine-learning systems, which typically attempt to learn such
          patterns automatically from a training corpus.




Further Reading



Extra materials for this chapter are posted at http://www.nltk.org/, including links to freely available
      resources on the Web. For more examples of chunking with NLTK, please
      see the Chunking HOWTO at http://www.nltk.org/howto.
The popularity of chunking is due in great part to pioneering work
      by Abney, e.g., (Abney, 1996a). Abney’s Cass chunker is described in
      http://www.vinartus.net/spa/97a.pdf.
The word chink initially meant
      a sequence of stopwords, according to a 1975 paper by Ross and Tukey
      (Abney, 1996a).
The IOB format (or sometimes BIO
      Format) was developed for NP chunking by (Ramshaw & Marcus, 1995),
      and was used for the shared NP
      bracketing task run by the Conference on Natural Language
      Learning (CoNLL) in 1999. The same format was adopted by
      CoNLL 2000 for annotating a section of Wall Street
      Journal text as part of a shared task on NP chunking.
Section 13.5 of (Jurafsky & Martin, 2008) contains a
      discussion of chunking. Chapter 22 covers information extraction,
      including named entity recognition. For information about text mining in
      biology and medicine, see (Ananiadou & McNaught, 2006).
For more information on the Getty and Alexandria gazetteers, see
      http://en.wikipedia.org/wiki/Getty_Thesaurus_of_Geographic_Names
      and http://www.alexandria.ucsb.edu/gazetteer/.

Exercises



	○ The IOB format categorizes tagged tokens as I, O,
          and B. Why are three tags
          necessary? What problem would be caused if we used I and O
          tags exclusively?

	○ Write a tag pattern to match noun phrases containing plural
          head nouns, e.g., many/JJ
          researchers/NNS, two/CD
          weeks/NNS, both/DT new/JJ
          positions/NNS. Try to do this by generalizing the tag
          pattern that handled singular noun phrases.

	○ Pick one of the three chunk types in the CoNLL-2000 Chunking
          Corpus. Inspect the data and try to observe any patterns in the POS
          tag sequences that make up this kind of chunk. Develop a simple
          chunker using the regular expression chunker nltk.RegexpParser. Discuss any tag
          sequences that are difficult to chunk reliably.

	○ An early definition of chunk was the
          material that occurs between chinks. Develop a chunker that starts
          by putting the whole sentence in a single chunk, and then does the
          rest of its work solely by chinking. Determine which tags (or tag
          sequences) are most likely to make up chinks with the help of your
          own utility program. Compare the performance and simplicity of this
          approach relative to a chunker based entirely on chunk rules.

	[image: ] Write a tag pattern to cover noun phrases that contain
          gerunds, e.g., the/DT receiving/VBG
          end/NN, assistant/NN managing/VBG
          editor/NN. Add these patterns to the grammar, one per
          line. Test your work using some tagged sentences of your own
          devising.

	[image: ] Write one or more tag patterns to handle coordinated noun
          phrases, e.g., July/NNP and/CC
          August/NNP, all/DT your/PRP$
          managers/NNS and/CC supervisors/NNS, company/NN courts/NNS and/CC
          adjudicators/NNS.

	[image: ] Carry out the following evaluation tasks for any of the
          chunkers you have developed earlier. (Note that most chunking
          corpora contain some internal inconsistencies, such that any
          reasonable rule-based approach will produce errors.)
	Evaluate your chunker on 100 sentences from a chunked
              corpus, and report the precision, recall, and F-measure.

	Use the chunkscore.missed() and chunkscore.incorrect() methods to
              identify the errors made by your chunker. Discuss.

	Compare the performance of your chunker to the baseline
              chunker discussed in the evaluation section of this
              chapter.




	[image: ] Develop a chunker for one of the chunk types in the CoNLL
          Chunking Corpus using a regular expression–based chunk grammar
          RegexpChunk. Use any combination of rules for chunking, chinking,
          merging, or splitting.

	[image: ] Sometimes a word is incorrectly tagged, e.g., the head noun
          in 12/CD or/CC so/RB cases/VBZ.
          Instead of requiring manual correction of tagger output, good
          chunkers are able to work with the erroneous output of taggers. Look
          for other examples of correctly chunked noun phrases with incorrect
          tags.

	[image: ] The bigram chunker scores about 90% accuracy. Study its
          errors and try to work out why it doesn’t get 100% accuracy.
          Experiment with trigram chunking. Are you able to improve the
          performance any more?

	● Apply the n-gram and Brill tagging methods to IOB chunk
          tagging. Instead of assigning POS tags to words, here we will assign
          IOB tags to the POS tags. E.g., if the tag DT (determiner) often occurs at the start
          of a chunk, it will be tagged B
          (begin). Evaluate the performance of these chunking methods relative
          to the regular expression chunking methods covered in this
          chapter.

	● We saw in Chapter 5 that it is possible to
          establish an upper limit to tagging performance by looking for
          ambiguous n-grams, which are n-grams that are tagged in more than
          one possible way in the training data. Apply the same method to
          determine an upper bound on the performance of an n-gram
          chunker.

	● Pick one of the three chunk types in the CoNLL Chunking
          Corpus. Write functions to do the following tasks for your chosen
          type:
	List all the tag sequences that occur with each instance
              of this chunk type.

	Count the frequency of each tag sequence, and produce a
              ranked list in order of decreasing frequency; each line should
              consist of an integer (the frequency) and the tag
              sequence.

	Inspect the high-frequency tag sequences. Use these as the
              basis for developing a better chunker.




	● The baseline chunker presented in the evaluation section
          tends to create larger chunks than it should. For example, the
          phrase [every/DT time/NN] [she/PRP]
          sees/VBZ [a/DT newspaper/NN] contains two consecutive
          chunks, and our baseline chunker will incorrectly combine the first
          two: [every/DT time/NN she/PRP].
          Write a program that finds which of these chunk-internal tags
          typically occur at the start of a chunk, then devise one or more
          rules that will split up these chunks. Combine these with the
          existing baseline chunker and re-evaluate it, to see if you have
          discovered an improved baseline.

	● Develop an NP chunker
          that converts POS tagged text into a list of tuples, where each
          tuple consists of a verb followed by a sequence of noun phrases and
          prepositions, e.g., the little cat sat on
          the mat becomes ('sat', 'on',
          'NP')...

	● The Penn Treebank Corpus sample contains a section of tagged
          Wall Street Journal text that has been
          chunked into noun phrases. The format uses square brackets, and we
          have encountered it several times in this chapter. The corpus can be
          accessed using: for sent in
          nltk.corpus.treebank_chunk.chunked_sents(fileid). These are flat trees, just as we got using nltk.corpus.conll2000.chunked_sents().
	The functions nltk.tree.pprint() and nltk.chunk.tree2conllstr() can be used
              to create Treebank and IOB strings from a tree. Write functions
              chunk2brackets() and chunk2iob() that take a single chunk
              tree as their sole argument, and return the required multiline
              string representation.

	Write command-line conversion utilities bracket2iob.py and iob2bracket.py that take a file in
              Treebank or CoNLL format (respectively) and convert it to the
              other format. (Obtain some raw Treebank or CoNLL data from the
              NLTK Corpora, save it to a file, and then use for line in open(filename) to access it from Python.)




	● An n-gram chunker can use information other than the current
          part-of-speech tag and the n-1 previous chunk
          tags. Investigate other models of the context, such as the
          n-1 previous part-of-speech tags, or some
          combination of previous chunk tags along with previous and following
          part-of-speech tags.

	● Consider the way an n-gram tagger uses recent tags to inform
          its tagging choice. Now observe how a chunker may reuse this
          sequence information. For example, both tasks will make use of the
          information that nouns tend to follow adjectives (in English). It
          would appear that the same information is being maintained in two
          places. Is this likely to become a problem as the size of the rule
          sets grows? If so, speculate about any ways that this problem might
          be addressed.




Chapter 8. Analyzing Sentence Structure



Earlier chapters focused on words: how to identify them, analyze
    their structure, assign them to lexical categories, and access their
    meanings. We have also seen how to identify patterns in word sequences or
    n-grams. However, these methods only scratch the surface of the complex
    constraints that govern sentences. We need a way to deal with the
    ambiguity that natural language is famous for. We also need to be able to
    cope with the fact that there are an unlimited number of possible
    sentences, and we can only write finite programs to analyze their
    structures and discover their meanings.
The goal of this chapter is to answer the following
    questions:
	How can we use a formal grammar to describe the structure of an
        unlimited set of sentences?

	How do we represent the structure of sentences using syntax
        trees?

	How do parsers analyze a sentence and automatically build a
        syntax tree?



Along the way, we will cover the fundamentals of English syntax, and
    see that there are systematic aspects of meaning that are much easier to
    capture once we have identified the structure of sentences.
Some Grammatical Dilemmas



Linguistic Data and Unlimited Possibilities



Previous chapters have shown you how to process and analyze text
        corpora, and we have stressed the challenges for NLP in dealing with
        the vast amount of electronic language data that is growing daily.
        Let’s consider this data more closely, and make the thought experiment
        that we have a gigantic corpus consisting of everything that has been
        either uttered or written in English over, say, the last 50 years.
        Would we be justified in calling this corpus “the language of modern
        English”? There are a number of reasons why we might answer no. Recall
        that in Chapter 3, we asked you to search the Web
        for instances of the pattern the of. Although it
        is easy to find examples on the Web containing this word sequence,
        such as New man at the of IMG  (see http://www.telegraph.co.uk/sport/2387900/New-man-at-the-of-IMG.html),
        speakers of English will say that most such examples are errors, and
        therefore not part of English after all.
Accordingly, we can argue that “modern English” is not
        equivalent to the very big set of word sequences in our imaginary
        corpus. Speakers of English can make judgments about these sequences,
        and will reject some of them as being ungrammatical.
Equally, it is easy to compose a new sentence and have speakers
        agree that it is perfectly good English. For example, sentences have
        an interesting property that they can be embedded inside larger
        sentences. Consider the following sentences:
Example 8-1. 
	Usain Bolt broke the 100m record.

	The Jamaica Observer reported that Usain Bolt broke the
              100m record.

	Andre said The Jamaica Observer reported that Usain Bolt
              broke the 100m record.

	I think Andre said the Jamaica Observer reported that
              Usain Bolt broke the 100m record.





If we replaced whole sentences with the symbol S, we would see patterns like
        Andre said S
        and I think S.
        These are templates for taking a sentence and constructing a bigger
        sentence. There are other templates we can use, such as S but S and S
        when S. With a
        bit of ingenuity we can construct some really long sentences using
        these templates. Here’s an impressive example from a Winnie the Pooh
        story by A.A. Milne, In Which Piglet Is Entirely Surrounded
        by Water:
[You can imagine Piglet’s joy when at last the ship came in
          sight of him.] In after-years he liked to think that he had been in
          Very Great Danger during the Terrible Flood, but the only danger he
          had really been in was the last half-hour of his imprisonment, when
          Owl, who had just flown up, sat on a branch of his tree to comfort
          him, and told him a very long story about an aunt who had once laid
          a seagull’s egg by mistake, and the story went on and on, rather
          like this sentence, until Piglet who was listening out of his window
          without much hope, went to sleep quietly and naturally, slipping
          slowly out of the window towards the water until he was only hanging
          on by his toes, at which moment, luckily, a sudden loud squawk from
          Owl, which was really part of the story, being what his aunt said,
          woke the Piglet up and just gave him time to jerk himself back into
          safety and say, “How interesting, and did she?” when—well, you can
          imagine his joy when at last he saw the good ship, Brain of Pooh
          (Captain, C. Robin; 1st Mate, P. Bear) coming over the sea to rescue
          him…


This long sentence actually has a simple structure that begins
        S but S when S. We can see from this example that
        language provides us with constructions which seem to allow us to
        extend sentences indefinitely. It is also striking that we can
        understand sentences of arbitrary length that we’ve never heard
        before: it’s not hard to concoct an entirely novel sentence, one that
        has probably never been used before in the history of the language,
        yet all speakers of the language will understand it.
The purpose of a grammar is to give an explicit description of a
        language. But the way in which we think of a grammar is closely
        intertwined with what we consider to be a language. Is it a large but
        finite set of observed utterances and written texts? Is it something
        more abstract like the implicit knowledge that competent speakers have
        about grammatical sentences? Or is it some combination of the two? We
        won’t take a stand on this issue, but instead will introduce the main
        approaches.
In this chapter, we will adopt the formal framework of
        “generative grammar,” in which a “language” is considered to be
        nothing more than an enormous collection of all grammatical sentences,
        and a grammar is a formal notation that can be used for “generating”
        the members of this set. Grammars use recursive productions of the form S →
        S and S, as we will explore in Context-Free Grammar. In Chapter 10 we will extend
        this, to automatically build up the meaning of a sentence out of the
        meanings of its parts.

Ubiquitous Ambiguity



A well-known example of ambiguity is shown in Example 8-2, from the Groucho Marx movie,
        Animal Crackers (1930):
Example 8-2. 
While hunting in Africa, I shot an elephant in my pajamas. How
          an elephant got into my pajamas I’ll never know.


Let’s take a closer look at the ambiguity in the phrase:
        I shot an elephant in my pajamas. First we need
        to define a simple grammar:
>>> groucho_grammar = nltk.parse_cfg("""
... S -> NP VP
... PP -> P NP
... NP -> Det N | Det N PP | 'I'
... VP -> V NP | VP PP
... Det -> 'an' | 'my'
... N -> 'elephant' | 'pajamas'
... V -> 'shot'
... P -> 'in'
... """)
This grammar permits the sentence to be analyzed in two ways,
        depending on whether the prepositional phrase in my
        pajamas describes the elephant or the shooting
        event.
>>> sent = ['I', 'shot', 'an', 'elephant', 'in', 'my', 'pajamas']
>>> parser = nltk.ChartParser(groucho_grammar)
>>> trees = parser.nbest_parse(sent)
>>> for tree in trees:
...     print tree
(S
  (NP I)
  (VP
    (V shot)
    (NP (Det an) (N elephant) (PP (P in) (NP (Det my) (N pajamas))))))
(S
  (NP I)
  (VP
    (VP (V shot) (NP (Det an) (N elephant)))
    (PP (P in) (NP (Det my) (N pajamas)))))
The program produces two bracketed structures, which we can
        depict as trees, as shown in Example 8-3:
Example 8-3. 
	[image: image with no caption]


	[image: image with no caption]






Notice that there’s no ambiguity concerning the meaning of any
        of the words; e.g., the word shot doesn’t refer
        to the act of using a gun in the first sentence and using a camera in
        the second sentence.
Note
Your Turn: Consider the
          following sentences and see if you can think of two quite different
          interpretations: Fighting animals could be
          dangerous. Visiting relatives can be
          tiresome. Is ambiguity of the individual words to blame?
          If not, what is the cause of the ambiguity?

This chapter presents grammars and parsing, as the formal and
        computational methods for investigating and modeling the linguistic
        phenomena we have been discussing. As we shall see, patterns of
        well-formedness and ill-formedness in a sequence of words can be
        understood with respect to the phrase structure and dependencies. We
        can develop formal models of these structures using grammars and
        parsers. As before, a key motivation is natural language
        understanding. How much more of the meaning of a
        text can we access when we can reliably recognize the linguistic
        structures it contains? Having read in a text, can a program
        “understand” it enough to be able to answer simple questions about
        “what happened” or “who did what to whom”? Also as before, we will
        develop simple programs to process annotated corpora and perform
        useful tasks.


What’s the Use of Syntax?



Beyond n-grams



We gave an example in Chapter 2 of how to use
        the frequency information in bigrams to generate text that seems
        perfectly acceptable for small sequences of words but rapidly
        degenerates into nonsense. Here’s another pair of examples that we
        created by computing the bigrams over the text of a children’s story,
        The Adventures of Buster Brown (included in the
        Project Gutenberg Selection Corpus):
Example 8-4. 
	He roared with me the pail slip down his back

	The worst part and clumsy looking for whoever heard
              light





You intuitively know that these sequences are “word-salad,” but
        you probably find it hard to pin down what’s wrong with them. One
        benefit of studying grammar is that it provides a conceptual framework
        and vocabulary for spelling out these intuitions. Let’s take a closer
        look at the sequence the worst part and clumsy
        looking. This looks like a coordinate structure, where two phrases are
        joined by a coordinating conjunction such as and,
        but, or or. Here’s an
        informal (and simplified) statement of how coordination works
        syntactically:
Coordinate Structure: if
        v1 and
        v2 are both phrases of
        grammatical category X, then
        v1
        and
        v2 is also a phrase of
        category X.
Here are a couple of examples. In the first, two NPs (noun phrases) have been conjoined to
        make an NP, while in the second,
        two APs (adjective phrases) have
        been conjoined to make an AP.
Example 8-5. 
	The book’s ending was (NP the worst part and the
              best part) for me.

	On land they are (AP slow and clumsy
              looking).





What we can’t do is conjoin an NP and an AP, which is why the worst part
        and clumsy looking is ungrammatical. Before we can
        formalize these ideas, we need to understand the concept of constituent structure.
Constituent structure is based on the observation that words
        combine with other words to form units. The evidence that a sequence
        of words forms such a unit is given by substitutability—that is, a
        sequence of words in a well-formed sentence can be replaced by a
        shorter sequence without rendering the sentence ill-formed. To clarify
        this idea, consider the following sentence:
Example 8-6. 
The little bear saw the fine fat trout in the brook.


The fact that we can substitute He for
        The little bear indicates that the latter
        sequence is a unit. By contrast, we cannot replace little
        bear saw in the same way. (We use an asterisk at the start
        of a sentence to indicate that it is ungrammatical.)
Example 8-7. 
	He saw the fine fat trout in the brook.

	*The he the fine fat trout in the brook.





In Figure 8-1, we systematically
        substitute longer sequences by shorter ones in a way which preserves
        grammaticality. Each sequence that forms a unit can in fact be
        replaced by a single word, and we end up with just two
        elements.
[image: Substitution of word sequences: Working from the top row, we can replace particular sequences of words (e.g., the brook) with individual words (e.g., it); repeating this process, we arrive at a grammatical two-word sentence.]

Figure 8-1. Substitution of word sequences: Working from the top row, we
          can replace particular sequences of words (e.g., the brook) with individual words (e.g.,
          it); repeating this process, we arrive
          at a grammatical two-word sentence.


In Figure 8-2, we have added
        grammatical category labels to the words we saw in the earlier figure.
        The labels NP, VP, and PP stand for noun
        phrase, verb phrase, and
        prepositional phrase,
        respectively.
[image: Substitution of word sequences plus grammatical categories: This diagram reproduces along with grammatical categories corresponding to noun phrases (NP), verb phrases (VP), prepositional phrases (PP), and nominals (Nom).]

Figure 8-2. Substitution of word sequences plus grammatical categories:
          This diagram reproduces Figure 8-1 along with
          grammatical categories corresponding to noun phrases (NP), verb
          phrases (VP), prepositional
          phrases (PP), and nominals (Nom).

If we now strip out the words apart from the topmost row, add an
        S node, and flip the figure over,
        we end up with a standard phrase structure tree, shown in Example 8-8. Each node in this tree
        (including the words) is called a constituent. The immediate constituents of S are NP
        and VP.
Example 8-8. 
[image: image with no caption]



Note
As we saw in Some Grammatical Dilemmas, sentences can
          have arbitrary length. Consequently, phrase structure trees can have
          arbitrary depth. The cascaded chunk parsers we
          saw in Recursion in Linguistic Structure can
          only produce structures of bounded depth, so chunking methods aren’t
          applicable here.

As we will see in the next section, a grammar specifies how the
        sentence can be subdivided into its immediate constituents, and how
        these can be further subdivided until we reach the level of individual
        words.


Context-Free Grammar



A Simple Grammar



Let’s start off by looking at a simple context-free grammar
        (CFG). By convention, the lefthand side of the first production is the
        start-symbol of the grammar,
        typically S, and all well-formed
        trees must have this symbol as their root label. In NLTK, context-free
        grammars are defined in the nltk.grammar module. In Example 8-9 we define a
        grammar and show how to parse a simple sentence admitted by the
        grammar.
Example 8-9. A simple context-free grammar.
grammar1 = nltk.parse_cfg("""
  S -> NP VP
  VP -> V NP | V NP PP
  PP -> P NP
  V -> "saw" | "ate" | "walked"
  NP -> "John" | "Mary" | "Bob" | Det N | Det N PP
  Det -> "a" | "an" | "the" | "my"
  N -> "man" | "dog" | "cat" | "telescope" | "park"
  P -> "in" | "on" | "by" | "with"
  """)
>>> sent = "Mary saw Bob".split()
>>> rd_parser = nltk.RecursiveDescentParser(grammar1)
>>> for tree in rd_parser.nbest_parse(sent):
...      print tree
(S (NP Mary) (VP (V saw) (NP Bob)))


The grammar in Example 8-9 contains productions
        involving various syntactic categories, as laid out in Table 8-1. The recursive descent parser used here can
        also be inspected via a graphical interface, as illustrated in Figure 8-3; we discuss this parser in more
        detail in Parsing with Context-Free Grammar.
Table 8-1. Syntactic categories
	Symbol
	Meaning
	Example

	S
	sentence
	the man
                walked

	NP
	noun phrase
	a dog

	VP
	verb phrase
	saw a park

	PP
	prepositional phrase
	with a
                telescope

	Det
	determiner
	the

	N
	noun
	dog

	V
	verb
	walked

	P
	preposition
	in




A production like VP -> V NP | V NP
        PP has a disjunction on the righthand side, shown by the
        |, and is an abbreviation for the
        two productions VP -> V NP and
        VP -> V NP PP.
If we parse the sentence The dog saw a man in the
        park using the grammar shown in Example 8-9, we end up with two trees, similar to those we
        saw for Example 8-3:
Example 8-10. 
	[image: image with no caption]



	[image: image with no caption]






[image: Recursive descent parser demo: This tool allows you to watch the operation of a recursive descent parser as it grows the parse tree and matches it against the input words.]

Figure 8-3. Recursive descent parser demo: This tool allows you to watch
          the operation of a recursive descent parser as it grows the parse
          tree and matches it against the input words.

Since our grammar licenses two trees for this sentence, the
        sentence is said to be structurally
        ambiguous. The ambiguity in question is called a prepositional phrase attachment ambiguity, as
        we saw earlier in this chapter. As you may recall, it is an ambiguity
        about attachment since the PP
        in the park needs to be attached to one of two
        places in the tree: either as a child of VP or else as a child of NP. When the PP is attached to VP, the intended interpretation is that the
        seeing event happened in the park. However, if the PP is attached to NP, then it was the man who was in the park,
        and the agent of the seeing (the dog) might have been sitting on the
        balcony of an apartment overlooking the park.

Writing Your Own Grammars



If you are interested in experimenting with writing CFGs, you
        will find it helpful to create and edit your grammar in a text file,
        say, mygrammar.cfg. You can then
        load it into NLTK and parse with it as follows:
>>> grammar1 = nltk.data.load('file:mygrammar.cfg')
>>> sent = "Mary saw Bob".split()
>>> rd_parser = nltk.RecursiveDescentParser(grammar1)
>>> for tree in rd_parser.nbest_parse(sent):
...      print tree
Make sure that you put a .cfg suffix on the filename, and that there
        are no spaces in the string 'file:mygrammar.cfg'. If the command
        print tree produces no output, this is probably because your
        sentence sent is not admitted by
        your grammar. In this case, call the parser with tracing set to be on:
        rd_parser =
        nltk.RecursiveDescentParser(grammar1, trace=2). You can also
        check what productions are currently in the grammar with the command
        for p in grammar1.productions(): print
        p.
When you write CFGs for parsing in NLTK, you cannot combine
        grammatical categories with lexical items on the righthand side of the
        same production. Thus, a production such as PP -> 'of' NP is disallowed. In addition,
        you are not permitted to place multiword lexical items on the
        righthand side of a production. So rather than writing NP -> 'New York', you have to resort to
        something like NP -> 'New_York'
        instead.

Recursion in Syntactic Structure



A grammar is said to be recursive if a category occurring on the
        lefthand side of a production also appears on the righthand side of a
        production, as illustrated in Example 8-11. The
        production Nom -> Adj Nom (where
        Nom is the category of nominals)
        involves direct recursion on the category Nom, whereas indirect recursion on S arises from the combination of two
        productions, namely S -> NP VP
        and VP -> V S.
Example 8-11. A recursive context-free grammar.
grammar2 = nltk.parse_cfg("""
  S  -> NP VP
  NP -> Det Nom | PropN
  Nom -> Adj Nom | N
  VP -> V Adj | V NP | V S | V NP PP
  PP -> P NP
  PropN -> 'Buster' | 'Chatterer' | 'Joe'
  Det -> 'the' | 'a'
  N -> 'bear' | 'squirrel' | 'tree' | 'fish' | 'log'
  Adj  -> 'angry' | 'frightened' |  'little' | 'tall'
  V ->  'chased'  | 'saw' | 'said' | 'thought' | 'was' | 'put'
  P -> 'on'
  """)


To see how recursion arises from this grammar, consider the
        following trees. a involves nested
        nominal phrases, while b contains
        nested sentences.
Example 8-12. 
	[image: image with no caption]



	[image: image with no caption]






We’ve only illustrated two levels of recursion here, but there’s
        no upper limit on the depth. You can experiment with parsing sentences
        that involve more deeply nested structures. Beware that the RecursiveDescentParser is unable to handle left-recursive productions of the
        form X -> X Y; we will return to
        this in Parsing with Context-Free Grammar.


Parsing with Context-Free Grammar



A parser processes input
      sentences according to the productions of a grammar, and builds one or
      more constituent structures that conform to the grammar. A grammar is a
      declarative specification of well-formedness—it is actually just a
      string, not a program. A parser is a procedural interpretation of the
      grammar. It searches through the space of trees licensed by a grammar to
      find one that has the required sentence along its fringe.
A parser permits a grammar to be evaluated against a collection of
      test sentences, helping linguists to discover mistakes in their
      grammatical analysis. A parser can serve as a model of psycholinguistic
      processing, helping to explain the difficulties that humans have with
      processing certain syntactic constructions. Many natural language
      applications involve parsing at some point; for example, we would expect
      the natural language questions submitted to a question-answering system
      to undergo parsing as an initial step.
In this section, we see two simple parsing algorithms, a top-down
      method called recursive descent parsing, and a bottom-up method called
      shift-reduce parsing. We also see some more sophisticated algorithms, a
      top-down method with bottom-up filtering called left-corner parsing, and
      a dynamic programming technique called chart parsing.
Recursive Descent Parsing



The simplest kind of parser interprets a grammar as a
        specification of how to break a high-level goal into several
        lower-level subgoals. The top-level goal is to find an S. The S → NP
        VP production permits the parser to replace this goal with
        two subgoals: find an NP, then find
        a VP. Each of these subgoals can be
        replaced in turn by sub-subgoals, using productions that have NP and VP
        on their lefthand side. Eventually, this expansion process leads to
        subgoals such as: find the word telescope. Such
        subgoals can be directly compared against the input sequence, and
        succeed if the next word is matched. If there is no match, the parser
        must back up and try a different alternative.
The recursive descent parser builds a parse tree during this
        process. With the initial goal (find an S), the S
        root node is created. As the process recursively expands its goals
        using the productions of the grammar, the parse tree is extended
        downwards (hence the name recursive descent). We
        can see this in action using the graphical demonstration nltk.app.rdparser(). Six stages of the
        execution of this parser are shown in Figure 8-4.
[image: Six stages of a recursive descent parser: The parser begins with a tree consisting of the node S; at each stage it consults the grammar to find a production that can be used to enlarge the tree; when a lexical production is encountered, its word is compared against the input; after a complete parse has been found, the parser backtracks to look for more parses.]

Figure 8-4. Six stages of a recursive descent parser: The parser begins
          with a tree consisting of the node S; at each stage it consults the
          grammar to find a production that can be used to enlarge the tree;
          when a lexical production is encountered, its word is compared
          against the input; after a complete parse has been found, the parser
          backtracks to look for more parses.

During this process, the parser is often forced to choose
        between several possible productions. For example, in going from step
        3 to step 4, it tries to find productions with N on the lefthand side. The first of these
        is N → man.
        When this does not work it backtracks, and tries other N productions in order, until it gets to
        N → dog, which
        matches the next word in the input sentence. Much later, as shown in
        step 5, it finds a complete parse. This is a tree that covers the
        entire sentence, without any dangling edges. Once a parse has been
        found, we can get the parser to look for additional parses. Again it
        will backtrack and explore other choices of production in case any of
        them result in a parse.
NLTK provides a recursive descent parser:
>>> rd_parser = nltk.RecursiveDescentParser(grammar1)
>>> sent = 'Mary saw a dog'.split()
>>> for t in rd_parser.nbest_parse(sent):
...     print t
(S (NP Mary) (VP (V saw) (NP (Det a) (N dog))))
Note
RecursiveDescentParser() takes an optional parameter trace. If trace is greater than zero, then the
          parser will report the steps that it takes as it parses a
          text.

Recursive descent parsing has three key shortcomings. First,
        left-recursive productions like NP -> NP
        PP send it into an infinite loop. Second, the parser wastes
        a lot of time considering words and structures that do not correspond
        to the input sentence. Third, the backtracking process may discard
        parsed constituents that will need to be rebuilt again later. For
        example, backtracking over VP -> V
        NP will discard the subtree created for the NP. If the parser then proceeds with
        VP -> V NP PP, then the NP subtree must be created all over
        again.
Recursive descent parsing is a kind of top-down parsing. Top-down parsers use a
        grammar to predict what the input will be, before
        inspecting the input! However, since the input is available to the
        parser all along, it would be more sensible to consider the input
        sentence from the very beginning. This approach is called bottom-up parsing, and we will see an example
        in the next section.

Shift-Reduce Parsing



A simple kind of bottom-up parser is the shift-reduce parser. In common with all
        bottom-up parsers, a shift-reduce parser tries to find sequences of
        words and phrases that correspond to the
        righthand side of a grammar production, and
        replace them with the lefthand side, until the whole sentence is
        reduced to an S.
The shift-reduce parser repeatedly pushes the next input word
        onto a stack (Back to the Basics); this is the
        shift operation. If the top
        n items on the stack match the
        n items on the righthand side of some production,
        then they are all popped off the stack, and the item on the lefthand
        side of the production is pushed onto the stack. This replacement of
        the top n items with a single item is the
        reduce operation. The operation may
        be applied only to the top of the stack; reducing items lower in the
        stack must be done before later items are pushed onto the stack. The
        parser finishes when all the input is consumed and there is only one
        item remaining on the stack, a parse tree with an S node as its root. The shift-reduce parser
        builds a parse tree during the above process. Each time it pops
        n items off the stack, it combines them into a
        partial parse tree, and pushes this back onto the stack. We can see
        the shift-reduce parsing algorithm in action using the graphical
        demonstration nltk.app.srparser().
        Six stages of the execution of this parser are shown in Figure 8-5.
[image: Six stages of a shift-reduce parser: The parser begins by shifting the first input word onto its stack; once the top items on the stack match the righthand side of a grammar production, they can be replaced with the lefthand side of that production; the parser succeeds once all input is consumed and one S item remains on the stack.]

Figure 8-5. Six stages of a shift-reduce parser: The parser begins by
          shifting the first input word onto its stack; once the top items on
          the stack match the righthand side of a grammar production, they can
          be replaced with the lefthand side of that production; the parser
          succeeds once all input is consumed and one S item remains on the
          stack.


NLTK provides ShiftReduceParser(), a simple implementation of a shift-reduce parser. This
        parser does not implement any backtracking, so it is not guaranteed to
        find a parse for a text, even if one exists. Furthermore, it will only
        find at most one parse, even if more parses exist. We can provide an
        optional trace parameter that
        controls how verbosely the parser reports the steps that it takes as
        it parses a text:
>>> sr_parse = nltk.ShiftReduceParser(grammar1)
>>> sent = 'Mary saw a dog'.split()
>>> print sr_parse.parse(sent)
  (S (NP Mary) (VP (V saw) (NP (Det a) (N dog))))
Note
Your Turn: Run this parser
          in tracing mode to see the sequence of shift and reduce operations,
          using sr_parse =
          nltk.ShiftReduceParser(grammar1, trace=2).

A shift-reduce parser can reach a dead end and fail to find any
        parse, even if the input sentence is well-formed according to the
        grammar. When this happens, no input remains, and the stack contains
        items that cannot be reduced to an S. The problem arises because there are
        choices made earlier that cannot be undone by the parser (although
        users of the graphical demonstration can undo their choices). There
        are two kinds of choices to be made by the parser: (a) which reduction
        to do when more than one is possible and (b) whether to shift or
        reduce when either action is possible.
A shift-reduce parser may be extended to implement policies for
        resolving such conflicts. For example, it may address shift-reduce
        conflicts by shifting only when no reductions are possible, and it may
        address reduce-reduce conflicts by favoring the reduction operation
        that removes the most items from the stack. (A generalization of the
        shift-reduce parser, a “lookahead LR parser,” is commonly used in
        programming language compilers.)
The advantage of shift-reduce parsers over recursive descent
        parsers is that they only build structure that corresponds to the
        words in the input. Furthermore, they only build each substructure
        once; e.g., NP(Det(the), N(man)) is
        only built and pushed onto the stack a single time, regardless of
        whether it will later be used by the VP ->
        V NP PP reduction or the NP ->
        NP PP reduction.

The Left-Corner Parser



One of the problems with the recursive descent parser is that it
        goes into an infinite loop when it encounters a left-recursive
        production. This is because it applies the grammar productions
        blindly, without considering the actual input sentence. A left-corner
        parser is a hybrid between the bottom-up and top-down approaches we
        have seen.
A left-corner parser is a
        top-down parser with bottom-up filtering. Unlike an ordinary recursive
        descent parser, it does not get trapped in left-recursive productions.
        Before starting its work, a left-corner parser preprocesses the
        context-free grammar to build a table where each row contains two
        cells, the first holding a non-terminal, and the second holding the
        collection of possible left corners of that non-terminal. Table 8-2 illustrates this for the grammar from grammar2.
Table 8-2. Left corners in grammar2
	Category
	Left corners (pre-terminals)

	S
	NP

	NP
	Det, PropN

	VP
	V

	PP
	P




Each time a production is considered by the parser, it checks
        that the next input word is compatible with at least one of the
        pre-terminal categories in the left-corner table.

Well-Formed Substring Tables



The simple parsers discussed in the previous sections suffer
        from limitations in both completeness and efficiency. In order to
        remedy these, we will apply the algorithm design technique of
        dynamic programming to the parsing
        problem. As we saw in Algorithm Design, dynamic
        programming stores intermediate results and reuses them when
        appropriate, achieving significant efficiency gains. This technique
        can be applied to syntactic parsing, allowing us to store partial
        solutions to the parsing task and then look them up as necessary in
        order to efficiently arrive at a complete solution. This approach to
        parsing is known as chart parsing.
        We introduce the main idea in this section; see the online materials
        available for this chapter for more implementation details.
Dynamic programming allows us to build the PP in my pajamas just
        once. The first time we build it we save it in a table, then we look
        it up when we need to use it as a subconstituent of either the object
        NP or the higher VP. This table is known as a well-formed substring table, or WFST for
        short. (The term “substring” refers to a contiguous sequence of words
        within a sentence.) We will show how to construct the WFST bottom-up
        so as to systematically record what syntactic constituents have been
        found.
Let’s set our input to be the sentence in Example 8-2. The numerically specified spans of the
        WFST are reminiscent of Python’s slice notation (Strings: Text Processing at the Lowest Level). Another way to think about the data
        structure is shown in Figure 8-6, a data
        structure known as a chart.
[image: The chart data structure: Words are the edge labels of a linear graph structure.]

Figure 8-6. The chart data structure: Words are the edge labels of a
          linear graph structure.


In a WFST, we record the position of the words by filling in
        cells in a triangular matrix: the vertical axis will denote the start
        position of a substring, while the horizontal axis will denote the end
        position (thus shot will appear in the cell with
        coordinates (1, 2)). To simplify this presentation, we will assume
        each word has a unique lexical category, and we will store this (not
        the word) in the matrix. So cell (1, 2) will contain the entry
        V. More generally, if our input
        string is
        a1a2
        ...
        an,
        and our grammar contains a production of the form
        A →
        ai,
        then we add A to the cell
        (i-1, i).
So, for every word in text,
        we can look up in our grammar what category it belongs to.
>>> text = ['I', 'shot', 'an', 'elephant', 'in', 'my', 'pajamas']
[V -> 'shot']
For our WFST, we create an (n-1)
        × (n-1) matrix as a list of
        lists in Python, and initialize it with the lexical categories of each
        token in the init_wfst() function
        in Example 8-13. We also define a utility function
        display() to pretty-print the WFST for us. As expected, there is
        a V in cell (1, 2).
Example 8-13. Acceptor using well-formed substring table.
def init_wfst(tokens, grammar):
    numtokens = len(tokens)
    wfst = [[None for i in range(numtokens+1)] for j in range(numtokens+1)]
    for i in range(numtokens):
        productions = grammar.productions(rhs=tokens[i])
        wfst[i][i+1] = productions[0].lhs()
    return wfst

def complete_wfst(wfst, tokens, grammar, trace=False):
    index = dict((p.rhs(), p.lhs()) for p in grammar.productions())
    numtokens = len(tokens)
    for span in range(2, numtokens+1):
        for start in range(numtokens+1-span):
            end = start + span
            for mid in range(start+1, end):
                nt1, nt2 = wfst[start][mid], wfst[mid][end]
                if nt1 and nt2 and (nt1,nt2) in index:
                    wfst[start][end] = index[(nt1,nt2)]
                    if trace:
                        print "[%s] %3s [%s] %3s [%s] ==> [%s] %3s [%s]" % \
                        (start, nt1, mid, nt2, end, start, index[(nt1,nt2)], end)
    return wfst

def display(wfst, tokens):
    print '\nWFST ' + ' '.join([("%-4d" % i) for i in range(1, len(wfst))])
    for i in range(len(wfst)-1):
        print "%d   " % i,
        for j in range(1, len(wfst)):
            print "%-4s" % (wfst[i][j] or '.'),
        print
>>> tokens = "I shot an elephant in my pajamas".split()
>>> wfst0 = init_wfst(tokens, groucho_grammar)
>>> display(wfst0, tokens)
WFST 1    2    3    4    5    6    7
0    NP   .    .    .    .    .    .
1    .    V    .    .    .    .    .
2    .    .    Det  .    .    .    .
3    .    .    .    N    .    .    .
4    .    .    .    .    P    .    .
5    .    .    .    .    .    Det  .
6    .    .    .    .    .    .    N
>>> wfst1 = complete_wfst(wfst0, tokens, groucho_grammar)
>>> display(wfst1, tokens)
WFST 1    2    3    4    5    6    7
0    NP   .    .    S    .    .    S
1    .    V    .    VP   .    .    VP
2    .    .    Det  NP   .    .    .
3    .    .    .    N    .    .    .
4    .    .    .    .    P    .    PP
5    .    .    .    .    .    Det  NP
6    .    .    .    .    .    .    N


Returning to our tabular representation, given that we have
        Det in cell (2, 3) for the word
        an, and N in
        cell (3, 4) for the word elephant, what should we
        put into cell (2, 4) for an elephant? We need to
        find a production of the form A → Det N. Consulting the grammar, we know that
        we can enter NP in cell (0,
        2).
More generally, we can enter A in
        (i, j) if there is a
        production A → B
        C, and we find non-terminal
        B in (i,
        k) and C in
        (k, j). The program in Example 8-13 uses this rule to complete the WFST. By setting
        trace to True when calling the function complete_wfst(), we see
        tracing output that shows the WFST being constructed:
>>> wfst1 = complete_wfst(wfst0, tokens, groucho_grammar, trace=True)
[2] Det [3]   N [4] ==> [2]  NP [4]
[5] Det [6]   N [7] ==> [5]  NP [7]
[1]   V [2]  NP [4] ==> [1]  VP [4]
[4]   P [5]  NP [7] ==> [4]  PP [7]
[0]  NP [1]  VP [4] ==> [0]   S [4]
[1]  VP [4]  PP [7] ==> [1]  VP [7]
[0]  NP [1]  VP [7] ==> [0]   S [7]
For example, this says that since we found Det at wfst[2][3] and N at wfst[3][4], we can add NP to wfst[2][4].
Note
To help us easily retrieve productions by their righthand
          sides, we create an index for the grammar. This is an example of a
          space-time trade-off: we do a reverse lookup on the grammar, instead
          of having to check through the entire list of productions each time
          we want to look up via the righthand side.

[image: The chart data structure: Non-terminals are represented as extra edges in the chart.]

Figure 8-7. The chart data structure: Non-terminals are represented as
          extra edges in the chart.

We conclude that there is a parse for the whole input string
        once we have constructed an S node
        in cell (0, 7), showing that we have found a sentence that covers the
        whole input. The final state of the WFST is depicted in Figure 8-7.
Notice that we have not used any built-in parsing functions
        here. We’ve implemented a complete primitive chart parser from the
        ground up!
WFSTs have several shortcomings. First, as you can see, the WFST
        is not itself a parse tree, so the technique is strictly speaking
        recognizing that a sentence is
        admitted by a grammar, rather than parsing it. Second, it requires
        every non-lexical grammar production to be
        binary. Although it is possible to convert an
        arbitrary CFG into this form, we would prefer to use an approach
        without such a requirement. Third, as a bottom-up approach it is
        potentially wasteful, being able to propose constituents in locations
        that would not be licensed by the grammar.
Finally, the WFST did not represent the structural ambiguity in
        the sentence (i.e., the two verb phrase readings). The VP in cell (2,8) was actually entered twice,
        once for a V NP reading, and once
        for a VP PP reading. These are
        different hypotheses, and the second overwrote the first (as it
        happens, this didn’t matter since the lefthand side was the same).
        Chart parsers use a slightly richer data structure and some
        interesting algorithms to solve these problems (see Further Reading).
Note
Your Turn: Try out the
          interactive chart parser application nltk.app.chartparser().



Dependencies and Dependency Grammar



Phrase structure grammar is concerned with how words and sequences
      of words combine to form constituents. A distinct
      and complementary approach, dependency
      grammar, focuses instead on how words
      relate to other words. Dependency is a binary
      asymmetric relation that holds between a head and its dependents. The head of a sentence is usually
      taken to be the tensed verb, and every other word is either dependent on
      the sentence head or connects to it through a path of
      dependencies.
A dependency representation is a labeled directed graph, where the
      nodes are the lexical items and the labeled arcs represent dependency
      relations from heads to dependents. Figure 8-8
      illustrates a dependency graph, where arrows point from heads to their
      dependents.
[image: Dependency structure: Arrows point from heads to their dependents; labels indicate the grammatical function of the dependent as subject, object, or modifier.]

Figure 8-8. Dependency structure: Arrows point from heads to their
        dependents; labels indicate the grammatical function of the dependent
        as subject, object, or modifier.

The arcs in Figure 8-8 are labeled with the
      grammatical function that holds between a dependent and its head. For
      example, I is the SBJ (subject) of shot
      (which is the head of the whole sentence), and in
      is an NMOD (noun modifier of
      elephant). In contrast to phrase structure grammar,
      therefore, dependency grammars can be used to directly express
      grammatical functions as a type of dependency.
Here’s one way of encoding a dependency grammar in NLTK—note that
      it only captures bare dependency information without specifying the type
      of dependency:
>>> groucho_dep_grammar = nltk.parse_dependency_grammar("""
... 'shot' -> 'I' | 'elephant' | 'in'
... 'elephant' -> 'an' | 'in'
... 'in' -> 'pajamas'
... 'pajamas' -> 'my'
... """)
>>> print groucho_dep_grammar
Dependency grammar with 7 productions
  'shot' -> 'I'
  'shot' -> 'elephant'
  'shot' -> 'in'
  'elephant' -> 'an'
  'elephant' -> 'in'
  'in' -> 'pajamas'
  'pajamas' -> 'my'
A dependency graph is projective if, when all the words are written
      in linear order, the edges can be drawn above the words without
      crossing. This is equivalent to saying that a word and all its
      descendants (dependents and dependents of its dependents, etc.) form a
      contiguous sequence of words within the sentence. Figure 8-8 is projective, and we can parse many
      sentences in English using a projective dependency parser. The next
      example shows how groucho_dep_grammar
      provides an alternative approach to capturing the attachment ambiguity
      that we examined earlier with phrase structure grammar.
>>> pdp = nltk.ProjectiveDependencyParser(groucho_dep_grammar)
>>> sent = 'I shot an elephant in my pajamas'.split()
>>> trees = pdp.parse(sent)
>>> for tree in trees:
...     print tree
(shot I (elephant an (in (pajamas my))))
(shot I (elephant an) (in (pajamas my)))
These bracketed dependency structures can also be displayed as
      trees, where dependents are shown
      as children of their heads.
Example 8-14. 
[image: image with no caption]

[image: image with no caption]



In languages with more flexible word order than English,
      non-projective dependencies are more frequent.
Various criteria have been proposed for deciding what is the head
      H and what is the dependent D
      in a construction C. Some of the most important are
      the following:
	H determines the distribution class of
          C; or alternatively, the external syntactic
          properties of C are due to
          H.

	H determines the semantic type of
          C.

	H is obligatory while
          D may be optional.

	H selects D and
          determines whether it is obligatory or optional.

	The morphological form of D is determined
          by H (e.g., agreement or case government).



When we say in a phrase structure grammar that the immediate
      constituents of a PP are P and NP,
      we are implicitly appealing to the head/dependent distinction. A
      prepositional phrase is a phrase whose head is a preposition; moreover,
      the NP is a dependent of P. The same distinction carries over to the
      other types of phrase that we have discussed. The key point to note here
      is that although phrase structure grammars seem very different from
      dependency grammars, they implicitly embody a recognition of dependency
      relations. Although CFGs are not intended to directly capture
      dependencies, more recent linguistic frameworks have increasingly
      adopted formalisms which combine aspects of both approaches.
Valency and the Lexicon



Let us take a closer look at verbs and their dependents. The
        grammar in Example 8-11 correctly generates examples
        like Example 8-15.
Example 8-15. 
	The squirrel was frightened.

	Chatterer saw the bear.

	Chatterer thought Buster was angry.

	Joe put the fish on the log.





These possibilities correspond to the productions in Table 8-3.
Table 8-3. VP productions and their lexical heads
	Production	Lexical head
	VP -> V
                Adj
	was

	VP -> V
                NP
	saw

	VP -> V
                S
	thought

	VP -> V NP
                PP
	put




That is, was can occur with a following
        Adj, saw can
        occur with a following NP,
        thought can occur with a following S, and put can occur
        with a following NP and PP. The dependents Adj, NP,
        S, and PP are often called complements of the respective verbs, and
        there are strong constraints on what verbs can occur with what
        complements. By contrast with Example 8-15, the word
        sequences in Example 8-16 are ill-formed:
Example 8-16. 
	*The squirrel was Buster was angry.

	*Chatterer saw frightened.

	*Chatterer thought the bear.

	*Joe put on the log.





Note
With a little imagination, it is possible to invent contexts
          in which unusual combinations of verbs and complements are
          interpretable. However, we assume that the examples in Example 8-16 are to be interpreted in neutral
          contexts.

In the tradition of dependency grammar, the verbs in Table 8-3 are said to have different valencies. Valency restrictions are not just
        applicable to verbs, but also to the other classes of heads.
Within frameworks based on phrase structure grammar, various
        techniques have been proposed for excluding the ungrammatical examples
        in Example 8-16. In a CFG, we need some way of
        constraining grammar productions which expand VP so that verbs co-occur
        only with their correct complements. We can do
        this by dividing the class of verbs into “subcategories,” each of
        which is associated with a different set of complements. For example,
        transitive verbs such as
        chased and saw require a
        following NP object complement;
        that is, they are subcategorized
        for NP direct objects. If we
        introduce a new category label for transitive verbs, namely TV (for transitive verb), then we can use it
        in the following productions:
VP -> TV NP
TV -> 'chased' | 'saw'
Now *Joe thought the bear is excluded since
        we haven’t listed thought as a TV, but Chatterer saw the
        bear is still allowed. Table 8-4
        provides more examples of labels for verb subcategories.
Table 8-4. Verb subcategories
	Symbol
	Meaning
	Example

	IV
	Intransitive verb
	barked

	TV
	Transitive verb
	saw a man

	DatV
	Dative verb
	gave a dog to a
                man

	SV
	Sentential verb
	said that a dog
                barked




Valency is a property of lexical items, and we will discuss it
        further in Chapter 9.
Complements are often contrasted with modifiers (or adjuncts),
        although both are kinds of dependents. Prepositional phrases,
        adjectives, and adverbs typically function as modifiers. Unlike
        complements, modifiers are optional, can often be iterated, and are
        not selected for by heads in the same way as complements. For example,
        the adverb really can be added as a modifier to
        all the sentences in Example 8-17:
Example 8-17. 
	The squirrel really was frightened.

	Chatterer really saw the bear.

	Chatterer really thought Buster was angry.

	Joe really put the fish on the log.





The structural ambiguity of PP attachment, which we have illustrated in
        both phrase structure and dependency grammars, corresponds
        semantically to an ambiguity in the scope of the modifier.

Scaling Up



So far, we have only considered “toy grammars,” small grammars
        that illustrate the key aspects of parsing. But there is an obvious
        question as to whether the approach can be scaled up to cover large
        corpora of natural languages. How hard would it be to construct such a
        set of productions by hand? In general, the answer is: very
        hard. Even if we allow ourselves to use various formal
        devices that give much more succinct representations of grammar
        productions, it is still extremely difficult to keep control of the
        complex interactions between the many productions required to cover
        the major constructions of a language. In other words, it is hard to
        modularize grammars so that one portion can be developed independently
        of the other parts. This in turn means that it is difficult to
        distribute the task of grammar writing across a team of linguists.
        Another difficulty is that as the grammar expands to cover a wider and
        wider range of constructions, there is a corresponding increase in the
        number of analyses that are admitted for any one sentence. In other
        words, ambiguity increases with coverage.
Despite these problems, some large collaborative projects have
        achieved interesting and impressive results in developing rule-based
        grammars for several languages. Examples are the Lexical Functional
        Grammar (LFG) Pargram project, the Head-Driven Phrase Structure
        Grammar (HPSG) LinGO Matrix framework, and the Lexicalized Tree
        Adjoining Grammar XTAG Project.


Grammar Development



Parsing builds trees over sentences, according to a phrase
      structure grammar. Now, all the examples we gave earlier only involved
      toy grammars containing a handful of productions. What happens if we try
      to scale up this approach to deal with realistic corpora of language? In
      this section, we will see how to access treebanks, and look at the
      challenge of developing broad-coverage grammars.
Treebanks and Grammars



The corpus module defines the treebank corpus reader, which contains a 10% sample of the Penn
        Treebank Corpus.
>>> from nltk.corpus import treebank
>>> t = treebank.parsed_sents('wsj_0001.mrg')[0]
>>> print t
(S
  (NP-SBJ
    (NP (NNP Pierre) (NNP Vinken))
    (, ,)
    (ADJP (NP (CD 61) (NNS years)) (JJ old))
    (, ,))
  (VP
    (MD will)
    (VP
      (VB join)
      (NP (DT the) (NN board))
      (PP-CLR
        (IN as)
        (NP (DT a) (JJ nonexecutive) (NN director)))
      (NP-TMP (NNP Nov.) (CD 29))))
  (. .))
We can use this data to help develop a grammar. For example, the
        program in Example 8-18 uses a simple
        filter to find verbs that take sentential complements. Assuming we
        already have a production of the form VP
        -> SV S, this information enables us to identify
        particular verbs that would be included in the expansion of SV.
Example 8-18. Searching a treebank to find sentential complements.
def filter(tree):
    child_nodes = [child.node for child in tree
                   if isinstance(child, nltk.Tree)]
    return  (tree.node == 'VP') and ('S' in child_nodes)
>>> from nltk.corpus import treebank
>>> [subtree for tree in treebank.parsed_sents()
...          for subtree in tree.subtrees(filter)]
 [Tree('VP', [Tree('VBN', ['named']), Tree('S', [Tree('NP-SBJ', ...]), ...]), ...]


The PP Attachment Corpus, nltk.corpus.ppattach, is another source of
        information about the valency of particular verbs. Here we illustrate
        a technique for mining this corpus. It finds pairs of prepositional
        phrases where the preposition and noun are fixed, but where the choice
        of verb determines whether the prepositional phrase is attached to the
        VP or to the NP.
>>> entries = nltk.corpus.ppattach.attachments('training')
>>> table = nltk.defaultdict(lambda: nltk.defaultdict(set))
>>> for entry in entries:
...     key = entry.noun1 + '-' + entry.prep + '-' + entry.noun2
...     table[key][entry.attachment].add(entry.verb)
...
>>> for key in sorted(table):
...     if len(table[key]) > 1:
...         print key, 'N:', sorted(table[key]['N']), 'V:', sorted(table[key]['V'])
Among the output lines of this program we find offer-from-group N: ['rejected'] V:
        ['received'], which indicates that
        received expects a separate PP complement attached to the VP, while rejected does
        not. As before, we can use this information to help construct the
        grammar.
The NLTK corpus collection includes data from the PE08
        Cross-Framework and Cross Domain Parser Evaluation Shared Task. A
        collection of larger grammars has been prepared for the purpose of
        comparing different parsers, which can be obtained by downloading the
        large_grammars package (e.g.,
        python -m nltk.downloader
        large_grammars).
The NLTK corpus collection also includes a sample from the
        Sinica Treebank Corpus, consisting of 10,000 parsed sentences drawn
        from the Academia Sinica Balanced Corpus of Modern
        Chinese. Let’s load and display one of the trees in this
        corpus.
>>> nltk.corpus.sinica_treebank.parsed_sents()[3450].draw()
[image: image with no caption]


Pernicious Ambiguity



Unfortunately, as the coverage of the grammar increases and the
        length of the input sentences grows, the number of parse trees grows
        rapidly. In fact, it grows at an astronomical rate.
Let’s explore this issue with the help of a simple example. The
        word fish is both a noun and a verb. We can make
        up the sentence fish fish fish, meaning
        fish like to fish for other fish. (Try this with
        police if you prefer something more sensible.)
        Here is a toy grammar for the “fish” sentences.
>>> grammar = nltk.parse_cfg("""
... S -> NP V NP
... NP -> NP Sbar
... Sbar -> NP V
... NP -> 'fish'
... V -> 'fish'
... """)
Now we can try parsing a longer sentence, fish fish
        fish fish fish, which among other things, means “fish that
        other fish fish are in the habit of fishing fish themselves.” We use
        the NLTK chart parser, which is presented earlier in this chapter.
        This sentence has two readings.
>>> tokens = ["fish"] * 5
>>> cp = nltk.ChartParser(grammar)
>>> for tree in cp.nbest_parse(tokens):
...     print tree
(S (NP (NP fish) (Sbar (NP fish) (V fish))) (V fish) (NP fish))
(S (NP fish) (V fish) (NP (NP fish) (Sbar (NP fish) (V fish))))
As the length of this sentence goes up (3, 5, 7, ...) we get the
        following numbers of parse trees: 1; 2; 5; 14; 42; 132; 429; 1,430;
        4,862; 16,796; 58,786; 208,012; …. (These are the Catalan numbers, which we saw in an exercise
        in Chapter 4.) The last of these is for a sentence
        of length 23, the average length of sentences in the WSJ section of
        Penn Treebank. For a sentence of length 50 there would be over
        1012 parses, and this is only half the
        length of the Piglet sentence (Some Grammatical Dilemmas), which
        young children process effortlessly. No practical NLP system could
        construct millions of trees for a sentence and choose the appropriate
        one in the context. It’s clear that humans don’t do this
        either!
Note that the problem is not with our choice of example. (Church
        & Patil, 1982) point out that the syntactic ambiguity of PP attachment in sentences like Example 8-19 also grows in proportion to the Catalan
        numbers.
Example 8-19. 
Put the block in the box on the table.


So much for structural ambiguity; what about lexical ambiguity?
        As soon as we try to construct a broad-coverage grammar, we are forced
        to make lexical entries highly ambiguous for their part-of-speech. In
        a toy grammar, a is only a determiner,
        dog is only a noun, and runs
        is only a verb. However, in a broad-coverage grammar,
        a is also a noun (e.g., part
        a), dog is also a verb (meaning to
        follow closely), and runs is also a noun (e.g.,
        ski runs). In fact, all words can be referred to
        by name: e.g., the verb ‘ate’ is spelled with three
        letters; in speech we do not need to supply quotation
        marks. Furthermore, it is possible to verb most
        nouns. Thus a parser for a broad-coverage grammar will be overwhelmed
        with ambiguity. Even complete gibberish will often have a reading,
        e.g., the a are of I. As (Abney, 1996) has
        pointed out, this is not word salad but a grammatical noun phrase, in
        which are is a noun meaning a hundredth of a
        hectare (or 100 sq m), and a and
        I are nouns designating coordinates, as shown in
        Figure 8-9.
[image: The a are of I: A schematic drawing of 27 paddocks, each being one are in size, and each identified using coordinates; the top-left cell is the a are of column A (after Abney).]

Figure 8-9. The a are of I: A schematic drawing of 27 paddocks, each
          being one are in size, and each identified using coordinates; the
          top-left cell is the a are of column A (after Abney).


Even though this phrase is unlikely, it is still grammatical,
        and a broad-coverage parser should be able to construct a parse tree
        for it. Similarly, sentences that seem to be unambiguous, such as
        John saw Mary, turn out to have other readings we
        would not have anticipated (as Abney explains). This ambiguity is
        unavoidable, and leads to horrendous inefficiency in parsing seemingly
        innocuous sentences. The solution to these problems is provided by
        probabilistic parsing, which allows us to
        rank the parses of an ambiguous sentence on the
        basis of evidence from corpora.

Weighted Grammar



As we have just seen, dealing with ambiguity is a key challenge
        in developing broad-coverage parsers. Chart parsers improve the
        efficiency of computing multiple parses of the same sentences, but
        they are still overwhelmed by the sheer number of possible parses.
        Weighted grammars and probabilistic parsing algorithms have provided
        an effective solution to these problems.
Before looking at these, we need to understand why the notion of
        grammaticality could be gradient. Considering the
        verb give. This verb requires both a direct
        object (the thing being given) and an indirect object (the recipient).
        These complements can be given in either order, as illustrated in
        Example 8-20. In the “prepositional dative” form in
        a, the direct object appears
        first, followed by a prepositional phrase containing the indirect
        object.
Example 8-20. 
	Kim gave a bone to the dog.

	Kim gave the dog a bone.





In the “double object” form in b, the indirect object appears
        first, followed by the direct object. In this case, either order is
        acceptable. However, if the indirect object is a pronoun, there is a
        strong preference for the double object construction:
Example 8-21. 
	Kim gives the heebie-jeebies to me
              (prepositional dative).

	Kim gives me the heebie-jeebies (double
              object).





Using the Penn Treebank sample, we can examine all instances of
        prepositional dative and double object constructions involving
        give, as shown in Example 8-22.
Example 8-22. Usage of give and gave in the Penn Treebank sample.
def give(t):
    return t.node == 'VP' and len(t) > 2 and t[1].node == 'NP'\
           and (t[2].node == 'PP-DTV' or t[2].node == 'NP')\
           and ('give' in t[0].leaves() or 'gave' in t[0].leaves())
def sent(t):
    return ' '.join(token for token in t.leaves() if token[0] not in '*-0')
def print_node(t, width):
        output = "%s %s: %s / %s: %s" %\
            (sent(t[0]), t[1].node, sent(t[1]), t[2].node, sent(t[2]))
        if len(output) > width:
            output = output[:width] + "..."
        print output
>>> for tree in nltk.corpus.treebank.parsed_sents():
...     for t in tree.subtrees(give):
...         print_node(t, 72)
gave NP: the chefs / NP: a standing ovation
give NP: advertisers / NP: discounts for maintaining or increasing ad sp...
give NP: it / PP-DTV: to the politicians
gave NP: them / NP: similar help
give NP: them / NP:
give NP: only French history questions / PP-DTV: to students in a Europe...
give NP: federal judges / NP: a raise
give NP: consumers / NP: the straight scoop on the U.S. waste crisis
gave NP: Mitsui / NP: access to a high-tech medical product
give NP: Mitsubishi / NP: a window on the U.S. glass industry
give NP: much thought / PP-DTV: to the rates she was receiving , nor to ...
give NP: your Foster Savings Institution / NP: the gift of hope and free...
give NP: market operators / NP: the authority to suspend trading in futu...
gave NP: quick approval / PP-DTV: to $ 3.18 billion in supplemental appr...
give NP: the Transportation Department / NP: up to 50 days to review any...
give NP: the president / NP: such power
give NP: me / NP: the heebie-jeebies
give NP: holders / NP: the right , but not the obligation , to buy a cal...
gave NP: Mr. Thomas / NP: only a `` qualified '' rating , rather than ``...
give NP: the president / NP: line-item veto power


We can observe a strong tendency for the shortest complement to
        appear first. However, this does not account for a form like give NP: federal judges / NP: a raise, where
        animacy may play a role. In fact, there turns out to be a large number
        of contributing factors, as
        surveyed by (Bresnan & Hay, 2008). Such preferences can be
        represented in a weighted grammar.
A probabilistic context-free
        grammar (or PCFG) is a context-free grammar that associates
        a probability with each of its productions. It generates the same set
        of parses for a text that the corresponding context-free grammar does,
        and assigns a probability to each parse. The probability of a parse
        generated by a PCFG is simply the product of the probabilities of the
        productions used to generate it.
The simplest way to define a PCFG is to load it from a specially
        formatted string consisting of a sequence of weighted productions,
        where weights appear in brackets, as shown in Example 8-23.
Example 8-23. Defining a probabilistic context-free grammar (PCFG).
grammar = nltk.parse_pcfg("""
    S    -> NP VP              [1.0]
    VP   -> TV NP              [0.4]
    VP   -> IV                 [0.3]
    VP   -> DatV NP NP         [0.3]
    TV   -> 'saw'              [1.0]
    IV   -> 'ate'              [1.0]
    DatV -> 'gave'             [1.0]
    NP   -> 'telescopes'       [0.8]
    NP   -> 'Jack'             [0.2]
    """)
>>> print grammar
Grammar with 9 productions (start state = S)
    S -> NP VP [1.0]
    VP -> TV NP [0.4]
    VP -> IV [0.3]
    VP -> DatV NP NP [0.3]
    TV -> 'saw' [1.0]
    IV -> 'ate' [1.0]
    DatV -> 'gave' [1.0]
    NP -> 'telescopes' [0.8]
    NP -> 'Jack' [0.2]


It is sometimes convenient to combine multiple productions into
        a single line, e.g., VP
        -> TV NP [0.4] | IV [0.3] | DatV NP NP [0.3]. In order to
        ensure that the trees generated by the grammar form a probability
        distribution, PCFG grammars impose the constraint that all productions
        with a given lefthand side must have probabilities that sum to one.
        The grammar in Example 8-23 obeys this constraint:
        for S, there is only one
        production, with a probability of 1.0; for VP, 0.4+0.3+0.3=1.0; and for NP, 0.8+0.2=1.0. The parse tree returned by
        parse() includes probabilities:
>>> viterbi_parser = nltk.ViterbiParser(grammar)
>>> print viterbi_parser.parse(['Jack', 'saw', 'telescopes'])
(S (NP Jack) (VP (TV saw) (NP telescopes))) (p=0.064)
Now that parse trees are assigned probabilities, it no longer
        matters that there may be a huge number of possible parses for a given
        sentence. A parser will be responsible for finding the most likely
        parses.


Summary



	Sentences have internal organization that can be represented
          using a tree. Notable features of constituent structure are:
          recursion, heads, complements, and modifiers.

	A grammar is a compact characterization of a potentially
          infinite set of sentences; we say that a tree is well-formed
          according to a grammar, or that a grammar licenses a tree.

	A grammar is a formal model for describing whether a given
          phrase can be assigned a particular constituent or dependency
          structure.

	Given a set of syntactic categories, a context-free grammar
          uses a set of productions to say how a phrase of some category
          A can be analyzed into a sequence of smaller
          parts α1 ...
          αn.

	A dependency grammar uses productions to specify what the
          dependents are of a given lexical head.

	Syntactic ambiguity arises when one sentence has more than one
          syntactic analysis (e.g., prepositional phrase attachment
          ambiguity).

	A parser is a procedure for finding one or more trees
          corresponding to a grammatically well-formed sentence.

	A simple top-down parser is the recursive descent parser,
          which recursively expands the start symbol (usually S) with the help of the grammar
          productions, and tries to match the input sentence. This parser
          cannot handle left-recursive productions (e.g., productions such as
          NP -> NP PP). It is
          inefficient in the way it blindly expands categories without
          checking whether they are compatible with the input string, and in
          repeatedly expanding the same non-terminals and discarding the
          results.

	A simple bottom-up parser is the shift-reduce parser, which
          shifts input onto a stack and tries to match the items at the top of
          the stack with the righthand side of grammar productions. This
          parser is not guaranteed to find a valid parse for the input, even
          if one exists, and builds substructures without checking whether it
          is globally consistent with the grammar.




Further Reading



Extra materials for this chapter are posted at http://www.nltk.org/, including links to freely available
      resources on the Web. For more examples of parsing with NLTK, please see
      the Parsing HOWTO at http://www.nltk.org/howto.
There are many introductory books on syntax. (O’Grady et al.,
      2004) is a general introduction to linguistics, while (Radford, 1988)
      provides a gentle introduction to transformational grammar, and can be
      recommended for its coverage of transformational approaches to unbounded
      dependency constructions. The most widely used term in linguistics for
      formal grammar is generative grammar,
      though it has nothing to do with generation (Chomsky, 1965).
(Burton-Roberts, 1997) is a practically oriented textbook on how
      to analyze constituency in English, with extensive exemplification and
      exercises. (Huddleston & Pullum, 2002) provides an up-to-date and
      comprehensive analysis of syntactic phenomena in English.
Chapter 12 of (Jurafsky & Martin, 2008) covers formal grammars
      of English; Sections 13.1–3 cover simple parsing algorithms and
      techniques for dealing with ambiguity; Chapter 14 covers statistical
      parsing; and Chapter 16 covers the Chomsky hierarchy and the formal
      complexity of natural language. (Levin, 1993) has categorized English
      verbs into fine-grained classes, according to their syntactic
      properties.
There are several ongoing efforts to build large-scale rule-based
      grammars, e.g., the LFG Pargram project (http://www2.parc.com/istl/groups/nltt/pargram/), the HPSG
      LinGO Matrix framework (http://www.delph-in.net/matrix/), and the XTAG Project
      (http://www.cis.upenn.edu/~xtag/).

Exercises



	○ Can you come up with grammatical sentences that probably
          have never been uttered before? (Take turns with a partner.) What
          does this tell you about human language?

	○ Recall Strunk and White’s prohibition against using a
          sentence-initial however to mean “although.” Do
          a web search for however used at the start of
          the sentence. How widely used is this construction?

	○ Consider the sentence Kim arrived or Dana left and
          everyone cheered. Write down the parenthesized forms to
          show the relative scope of and and
          or. Generate tree structures corresponding to
          both of these interpretations.

	○ The Tree class implements a variety of other useful methods.
          See the Tree help documentation for more details (i.e., import the
          Tree class and then type help(Tree)).

	○ In this exercise you will manually construct some parse
          trees.
	Write code to produce two trees, one for each reading of
              the phrase old men and women.

	Encode any of the trees presented in this chapter as a
              labeled bracketing, and use nltk.Tree() to check that it is
              well-formed. Now use draw() to display the tree.

	As in (a), draw a tree for The woman saw a man
              last Thursday.




	○ Write a recursive function to traverse a tree and return the
          depth of the tree, such that a tree with a single node would have
          depth zero. (Hint: the depth of a subtree is the maximum depth of
          its children, plus one.)

	○ Analyze the A.A. Milne sentence about Piglet, by underlining
          all of the sentences it contains then replacing these with S (e.g., the first sentence becomes
          S when
          S). Draw a tree structure for
          this “compressed” sentence. What are the main syntactic
          constructions used for building such a long sentence?

	○ In the recursive descent parser demo, experiment with
          changing the sentence to be parsed by selecting Edit Text in the
          Edit menu.

	○ Can the grammar in grammar1 (Example 8-9) be
          used to describe sentences that are more than 20 words in
          length?

	○ Use the graphical chart-parser interface to experiment with
          different rule invocation strategies. Come up with your own strategy
          that you can execute manually using the graphical interface.
          Describe the steps, and report any efficiency improvements it has
          (e.g., in terms of the size of the resulting chart). Do these
          improvements depend on the structure of the grammar? What do you
          think of the prospects for significant performance boosts from
          cleverer rule invocation strategies?

	○ With pen and paper, manually trace the execution of a
          recursive descent parser and a shift-reduce parser, for a CFG you
          have already seen, or one of your own devising.

	○ We have seen that a chart parser adds but never removes
          edges from a chart. Why?

	○ Consider the sequence of words: Buffalo buffalo
          Buffalo buffalo buffalo buffalo Buffalo buffalo. This is
          a grammatically correct sentence, as explained at http://en.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo.
          Consider the tree diagram presented on this Wikipedia page, and
          write down a suitable grammar. Normalize case to lowercase, to
          simulate the problem that a listener has when hearing this sentence.
          Can you find other parses for this sentence? How does the number of
          parse trees grow as the sentence gets longer? (More examples of
          these sentences can be found at http://en.wikipedia.org/wiki/List_of_homophonous_phrases.)

	[image: ] You can modify the grammar in the recursive descent parser
          demo by selecting Edit Grammar in the Edit menu. Change the first
          expansion production, namely NP -> Det N PP, to NP -> NP PP. Using the Step button, try
          to build a parse tree. What happens?

	[image: ] Extend the grammar in grammar2 with productions that expand
          prepositions as intransitive, transitive, and requiring a PP complement. Based on these productions,
          use the method of the preceding exercise to draw a tree for the
          sentence Lee ran away home.

	[image: ] Pick some common verbs and complete the following
          tasks:
	Write a program to find those verbs in the PP Attachment
              Corpus nltk.corpus.ppattach.
              Find any cases where the same verb exhibits two different
              attachments, but where the first noun, or second noun, or
              preposition stays unchanged (as we saw in our discussion of
              syntactic ambiguity in What’s the Use of Syntax?).

	Devise CFG grammar productions to cover some of these
              cases.




	[image: ] Write a program to compare the efficiency of a top-down
          chart parser compared with a recursive descent parser (Parsing with Context-Free Grammar). Use the same grammar and input sentences
          for both. Compare their performance using the timeit module (see Algorithm Design for an example of how to do
          this).

	[image: ] Compare the performance of the top-down, bottom-up, and
          left-corner parsers using the same grammar and three grammatical
          test sentences. Use timeit to log
          the amount of time each parser takes on the same sentence. Write a
          function that runs all three parsers on all three sentences, and
          prints a 3-by-3 grid of times, as well as row and column totals.
          Discuss your findings.

	[image: ] Read up on “garden path” sentences. How might the
          computational work of a parser relate to the difficulty humans have
          with processing these sentences? (See http://en.wikipedia.org/wiki/Garden_path_sentence.)

	[image: ] To compare multiple trees in a single window, we can use the
          draw_trees() method. Define some trees and try it out:
>>> from nltk.draw.tree import draw_trees
>>> draw_trees(tree1, tree2, tree3)

	[image: ] Using tree positions, list the subjects of the first 100
          sentences in the Penn treebank; to make the results easier to view,
          limit the extracted subjects to subtrees whose height is at most
          2.

	[image: ] Inspect the PP Attachment Corpus and try to suggest some
          factors that influence PP
          attachment.

	[image: ] In What’s the Use of Syntax?, we
          claimed that there are linguistic regularities that cannot be
          described simply in terms of n-grams. Consider the following
          sentence, particularly the position of the phrase in his
          turn. Does this illustrate a problem for an approach
          based on n-grams?
What was more, the in his turn somewhat youngish
          Nikolay Parfenovich also turned out to be the only person in the
          entire world to acquire a sincere liking to our
          “discriminated-against” public procurator. (Dostoevsky:
          The Brothers Karamazov)

	[image: ] Write a recursive function that produces a nested bracketing
          for a tree, leaving out the leaf nodes and displaying the
          non-terminal labels after their subtrees. So the example in Grammar Development about Pierre Vinken would
          produce: [[[NNP NNP]NP , [ADJP [CD NNS]NP
          JJ]ADJP ,]NP-SBJ MD [VB [DT NN]NP [IN [DT JJ NN]NP]PP-CLR [NNP
          CD]NP-TMP]VP .]S. Consecutive categories should be
          separated by space.

	[image: ] Download several electronic books from Project Gutenberg.
          Write a program to scan these texts for any extremely long
          sentences. What is the longest sentence you can find? What syntactic
          construction(s) are responsible for such long sentences?

	[image: ] Modify the functions init_wfst() and complete_wfst() so that the contents of
          each cell in the WFST is a set of non-terminal symbols rather than a
          single non-terminal.

	[image: ] Consider the algorithm in Example 8-13. Can
          you explain why parsing context-free grammar is proportional to
          n3, where
          n is the length of the input sentence?

	[image: ] Process each tree of the Penn Treebank Corpus sample
          nltk.corpus.treebank and extract
          the productions with the help of Tree.productions(). Discard the productions that occur only once.
          Productions with the same lefthand side and similar righthand sides
          can be collapsed, resulting in an equivalent but more compact set of
          rules. Write code to output a compact grammar.

	● One common way of defining the subject of a sentence
          S in English is as the
          noun phrase that is the child of S and the sibling of
          VP. Write a function that takes
          the tree for a sentence and returns the subtree corresponding to the
          subject of the sentence. What should it do if the root node of the
          tree passed to this function is not S, or if it lacks a subject?

	● Write a function that takes a grammar (such as the one
          defined in Example 8-9) and returns a random
          sentence generated by the grammar. (Use grammar.start() to find the start symbol
          of the grammar; grammar.productions(lhs) to get the list
          of productions from the grammar that have the specified lefthand
          side; and production.rhs() to get
          the righthand side of a production.)

	● Implement a version of the shift-reduce parser using
          backtracking, so that it finds all possible parses for a sentence,
          what might be called a “recursive ascent parser.” Consult the
          Wikipedia entry for backtracking at http://en.wikipedia.org/wiki/Backtracking.

	● As we saw in Chapter 7, it is possible to collapse chunks
          down to their chunk label. When we do this for sentences involving
          the word gave, we find patterns such as the
          following:
gave NP
gave up NP in NP
gave NP up
gave NP NP
gave NP to NP
	Use this method to study the complementation patterns of a
              verb of interest, and write suitable grammar productions. (This
              task is sometimes called lexical
              acquisition.)

	Identify some English verbs that are near-synonyms, such
              as the dumped/filled/loaded example from
              Example 9-69 in Chapter 9. Use
              the chunking method to study the complementation patterns of
              these verbs. Create a grammar to cover these cases. Can the
              verbs be freely substituted for each other, or are there
              constraints? Discuss your findings.




	● Develop a left-corner parser based on the recursive descent
          parser, and inheriting from ParseI.

	● Extend NLTK’s shift-reduce parser to incorporate
          backtracking, so that it is guaranteed to find all parses that exist
          (i.e., it is complete).

	● Modify the functions init_wfst() and complete_wfst() so that when a non-terminal symbol is added to a cell in
          the WFST, it includes a record of the cells from which it was
          derived. Implement a function that will convert a WFST in this form
          to a parse tree.




Chapter 9. Building Feature-Based Grammars



Natural languages have an extensive range of grammatical
    constructions which are hard to handle with the simple methods described
    in Chapter 8. In order to gain more flexibility, we
    change our treatment of grammatical categories like S, NP, and
    V. In place of atomic labels, we
    decompose them into structures like dictionaries, where features can take
    on a range of values.
The goal of this chapter is to answer the following
    questions:
	How can we extend the framework of context-free grammars with
        features so as to gain more fine-grained control over grammatical
        categories and productions?

	What are the main formal properties of feature structures, and
        how do we use them computationally?

	What kinds of linguistic patterns and grammatical constructions
        can we now capture with feature-based grammars?



Along the way, we will cover more topics in English syntax,
    including phenomena such as agreement, subcategorization, and unbounded
    dependency constructions.
Grammatical Features



In Chapter 6, we described how to build
      classifiers that rely on detecting features of text. Such features may
      be quite simple, such as extracting the last letter of a word, or more
      complex, such as a part-of-speech tag that has itself been predicted by
      the classifier. In this chapter, we will investigate the role of
      features in building rule-based grammars. In contrast to feature
      extractors, which record features that have been automatically detected,
      we are now going to declare the features of words
      and phrases. We start off with a very simple example, using dictionaries
      to store features and their values.
>>> kim = {'CAT': 'NP', 'ORTH': 'Kim', 'REF': 'k'}
>>> chase = {'CAT': 'V', 'ORTH': 'chased', 'REL': 'chase'}
The objects kim and chase both have a couple of shared features,
      CAT (grammatical category) and
      ORTH (orthography, i.e., spelling).
      In addition, each has a more semantically oriented feature: kim['REF'] is intended to give the referent of
      kim, while chase['REL'] gives the relation expressed by
      chase. In the context of rule-based
      grammars, such pairings of features and values are known as feature structures, and we will shortly see
      alternative notations for them.
Feature structures contain various kinds of information about
      grammatical entities. The information need not be exhaustive, and we
      might want to add further properties. For example, in the case of a
      verb, it is often useful to know what “semantic role” is played by the
      arguments of the verb. In the case of chase, the
      subject plays the role of “agent,” whereas the object has the role of
      “patient.” Let’s add this information, using 'sbj' (subject) and 'obj' (object) as placeholders which will get
      filled once the verb combines with its grammatical arguments:
>>> chase['AGT'] = 'sbj'
>>> chase['PAT'] = 'obj'
If we now process a sentence Kim chased Lee,
      we want to “bind” the verb’s agent role to the subject and the patient
      role to the object. We do this by linking to the REF feature of the relevant NP. In the following example, we make the
      simple-minded assumption that the NPs
      immediately to the left and right of the verb are the subject and
      object, respectively. We also add a feature structure for
      Lee to complete the example.
>>> sent = "Kim chased Lee"
>>> tokens = sent.split()
>>> lee = {'CAT': 'NP', 'ORTH': 'Lee', 'REF': 'l'}
>>> def lex2fs(word):
...     for fs in [kim, lee, chase]:
...         if fs['ORTH'] == word:
...             return fs
>>> subj, verb, obj = lex2fs(tokens[0]), lex2fs(tokens[1]), lex2fs(tokens[2])
 >>> verb['AGT'] = subj['REF'] # agent of 'chase' is Kim
 >>> verb['PAT'] = obj['REF']  # patient of 'chase' is Lee
 >>> for k in ['ORTH', 'REL', 'AGT', 'PAT']: # check featstruct of 'chase'
...     print "%-5s => %s" % (k, verb[k])
ORTH  => chased
REL   => chase
AGT   => k
PAT   => l
The same approach could be adopted for a different verb—say,
      surprise—though in this case, the subject would
      play the role of “source” (SRC), and
      the object plays the role of “experiencer” (EXP):
>>> surprise = {'CAT': 'V', 'ORTH': 'surprised', 'REL': 'surprise',
...             'SRC': 'sbj', 'EXP': 'obj'}
Feature structures are pretty powerful, but the way in which we
      have manipulated them is extremely ad hoc. Our next
      task in this chapter is to show how the framework of context-free
      grammar and parsing can be expanded to accommodate feature structures,
      so that we can build analyses like this in a more generic and principled
      way. We will start off by looking at the phenomenon of syntactic
      agreement; we will show how agreement constraints can be expressed
      elegantly using features, and illustrate their use in a simple
      grammar.
Since feature structures are a general data structure for
      representing information of any kind, we will briefly look at them from
      a more formal point of view, and illustrate the support for feature
      structures offered by NLTK. In the final part of the chapter, we
      demonstrate that the additional expressiveness of features opens up a
      wide spectrum of possibilities for describing sophisticated aspects of
      linguistic structure.
Syntactic Agreement



The following examples show pairs of word sequences, the first
        of which is grammatical and the second not. (We use an asterisk at the
        start of a word sequence to signal that it is
        ungrammatical.)
Example 9-1. 
	this dog

	*these dog





Example 9-2. 
	these dogs

	*this dogs





In English, nouns are usually marked as being singular or
        plural. The form of the demonstrative also varies:
        this (singular) and these
        (plural). Examples Example 9-1 and Example 9-2 show that there are constraints on the use
        of demonstratives and nouns within a noun phrase: either both are
        singular or both are plural. A similar constraint holds between
        subjects and predicates:
Example 9-3. 
	the dog runs

	*the dog run





Example 9-4. 
	the dogs run

	*the dogs runs





Here we can see that morphological properties of the verb
        co-vary with syntactic properties of the subject noun phrase. This
        co-variance is called agreement. If
        we look further at verb agreement in English, we will see that present
        tense verbs typically have two inflected forms: one for third person
        singular, and another for every other combination of person and
        number, as shown in Table 9-1.
Table 9-1. Agreement paradigm for English regular verbs
	 	Singular
	Plural

	1st
                person
	I run
	we run

	2nd
                person
	you run
	you run

	3rd
                person
	he/she/it
                runs
	they run




We can make the role of morphological properties a bit more
        explicit, as illustrated in Example 9-5 and Example 9-6. These representations indicate that the verb
        agrees with its subject in person and number. (We use 3 as an abbreviation for 3rd person,
        SG for singular, and PL for plural.)
Example 9-5. 
	the
	dog
	run-s

	 	dog.3.SG
	run-3.SG





Example 9-6. 
	the
	dog-s
	run

	 	dog.3.PL
	run-3.PL





Let’s see what happens when we encode these agreement
        constraints in a context-free grammar. We will begin with the simple
        CFG in Example 9-7.
Example 9-7. 
S   ->   NP VP
NP  ->   Det N
VP  ->   V

Det  ->  'this'
N    ->  'dog'
V    ->  'runs'


Grammar Example 9-7 allows us to generate the
        sentence this dog runs; however, what we really
        want to do is also generate these dogs run while
        blocking unwanted sequences like *this dogs run
        and *these dog runs. The most straightforward
        approach is to add new non-terminals and productions to the
        grammar:
Example 9-8. 
S -> NP_SG VP_SG
S -> NP_PL VP_PL
NP_SG -> Det_SG N_SG
NP_PL -> Det_PL N_PL
VP_SG -> V_SG
VP_PL -> V_PL

Det_SG -> 'this'
Det_PL -> 'these'
N_SG -> 'dog'
N_PL -> 'dogs'
V_SG -> 'runs'
V_PL -> 'run'


In place of a single production expanding S, we now have two productions, one covering
        the sentences involving singular subject NPs and VPs, the other covering sentences with
        plural subject NPs and VPs. In fact, every production in Example 9-7 has two counterparts in Example 9-8. With a small grammar, this is not really such
        a problem, although it is aesthetically unappealing. However, with a
        larger grammar that covers a reasonable subset of English
        constructions, the prospect of doubling the grammar size is very
        unattractive. Let’s suppose now that we used the same approach to deal
        with first, second, and third person agreement, for both singular and
        plural. This would lead to the original grammar being multiplied by a
        factor of 6, which we definitely want to avoid. Can we do better than
        this? In the next section, we will show that capturing number and
        person agreement need not come at the cost of “blowing up” the number
        of productions.

Using Attributes and Constraints



We spoke informally of linguistic categories having
        properties, for example, that a noun has the
        property of being plural. Let’s make this explicit:
Example 9-9. 
N[NUM=pl]


In Example 9-9, we have introduced some new
        notation which says that the category N has a (grammatical) feature called NUM (short for “number”) and that the value
        of this feature is pl (short for
        “plural”). We can add similar annotations to other categories, and use
        them in lexical entries:
Example 9-10. 
Det[NUM=sg] -> 'this'
Det[NUM=pl] -> 'these'

N[NUM=sg] -> 'dog'
N[NUM=pl] -> 'dogs'
V[NUM=sg] -> 'runs'
V[NUM=pl] -> 'run'


Does this help at all? So far, it looks just like a slightly
        more verbose alternative to what was specified in Example 9-8. Things become more interesting when we allow
        variables over feature values, and use these to
        state constraints:
Example 9-11. 
S -> NP[NUM=?n] VP[NUM=?n]
NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]
VP[NUM=?n] -> V[NUM=?n]


We are using ?n as a variable
        over values of NUM; it can be
        instantiated either to sg or
        pl, within a given production. We
        can read the first production as saying that whatever value NP takes for the feature NUM, VP
        must take the same value.
In order to understand how these feature constraints work, it’s
        helpful to think about how one would go about building a tree. Lexical
        productions will admit the following local trees (trees of depth
        one):
Example 9-12. 
	[image: image with no caption]


	[image: image with no caption]






Example 9-13. 
	[image: image with no caption]


	[image: image with no caption]






Now NP[NUM=?n] -> Det[NUM=?n]
        N[NUM=?n] says that whatever the NUM values of N and Det
        are, they have to be the same. Consequently, this production will
        permit a and a to be
        combined into an NP, as shown in
        a, and it will also allow b and b to be combined,
        as in b. By contrast, a and b are prohibited
        because the roots of their subtrees differ in their values for the
        NUM feature; this incompatibility
        of values is indicated informally with a FAIL
        value at the top node.
Example 9-14. 
	[image: image with no caption]


	[image: image with no caption]






Example 9-15. 
	[image: image with no caption]


	[image: image with no caption]






Production VP[NUM=?n] ->
        V[NUM=?n] says that the NUM value of the head verb has to be the
        same as the NUM value of the
        VP parent. Combined with the
        production for expanding S, we
        derive the consequence that if the NUM value of the subject head noun is
        pl, then so is the NUM value of the VP’s head verb.
Example 9-16. 
[image: image with no caption]



Grammar Example 9-10 illustrated lexical
        productions for determiners like this and
        these, which require a singular or plural head
        noun respectively. However, other determiners in English are not
        choosy about the grammatical number of the noun they combine with. One
        way of describing this would be to add two lexical entries to the
        grammar, one each for the singular and plural versions of a determiner
        such as the:
Det[NUM=sg] -> 'the' | 'some' | 'several'
Det[NUM=pl] -> 'the' | 'some' | 'several'
However, a more elegant solution is to leave the NUM value underspecified and let it agree in number
        with whatever noun it combines with. Assigning a variable value to
        NUM is one way of achieving this
        result:
Det[NUM=?n] -> 'the' | 'some' | 'several'
But in fact we can be even more economical, and just omit any
        specification for NUM in such
        productions. We only need to explicitly enter a variable value when
        this constrains another value elsewhere in the same production.
The grammar in Example 9-17 illustrates most
        of the ideas we have introduced so far in this chapter, plus a couple
        of new ones.
Example 9-17. Example feature-based grammar.
>>> nltk.data.show_cfg('grammars/book_grammars/feat0.fcfg')
% start S
# ###################
# Grammar Productions
# ###################
# S expansion productions
S -> NP[NUM=?n] VP[NUM=?n]
# NP expansion productions
NP[NUM=?n] -> PropN[NUM=?n]
NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]
NP[NUM=pl] -> N[NUM=pl]
# VP expansion productions
VP[TENSE=?t, NUM=?n] -> IV[TENSE=?t, NUM=?n]
VP[TENSE=?t, NUM=?n] -> TV[TENSE=?t, NUM=?n] NP
# ###################
# Lexical Productions
# ###################
Det[NUM=sg] -> 'this' | 'every'
Det[NUM=pl] -> 'these' | 'all'
Det -> 'the' | 'some' | 'several'
PropN[NUM=sg]-> 'Kim' | 'Jody'
N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child'
N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children'
IV[TENSE=pres,  NUM=sg] -> 'disappears' | 'walks'
TV[TENSE=pres, NUM=sg] -> 'sees' | 'likes'
IV[TENSE=pres,  NUM=pl] -> 'disappear' | 'walk'
TV[TENSE=pres, NUM=pl] -> 'see' | 'like'
IV[TENSE=past] -> 'disappeared' | 'walked'
TV[TENSE=past] -> 'saw' | 'liked'


Notice that a syntactic category can have more than one feature:
        for example, V[TENSE=pres, NUM=pl].
        In general, we can add as many features as we like.
A final detail about Example 9-17 is the
        statement %start S. This
        “directive” tells the parser to take S as the start symbol for the
        grammar.
In general, when we are trying to develop even a very small
        grammar, it is convenient to put the productions in a file where they
        can be edited, tested, and revised. We have saved Example 9-17 as a file named feat0.fcfg in the NLTK data distribution.
        You can make your own copy of this for further experimentation using
        nltk.data.load().
Feature-based grammars are parsed in NLTK using an Earley chart
        parser (see Further Reading for more
        information about this) and Example 9-18
        illustrates how this is carried out. After tokenizing the input, we
        import the load_parser function [image: 1], which
        takes a grammar filename as input and returns a chart parser cp [image: 2].
        Calling the parser’s nbest_parse() method will return a list trees of parse trees; trees will be empty if the grammar fails to parse the input
        and otherwise will contain one or more parse trees, depending on
        whether the input is syntactically ambiguous.
Example 9-18. Trace of feature-based chart parser.
>>> tokens = 'Kim likes children'.split()
>>> from nltk import load_parser [image: 1]
>>> cp = load_parser('grammars/book_grammars/feat0.fcfg', trace=2)  [image: 2]
>>> trees = cp.nbest_parse(tokens)
|.Kim .like.chil.|
|[----]    .    .| PropN[NUM='sg'] -> 'Kim' *
|[----]    .    .| NP[NUM='sg'] -> PropN[NUM='sg'] *
|[---->    .    .| S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'sg'}
|.    [----]    .| TV[NUM='sg', TENSE='pres'] -> 'likes' *
|.    [---->    .| VP[NUM=?n, TENSE=?t] -> TV[NUM=?n, TENSE=?t] * NP[]
                {?n: 'sg', ?t: 'pres'}
|.    .    [----]| N[NUM='pl'] -> 'children' *
|.    .    [----]| NP[NUM='pl'] -> N[NUM='pl'] *
|.    .    [---->| S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'pl'}
|.    [---------]| VP[NUM='sg', TENSE='pres']
                -> TV[NUM='sg', TENSE='pres'] NP[] *
|[==============]| S[] -> NP[NUM='sg'] VP[NUM='sg'] *


The details of the parsing procedure are not that important for
        present purposes. However, there is an implementation issue which
        bears on our earlier discussion of grammar size. One possible approach
        to parsing productions containing feature constraints is to compile
        out all admissible values of the features in question so that we end
        up with a large, fully specified CFG along the lines of Example 9-8. By contrast, the parser process illustrated in
        the previous examples works directly with the underspecified
        productions given by the grammar. Feature values “flow upwards” from
        lexical entries, and variable values are then associated with those
        values via bindings (i.e., dictionaries) such as {?n: 'sg', ?t: 'pres'}.
        As the parser assembles information about the nodes of the tree it is
        building, these variable bindings are used to instantiate values in
        these nodes; thus the underspecified VP[NUM=?n, TENSE=?t] -> TV[NUM=?n, TENSE=?t]
        NP[] becomes instantiated as VP[NUM='sg', TENSE='pres'] -> TV[NUM='sg',
        TENSE='pres'] NP[] by looking up the values of ?n and ?t
        in the bindings.
Finally, we can inspect the resulting parse trees (in this case,
        a single one).
>>> for tree in trees: print tree
(S[]
  (NP[NUM='sg'] (PropN[NUM='sg'] Kim))
  (VP[NUM='sg', TENSE='pres']
    (TV[NUM='sg', TENSE='pres'] likes)
    (NP[NUM='pl'] (N[NUM='pl'] children))))

Terminology



So far, we have only seen feature values like sg and pl. These simple values are usually called
        atomic—that is, they can’t be
        decomposed into subparts. A special case of atomic values are
        Boolean values, that is, values
        that just specify whether a property is true or false. For example, we
        might want to distinguish auxiliary
        verbs such as can, may,
        will, and do with the
        Boolean feature AUX. Then the
        production V[TENSE=pres, aux=+] ->
        'can' means that can receives the value
        pres for TENSE and + or true
        for AUX. There is a widely adopted
        convention that abbreviates the representation of Boolean features
        f; instead of aux=+ or aux=-, we use +aux and -aux respectively. These are just
        abbreviations, however, and the parser interprets them as though
        + and - are like any other atomic value. Example 9-19 shows some representative productions:
Example 9-19. 
V[TENSE=pres, +aux] -> 'can'
V[TENSE=pres, +aux] -> 'may'

V[TENSE=pres, -aux] -> 'walks'
V[TENSE=pres, -aux] -> 'likes'


We have spoken of attaching “feature annotations” to syntactic
        categories. A more radical approach represents the whole category—that
        is, the non-terminal symbol plus the annotation—as a bundle of
        features. For example, N[NUM=sg]
        contains part-of-speech information which can be represented as
        POS=N. An alternative notation for
        this category, therefore, is [POS=N,
        NUM=sg].
In addition to atomic-valued features, features may take values
        that are themselves feature structures. For example, we can group
        together agreement features (e.g., person, number, and gender) as a
        distinguished part of a category, serving as the value of AGR. In this case, we say that AGR has a complex value. Example 9-20
        depicts the structure, in a format known as an attribute value matrix (AVM).
Example 9-20. 
[POS = N           ]
[                  ]
[AGR = [PER = 3   ]]
[      [NUM = pl  ]]
[      [GND = fem ]]


In passing, we should point out that there are alternative
        approaches for displaying AVMs; Figure 9-1 shows an
        example. Although feature structures rendered in the style of Example 9-20 are less visually pleasing, we will stick with
        this format, since it corresponds to the output we will be getting
        from NLTK.
[image: Rendering a feature structure as an attribute value matrix.]

Figure 9-1. Rendering a feature structure as an attribute value
          matrix.


On the topic of representation, we also note that feature
        structures, like dictionaries, assign no particular significance to
        the order of features. So Example 9-20 is equivalent to:
Example 9-21. 
[AGR = [NUM = pl  ]]
[      [PER = 3   ]]
[      [GND = fem ]]
[                  ]
[POS = N           ]


Once we have the possibility of using features like AGR, we can refactor a grammar like Example 9-17 so that agreement features are bundled
        together. A tiny grammar illustrating this idea is shown in Example 9-22.
Example 9-22. 
S -> NP[AGR=?n] VP[AGR=?n]
NP[AGR=?n] -> PropN[AGR=?n]
VP[TENSE=?t, AGR=?n] -> Cop[TENSE=?t, AGR=?n] Adj

Cop[TENSE=pres,  AGR=[NUM=sg, PER=3]] -> 'is'
PropN[AGR=[NUM=sg, PER=3]] -> 'Kim'
Adj -> 'happy'




Processing Feature Structures



In this section, we will show how feature structures can be
      constructed and manipulated in NLTK. We will also discuss the
      fundamental operation of unification, which allows us to combine the
      information contained in two different feature structures.
Feature structures in NLTK are declared with the FeatStruct() constructor. Atomic feature values can be strings or
      integers.
>>> fs1 = nltk.FeatStruct(TENSE='past', NUM='sg')
>>> print fs1
[ NUM   = 'sg'   ]
[ TENSE = 'past' ]
A feature structure is actually just a kind of dictionary, and so
      we access its values by indexing in the usual way. We can use our
      familiar syntax to assign values to
      features:
>>> fs1 = nltk.FeatStruct(PER=3, NUM='pl', GND='fem')
>>> print fs1['GND']
fem
>>> fs1['CASE'] = 'acc'
We can also define feature structures that have complex values, as
      discussed earlier.
>>> fs2 = nltk.FeatStruct(POS='N', AGR=fs1)
>>> print fs2
[       [ CASE = 'acc' ] ]
[ AGR = [ GND  = 'fem' ] ]
[       [ NUM  = 'pl'  ] ]
[       [ PER  = 3     ] ]
[                        ]
[ POS = 'N'              ]
>>> print fs2['AGR']
[ CASE = 'acc' ]
[ GND  = 'fem' ]
[ NUM  = 'pl'  ]
[ PER  = 3     ]
>>> print fs2['AGR']['PER']
3
An alternative method of specifying feature structures is to use a
      bracketed string consisting of feature-value pairs in the format
      feature=value, where values may
      themselves be feature structures:
>>> print nltk.FeatStruct("[POS='N', AGR=[PER=3, NUM='pl', GND='fem']]")
[       [ PER = 3     ] ]
[ AGR = [ GND = 'fem' ] ]
[       [ NUM = 'pl'  ] ]
[                       ]
[ POS = 'N'             ]
Feature structures are not inherently tied to linguistic objects;
      they are general-purpose structures for representing knowledge. For
      example, we could encode information about a person in a feature
      structure:
>>> print nltk.FeatStruct(name='Lee', telno='01 27 86 42 96', age=33)
[ age   = 33               ]
[ name  = 'Lee'            ]
[ telno = '01 27 86 42 96' ]
In the next couple of pages, we are going to use examples like
      this to explore standard operations over feature structures. This will
      briefly divert us from processing natural language, but we need to lay
      the groundwork before we can get back to talking about grammars. Hang on
      tight!
It is often helpful to view feature structures as graphs, more
      specifically, as directed acyclic
      graphs (DAGs). Example 9-23 is equivalent to
      the preceding AVM.
Example 9-23. 
[image: image with no caption]



The feature names appear as labels on the directed arcs, and
      feature values appear as labels on the nodes that are pointed to by the
      arcs.
Just as before, feature values can be complex:
Example 9-24. 
[image: image with no caption]



When we look at such graphs, it is natural to think in terms of
      paths through the graph. A feature
      path is a sequence of arcs that can be followed from the root
      node. We will represent paths as tuples of arc labels. Thus, ('ADDRESS', 'STREET') is a feature path whose
      value in Example 9-24 is the node labeled 'rue Pascal'.
Now let’s consider a situation where Lee has a spouse named
      Kim, and Kim’s address is the same as Lee’s. We
      might represent this as Example 9-25.
Example 9-25. 
[image: image with no caption]



However, rather than repeating the address information in the
      feature structure, we can “share” the same sub-graph between different
      arcs:
Example 9-26. 
[image: image with no caption]



In other words, the value of the path ('ADDRESS') in Example 9-26 is
      identical to the value of the path ('SPOUSE',
      'ADDRESS'). DAGs such as Example 9-26 are said
      to involve structure sharing or
      reentrancy. When two paths have the
      same value, they are said to be equivalent.
In order to indicate reentrancy in our matrix-style
      representations, we will prefix the first occurrence of a shared feature
      structure with an integer in parentheses, such as (1). Any later reference to that structure
      will use the notation ->(1), as
      shown here.
>>> print nltk.FeatStruct("""[NAME='Lee', ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'],
...                          SPOUSE=[NAME='Kim', ADDRESS->(1)]]""")
[ ADDRESS = (1) [ NUMBER = 74           ] ]
[               [ STREET = 'rue Pascal' ] ]
[                                         ]
[ NAME    = 'Lee'                         ]
[                                         ]
[ SPOUSE  = [ ADDRESS -> (1)  ]           ]
[           [ NAME    = 'Kim' ]           ]
The bracketed integer is sometimes called a tag or a coindex. The choice of integer is not
      significant. There can be any number of tags within a single feature
      structure.
>>> print nltk.FeatStruct("[A='a', B=(1)[C='c'], D->(1), E->(1)]")
[ A = 'a'             ]
[                     ]
[ B = (1) [ C = 'c' ] ]
[                     ]
[ D -> (1)            ]
[ E -> (1)            ]
Subsumption and Unification



It is standard to think of feature structures as providing
        partial information about some
        object, in the sense that we can order feature structures according to
        how general they are. For example, a is more
        general (less specific) than b, which in turn
        is more general than c.
Example 9-27. 
	[NUMBER = 74]

	[NUMBER = 74          ]
[STREET = 'rue Pascal']

	[NUMBER = 74          ]
[STREET = 'rue Pascal']
[CITY = 'Paris'       ]





This ordering is called subsumption; a more general feature structure
        subsumes a less general one. If
        FS0 subsumes
        FS1 (formally, we write
        FS0 ⊑
        FS1), then
        FS1 must have all the
        paths and path equivalences of
        FS0, and may have
        additional paths and equivalences as well. Thus, Example 9-25 subsumes Example 9-26 since the
        latter has additional path equivalences. It should be obvious that
        subsumption provides only a partial ordering on feature structures,
        since some feature structures are incommensurable. For example, Example 9-28 neither subsumes nor is subsumed by a.
Example 9-28. 
[TELNO = 01 27 86 42 96]


So we have seen that some feature structures are more specific
        than others. How do we go about specializing a given feature
        structure? For example, we might decide that addresses should consist
        of not just a street number and a street name, but also a city. That
        is, we might want to merge graph a with b to yield
        c.
Example 9-29. 
	[image: image with no caption]





	[image: image with no caption]


	[image: image with no caption]






Merging information from two feature structures is called
        unification and is supported by the
        unify() method.
>>> fs1 = nltk.FeatStruct(NUMBER=74, STREET='rue Pascal')
>>> fs2 = nltk.FeatStruct(CITY='Paris')
>>> print fs1.unify(fs2)
[ CITY   = 'Paris'      ]
[ NUMBER = 74           ]
[ STREET = 'rue Pascal' ]
Unification is formally defined as a binary operation:
        FS0 ⊔
        FS1. Unification is
        symmetric, so FS0 ⊔
        FS1 =
        FS1 ⊔
        FS0. The same is true in
        Python:
>>> print fs2.unify(fs1)
[ CITY   = 'Paris'      ]
[ NUMBER = 74           ]
[ STREET = 'rue Pascal' ]
If we unify two feature structures that stand in the subsumption
        relationship, then the result of unification is the most specific of
        the two:
Example 9-30. 
If FS0 ⊑
          FS1, then
          FS0 ⊔
          FS1 =
          FS1


For example, the result of unifying b
        with c is c.
Unification between
        FS0 and
        FS1 will fail if the two
        feature structures share a path π where the value of π in
        FS0 is a distinct atom
        from the value of π in
        FS1. This is implemented
        by setting the result of unification to be None.
>>> fs0 = nltk.FeatStruct(A='a')
>>> fs1 = nltk.FeatStruct(A='b')
>>> fs2 = fs0.unify(fs1)
>>> print fs2
None
Now, if we look at how unification interacts with
        structure-sharing, things become really interesting. First, let’s
        define Example 9-25 in Python:
>>> fs0 = nltk.FeatStruct("""[NAME=Lee,
...                           ADDRESS=[NUMBER=74,
...                                    STREET='rue Pascal'],
...                           SPOUSE= [NAME=Kim,
...                                    ADDRESS=[NUMBER=74,
...                                             STREET='rue Pascal']]]""")
>>> print fs0
[ ADDRESS = [ NUMBER = 74           ]               ]
[           [ STREET = 'rue Pascal' ]               ]
[                                                   ]
[ NAME    = 'Lee'                                   ]
[                                                   ]
[           [ ADDRESS = [ NUMBER = 74           ] ] ]
[ SPOUSE  = [           [ STREET = 'rue Pascal' ] ] ]
[           [                                     ] ]
[           [ NAME    = 'Kim'                     ] ]
What happens when we augment Kim’s address with a specification
        for CITY? Notice that fs1 needs to include the whole path from the
        root of the feature structure down to CITY.
>>> fs1 = nltk.FeatStruct("[SPOUSE = [ADDRESS = [CITY = Paris]]]")
>>> print fs1.unify(fs0)
[ ADDRESS = [ NUMBER = 74           ]               ]
[           [ STREET = 'rue Pascal' ]               ]
[                                                   ]
[ NAME    = 'Lee'                                   ]
[                                                   ]
[           [           [ CITY   = 'Paris'      ] ] ]
[           [ ADDRESS = [ NUMBER = 74           ] ] ]
[ SPOUSE  = [           [ STREET = 'rue Pascal' ] ] ]
[           [                                     ] ]
[           [ NAME    = 'Kim'                     ] ]
By contrast, the result is very different if fs1 is unified with the structure sharing
        version fs2 (also shown earlier as
        the graph Example 9-26):
>>> fs2 = nltk.FeatStruct("""[NAME=Lee, ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'],
...                           SPOUSE=[NAME=Kim, ADDRESS->(1)]]""")
>>> print fs1.unify(fs2)
[               [ CITY   = 'Paris'      ] ]
[ ADDRESS = (1) [ NUMBER = 74           ] ]
[               [ STREET = 'rue Pascal' ] ]
[                                         ]
[ NAME    = 'Lee'                         ]
[                                         ]
[ SPOUSE  = [ ADDRESS -> (1)  ]           ]
[           [ NAME    = 'Kim' ]           ]
Rather than just updating what was in effect Kim’s “copy” of
        Lee’s address, we have now updated both their
        addresses at the same time. More generally, if a unification involves
        specializing the value of some path π, that unification simultaneously
        specializes the value of any path that is equivalent
        to π.
As we have already seen, structure sharing can also be stated
        using variables such as ?x.
>>> fs1 = nltk.FeatStruct("[ADDRESS1=[NUMBER=74, STREET='rue Pascal']]")
>>> fs2 = nltk.FeatStruct("[ADDRESS1=?x, ADDRESS2=?x]")
>>> print fs2
[ ADDRESS1 = ?x ]
[ ADDRESS2 = ?x ]
>>> print fs2.unify(fs1)
[ ADDRESS1 = (1) [ NUMBER = 74           ] ]
[                [ STREET = 'rue Pascal' ] ]
[                                          ]
[ ADDRESS2 -> (1)                          ]


Extending a Feature-Based Grammar



In this section, we return to feature-based grammar and explore a
      variety of linguistic issues, and demonstrate the benefits of
      incorporating features into the grammar.
Subcategorization



In Chapter 8, we augmented our category labels to represent
        different kinds of verbs, and used the labels IV and TV
        for intransitive and transitive verbs respectively. This allowed us to
        write productions like the following:
Example 9-31. 
VP -> IV
VP -> TV NP


Although we know that IV and
        TV are two kinds of V, they are just atomic non-terminal symbols
        in a CFG and are as distinct from each other as any other pair of
        symbols. This notation doesn’t let us say anything about verbs in
        general; e.g., we cannot say “All lexical items of category V can be marked for tense,” since
        walk, say, is an item of category IV, not V. So, can we replace category labels such
        as TV and IV by V
        along with a feature that tells us whether the verb combines with a
        following NP object or whether it
        can occur without any complement?
A simple approach, originally developed for a grammar framework
        called Generalized Phrase Structure Grammar (GPSG), tries to solve
        this problem by allowing lexical categories to bear a SUBCAT feature, which tells us what
        subcategorization class the item belongs to. In contrast to the
        integer values for SUBCAT used by
        GPSG, the example here adopts more mnemonic values, namely intrans, trans, and clause:
Example 9-32. 
VP[TENSE=?t, NUM=?n] -> V[SUBCAT=intrans, TENSE=?t, NUM=?n]
VP[TENSE=?t, NUM=?n] -> V[SUBCAT=trans, TENSE=?t, NUM=?n] NP
VP[TENSE=?t, NUM=?n] -> V[SUBCAT=clause, TENSE=?t, NUM=?n] SBar

V[SUBCAT=intrans, TENSE=pres, NUM=sg] -> 'disappears' | 'walks'
V[SUBCAT=trans, TENSE=pres, NUM=sg] -> 'sees' | 'likes'
V[SUBCAT=clause, TENSE=pres, NUM=sg] -> 'says' | 'claims'

V[SUBCAT=intrans, TENSE=pres, NUM=pl] -> 'disappear' | 'walk'
V[SUBCAT=trans, TENSE=pres, NUM=pl] -> 'see' | 'like'
V[SUBCAT=clause, TENSE=pres, NUM=pl] -> 'say' | 'claim'

V[SUBCAT=intrans, TENSE=past] -> 'disappeared' | 'walked'
V[SUBCAT=trans, TENSE=past] -> 'saw' | 'liked'
V[SUBCAT=clause, TENSE=past] -> 'said' | 'claimed'


When we see a lexical category like V[SUBCAT=trans], we can interpret the
        SUBCAT specification as a pointer
        to a production in which V[SUBCAT=trans] is introduced as the head
        child in a VP production. By
        convention, there is a correspondence between the values of SUBCAT and the productions that introduce
        lexical heads. On this approach, SUBCAT can appear only
        on lexical categories; it makes no sense, for example, to specify a
        SUBCAT value on VP. As required, walk
        and like both belong to the category V. Nevertheless, walk
        will occur only in VPs expanded by
        a production with the feature SUBCAT=intrans on the righthand side,
        as opposed to like, which requires a SUBCAT=trans.
In our third class of verbs in Example 9-32,
        we have specified a category SBar.
        This is a label for subordinate clauses, such as the complement of
        claim in the example You claim that you
        like children. We require two further productions to
        analyze such sentences:
Example 9-33. 
SBar -> Comp S
Comp -> 'that'


The resulting structure is the following.
Example 9-34. 
[image: image with no caption]



An alternative treatment of subcategorization, due originally to
        a framework known as categorial grammar, is represented in
        feature-based frameworks such as PATR and Head-driven Phrase Structure
        Grammar. Rather than using SUBCAT
        values as a way of indexing productions, the SUBCAT value directly encodes the valency of
        a head (the list of arguments that it can combine with). For example,
        a verb like put that takes NP and PP
        complements (put the book on the table) might be
        represented as Example 9-35:
Example 9-35. 
V[SUBCAT=<NP, NP, PP>]


This says that the verb can combine with three arguments. The
        leftmost element in the list is the subject NP, while everything else—an NP followed by a PP in this case—comprises the
        subcategorized-for complements. When a verb like
        put is combined with appropriate complements, the
        requirements which are specified in the SUBCAT are discharged, and only a subject
        NP is needed. This category, which
        corresponds to what is traditionally thought of as VP, might be represented as follows:
Example 9-36. 
V[SUBCAT=<NP>]


Finally, a sentence is a kind of verbal category that has
        no requirements for further arguments, and hence
        has a SUBCAT whose value is the
        empty list. The tree Example 9-37 shows how these
        category assignments combine in a parse of Kim put the book
        on the table.
Example 9-37. 
[image: image with no caption]




Heads Revisited



We noted in the previous section that by factoring
        subcategorization information out of the main category label, we could
        express more generalizations about properties of verbs. Another
        property of this kind is the following: expressions of category
        V are heads of phrases of category
        VP. Similarly, Ns are heads of NPs, As
        (i.e., adjectives) are heads of APs, and Ps (i.e., prepositions) are heads of
        PPs. Not all phrases have heads—for
        example, it is standard to say that coordinate phrases (e.g.,
        the book and the bell) lack heads. Nevertheless,
        we would like our grammar formalism to express the parent/head-child
        relation where it holds. At present, V and VP
        are just atomic symbols, and we need to find a way to relate them
        using features (as we did earlier to relate IV and TV).
X-bar syntax addresses this issue by abstracting out the notion
        of phrasal level. It is usual to
        recognize three such levels. If N
        represents the lexical level, then N' represents the next level up,
        corresponding to the more traditional category Nom, and N'' represents the phrasal level,
        corresponding to the category NP.
        a illustrates a representative structure,
        while b is the more conventional
        counterpart.
Example 9-38. 
	[image: image with no caption]


	[image: image with no caption]






The head of the structure a is
        N, and N' and N'' are called (phrasal) projections of N. N'' is
        the maximal projection, and
        N is sometimes called the zero projection. One of the central claims of
        X-bar syntax is that all constituents share a structural similarity.
        Using X as a variable over N, V,
        A, and P, we say that directly subcategorized
        complements of a lexical head X are always placed as siblings of the head,
        whereas adjuncts are placed as siblings of the
        intermediate category, X'. Thus,
        the configuration of the two P''
        adjuncts in Example 9-39 contrasts with that of the
        complement P'' in a.
Example 9-39. 
[image: image with no caption]



The productions in Example 9-40 illustrate how
        bar levels can be encoded using feature structures. The nested
        structure in Example 9-39 is achieved by two
        applications of the recursive rule expanding N[BAR=1].
Example 9-40. 
S -> N[BAR=2] V[BAR=2]
N[BAR=2] -> Det N[BAR=1]
N[BAR=1] -> N[BAR=1] P[BAR=2]
N[BAR=1] -> N[BAR=0] P[BAR=2]



Auxiliary Verbs and Inversion



Inverted clauses—where the order of subject and verb is
        switched—occur in English interrogatives and also after “negative”
        adverbs:
Example 9-41. 
	Do you like children?

	Can Jody walk?





Example 9-42. 
	Rarely do you see Kim.

	Never have I seen this dog.





However, we cannot place just any verb in pre-subject
        position:
Example 9-43. 
	*Like you children?

	*Walks Jody?





Example 9-44. 
	*Rarely see you Kim.

	*Never saw I this dog.





Verbs that can be positioned initially in inverted clauses
        belong to the class known as auxiliaries, and as well as
        do, can, and
        have include be,
        will, and shall. One way of
        capturing such structures is with the following production:
Example 9-45. 
S[+INV] -> V[+AUX] NP VP


That is, a clause marked as [+inv] consists of an auxiliary verb
        followed by a VP. (In a more
        detailed grammar, we would need to place some constraints on the form
        of the VP, depending on the choice
        of auxiliary.) Example 9-46 illustrates the structure
        of an inverted clause:
Example 9-46. 
[image: image with no caption]




Unbounded Dependency Constructions



Consider the following contrasts:
Example 9-47. 
	You like Jody.

	*You like.





Example 9-48. 
	You put the card into the slot.

	*You put into the slot.

	*You put the card.

	*You put.





The verb like requires an NP complement, while
        put requires both a following NP and PP. Example 9-47 and Example 9-48 show that these complements are
        obligatory: omitting them leads to
        ungrammaticality. Yet there are contexts in which obligatory
        complements can be omitted, as Example 9-49 and Example 9-50 illustrate.
Example 9-49. 
	Kim knows who you like.

	This music, you really like.





Example 9-50. 
	Which card do you put into the slot?

	Which slot do you put the card into?





That is, an obligatory complement can be omitted if there is an
        appropriate filler in the sentence,
        such as the question word who in a, the preposed topic this
        music in b, or the
        wh phrases which card/slot
        in Example 9-50. It is common to say that sentences like
        those in Example 9-49 and Example 9-50
        contain gaps where the obligatory
        complements have been omitted, and these gaps are sometimes made
        explicit using an underscore:
Example 9-51. 
	Which card do you put __ into the slot?

	Which slot do you put the card into __?





So, a gap can occur if it is licensed by a filler. Conversely, fillers can
        occur only if there is an appropriate gap elsewhere in the sentence,
        as shown by the following examples:
Example 9-52. 
	*Kim knows who you like Jody.

	*This music, you really like hip-hop.





Example 9-53. 
	*Which card do you put this into the slot?

	*Which slot do you put the card into this one?





The mutual co-occurrence between filler and gap is sometimes
        termed a “dependency.” One issue of considerable importance in
        theoretical linguistics has been the nature of the material that can
        intervene between a filler and the gap that it licenses; in
        particular, can we simply list a finite set of sequences that separate
        the two? The answer is no: there is no upper bound on the distance
        between filler and gap. This fact can be easily illustrated with
        constructions involving sentential complements, as shown in Example 9-54.
Example 9-54. 
	Who do you like __?

	Who do you claim that you like __?

	Who do you claim that Jody says that you like __?





Since we can have indefinitely deep recursion of sentential
        complements, the gap can be embedded indefinitely far inside the whole
        sentence. This constellation of properties leads to the notion of an
        unbounded dependency construction,
        that is, a filler-gap dependency where there is no upper bound on the
        distance between filler and gap.
A variety of mechanisms have been suggested for handling
        unbounded dependencies in formal grammars; here we illustrate the
        approach due to Generalized Phrase Structure Grammar that involves
        slash categories. A slash category
        has the form Y/XP; we interpret
        this as a phrase of category Y that
        is missing a subconstituent of category XP. For example, S/NP is an S that is missing an NP. The use of slash categories is
        illustrated in Example 9-55.
Example 9-55. 
[image: image with no caption]



The top part of the tree introduces the filler
        who (treated as an expression of category
        NP[+wh]) together with a
        corresponding gap-containing constituent S/NP. The gap information is then “percolated” down
        the tree via the VP/NP category,
        until it reaches the category NP/NP. At this point, the dependency is
        discharged by realizing the gap information as the empty string,
        immediately dominated by NP/NP.
Do we need to think of slash categories as a completely new kind
        of object? Fortunately, we can accommodate them within our existing
        feature-based framework, by treating slash as a feature and the
        category to its right as a value; that is, S/NP is reducible to S[SLASH=NP]. In practice, this is also how
        the parser interprets slash categories.
The grammar shown in Example 9-56
        illustrates the main principles of slash categories, and also includes
        productions for inverted clauses. To simplify presentation, we have
        omitted any specification of tense on the verbs.
Example 9-56. Grammar with productions for inverted clauses and
          long-distance dependencies, making use of slash categories.
>>> nltk.data.show_cfg('grammars/book_grammars/feat1.fcfg')
% start S
# ###################
# Grammar Productions
# ###################
S[-INV] -> NP VP
S[-INV]/?x -> NP VP/?x
S[-INV] -> NP S/NP
S[-INV] -> Adv[+NEG] S[+INV]
S[+INV] -> V[+AUX] NP VP
S[+INV]/?x -> V[+AUX] NP VP/?x
SBar -> Comp S[-INV]
SBar/?x -> Comp S[-INV]/?x
VP -> V[SUBCAT=intrans, -AUX]
VP -> V[SUBCAT=trans, -AUX] NP
VP/?x -> V[SUBCAT=trans, -AUX] NP/?x
VP -> V[SUBCAT=clause, -AUX] SBar
VP/?x -> V[SUBCAT=clause, -AUX] SBar/?x
VP -> V[+AUX] VP
VP/?x -> V[+AUX] VP/?x
# ###################
# Lexical Productions
# ###################
V[SUBCAT=intrans, -AUX] -> 'walk' | 'sing'
V[SUBCAT=trans, -AUX] -> 'see' | 'like'
V[SUBCAT=clause, -AUX] -> 'say' | 'claim'
V[+AUX] -> 'do' | 'can'
NP[-WH] -> 'you' | 'cats'
NP[+WH] -> 'who'
Adv[+NEG] -> 'rarely' | 'never'
NP/NP ->
Comp -> 'that'


The grammar in Example 9-56 contains one
        “gap-introduction” production, namely S[-INV]
        -> NP S/NP. In order to percolate the slash feature
        correctly, we need to add slashes with variable values to both sides
        of the arrow in productions that expand S, VP,
        and NP. For example, VP/?x -> V SBar/?x is the slashed version
        of VP -> V SBar and says that a
        slash value can be specified on the VP parent of a constituent if the same value
        is also specified on the SBar
        child. Finally, NP/NP -> allows
        the slash information on NP to be
        discharged as the empty string. Using the grammar in Example 9-56, we can parse the sequence who do
        you claim that you like:
>>> tokens = 'who do you claim that you like'.split()
>>> from nltk import load_parser
>>> cp = load_parser('grammars/book_grammars/feat1.fcfg')
>>> for tree in cp.nbest_parse(tokens):
...     print tree
(S[-INV]
  (NP[+WH] who)
  (S[+INV]/NP[]
    (V[+AUX] do)
    (NP[-WH] you)
    (VP[]/NP[]
      (V[-AUX, SUBCAT='clause'] claim)
      (SBar[]/NP[]
        (Comp[] that)
        (S[-INV]/NP[]
          (NP[-WH] you)
          (VP[]/NP[] (V[-AUX, SUBCAT='trans'] like) (NP[]/NP[] )))))))
A more readable version of this tree is shown in Example 9-57.
Example 9-57. 
[image: image with no caption]



The grammar in Example 9-56 will also allow
        us to parse sentences without gaps:
>>> tokens = 'you claim that you like cats'.split()
>>> for tree in cp.nbest_parse(tokens):
...     print tree
(S[-INV]
  (NP[-WH] you)
  (VP[]
    (V[-AUX, SUBCAT='clause'] claim)
    (SBar[]
      (Comp[] that)
      (S[-INV]
        (NP[-WH] you)
        (VP[] (V[-AUX, SUBCAT='trans'] like) (NP[-WH] cats))))))
In addition, it admits inverted sentences that do not involve
        wh constructions:
>>> tokens = 'rarely do you sing'.split()
>>> for tree in cp.nbest_parse(tokens):
...     print tree
(S[-INV]
  (Adv[+NEG] rarely)
  (S[+INV]
    (V[+AUX] do)
    (NP[-WH] you)
    (VP[] (V[-AUX, SUBCAT='intrans'] sing))))

Case and Gender in German



Compared with English, German has a relatively rich morphology
        for agreement. For example, the definite article in German varies with
        case, gender, and number, as shown in Table 9-2.
Table 9-2. Morphological paradigm for the German definite
          article
	Case	Masculine	Feminine	Neutral	Plural
	Nominative
	der
	die
	das
	die

	Genitive 
	des
	der
	des
	der

	Dative
	dem
	der
	dem
	den

	Accusative
	den
	die
	das
	die




Subjects in German take the nominative case, and most verbs
        govern their objects in the accusative case. However, there are
        exceptions, such as helfen, that govern the
        dative case:
Example 9-58. 
		Die
	Katze
	sieht
	den
	Hund

	the.NOM.FEM.SG
	cat.3.FEM.SG
	see.3.SG
	the.ACC.MASC.SG
	dog.3.MASC.SG

	‘the cat
                      sees the dog’




		*Die
	Katze
	sieht
	dem
	Hund

	the.NOM.FEM.SG
	cat.3.FEM.SG
	see.3.SG
	the.DAT.MASC.SG
	dog.3.MASC.SG




		Die
	Katze
	hilft
	dem
	Hund

	the.NOM.FEM.SG
	cat.3.FEM.SG
	help.3.SG
	the.DAT.MASC.SG
	dog.3.MASC.SG

	‘the cat
                      helps the dog’




		*Die
	Katze
	hilft
	den
	Hund

	the.NOM.FEM.SG
	cat.3.FEM.SG
	help.3.SG
	the.ACC.MASC.SG
	dog.3.MASC.SG








The grammar in Example 9-59 illustrates the
        interaction of agreement (comprising person, number, and gender) with
        case.
Example 9-59. Example feature-based grammar.
>>> nltk.data.show_cfg('grammars/book_grammars/german.fcfg')
% start S
 # Grammar Productions
 S -> NP[CASE=nom, AGR=?a] VP[AGR=?a]
 NP[CASE=?c, AGR=?a] -> PRO[CASE=?c, AGR=?a]
 NP[CASE=?c, AGR=?a] -> Det[CASE=?c, AGR=?a] N[CASE=?c, AGR=?a]
 VP[AGR=?a] -> IV[AGR=?a]
 VP[AGR=?a] -> TV[OBJCASE=?c, AGR=?a] NP[CASE=?c]
 # Lexical Productions
 # Singular determiners
 # masc
 Det[CASE=nom, AGR=[GND=masc,PER=3,NUM=sg]] -> 'der'
 Det[CASE=dat, AGR=[GND=masc,PER=3,NUM=sg]] -> 'dem'
 Det[CASE=acc, AGR=[GND=masc,PER=3,NUM=sg]] -> 'den'
 # fem
 Det[CASE=nom, AGR=[GND=fem,PER=3,NUM=sg]] -> 'die'
 Det[CASE=dat, AGR=[GND=fem,PER=3,NUM=sg]] -> 'der'
 Det[CASE=acc, AGR=[GND=fem,PER=3,NUM=sg]] -> 'die'
 # Plural determiners
 Det[CASE=nom, AGR=[PER=3,NUM=pl]] -> 'die'
 Det[CASE=dat, AGR=[PER=3,NUM=pl]] -> 'den'
 Det[CASE=acc, AGR=[PER=3,NUM=pl]] -> 'die'
 # Nouns
 N[AGR=[GND=masc,PER=3,NUM=sg]] -> 'Hund'
 N[CASE=nom, AGR=[GND=masc,PER=3,NUM=pl]] -> 'Hunde'
 N[CASE=dat, AGR=[GND=masc,PER=3,NUM=pl]] -> 'Hunden'
 N[CASE=acc, AGR=[GND=masc,PER=3,NUM=pl]] -> 'Hunde'
 N[AGR=[GND=fem,PER=3,NUM=sg]] -> 'Katze'
 N[AGR=[GND=fem,PER=3,NUM=pl]] -> 'Katzen'
 # Pronouns
 PRO[CASE=nom, AGR=[PER=1,NUM=sg]] -> 'ich'
 PRO[CASE=acc, AGR=[PER=1,NUM=sg]] -> 'mich'
 PRO[CASE=dat, AGR=[PER=1,NUM=sg]] -> 'mir'
 PRO[CASE=nom, AGR=[PER=2,NUM=sg]] -> 'du'
 PRO[CASE=nom, AGR=[PER=3,NUM=sg]] -> 'er' | 'sie' | 'es'
 PRO[CASE=nom, AGR=[PER=1,NUM=pl]] -> 'wir'
 PRO[CASE=acc, AGR=[PER=1,NUM=pl]] -> 'uns'
 PRO[CASE=dat, AGR=[PER=1,NUM=pl]] -> 'uns'
 PRO[CASE=nom, AGR=[PER=2,NUM=pl]] -> 'ihr'
 PRO[CASE=nom, AGR=[PER=3,NUM=pl]] -> 'sie'
 # Verbs
 IV[AGR=[NUM=sg,PER=1]] -> 'komme'
 IV[AGR=[NUM=sg,PER=2]] -> 'kommst'
 IV[AGR=[NUM=sg,PER=3]] -> 'kommt'
 IV[AGR=[NUM=pl, PER=1]] -> 'kommen'
 IV[AGR=[NUM=pl, PER=2]] -> 'kommt'
 IV[AGR=[NUM=pl, PER=3]] -> 'kommen'
 TV[OBJCASE=acc, AGR=[NUM=sg,PER=1]] -> 'sehe' | 'mag'
 TV[OBJCASE=acc, AGR=[NUM=sg,PER=2]] -> 'siehst' | 'magst'
 TV[OBJCASE=acc, AGR=[NUM=sg,PER=3]] -> 'sieht' | 'mag'
 TV[OBJCASE=dat, AGR=[NUM=sg,PER=1]] -> 'folge' | 'helfe'
 TV[OBJCASE=dat, AGR=[NUM=sg,PER=2]] -> 'folgst' | 'hilfst'
 TV[OBJCASE=dat, AGR=[NUM=sg,PER=3]] -> 'folgt' | 'hilft'
 TV[OBJCASE=acc, AGR=[NUM=pl,PER=1]] -> 'sehen' | 'moegen'
 TV[OBJCASE=acc, AGR=[NUM=pl,PER=2]] -> 'sieht' | 'moegt'
 TV[OBJCASE=acc, AGR=[NUM=pl,PER=3]] -> 'sehen' | 'moegen'
 TV[OBJCASE=dat, AGR=[NUM=pl,PER=1]] -> 'folgen' | 'helfen'
 TV[OBJCASE=dat, AGR=[NUM=pl,PER=2]] -> 'folgt' | 'helft'
 TV[OBJCASE=dat, AGR=[NUM=pl,PER=3]] -> 'folgen' | 'helfen'


As you can see, the feature objcase is used
        to specify the case that a verb governs on its object. The next
        example illustrates the parse tree for a sentence containing a verb
        that governs the dative case:
>>> tokens = 'ich folge den Katzen'.split()
>>> cp = load_parser('grammars/book_grammars/german.fcfg')
>>> for tree in cp.nbest_parse(tokens):
...     print tree
(S[]
  (NP[AGR=[NUM='sg', PER=1], CASE='nom']
    (PRO[AGR=[NUM='sg', PER=1], CASE='nom'] ich))
  (VP[AGR=[NUM='sg', PER=1]]
    (TV[AGR=[NUM='sg', PER=1], OBJCASE='dat'] folge)
    (NP[AGR=[GND='fem', NUM='pl', PER=3], CASE='dat']
      (Det[AGR=[NUM='pl', PER=3], CASE='dat'] den)
      (N[AGR=[GND='fem', NUM='pl', PER=3]] Katzen))))
In developing grammars, excluding ungrammatical word sequences
        is often as challenging as parsing grammatical ones. In order to get
        an idea where and why a sequence fails to parse, setting the trace parameter of the load_parser() method can be crucial. Consider the following parse
        failure:
>>> tokens = 'ich folge den Katze'.split()
>>> cp = load_parser('grammars/book_grammars/german.fcfg', trace=2)
>>> for tree in cp.nbest_parse(tokens):
...     print tree
|.ich.fol.den.Kat.|
|[---]   .   .   .| PRO[AGR=[NUM='sg', PER=1], CASE='nom'] -> 'ich' *
|[---]   .   .   .| NP[AGR=[NUM='sg', PER=1], CASE='nom']
                  -> PRO[AGR=[NUM='sg', PER=1], CASE='nom'] *
|[--->   .   .   .| S[] -> NP[AGR=?a, CASE='nom'] * VP[AGR=?a]
                        {?a: [NUM='sg', PER=1]}
|.   [---]   .   .| TV[AGR=[NUM='sg', PER=1], OBJCASE='dat'] -> 'folge' *
|.   [--->   .   .| VP[AGR=?a] -> TV[AGR=?a, OBJCASE=?c]
                        * NP[CASE=?c] {?a: [NUM='sg', PER=1], ?c: 'dat'}
|.   .   [---]   .| Det[AGR=[GND='masc', NUM='sg', PER=3], CASE='acc'] -> 'den' *
|.   .   [---]   .| Det[AGR=[NUM='pl', PER=3], CASE='dat'] -> 'den' *
|.   .   [--->   .| NP[AGR=?a, CASE=?c] -> Det[AGR=?a, CASE=?c]
                  * N[AGR=?a, CASE=?c] {?a: [NUM='pl', PER=3], ?c: 'dat'}
|.   .   [--->   .| NP[AGR=?a, CASE=?c] -> Det[AGR=?a, CASE=?c] * N[AGR=?a, CASE=?c]
                 {?a: [GND='masc', NUM='sg', PER=3], ?c: 'acc'}
|.   .   .   [---]| N[AGR=[GND='fem', NUM='sg', PER=3]] -> 'Katze' *
The last two Scanner lines in
        the trace show that den is recognized as
        admitting two possible categories: Det[AGR=[GND='masc', NUM='sg', PER=3],
        CASE='acc'] and Det[AGR=[NUM='pl',
        PER=3], CASE='dat']. We know from the grammar in Example 9-59 that Katze has category N[AGR=[GND=fem, NUM=sg, PER=3]]. Thus there
        is no binding for the variable ?a
        in production:
NP[CASE=?c, AGR=?a] -> Det[CASE=?c, AGR=? a] N[CASE=?c, AGR=?a] 
that will satisfy these constraints, since the AGR value of Katze will not unify with either of the
        AGR values of
        den, that is, with either [GND='masc', NUM='sg', PER=3] or [NUM='pl', PER=3].


Summary



	The traditional categories of context-free grammar are atomic
          symbols. An important motivation for feature structures is to
          capture fine-grained distinctions that would otherwise require a
          massive multiplication of atomic categories.

	By using variables over feature values, we can express
          constraints in grammar productions that allow the realization of
          different feature specifications to be inter-dependent.

	Typically we specify fixed values of features at the lexical
          level and constrain the values of features in phrases to unify with
          the corresponding values in their children.

	Feature values are either atomic or complex. A particular
          subcase of atomic value is the Boolean value, represented by
          convention as [+/- feat].

	Two features can share a value (either atomic or complex).
          Structures with shared values are said to be re-entrant. Shared
          values are represented by numerical indexes (or tags) in
          AVMs.

	A path in a feature structure is a tuple of features
          corresponding to the labels on a sequence of arcs from the root of
          the graph representation.

	Two paths are equivalent if they share a value.

	Feature structures are partially ordered by subsumption.
          FS0 subsumes
          FS1 when
          FS0 is more general
          (less informative) than
          FS1.

	The unification of two structures
          FS0 and
          FS1, if successful, is
          the feature structure
          FS2 that contains the
          combined information of both
          FS0 and
          FS1.

	If unification specializes a path π in
          FS, then it also specializes every path π'
          equivalent to π.

	We can use feature structures to build succinct analyses of a
          wide variety of linguistic phenomena, including verb
          subcategorization, inversion constructions, unbounded dependency constructions,
          and case government.




Further Reading



Please consult http://www.nltk.org/ for
      further materials on this chapter, including HOWTOs feature structures,
      feature grammars, Earley parsing, and grammar test suites.
For an excellent introduction to the phenomenon of agreement, see
      (Corbett, 2006).
The earliest use of features in theoretical linguistics was
      designed to capture phonological properties of phonemes. For example, a
      sound like /b/ might be decomposed into the structure [+labial, +voice]. An important motivation was
      to capture generalizations across classes of segments, for example, that
      /n/ gets realized as /m/ preceding any +labial consonant. Within Chomskyan grammar,
      it was standard to use atomic features for phenomena such as agreement,
      and also to capture generalizations across syntactic categories, by
      analogy with phonology. A radical expansion of the use of features in
      theoretical syntax was advocated by Generalized Phrase Structure Grammar
      (GPSG; [Gazdar et al., 1985]), particularly in the use of features with
      complex values.
Coming more from the perspective of computational linguistics,
      (Kay, 1985) proposed that functional aspects of language could be
      captured by unification of attribute-value structures, and a similar
      approach was elaborated by (Grosz & Stickel, 1983) within the
      PATR-II formalism. Early work in Lexical-Functional grammar (LFG;
      [Kaplan & Bresnan, 1982]) introduced the notion of an f-structure that was primarily intended to
      represent the grammatical relations and predicate-argument structure
      associated with a constituent structure parse. (Shieber, 1986) provides
      an excellent introduction to this phase of research into feature-based
      grammars.
One conceptual difficulty with algebraic approaches to feature
      structures arose when researchers attempted to model negation. An
      alternative perspective, pioneered by (Kasper & Rounds, 1986) and
      (Johnson, 1988), argues that grammars involve
      descriptions of feature structures rather than the
      structures themselves. These descriptions are combined using logical
      operations such as conjunction, and negation is just the usual logical
      operation over feature descriptions. This description-oriented
      perspective was integral to LFG from the outset (Kaplan, 1989), and was
      also adopted by later versions of Head-Driven Phrase Structure Grammar
      (HPSG; [Sag & Wasow, 1999]). A comprehensive bibliography of HPSG
      literature can be found at http://www.cl.uni-bremen.de/HPSG-Bib/.
Feature structures, as presented in this chapter, are unable to
      capture important constraints on linguistic information. For example,
      there is no way of saying that the only permissible values for NUM are sg
      and pl, while a specification such as
      [NUM=masc] is anomalous. Similarly,
      we cannot say that the complex value of AGR must contain
      specifications for the features PER,
      NUM, and GND, but cannot contain a
      specification such as [SUBCAT=trans].
      Typed feature structures were
      developed to remedy this deficiency.  A good early review of work on typed feature structures
      is (Emele & Zajac, 1990). A more comprehensive examination of the
      formal foundations can be found in (Carpenter, 1992), while (Copestake, 2002)
      focuses on implementing an HPSG-oriented approach to typed feature
      structures.
There is a copious literature on the analysis of German within
      feature-based grammar frameworks. (Nerbonne, Netter & Pollard, 1994)
      is a good starting point for the HPSG literature on this topic, while
      (Müller, 2002) gives a very extensive and detailed analysis of German
      syntax in HPSG.
Chapter 15 of (Jurafsky & Martin, 2008) discusses feature
      structures, the unification algorithm, and the integration of
      unification into parsing algorithms.

Exercises



	○ What constraints are required to correctly parse word
          sequences like I am happy and she is
          happy but not *you is happy or
          *they am happy? Implement two solutions for the
          present tense paradigm of the verb be in
          English, first taking Grammar Example 9-8 as your
          starting point, and then taking Grammar Example 9-22
          as the starting point.

	○ Develop a variant of grammar in Example 9-17 that uses a feature COUNT to make the distinctions shown
          here:
Example 9-60. 
	The boy sings.

	*Boy sings.





Example 9-61. 
	The boys sing.

	Boys sing.





Example 9-62. 
	The water is precious.

	Water is precious.






	○ Write a function subsumes() that holds of two feature
          structures fs1 and fs2 just in case fs1 subsumes fs2.

	○ Modify the grammar illustrated in Example 9-32 to incorporate a BAR feature for dealing with phrasal
          projections.

	○ Modify the German grammar in Example 9-59 to incorporate the treatment of
          subcategorization presented in Extending a Feature-Based Grammar.

	[image: ] Develop a feature-based grammar that will correctly describe
          the following Spanish noun phrases:
Example 9-63. 
	un
	cuadro
	hermos-o

	INDEF.SG.MASC
	picture
	beautiful-SG.MASC

	‘a beautiful
                    picture’





Example 9-64. 
	un-os
	cuadro-s
	hermos-os

	INDEF-PL.MASC
	picture-PL
	beautiful-PL.MASC

	‘beautiful
                    pictures’





Example 9-65. 
	un-a
	cortina
	hermos-a

	INDEF-SG.FEM
	curtain
	beautiful-SG.FEM

	‘a beautiful
                    curtain’





Example 9-66. 
	un-as
	cortina-s
	hermos-as

	INDEF-PL.FEM
	curtain
	beautiful-PL.FEM

	‘beautiful
                    curtains’






	[image: ] Develop a wrapper for the earley_parser so that a trace is only
          printed if the input sequence fails to parse.

	[image: ] Consider the feature structures shown in Example 9-67.
Example 9-67. Exploring feature structures.
fs1 = nltk.FeatStruct("[A = ?x, B= [C = ?x]]")
fs2 = nltk.FeatStruct("[B = [D = d]]")
fs3 = nltk.FeatStruct("[B = [C = d]]")
fs4 = nltk.FeatStruct("[A = (1)[B = b], C->(1)]")
fs5 = nltk.FeatStruct("[A = (1)[D = ?x], C = [E -> (1), F = ?x] ]")
fs6 = nltk.FeatStruct("[A = [D = d]]")
fs7 = nltk.FeatStruct("[A = [D = d], C = [F = [D = d]]]")
fs8 = nltk.FeatStruct("[A = (1)[D = ?x, G = ?x], C = [B = ?x, E -> (1)] ]")
fs9 = nltk.FeatStruct("[A = [B = b], C = [E = [G = e]]]")
fs10 = nltk.FeatStruct("[A = (1)[B = b], C -> (1)]")


Work out on paper what the result is of the following
          unifications. (Hint: you might find it useful to draw the graph
          structures.)
	fs1 and fs2

	fs1 and fs3

	fs4 and fs5

	fs5 and fs6

	fs5 and fs7

	fs8 and fs9

	fs8 and fs10



Check your answers using NLTK.

	[image: ] List two feature structures that subsume [A=?x, B=?x].

	[image: ] Ignoring structure sharing, give an informal algorithm for
          unifying two feature structures.

	[image: ] Extend the German grammar in Example 9-59 so that it can handle so-called
          verb-second structures like the following:
Example 9-68. 
Heute sieht der Hund die Katze.



	[image: ] Seemingly synonymous verbs have slightly different syntactic
          properties (Levin, 1993). Consider the following patterns of
          grammaticality for the verbs loaded,
          filled, and dumped. Can
          you write grammar productions to handle such data?
Example 9-69. 
	The farmer loaded the cart with
                sand

	The farmer loaded sand into the
                cart

	The farmer filled the cart with
                sand

	*The farmer filled sand into the
                cart

	*The farmer dumped the cart with
                sand

	The farmer dumped sand into the
                cart






	● Morphological paradigms are rarely completely regular, in
          the sense of every cell in the matrix having a different
          realization. For example, the present tense conjugation of the
          lexeme walk has only two distinct forms:
          walks for the third-person singular, and
          walk for all other combinations of person and
          number. A successful analysis should not require redundantly
          specifying that five out of the six possible morphological
          combinations have the same realization. Propose and implement a
          method for dealing with this.

	● So-called head features
          are shared between the parent node and head child. For example,
          TENSE is a head feature that is
          shared between a VP and its head
          V child. See (Gazdar et al.,
          1985) for more details. Most of the features we have looked at are
          head features—exceptions are SUBCAT and SLASH. Since the sharing of head features
          is predictable, it should not need to be stated explicitly in the
          grammar productions. Develop
          an approach that automatically accounts for this regular behavior of
          head features.

	● Extend NLTK’s treatment of feature structures to allow
          unification into list-valued features, and use this to implement an
          HPSG-style analysis of subcategorization, whereby the SUBCAT of a head category is the
          concatenation of its complements’ categories with the
          SUBCAT value of its immediate
          parent.

	● Extend NLTK’s treatment of feature structures to allow
          productions with underspecified categories, such as S[-INV] -> ?x S/?x.

	● Extend NLTK’s treatment of feature structures to allow typed
          feature structures.

	● Pick some grammatical constructions described in (Huddleston
          & Pullum, 2002), and develop a feature-based grammar to account
          for them.




Chapter 10. Analyzing the Meaning of Sentences



We have seen how useful it is to harness the power of a computer to
    process text on a large scale. However, now that we have the machinery of
    parsers and feature-based grammars, can we do anything similarly useful by
    analyzing the meaning of sentences? The goal of this chapter is to answer
    the following questions:
	How can we represent natural language meaning so that a computer
        can process these representations?

	How can we associate meaning representations with an unlimited
        set of sentences?

	How can we use programs that connect the meaning representations
        of sentences to stores of knowledge?



Along the way we will learn some formal techniques in the field of
    logical semantics, and see how these can be used for interrogating
    databases that store facts about the world.
Natural Language Understanding



Querying a Database



Suppose we have a program that lets us type in a natural
        language question and gives us back the right answer:
Example 10-1. 
	Which country is Athens in?

	Greece.





How hard is it to write such a program? And can we just use the
        same techniques that we’ve encountered so far in this book, or does it
        involve something new? In this section, we will show that solving the
        task in a restricted domain is pretty straightforward. But we will
        also see that to address the problem in a more general way, we have to
        open up a whole new box of ideas and techniques, involving the
        representation of meaning.
So let’s start off by assuming that we have data about cities
        and countries in a structured form. To be concrete, we will use a
        database table whose first few rows are shown in Table 10-1.
Note
The data illustrated in Table 10-1 is drawn
          from the Chat-80 system (Warren & Pereira, 1982). Population
          figures are given in thousands, but note that the data used in these
          examples dates back at least to the 1980s, and was already somewhat
          out of date at the point when (Warren & Pereira, 1982) was
          published.

Table 10-1. city_table: A table of cities, countries, and
          populations
	City
	Country
	Population

	athens
	greece
	1368

	bangkok
	thailand
	1178

	barcelona
	spain
	1280

	berlin
	east_germany
	3481

	birmingham
	united_kingdom
	1112




The obvious way to retrieve answers from this tabular data
        involves writing queries in a database query language such as
        SQL.
Note
SQL (Structured Query Language) is a language designed for
          retrieving and managing data in relational databases. If you want to
          find out more about SQL, http://www.w3schools.com/sql/ is a convenient online
          reference.

For example, executing the query Example 10-2 will
        pull out the value 'greece':
Example 10-2. 
SELECT Country FROM city_table WHERE
          City = 'athens'


This specifies a result set consisting of all values for the
        column Country in data rows where
        the value of the City column is
        'athens'.
How can we get the same effect using English as our input to the
        query system? The feature-based grammar formalism described in Chapter 9 makes it easy to translate from English to SQL.
        The grammar sql0.fcfg illustrates
        how to assemble a meaning representation for a sentence in tandem with
        parsing the sentence. Each phrase structure rule is supplemented with
        a recipe for constructing a value for the feature SEM. You can see that these recipes are extremely simple;
        in each case, we use the string concatenation operation + to splice the values for the child
        constituents to make a value for the parent constituent.
>>> nltk.data.show_cfg('grammars/book_grammars/sql0.fcfg')
% start S
S[SEM=(?np + WHERE + ?vp)] -> NP[SEM=?np] VP[SEM=?vp]
VP[SEM=(?v + ?pp)] -> IV[SEM=?v] PP[SEM=?pp]
VP[SEM=(?v + ?ap)] -> IV[SEM=?v] AP[SEM=?ap]
NP[SEM=(?det + ?n)] -> Det[SEM=?det] N[SEM=?n]
PP[SEM=(?p + ?np)] -> P[SEM=?p] NP[SEM=?np]
AP[SEM=?pp] -> A[SEM=?a] PP[SEM=?pp]
NP[SEM='Country="greece"'] -> 'Greece'
NP[SEM='Country="china"'] -> 'China'
Det[SEM='SELECT'] -> 'Which' | 'What'
N[SEM='City FROM city_table'] -> 'cities'
IV[SEM=''] -> 'are'
A[SEM=''] -> 'located'
P[SEM=''] -> 'in'
This allows us to parse a query into SQL:
>>> from nltk import load_parser
>>> cp = load_parser('grammars/book_grammars/sql0.fcfg')
>>> query = 'What cities are located in China'
>>> trees = cp.nbest_parse(query.split())
>>> answer = trees[0].node['SEM']
>>> q = ' '.join(answer)
>>> print q
SELECT City FROM city_table WHERE Country="china"
Note
Your Turn: Run the parser
          with maximum tracing on, i.e., cp =
          load_parser('grammars/book_grammars/sql0.fcfg',
          trace=3), and examine how the values of SEM are built up as complete edges are added to the
          chart.

Finally, we execute the query over the database city.db and retrieve some results:
>>> from nltk.sem import chat80
>>> rows = chat80.sql_query('corpora/city_database/city.db', q)
>>> for r in rows: print r[0], [image: 1]
canton chungking dairen harbin kowloon mukden peking shanghai sian tientsin
Since each row r is a
        one-element tuple, we print out the member of the tuple rather than
        the tuple itself [image: 1].
To summarize, we have defined a task where the computer returns
        useful data in response to a natural language query, and we
        implemented this by translating a small subset of English into SQL. We
        can say that our NLTK code already “understands” SQL, given that
        Python is able to execute SQL queries against a database, and by
        extension it also “understands” queries such as What cities
        are located in China. This parallels being able to
        translate from Dutch into English as an example of natural language
        understanding. Suppose that you are a native speaker of English, and
        have started to learn Dutch. Your teacher asks if you understand what
        Example 10-3 means:
Example 10-3. 
Margrietje houdt van Brunoke.


If you know the meanings of the individual words in Example 10-3, and know how these meanings are combined to make
        up the meaning of the whole sentence, you might say that Example 10-3 means the same as Margrietje loves
        Brunoke.
An observer—let’s call her Olga—might well take this as evidence
        that you do grasp the meaning of Example 10-3. But this
        would depend on Olga herself understanding English. If she doesn’t,
        then your translation from Dutch to English is not going to convince
        her of your ability to understand Dutch. We will return to this issue
        shortly.
The grammar sql0.fcfg,
        together with the NLTK Earley parser, is instrumental in carrying out
        the translation from English to SQL. How adequate is this grammar? You
        saw that the SQL translation for the whole sentence was built up from
        the translations of the components. However, there does not seem to be
        a lot of justification for these component meaning representations.
        For example, if we look at the analysis of the noun phrase
        Which cities, the determiner and noun correspond
        respectively to the SQL fragments SELECT and City
        FROM city_table. But neither of these has a well-defined
        meaning in isolation from the other.
There is another criticism we can level at the grammar: we have
        “hard-wired” an embarrassing amount of detail about the database into
        it. We need to know the name of the relevant table (e.g., city_table) and the names of the fields. But
        our database could have contained exactly the same rows of data yet
        used a different table name and different field names, in which case
        the SQL queries would not be executable. Equally, we could have stored
        our data in a different format, such as XML, in which case retrieving
        the same results would require us to translate our English queries
        into an XML query language rather than SQL. These considerations
        suggest that we should be translating English into something that is
        more abstract and generic than SQL.
In order to sharpen the point, let’s consider another English
        query and its translation:
Example 10-4. 
	What cities are in China and have populations above
              1,000,000?

	SELECT City FROM city_table WHERE
              Country = 'china' AND Population > 1000





Note
Your Turn: Extend the
          grammar sql0.fcfg so that it
          will translate a into b, and check the values returned by the query.
          Remember that figures in the Chat-80 database are given in
          thousands, hence 1000 in (4b)
          represents one million inhabitants.
You will probably find it easiest to first extend the grammar
          to handle queries like What cities have populations above
          1,000,000 before tackling conjunction. After you have had
          a go at this task, you can compare your solution to grammars/book_grammars/sql1.fcfg in the
          NLTK data distribution.

Observe that the and conjunction in a is translated into an AND in the SQL counterpart, b. The latter tells us to select results from rows
        where two conditions are true together: the value of the Country column is 'china' and the value of the Population column is greater than 1000. This interpretation for
        and involves a new idea: it talks about
        what is true in some particular situation, and
        tells us that Cond1 AND
        Cond2 is true in situation
        s if and only if condition Cond1 is true in
        s and condition Cond2 is true in
        s. Although this doesn’t account for the full
        range of meanings of and in English, it has the
        nice property that it is independent of any query language. In fact,
        we have given it the standard interpretation from classical logic. In
        the following sections, we will explore an approach in which sentences
        of natural language are translated into logic instead of an executable
        query language such as SQL. One advantage of logical formalisms is
        that they are more abstract and therefore more generic. If we wanted
        to, once we had our translation into logic, we could then translate it
        into various other special-purpose languages. In fact, most serious
        attempts to query databases via natural language have used this
        methodology.

Natural Language, Semantics, and Logic



We started out trying to capture the meaning of a by translating it into a query in another
        language, SQL, which the computer could interpret and execute. But
        this still begged the question whether the translation was correct.
        Stepping back from database query, we noted that the meaning of
        and seems to depend on being able to specify when
        statements are true or not in a particular situation. Instead of
        translating a sentence S from one language to
        another, we try to say what S is
        about by relating it to a situation in the world.
        Let’s pursue this further. Imagine there is a situation
        s where there are two entities, Margrietje and
        her favorite doll, Brunoke. In addition, there is a relation holding
        between the two entities, which we will call the
        love relation. If you understand the meaning of
        Example 10-3, then you know that it is true in situation
        s. In part, you know this because you know that
        Margrietje refers to Margrietje,
        Brunoke refers to Brunoke, and houdt
        van refers to the love
        relation.
We have introduced two fundamental notions in semantics. The
        first is that declarative sentences are true or false in
        certain situations. The second is that definite noun
        phrases and proper nouns refer to things in the
        world. So Example 10-3 is true in a situation
        where Margrietje loves the doll Brunoke, here illustrated in Figure 10-1.
[image: Depiction of a situation in which Margrietje loves Brunoke.]

Figure 10-1. Depiction of a situation in which Margrietje loves
          Brunoke.

Once we have adopted the notion of truth in a situation, we have
        a powerful tool for reasoning. In particular, we can look at sets of
        sentences, and ask whether they could be true together in some
        situation. For example, the sentences in Example 10-5
        can be both true, whereas those in Example 10-6 and
        Example 10-7 cannot be. In other words, the sentences
        in Example 10-5 are consistent, whereas those in Example 10-6 and Example 10-7 are inconsistent.
Example 10-5. 
	Sylvania is to the north of Freedonia.

	Freedonia is a republic.





Example 10-6. 
	The capital of Freedonia has a population of 9,000.

	No city in Freedonia has a population of 9,000.





Example 10-7. 
	Sylvania is to the north of Freedonia.

	Freedonia is to the north of Sylvania.





We have chosen sentences about fictional countries (featured in
        the Marx Brothers’ 1933 movie Duck Soup) to
        emphasize that your ability to reason about these examples does not
        depend on what is true or false in the actual world. If you know the
        meaning of the word no, and also know that the
        capital of a country is a city in that country, then you should be
        able to conclude that the two sentences in Example 10-6
        are inconsistent, regardless of where Freedonia is or what the
        population of its capital is. That is, there’s no possible situation
        in which both sentences could be true. Similarly, if you know that the
        relation expressed by to the north of is
        asymmetric, then you should be able to conclude that the two sentences
        in Example 10-7 are inconsistent.
Broadly speaking, logic-based approaches to natural language
        semantics focus on those aspects of natural language that guide our
        judgments of consistency and inconsistency. The syntax of a logical
        language is designed to make these features formally explicit. As a
        result, determining properties like consistency can often be reduced
        to symbolic manipulation, that is, to a task that can be carried out
        by a computer. In order to pursue this approach, we first want to
        develop a technique for representing a possible situation. We do this
        in terms of something that logicians call a “model.”
A model for a set
        W of sentences is a formal representation of a
        situation in which all the sentences in W are
        true. The usual way of representing models involves set theory. The
        domain D of discourse (all the entities we
        currently care about) is a set of individuals, while relations are
        treated as sets built up from D. Let’s look at a
        concrete example. Our domain D will consist of
        three children, Stefan, Klaus, and Evi, represented respectively as
        s, k, and e.
        We write this as D = {s,
        k, e}. The expression boy denotes the
        set consisting of Stefan and Klaus, the expression
        girl denotes the set consisting of Evi, and the
        expression is running denotes the set consisting
        of Stefan and Evi. Figure 10-2 is a graphical
        rendering of the model.
[image: Diagram of a model containing a domain D and subsets of D corresponding to the predicates boy, girl, and is running.]

Figure 10-2. Diagram of a model containing a domain D and subsets of D
          corresponding to the predicates boy,
          girl, and is
          running.


Later in this chapter we will use models to help evaluate the
        truth or falsity of English sentences, and in this way to illustrate
        some methods for representing meaning. However, before going into more
        detail, let’s put the discussion into a broader perspective, and link
        back to a topic that we briefly raised in Automatic Natural Language Understanding. Can a
        computer understand the meaning of a sentence? And how could we tell
        if it did? This is similar to asking “Can a computer think?” Alan
        Turing famously proposed to answer this by examining the ability of a
        computer to hold sensible conversations with a human (Turing, 1950).
        Suppose you are having a chat session with a person and a computer,
        but you are not told at the outset which is which. If you cannot
        identify which of your partners is the computer after chatting with
        each of them, then the computer has successfully imitated a human. If
        a computer succeeds in passing itself off as human in this “imitation
        game” (or “Turing Test” as it is popularly known), then according to
        Turing, we should be prepared to say that the computer
        can think and can be said to be intelligent. So
        Turing side-stepped the question of somehow examining the internal
        states of a computer by instead using its
        behavior as evidence of intelligence. By the same
        reasoning, we have assumed that in order to say that a computer
        understands English, it just needs to behave as though it did. What is
        important here is not so much the specifics of Turing’s imitation
        game, but rather the proposal to judge a capacity for natural language
        understanding in terms of observable behavior.


Propositional Logic



A logical language is designed to make reasoning formally
      explicit. As a result, it can capture aspects of natural language which
      determine whether a set of sentences is consistent. As part of this
      approach, we need to develop logical representations of a sentence φ
      that formally capture the truth-conditions of φ. We’ll start off with a
      simple example:
Example 10-8. 
[Klaus chased Evi] and [Evi ran away].


Let’s replace the two sub-sentences in Example 10-8 by φ and ψ respectively, and put & for the logical operator corresponding
      to the English word and: φ & ψ. This structure is the logical form of Example 10-8.
Propositional logic allows us
      to represent just those parts of linguistic structure that correspond to
      certain sentential connectives. We have just looked at
      and. Other such connectives are
      not, or, and if...,
      then.... In the formalization of propositional logic, the
      counterparts of such connectives are sometimes called Boolean operators. The basic expressions of
      propositional logic are propositional
      symbols, often written as P,
      Q, R, etc. There are varying
      conventions for representing Boolean operators. Since we will be
      focusing on ways of exploring logic within NLTK, we will stick to the
      following ASCII versions of the operators:
>>> nltk.boolean_ops()
negation            -
conjunction         &
disjunction         |
implication         ->
equivalence         <->
From the propositional symbols and the Boolean operators we can
      build an infinite set of well-formed
      formulas (or just formulas, for short) of propositional
      logic. First, every propositional letter is a formula. Then if φ is a
      formula, so is -φ. And if φ and ψ are
      formulas, then so are (φ & ψ),
      (φ | ψ),
      (φ -> ψ),
      and(φ <-> ψ).
Table 10-2 specifies the truth-conditions
      for formulas containing these operators. As before we use φ and ψ as
      variables over sentences, and abbreviate if and only
      if as iff.
Table 10-2. Truth conditions for the Boolean operators in propositional
        logic
	Boolean operator
	Truth
              conditions

	negation (it is not the case that
              ...)
	-φ is true in
              s
	iff
	φ is false in s

	conjunction
              (and)
	(φ & ψ) is true in
              s
	iff
	φ is true in s and ψ is true
              in s

	disjunction
              (or)
	(φ | ψ) is true in
              s
	iff
	φ is true in s or ψ is true in
              s

	implication (if ..., then
              ...)
	(φ -> ψ) is true in
              s
	iff
	φ is false in s or ψ is true
              in s

	equivalence (if and only
              if)
	(φ <-> ψ) is true in
              s
	iff
	φ and ψ are both true in s or
              both false in s




These rules are generally straightforward, though the truth
      conditions for implication depart in many cases from our usual
      intuitions about the conditional in English. A formula of the form
      (P -> Q) is false only when
      P is true and Q is false. If P is false (say, P corresponds to The moon is made of
      green cheese) and Q is
      true (say, Q corresponds to
      Two plus two equals four), then P -> Q will come out true.
NLTK’s LogicParser() parses logical expressions into various subclasses of
      Expression:
>>> lp = nltk.LogicParser()
>>> lp.parse('-(P & Q)')
<NegatedExpression -(P & Q)>
>>> lp.parse('P & Q')
<AndExpression (P & Q)>
>>> lp.parse('P | (R -> Q)')
<OrExpression (P | (R -> Q))>
>>> lp.parse('P <-> -- P')
<IffExpression (P <-> --P)>
From a computational perspective, logics give us an important tool
      for performing inference. Suppose you state that Freedonia is not to the
      north of Sylvania, and you give as your reasons that Sylvania is to the
      north of Freedonia. In this case, you have produced an argument. The sentence Sylvania is to
      the north of Freedonia is the assumption of the argument,
      while Freedonia is not to the north of Sylvania is
      the conclusion. The step of moving
      from one or more assumptions to a conclusion is called inference. Informally, it is common to write
      arguments in a format where the conclusion is preceded by
      therefore.
Example 10-9. 
Sylvania is to the north of Freedonia.
Therefore, Freedonia is not to the north of Sylvania.


An argument is valid if there
      is no possible situation in which its premises are all true and its
      conclusion is not true.
Now, the validity of Example 10-9 crucially
      depends on the meaning of the phrase to the north
      of, in particular, the fact that it is an asymmetric
      relation:
Example 10-10. 
if x is to the north of
        y then y is not to the north
        of x.


Unfortunately, we can’t express such rules in propositional logic:
      the smallest elements we have to play with are atomic propositions, and
      we cannot “look inside” these to talk about relations between
      individuals x and y. The best
      we can do in this case is capture a particular case of the asymmetry.
      Let’s use the propositional symbol SnF to stand for Sylvania is to the
      north of Freedonia and FnS
      for Freedonia is to the north of Sylvania. To say
      that Freedonia is not to the north of Sylvania, we
      write -FnS. That is, we treat
      not as equivalent to the phrase it is not
      the case that ..., and translate this as the one-place
      Boolean operator -. Replacing
      x and y in Example 10-10 by Sylvania and
      Freedonia respectively gives us an implication that
      can be written as:
Example 10-11. 
SnF -> -FnS


How about giving a version of the complete argument? We will
      replace the first sentence of Example 10-9 by two
      formulas of propositional logic: SnF,
      and also the implication in Example 10-11, which
      expresses (rather poorly) our background knowledge of the meaning of
      to the north of. We’ll write [A1, ..., An] / C to represent the argument
      that conclusion C follows from
      assumptions [A1, ..., An]. This leads
      to the following as a representation of argument Example 10-9:
Example 10-12. 
[SnF, SnF -> -FnS] /
        -FnS


This is a valid argument: if SnF and SnF ->
      -FnS are both true in a situation s, then
      -FnS must also
      be true in s. By contrast, if FnS were true, this would conflict with our
      understanding that two objects cannot both be to the north of each other
      in any possible situation. Equivalently, the list [SnF, SnF -> -FnS, FnS] is
      inconsistent—these sentences cannot all be true together.
Arguments can be tested for “syntactic validity” by using a proof
      system. We will say a little bit more about this later on in First-Order Logic. Logical proofs can be carried out with NLTK’s
      inference module, for example, via an
      interface to the third-party theorem prover Prover9. The inputs to the
      inference mechanism first have to be parsed into logical expressions by
      LogicParser().
>>> lp = nltk.LogicParser()
>>> SnF = lp.parse('SnF')
>>> NotFnS = lp.parse('-FnS')
>>> R = lp.parse('SnF -> -FnS')
>>> prover = nltk.Prover9()
>>> prover.prove(NotFnS, [SnF, R])
True
Here’s another way of seeing why the conclusion follows. SnF -> -FnS is semantically equivalent to
      -SnF | -FnS, where | is the two-place operator corresponding to
      or. In general, φ | ψ is true in a situation
      s if either φ is true in s or
      φ is true in s. Now, suppose both SnF and -SnF |
      -FnS are true in situation s. If SnF is true, then -SnF cannot also be true; a fundamental
      assumption of classical logic is that a sentence cannot be both true and
      false in a situation. Consequently, -FnS must be true.
Recall that we interpret sentences of a logical language relative
      to a model, which is a very simplified version of the world. A model for
      propositional logic needs to assign the values True or False to every possible formula. We do this
      inductively: first, every propositional symbol is assigned a value, and
      then we compute the value of complex formulas by consulting the meanings
      of the Boolean operators (i.e., Table 10-2) and
      applying them to the values of the formula’s components. A Valuation is a mapping from basic symbols of the logic to their
      values. Here’s an example:
>>> val = nltk.Valuation([('P', True), ('Q', True), ('R', False)])
We initialize a Valuation with a list of pairs, each of which consists of a
      semantic symbol and a semantic value. The resulting object is
      essentially just a dictionary that maps logical symbols (treated as
      strings) to appropriate values.
>>> val['P']
True
As we will see later, our models need to be somewhat more
      complicated in order to handle the more complex logical forms discussed
      in the next section; for the time being, just ignore the dom and g
      parameters in the following declarations.
>>> dom = set([])
>>> g = nltk.Assignment(dom)
Now let’s initialize a model m
      that uses val:
>>> m = nltk.Model(dom, val)
Every model comes with an evaluate() method, which will determine the semantic value of
      logical expressions, such as formulas of propositional logic; of course,
      these values depend on the initial truth values we assigned to
      propositional symbols such as P,
      Q, and R.
>>> print m.evaluate('(P & Q)', g)
True
>>> print m.evaluate('-(P & Q)', g)
False
>>> print m.evaluate('(P & R)', g)
False
>>> print m.evaluate('(P | R)', g)
True
Note
Your Turn: Experiment with
        evaluating different formulas of propositional logic. Does the model
        give the values that you expected?

Up until now, we have been translating our English sentences into
      propositional logic. Because we are confined to representing atomic
      sentences with letters such as P and
      Q, we cannot dig into their internal
      structure. In effect, we are saying that there is no semantic benefit in
      dividing atomic sentences into subjects, objects, and predicates.
      However, this seems wrong: if we want to formalize arguments such as
      Example 10-9, we have to be able to “look inside”
      basic sentences. As a result, we will move beyond propositional logic to
      something more expressive, namely first-order logic. This is what we
      turn to in the next section.

First-Order Logic



In the remainder of this chapter, we will represent the meaning of
      natural language expressions by translating them into first-order logic.
      Not all of natural language semantics can be expressed in first-order
      logic. But it is a good choice for computational semantics because it is
      expressive enough to represent many aspects of semantics, and on the
      other hand, there are excellent systems available off the shelf for
      carrying out automated inference in first-order logic.
Our next step will be to describe how formulas of first-order
      logic are constructed, and then how such formulas can be evaluated in a
      model.
Syntax



First-order logic keeps all the Boolean operators of
        propositional logic, but it adds some important new mechanisms. To
        start with, propositions are analyzed into predicates and arguments,
        which takes us a step closer to the structure of natural languages.
        The standard construction rules for first-order logic recognize
        terms such as individual variables
        and individual constants, and predicates that take differing numbers of
        arguments. For example, Angus
        walks might be formalized as
        walk(angus) and
        Angus sees Bertie as
        see(angus,
        bertie). We will call walk a
        unary predicate, and
        see a binary
        predicate. The symbols used as predicates do not have
        intrinsic meaning, although it is hard to remember this. Returning to
        one of our earlier examples, there is no logical
        difference between a and b.
Example 10-13. 
	love(margrietje,
              brunoke)

	houden_van(margrietje,
              brunoke)





By itself, first-order logic has nothing substantive to say
        about lexical semantics—the meaning of individual words—although some
        theories of lexical semantics can be encoded in first-order logic.
        Whether an atomic predication like
        see(angus,
        bertie) is true or false in a situation is not a
        matter of logic, but depends on the particular valuation that we have
        chosen for the constants see,
        angus, and bertie. For this
        reason, such expressions are called non-logical constants. By contrast, logical constants (such as the Boolean
        operators) always receive the same interpretation in every model for
        first-order logic.
We should mention here that one binary predicate has special
        status, namely equality, as in formulas such as angus =
        aj. Equality is regarded as a logical constant, since for
        individual terms
        t1
        and t2, the formula
        t1 =
        t2 is true if and only if
        t1 and
        t2 refer to one and the
        same entity.
It is often helpful to inspect the syntactic structure of
        expressions of first-order logic, and the usual way of doing this is
        to assign types to expressions.
        Following the tradition of Montague grammar, we will use two basic types: e is the
        type of entities, while t is the type of
        formulas, i.e., expressions that have truth values. Given these two
        basic types, we can form complex
        types for function expressions. That is, given any types σ
        and τ, 〈σ, τ〉 is a complex type corresponding to functions from 'σ
        things’ to 'τ things’. For example, 〈e,
        t〉 is the type of expressions from entities to
        truth values, namely unary predicates. The LogicParser can be invoked so that it carries out type
        checking.
>>> tlp = nltk.LogicParser(type_check=True)
>>> parsed = tlp.parse('walk(angus)')
>>> parsed.argument
<ConstantExpression angus>
>>> parsed.argument.type
e
>>> parsed.function
<ConstantExpression walk>
>>> parsed.function.type
<e,?>
Why do we see <e,?> at
        the end of this example? Although the type-checker will try to infer
        as many types as possible, in this case it has not managed to fully
        specify the type of walk, since its
        result type is unknown. Although we are intending walk to receive type <e,
        t>, as far as the type-checker knows, in this context it
        could be of some other type, such as <e, e>
        or <e, <e, t>>. To help the
        type-checker, we need to specify a signature, implemented as a dictionary that
        explicitly associates types with non-logical constants:
>>> sig = {'walk': '<e, t>'}
>>> parsed = tlp.parse('walk(angus)', sig)
>>> parsed.function.type
<e,t>
A binary predicate has type 〈e,
        〈e, t〉〉. Although this is
        the type of something which combines first with an argument of type
        e to make a unary predicate, we represent binary
        predicates as combining directly with their two arguments. For
        example, the predicate see in the translation of
        Angus sees Cyril will combine with its arguments
        to give the result
        see(angus,
        cyril).
In first-order logic, arguments of predicates can also be
        individual variables such as x,
        y, and z. In NLTK, we adopt
        the convention that variables of type e are all
        lowercase. Individual variables are similar to personal pronouns like
        he, she, and
        it, in that we need to know about the context of
        use in order to figure out their denotation. One way of interpreting the pronoun in Example 10-14 is by pointing to a relevant individual in
        the local context.
Example 10-14. 
He disappeared.


Another way is to supply a textual antecedent for the pronoun
        he, for example, by uttering a prior to Example 10-14.
        Here, we say that he is coreferential with the noun phrase
        Cyril. In such a context, Example 10-14 is semantically equivalent to b.
Example 10-15. 
	Cyril is Angus’s dog.

	Cyril disappeared.





Consider by contrast the occurrence of he
        in a. In this case, it is bound by the indefinite NP a dog, and this is a
        different relationship than coreference. If we replace the pronoun
        he by a dog, the result
        b is not
        semantically equivalent to a.
Example 10-16. 
	Angus had a dog but he disappeared.

	Angus had a dog but a dog disappeared.





Corresponding to a, we can
        construct an open formula b with two occurrences of the variable
        x. (We ignore tense to simplify
        exposition.)
Example 10-17. 
	He is a dog and he disappeared.

	dog(x) &
              disappear(x)





By placing an existential
        quantifier ∃x (“for some
        x”) in front of b,
        we can bind these variables, as in
        a, which means b or, more idiomatically, c.
Example 10-18. 
	∃x.(dog(x) &
              disappear(x))

	At least one entity is a dog and disappeared.

	A dog disappeared.





Here is the NLTK counterpart of a:
Example 10-19. 
exists x.(dog(x) &
          disappear(x))


In addition to the existential quantifier, first-order logic
        offers us the universal quantifier
        ∀x (“for all x”),
        illustrated in Example 10-20.
Example 10-20. 
	∀x.(dog(x)
              → disappear(x))

	Everything has the property that if it is a dog, it
              disappears.

	Every dog disappeared.





Here is the NLTK counterpart of a:
Example 10-21. 
all x.(dog(x) ->
          disappear(x))


Although a is the standard
        first-order logic translation of c, the
        truth conditions aren’t necessarily what you expect. The formula says
        that if some x is a dog,
        then x disappears—but it doesn’t say that there
        are any dogs. So in a situation where there are no dogs, a will still come out true. (Remember that
        (P -> Q) is true when P is false.) Now you might argue that
        every dog disappeared does presuppose the
        existence of dogs, and that the logic formalization is simply wrong.
        But it is possible to find other examples that lack such a
        presupposition. For instance, we might explain that the value of the
        Python expression astring.replace('ate',
        '8') is the result of replacing every occurrence of 'ate' in astring by '8', even though there may in fact be no
        such occurrences (Table 3-2).
We have seen a number of examples where variables are bound by
        quantifiers. What happens in formulas such as the following?
((exists x. dog(x)) -> bark(x))
The scope of the exists x
        quantifier is dog(x), so the
        occurrence of x in bark(x) is unbound. Consequently it can
        become bound by some other quantifier, for example, all x in the next formula:
all x.((exists x. dog(x)) -> bark(x))
In general, an occurrence of a variable x in a formula φ is free in φ if that occurrence doesn’t fall
        within the scope of all x or
        some x in φ. Conversely, if
        x is free in formula φ, then it is
        bound in all x.φ and exists
        x.φ. If all variable occurrences in a formula are bound, the
        formula is said to be closed.
We mentioned before that the parse() method of NLTK’s LogicParser returns objects of class Expression. Each instance expr
        of this class comes with a method free(), which returns the set of variables
        that are free in expr.
>>> lp = nltk.LogicParser()
>>> lp.parse('dog(cyril)').free()
set([])
>>> lp.parse('dog(x)').free()
set([Variable('x')])
>>> lp.parse('own(angus, cyril)').free()
set([])
>>> lp.parse('exists x.dog(x)').free()
set([])
>>> lp.parse('((some x. walk(x)) -> sing(x))').free()
set([Variable('x')])
>>> lp.parse('exists x.own(y, x)').free()
set([Variable('y')])

First-Order Theorem Proving



Recall the constraint on to the north of,
        which we proposed earlier as Example 10-10:
Example 10-22. 
if x is to the north of
          y then y is not to the
          north of x.


We observed that propositional logic is not expressive enough to
        represent generalizations about binary predicates, and as a result we
        did not properly capture the argument Sylvania is to the
        north of Freedonia. Therefore, Freedonia is not to the north of
        Sylvania.
You have no doubt realized that first-order logic, by contrast,
        is ideal for formalizing such rules:
all x. all y.(north_of(x, y) -> -north_of(y, x))
Even better, we can perform automated inference to show the
        validity of the argument.
The general case in theorem proving is to determine whether a
        formula that we want to prove (a proof
        goal) can be derived by a finite sequence of inference
        steps from a list of assumed formulas. We write this as A ⊢ g, where A is a (possibly empty) list of assumptions,
        and g is a proof goal. We will
        illustrate this with NLTK’s interface to the theorem prover Prover9.
        First, we parse the required proof goal [image: 1]
        and the two assumptions [image: 2] [image: 3]. Then we create a Prover9 instance [image: 4], and call
        its prove() method on the goal, given the list of assumptions [image: 5].
>>> NotFnS = lp.parse('-north_of(f, s)')  [image: 1]
>>> SnF = lp.parse('north_of(s, f)')    [image: 2]
>>> R = lp.parse('all x. all y. (north_of(x, y) -> -north_of(y, x))')  [image: 3]
>>> prover = nltk.Prover9()   [image: 4]
>>> prover.prove(NotFnS, [SnF, R])  [image: 5]
True
Happily, the theorem prover agrees with us that the argument is
        valid. By contrast, it concludes that it is not possible to infer
        north_of(f, s) from our
        assumptions:
>>> FnS = lp.parse('north_of(f, s)')
>>> prover.prove(FnS, [SnF, R])
False

Summarizing the Language of First-Order Logic



We’ll take this opportunity to restate our earlier syntactic
        rules for propositional logic and add the formation rules for
        quantifiers; together, these give us the syntax of first-order logic.
        In addition, we make explicit the types of the expressions involved.
        We’ll adopt the convention that
        〈en,
        t〉 is the type of a predicate that combines with
        n arguments of type e to
        yield an expression of type t. In this case, we
        say that n is the arity of the predicate.
	If P is a predicate of type
            〈en,
            t〉, and α1, ...
            αn are terms of type
            e, then P(α1,
            ... αn) is of
            type t.

	If α and β are both of type e, then (α
            = β) and (α != β) are of type t.

	If φ is of type t, then so is -φ.

	If φ and ψ are of type t, then so are
            (φ & ψ), (φ | ψ), (φ -> ψ), and (φ <-> ψ).

	If φ is of type t, and
            x is a variable of type
            e, then exists
            x.φ and all x.φ are
            of type t.



Table 10-3 summarizes the new logical
        constants of the logic module, and two of the methods of Expressions.
Table 10-3. Summary of new logical relations and operators required for
          first-order logic
	Example
	Description

	=
	Equality

	!=
	Inequality

	exists
	Existential quantifier

	all
	Universal quantifier





Truth in Model



We have looked at the syntax of first-order logic, and in The Semantics of English Sentences we will examine the task
        of translating English into first-order logic. Yet as we argued in
        Natural Language Understanding, this gets us further forward
        only if we can give a meaning to sentences of first-order logic. In
        other words, we need to give a truth-conditional
        semantics to first-order logic. From the point of view of
        computational semantics, there are obvious limits to how far one can
        push this approach. Although we want to talk about sentences being
        true or false in situations, we only have the means of representing
        situations in the computer in a symbolic manner. Despite this
        limitation, it is still possible to gain a clearer picture of
        truth-conditional semantics by encoding models in NLTK.
Given a first-order logic language L, a
        model M for L is a pair
        〈D, Val〉, where
        D is an non-empty set called the domain of the model, and
        Val is a function called the valuation function, which assigns values from
        D to expressions of L as
        follows:
	For every individual constant c in
            L,
            Val(c) is an element of
            D.

	For every predicate symbol P of arity
            n ≥ 0,
            Val(P) is a function
            from
            Dn
            to {True, False}. (If
            the arity of P is 0, then
            Val(P) is simply a truth
            value, and P is regarded as a propositional
            symbol.)



According to 2, if P is of arity 2, then
        Val(P) will be a function
        f from pairs of elements of
        D to {True,
        False}. In the models we shall build in NLTK,
        we’ll adopt a more convenient alternative, in which
        Val(P) is a set
        S of pairs, defined as follows:
Example 10-23. 
S = {s |
          f(s) =
          True}


Such an f is called the characteristic function of
        S (as discussed in the further readings).
Relations are represented semantically in NLTK in the standard
        set-theoretic way: as sets of tuples. For example, let’s suppose we
        have a domain of discourse consisting of the individuals Bertie,
        Olive, and Cyril, where Bertie is a boy, Olive is a girl, and Cyril is
        a dog. For mnemonic reasons, we use b, o, and
        c as the corresponding labels in
        the model. We can declare the domain as follows:
>>> dom = set(['b', 'o', 'c'])
We will use the utility function parse_valuation() to convert a sequence of strings of the form
        symbol =>
        value into a Valuation object.
>>> v = """
... bertie => b
... olive => o
... cyril => c
... boy => {b}
... girl => {o}
... dog => {c}
... walk => {o, c}
... see => {(b, o), (c, b), (o, c)}
... """
>>> val = nltk.parse_valuation(v)
>>> print val
{'bertie': 'b',
 'boy': set([('b',)]),
 'cyril': 'c',
 'dog': set([('c',)]),
 'girl': set([('o',)]),
 'olive': 'o',
 'see': set([('o', 'c'), ('c', 'b'), ('b', 'o')]),
 'walk': set([('c',), ('o',)])}
So according to this valuation, the value of see is a set of tuples such that Bertie sees
        Olive, Cyril sees Bertie, and Olive sees Cyril.
Note
Your Turn: Draw a picture
          of the domain dom and the sets
          corresponding to each of the unary predicates, by analogy with the
          diagram shown in Figure 10-2.

You may have noticed that our unary predicates (i.e, boy, girl, dog) also come out as sets of singleton
        tuples, rather than just sets of individuals. This is a convenience
        which allows us to have a uniform treatment of relations of any arity.
        A predication of the form
        P(τ1, ...
        τn), where
        P is of arity n, comes out
        true just in case the tuple of values corresponding to
        (τ1, ...
        τn) belongs to the set of
        tuples in the value of P.
>>> ('o', 'c') in val['see']
True
>>> ('b',) in val['boy']
True

Individual Variables and Assignments



In our models, the counterpart of a context of use is a variable
        assignment. This is a mapping from
        individual variables to entities in the domain. Assignments are
        created using the Assignment constructor, which also takes the model’s domain of
        discourse as a parameter. We are not required to actually enter any
        bindings, but if we do, they are in a (variable,
        value) format similar to what we saw earlier for
        valuations.
>>> g = nltk.Assignment(dom, [('x', 'o'), ('y', 'c')])
>>> g
{'y': 'c', 'x': 'o'}
In addition, there is a print() format for assignments which uses a
        notation closer to that often found in logic textbooks:
>>> print g
g[c/y][o/x]
Let’s now look at how we can evaluate an atomic formula of
        first-order logic. First, we create a model, and then we call the
        evaluate() method to compute the truth value:
>>> m = nltk.Model(dom, val)
>>> m.evaluate('see(olive, y)', g)
True
What’s happening here? We are evaluating a formula which is
        similar to our earlier example, see(olive,
        cyril). However, when the interpretation function encounters
        the variable y, rather than
        checking for a value in val, it
        asks the variable assignment g to
        come up with a value:
>>> g['y']
'c'
Since we already know that individuals o and c
        stand in the see relation, the value True is what we expected. In this case, we
        can say that assignment g satisfies the formula see(olive, y). By contrast, the following
        formula evaluates to False relative
        to g (check that you see why this
        is).
>>> m.evaluate('see(y, x)', g)
False
In our approach (though not in standard first-order logic),
        variable assignments are partial. For example,
        g says nothing about any variables
        apart from x and y. The method purge() clears all bindings from an
        assignment.
>>> g.purge()
>>> g
{}
If we now try to evaluate a formula such as see(olive, y) relative to g, it is like trying to interpret a sentence
        containing a him when we don’t know what
        him refers to. In this case, the evaluation
        function fails to deliver a truth value.
>>> m.evaluate('see(olive, y)', g)
'Undefined'
Since our models already contain rules for interpreting Boolean
        operators, arbitrarily complex formulas can be composed and
        evaluated.
>>> m.evaluate('see(bertie, olive) & boy(bertie) & -walk(bertie)', g)
True
The general process of determining truth or falsity of a formula
        in a model is called model
        checking.

Quantification



One of the crucial insights of modern logic is that the notion
        of variable satisfaction can be used to provide an interpretation for
        quantified formulas. Let’s use Example 10-24 as an
        example.
Example 10-24. 
exists x.(girl(x) &
          walk(x))


When is it true? Let’s think about all the individuals in our
        domain, i.e., in dom. We want to
        check whether any of these individuals has the property of being a
        girl and walking. In other words, we want to know if there is some
        u in dom such
        that g[u/x] satisfies the open formula Example 10-25.
Example 10-25. 
girl(x) &
          walk(x)


Consider the following:
>>> m.evaluate('exists x.(girl(x) & walk(x))', g)
True
evaluate() returns True here
        because there is some u in dom such that Example 10-25
        is satisfied by an assignment which binds x to u. In fact,
        o is such a
        u:
>>> m.evaluate('girl(x) & walk(x)', g.add('x', 'o'))
True
One useful tool offered by NLTK is the satisfiers() method. This returns a set of all the individuals that
        satisfy an open formula. The method parameters are a parsed formula, a
        variable, and an assignment. Here are a few examples:
>>> fmla1 = lp.parse('girl(x) | boy(x)')
>>> m.satisfiers(fmla1, 'x', g)
set(['b', 'o'])
>>> fmla2 = lp.parse('girl(x) -> walk(x)')
>>> m.satisfiers(fmla2, 'x', g)
set(['c', 'b', 'o'])
>>> fmla3 = lp.parse('walk(x) -> girl(x)')
>>> m.satisfiers(fmla3, 'x', g)
set(['b', 'o'])
It’s useful to think about why fmla2 and fmla3 receive the values they do. The truth
        conditions for -> mean that
        fmla2 is equivalent to -girl(x) | walk(x), which is satisfied by
        something that either isn’t a girl or walks. Since neither b (Bertie) nor c (Cyril) are girls, according to model
        m, they both satisfy the whole
        formula. And of course o satisfies
        the formula because o satisfies
        both disjuncts. Now, since every member of the domain of discourse
        satisfies fmla2, the corresponding
        universally quantified formula is also true.
>>> m.evaluate('all x.(girl(x) -> walk(x))', g)
True
In other words, a universally quantified formula
        ∀x.φ is true with respect to g just in case for every
        u, φ is true with respect to g[u/x].
Note
Your Turn: Try to figure
          out, first with pencil and paper, and then using m.evaluate(), what the truth values are
          for all x.(girl(x) & walk(x))
          and exists x.(boy(x) ->
          walk(x)). Make sure you understand why they receive these
          values.


Quantifier Scope Ambiguity



What happens when we want to give a formal representation of a
        sentence with two quantifiers, such as the
        following?
Example 10-26. 
Everybody admires someone.


There are (at least) two ways of expressing Example 10-26 in first-order logic:
Example 10-27. 
	all x.(person(x) -> exists
              y.(person(y) & admire(x,y)))

	exists y.(person(y) & all
              x.(person(x) -> admire(x,y)))





Can we use both of these? The answer is yes, but they have
        different meanings. b is logically
        stronger than a: it claims that there is a
        unique person, say, Bruce, who is admired by everyone. a, on the other hand, just requires that for
        every person u, we can find some person
        u’ whom u admires; but this
        could be a different person u’ in each case. We
        distinguish between a and b in terms of the scope of the quantifiers. In the first, ∀ has
        wider scope than ∃, whereas in b, the
        scope ordering is reversed. So now we have two ways of representing
        the meaning of Example 10-26, and they are both quite
        legitimate. In other words, we are claiming that Example 10-26 is ambiguous with respect
        to quantifier scope, and the formulas in Example 10-27
        give us a way to make the two readings explicit. However, we are not
        just interested in associating two distinct representations with Example 10-26; we also want to show in detail how the two
        representations lead to different conditions for truth in a
        model.
In order to examine the ambiguity more closely, let’s fix our
        valuation as follows:
>>> v2 = """
... bruce => b
... cyril => c
... elspeth => e
... julia => j
... matthew => m
... person => {b, e, j, m}
... admire => {(j, b), (b, b), (m, e), (e, m), (c, a)}
... """
>>> val2 = nltk.parse_valuation(v2)
The admire relation can be visualized using
        the mapping diagram shown in Example 10-28.
Example 10-28. 
[image: image with no caption]



In Example 10-28, an arrow between two
        individuals x and y
        indicates that x admires y.
        So j and b both admire b (Bruce is very vain), while e admires m and m
        admires e. In this model, formula
        a is true but b is false. One way of exploring these results
        is by using the satisfiers() method of Model objects.
>>> dom2 = val2.domain
>>> m2 = nltk.Model(dom2, val2)
>>> g2 = nltk.Assignment(dom2)
>>> fmla4 = lp.parse('(person(x) -> exists y.(person(y) & admire(x, y)))')
>>> m2.satisfiers(fmla4, 'x', g2)
set(['a', 'c', 'b', 'e', 'j', 'm'])
This shows that fmla4 holds
        of every individual in the domain. By contrast, consider the formula
        fmla5; this has no satisfiers for
        the variable y.
>>> fmla5 = lp.parse('(person(y) & all x.(person(x) -> admire(x, y)))')
>>> m2.satisfiers(fmla5, 'y', g2)
set([])
That is, there is no person that is admired by everybody. Taking
        a different open formula, fmla6, we
        can verify that there is a person, namely Bruce, who is admired by
        both Julia and Bruce.
>>> fmla6 = lp.parse('(person(y) & all x.((x = bruce | x = julia) -> admire(x, y)))')
>>> m2.satisfiers(fmla6, 'y', g2)
set(['b'])
Note
Your Turn: Devise a new
          model based on m2 such that a comes out false in your model; similarly,
          devise a new model such that b comes out
          true.


Model Building



We have been assuming that we already had a model, and wanted to
        check the truth of a sentence in the model. By contrast, model
        building tries to create a new model, given some set of sentences. If
        it succeeds, then we know that the set is consistent, since we have an
        existence proof of the model.
We invoke the Mace4 model builder by creating an instance of
        Mace() and calling its build_model() method, in an analogous way to calling the Prover9
        theorem prover. One option is to treat our candidate set of sentences
        as assumptions, while leaving the goal unspecified. The following
        interaction shows how both [a, c1]
        and [a, c2] are consistent lists,
        since Mace succeeds in building a model for each of them, whereas
        [c1, c2] is inconsistent.
>>> a3 = lp.parse('exists x.(man(x) & walks(x))')
>>> c1 = lp.parse('mortal(socrates)')
>>> c2 = lp.parse('-mortal(socrates)')
>>> mb = nltk.Mace(5)
>>> print mb.build_model(None, [a3, c1])
True
>>> print mb.build_model(None, [a3, c2])
True
>>> print mb.build_model(None, [c1, c2])
False
We can also use the model builder as an adjunct to the theorem
        prover. Let’s suppose we are trying to prove A ⊢ g,
        i.e., that g is logically derivable
        from assumptions A = [a1, a2, ...,
        an]. We can feed this same input to Mace4, and the model
        builder will try to find a counterexample, that is, to show that
        g does not
        follow from A. So, given this
        input, Mace4 will try to find a model for the assumptions A together with the negation of g, namely the list A' = [a1, a2, ..., an, -g]. If g fails to follow from S, then Mace4 may well return with a
        counterexample faster than Prover9 concludes that it cannot find the
        required proof. Conversely, if g
        is provable from S, Mace4 may take a long time unsuccessfully
        trying to find a countermodel, and will eventually give up.
Let’s consider a concrete scenario. Our assumptions are the list
        [There is a woman that every man loves,
        Adam is a man, Eve is a
        woman]. Our conclusion is Adam loves
        Eve. Can Mace4 find a model in which the premises are true
        but the conclusion is false? In the following code, we use MaceCommand(), which will let us inspect the model that has been
        built.
>>> a4 = lp.parse('exists y. (woman(y) & all x. (man(x) -> love(x,y)))')
>>> a5 = lp.parse('man(adam)')
>>> a6 = lp.parse('woman(eve)')
>>> g = lp.parse('love(adam,eve)')
>>> mc = nltk.MaceCommand(g, assumptions=[a4, a5, a6])
>>> mc.build_model()
True
So the answer is yes: Mace4 found a countermodel in which there
        is some woman other than Eve that Adam loves. But let’s have a closer
        look at Mace4’s model, converted to the format we use for
        valuations:
>>> print mc.valuation
{'C1': 'b',
 'adam': 'a',
 'eve': 'a',
 'love': set([('a', 'b')]),
 'man': set([('a',)]),
 'woman': set([('a',), ('b',)])}
The general form of this valuation should be familiar to you: it
        contains some individual constants and predicates, each with an
        appropriate kind of value. What might be puzzling is the C1. This is a “Skolem constant” that the
        model builder introduces as a representative of the existential
        quantifier. That is, when the model builder encountered the exists y part of a4, it knew that there is some individual
        b in the domain which satisfies the
        open formula in the body of a4.
        However, it doesn’t know whether b
        is also the denotation of an individual constant anywhere else in its
        input, so it makes up a new name for b on the fly, namely C1. Now, since our premises said nothing
        about the individual constants adam
        and eve, the model builder has
        decided there is no reason to treat them as denoting different
        entities, and they both get mapped to a. Moreover, we didn’t specify that man and woman denote disjoint sets, so the model
        builder lets their denotations overlap. This illustrates quite
        dramatically the implicit knowledge that we bring to bear in
        interpreting our scenario, but which the model builder knows nothing
        about. So let’s add a new assumption which makes the sets of men and
        women disjoint. The model builder still produces a countermodel, but
        this time it is more in accord with our intuitions about the
        situation:
>>> a7 = lp.parse('all x. (man(x) -> -woman(x))')
>>> g = lp.parse('love(adam,eve)')
>>> mc = nltk.MaceCommand(g, assumptions=[a4, a5, a6, a7])
>>> mc.build_model()
True
>>> print mc.valuation
{'C1': 'c',
 'adam': 'a',
 'eve': 'b',
 'love': set([('a', 'c')]),
 'man': set([('a',)]),
 'woman': set([('b',), ('c',)])}
On reflection, we can see that there is nothing in our premises
        which says that Eve is the only woman in the domain of discourse, so
        the countermodel in fact is acceptable. If we wanted to rule it out,
        we would have to add a further assumption such as exists y. all x. (woman(x) -> (x = y)) to
        ensure that there is only one woman in the model.


The Semantics of English Sentences



Compositional Semantics in Feature-Based Grammar



At the beginning of the chapter we briefly illustrated a method
        of building semantic representations on the basis of a syntactic
        parse, using the grammar framework developed in Chapter 9. This time, rather than constructing an SQL
        query, we will build a logical form. One of our guiding ideas for
        designing such grammars is the Principle of
        Compositionality. (Also known as Frege’s Principle; see
        [Partee, 1995] for the formulation given.)
Principle of
        Compositionality: the meaning of a whole is a function of
        the meanings of the parts and of the way they are syntactically
        combined.
We will assume that the semantically relevant parts of a complex
        expression are given by a theory of syntactic analysis. Within this
        chapter, we will take it for granted that expressions are parsed
        against a context-free grammar. However, this is not entailed by the
        Principle of Compositionality.
Our goal now is to integrate the construction of a semantic
        representation in a manner that can be smoothly with the process of
        parsing. Example 10-29 illustrates a first approximation
        to the kind of analyses we would like to build.
Example 10-29. 
[image: image with no caption]



In Example 10-29, the SEM value at the root node shows a semantic representation
        for the whole sentence, while the SEM values at lower nodes show semantic representations for
        constituents of the sentence. Since the values of SEM have to be treated in a special manner, they are
        distinguished from other feature values by being enclosed in angle
        brackets.
So far, so good, but how do we write grammar rules that will
        give us this kind of result? Our approach will be similar to that
        adopted for the grammar sql0.fcfg
        at the start of this chapter, in that we will assign semantic
        representations to lexical nodes, and then compose the semantic
        representations for each phrase from those of its child nodes.
        However, in the present case we will use function application rather
        than string concatenation as the mode of composition. To be more
        specific, suppose we have NP and
        VP constituents with appropriate
        values for their SEM nodes. Then the SEM value of an S is
        handled by a rule like Example 10-30. (Observe that in
        the case where the value of SEM is a variable, we omit the angle brackets.)
Example 10-30. 
S[SEM=<?vp(?np)>] ->
          NP[SEM=?np] VP[SEM=?vp]


Example 10-30 tells us that given some SEM value ?np for the
        subject NP and some SEM value ?vp for the
        VP, the SEM value of the S
        parent is constructed by applying ?vp as a function expression to ?np. From this, we can conclude that
        ?vp has to denote a function which
        has the denotation of ?np in its
        domain. Example 10-30 is a nice example of building
        semantics using the principle of compositionality.
To complete the grammar is very straightforward; all we require
        are the rules shown here:
VP[SEM=?v] -> IV[SEM=?v]
NP[SEM=<cyril>] -> 'Cyril'
IV[SEM=<\x.bark(x)>] -> 'barks'
The VP rule says that the
        parent’s semantics is the same as the head child’s semantics. The two
        lexical rules provide non-logical constants to serve as the semantic
        values of Cyril and barks
        respectively. There is an additional piece of notation in the entry
        for barks which we will explain shortly.
Before launching into compositional semantic rules in more
        detail, we need to add a new tool to our kit, namely the λ-calculus.
        This provides us with an invaluable tool for combining expressions of
        first-order logic as we assemble a meaning representation for an
        English sentence.

The λ-Calculus



In Computing with Language: Simple Statistics, we pointed
        out that mathematical set notation was a helpful method of specifying
        properties P of words that we wanted to select
        from a document. We illustrated this with Example 10-31, which we glossed as “the set
        of all w such that w is an
        element of V (the vocabulary) and
        w has property P”.
Example 10-31. 
{w | w ∈
          V &
          P(w)}


It turns out to be extremely useful to add something to
        first-order logic that will achieve the same effect. We do this with
        the λ-operator (pronounced
        “lambda”). The λ counterpart to Example 10-31 is Example 10-32. (Since we are not trying to do set theory
        here, we just treat V as a unary
        predicate.)
Example 10-32. 
λw.
          (V(w) &
          P(w))


Note
λ expressions were originally designed by Alonzo Church to
          represent computable functions and to provide a foundation for
          mathematics and logic. The theory in which λ expressions are studied
          is known as the λ-calculus.
          Note that the λ-calculus is not part of first-order logic—both can
          be used independently of the other.

λ is a binding operator, just as the first-order logic
        quantifiers are. If we have an open formula, such as a, then we can bind the variable
        x with the λ operator, as shown in b. The corresponding NLTK representation
        is given in c.
Example 10-33. 
	(walk(x) &
              chew_gum(x))

	λx.(walk(x)
              &
              chew_gum(x))

	\x.(walk(x) &
              chew_gum(x))





Remember that \ is a special
        character in Python strings. We must either escape it (with another
        \), or else use “raw strings”
        (Regular Expressions for Detecting Word Patterns) as shown
        here:
>>> lp = nltk.LogicParser()
>>> e = lp.parse(r'\x.(walk(x) & chew_gum(x))')
>>> e
<LambdaExpression \x.(walk(x) & chew_gum(x))>
>>> e.free()
set([])
>>> print lp.parse(r'\x.(walk(x) & chew_gum(y))')
\x.(walk(x) & chew_gum(y))
We have a special name for the result of binding the variables
        in an expression: λ-abstraction. When you first
        encounter λ-abstracts, it can be hard to get an intuitive sense of
        their meaning. A couple of English glosses for b are: “be an x such
        that x walks and x chews
        gum” or “have the property of walking and chewing gum.” It has often
        been suggested that λ-abstracts are good representations for verb
        phrases (or subjectless clauses), particularly when these occur as
        arguments in their own right. This is illustrated in a and its translation, b.
Example 10-34. 
	To walk and chew gum is hard

	hard(\x.(walk(x) &
              chew_gum(x))





So the general picture is this: given an open formula φ with
        free variable x, abstracting over
        x yields a property expression
        λx.φ—the property of being an
        x such that φ. Here’s a more official version of
        how abstracts are built:
Example 10-35. 
If α is of type τ, and x is a variable of
          type e, then \x.α is of type 〈e,
          τ〉.


b illustrated a case where we
        say something about a property, namely that it is hard. But what we
        usually do with properties is attribute them to individuals. And in
        fact, if φ is an open formula, then the abstract
        λx.φ can be used as a unary predicate. In Example 10-36, b is
        predicated of the term gerald.
Example 10-36. 
\x.(walk(x) & chew_gum(x))
          (gerald)


Now Example 10-36 says that Gerald has the
        property of walking and chewing gum, which has the same meaning as
        Example 10-37.
Example 10-37. 
(walk(gerald) &
          chew_gum(gerald))


What we have done here is remove the \x from the beginning of \x.(walk(x) & chew_gum(x)) and replaced
        all occurrences of x in (walk(x) & chew_gum(x)) by gerald. We’ll use
        α[β/x] as notation for the operation of replacing
        all free occurrences of x in α by the expression
        β. So
(walk(x) & chew_gum(x))[gerald/x]
represents the same expression as Example 10-37. The “reduction” of Example 10-36 to Example 10-37
        is an extremely useful operation in simplifying semantic
        representations, and we shall use it a lot in the rest of this
        chapter. The operation is often called β-reduction. In order for it to be
        semantically justified, we want it to hold that
        λx. α(β) has the same semantic value as
        α[β/x]. This is indeed true, subject to a slight
        complication that we will come to shortly. In order to carry out
        β-reduction of expressions in NLTK, we can call the simplify() method [image: 1].
>>> e = lp.parse(r'\x.(walk(x) & chew_gum(x))(gerald)')
>>> print e
\x.(walk(x) & chew_gum(x))(gerald)
>>> print e.simplify() [image: 1]
(walk(gerald) & chew_gum(gerald))
Although we have so far only considered cases where the body of
        the λ-abstract is an open formula, i.e., of type
        t, this is not a necessary restriction; the body
        can be any well-formed expression. Here’s an example with two
        λs:
Example 10-38. 
\x.\y.(dog(x) & own(y,
          x))


Just as b plays the role of a
        unary predicate, Example 10-38 works like a
        binary predicate: it can be applied directly to two arguments [image: 1]. The LogicParser allows nested λs such as \x.\y. to be written in the abbreviated form
        \x y. [image: 1].
>>> print lp.parse(r'\x.\y.(dog(x) & own(y, x))(cyril)').simplify()
\y.(dog(cyril) & own(y,cyril))
>>> print lp.parse(r'\x y.(dog(x) & own(y, x))(cyril, angus)').simplify() [image: 1]
(dog(cyril) & own(angus,cyril))
All our λ-abstracts so far have involved the familiar
        first-order variables: x, y, and so on—variables of type
        e. But suppose we want to treat one abstract,
        say, \x.walk(x), as the
        argument of another λ-abstract? We might try
        this:
\y.y(angus)(\x.walk(x))
But since the variable y is
        stipulated to be of type e, \y.y(angus) only applies to arguments of
        type e while \x.walk(x) is of type
        〈e, t〉! Instead, we need to
        allow abstraction over variables of higher type. Let’s use P and Q
        as variables of type 〈e, t〉,
        and then we can have an abstract such as \P.P(angus). Since P is of type 〈e,
        t〉, the whole abstract is of type
        〈〈e, t〉,
        t〉. Then \P.P(angus)(\x.walk(x)) is legal, and can be
        simplified via β-reduction to \x.walk(x)(angus) and then again to walk(angus).
When carrying out β-reduction, some care has to be taken with
        variables. Consider, for example, the λ-terms a and b, which
        differ only in the identity of a free variable.
Example 10-39. 
	\y.see(y, x)

	\y.see(y, z)





Suppose now that we apply the λ-term \P.exists x.P(x) to each of these
        terms:
Example 10-40. 
	\P.exists x.P(x)(\y.see(y,
              x))

	\P.exists x.P(x)(\y.see(y,
              z))





We pointed out earlier that the results of the application
        should be semantically equivalent. But if we let the free variable
        x in a
        fall inside the scope of the existential quantifier in a, then after reduction, the results will be
        different:
Example 10-41. 
	exists x.see(x,
              x)

	exists x.see(x,
              z)





a means there is some x that sees him/herself, whereas b means that there is some x that sees an unspecified individual
        z. What has gone wrong here?
        Clearly, we want to forbid the kind of variable “capture” shown in
        a.
In order to deal with this problem, let’s step back a moment.
        Does it matter what particular name we use for the variable bound by
        the existential quantifier in the function expression of a? The answer is no. In fact, given any
        variable-binding expression (involving ∀, ∃, or λ), the name chosen
        for the bound variable is completely arbitrary. For example, exists x.P(x) and exists y.P(y) are equivalent; they are
        called α-equivalents, or alphabetic variants. The process of
        relabeling bound variables is known as α-conversion. When we test for equality of
        VariableBinderExpressions in the logic module (i.e., using ==), we are in fact testing for
        α-equivalence:
>>> e1 = lp.parse('exists x.P(x)')
>>> print e1
exists x.P(x)
>>> e2 = e1.alpha_convert(nltk.sem.Variable('z'))
>>> print e2
exists z.P(z)
>>> e1 == e2
True
When β-reduction is carried out on an application f(a), we check whether there are free
        variables in a that also occur as
        bound variables in any subterms of f. Suppose, as in the example just
        discussed, that x is free in
        a, and that f contains the subterm exists x.P(x). In this case, we produce an
        alphabetic variant of exists
        x.P(x), say, exists
        z1.P(z1), and then carry on with the reduction. This
        relabeling is carried out automatically by the β-reduction code in
        logic, and the results can be seen in the following
        example:
>>> e3 = lp.parse('\P.exists x.P(x)(\y.see(y, x))')
>>> print e3
(\P.exists x.P(x))(\y.see(y,x))
>>> print e3.simplify()
exists z1.see(z1,x)
Note
As you work through examples like these in the following
          sections, you may find that the logical expressions which are
          returned have different variable names; for example, you might see
          z14 in place of z1 in the preceding formula. This change
          in labeling is innocuous—in fact, it is just an illustration of
          alphabetic variants.

After this excursus, let’s return to the task of building
        logical forms for English sentences.

Quantified NPs



At the start of this section, we briefly described how to build
        a semantic representation for Cyril barks. You
        would be forgiven for thinking this was all too easy—surely there is a
        bit more to building compositional semantics. What about quantifiers,
        for instance? Right, this is a crucial issue. For example, we want
        a to be given the logical form in b. How can this be accomplished?
Example 10-42. 
	A dog barks.

	exists x.(dog(x) &
              bark(x))





Let’s make the assumption that our only
        operation for building complex semantic representations is function
        application. Then our problem is this: how do we give a semantic
        representation to the quantified NPs a dog so that it
        can be combined with bark to give
        the result in b? As a first step, let’s make
        the subject’s SEM value act as the function expression rather than the
        argument. (This is sometimes called type-raising.) Now we are looking
        for a way of instantiating ?np so
        that [SEM=<?np(\x.bark(x))>] is equivalent to
        [SEM=<exists x.(dog(x) &
        bark(x))>]. Doesn’t this look a bit reminiscent of
        carrying out β-reduction in the λ-calculus? In other words, we want a
        λ-term M to replace ?np so that applying M
        to \x.bark(x) yields b. To do this, we replace the occurrence of
        \x.bark(x) in b by a predicate variable P, and bind the variable with λ, as shown in
        Example 10-43.
Example 10-43. 
\P.exists x.(dog(x) &
          P(x))


We have used a different style of variable in Example 10-43—that is, 'P'
        rather than 'x' or 'y'—to signal that we are abstracting over a
        different kind of object—not an individual, but a function expression
        of type 〈e, t〉. So the type
        of Example 10-43 as a whole is 〈〈e,
        t〉, t〉. We will take this to
        be the type of NPs in general. To
        illustrate further, a universally quantified NP will look like Example 10-44.
Example 10-44. 
\P.all x.(dog(x) ->
          P(x))


We are pretty much done now, except that we also want to carry
        out a further abstraction plus application for the process of
        combining the semantics of the determiner a,
        namely Example 10-45, with the semantics of
        dog.
Example 10-45. 
\Q P.exists x.(Q(x) &
          P(x))


Applying Example 10-45 as a function expression
        to \x.dog(x) yields Example 10-43, and applying that to \x.bark(x) gives us \P.exists x.(dog(x) & P(x))(\x.bark(x)).
        Finally, carrying out β-reduction yields just what we wanted, namely
        b.

Transitive Verbs



Our next challenge is to deal with sentences containing
        transitive verbs, such as Example 10-46.
Example 10-46. 
Angus chases a dog.


The output semantics that we want to build is exists x.(dog(x) & chase(angus, x)).
        Let’s look at how we can use λ-abstraction to get this result. A
        significant constraint on possible solutions is to require that the
        semantic representation of a dog be independent
        of whether the NP acts as subject
        or object of the sentence. In other words, we want to get the formula
        just shown as our output while sticking to Example 10-43
        as the NP semantics. A second
        constraint is that VPs should have
        a uniform type of interpretation, regardless of whether they consist
        of just an intransitive verb or a transitive verb plus object. More
        specifically, we stipulate that VPs
        are always of type 〈e, t〉.
        Given these constraints, here’s a semantic representation for
        chases a dog that does the trick.
Example 10-47. 
\y.exists x.(dog(x) & chase(y,
          x))


Think of Example 10-47 as the property of being a
        y such that for some dog x,
        y chases x; or more
        colloquially, being a y who chases a dog. Our
        task now resolves to designing a semantic representation for
        chases which can combine with Example 10-43 so as to allow Example 10-47 to be
        derived.
Let’s carry out the inverse of β-reduction on Example 10-47, giving rise to Example 10-48.
Example 10-48. 
\P.exists x.(dog(x) &
          P(x))(\z.chase(y, z))


Example 10-48 may be slightly hard to read at
        first; you need to see that it involves applying the quantified
        NP representation from Example 10-43 to \z.chase(y,z). Example 10-48
        is equivalent via β-reduction to
        exists x.(dog(x) & chase(y,
        x)).
Now let’s replace the function expression in Example 10-48 by a variable X of the same type as an NP, that is, of type
        〈〈e, t〉,
        t〉.
Example 10-49. 
X(\z.chase(y, z))


The representation of a transitive verb will have to apply to an
        argument of the type of X to yield
        a function expression of the type of VPs, that is, of type
        〈e, t〉. We can ensure this
        by abstracting over both the X
        variable in Example 10-49 and also the subject variable
        y. So the full solution is reached
        by giving chases the semantic representation
        shown in Example 10-50.
Example 10-50. 
\X y.X(\x.chase(y,
          x))


If Example 10-50 is applied to Example 10-43, the result after β-reduction is equivalent to
        Example 10-47, which is what we wanted all along:
>>> lp = nltk.LogicParser()
>>> tvp = lp.parse(r'\X x.X(\y.chase(x,y))')
>>> np = lp.parse(r'(\P.exists x.(dog(x) & P(x)))')
>>> vp = nltk.sem.ApplicationExpression(tvp, np)
>>> print vp
(\X x.X(\y.chase(x,y)))(\P.exists x.(dog(x) & P(x)))
>>> print vp.simplify()
\x.exists z2.(dog(z2) & chase(x,z2))
In order to build a semantic representation for a sentence, we
        also need to combine in the semantics of the subject NP. If the latter is a quantified
        expression, such as every girl, everything
        proceeds in the same way as we showed for a dog
        barks earlier on; the subject is translated as a function
        expression which is applied to the semantic representation of the
        VP. However, we now seem to have
        created another problem for ourselves with proper names. So far, these
        have been treated semantically as individual constants, and these
        cannot be applied as functions to expressions like Example 10-47. Consequently, we need to come up with a
        different semantic representation for them. What we do in this case is
        reinterpret proper names so that they too are function expressions,
        like quantified NPs. Here is the
        required λ-expression for Angus:
Example 10-51. 
\P.P(angus)


Example 10-51 denotes the characteristic function
        corresponding to the set of all properties which are true of Angus.
        Converting from an individual constant angus to \P.P(angus) is another example of
        type-raising, briefly mentioned earlier, and allows us to replace a
        Boolean-valued application such as \x.walk(x)(angus) with an equivalent
        function application \P.P(angus)(\x.walk(x)). By β-reduction,
        both expressions reduce to walk(angus).
The grammar simple-sem.fcfg
        contains a small set of rules for parsing and translating simple
        examples of the kind that we have been looking at. Here’s a slightly
        more complicated example:
>>> from nltk import load_parser
>>> parser = load_parser('grammars/book_grammars/simple-sem.fcfg', trace=0)
>>> sentence = 'Angus gives a bone to every dog'
>>> tokens = sentence.split()
>>> trees = parser.nbest_parse(tokens)
>>> for tree in trees:
...     print tree.node['SEM']
all z2.(dog(z2) -> exists z1.(bone(z1) & give(angus,z1,z2)))
NLTK provides some utilities to make it easier to derive and
        inspect semantic interpretations. The function batch_interpret() is intended for batch interpretation of a list of input
        sentences. It builds a dictionary d
        where for each sentence sent in the
        input, d[sent] is a list of pairs
        (synrep, semrep) consisting
        of trees and semantic representations for sent. The value is a list since sent may be syntactically ambiguous; in the
        following example, however, there is only one parse tree per sentence
        in the list.
(S[SEM=<walk(irene)>]
  (NP[-LOC, NUM='sg', SEM=<\P.P(irene)>]
    (PropN[-LOC, NUM='sg', SEM=<\P.P(irene)>] Irene))
  (VP[NUM='sg', SEM=<\x.walk(x)>]
    (IV[NUM='sg', SEM=<\x.walk(x)>, TNS='pres'] walks)))
(S[SEM=<exists z1.(ankle(z1) & bite(cyril,z1))>]
  (NP[-LOC, NUM='sg', SEM=<\P.P(cyril)>]
    (PropN[-LOC, NUM='sg', SEM=<\P.P(cyril)>] Cyril))
  (VP[NUM='sg', SEM=<\x.exists z1.(ankle(z1) & bite(x,z1))>]
    (TV[NUM='sg', SEM=<\X x.X(\y.bite(x,y))>, TNS='pres'] bites)
    (NP[NUM='sg', SEM=<\Q.exists x.(ankle(x) & Q(x))>]
      (Det[NUM='sg', SEM=<\P Q.exists x.(P(x) & Q(x))>] an)
      (Nom[NUM='sg', SEM=<\x.ankle(x)>]
        (N[NUM='sg', SEM=<\x.ankle(x)>] ankle)))))
We have seen now how to convert English sentences into logical
        forms, and earlier we saw how logical forms could be checked as true
        or false in a model. Putting these two mappings together, we can check
        the truth value of English sentences in a given model. Let’s take
        model m as defined earlier. The
        utility batch_evaluate() resembles batch_interpret(), except that we need to pass a model and a variable
        assignment as parameters. The output is a triple
        (synrep, semrep,
        value), where synrep,
        semrep are as before, and
        value is a truth value. For simplicity, the
        following example only processes a single sentence.
>>> v = """
... bertie => b
... olive => o
... cyril => c
... boy => {b}
... girl => {o}
... dog => {c}
... walk => {o, c}
... see => {(b, o), (c, b), (o, c)}
... """
>>> val = nltk.parse_valuation(v)
>>> g = nltk.Assignment(val.domain)
>>> m = nltk.Model(val.domain, val)
>>> sent = 'Cyril sees every boy'
>>> grammar_file = 'grammars/book_grammars/simple-sem.fcfg'
>>> results = nltk.batch_evaluate([sent], grammar_file, m, g)[0]
>>> for (syntree, semrep, value) in results:
...     print semrep
...     print value
all z4.(boy(z4) -> see(cyril,z4))
True

Quantifier Ambiguity Revisited



One important limitation of the methods described earlier is
        that they do not deal with scope ambiguity. Our translation method is
        syntax-driven, in the sense that the semantic representation is
        closely coupled with the syntactic analysis, and the scope of the
        quantifiers in the semantics therefore reflects the relative scope of
        the corresponding NPs in the
        syntactic parse tree. Consequently, a sentence like Example 10-26, repeated here, will always be translated as
        a, not b.
Example 10-52. 
Every girl chases a dog.


Example 10-53. 
	all x.(girl(x) -> exists
              y.(dog(y) & chase(x,y)))

	exists y.(dog(y) & all
              x.(girl(x) -> chase(x,y)))





There are numerous approaches to dealing with scope ambiguity,
        and we will look very briefly at one of the simplest. To start with,
        let’s briefly consider the structure of scoped formulas. Figure 10-3 depicts the way in which the two readings
        of Example 10-52 differ.
[image: Quantifier scopings.]

Figure 10-3. Quantifier scopings.


Let’s consider the lefthand structure first. At the top, we have
        the quantifier corresponding to every girl. The φ
        can be thought of as a placeholder for whatever is inside the scope of
        the quantifier. Moving downward, we see that we can plug in the
        quantifier corresponding to a dog as an
        instantiation of φ. This gives a new placeholder ψ, representing the
        scope of a dog, and into this we can plug the
        “core” of the semantics, namely the open sentence corresponding to
        x chases
        y. The structure on the righthand side is
        identical, except we have swapped round the order of the two
        quantifiers.
In the method known as Cooper
        storage, a semantic representation is no longer an
        expression of first-order logic, but instead a pair consisting of a
        “core” semantic representation plus a list of binding operators. For the moment, think of a
        binding operator as being identical to the semantic representation of
        a quantified NP such as Example 10-44 or Example 10-45. Following
        along the lines indicated in Figure 10-3, let’s
        assume that we have constructed a Cooper-storage-style semantic
        representation of sentence Example 10-52, and let’s
        take our core to be the open formula chase(x,y). Given a list of binding
        operators corresponding to the two NPs in Example 10-52, we
        pick a binding operator off the list, and combine it with the
        core.
\P.exists y.(dog(y) & P(y))(\z2.chase(z1,z2))
Then we take the result, and apply the next binding operator
        from the list to it.
\P.all x.(girl(x) -> P(x))(\z1.exists x.(dog(x) & chase(z1,x)))
Once the list is empty, we have a conventional logical form for
        the sentence. Combining binding operators with the core in this way is
        called S-Retrieval. If we are
        careful to allow every possible order of binding operators (for
        example, by taking all permutations of the list; see Doing More with Functions), then we will be able to
        generate every possible scope ordering of quantifiers.
The next question to address is how we build up a core+store
        representation compositionally. As before, each phrasal and lexical
        rule in the grammar will have a SEM feature, but now there will be embedded features
        CORE and STORE. To illustrate the machinery, let’s
        consider a simpler example, namely Cyril smiles.
        Here’s a lexical rule for the verb smiles (taken
        from the grammar storage.fcfg),
        which looks pretty innocuous:
IV[SEM=[CORE=<\x.smile(x)>, STORE=(/)]] -> 'smiles'
The rule for the proper name Cyril is more
        complex.
NP[SEM=[CORE=<@x>, STORE=(<bo(\P.P(cyril),@x)>)]] -> 'Cyril'
The bo predicate has two
        subparts: the standard (type-raised) representation of a proper name,
        and the expression @x, which is
        called the address of the binding
        operator. (We’ll explain the need for the address variable shortly.)
        @x is a metavariable, that is, a
        variable that ranges over individual variables of the logic and, as
        you will see, also provides the value of core. The rule for VP just percolates up the semantics of the
        IV, and the interesting work is
        done by the S rule.
VP[SEM=?s] -> IV[SEM=?s]

S[SEM=[CORE=<?vp(?np)>, STORE=(?b1+?b2)]] ->
   NP[SEM=[CORE=?np, STORE=?b1]] VP[SEM=[CORE=?vp, STORE=?b2]]
The core value at the
        S node is the result of applying
        the VP’s core value, namely \x.smile(x), to the subject NP’s value. The latter will not be @x, but rather an instantiation of @x, say, z3. After β-reduction, <?vp(?np)> will be unified with
        <smile(z3)>. Now, when
        @x is instantiated as part of the
        parsing process, it will be instantiated uniformly. In particular, the
        occurrence of @x in the subject
        NP’s STORE will also be mapped to z3, yielding the element bo(\P.P(cyril),z3). These steps can be seen
        in the following parse tree.
(S[SEM=[CORE=<smile(z3)>, STORE=(bo(\P.P(cyril),z3))]]
  (NP[SEM=[CORE=<z3>, STORE=(bo(\P.P(cyril),z3))]] Cyril)
  (VP[SEM=[CORE=<\x.smile(x)>, STORE=()]]
    (IV[SEM=[CORE=<\x.smile(x)>, STORE=()]] smiles)))
Let’s return to our more complex example, Example 10-52, and see what the storage style SEM value is, after parsing with grammar storage.fcfg.
CORE  = <chase(z1,z2)>
STORE = (bo(\P.all x.(girl(x) -> P(x)),z1), bo(\P.exists x.(dog(x) & P(x)),z2))
It should be clearer now why the address variables are an
        important part of the binding operator. Recall that during
        S-retrieval, we will be taking binding operators off the STORE list and applying them successively to
        the CORE. Suppose we start with
        bo(\P.all x.(girl(x) ->
        P(x)),z1), which we want to combine with chase(z1,z2). The quantifier part of the
        binding operator is \P.all x.(girl(x) ->
        P(x)), and to combine this with chase(z1,z2), the latter needs to first be
        turned into a λ-abstract. How do we know which variable to abstract
        over? This is what the address z1
        tells us, i.e., that every girl has the role of
        chaser rather than chasee.
The module nltk.sem.cooper_storage deals with the task of turning storage-style semantic
        representations into standard logical forms. First, we construct a
        CooperStore instance, and inspect its STORE and CORE.
>>> from nltk.sem import cooper_storage as cs
>>> sentence = 'every girl chases a dog'
>>> trees = cs.parse_with_bindops(sentence, grammar='grammars/book_grammars/storage.fcfg')
>>> semrep = trees[0].node['SEM']
>>> cs_semrep = cs.CooperStore(semrep)
>>> print cs_semrep.core
chase(z1,z2)
>>> for bo in cs_semrep.store:
...     print bo
bo(\P.all x.(girl(x) -> P(x)),z1)
bo(\P.exists x.(dog(x) & P(x)),z2)
Finally, we call s_retrieve() and check the readings.
>>> cs_semrep.s_retrieve(trace=True)
Permutation 1
   (\P.all x.(girl(x) -> P(x)))(\z1.chase(z1,z2))
   (\P.exists x.(dog(x) & P(x)))(\z2.all x.(girl(x) -> chase(x,z2)))
Permutation 2
   (\P.exists x.(dog(x) & P(x)))(\z2.chase(z1,z2))
   (\P.all x.(girl(x) -> P(x)))(\z1.exists x.(dog(x) & chase(z1,x)))
>>> for reading in cs_semrep.readings:
...     print reading
exists x.(dog(x) & all z3.(girl(z3) -> chase(z3,x)))
all x.(girl(x) -> exists z4.(dog(z4) & chase(x,z4)))


Discourse Semantics



A discourse is a sequence of
      sentences. Very often, the interpretation of a sentence in a discourse
      depends on what preceded it. A clear example of this comes from
      anaphoric pronouns, such as he,
      she, and it. Given a discourse
      such as Angus used to have a dog. But he recently
      disappeared., you will probably interpret
      he as referring to Angus’s dog. However, in
      Angus used to have a dog. He took him for walks in New
      Town., you are more likely to interpret
      he as referring to Angus himself.
Discourse Representation Theory



The standard approach to quantification in first-order logic is
        limited to single sentences. Yet there seem to be examples where the
        scope of a quantifier can extend over two or more sentences. We saw
        one earlier, and here’s a second example, together with a
        translation.
Example 10-54. 
	Angus owns a dog. It bit Irene.

	∃x.(dog(x)
              & own(Angus,
              x) &
              bite(x,
              Irene))





That is, the NP a
        dog acts like a quantifier which binds the
        it in the second sentence. Discourse
        Representation Theory (DRT) was developed with the specific goal of
        providing a means for handling this and other semantic phenomena which
        seem to be characteristic of discourse. A discourse representation structure (DRS)
        presents the meaning of discourse in terms of a list of discourse
        referents and a list of conditions. The discourse referents are the things under
        discussion in the discourse, and they correspond to the individual
        variables of first-order logic. The DRS
        conditions apply to those discourse referents, and
        correspond to atomic open formulas of first-order logic. Figure 10-4 illustrates how a DRS for the first sentence in
        a is augmented to become a DRS for both
        sentences.
[image: Building a DRS: The DRS on the lefthand side represents the result of processing the first sentence in the discourse, while the DRS on the righthand side shows the effect of processing the second sentence and integrating its content.]

Figure 10-4. Building a DRS: The DRS on the lefthand side represents the
          result of processing the first sentence in the discourse, while the
          DRS on the righthand side shows the effect of processing the second
          sentence and integrating its content.

When the second sentence of a is
        processed, it is interpreted in the context of what is already present
        in the lefthand side of Figure 10-4. The pronoun
        it triggers the addition of a new discourse
        referent, say, u, and we need to find an
        anaphoric antecedent for it—that is, we
        want to work out what it refers to. In DRT, the
        task of finding the antecedent for an anaphoric pronoun involves
        linking it to a discourse referent already within the current DRS, and
        y is the obvious choice. (We will say more about
        anaphora resolution shortly.) This processing step gives rise to a new
        condition u = y. The
        remaining content contributed by the second sentence is also merged
        with the content of the first, and this is shown on the righthand side
        of Figure 10-4.
Figure 10-4 illustrates how a DRS can represent
        more than just a single sentence. In this case, it is a two-sentence
        discourse, but in principle a single DRS could correspond to the
        interpretation of a whole text. We can inquire into the truth
        conditions of the righthand DRS in Figure 10-4.
        Informally, it is true in some situation s if
        there are entities a, c, and i
        in s corresponding to the discourse referents in
        the DRS such that all the conditions are true in
        s; that is, a
        is named Angus, c is a dog, a owns c,
        i is named
        Irene, and c
        bit i.
In order to process DRSs computationally, we need to convert
        them into a linear format. Here’s an example, where the DRS is a pair
        consisting of a list of discourse referents and a list of DRS
        conditions:
([x, y], [angus(x), dog(y), own(x,y)])
The easiest way to build a DRS object in NLTK is by parsing a string representation
        [image: 1].
>>> dp = nltk.DrtParser()
>>> drs1 = dp.parse('([x, y], [angus(x), dog(y), own(x, y)])') [image: 1]
>>> print drs1
([x,y],[angus(x), dog(y), own(x,y)])
We can use the draw() method [image: 1] to visualize the
        result, as shown in Figure 10-5.
>>> drs1.draw() [image: 1]
[image: DRS screenshot.]

Figure 10-5. DRS screenshot.


When we discussed the truth conditions of the DRSs in Figure 10-4, we assumed that the topmost discourse referents
        were interpreted as existential quantifiers, while the conditions were
        interpreted as though they are conjoined. In fact, every DRS can be
        translated into a formula of first-order logic, and the fol() method implements this translation.
>>> print drs1.fol()
exists x y.((angus(x) & dog(y)) & own(x,y))
In addition to the functionality available for first-order logic
        expressions, DRT Expressions have a DRS-concatenation operator, represented as the
        + symbol. The concatenation of two
        DRSs is a single DRS containing the merged discourse referents and the
        conditions from both arguments. DRS-concatenation automatically
        α-converts bound variables to avoid name-clashes.
>>> drs2 = dp.parse('([x], [walk(x)]) + ([y], [run(y)])')
>>> print drs2
(([x],[walk(x)]) + ([y],[run(y)]))
>>> print drs2.simplify()
([x,y],[walk(x), run(y)])
While all the conditions seen so far have been atomic, it is
        possible to embed one DRS within another, and this is how universal
        quantification is handled. In drs3,
        there are no top-level discourse referents, and the sole condition is
        made up of two sub-DRSs, connected by an implication. Again, we can
        use fol() to get a handle on the truth conditions.
>>> drs3 = dp.parse('([], [(([x], [dog(x)]) -> ([y],[ankle(y), bite(x, y)]))])')
>>> print drs3.fol()
all x.(dog(x) -> exists y.(ankle(y) & bite(x,y)))
We pointed out earlier that DRT is designed to allow anaphoric
        pronouns to be interpreted by linking to existing discourse referents.
        DRT sets constraints on which discourse referents are “accessible” as
        possible antecedents, but is not intended to explain how a particular
        antecedent is chosen from the set of candidates. The module nltk.sem.drt_resolve_anaphora adopts a similarly conservative strategy: if the DRS
        contains a condition of the form PRO(x), the method resolve_anaphora() replaces this with a condition of the form x = [...], where [...] is a list of possible
        antecedents.
>>> drs4 = dp.parse('([x, y], [angus(x), dog(y), own(x, y)])')
>>> drs5 = dp.parse('([u, z], [PRO(u), irene(z), bite(u, z)])')
>>> drs6 = drs4 + drs5
>>> print drs6.simplify()
([x,y,u,z],[angus(x), dog(y), own(x,y), PRO(u), irene(z), bite(u,z)])
>>> print drs6.simplify().resolve_anaphora()
([x,y,u,z],[angus(x), dog(y), own(x,y), (u = [x,y,z]), irene(z), bite(u,z)])
Since the algorithm for anaphora resolution has been separated
        into its own module, this facilitates swapping in alternative
        procedures that try to make more intelligent guesses about the correct
        antecedent.
Our treatment of DRSs is fully compatible with the existing
        machinery for handling λ-abstraction, and consequently it is
        straightforward to build compositional semantic representations that
        are based on DRT rather than first-order logic. This technique is
        illustrated in the following rule for indefinites (which is part of
        the grammar drt.fcfg). For ease
        of comparison, we have added the parallel rule for indefinites from
        simple-sem.fcfg.
Det[NUM=sg,SEM=<\P Q.(([x],[]) + P(x) + Q(x))>] -> 'a'
Det[NUM=sg,SEM=<\P Q. exists x.(P(x) & Q(x))>] -> 'a'
To get a better idea of how the DRT rule works, look at this
        subtree for the NP a
        dog:
(NP[NUM='sg', SEM=<\Q.(([x],[dog(x)]) + Q(x))>]
  (Det[NUM'sg', SEM=<\P Q.((([x],[]) + P(x)) + Q(x))>] a)
  (Nom[NUM='sg', SEM=<\x.([],[dog(x)])>]
    (N[NUM='sg', SEM=<\x.([],[dog(x)])>] dog)))))
The λ-abstract for the indefinite is applied as a function
        expression to \x.([],[dog(x)])
        which leads to \Q.(([x],[]) + ([],[dog(x)]) +
        Q(x)); after simplification, we get \Q.(([x],[dog(x)]) + Q(x)) as the
        representation for the NP as a
        whole.
In order to parse with grammar drt.fcfg, we specify in the call to
        load_earley() that SEM values in
        feature structures are to be parsed using DrtParser in place of the default LogicParser.
>>> from nltk import load_parser
>>> parser = load_parser('grammars/book_grammars/drt.fcfg', logic_parser=nltk.DrtParser())
>>> trees = parser.nbest_parse('Angus owns a dog'.split())
>>> print trees[0].node['SEM'].simplify()
([x,z2],[Angus(x), dog(z2), own(x,z2)])

Discourse Processing



When we interpret a sentence, we use a rich context for
        interpretation, determined in part by the preceding context and in
        part by our background assumptions. DRT provides a theory of how the
        meaning of a sentence is integrated into a representation of the prior
        discourse, but two things have been glaringly absent from the
        processing approach just discussed. First, there has been no attempt
        to incorporate any kind of inference; and second, we have only
        processed individual sentences. These omissions are redressed by the
        module nltk.inference.discourse.
Whereas a discourse is a sequence
        s1, ...
        sn of
        sentences, a discourse thread is a sequence
        s1-ri,
        ...
        sn-rj
        of readings, one for each sentence in the discourse. The module
        processes sentences incrementally, keeping track of all possible
        threads when there is ambiguity. For simplicity, the following example
        ignores scope ambiguity:
>>> dt = nltk.DiscourseTester(['A student dances', 'Every student is a person'])
>>> dt.readings()
s0 readings: s0-r0: exists x.(student(x) & dance(x))
s1 readings: s1-r0: all x.(student(x) -> person(x))
When a new sentence is added to the current discourse, setting
        the parameter consistchk=True causes consistency to
        be checked by invoking the model checker for each thread, i.e., each
        sequence of admissible readings. In this case, the user has the option
        of retracting the sentence in question.
>>> dt.add_sentence('No person dances', consistchk=True)
Inconsistent discourse d0 ['s0-r0', 's1-r0', 's2-r0']:
s0-r0: exists x.(student(x) & dance(x))
s1-r0: all x.(student(x) -> person(x))
s2-r0: -exists x.(person(x) & dance(x))
>>> dt.retract_sentence('No person dances', verbose=True)
Current sentences are
s0: A student dances
s1: Every student is a person
In a similar manner, we use informchk=True to check whether a new
        sentence φ is informative relative to the current discourse. The
        theorem prover treats existing sentences in the thread as assumptions
        and attempts to prove φ; it is informative if no such proof can be
        found.
>>> dt.add_sentence('A person dances', informchk=True)
Sentence 'A person dances' under reading 'exists x.(person(x) & dance(x))':
Not informative relative to thread 'd0'
It is also possible to pass in an additional set of assumptions
        as background knowledge and use these to filter out inconsistent
        readings; see the Discourse HOWTO at http://www.nltk.org/howto for more details.
The discourse module can
        accommodate semantic ambiguity and filter out readings that are not
        admissible. The following example invokes both Glue Semantics as well
        as DRT. Since the Glue Semantics module is configured to use the
        wide-coverage Malt dependency parser, the input (Every dog
        chases a boy. He runs.) needs to be tagged as well as
        tokenized.
>>> from nltk.tag import RegexpTagger
>>> tagger = RegexpTagger(
...     [('^(chases|runs)$', 'VB'),
...      ('^(a)$', 'ex_quant'),
...      ('^(every)$', 'univ_quant'),
...      ('^(dog|boy)$', 'NN'),
...      ('^(He)$', 'PRP')
... ])
>>> rc = nltk.DrtGlueReadingCommand(depparser=nltk.MaltParser(tagger=tagger))
>>> dt = nltk.DiscourseTester(['Every dog chases a boy', 'He runs'], rc)
>>> dt.readings()
s0 readings:
s0-r0: ([],[(([x],[dog(x)]) -> ([z3],[boy(z3), chases(x,z3)]))]) 
s0-r1: ([z4],[boy(z4), (([x],[dog(x)]) -> ([],[chases(x,z4)]))])

s1 readings:
s1-r0: ([x],[PRO(x), runs(x)])
The first sentence of the discourse has two possible readings,
        depending on the quantifier scoping. The unique reading of the second
        sentence represents the pronoun He via the
        condition PRO(x). Now let’s look at
        the discourse threads that result:
>>> dt.readings(show_thread_readings=True)
d0: ['s0-r0', 's1-r0'] : INVALID: AnaphoraResolutionException
d1: ['s0-r1', 's1-r0'] : ([z6,z10],[boy(z6), (([x],[dog(x)]) ->
([],[chases(x,z6)])), (z10 = z6), runs(z10)])
When we examine threads d0
        and d1, we see that reading
        s0-r0, where every
        dog out-scopes a boy, is
        deemed inadmissible because the pronoun in the second sentence cannot
        be resolved. By contrast, in thread d1 the pronoun (relettered to z10) has been bound via the equation
        (z10 = z6).
Inadmissible readings can be filtered out by passing the
        parameter filter=True.
>>> dt.readings(show_thread_readings=True, filter=True)
d1: ['s0-r1', 's1-r0'] : ([z12,z15],[boy(z12), (([x],[dog(x)]) ->
([],[chases(x,z12)])), (z17 = z15), runs(z15)])
Although this little discourse is extremely limited, it should
        give you a feel for the kind of semantic processing issues that arise
        when we go beyond single sentences, and also a feel for the techniques
        that can be deployed to address them.


Summary



	First-order logic is a suitable language for representing
          natural language meaning in a computational setting since it is
          flexible enough to represent many useful aspects of natural meaning,
          and there are efficient theorem provers for reasoning with
          first-order logic. (Equally, there are a variety of phenomena in
          natural language semantics which are believed to require more
          powerful logical mechanisms.)

	As well as translating natural language sentences into
          first-order logic, we can state the truth conditions of these
          sentences by examining models of first-order formulas.

	In order to build meaning representations compositionally, we
          supplement first-order logic with the λ-calculus.

	β-reduction in the λ-calculus corresponds semantically to
          application of a function to an argument. Syntactically, it involves
          replacing a variable bound by λ in the function expression with the
          expression that provides the argument in the function
          application.

	A key part of constructing a model lies in building a
          valuation which assigns interpretations to non-logical constants.
          These are interpreted as either n-ary
          predicates or as individual constants.

	An open expression is an expression containing one or more
          free variables. Open expressions receive an interpretation only when
          their free variables receive values from a variable
          assignment.

	Quantifiers are interpreted by constructing, for a formula
          φ[x] open in variable x,
          the set of individuals which make φ[x] true
          when an assignment g assigns them as the value
          of x. The quantifier then places constraints on
          that set.

	A closed expression is one that has no free variables; that
          is, the variables are all bound. A closed sentence is true or false
          with respect to all variable assignments.

	If two formulas differ only in the label of the variable bound
          by binding operator (i.e., λ or a quantifier) , they are said to be
          α-equivalents. The result of relabeling a bound variable in a
          formula is called α-conversion.

	Given a formula with two nested quantifiers
          Q1 and
          Q2, the outermost
          quantifier Q1 is said to
          have wide scope (or scope over
          Q2). English sentences
          are frequently ambiguous with respect to the scope of the
          quantifiers they contain.

	English sentences can be associated with a semantic
          representation by treating SEM as a feature in a feature-based grammar. The SEM value of a complex expressions, typically involves
          functional application of the SEM values of the component expressions.




Further Reading



Consult http://www.nltk.org/ for further
      materials on this chapter and on how to install the Prover9 theorem
      prover and Mace4 model builder. General information about these two
      inference tools is given by (McCune, 2008).
For more examples of semantic analysis with NLTK, please see the
      semantics and logic HOWTOs at http://www.nltk.org/howto. Note that there are
      implementations of two other approaches to scope ambiguity, namely
      Hole semantics as described in
      (Blackburn & Bos, 2005), and Glue
      semantics, as described in (Dalrymple et al.,
      1999).
There are many phenomena in natural language semantics that have
      not been touched on in this chapter, most notably:
	Events, tense, and aspect

	Semantic roles

	Generalized quantifiers, such as
          most

	Intensional constructions involving, for example, verbs such
          as may and believe



While (1) and (2) can be dealt with using first-order logic, (3)
      and (4) require different logics. These issues are covered by many of
      the references in the following readings.
A comprehensive overview of results and techniques in building
      natural language front-ends to databases can be found in
      (Androutsopoulos, Ritchie & Thanisch, 1995).
Any introductory book to modern logic will present propositional
      and first-order logic. (Hodges, 1977) is highly recommended as an
      entertaining and insightful text with many illustrations from natural
      language.
For a wide-ranging, two-volume textbook on logic that also
      presents contemporary material on the formal semantics of natural
      language, including Montague Grammar and intensional logic, see (Gamut,
      1991a, 1991b). (Kamp & Reyle, 1993) provides the definitive account
      of Discourse Representation Theory, and covers a large and interesting
      fragment of natural language, including tense, aspect, and modality.
      Another comprehensive study of the semantics of many natural language
      constructions is (Carpenter, 1997).
There are numerous works that introduce logical semantics within
      the framework of linguistic theory. (Chierchia & McConnell-Ginet,
      1990) is relatively agnostic about syntax, while (Heim & Kratzer,
      1998) and (Larson & Segal, 1995) are both more explicitly oriented
      toward integrating truth-conditional semantics into a Chomskyan
      framework.
(Blackburn & Bos, 2005) is the first textbook devoted to
      computational semantics, and provides an excellent introduction to the
      area. It expands on many of the topics covered in this chapter,
      including underspecification of quantifier scope ambiguity, first-order
      inference, and discourse processing.
To gain an overview of more advanced contemporary approaches to
      semantics, including treatments of tense and generalized quantifiers,
      try consulting (Lappin, 1996) or (van Benthem & ter Meulen,
      1997).

Exercises



	○ Translate the following sentences into propositional logic
          and verify that they parse with LogicParser. Provide a key that shows how the propositional
          variables in your translation correspond to expressions of
          English.
	If Angus sings, it is not the case that Bertie
              sulks.

	Cyril runs and barks.

	It will snow if it doesn’t rain.

	It’s not the case that Irene will be happy if Olive or
              Tofu comes.

	Pat didn’t cough or sneeze.

	If you don’t come if I call, I won’t come if you
              call.




	○ Translate the following sentences into predicate-argument
          formulas of first-order logic.
	Angus likes Cyril and Irene hates Cyril.

	Tofu is taller than Bertie.

	Bruce loves himself and Pat does too.

	Cyril saw Bertie, but Angus didn’t.

	Cyril is a four-legged friend.

	Tofu and Olive are near each other.




	○ Translate the following sentences into quantified formulas
          of first-order logic.
	Angus likes someone and someone likes Julia.

	Angus loves a dog who loves him.

	Nobody smiles at Pat.

	Somebody coughs and sneezes.

	Nobody coughed or sneezed.

	Bruce loves somebody other than Bruce.

	Nobody other than Matthew loves Pat.

	Cyril likes everyone except for Irene.

	Exactly one person is asleep.




	○ Translate the following verb phrases using λ-abstracts and
          quantified formulas of first-order logic.
	feed Cyril and give a capuccino to Angus

	be given ‘War and Peace’ by Pat

	be loved by everyone

	be loved or detested by everyone

	be loved by everyone and detested by no-one




	○ Consider the following statements:
>>> lp = nltk.LogicParser()
>>> e2 = lp.parse('pat')
>>> e3 = nltk.sem.ApplicationExpression(e1, e2)
>>> print e3.simplify()
exists y.love(pat, y)
Clearly something is missing here, namely a declaration of the
          value of e1. In order for
          ApplicationExpression(e1,
          e2) to be β-convertible to exists y.love(pat, y), e1 must be a λ-abstract which can take
          pat as an argument. Your task is
          to construct such an abstract, bind it to e1, and satisfy yourself that these
          statements are all satisfied (up to alphabetic variance). In
          addition, provide an informal English translation of e3.simplify().
Now carry on doing this same task for the further cases of
          e3.simplify() shown here:
>>> print e3.simplify()
exists y.(love(pat,y) | love(y,pat))
>>> print e3.simplify()
exists y.(love(pat,y) | love(y,pat))
>>> print e3.simplify()
walk(fido)

	○ As in the preceding exercise, find a λ-abstract e1 that yields results equivalent to those
          shown here:
>>> e2 = lp.parse('chase')
>>> e3 = nltk.sem.ApplicationExpression(e1, e2)
>>> print e3.simplify()
\x.all y.(dog(y) -> chase(x,pat))
>>> e2 = lp.parse('chase')
>>> e3 = nltk.sem.ApplicationExpression(e1, e2)
>>> print e3.simplify()
\x.exists y.(dog(y) & chase(pat,x))
>>> e2 = lp.parse('give')
>>> e3 = nltk.sem.ApplicationExpression(e1, e2)
>>> print e3.simplify()
\x0 x1.exists y.(present(y) & give(x1,y,x0))

	○ As in the preceding exercise, find a λ-abstract e1 that yields results equivalent to those
          shown here:
>>> e2 = lp.parse('bark')
>>> e3 = nltk.sem.ApplicationExpression(e1, e2)
>>> print e3.simplify()
exists y.(dog(x) & bark(x))
>>> e2 = lp.parse('bark')
>>> e3 = nltk.sem.ApplicationExpression(e1, e2)
>>> print e3.simplify()
bark(fido)
>>> e2 = lp.parse('\\P. all x. (dog(x) -> P(x))')
>>> e3 = nltk.sem.ApplicationExpression(e1, e2)
>>> print e3.simplify()
all x.(dog(x) -> bark(x))

	[image: ] Develop a method for translating English sentences into
          formulas with binary generalized
          quantifiers. In such an approach, given a generalized
          quantifier Q, a quantified
          formula is of the form Q(A, B),
          where both A and B are expressions of type
          〈e, t〉. Then, for example,
          all(A, B) is true iff A denotes a subset of what B denotes.

	[image: ] Extend the approach in the preceding exercise so that the
          truth conditions for quantifiers such as most
          and exactly three can be computed in a
          model.

	[image: ] Modify the sem.evaluate code so that it will give a helpful error message if
          an expression is not in the domain of a model’s valuation
          function.

	● Select three or four contiguous sentences from a book for
          children. A possible source of examples are the collections of
          stories in nltk.corpus.gutenberg:
          bryant-stories.txt, burgess-busterbrown.txt, and edgeworth-parents.txt. Develop a grammar
          that will allow your sentences to be translated into first-order
          logic, and build a model that will allow those translations to be
          checked for truth or falsity.

	● Carry out the preceding exercise, but use DRT as the meaning
          representation.

	● Taking (Warren & Pereira, 1982) as a starting point,
          develop a technique for converting a natural language query into a
          form that can be evaluated more efficiently in a model. For example,
          given a query of the form (P(x) &
          Q(x)), convert it to (Q(x) &
          P(x)) if the extension of Q is smaller than the extension of
          P.




Chapter 11. Managing Linguistic Data



Structured collections of annotated linguistic data are essential in
    most areas of NLP; however, we still face many obstacles in using them.
    The goal of this chapter is to answer the following questions:
	How do we design a new language resource and ensure that its
        coverage, balance, and documentation support a wide range of
        uses?

	When existing data is in the wrong format for some analysis
        tool, how can we convert it to a suitable format?

	What is a good way to document the existence of a resource we
        have created so that others can easily find it?



Along the way, we will study the design of existing corpora, the
    typical workflow for creating a corpus, and the life cycle of a corpus. As
    in other chapters, there will be many examples drawn from practical
    experience managing linguistic data, including data that has been
    collected in the course of linguistic fieldwork, laboratory work, and web
    crawling.
Corpus Structure: A Case Study



The TIMIT Corpus was the first annotated speech database to be
      widely distributed, and it has an especially clear organization. TIMIT
      was developed by a consortium including Texas Instruments and MIT, from
      which it derives its name. It was designed to provide data for the
      acquisition of acoustic-phonetic knowledge and to support the
      development and evaluation of automatic speech recognition
      systems.
The Structure of TIMIT



Like the Brown Corpus, which displays a balanced selection of
        text genres and sources, TIMIT includes a balanced selection of
        dialects, speakers, and materials. For each of eight dialect regions,
        50 male and female speakers having a range of ages and educational
        backgrounds each read 10 carefully chosen sentences. Two sentences,
        read by all speakers, were designed to bring out dialect
        variation:
Example 11-1. 
	she had your dark suit in greasy wash water all
              year

	don’t ask me to carry an oily rag like that





The remaining sentences were chosen to be phonetically rich,
        involving all phones (sounds) and a comprehensive range of diphones
        (phone bigrams). Additionally, the design strikes a balance between
        multiple speakers saying the same sentence in order to permit
        comparison across speakers, and having a large range of sentences
        covered by the corpus to get maximal coverage of diphones. Five of the
        sentences read by each speaker are also read by six other speakers
        (for comparability). The remaining three sentences read by each
        speaker were unique to that speaker (for coverage).
NLTK includes a sample from the TIMIT Corpus. You can access its
        documentation in the usual way, using help(nltk.corpus.timit). Print nltk.corpus.timit.fileids() to see a list of
        the 160 recorded utterances in the corpus sample. Each filename has
        internal structure, as shown in Figure 11-1.
[image: Structure of a TIMIT identifier: Each recording is labeled using a string made up of the speaker’s dialect region, gender, speaker identifier, sentence type, and sentence identifier.]

Figure 11-1. Structure of a TIMIT identifier: Each recording is labeled
          using a string made up of the speaker’s dialect region, gender,
          speaker identifier, sentence type, and sentence identifier.


Each item has a phonetic transcription which can be accessed
        using the phones() method. We can access the corresponding word tokens in
        the customary way. Both access methods permit an optional argument
        offset=True, which includes the
        start and end offsets of the corresponding span in the audio
        file.
>>> phonetic = nltk.corpus.timit.phones('dr1-fvmh0/sa1')
>>> phonetic
['h#', 'sh', 'iy', 'hv', 'ae', 'dcl', 'y', 'ix', 'dcl', 'd', 'aa', 'kcl',
's', 'ux', 'tcl', 'en', 'gcl', 'g', 'r', 'iy', 's', 'iy', 'w', 'aa',
'sh', 'epi', 'w', 'aa', 'dx', 'ax', 'q', 'ao', 'l', 'y', 'ih', 'ax', 'h#']
>>> nltk.corpus.timit.word_times('dr1-fvmh0/sa1')
[('she', 7812, 10610), ('had', 10610, 14496), ('your', 14496, 15791),
('dark', 15791, 20720), ('suit', 20720, 25647), ('in', 25647, 26906),
('greasy', 26906, 32668), ('wash', 32668, 37890), ('water', 38531, 42417),
('all', 43091, 46052), ('year', 46052, 50522)]
In addition to this text data, TIMIT includes a lexicon that
        provides the canonical pronunciation of every word, which can be
        compared with a particular utterance:
>>> timitdict = nltk.corpus.timit.transcription_dict()
>>> timitdict['greasy'] + timitdict['wash'] + timitdict['water']
['g', 'r', 'iy1', 's', 'iy', 'w', 'ao1', 'sh', 'w', 'ao1', 't', 'axr']
>>> phonetic[17:30]
['g', 'r', 'iy', 's', 'iy', 'w', 'aa', 'sh', 'epi', 'w', 'aa', 'dx', 'ax']
This gives us a sense of what a speech processing system would
        have to do in producing or recognizing speech in this particular
        dialect (New England). Finally, TIMIT includes demographic data about
        the speakers, permitting fine-grained study of vocal, social, and
        gender characteristics.
>>> nltk.corpus.timit.spkrinfo('dr1-fvmh0')
SpeakerInfo(id='VMH0', sex='F', dr='1', use='TRN', recdate='03/11/86',
birthdate='01/08/60', ht='5\'05"', race='WHT', edu='BS',
comments='BEST NEW ENGLAND ACCENT SO FAR')

Notable Design Features



TIMIT illustrates several key features of corpus design. First,
        the corpus contains two layers of annotation, at the phonetic and
        orthographic levels. In general, a text or speech corpus may be
        annotated at many different linguistic levels, including
        morphological, syntactic, and discourse levels. Moreover, even at a
        given level there may be different labeling schemes or even
        disagreement among annotators, such that we want to represent multiple
        versions. A second property of TIMIT is its balance across multiple
        dimensions of variation, for coverage of dialect regions and diphones.
        The inclusion of speaker demographics brings in many more independent
        variables that may help to account for variation in the data, and
        which facilitate later uses of the corpus for purposes that were not
        envisaged when the corpus was created, such as sociolinguistics. A
        third property is that there is a sharp division between the original
        linguistic event captured as an audio recording and the annotations of
        that event. The same holds true of text corpora, in the sense that the
        original text usually has an external source, and is considered to be
        an immutable artifact. Any transformations of that artifact which
        involve human judgment—even something as simple as tokenization—are
        subject to later revision; thus it is important to retain the source
        material in a form that is as close to the original as
        possible.
[image: Structure of the published TIMIT Corpus: The CD-ROM contains doc, train, and test directories at the top level; the train and test directories both have eight sub-directories, one per dialect region; each of these contains further subdirectories, one per speaker; the contents of the directory for female speaker aks0 are listed, showing 10 wav files accompanied by a text transcription, a word-aligned transcription, and a phonetic transcription.]

Figure 11-2. Structure of the published TIMIT Corpus: The CD-ROM contains
          doc, train, and test
          directories at the top level; the train and test
          directories both have eight sub-directories, one per dialect region;
          each of these contains further subdirectories, one per speaker; the
          contents of the directory for female speaker aks0 are listed,
          showing 10 wav files accompanied by a
          text transcription, a word-aligned transcription, and a phonetic
          transcription.

A fourth feature of TIMIT is the hierarchical structure of the
        corpus. With 4 files per sentence, and 10 sentences for each of 500
        speakers, there are 20,000 files. These are organized into a tree
        structure, shown schematically in Figure 11-2. At the top level there is a split
        between training and testing sets, which gives away its intended use
        for developing and evaluating statistical models.
Finally, notice that even though TIMIT is a speech corpus, its
        transcriptions and associated data are just text, and can be processed
        using programs just like any other text corpus. Therefore, many of the
        computational methods described in this book are applicable. Moreover,
        notice that all of the data types included in the TIMIT Corpus fall
        into the two basic categories of lexicon and text, which we will
        discuss later. Even the speaker demographics data is just another
        instance of the lexicon data type.
This last observation is less surprising when we consider that
        text and record structures are the primary domains for the two
        subfields of computer science that focus on data management, namely
        text retrieval and databases. A notable feature of linguistic data
        management is that it usually brings both data types together, and
        that it can draw on results and techniques from both fields.

Fundamental Data Types



Despite its complexity, the TIMIT Corpus contains only two
        fundamental data types, namely lexicons and texts. As we saw in
        Chapter 2, most lexical resources can be represented using a record
        structure, i.e., a key plus one or more fields, as shown in Figure 11-3. A lexical resource could be a conventional
        dictionary or comparative wordlist, as illustrated. It could also be a
        phrasal lexicon, where the key field is a phrase rather than a single
        word. A thesaurus also consists of record-structured data, where we
        look up entries via non-key fields that correspond to topics. We can
        also construct special tabulations (known as paradigms) to illustrate
        contrasts and systematic variation, as shown in Figure 11-3 for three verbs. TIMIT’s speaker table is
        also a kind of lexicon.
[image: Basic linguistic data types—lexicons and texts: Amid their diversity, lexicons have a record structure, whereas annotated texts have a temporal organization.]

Figure 11-3. Basic linguistic data types—lexicons and texts: Amid their
          diversity, lexicons have a record structure, whereas annotated texts
          have a temporal organization.


At the most abstract level, a text is a representation of a real
        or fictional speech event, and the time-course of that event carries
        over into the text itself. A text could be a small unit, such as a
        word or sentence, or a complete narrative or dialogue. It may come
        with annotations such as part-of-speech tags, morphological analysis,
        discourse structure, and so forth. As we saw in the IOB tagging
        technique (Chapter 7), it is possible to represent higher-level
        constituents using tags on individual words. Thus the abstraction of
        text shown in Figure 11-3 is sufficient.
Despite the complexities and idiosyncrasies of individual
        corpora, at base they are collections of texts together with
        record-structured data. The contents of a corpus are often biased
        toward one or the other of these types. For example, the Brown Corpus
        contains 500 text files, but we still use a table to relate the files
        to 15 different genres. At the other end of the spectrum, WordNet
        contains 117,659 synset records, yet it incorporates many example
        sentences (mini-texts) to illustrate word usages. TIMIT is an
        interesting midpoint on this spectrum, containing substantial
        free-standing material of both the text and lexicon types.


The Life Cycle of a Corpus



Corpora are not born fully formed, but involve careful preparation
      and input from many people over an extended period. Raw data needs to be
      collected, cleaned up, documented, and stored in a systematic structure.
      Various layers of annotation might be applied, some requiring
      specialized knowledge of the morphology or syntax of the language.
      Success at this stage depends on creating an efficient workflow
      involving appropriate tools and format converters. Quality control
      procedures can be put in place to find inconsistencies in the
      annotations, and to ensure the highest possible level of inter-annotator
      agreement. Because of the scale and complexity of the task, large
      corpora may take years to prepare, and involve tens or hundreds of
      person-years of effort. In this section, we briefly review the various
      stages in the life cycle of a corpus.
Three Corpus Creation Scenarios



In one type of corpus, the design unfolds over in the course of
        the creator’s explorations. This is the pattern typical of traditional
        “field linguistics,” in which material from elicitation sessions is
        analyzed as it is gathered, with tomorrow’s elicitation often based on
        questions that arise in analyzing today’s. The resulting corpus is
        then used during subsequent years of research, and may serve as an
        archival resource indefinitely. Computerization is an obvious boon to
        work of this type, as exemplified by the popular program Shoebox, now
        over two decades old and re-released as Toolbox (see Lexical Resources). Other software tools, even simple
        word processors and spreadsheets, are routinely used to acquire the
        data. In the next section, we will look at how to extract data from
        these sources.
Another corpus creation scenario is typical of experimental
        research where a body of carefully designed material is collected from
        a range of human subjects, then analyzed to evaluate a hypothesis or
        develop a technology. It has become common for such databases to be
        shared and reused within a laboratory or company, and often to be
        published more widely. Corpora of this type are the basis of the
        “common task” method of research management, which over the past two
        decades has become the norm in government-funded research programs in
        language technology. We have already encountered many such corpora in
        the earlier chapters; we will see how to write Python programs to
        implement the kinds of curation tasks that are necessary before such
        corpora are published.
Finally, there are efforts to gather a “reference corpus” for a
        particular language, such as the American National
        Corpus (ANC) and the British National
        Corpus (BNC). Here the goal has been to produce a
        comprehensive record of the many forms, styles, and uses of a
        language. Apart from the sheer challenge of scale, there is a heavy
        reliance on automatic annotation tools together with post-editing to
        fix any errors. However, we can write programs to locate and repair
        the errors, and also to analyze the corpus for balance.

Quality Control



Good tools for automatic and manual preparation of data are
        essential. However, the creation of a high-quality corpus depends just
        as much on such mundane things as documentation, training, and
        workflow. Annotation guidelines define the task and document the
        markup conventions. They may be regularly updated to cover difficult
        cases, along with new rules that are devised to achieve more
        consistent annotations. Annotators need to be trained in the
        procedures, including methods for resolving cases not covered in the
        guidelines. A workflow needs to be established, possibly with
        supporting software, to keep track of which files have been
        initialized, annotated, validated, manually checked, and so on. There
        may be multiple layers of annotation, provided by different
        specialists. Cases of uncertainty or disagreement may require
        adjudication.
Large annotation tasks require multiple annotators, which raises
        the problem of achieving
        consistency. How consistently can a group of annotators perform? We
        can easily measure consistency by having a portion of the source
        material independently annotated by two people. This may reveal
        shortcomings in the guidelines or differing abilities with the
        annotation task. In cases where quality is paramount, the entire
        corpus can be annotated twice, and any inconsistencies adjudicated by
        an expert.
It is considered best practice to report the inter-annotator
        agreement that was achieved for a corpus (e.g., by double-annotating
        10% of the corpus). This score serves as a helpful upper bound on the
        expected performance of any automatic system that is trained on this
        corpus.
Caution!
Care should be exercised when interpreting an inter-annotator
          agreement score, since annotation tasks vary greatly in their
          difficulty. For example, 90% agreement would be a terrible score for
          part-of-speech tagging, but an exceptional score for semantic role
          labeling.

The Kappa coefficient κ
        measures agreement between two people making category judgments,
        correcting for expected chance agreement. For example, suppose an item
        is to be annotated, and four coding options are equally likely. In
        this case, two people coding randomly would be expected to agree 25%
        of the time. Thus, an agreement of 25% will be assigned κ = 0, and
        better levels of agreement will be scaled accordingly. For an
        agreement of 50%, we would get κ = 0.333, as 50 is a third of the way
        from 25 to 100. Many other agreement measures exist; see help(nltk.metrics.agreement) for details.
[image: Three segmentations of a sequence: The small rectangles represent characters, words, sentences, in short, any sequence which might be divided into linguistic units; S1 and S2 are in close agreement, but both differ significantly from S3.]

Figure 11-4. Three segmentations of a sequence: The small rectangles
          represent characters, words, sentences, in short, any sequence which
          might be divided into linguistic units; S1
          and S2 are in close agreement, but both
          differ significantly from S3.

We can also measure the agreement between two independent
        segmentations of language input, e.g., for tokenization, sentence
        segmentation, and named entity recognition. In Figure 11-4 we see three possible segmentations of a
        sequence of items which might have been produced by annotators (or
        programs). Although none of them agree exactly,
        S1 and S2 are in close
        agreement, and we would like a suitable measure. Windowdiff is a
        simple algorithm for evaluating the agreement of two segmentations by
        running a sliding window over the data and awarding partial credit for
        near misses. If we preprocess our tokens into a sequence of zeros and
        ones, to record when a token is followed by a boundary, we can
        represent the segmentations as strings and apply the windowdiff scorer.
>>> s1 = "00000010000000001000000"
>>> s2 = "00000001000000010000000"
>>> s3 = "00010000000000000001000"
>>> nltk.windowdiff(s1, s1, 3)
0
>>> nltk.windowdiff(s1, s2, 3)
4
>>> nltk.windowdiff(s2, s3, 3)
16
In this example, the window had a size of 3. The windowdiff computation slides this window
        across a pair of strings. At each position it totals up the number of
        boundaries found inside this window, for both strings, then computes
        the difference. These differences are then summed. We can increase or
        shrink the window size to control the sensitivity of the
        measure.

Curation Versus Evolution



As large corpora are published, researchers are increasingly
        likely to base their investigations on balanced, focused subsets that
        were derived from corpora produced for entirely different reasons. For
        instance, the Switchboard database, originally collected for speaker
        identification research, has since been used as the basis for
        published studies in speech recognition, word pronunciation,
        disfluency, syntax, intonation, and discourse structure. The
        motivations for recycling linguistic corpora include the desire to
        save time and effort, the desire to work on material available to
        others for replication, and sometimes a desire to study more
        naturalistic forms of linguistic behavior than would be possible
        otherwise. The process of choosing a subset for such a study may count
        as a non-trivial contribution in itself.
In addition to selecting an appropriate subset of a corpus, this
        new work could involve reformatting a text file (e.g., converting to
        XML), renaming files, retokenizing the text, selecting a subset of the
        data to enrich, and so forth. Multiple research groups might do this
        work independently, as illustrated in Figure 11-5. At a later date, should someone want to
        combine sources of information from different versions, the task will
        probably be extremely onerous.
[image: Evolution of a corpus over time: After a corpus is published, research groups will use it independently, selecting and enriching different pieces; later research that seeks to integrate separate annotations confronts the difficult challenge of aligning the annotations.]

Figure 11-5. Evolution of a corpus over time: After a corpus is published,
          research groups will use it independently, selecting and enriching
          different pieces; later research that seeks to integrate separate
          annotations confronts the difficult challenge of aligning the
          annotations.


The task of using derived corpora is made even more difficult by
        the lack of any record about how the derived version was created, and
        which version is the most up-to-date.
An alternative to this chaotic situation is for a corpus to be
        centrally curated, and for committees of experts to revise and extend
        it at periodic intervals, considering submissions from third parties
        and publishing new releases from time to time. Print dictionaries and
        national corpora may be centrally curated in this way. However, for
        most corpora this model is simply impractical.
A middle course is for the original corpus publication to have a
        scheme for identifying any sub-part. Each sentence, tree, or lexical
        entry could have a globally unique identifier, and each token, node,
        or field (respectively) could have a relative offset. Annotations,
        including segmentations, could reference the source using this
        identifier scheme (a method which is known as standoff annotation). This way, new
        annotations could be distributed independently of the source, and
        multiple independent annotations of the same source could be compared
        and updated without touching the source.
If the corpus publication is provided in multiple versions, the
        version number or date could be part of the identification scheme. A
        table of correspondences between identifiers across editions of the
        corpus would permit any standoff annotations to be updated
        easily.
Caution!
Sometimes an updated corpus contains revisions of base
          material that has been externally annotated. Tokens might be split
          or merged, and constituents may have been rearranged. There may not
          be a one-to-one correspondence between old and new identifiers. It
          is better to cause standoff annotations to break on such components
          of the new version than to silently allow their identifiers to refer
          to incorrect locations.



Acquiring Data



Obtaining Data from the Web



The Web is a rich source of data for language analysis purposes.
        We have already discussed methods for accessing individual files, RSS
        feeds, and search engine results (see Accessing Text from the Web and from Disk). However, in some cases we want to
        obtain large quantities of web text.
The simplest approach is to obtain a published corpus of web
        text. The ACL Special Interest Group on Web as Corpus (SIGWAC)
        maintains a list of resources at http://www.sigwac.org.uk/. The advantage of using a
        well-defined web corpus is that they are documented, stable, and
        permit reproducible experimentation.
If the desired content is localized to a particular website,
        there are many utilities for capturing all the accessible contents of
        a site, such as GNU Wget (http://www.gnu.org/software/wget/). For maximal
        flexibility and control, a web crawler can be used, such as Heritrix
        (http://crawler.archive.org/). Crawlers permit
        fine-grained control over where to look, which links to follow, and
        how to organize the results. For example, if we want to compile a
        bilingual text collection having corresponding pairs of documents in
        each language, the crawler needs to detect the structure of the site
        in order to extract the correspondence between the documents, and it
        needs to organize the downloaded pages in such a way that the
        correspondence is captured. It might be tempting to write your own web
        crawler, but there are dozens of pitfalls having to do with detecting
        MIME types, converting relative to absolute URLs, avoiding getting
        trapped in cyclic link structures, dealing with network latencies,
        avoiding overloading the site or being banned from accessing the site,
        and so on.

Obtaining Data from Word Processor Files



Word processing software is often used in the manual preparation
        of texts and lexicons in projects that have limited computational
        infrastructure. Such projects often provide templates for data entry,
        though the word processing software does not ensure that the data is
        correctly structured. For example, each text may be required to have a
        title and date. Similarly, each lexical entry may have certain
        obligatory fields. As the data grows in size and complexity, a larger
        proportion of time may be spent maintaining its consistency.
How can we extract the content of such files so that we can
        manipulate it in external programs? Moreover, how can we validate the
        content of these files to help authors create well-structured data, so
        that the quality of the data can be maximized in the context of the
        original authoring process?
Consider a dictionary in which each entry has a part-of-speech
        field, drawn from a set of 20 possibilities, displayed after the
        pronunciation field, and rendered in 11-point bold type. No
        conventional word processor has search or macro functions capable of
        verifying that all part-of-speech fields have been correctly entered
        and displayed. This task requires exhaustive manual checking. If the
        word processor permits the document to be saved in a non-proprietary
        format, such as text, HTML, or XML, we can sometimes write programs to
        do this checking automatically.
Consider the following fragment of a lexical entry: “sleep
        [sli:p] v.i. condition of
        body and mind...”. We can key in such text using MSWord,
        then “Save as Web Page,” then inspect the resulting HTML file:
<p class=MsoNormal>sleep
  <span style='mso-spacerun:yes'> </span>
  [<span class=SpellE>sli:p</span>]
  <span style='mso-spacerun:yes'> </span>
  <b><span style='font-size:11.0pt'>v.i.</span></b>
  <span style='mso-spacerun:yes'> </span>
  <i>a condition of body and mind ...<o:p></o:p></i>
</p>
Observe that the entry is represented as an HTML paragraph,
        using the <p> element, and
        that the part of speech appears inside a <span style='font-size:11.0pt'>
        element. The following program defines the set of legal
        parts-of-speech, legal_pos. Then it
        extracts all 11-point content from the dict.htm file and stores it in the set
        used_pos. Observe that the search
        pattern contains a parenthesized sub-expression; only the material
        that matches this subexpression is returned by re.findall. Finally, the program constructs
        the set of illegal parts-of-speech as the set difference between
        used_pos and legal_pos:
>>> legal_pos = set(['n', 'v.t.', 'v.i.', 'adj', 'det'])
>>> pattern = re.compile(r"'font-size:11.0pt'>([a-z.]+)<")
>>> document = open("dict.htm").read()
>>> used_pos = set(re.findall(pattern, document))
>>> illegal_pos = used_pos.difference(legal_pos)
>>> print list(illegal_pos)
['v.i', 'intrans']
This simple program represents the tip of the iceberg. We can
        develop sophisticated tools to check the consistency of word processor
        files, and report errors so that the maintainer of the dictionary can
        correct the original file using the original word processor.
Once we know the data is correctly formatted, we can write other
        programs to convert the data into a different format. The program in
        Example 11-2 strips out the HTML markup using
        nltk.clean_html(), extracts the
        words and their pronunciations, and generates output in
        “comma-separated value” (CSV) format.
Example 11-2. Converting HTML created by Microsoft Word into
          comma-separated values.
def lexical_data(html_file):
    SEP = '_ENTRY'
    html = open(html_file).read()
    html = re.sub(r'<p', SEP + '<p', html)
    text = nltk.clean_html(html)
    text = ' '.join(text.split())
    for entry in text.split(SEP):
        if entry.count(' ') > 2:
            yield entry.split(' ', 3)
>>> import csv
>>> writer = csv.writer(open("dict1.csv", "wb"))
>>> writer.writerows(lexical_data("dict.htm"))



Obtaining Data from Spreadsheets and Databases



Spreadsheets are often used for acquiring wordlists or
        paradigms. For example, a comparative wordlist may be created using a
        spreadsheet, with a row for each cognate set and a column for each
        language (see nltk.corpus.swadesh
        and www.rosettaproject.org). Most
        spreadsheet software can export their data in CSV format. As we will
        see later, it is easy for Python programs to access these using the
        csv module.
Sometimes lexicons are stored in a full-fledged relational
        database. When properly normalized, these databases can ensure the
        validity of the data. For example, we can require that all
        parts-of-speech come from a specified vocabulary by declaring that the
        part-of-speech field is an enumerated type or a
        foreign key that references a separate part-of-speech table. However,
        the relational model requires the structure of the data (the schema)
        be declared in advance, and this runs counter to the dominant approach
        to structuring linguistic data, which is highly exploratory. Fields
        which were assumed to be obligatory and unique often turn out to be
        optional and repeatable. A relational database can accommodate this
        when it is fully known in advance; however, if it is not, or if just
        about every property turns out to be optional or repeatable, the
        relational approach is unworkable.
Nevertheless, when our goal is simply to extract the contents
        from a database, it is enough to dump out the tables (or SQL query
        results) in CSV format and load them into our program. Our program
        might perform a linguistically motivated query that cannot easily be
        expressed in SQL, e.g., select all words that appear in
        example sentences for which no dictionary entry is
        provided. For this task, we would need to extract enough
        information from a record for it to be uniquely identified, along with
        the headwords and example sentences. Let’s suppose this information
        was now available in a CSV file dict.csv:
"sleep","sli:p","v.i","a condition of body and mind ..."
"walk","wo:k","v.intr","progress by lifting and setting down each foot ..."
"wake","weik","intrans","cease to sleep"
Now we can express this query as shown here:
>>> import csv
>>> lexicon = csv.reader(open('dict.csv'))
>>> pairs = [(lexeme, defn) for (lexeme, _, _, defn) in lexicon]
>>> lexemes, defns = zip(*pairs)
>>> defn_words = set(w for defn in defns for w in defn.split())
>>> sorted(defn_words.difference(lexemes))
['...', 'a', 'and', 'body', 'by', 'cease', 'condition', 'down', 'each',
'foot', 'lifting', 'mind', 'of', 'progress', 'setting', 'to']
This information would then guide the ongoing work to enrich the
        lexicon, work that updates the content of the relational
        database.

Converting Data Formats



Annotated linguistic data rarely arrives in the most convenient
        format, and it is often necessary to perform various kinds of format
        conversion. Converting between character encodings has already been
        discussed (see Text Processing with Unicode). Here we focus on the
        structure of the data.
In the simplest case, the input and output formats are
        isomorphic. For instance, we might be converting lexical data from
        Toolbox format to XML, and it is straightforward to transliterate the
        entries one at a time (Working with XML). The
        structure of the data is reflected in the structure of the required
        program: a for loop whose body
        takes care of a single entry.
In another common case, the output is a digested form of the
        input, such as an inverted file index. Here it is necessary to build
        an index structure in memory (see Example 4.8), then write it to a
        file in the desired format. The following example constructs an index
        that maps the words of a dictionary definition to the corresponding
        lexeme [image: 1] for each lexical entry
        [image: 2], having tokenized the definition
        text [image: 3], and discarded short words
        [image: 4]. Once the index has been
        constructed, we open a file and then iterate over the index entries,
        to write out the lines in the required format [image: 5].
>>> idx = nltk.Index((defn_word, lexeme) [image: 1]
...                  for (lexeme, defn) in pairs [image: 2]
...                  for defn_word in nltk.word_tokenize(defn) [image: 3]
...                  if len(defn_word) > 3) [image: 4]
>>> idx_file = open("dict.idx", "w")
>>> for word in sorted(idx):
...     idx_words = ', '.join(idx[word])
...     idx_line = "%s: %s\n" % (word, idx_words) [image: 5]
...     idx_file.write(idx_line)
>>> idx_file.close()
The resulting file dict.idx
        contains the following lines. (With a larger dictionary, we would
        expect to find multiple lexemes listed for each index entry.)
body: sleep
cease: wake
condition: sleep
down: walk
each: walk
foot: walk
lifting: walk
mind: sleep
progress: walk
setting: walk
sleep: wake
In some cases, the input and output data both consist of two or
        more dimensions. For instance, the input might be a set of files, each
        containing a single column of word frequency data. The required output
        might be a two-dimensional table in which the original columns appear
        as rows. In such cases we populate an internal data structure by
        filling up one column at a time, then read off the data one row at a
        time as we write data to the output file.
In the most vexing cases, the source and target formats have
        slightly different coverage of the domain, and information is
        unavoidably lost when translating between them. For example, we could
        combine multiple Toolbox files to create a single CSV file containing
        a comparative wordlist, losing all but the \lx field of the input files. If the CSV
        file was later modified, it would be a labor-intensive process to
        inject the changes into the original Toolbox files. A partial solution
        to this “round-tripping” problem is to associate explicit identifiers
        with each linguistic object, and to propagate the identifiers with the
        objects.

Deciding Which Layers of Annotation to Include



Published corpora vary greatly in the richness of the
        information they contain. At a minimum, a corpus will typically
        contain at least a sequence of sound or orthographic symbols. At the
        other end of the spectrum, a corpus could contain a large amount of
        information about the syntactic structure, morphology, prosody, and
        semantic content of every sentence, plus annotation of discourse
        relations or dialogue acts. These extra layers of annotation may be
        just what someone needs for performing a particular data analysis
        task. For example, it may be much easier to find a given linguistic
        pattern if we can search for specific syntactic structures; and it may
        be easier to categorize a linguistic pattern if every word has been
        tagged with its sense. Here are some commonly provided annotation
        layers:
	Word tokenization
	The orthographic form of text does not unambiguously
              identify its tokens. A tokenized and normalized version, in
              addition to the conventional orthographic version, may be a very
              convenient resource.

	Sentence segmentation
	As we saw in Chapter 3, sentence
              segmentation can be more difficult than it seems. Some corpora
              therefore use explicit annotations to mark sentence
              segmentation.

	Paragraph segmentation
	Paragraphs and other structural elements (headings,
              chapters, etc.) may be explicitly annotated.

	Part-of-speech
	The syntactic category of each word in a document.

	Syntactic structure
	A tree structure showing the constituent structure of a
              sentence.

	Shallow semantics
	Named entity and coreference annotations, and semantic
              role labels.

	Dialogue and discourse
	Dialogue act tags and rhetorical structure.



Unfortunately, there is not much consistency between existing
        corpora in how they represent their annotations. However, two general
        classes of annotation representation should be distinguished.
        Inline annotation modifies the
        original document by inserting special symbols or control sequences
        that carry the annotated information. For example, when part-of-speech
        tagging a document, the string "fly" might be replaced with the string
        "fly/NN", to indicate that the word
        fly is a noun in this context. In contrast,
        standoff annotation does not modify
        the original document, but instead creates a new file that adds
        annotation information using pointers that reference the original
        document. For example, this new document might contain the string
        "<token id=8
        pos='NN'/>", to indicate that token 8 is a noun.

Standards and Tools



For a corpus to be widely useful, it needs to be available in a
        widely supported format. However, the cutting edge of NLP research
        depends on new kinds of annotations, which by definition are not
        widely supported. In general, adequate tools for creation,
        publication, and use of linguistic data are not widely available. Most
        projects must develop their own set of tools for internal use, which
        is no help to others who lack the necessary resources. Furthermore, we
        do not have adequate, generally accepted standards for expressing the
        structure and content of corpora. Without such standards,
        general-purpose tools are impossible—though at the same time, without
        available tools, adequate standards are unlikely to be developed,
        used, and accepted.
One response to this situation has been to forge ahead with
        developing a generic format that is sufficiently expressive to capture
        a wide variety of annotation types (see Further Reading for examples). The challenge for
        NLP is to write programs that cope with the generality of such
        formats. For example, if the programming task involves tree data, and
        the file format permits arbitrary directed graphs, then input data
        must be validated to check for tree properties such as rootedness,
        connectedness, and acyclicity. If the input files contain other layers
        of annotation, the program would need to know how to ignore them when
        the data was loaded, but not invalidate or obliterate those layers
        when the tree data was saved back to the file.
Another response has been to write one-off scripts to manipulate
        corpus formats; such scripts litter the filespaces of many NLP
        researchers. NLTK’s corpus readers are a more systematic approach,
        founded on the premise that the work of parsing a corpus format should
        be done only once (per programming language).
Instead of focusing on a common format, we believe it is more
        promising to develop a common interface (see nltk.corpus). Consider the case of treebanks, an important corpus
        type for work in NLP. There are many ways to store a phrase structure
        tree in a file. We can use nested parentheses, or nested XML elements,
        or a dependency notation with a
        (child-id, parent-id) pair
        on each line, or an XML version of the dependency notation, etc.
        However, in each case the logical structure is almost the same. It is
        much easier to devise a common interface that allows application
        programmers to write code to access tree data using methods such as
        children(), leaves(), depth(), and so
        forth. Note that this approach follows accepted practice within
        computer science, viz. abstract data types, object-oriented design,
        and the three-layer architecture (Figure 11-6). The last of these—from the world
        of relational databases—allows end-user applications to use a common
        model (the “relational model”) and a common language (SQL) to abstract
        away from the idiosyncrasies of file storage. It also allows
        innovations in filesystem technologies to occur without disturbing
        end-user applications. In the same way, a common corpus interface
        insulates application programs from data formats.
[image: A common format versus a common interface.]

Figure 11-6. A common format versus a common interface.


In this context, when creating a new corpus for dissemination,
        it is expedient to use a widely used format wherever possible. When
        this is not possible, the corpus could be accompanied with
        software—such as an nltk.corpus module—that supports existing interface methods.

Special Considerations When Working with Endangered
        Languages



The importance of language to science and the arts is matched in
        significance by the cultural treasure embodied in language. Each of
        the world’s ~7,000 human languages is rich in unique respects, in its
        oral histories and creation legends, down to its grammatical
        constructions and its very words and their nuances of meaning.
        Threatened remnant cultures have words to distinguish plant subspecies
        according to therapeutic uses that are unknown to science. Languages
        evolve over time as they come into contact with each other, and each
        one provides a unique window onto human pre-history. In many parts of
        the world, small linguistic variations from one town to the next add
        up to a completely different language in the space of a half-hour
        drive. For its breathtaking complexity and diversity, human language
        is as a colorful tapestry stretching through time and space.
However, most of the world’s languages face extinction. In
        response to this, many linguists are hard at work documenting the
        languages, constructing rich records of this important facet of the
        world’s linguistic heritage. What can the field of NLP offer to help
        with this effort? Developing taggers, parsers, named entity
        recognizers, etc., is not an early priority, and there is usually
        insufficient data for developing such tools in any case. Instead, the
        most frequently voiced need is to have better tools for collecting and
        curating data, with a focus on texts and lexicons.
On the face of things, it should be a straightforward matter to
        start collecting texts in an endangered language. Even if we ignore
        vexed issues such as who owns the texts, and sensitivities surrounding
        cultural knowledge contained in the texts, there is the obvious
        practical issue of transcription. Most languages lack a standard
        orthography. When a language has no literary tradition, the
        conventions of spelling and punctuation are not well established.
        Therefore it is common practice to create a lexicon in tandem with a
        text collection, continually updating the lexicon as new words appear
        in the texts. This work could be done using a text processor (for the
        texts) and a spreadsheet (for the lexicon). Better still, SIL’s free
        linguistic software Toolbox and Fieldworks provide sophisticated
        support for integrated creation of texts and lexicons.
When speakers of the language in question are trained to enter
        texts themselves, a common obstacle is an overriding concern for
        correct spelling. Having a lexicon greatly helps this process, but we
        need to have lookup methods that do not assume someone can determine
        the citation form of an arbitrary word. The problem may be acute for
        languages having a complex morphology that includes prefixes. In such
        cases it helps to tag lexical items with semantic domains, and to
        permit lookup by semantic domain or by gloss.
Permitting lookup by pronunciation similarity is also a big
        help. Here’s a simple demonstration of how to do this. The first step
        is to identify confusible letter sequences, and map complex versions
        to simpler versions. We might also notice that the relative order of
        letters within a cluster of consonants is a source of spelling errors,
        and so we normalize the order of consonants.
>>> mappings = [('ph', 'f'), ('ght', 't'), ('^kn', 'n'), ('qu', 'kw'),
...             ('[aeiou]+', 'a'), (r'(.)\1', r'\1')]
>>> def signature(word):
...     for patt, repl in mappings:
...         word = re.sub(patt, repl, word)
...     pieces = re.findall('[^aeiou]+', word)
...     return ''.join(char for piece in pieces for char in sorted(piece))[:8]
>>> signature('illefent')
'lfnt'
>>> signature('ebsekwieous')
'bskws'
>>> signature('nuculerr')
'nclr'
Next, we create a mapping from signatures to words, for all the
        words in our lexicon. We can use this to get candidate corrections for
        a given input word (but we must first compute that word’s
        signature).
>>> signatures = nltk.Index((signature(w), w) for w in nltk.corpus.words.words())
>>> signatures[signature('nuculerr')]
['anicular', 'inocular', 'nucellar', 'nuclear', 'unicolor', 'uniocular', 'unocular']
Finally, we should rank the results in terms of similarity with
        the original word. This is done by the function rank(). The only remaining function provides
        a simple interface to the user:
>>> def rank(word, wordlist):
...     ranked = sorted((nltk.edit_dist(word, w), w) for w in wordlist)
...     return [word for (_, word) in ranked]
>>> def fuzzy_spell(word):
...     sig = signature(word)
...     if sig in signatures:
...         return rank(word, signatures[sig])
...     else:
...         return []
>>> fuzzy_spell('illefent')
['olefiant', 'elephant', 'oliphant', 'elephanta']
>>> fuzzy_spell('ebsekwieous')
['obsequious']
>>> fuzzy_spell('nucular')
['nuclear', 'nucellar', 'anicular', 'inocular', 'unocular', 'unicolor', 'uniocular']
This is just one illustration where a simple program can
        facilitate access to lexical data in a context where the writing
        system of a language may not be standardized, or where users of the
        language may not have a good command of spellings. Other simple
        applications of NLP in this area include building indexes to
        facilitate access to data, gleaning wordlists from texts, locating
        examples of word usage in constructing a lexicon, detecting prevalent
        or exceptional patterns in poorly understood data, and performing
        specialized validation on data created using various linguistic
        software tools. We will return to the last of these in Working with Toolbox Data.


Working with XML



The Extensible Markup Language (XML) provides a framework for
      designing domain-specific markup languages. It is sometimes used for
      representing annotated text and for lexical resources. Unlike HTML with
      its predefined tags, XML permits us to make up our own tags. Unlike a
      database, XML permits us to create data without first specifying its
      structure, and it permits us to have optional and repeatable elements.
      In this section, we briefly review some features of XML that are
      relevant for representing linguistic data, and show how to access data
      stored in XML files using Python programs.
Using XML for Linguistic Structures



Thanks to its flexibility and extensibility, XML is a natural
        choice for representing linguistic structures. Here’s an example of a
        simple lexical entry.
Example 11-3. 
<entry>
  <headword>whale</headword>
  <pos>noun</pos>
  <gloss>any of the larger cetacean mammals having a streamlined
    body and breathing through a blowhole on the head</gloss>
</entry>


It consists of a series of XML tags enclosed in angle brackets.
        Each opening tag, such as <gloss>, is matched with a closing
        tag, </gloss>; together they
        constitute an XML element. The
        preceding example has been laid out nicely using whitespace, but it
        could equally have been put on a single long line. Our approach to
        processing XML will usually not be sensitive to whitespace. In order
        for XML to be well formed, all opening
        tags must have corresponding closing tags, at the same level of
        nesting (i.e., the XML document must be a well-formed tree).
XML permits us to repeat elements, e.g., to add another gloss
        field, as we see next. We will use different whitespace to underscore
        the point that layout does not matter.
Example 11-4. 
<entry><headword>whale</headword><pos>noun</pos><gloss>any of the
larger cetacean mammals having a streamlined body and breathing
through a blowhole on the head</gloss><gloss>a very large person;
impressive in size or qualities</gloss></entry>


A further step might be to link our lexicon to some external
        resource, such as WordNet, using external identifiers. In Example 11-5 we group the gloss and a synset identifier
        inside a new element, which we have called “sense.”
Example 11-5. 
<entry>
  <headword>whale</headword>
  <pos>noun</pos>
  <sense>
    <gloss>any of the larger cetacean mammals having a streamlined
      body and breathing through a blowhole on the head</gloss>
    <synset>whale.n.02</synset>
  </sense>
  <sense>
    <gloss>a very large person; impressive in size or qualities</gloss>
    <synset>giant.n.04</synset>
  </sense>
</entry>


Alternatively, we could have represented the synset identifier
        using an XML attribute, without the need
        for any nested structure, as in Example 11-6.
Example 11-6. 
<entry>
  <headword>whale</headword>
  <pos>noun</pos>
  <gloss synset="whale.n.02">any of the larger cetacean mammals having
      a streamlined body and breathing through a blowhole on the head</gloss>
  <gloss synset="giant.n.04">a very large person; impressive in size or
      qualities</gloss>
</entry>


This illustrates some of the flexibility of XML. If it seems
        somewhat arbitrary, that’s because it is! Following the rules of XML,
        we can invent new attribute names, and nest them as deeply as we like.
        We can repeat elements, leave them out, and put them in a different
        order each time. We can have fields whose presence depends on the
        value of some other field; e.g., if the part of speech is verb, then the entry can have a past_tense element to hold the past tense of
        the verb, but if the part of speech is noun, no past_tense element is permitted. To impose
        some order over all this freedom, we can constrain the structure of an
        XML file using a “schema,” which is a declaration akin to a
        context-free grammar. Tools exist for testing the validity of an XML file with respect to a
        schema.

The Role of XML



We can use XML to represent many kinds of linguistic
        information. However, the flexibility comes at a price. Each time we
        introduce a complication, such as by permitting an element to be
        optional or repeated, we make more work for any program that accesses
        the data. We also make it more difficult to check the validity of the
        data, or to interrogate the data using one of the XML query
        languages.
Thus, using XML to represent linguistic structures does not
        magically solve the data modeling problem. We still have to work out
        how to structure the data, then define that structure with a schema,
        and then write programs to read and write the format and convert it to
        other formats. Similarly, we still need to follow some standard
        principles concerning data normalization. It is wise to avoid making
        duplicate copies of the same information, so that we don’t end up with
        inconsistent data when only one copy is changed. For example, a
        cross-reference that was represented as <xref>headword</xref> would
        duplicate the storage of the headword of some other lexical entry, and
        the link would break if the copy of the string at the other location
        was modified. Existential dependencies between information types need
        to be modeled, so that we can’t create elements without a home. For
        example, if sense definitions cannot exist independently of a lexical
        entry, the sense element can be
        nested inside the entry element. Many-to-many relations need to be abstracted
        out of hierarchical structures. For example, if a word can have many
        corresponding senses, and a sense can have several corresponding
        words, then both words and senses must be enumerated separately, as
        must the list of (word,
        sense) pairings. This complex structure might
        even be split across three separate XML files.
As we can see, although XML provides us with a convenient format
        accompanied by an extensive collection of tools, it offers no
        panacea.

The ElementTree Interface



Python’s ElementTree module
        provides a convenient way to access data stored in XML files. ElementTree is part of Python’s standard
        library (since Python 2.5), and is also provided as part of NLTK in
        case you are using Python 2.4.
We will illustrate the use of ElementTree using a collection of
        Shakespeare plays that have been formatted using XML. Let’s load the
        XML file and inspect the raw data, first at the top of the file [image: 1], where we see some XML headers and the
        name of a schema called play.dtd,
        followed by the root element
        PLAY. We pick it up again at the
        start of Act 1 [image: 2]. (Some blank lines
        have been omitted from the output.)
>>> merchant_file = nltk.data.find('corpora/shakespeare/merchant.xml')
>>> raw = open(merchant_file).read()
>>> print raw[0:168] [image: 1]
<?xml version="1.0"?>
<?xml-stylesheet type="text/css" href="shakes.css"?>
<!-- <!DOCTYPE PLAY SYSTEM "play.dtd"> -->
<PLAY>
<TITLE>The Merchant of Venice</TITLE>
>>> print raw[1850:2075] [image: 2]
<TITLE>ACT I</TITLE>
<SCENE><TITLE>SCENE I.  Venice. A street.</TITLE>
<STAGEDIR>Enter ANTONIO, SALARINO, and SALANIO</STAGEDIR>
<SPEECH>
<SPEAKER>ANTONIO</SPEAKER>
<LINE>In sooth, I know not why I am so sad:</LINE>
We have just accessed the XML data as a string. As we can see,
        the string at the start of Act 1 contains XML tags for title, scene,
        stage directions, and so forth.
The next step is to process the file contents as structured XML
        data, using ElementTree. We are processing a file (a multiline string) and
        building a tree, so it’s not surprising that the method name is
        parse [image: 1]. The variable merchant contains an XML element PLAY [image: 2].
        This element has internal structure; we can use an index to get its
        first child, a TITLE element [image: 3]. We can also see the text content of
        this element, the title of the play [image: 4]. To get a list of all the child
        elements, we use the getchildren() method [image: 5].
>>> from nltk.etree.ElementTree import ElementTree
>>> merchant = ElementTree().parse(merchant_file) [image: 1]
>>> merchant
<Element PLAY at 22fa800> [image: 2]
>>> merchant[0]
<Element TITLE at 22fa828> [image: 3]
>>> merchant[0].text
'The Merchant of Venice' [image: 4]
>>> merchant.getchildren() [image: 5]
[<Element TITLE at 22fa828>, <Element PERSONAE at 22fa7b0>, <Element SCNDESCR at 2300170>,
<Element PLAYSUBT at 2300198>, <Element ACT at 23001e8>, <Element ACT at 234ec88>,
<Element ACT at 23c87d8>, <Element ACT at 2439198>, <Element ACT at 24923c8>]
The play consists of a title, the personae, a scene description,
        a subtitle, and five acts. Each act has a title and some scenes, and
        each scene consists of speeches which are made up of lines, a
        structure with four levels of nesting. Let’s dig down into Act
        IV:
>>> merchant[-2][0].text
'ACT IV'
>>> merchant[-2][1]
<Element SCENE at 224cf80>
>>> merchant[-2][1][0].text
'SCENE I.  Venice. A court of justice.'
>>> merchant[-2][1][54]
<Element SPEECH at 226ee40>
>>> merchant[-2][1][54][0]
<Element SPEAKER at 226ee90>
>>> merchant[-2][1][54][0].text
'PORTIA'
>>> merchant[-2][1][54][1]
<Element LINE at 226eee0>
>>> merchant[-2][1][54][1].text
"The quality of mercy is not strain'd,"
Note
Your Turn: Repeat some of
          the methods just shown, for one of the other Shakespeare plays
          included in the corpus, such as Romeo and
          Juliet or Macbeth. For a list, see
          nltk.corpus.shakespeare.fileids().

Although we can access the entire tree this way, it is more
        convenient to search for sub-elements with particular names. Recall
        that the elements at the top level have several types. We can iterate
        over just the types we are interested in (such as the acts), using
        merchant.findall('ACT'). Here’s an
        example of doing such tag-specific searches at every level of
        nesting:
>>> for i, act in enumerate(merchant.findall('ACT')):
...     for j, scene in enumerate(act.findall('SCENE')):
...         for k, speech in enumerate(scene.findall('SPEECH')):
...             for line in speech.findall('LINE'):
...                 if 'music' in str(line.text):
...                     print "Act %d Scene %d Speech %d: %s" % (i+1, j+1, k+1, line.text)
Act 3 Scene 2 Speech 9: Let music sound while he doth make his choice;
Act 3 Scene 2 Speech 9: Fading in music: that the comparison
Act 3 Scene 2 Speech 9: And what is music then? Then music is
Act 5 Scene 1 Speech 23: And bring your music forth into the air.
Act 5 Scene 1 Speech 23: Here will we sit and let the sounds of music
Act 5 Scene 1 Speech 23: And draw her home with music.
Act 5 Scene 1 Speech 24: I am never merry when I hear sweet music.
Act 5 Scene 1 Speech 25: Or any air of music touch their ears,
Act 5 Scene 1 Speech 25: By the sweet power of music: therefore the poet
Act 5 Scene 1 Speech 25: But music for the time doth change his nature.
Act 5 Scene 1 Speech 25: The man that hath no music in himself,
Act 5 Scene 1 Speech 25: Let no such man be trusted. Mark the music.
Act 5 Scene 1 Speech 29: It is your music, madam, of the house.
Act 5 Scene 1 Speech 32: No better a musician than the wren.
Instead of navigating each step of the way down the hierarchy,
        we can search for particular embedded elements. For example, let’s
        examine the sequence of speakers. We can use a frequency distribution
        to see who has the most to say:
>>> speaker_seq = [s.text for s in merchant.findall('ACT/SCENE/SPEECH/SPEAKER')]
>>> speaker_freq = nltk.FreqDist(speaker_seq)
>>> top5 = speaker_freq.keys()[:5]
>>> top5
['PORTIA', 'SHYLOCK', 'BASSANIO', 'GRATIANO', 'ANTONIO']
We can also look for patterns in who follows whom in the
        dialogues. Since there are 23 speakers, we need to reduce the
        “vocabulary” to a manageable size first, using the method described in
        Mapping Words to Properties Using Python Dictionaries.
>>> mapping = nltk.defaultdict(lambda: 'OTH')
>>> for s in top5:
...     mapping[s] = s[:4]
...
>>> speaker_seq2 = [mapping[s] for s in speaker_seq]
>>> cfd = nltk.ConditionalFreqDist(nltk.ibigrams(speaker_seq2))
>>> cfd.tabulate()
     ANTO BASS GRAT  OTH PORT SHYL
ANTO    0   11    4   11    9   12
BASS   10    0   11   10   26   16
GRAT    6    8    0   19    9    5
 OTH    8   16   18  153   52   25
PORT    7   23   13   53    0   21
SHYL   15   15    2   26   21    0
Ignoring the entries for exchanges between people other than the
        top five (labeled OTH), the largest
        value suggests that Portia and Bassanio have the most significant
        interactions.

Using ElementTree for Accessing Toolbox Data



In Lexical Resources, we saw a simple
        interface for accessing Toolbox data, a popular and well-established
        format used by linguists for managing data. In this section, we
        discuss a variety of techniques for manipulating Toolbox data in ways
        that are not supported by the Toolbox software. The methods we discuss
        could be applied to other record-structured data, regardless of the
        actual file format.
We can use the toolbox.xml()
        method to access a Toolbox file and load it into an ElementTree object. This file contains a
        lexicon for the Rotokas language of Papua New Guinea.
>>> from nltk.corpus import toolbox
>>> lexicon = toolbox.xml('rotokas.dic')
There are two ways to access the contents of the lexicon object:
        by indexes and by paths. Indexes use the familiar syntax; thus
        lexicon[3] returns entry number 3
        (which is actually the fourth entry counting from zero) and lexicon[3][0] returns its first
        field:
>>> lexicon[3][0]
<Element lx at 77bd28>
>>> lexicon[3][0].tag
'lx'
>>> lexicon[3][0].text
'kaa'
The second way to access the contents of the lexicon object uses
        paths. The lexicon is a series of record objects, each containing a series of
        field objects, such as lx and
        ps. We can conveniently address all
        of the lexemes using the path record/lx. Here we use the findall() function to search for any matches to the path record/lx, and we access the text content of
        the element, normalizing it to lowercase:
>>> [lexeme.text.lower() for lexeme in lexicon.findall('record/lx')]
['kaa', 'kaa', 'kaa', 'kaakaaro', 'kaakaaviko', 'kaakaavo', 'kaakaoko',
'kaakasi', 'kaakau', 'kaakauko', 'kaakito', 'kaakuupato', ..., 'kuvuto']
Let’s view the Toolbox data in XML format. The write() method of ElementTree expects a file object. We usually create one of these
        using Python’s built-in open()
        function. In order to see the output displayed on the screen, we can
        use a special predefined file object called stdout [image: 1]
        (standard output), defined in Python’s sys module.
>>> import sys
>>> from nltk.etree.ElementTree import ElementTree
>>> tree = ElementTree(lexicon[3])
>>> tree.write(sys.stdout) [image: 1]
<record>
  <lx>kaa</lx>
  <ps>N</ps>
  <pt>MASC</pt>
  <cl>isi</cl>
  <ge>cooking banana</ge>
  <tkp>banana bilong kukim</tkp>
  <pt>itoo</pt>
  <sf>FLORA</sf>
  <dt>12/Aug/2005</dt>
  <ex>Taeavi iria kaa isi kovopaueva kaparapasia.</ex>
  <xp>Taeavi i bin planim gaden banana bilong kukim tasol long paia.</xp>
  <xe>Taeavi planted banana in order to cook it.</xe>
</record>

Formatting Entries



We can use the same idea we saw in the previous section to
        generate HTML tables instead of plain text. This would be useful for
        publishing a Toolbox lexicon on the Web. It produces HTML elements
        <table>, <tr> (table row), and <td> (table data).
>>> html = "<table>\n"
>>> for entry in lexicon[70:80]:
...     lx = entry.findtext('lx')
...     ps = entry.findtext('ps')
...     ge = entry.findtext('ge')
...     html += "  <tr><td>%s</td><td>%s</td><td>%s</td></tr>\n" % (lx, ps, ge)
>>> html += "</table>"
>>> print html
<table>
  <tr><td>kakae</td><td>???</td><td>small</td></tr>
  <tr><td>kakae</td><td>CLASS</td><td>child</td></tr>
  <tr><td>kakaevira</td><td>ADV</td><td>small-like</td></tr>
  <tr><td>kakapikoa</td><td>???</td><td>small</td></tr>
  <tr><td>kakapikoto</td><td>N</td><td>newborn baby</td></tr>
  <tr><td>kakapu</td><td>V</td><td>place in sling for purpose of carrying</td></tr>
  <tr><td>kakapua</td><td>N</td><td>sling for lifting</td></tr>
  <tr><td>kakara</td><td>N</td><td>arm band</td></tr>
  <tr><td>Kakarapaia</td><td>N</td><td>village name</td></tr>
  <tr><td>kakarau</td><td>N</td><td>frog</td></tr>
</table>


Working with Toolbox Data



Given the popularity of Toolbox among linguists, we will discuss
      some further methods for working with Toolbox data. Many of the methods
      discussed in previous chapters, such as counting, building frequency
      distributions, and tabulating co-occurrences, can be applied to the
      content of Toolbox entries. For example, we can trivially compute the
      average number of fields for each entry:
>>> from nltk.corpus import toolbox
>>> lexicon = toolbox.xml('rotokas.dic')
>>> sum(len(entry) for entry in lexicon) / len(lexicon)
13.635955056179775
In this section, we will discuss two tasks that arise in the
      context of documentary linguistics, neither of which is supported by the
      Toolbox software.
Adding a Field to Each Entry



It is often convenient to add new fields that are derived
        automatically from existing ones. Such fields often facilitate search
        and analysis. For instance, in Example 11-7 we
        define a function cv(), which maps
        a string of consonants and vowels to the corresponding CV sequence,
        e.g., kakapua would map to CVCVCVV. This mapping has four steps. First,
        the string is converted to lowercase, then we replace any
        non-alphabetic characters [^a-z]
        with an underscore. Next, we replace all vowels with V. Finally, anything that is not a V or an underscore must be a consonant, so
        we replace it with a C. Now, we can
        scan the lexicon and add a new cv
        field after every lx field. Example 11-7 shows what this does to a particular
        entry; note the last line of output, which shows the new cv field.
Example 11-7. Adding a new cv field to a lexical entry.
from nltk.etree.ElementTree import SubElement

def cv(s):
    s = s.lower()
    s = re.sub(r'[^a-z]',     r'_', s)
    s = re.sub(r'[aeiou]',    r'V', s)
    s = re.sub(r'[^V_]',      r'C', s)
    return (s)

def add_cv_field(entry):
    for field in entry:
        if field.tag == 'lx':
            cv_field = SubElement(entry, 'cv')
            cv_field.text = cv(field.text)
>>> lexicon = toolbox.xml('rotokas.dic')
>>> add_cv_field(lexicon[53])
>>> print nltk.to_sfm_string(lexicon[53])
\lx kaeviro
\ps V
\pt A
\ge lift off
\ge take off
\tkp go antap
\sc MOTION
\vx 1
\nt used to describe action of plane
\dt 03/Jun/2005
\ex Pita kaeviroroe kepa kekesia oa vuripierevo kiuvu.
\xp Pita i go antap na lukim haus win i bagarapim.
\xe Peter went to look at the house that the wind destroyed.
\cv CVVCVCV


Note
If a Toolbox file is being continually updated, the program in
          Example 11-7 will need to be run more than
          once. It would be possible to modify add_cv_field() to modify the contents of
          an existing entry. However, it is a safer practice to use such
          programs to create enriched files for the purpose of data analysis,
          without replacing the manually curated source files.


Validating a Toolbox Lexicon



Many lexicons in Toolbox format do not conform to any particular schema.
        Some entries may include extra fields, or may order existing fields in
        a new way. Manually inspecting thousands of lexical entries is not
        practicable. However, we can easily identify frequent versus
        exceptional field sequences, with the help of a FreqDist:
>>> fd = nltk.FreqDist(':'.join(field.tag for field in entry) for entry in lexicon)
>>> fd.items()
[('lx:ps:pt:ge:tkp:dt:ex:xp:xe', 41), ('lx:rt:ps:pt:ge:tkp:dt:ex:xp:xe', 37),
('lx:rt:ps:pt:ge:tkp:dt:ex:xp:xe:ex:xp:xe', 27), ('lx:ps:pt:ge:tkp:nt:dt:ex:xp:xe', 20),
..., ('lx:alt:rt:ps:pt:ge:eng:eng:eng:tkp:tkp:dt:ex:xp:xe:ex:xp:xe:ex:xp:xe', 1)]
After inspecting the high-frequency field sequences, we could
        devise a context-free grammar for lexical entries. The grammar in
        Example 11-8 uses the CFG format we saw
        in Chapter 8. Such a grammar models the implicit nested structure of
        Toolbox entries, building a tree structure, where the leaves of the
        tree are individual field names. We iterate over the entries and
        report their conformance with the grammar, as shown in Example 11-8. Those that are accepted by the
        grammar are prefixed with a '+'
        [image: 1], and those that are rejected
        are prefixed with a '-' [image: 2]. During the process of developing
        such a grammar, it helps to filter out some of the tags [image: 3].
Example 11-8. Validating Toolbox entries using a context-free
          grammar.
grammar = nltk.parse_cfg('''
  S -> Head PS Glosses Comment Date Sem_Field Examples
  Head -> Lexeme Root
  Lexeme -> "lx"
  Root -> "rt" |
  PS -> "ps"
  Glosses -> Gloss Glosses |
  Gloss -> "ge" | "tkp" | "eng"
  Date -> "dt"
  Sem_Field -> "sf"
  Examples -> Example Ex_Pidgin Ex_English Examples |
  Example -> "ex"
  Ex_Pidgin -> "xp"
  Ex_English -> "xe"
  Comment -> "cmt" | "nt" |
  ''')

def validate_lexicon(grammar, lexicon, ignored_tags):
    rd_parser = nltk.RecursiveDescentParser(grammar)
    for entry in lexicon:
        marker_list = [field.tag for field in entry if field.tag not in ignored_tags]
        if rd_parser.nbest_parse(marker_list):
            print "+", ':'.join(marker_list) [image: 1]
        else:
            print "-", ':'.join(marker_list) [image: 2]


>>> lexicon = toolbox.xml('rotokas.dic')[10:20]
>>> ignored_tags = ['arg', 'dcsv', 'pt', 'vx'] [image: 3]
>>> validate_lexicon(grammar, lexicon, ignored_tags)
- lx:ps:ge:tkp:sf:nt:dt:ex:xp:xe:ex:xp:xe:ex:xp:xe
- lx:rt:ps:ge:tkp:nt:dt:ex:xp:xe:ex:xp:xe
- lx:ps:ge:tkp:nt:dt:ex:xp:xe:ex:xp:xe
- lx:ps:ge:tkp:nt:sf:dt
- lx:ps:ge:tkp:dt:cmt:ex:xp:xe:ex:xp:xe
- lx:ps:ge:ge:ge:tkp:cmt:dt:ex:xp:xe
- lx:rt:ps:ge:ge:tkp:dt
- lx:rt:ps:ge:eng:eng:eng:ge:tkp:tkp:dt:cmt:ex:xp:xe:ex:xp:xe:ex:xp:xe:ex:xp:xe:ex:xp:xe
- lx:rt:ps:ge:tkp:dt:ex:xp:xe
- lx:ps:ge:ge:tkp:dt:ex:xp:xe:ex:xp:xe


Another approach would be to use a chunk parser (Chapter 7), since these are much more effective at
        identifying partial structures and can report the partial structures
        that have been identified. In Example 11-9 we
        set up a chunk grammar for the entries of a lexicon, then parse each
        entry. A sample of the output from this program is shown in Figure 11-7.
[image: XML representation of a lexical entry, resulting from chunk parsing a Toolbox record.]

Figure 11-7. XML representation of a lexical entry, resulting from chunk
          parsing a Toolbox record.


Example 11-9. Chunking a Toolbox lexicon: A chunk grammar describing the
          structure of entries for a lexicon for Iu Mien, a language of
          China.
from nltk_contrib import toolbox

grammar = r"""
      lexfunc: {<lf>(<lv><ln|le>*)*}
      example: {<rf|xv><xn|xe>*}
      sense:   {<sn><ps><pn|gv|dv|gn|gp|dn|rn|ge|de|re>*<example>*<lexfunc>*}
      record:   {<lx><hm><sense>+<dt>}
    """
>>> from nltk.etree.ElementTree import ElementTree
>>> db = toolbox.ToolboxData()
>>> db.open(nltk.data.find('corpora/toolbox/iu_mien_samp.db'))
>>> lexicon = db.parse(grammar, encoding='utf8')
>>> toolbox.data.indent(lexicon)
>>> tree = ElementTree(lexicon)
>>> output = open("iu_mien_samp.xml", "w")
>>> tree.write(output, encoding='utf8')
>>> output.close()




Describing Language Resources Using OLAC Metadata



Members of the NLP community have a common need for discovering
      language resources with high precision and recall. The solution which
      has been developed by the Digital Libraries community involves metadata
      aggregation.
What Is Metadata?



The simplest definition of metadata is “structured data about
        data.” Metadata is descriptive information about an object or
        resource, whether it be physical or electronic. Although the term
        “metadata” itself is relatively new, the underlying concepts behind
        metadata have been in use for as long as collections of information
        have been organized. Library catalogs represent a well-established
        type of metadata; they have served as collection management and
        resource discovery tools for decades. Metadata can be generated either
        “by hand” or automatically using software.
The Dublin Core Metadata Initiative began in 1995 to develop
        conventions for finding, sharing, and managing information. The Dublin
        Core metadata elements represent a broad, interdisciplinary consensus
        about the core set of elements that are likely to be widely useful to
        support resource discovery. The Dublin Core consists of 15 metadata
        elements, where each element is optional and repeatable: Title,
        Creator, Subject, Description, Publisher, Contributor, Date, Type,
        Format, Identifier, Source, Language, Relation, Coverage, and Rights.
        This metadata set can be used to describe resources that exist in
        digital or traditional formats.
The Open Archives Initiative (OAI) provides a common framework
        across digital repositories of scholarly materials, regardless of
        their type, including documents, data, software, recordings, physical
        artifacts, digital surrogates, and so forth. Each repository consists
        of a network-accessible server offering public access to archived
        items. Each item has a unique identifier, and is associated with a
        Dublin Core metadata record (and possibly additional records in other
        formats). The OAI defines a protocol for metadata search services to
        “harvest” the contents of repositories.

OLAC: Open Language Archives Community



The Open Language Archives Community, or OLAC, is an
        international partnership of institutions and individuals who are
        creating a worldwide virtual library of language resources by: (i)
        developing consensus on best current practices for the digital
        archiving of language resources, and (ii) developing a network of
        interoperating repositories and services for housing and accessing
        such resources. OLAC’s home on the Web is at http://www.language-archives.org/.
OLAC Metadata is a standard for describing language resources.
        Uniform description across repositories is ensured by limiting the
        values of certain metadata elements to the use of terms from
        controlled vocabularies. OLAC metadata can be used to describe data
        and tools, in both physical and digital formats. OLAC metadata extends
        the Dublin Core Metadata Set, a
        widely accepted standard for describing resources of all types. To
        this core set, OLAC adds descriptors to cover fundamental properties
        of language resources, such as subject language and linguistic type.
        Here’s an example of a complete OLAC record:
<?xml version="1.0" encoding="UTF-8"?>
<olac:olac xmlns:olac="http://www.language-archives.org/OLAC/1.1/"
           xmlns="http://purl.org/dc/elements/1.1/"
           xmlns:dcterms="http://purl.org/dc/terms/"
           xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
           xsi:schemaLocation="http://www.language-archives.org/OLAC/1.1/
                http://www.language-archives.org/OLAC/1.1/olac.xsd">
  <title>A grammar of Kayardild. With comparative notes on Tangkic.</title>
  <creator>Evans, Nicholas D.</creator>
  <subject>Kayardild grammar</subject>
  <subject xsi:type="olac:language" olac:code="gyd">Kayardild</subject>
  <language xsi:type="olac:language" olac:code="en">English</language>
  <description>Kayardild Grammar (ISBN 3110127954)</description>
  <publisher>Berlin - Mouton de Gruyter</publisher>
  <contributor xsi:type="olac:role" olac:code="author">Nicholas Evans</contributor>
  <format>hardcover, 837 pages</format>
  <relation>related to ISBN 0646119966</relation>
  <coverage>Australia</coverage>
  <type xsi:type="olac:linguistic-type" olac:code="language_description"/>
  <type xsi:type="dcterms:DCMIType">Text</type>
</olac:olac>
Participating language archives publish their catalogs in an XML
        format, and these records are regularly “harvested” by OLAC services
        using the OAI protocol. In addition to this software infrastructure,
        OLAC has documented a series of best practices for describing language
        resources, through a process that involved extended consultation with
        the language resources community (e.g., see http://www.language-archives.org/REC/bpr.html).
OLAC repositories can be searched using a query engine on the
        OLAC website. Searching for “German lexicon” finds the following
        resources, among others:
	CALLHOME German Lexicon, at http://www.language-archives.org/item/oai:www.ldc.upenn.edu:LDC97L18

	MULTILEX multilingual lexicon, at http://www.language-archives.org/item/oai:elra.icp.inpg.fr:M0001

	Slelex Siemens Phonetic lexicon, at http://www.language-archives.org/item/oai:elra.icp.inpg.fr:S0048



Searching for “Korean” finds a newswire corpus, and a treebank,
        a lexicon, a child-language corpus, and interlinear glossed texts. It
        also finds software, including a syntactic analyzer and a
        morphological analyzer.
Observe that the previous URLs include a substring of the form:
        oai:www.ldc.upenn.edu:LDC97L18.
        This is an OAI identifier, using a URI scheme registered with ICANN
        (the Internet Corporation for Assigned Names and Numbers). These
        identifiers have the format oai:archive:local_id,
        where oai is the name of the URI
        scheme, archive is an archive identifier,
        such as www.ldc.upenn.edu, and
        local_id is the resource identifier
        assigned by the archive, e.g., LDC97L18.
Given an OAI identifier for an OLAC resource, it is possible to
        retrieve the complete XML record for the resource using a URL of the
        following form: http://www.language-archives.org/static-records/oai:archive:local_id.


Summary



	Fundamental data types, present in most corpora, are annotated
          texts and lexicons. Texts have a temporal structure, whereas
          lexicons have a record structure.

	The life cycle of a corpus includes data collection,
          annotation, quality control, and publication. The life cycle
          continues after publication as the corpus is modified and enriched
          during the course of research.

	Corpus development involves a balance between capturing a
          representative sample of language usage, and capturing enough
          material from any one source or genre to be useful; multiplying out
          the dimensions of variability is usually not feasible because of
          resource limitations.

	XML provides a useful format for the storage and interchange
          of linguistic data, but provides no shortcuts for solving pervasive
          data modeling problems.

	Toolbox format is widely used in language documentation
          projects; we can write programs to support the curation of Toolbox
          files, and to convert them to XML.

	The Open Language Archives Community (OLAC) provides an
          infrastructure for documenting and discovering language
          resources.




Further Reading



Extra materials for this chapter are posted at http://www.nltk.org/, including links to freely available
      resources on the Web.
The primary sources of linguistic corpora are the
      Linguistic Data Consortium and the
      European Language Resources Agency, both with
      extensive online catalogs. More details concerning the major corpora
      mentioned in the chapter are available: American National Corpus
      (Reppen, Ide & Suderman, 2005), British National Corpus (BNC, 1999),
      Thesaurus Linguae Graecae (TLG, 1999), Child Language Data Exchange
      System (CHILDES) (MacWhinney, 1995), and TIMIT (Garofolo et al.,
      1986).
Two special interest groups of the Association for Computational
      Linguistics that organize regular workshops with published proceedings
      are SIGWAC, which promotes the use of the Web as a corpus and has
      sponsored the CLEANEVAL task for removing HTML markup, and SIGANN, which
      is encouraging efforts toward interoperability of linguistic
      annotations. An extended discussion of web crawling is provided by
      (Croft, Metzler & Strohman, 2009).
Full details of the Toolbox data format are provided with the
      distribution (Buseman, Buseman & Early, 1996), and with the latest
      distribution freely available from http://www.sil.org/computing/toolbox/. For guidelines on the process of constructing a Toolbox
      lexicon, see http://www.sil.org/computing/ddp/.
      More examples of our efforts with the Toolbox are documented in (Bird,
      1999) and (Robinson, Aumann & Bird, 2007). Dozens of other tools for
      linguistic data management are available, some surveyed by (Bird &
      Simons, 2003). See also the proceedings of the LaTeCH workshops on
      language technology for cultural heritage data.
There are many excellent resources for XML (e.g., http://zvon.org/) and for writing Python programs to work
      with XML http://www.python.org/doc/lib/markup.html. Many editors
      have XML modes. XML formats for lexical information include OLIF (http://www.olif.net/) and LIFT (http://code.google.com/p/lift-standard/).
For a survey of linguistic annotation software, see the
      Linguistic Annotation Page at http://www.ldc.upenn.edu/annotation/. The initial
      proposal for standoff annotation was (Thompson & McKelvie, 1997). An
      abstract data model for linguistic annotations, called “annotation
      graphs,” was proposed in (Bird & Liberman, 2001). A general-purpose ontology for linguistic
      description (GOLD) is documented at http://www.linguistics-ontology.org/.
For guidance on planning and constructing a corpus, see (Meyer,
      2002) and (Farghaly, 2003). More details of methods for scoring
      inter-annotator agreement are available in (Artstein & Poesio, 2008)
      and (Pevzner & Hearst, 2002).
Rotokas data was provided by Stuart Robinson, and Iu Mien data was
      provided by Greg Aumann.
For more information about the Open Language Archives Community,
      visit http://www.language-archives.org/, or see
      (Simons & Bird, 2003).

Exercises



	[image: ] In Example 11-7 the new field
          appeared at the bottom of the entry. Modify this program so that it
          inserts the new subelement right after the lx field. (Hint: create the new cv field using Element('cv'), assign a text value to it, then use the insert() method of the parent
          element.)

	[image: ] Write a function that deletes a specified field from a
          lexical entry. (We could use this to sanitize our lexical data
          before giving it to others, e.g., by removing fields containing
          irrelevant or uncertain content.)

	[image: ] Write a program that scans an HTML dictionary file to find
          entries having an illegal part-of-speech field, and then reports the
          headword for each entry.

	[image: ] Write a program to find any parts-of-speech (ps field) that occurred less than 10
          times. Perhaps these are typing mistakes?

	[image: ] We saw a method for adding a cv field (Working with Toolbox Data). There is an interesting
          issue with keeping this up-to-date when someone modifies the content
          of the lx field on which it is
          based. Write a version of this program to add a cv field, replacing any existing cv field.

	[image: ] Write a function to add a new field syl which gives a count of the number of
          syllables in the word.

	[image: ] Write a function which displays the complete entry for a
          lexeme. When the lexeme is incorrectly spelled, it should display
          the entry for the most similarly spelled lexeme.

	[image: ] Write a function that takes a lexicon and finds which pairs
          of consecutive fields are most frequent (e.g., ps is often followed by pt). (This might help us to discover some
          of the structure of a lexical entry.)

	[image: ] Create a spreadsheet using office software, containing one
          lexical entry per row, consisting of a headword, a part of speech,
          and a gloss. Save the spreadsheet in CSV format. Write Python code
          to read the CSV file and print it in Toolbox format, using lx for the headword, ps for the part of speech, and gl for the gloss.

	[image: ] Index the words of Shakespeare’s plays, with the help of
          nltk.Index. The resulting data
          structure should permit lookup on individual words, such as
          music, returning a list of references to acts,
          scenes, and speeches, of the form [(3, 2,
          9), (5, 1, 23), ...], where (3,
          2, 9) indicates Act 3 Scene 2 Speech 9.

	[image: ] Construct a conditional frequency distribution which records
          the word length for each speech in The Merchant of
          Venice, conditioned on the name of the character; e.g.,
          cfd['PORTIA'][12] would give us
          the number of speeches by Portia consisting of 12 words.

	[image: ] Write a recursive function to convert an arbitrary NLTK tree
          into an XML counterpart, with non-terminals represented as XML
          elements, and leaves represented as text content, e.g.:
<S>
  <NP type="SBJ">
    <NP>
      <NNP>Pierre</NNP>
      <NNP>Vinken</NNP>
    </NP>
    <COMMA>,</COMMA>

	● Obtain a comparative wordlist in CSV format, and write a
          program that prints those cognates having an edit-distance of at
          least three from each other.

	● Build an index of those lexemes which appear in example
          sentences. Suppose the lexeme for a given entry is
          w. Then, add a single cross-reference field
          xrf to this entry, referencing
          the headwords of other entries having example sentences containing
          w. Do this for all entries and save the result
          as a Toolbox-format file.




Appendix A. Afterword: The Language Challenge



Natural language throws up some interesting computational
    challenges. We’ve explored many of these in the preceding chapters,
    including tokenization, tagging, classification, information extraction,
    and building syntactic and semantic representations. You should now be
    equipped to work with large datasets, to create robust models of
    linguistic phenomena, and to extend them into components for practical
    language technologies. We hope that the Natural Language Toolkit (NLTK)
    has served to open up the exciting endeavor of practical natural language
    processing to a broader audience than before.
In spite of all that has come before, language presents us with far
    more than a temporary challenge for computation. Consider the following
    sentences which attest to the riches of language:
	Overhead the day drives level and grey, hiding the sun by a
        flight of grey spears. (William Faulkner, As I Lay
        Dying, 1935)

	When using the toaster please ensure that the exhaust fan is
        turned on. (sign in dormitory kitchen)

	Amiodarone weakly inhibited CYP2C9, CYP2D6, and CYP3A4-mediated
        activities with Ki values of 45.1-271.6 μM (Medline, PMID:
        10718780)

	Iraqi Head Seeks Arms (spoof news headline)

	The earnest prayer of a righteous man has great power and
        wonderful results. (James 5:16b)

	Twas brillig, and the slithy toves did gyre and gimble in the
        wabe (Lewis Carroll, Jabberwocky, 1872)

	There are two ways to do this, AFAIK :smile: (Internet
        discussion archive)



Other evidence for the riches of language is the vast array of
    disciplines whose work centers on language. Some obvious disciplines
    include translation, literary criticism, philosophy, anthropology, and
    psychology. Many less obvious disciplines investigate language use,
    including law, hermeneutics, forensics, telephony, pedagogy, archaeology,
    cryptanalysis, and speech pathology. Each applies distinct methodologies
    to gather observations, develop theories, and test hypotheses. All serve
    to deepen our understanding of language and of the intellect that is
    manifested in language.
In view of the complexity of language and the broad range of
    interest in studying it from different angles, it’s clear that we have
    barely scratched the surface here. Additionally, within NLP itself, there
    are many important methods and applications that we haven’t
    mentioned.
In our closing remarks we will take a broader view of NLP, including
    its foundations and the further directions you might want to explore. Some
    of the topics are not well supported by NLTK, and you might like to
    rectify that problem by contributing new software and data to the
    toolkit.
Language Processing Versus Symbol Processing



The very notion that natural language could be treated in a
      computational manner grew out of a research program, dating back to the
      early 1900s, to reconstruct mathematical reasoning using logic, most
      clearly manifested in work by Frege, Russell, Wittgenstein, Tarski,
      Lambek, and Carnap. This work led to the notion of language as a formal
      system amenable to automatic processing. Three later developments laid
      the foundation for natural language processing. The first was formal language theory. This defined a language
      as a set of strings accepted by a class of automata, such as
      context-free languages and pushdown automata, and provided the
      underpinnings for computational syntax.
The second development was symbolic
      logic. This provided a formal method for capturing selected
      aspects of natural language that are relevant for expressing logical
      proofs. A formal calculus in symbolic logic provides the syntax of a
      language, together with rules of inference and, possibly, rules of
      interpretation in a set-theoretic model; examples are propositional
      logic and first-order logic. Given such a calculus, with a well-defined
      syntax and semantics, it becomes possible to associate meanings with
      expressions of natural language by translating them into expressions of
      the formal calculus. For example, if we translate John saw
      Mary into a formula saw(j, m), we
      (implicitly or explicitly) interpret the English verb
      saw as a binary relation, and
      John and Mary as denoting
      individuals. More general statements like All birds
      fly require quantifiers, in this case ∀, meaning
      for all: ∀x
      (bird(x)
      →
      fly(x)). This use of logic
      provided the technical machinery to perform inferences that are an
      important part of language understanding.
A closely related development was the principle of compositionality, namely that the
      meaning of a complex expression is composed from the meaning of its
      parts and their mode of combination (Chapter 10). This
      principle provided a useful correspondence between syntax and semantics, namely
      that the meaning of a complex expression could be computed recursively.
      Consider the sentence It is not true that
      p, where p is a proposition.
      We can represent the meaning of this sentence as
      not(p). Similarly, we can
      represent the meaning of John saw Mary as
      saw(j,
      m). Now we can compute the interpretation of
      It is not true that John saw Mary recursively,
      using the foregoing information, to get
      not(saw(j,m)).
The approaches just outlined share the premise that computing with
      natural language crucially relies on rules for manipulating symbolic
      representations. For a certain period in the development of NLP,
      particularly during the 1980s, this premise provided a common starting
      point for both linguists and practitioners of NLP, leading to a family
      of grammar formalisms known as unification-based (or feature-based)
      grammar (see Chapter 9), and to NLP applications
      implemented in the Prolog programming language. Although grammar-based
      NLP is still a significant area of research, it has become somewhat
      eclipsed in the last 15–20 years due to a variety of factors. One
      significant influence came from automatic speech recognition. Although
      early work in speech processing adopted a model that emulated the kind
      of rule-based phonological phonology
      processing typified by the Sound Pattern of English
      (Chomsky & Halle, 1968), this turned out to be hopelessly inadequate
      in dealing with the hard problem of recognizing actual speech in
      anything like real time. By contrast, systems which involved learning
      patterns from large bodies of speech data were significantly more
      accurate, efficient, and robust. In addition, the speech community found
      that progress in building better systems was hugely assisted by the
      construction of shared resources for quantitatively measuring
      performance against common test data. Eventually, much of the NLP
      community embraced a data-intensive
      orientation to language processing, coupled with a growing use of
      machine-learning techniques and evaluation-led methodology.

Contemporary Philosophical Divides



The contrasting approaches to NLP described in the preceding
      section relate back to early metaphysical debates about rationalism versus empiricism and realism versus idealism that occurred in the Enlightenment
      period of Western philosophy. These debates took place against a
      backdrop of orthodox thinking in which the source of all knowledge was
      believed to be divine revelation. During this period of the 17th and
      18th centuries, philosophers argued that human reason or sensory
      experience has priority over revelation. Descartes and Leibniz, among
      others, took the rationalist position, asserting that all truth has its
      origins in human thought, and in the existence of “innate ideas”
      implanted in our minds from birth. For example, they argued that the
      principles of Euclidean geometry were developed using human reason, and
      were not the result of supernatural revelation or sensory experience. In
      contrast, Locke and others took the empiricist view, that our primary
      source of knowledge is the experience of our faculties, and that human
      reason plays a secondary role in reflecting on that experience.
      Often-cited evidence for this position was Galileo’s discovery—based on
      careful observation of the motion of the planets—that the solar system
      is heliocentric and not geocentric. In the context of linguistics, this
      debate leads to the following question: to what extent does human
      linguistic experience, versus our innate “language faculty,” provide the
      basis for our knowledge of language? In NLP this issue surfaces in
      debates about the priority of corpus data versus linguistic
      introspection in the construction of computational models.
A further concern, enshrined in the debate between realism and
      idealism, was the metaphysical
      status of the constructs of a theory. Kant argued for a distinction
      between phenomena, the manifestations we can experience, and “things in
      themselves” which can never be known directly. A linguistic realist
      would take a theoretical construct like noun
      phrase to be a real-world entity that exists independently of
      human perception and reason, and which actually
      causes the observed linguistic phenomena. A
      linguistic idealist, on the other hand, would argue that noun phrases,
      along with more abstract constructs, like semantic representations, are
      intrinsically unobservable, and simply play the role of useful fictions.
      The way linguists write about theories often betrays a realist position,
      whereas NLP practitioners occupy neutral territory or else lean toward
      the idealist position. Thus, in NLP, it is often enough if a theoretical
      abstraction leads to a useful result; it does not matter whether this
      result sheds any light on human linguistic processing.
These issues are still alive today, and show up in the
      distinctions between symbolic versus statistical methods, deep versus
      shallow processing, binary versus gradient classifications, and
      scientific versus engineering goals. However, such contrasts are now
      highly nuanced, and the debate is no longer as polarized as it once was.
      In fact, most of the discussions—and most of the advances, even—involve
      a “balancing act.” For example, one intermediate position is to assume
      that humans are innately endowed with analogical and memory-based
      learning methods (weak rationalism), and use these methods to identify
      meaningful patterns in their sensory language experience
      (empiricism).
We have seen many examples of this methodology throughout this
      book. Statistical methods inform symbolic models anytime corpus
      statistics guide the selection of productions in a context-free grammar,
      i.e., “grammar engineering.” Symbolic methods inform statistical models
      anytime a corpus that was created using rule-based methods is used as a
      source of features for training a statistical language model, i.e.,
      “grammatical inference.” The circle is closed.

NLTK Roadmap



The Natural Language Toolkit is a work in progress, and is being
      continually expanded as people contribute code. Some areas of NLP and
      linguistics are not (yet) well supported in NLTK, and contributions in
      these areas are especially welcome. Check http://www.nltk.org/ for news about developments after
      the publication date of this book. Contributions in the following areas
      are particularly encouraged:
	Phonology and morphology
	Computational approaches to the study of sound patterns and
            word structures typically use a finite-state toolkit. Phenomena
            such as suppletion and non-concatenative morphology are difficult
            to address using the string-processing methods we have been
            studying. The technical challenge is not only to link NLTK to a
            high-performance finite-state toolkit, but to avoid duplication of
            lexical data and to link the morphosyntactic features needed by
            morph analyzers and syntactic parsers.

	High-performance components
	Some NLP tasks are too computationally intensive for pure
            Python implementations to be feasible. However, in some cases the
            expense arises only when training models, not when using them to
            label inputs. NLTK’s package system provides a convenient way to
            distribute trained models, even models trained using corpora that
            cannot be freely distributed. Alternatives are to develop Python
            interfaces to high-performance machine learning tools, or to
            expand the reach of Python by using parallel programming
            techniques such as MapReduce.

	Lexical semantics
	This is a vibrant area of current research, encompassing
            inheritance models of the lexicon, ontologies, multiword
            expressions, etc., mostly outside the scope of NLTK as it stands.
            A conservative goal would be to access lexical information from
            rich external stores in support of tasks in word sense
            disambiguation, parsing, and semantic interpretation.

	Natural language generation
	Producing coherent text from underlying representations of
            meaning is an important part of NLP; a unification-based approach
            to NLG has been developed in NLTK, and there is scope for more
            contributions in this area.

	Linguistic fieldwork
	A major challenge faced by linguists is to document
            thousands of endangered languages, work which generates
            heterogeneous and rapidly evolving data in large quantities. More
            fieldwork data formats, including interlinear text formats and
            lexicon interchange formats, could be supported in NLTK, helping
            linguists to curate and analyze this data, while liberating them
            to spend as much time as possible on data elicitation.

	Other languages
	Improved support for NLP in languages other than English
            could involve work in two areas: obtaining permission to
            distribute more corpora with NLTK’s data collection; and writing
            language-specific HOWTOs for posting at http://www.nltk.org/howto, illustrating the use of
            NLTK and discussing language-specific problems for NLP, including
            character encodings, word segmentation, and morphology. NLP
            researchers with expertise in a particular language could arrange
            to translate this book and host a copy on the NLTK website; this
            would go beyond translating the discussions to providing
            equivalent worked examples using data in the target language, a
            non-trivial undertaking.

	NLTK-Contrib
	Many of NLTK’s core components were contributed by members
            of the NLP community, and were initially housed in NLTK’s
            “Contrib” package, nltk_contrib. The only requirement for
            software to be added to this package is that it must be written in
            Python, relevant to NLP, and given the same open source license as
            the rest of NLTK. Imperfect software is welcome, and will probably
            be improved over time by other members of the NLP
            community.

	Teaching materials
	Since the earliest days of NLTK development, teaching
            materials have accompanied the software, materials that have
            gradually expanded to fill this book, plus a substantial quantity
            of online materials as well. We hope that instructors who
            supplement these materials with presentation slides, problem sets,
            solution sets, and more detailed treatments of the topics we have
            covered will make them available, and will notify the authors so
            we can link them from http://www.nltk.org/.
            Of particular value are materials that help NLP become a
            mainstream course in the undergraduate programs of computer
            science and linguistics departments, or that make NLP accessible
            at the secondary level, where there is significant scope for
            including computational content in the language, literature,
            computer science, and information technology curricula.

	Only a toolkit
	As stated in the preface, NLTK is a
            toolkit, not a system. Many problems will be
            tackled with a combination of NLTK, Python, other Python
            libraries, and interfaces to external NLP tools and
            formats.




Envoi...



Linguists are sometimes asked how many languages they speak, and
      have to explain that this field actually concerns the study of abstract
      structures that are shared by languages, a study which is more profound
      and elusive than learning to speak as many languages as possible.
      Similarly, computer scientists are sometimes asked how many programming
      languages they know, and have to explain that computer science actually
      concerns the study of data structures and algorithms that can be
      implemented in any programming language, a study which is more profound
      and elusive than striving for fluency in as many programming languages
      as possible.
This book has covered many topics in the field of Natural Language
      Processing. Most of the examples have used Python and English. However,
      it would be unfortunate if readers concluded that NLP is about how to
      write Python programs to manipulate English text, or more broadly, about
      how to write programs (in any programming language) to manipulate text
      (in any natural language). Our selection of Python and English was
      expedient, nothing more. Even our focus on programming itself was only a
      means to an end: as a way to understand data structures and algorithms
      for representing and manipulating collections of linguistically
      annotated text, as a way to build new language technologies to better
      serve the needs of the information society, and ultimately as a pathway
      into deeper understanding of the vast riches of human language.
But for the present: happy hacking!
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The animal on the cover of Natural Language Processing
    with Python is a right whale, the rarest of all large whales.
    It is identifiable by its enormous head, which can measure up to one-third
    of its total body length. It lives in temperate and cool seas in both
    hemispheres at the surface of the ocean. It’s believed that the right
    whale may have gotten its name from whalers who thought that it was the
    “right” whale to kill for oil. Even though it has been protected since the
    1930s, the right whale is still the most endangered of all the great
    whales.
The large and bulky right whale is easily distinguished from other
    whales by the calluses on its head. It has a broad back without a dorsal
    fin and a long arching mouth that begins above the eye. Its body is black,
    except for a white patch on its belly. Wounds and scars may appear bright
    orange, often becoming infested with whale lice or cyamids. The calluses—which are also found
    near the blowholes, above the eyes, and on the chin, and upper lip—are
    black or gray. It has large flippers that are shaped like paddles, and a
    distinctive V-shaped blow, caused by the widely spaced blowholes on the
    top of its head, which rises to 16 feet above the ocean’s surface.
The right whale feeds on planktonic organisms, including shrimp-like
    krill and copepods. As baleen whales, they have a series of 225–250
    fringed overlapping plates hanging from each side of the upper jaw, where
    teeth would otherwise be located. The plates are black and can be as long
    as 7.2 feet. Right whales are “grazers of the sea,” often swimming slowly
    with their mouths open. As water flows into the mouth and through the
    baleen, prey is trapped near the tongue.
Because females are not sexually mature until 10 years of age and
    they give birth to a single calf after a year-long pregnancy, populations
    grow slowly. The young right whale stays with its mother for one
    year.
Right whales are found worldwide but in very small numbers. A right
    whale is commonly found alone or in small groups of 1 to 3, but when
    courting, they may form groups of up to 30. Like most baleen whales, they
    are seasonally migratory. They inhabit colder waters for feeding and then
    migrate to warmer waters for breeding and calving. Although they may move
    far out to sea during feeding seasons, right whales give birth in coastal
    areas. Interestingly, many of the females do not return to these coastal
    breeding areas every year, but visit the area only in calving years. Where
    they go in other years remains a mystery.
The right whale’s only predators are orcas and humans. When danger
    lurks, a group of right whales may come together in a circle, with their
    tails pointing outward, to deter a predator. This defense is not always
    successful and calves are occasionally separated from their mother and
    killed.
Right whales are among the slowest swimming whales, although they
    may reach speeds up to 10 mph in short spurts. They can dive to at least
    1,000 feet and can stay submerged for up to 40 minutes. The right whale is
    extremely endangered, even after years of protected status. Only in the
    past 15 years is there evidence of a population recovery in the Southern
    Hemisphere, and it is still not known if the right whale will survive at
    all in the Northern Hemisphere. Although not presently hunted, current
    conservation problems include collisions with ships, conflicts with
    fishing activities, habitat destruction, oil drilling, and possible
    competition from other whale species. Right whales have no teeth, so ear
    bones and, in some cases, eye lenses can be used to estimate the age of a
    right whale at death. It is believed that right whales live at least 50
    years, but there is little data on their longevity.
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# -*- coding: utf-s -*-

import
sent =
Praeviezione przez Niemcow pod koniec II wojny Swiatowej na Dolny
Slask, zostaly odnalezione po 1945 r. na terytorium Polaki.

u = sent.decode("ut£a’)
u.lover()
print u.encode('utfa’)

SACUTE = re.compile('s|5')
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rint replaced
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