

 Twisted Network Programming Essentials

Jessica McKellar

Abe Fettig

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Foreword to the First Edition

“My name is Ozymandius, king of kings:

Look on my words, ye Mighty, and despair!”

Nothing beside remains. Round the decay

Of that colossal wreck, boundless and bare

The lone and level sands stretch far away.

—Percy Bysshe Shelly, “Ozymandius”

As the Twisted project’s originator and nominal leader—and as someone
 who is not being paid for writing this—I can very honestly say that this is
 a fine book, and it has made me proud of what I’ve started. You now hold in
 your hands a wondrous key that contains the knowledge to unlock a very
 powerful software system—a software system borne of a consistent, methodical
 vision; a vision half a decade in realization and hundreds of man-years in
 implementation; a vision for a video game that has yet to be written, called
 “Divunal.”
I have been lauded many times for my role in Twisted’s creation, and
 in this foreword I will attempt to disabuse you of the notion that any of it
 was on purpose. Not only was it an accident, but neither I, nor anyone else,
 has made one iota of progress towards my original goal of writing a
 game.
When I was eight years old, I decided I wanted to be a writer. I was going to write video
 games just like my favorite ones, the text-based games from Infocom. They were like books, but
 better. I knew how to write already—at a fourth-grade level, or so I’m told—and all I needed to figure out was the part where the
 computer wrote back. Lucky for you nobody thought to tell me how hard that step between the
 input and the output was, or Twisted would be a series of detective novels instead of a Python
 program.
Tolkien said it best: “The tale grew in the telling,” and I’ll say it worse: the code grew
 in the hacking. Twisted began over a decade after my aforementioned first plunge into the
 netherworld of software, as a solitary attempt to create a networking subsystem for a small
 online fantasy world. Since then, it has become an ongoing community quest to unify all manner
 of asynchronous communications. This book will take you on an adventure through Twisted for the
 Web, Twisted for email, Twisted for chat, and of course, Twisted for whatever new kind of
 networked application you want to dream up—maybe even an
 online video game.
Much as the tale of Twisted has grown and changed, its origins still
 have a profound effect on its nature, and on its future. Having origins in
 an eclectic[1] problem domain has attracted an eclectic[2] audience. The community in the online support forum engages in
 discussions that are “often funny.” To put it more directly: we’re
 weird.
“Weird” is a badge I have long worn with pride, dear reader, so please
 take it as a compliment that I bestow it upon you. You’re not simply
 non-average, you’re better than average. Almost by definition, Twisted
 hackers are the ones for whom “good enough” isn’t good enough. You are the
 web programmers who can’t use their operating system’s stock HTTP daemon
 because you need more power and more control over how it’s run; the chat
 developers who aren’t content with chatting on a perfectly working network
 just because it doesn’t support some cool new features you want; the (dare I
 say it?) gamers who aren’t content with the market’s offerings of online
 games. You want to create something newer, different, better. To build
 higher than those who have come before, because you are building not merely
 upon the shoulders of giants, but upon the apex of an acrobatic balancing
 act of giants, or more literally an interlocking network of frameworks and
 libraries for different tasks, rather than just one at a time.
Twisted will let you do that, by letting you leverage code written by
 far more and far better programmers than I. Twisted provides a common method
 for that code to cooperate, which means you can use all of that code without
 performing a complex integration pass. In this spirit, I’d like to invite
 you to release your Twisted-based projects, or the infrastructure components
 of them, as open source software, so that we might together build a Twisted
 commons upon which many more fantastic applications will be built.
Don’t mistake this friendly vision for altruism, however. I didn’t have anything to do with
 the start of the Free Software or Open Source movements, respectively, but they came along at a
 convenient time for me. This feeling of share-and-share-alike has been a feature of the Twisted
 community since day one, but not because I care about sharing.[3] It is because—I may have mentioned this—I want to write a
 video game one day. A game that effortlessly connects to the Web and to your email, that
 politely requests that you play when you have time, and that reminds you to get back to work
 when you do not.
You see, the majority of Twisted’s core developers, including myself,
 suffer from Attention Deficit Disorder. This malady is the grease that makes
 the magic wheels of integration turn. While most developers—sane
 developers—would be content to write a perfectly good web server that could
 work only as a web server and leave it at that, we are always afraid we’ll
 suddenly lose interest and need a chat application instead—or maybe it
 should be a mail server? Hey, there’s a squirrel! I don’t like this
 song.
What was I saying? Oh yes. The essence of Twisted is apparently
 paradoxical. Created on a whim by crazed eccentrics, designed to be a toy,
 and yet powerful enough to drive massive email systems, high-traffic web
 sites, transaction-processing systems, and inventory management
 applications.
However, the paradox is an illusion. People produce the best work when they are working and
 having fun at the same time. It takes a sense of humor to call yourself a crazed eccentric
 (whether it’s true or not). You have to have a sense of fun to try and build a toy. In enjoying
 ourselves, we have brought to life a system that many of us have tried and been unable to create
 in more serious surroundings.
So, when I look out upon the “lone and level sands” of Divunal, a game
 whose incarnation today is little more than its name, I am not concerned. I
 am having a good time with Twisted. With this book in hand, I have no doubt
 that you will, too.
—Matthew “the Glyph” Lefkowitz

CTO at Divmod, Inc.

(not a game company)

(yet)

August 2005

[1] And difficult! Making an online game work properly is
 hard.

[2] And intelligent! People who solve unusual problems are always
 learning.

[3] Caution for the humorless: this is a joke. I am not actually an enemy of freedom.
 Still, there is some truth to this.

Preface

This book is about Twisted, an open source, event-driven networking engine written in Python.
Twisted supports many common transport and application layer
 protocols, including TCP, UDP, SSL/TLS, HTTP, IMAP, SSH, IRC, and FTP. Like
 the language in which it is written, it is “batteries-included”; Twisted
 comes with client and server implementations for all of its protocols, as
 well as utilities that make it easy to configure and deploy production-grade
 Twisted applications from the command line.
Twisted includes both high- and low-level tools for building
 performant, cross-platform applications. You can deploy a web or mail server
 with just a few lines of code, or you can write your own protocol from
 scratch. At every level, Twisted provides a tested, RFC-conforming,
 extensible API that makes it possible to rapidly develop powerful network
 software.
In keeping with the spirit of the O’Reilly Essentials series, this
 book is not about torturing you with the nitty-gritty details of specific
 networking protocols, or with exhaustively documenting Twisted’s APIs. For a
 comprehensive treatment of how to use Twisted to build applications for a
 particular protocol, please get your footing with this book and then consult
 the official documentation.
Instead, the goal of this book is to give you fluency in the primitives Twisted provides and
 the idioms that it uses to build network clients and servers. It starts with an introduction to
 the underlying event-driven model and a big-picture view of Twisted as a framework, focusing on
 simple, self-contained examples that you can play with and extend as you explore Twisted’s APIs.
 Where possible, the client and server examples are written so they can be run together.
After reading this book, you will have the tools and conceptual background to build any
 event-driven client or server application you need, not just for the protocols that are a part
 of Twisted and covered in this book, but also for new protocols that you build using Twisted’s
 primitives.
Why Use Twisted?

Why should you use Twisted instead of some other networking library
 or framework? Here are a few compelling reasons. Twisted is:
	Python-powered
	Twisted is written in Python, a powerful, object-oriented,
 interpreted language. Python is a language that inspires great
 enthusiasm among its fans, and for good reason. It’s a joy to
 program in Python, which is easy to write, easy to read, and easy to
 run. And because Python is cross-platform, you can run the same
 Twisted application on Linux, Windows, Unix, and Mac OS X.

	Asynchronous and event-based
	Synchronous network libraries leave developers with a painful
 choice: either allow the application to become unresponsive during
 network operations, or introduce the additional complexity of
 threading. Twisted’s event-based, asynchronous framework makes it
 possible to write applications that stay responsive while processing
 events from multiple network connections, without using
 threads.

	Full-featured
	Twisted includes an amazing amount of functionality. Mail,
 web, news, chat, DNS, SSH, Telnet, RPC, database access, and
 more—it’s all there, ready for you to use.

	Flexible and extensible
	Twisted provides high-level classes to let you get started quickly. But you’ll never
 find yourself limited by the way things work out of the box. If you need advanced
 functionality, or if you need to customize the way a protocol works, you can. You can
 also write your own protocol implementation, to control every byte sent over the
 wire.

	Open source
	Twisted is free, both as in beer and as in freedom. It includes full source code and
 is released under a liberal license. Want to distribute all or part of Twisted with your
 application? You’re welcome to do so, with no obligations to release your own code or
 pay any licensing fees. Want to get a better understanding of how an object in Twisted
 works? Take a look at the source. And when you get to the point where you’re developing
 your own improvements and extensions to Twisted, you can contribute them to the
 community for the benefit of others.

	Community-backed
	Twisted has an active community of developers and users. If you run into a problem,
 you’ll find many fellow developers ready to help on one of the Twisted mailing lists
 (see Finding Answers to Your Questions, in Chapter 1).
 Or you can drop into the #twisted IRC channel, where the chances
 are good you’ll be able to start a live conversation with the very person who wrote the
 code you’re having trouble with.

	An integration-friendly platform
	A Twisted application can share data between several different
 services within the same process. This makes integration tasks a
 snap. You can write an SMTP-to-XMLRPC proxy, an SSH server that lets
 you update a website, or a web discussion board that includes an
 NNTP interface. If you need to transfer data between systems that
 don’t speak the same protocol, Twisted will make your job a whole
 lot easier.

What This Book Covers

This book does not attempt to exhaustively document every module and class available for
 the Twisted framework. Instead, it focuses on presenting practical examples of the most common
 tasks that developers building network applications face. This book will also help you to
 understand the key concepts and design patterns used in Twisted applications.
This book has three parts:
	Learning Twisted basics through building basic clients
 and servers
	This part covers installing Twisted, an architectural overview of the framework, and
 building basic TCP clients and servers. We then apply the primitives and idioms from the
 chapters on basic applications to a variety of client and server examples for a
 particular protocol, HTTP.

	Building production-grade servers
	At this point, well-practiced with basic clients and servers,
 we focus on deploying these applications in a robust and
 standardized fashion using the Twisted application infrastructure.
 This part also adds to our repertoire common components of
 production-grade servers: logging, database access, authentication,
 using threads and processes in a Twisted-safe way, and
 testing.

	More practice through examples from other
 protocols
	For more practice, to give a sense of Twisted’s breadth, and
 to cover many popular uses of Twisted, the final part of the book
 explores clients and servers for IRC, various mail protocols, and
 SSH.

Conventions Used in This Book

This book uses standard typographical conventions to highlight
 different types of text. You’ll see the following font styles used:
	Italic
	Used for emphasis, to highlight technical terms the first time they appear, and for
 commands, packages, filenames, directories, and URLs

	Constant width
	Used for code samples, and for the names of variables, classes, objects, and
 functions when they are used within the main text of the book

	Constant width
 bold
	Shows user input at the command line and interactive prompts

	Constant width bold italic
	Shows placeholder user input that you should replace with something that makes sense
 for you

Tip
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

What You’ll Need

This book assumes a familiarity with programming in Python. If you’re looking for a good
 introduction to Python, check out Learning Python, by Mark Lutz
 (O’Reilly), or Dive Into Python, by Mark Pilgrim (Apress). You should
 have a Linux, Mac OS X, or Windows computer with Python version 2.6 or 2.7 installed. Python
 2.6 is included in Mac OS X 10.6 (“Snow Leopard”) and higher and in many Linux distributions.
 If you don’t already have Python installed, you can download it for free from the Python home page.

Changes Since the Previous Edition

The first edition of Twisted Networking Essentials was released in
 2005. Since then, networking protocols have come in and out of fashion, and Twisted’s APIs
 have evolved and matured. This second edition builds upon the excellent foundation first
 edition author Abe Fettig crafted by trimming off aged protocols and Twisted APIs and covering
 more Twisted subprojects and features.
In particular, this edition removes the chapter on NNTP and adds chapters on building IRC
 clients and servers and testing your Twisted applications using the Trial framework. The
 sections on deploying production-grade services using the Twisted application infrastructure
 have been significantly expanded. In addition to a discussion and examples of Twisted
 applications and Twisted plugins, logging, working with databases, and using threads and
 processes all now get more coverage in their own chapters.
The focus of this book has also been sharpened to give you fluency in Twisted’s primitives
 and idioms with minimal distraction from the nitty-gritty details of specific protocols.
 Almost all of the examples have been streamlined, and where reasonable, reworked so that you
 have client and server pairs that can be run together to maximize experimentation value. Also,
 as part of building a solid conceptual foundation, the section on Deferreds, a frequent source of confusion and frustration for developers new to
 event-driven programming, has been expanded into its own chapter with many more examples.
Since the structure and many of the examples have changed, it is
 hard to give a short and complete enumeration of the differences between
 this edition and the last. I hope this has given you some idea, though,
 and I welcome your thoughts and feedback.
Portions of Chapters 2,
 3, and 6 were adapted from the author’s
 chapter on Twisted for The Architecture of Open Source Applications, Volume
 II under a Creative Commons Attribution 3.0 Unported license. You can find out
 more about this book at The Architecture of Open Source
 Applications home page and about this license at the Creative Commons website.

Using Code Examples

This book is here to help you get your job done. In general, if this
 book includes code examples, you may use the code in your programs and
 documentation. You do not need to contact us for permission unless you’re
 reproducing a significant portion of the code. For example, writing a
 program that uses several chunks of code from this book does not require
 permission. Selling or distributing a CD-ROM of examples from O’Reilly
 books does require permission. Answering a question by citing this book
 and quoting example code does not require permission. Incorporating a
 significant amount of example code from this book into your product’s
 documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes the title,
 author, publisher, and ISBN. For example: “Twisted Network Programming
 Essentials, Second Edition, by Jessica McKellar and Abe Fettig (O’Reilly).
 Copyright 2013 Jessica McKellar, 978-1-4493-2611-1.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business.

Technology professionals, software developers, web designers, and
 business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
Safari Books Online offers a range of product mixes
 and pricing programs for organizations,
 government
 agencies, and individuals.
 Subscribers have access to thousands of books, training videos, and
 prepublication manuscripts in one fully searchable database from
 publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
 Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
 Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
 Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
 McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
 information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at http://oreil.ly/twisted-network-2e.
To comment or ask technical questions about this book, send email to
 bookquestions@oreilly.com.
For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Twisted was my first-ever experience with open source contribution. I am so grateful that
 as a naive and clueless intern way back when, Glyph, JP, Itamar, and others patiently guided
 me through the contribution process and invested their time in making me a core developer for
 the project. What I’ve learned from this wonderful community continues to influence my open source and software engineering sensibilities and
 discipline today, and I strive to give back half as much as they’ve given me.
Thank you Christopher Armstrong, Andrew Bennetts, Jean-Paul Calderone, Thomas Herve, Kevin
 Horn, Laurens Van Houtven, James Knight, Jonathan Lange, Glyph Lefkowitz, Ying Li, Duncan
 McGreggor, Ashwini Oruganti, David Reid, Allen Short, David Sturgis, Kevin Turner, and the
 many other contributors who have helped me and who steward Twisted, support new contributors,
 help users, write code, write documentation, write tests, and maintain the infrastructure for
 Twisted. It is truly a group effort.
Thank you Adam Fletcher and Laurens Van Houtven for providing
 technical reviews for this edition. I appreciate your tolerance for my
 propensity for deadline-driven development. Your feedback has made this
 book much stronger. Thank you to my editor Meghan Blanchette, whose stuck
 with and pushed me patiently as at each deadline I tried to creep in
 one...last...tweak...I promise.

Part I. An Introduction to Twisted

Chapter 1. Getting Started

Before you can start developing applications using Twisted, you’ll
 need to download and install Twisted and its dependencies. This chapter
 walks you through the installation process on various operating systems. It
 also shows you how to add the Twisted utilities to your path, familiarize
 yourself with the Twisted documentation, and get answers to your questions
 from the Twisted community.
These instructions assume that you are familiar with Python and, in the case of source
 installations, comfortable navigating and installing packages from the command line.
Twisted requires Python 2.6 or 2.7. Support for Python 3.0 is in progress at the time of
 this writing.
Installing Twisted

First things first: you need to get Twisted installed on your computer. Downloads and
 instructions for installing Twisted on various operating systems can be found on the Twisted home page, with additional instructions and
 links to older releases at this Twisted page. To
 enable additional functionality in Twisted, you’ll have to install a couple of optional
 packages as well.
You can find everything you need on the Twisted website, but if you’d like you can also
 browse this page on PyPI for the source, Windows
 installers, and download statistics.
Installation on Linux

All of the popular Linux distributions maintain a
 python-twisted package as well as packaged versions
 of Twisted’s dependencies. To install Twisted on a
 dpkg-based system, run:
 apt-get install python-twisted
On an rpm-based system, run:
 yum install python-twisted
That’s it! You now have a functional Twisted installation. If you
 want to use some of Twisted’s extra features or learn about installing
 from source on Linux, read on. Otherwise, you can skip to Testing Your Installation.
More package options and optional dependencies

Twisted also maintains an Ubuntu PPA at the
 “Twisted-dev” team Launchpad page with packages for the latest Twisted version
 on all active Ubuntu releases.
If you’ll be using Twisted’s SSL or SSH features, you can find
 the pyOpenSSL and PyCrypto packages as
 python-openssl and
 python-crypto, respectively.
If Twisted isn’t packaged for your platform, or you want a newer
 version that hasn’t been packaged for your distribution release yet,
 please refer to the instructions below in Installing from Source.

Installation on Windows

Twisted prepares 32-bit and 64-bit MSI and EXE installers for
 Windows. If you’re not sure which version you need, the 32-bit MSI will
 always work.
Download and run both the Twisted installer and the zope.interface installer from the sidebar on the Twisted home page.
That’s it! You now have a functional Twisted installation. If you
 want to use some of Twisted’s extra features or learn about installing
 from source on Windows, read on. Otherwise, take a look at the section
 below on adding Twisted utilities to your PATH, then
 skip ahead to Testing Your Installation.
Optional dependencies

If you’ll be using Twisted’s SSL or SSH features, please also install pyOpenSSL and
 PyCrypto. You can find Windows installers for these packages at this Twisted download page.

Adding Twisted utilities to your PATH

Twisted includes a number of utilities that you’ll use to run
 and test your code. On Windows, the location of these utilities is not
 automatically added to your PATH, so
 to run them you have to supply the full path to the program. To make
 life easier, add these utilities to your PATH so that you can run them by name
 instead.
Twisted’s utilities will be installed in the Python Scripts directory, typically in a location
 such as C:\Python27\Scripts. Edit
 your PATH to
 include the path to the Scripts
 directory.
After adding the Scripts
 directory to your PATH, you should be able to run
 the Twisted utilities by name. Test your changes by running:
 trial.py
at a new command prompt. The usage message for Twisted’s
 Trial unit testing framework should be
 displayed.
To avoid typing the .py extension for these
 utilities, add '.py' to your PATHEXT environment variable. After doing
 that, at a new command prompt you should be able to run:
 trial
by itself.

Installation on OS X

OS X versions 10.5 and later ship with a version of Twisted. If
 you are running an older version of OS X, or you want a newer version of
 Twisted, please refer to the instructions in the next section on
 installing from source. Otherwise, that’s it—you have a functional
 Twisted installation! If you want to use some of Twisted’s extra
 features or learn about installing from source on OS X, read on.
 Otherwise, you can skip to Testing Your Installation.
Optional dependencies

If you’ll be using Twisted’s SSL or SSH features, you’ll need pyOpenSSL and PyCrypto,
 respectively. OS X ships with pyOpenSSL.

Installing from Source

If you’re on an operating system for which no Twisted binary packages are available or you
 want to run a newer version of Twisted than has been packaged for your system, you’ll need to
 install from source.
Required Dependencies

Twisted has two required dependencies.
Installing a C compiler

Since installing Twisted from source involves compiling C code,
 on OS X or Windows you’ll need to install a C compiler before you can
 install Twisted.

Installing zope.interface

When installing from source, before you can use Twisted, you’ll also need to
 install zope.interface, which you can download from the
 sidebar on theTwisted home page.

Installing Twisted from a Release Tarball

To install the latest Twisted release from source, first download the release tarball
 from this Twisted download page.
After downloading the tarball, uncompress and unpack it with a
 command like:
 tar xvfj Twisted-12.0.0.tar.bz2
Then cd into the resulting directory and
 run:
 python setup.py install
with administrative privileges. This will install the Twisted
 library and utilities.

Installing Twisted from a Source Checkout

If you’d like to use the development version of Twisted, you can
 check out the Twisted Subversion (SVN) repository.
You may first need to install a Subversion client. On a
 dpkg-based system you can use:
 apt-get install subversion
and on an rpm-based system you can
 use:
 yum install subversion
On Windows, one popular GUI SVN client is TortoiseSVN, which you can download from the
 Tigris.org page on TortoiseSVN. Recent versions
 of OS X come with Subversion installed.
Once you have a Subversion client installed, check out the Twisted
 repository with:
 svn checkout svn://svn.twistedmatrix.com/svn/Twisted/trunk TwistedTrunk
Then cd into the resulting
 TwistedTrunk directory and run:
 python setup.py install
with administrative privileges. This will install the Twisted
 library and utilities.

Installing Optional Dependencies from Source

If pyOpenSSL or PyCrypto binaries are not available for your operating system, you can
 download and compile the source packages from the pyOpenSSL Launchpad page and the Dlitz.net
 PyCrypto page, respectively.

Testing Your Installation

To verify that the installation worked and that you have the desired
 version of Twisted installed, import the twisted
 module from a Python prompt:
 $ python
 Python 2.6.6 (r266:84292, Dec 26 2010, 22:31:48)
 [GCC 4.4.5] on linux2
 Type "help", "copyright", "credits" or "license" for more information.
 >>> import twisted
 >>> twisted.__version__
 '12.0.0'
 >>>
If the import twisted statement runs with no errors, you have a
 working Twisted installation.
If you’ve installed pyOpenSSL to use Twisted’s SSL features, you can
 test that that installation worked with:
 >>> import OpenSSL
 >>> import twisted.internet.ssl
 >>> twisted.internet.ssl.SSL
If you don’t see any errors, you’ve successfully added SSL support
 to your Twisted installation.
If you’ve installed PyCrypto to use Twisted’s SSH features, you can
 test that that installation worked with:
 >>> import Crypto
 >>> import twisted.conch.ssh.transport
 >>> twisted.conch.ssh.transport.md5
If you don’t see any errors, you’ve successfully added SSH support
 to your Twisted installation.
Tip
If you have more than one version of Python installed, keep in
 mind that Twisted will be installed for only the version of Python
 you’re using when you run setup.py.
 To check your Python version, run python
 -V.

Congratulations—you now have a working Twisted installation and the
 tools you need to start developing applications using Twisted!

Using the Twisted Documentation

Twisted includes several types of documentation: extensive API
 documentation, HOWTOs, tutorials, examples, and manpages. It’s a good idea
 to familiarize yourself with this documentation now so that you’ll be able
 to refer to it during the development process.
API Documentation

A complete API reference can be found on the Twisted website. The pages
 in the API documentation are automatically generated from the source code using
 lore, a custom documentation tool developed as part of Twisted.
API references are also maintained for all prior releases. To view the documentation for
 an older version of Twisted, just replace “current” in the above URL with the appropriate
 version number, as in this Twisted webpage.

Subproject Documentation

Twisted is developed as a set of subprojects, and each subproject has additional
 documentation in its section of the Twisted site. For example, you can access documentation
 on the Twisted Core networking
 libraries, and documentation on Twisted Web. You can also
 check out links to the full list of projects and
 documentation.
Within each subproject’s documentation, you’ll find the following
 types of information:
	HOWTOs
	These documents describe specific features of Twisted and
 how to use them. The HOWTOs don’t cover every part of Twisted, but
 they can provide a helpful starting point for certain tasks.
 Included in the HOWTOs is a tutorial called “Twisted from Scratch”
 that walks through building an extensible, configurable, robustly
 deployable service in Twisted from scratch.

	Examples
	These are examples of short and specific Twisted programs.
 Like the HOWTOs, these aren’t comprehensive but can be an
 excellent resource when you need a working example of a certain
 feature. The Twisted Core documentation includes examples of basic
 TCP, UDP, and SSL servers and clients.

	Manual pages
	When you installed Twisted, you also installed manpages for the Twisted utilities.
 This Twisted page has HTML versions of
 these manpages.

Finding Answers to Your Questions

If you get stuck or want advice on a project, there are many
 excellent Twisted community resources you can look to for help.
Mailing Lists

Twisted has two main mailing lists:
	twisted-python
	This is a general discussion list for Twisted. It’s the main
 mailing list for asking development questions. It is also the
 place where Twisted releases and releases for projects that use
 Twisted are announced. Folks also use this list to organize
 sprints, discuss tickets, ask for design feedback, and talk about
 maintaining the Twisted website, Buildbots, and the rest of the
 project infrastructure.
You can join this list or read the
 archives.

	twisted-web
	This is a list for discussion of web technologies related to
 Twisted.
You can join this list or read the
 archives.

IRC Channels

Twisted users and developers ask questions and get help in the
 #twisted and #twisted.web IRC
 channels on the Freenode network. These are very active channels, but if
 you don’t get an immediate answer on IRC, try sending a message to the
 appropriate mailing list.
In #twisted, you’ll find a helpful bot named
 kenaan that sends messages when tickets are opened, put up for
 review, or resolved, and it can be told to monitor Buildbot builds.

Stack Overflow

The Stack Overflow programming Q & A site has built up a large body of Twisted questions and answers.

Twisted Blogs

Twisted developers post sprint reports and release announcements to the Twisted blog.
The personal blogs of Twisted developers are aggregated on Planet Twisted.

Chapter 2. Building Basic Clients and Servers

The best way to learn about the components of a Twisted application is to dive right into
 some examples. This chapter will introduce you to the reactor event loop, transports, and
 protocols through implementations of a few basic TCP servers and clients.
A TCP Echo Server and Client

Skim the code for the TCP echo server and client pair in Examples
 2-1
 and 2-2. The server’s job is to listen for TCP
 connections on a particular port and echo back anything it receives. The
 client’s job is to connect to the server, send it a message, receive a
 response, and terminate the connection.
Example 2-1. echoserver.py
from twisted.internet import protocol, reactor

class Echo(protocol.Protocol):
 def dataReceived(self, data):
 self.transport.write(data)

class EchoFactory(protocol.Factory):
 def buildProtocol(self, addr):
 return Echo()

reactor.listenTCP(8000, EchoFactory())
reactor.run()

Example 2-2. echoclient.py
from twisted.internet import reactor, protocol

class EchoClient(protocol.Protocol):
 def connectionMade(self):
 self.transport.write("Hello, world!")

 def dataReceived(self, data):
 print "Server said:", data
 self.transport.loseConnection()

class EchoFactory(protocol.ClientFactory):
 def buildProtocol(self, addr):
 return EchoClient()

 def clientConnectionFailed(self, connector, reason):
 print "Connection failed."
 reactor.stop()

 def clientConnectionLost(self, connector, reason):
 print "Connection lost."
 reactor.stop()

reactor.connectTCP("localhost", 8000, EchoFactory())
reactor.run()

To test this pair of scripts, first run the server in one terminal
 with python echoserver.py. This will start a TCP
 server listening for connections on port 8000. Then run the client in a
 second terminal with python echoclient.py.
A transcript from the session looks like this:
 $ python echoserver.py # In Terminal 1
 $ python echoclient.py # In Terminal 2
 Server said: Hello, world!
 Connection lost.
Ta-da! You’ve just completed your first asynchronous, event-driven
 communication with Twisted. Let’s look at each of the components of
 these scripts in more detail.

Event-Driven Programming

The echo server and echo client are event-driven programs, and more generally Twisted is
 an event-driven networking engine. What does that mean?
In an event-driven program, program flow is determined by external
 events. It is characterized by an event loop and the
 use of callbacks to trigger actions when events happen. Contrast this
 structure with two other common models:
 single-threaded (synchronous) and
 multithreaded programming.
Figure 2-1 summarizes these three models visually by showing
 the work done by a program over time under each of them. The program has three tasks to
 complete, each of which blocks while waiting for I/O to finish. Time spent blocking on I/O is
 grayed out.
[image: Comparing single-threaded, multithreaded, and event-driven program flow]

Figure 2-1. Comparing single-threaded, multithreaded, and event-driven
 program flow

In the single-threaded synchronous version of the program, tasks are
 performed serially. If one task blocks on I/O, all of the other tasks must
 also wait. Single-threaded programs are thus easy to reason about but can
 be unnecessarily slow.
In the multithreaded version, the three blocking tasks are performed in separate threads
 of control, which may run interleaved on one or many processors. This allows progress to be
 made by some threads while others are blocking on resources and is often more time-efficient
 than the analogous synchronous program. However, one has to write code that protects shared
 resources that could be accessed concurrently from multiple threads, which when implemented
 improperly can lead to notoriously subtle and painful threading bugs.
The event-driven version of the program interleaves the execution of the three tasks, but
 in a single thread of control. When performing I/O or other expensive operations, a callback
 is registered with an event loop, and then execution continues while the I/O completes. The
 callback describes how to handle an event once it has completed. The event loop polls for
 events and dispatches them as they arrive to the callbacks that are waiting for them. This
 allows the program to make progress without the use of additional threads.
Event-driven programs enjoy both the parallelism of multithreaded
 programs and the ease of reasoning of single-threaded programs.

The Reactor

The core of Twisted is the reactor event loop. The reactor knows about network,
 filesystem, and timer events. It waits on and demultiplexes these events and dispatches them
 to waiting event handlers. Twisted takes care of abstracting away platform-specific behavior
 and using the underlying nonblocking APIs correctly. Twisted presents a common interface to
 the various event sources so that responding to events anywhere in the network stack is easy.
The reactor essentially accomplishes the following:
 while True:
 timeout = time_until_next_timed_event()
 events = wait_for_events(timeout)
 events += timed_events_until(now())
 for event in events:
 event.process()
In our echo server and client from Examples 2-1 and
 2-2,
 the reactor’s listenTCP and connectTCP methods take care of registering
 callbacks with the reactor to get notified when data is available to read
 from a TCP socket on port 8000.
After those callbacks have been registered, we start the reactor’s
 event loop with reactor.run. Once
 running, the reactor will poll for and dispatch events forever or until
 reactor.stop is called.

Transports

A transport represents the connection between
 two endpoints communicating over a network. Transports describe connection
 details: for example, is this connection stream-oriented (like TCP) or
 datagram-oriented (like UDP)? TCP, UDP, Unix sockets, and serial ports are
 examples of transports. Transports implement the ITransport interface, which has the following
 methods:
	write
	Write data to the physical connection in a nonblocking manner.

	writeSequence
	Write a list of strings to the physical connection. Useful
 when working with line-oriented protocols.

	loseConnection
	Write all pending data and then close the connection.

	getPeer
	Get the remote address of the connection.

	getHost
	Like getPeer, but returns the address of the local
 side of the connection.

In the echo server and client examples from earlier, the two
 endpoints send each other data using their transport’s write method. The client terminates the TCP
 connection after receiving a response from the server by calling loseConnection.

Protocols

Protocols describe how to process network
 events asynchronously. Twisted maintains implementations for many popular
 application protocols, including HTTP, Telnet, DNS, and IMAP. Protocols
 implement the IProtocol interface, which
 has the following methods:
	makeConnection
	Create a connection between two endpoints across a
 transport.

	connectionMade
	Called when a connection to another endpoint is made.

	dataReceived
	Called when data is received across a transport.

	connectionLost
	Called when the connection is shut down.

In our echo server, we create our own Echo protocol by subclassing protocol.Protocol. To echo data back to the
 client, we take the data received from the client and simply write it back
 out through the transport in dataReceived.
In the echo client, we create our own EchoClient protocol by subclassing protocol.Protocol. The call to connectTCP creates a TCP connection to the
 server on port 8000 and registers callbacks for the various stages of the
 connection. For example, a callback is registered to invoke dataReceived when new data is available on the
 transport. Once the connection is established, we write data out to the
 server through the transport in connectionMade. When we receive data back from
 the server in dataReceived, we print
 that data and close the TCP connection.
Protocol Factories

A new instance of our Echo
 protocol class is instantiated for every connection and goes away when
 the connection terminates. This means that persistent configuration
 information is not saved in the protocol.
Persistent configuration information is instead kept in an EchoFactory class, which inherits from protocol.Factory in the server and protocol.ClientFactory in the client. A
 factory’s buildProtocol method creates
 a protocol for each new connection, which gets passed to the reactor to
 register callbacks.

Decoupling Transports and Protocols

A major design decision in Twisted is that transports and protocols are completely
 decoupled. This decoupling makes it easy for many protocols to reuse the same type of
 transport. It is also hugely important for testing: to test a protocol implementation you
 can have it use a mock transport that simply writes data to a string for inspection. You’ll
 experience this first-hand in Chapter 11.

A TCP Quote Server and Client

Let’s reiterate some of the core ideas discussed in the previous
 sections with a slightly more complicated quote exchange service.
The quote server in Example 2-3 is
 seeded with an initial quote. Upon receiving a quote from a client, it
 will send the client its current quote and store the client’s quote to
 share with the next client. It also keeps track of the number of
 concurrent client connections.
The client in Example 2-4 creates
 several TCP connections, each of which exchanges a quote with the
 server.
Example 2-3. quoteserver.py
from twisted.internet.protocol import Factory
from twisted.internet import reactor, protocol

class QuoteProtocol(protocol.Protocol):
 def __init__(self, factory):
 self.factory = factory

 def connectionMade(self):
 self.factory.numConnections += 1

 def dataReceived(self, data):
 print "Number of active connections: %d" % (
 self.factory.numConnections,)
 print "> Received: ``%s''\n> Sending: ``%s''" % (
 data, self.getQuote())
 self.transport.write(self.getQuote())
 self.updateQuote(data)

 def connectionLost(self, reason):
 self.factory.numConnections -= 1

 def getQuote(self):
 return self.factory.quote

 def updateQuote(self, quote):
 self.factory.quote = quote

class QuoteFactory(Factory):
 numConnections = 0

 def __init__(self, quote=None):
 self.quote = quote or "An apple a day keeps the doctor away"

 def buildProtocol(self, addr):
 return QuoteProtocol(self)

reactor.listenTCP(8000, QuoteFactory())
reactor.run()

Example 2-4. quoteclient.py
from twisted.internet import reactor, protocol

class QuoteProtocol(protocol.Protocol):
 def __init__(self, factory):
 self.factory = factory

 def connectionMade(self):
 self.sendQuote()

 def sendQuote(self):
 self.transport.write(self.factory.quote)

 def dataReceived(self, data):
 print "Received quote:", data
 self.transport.loseConnection()

class QuoteClientFactory(protocol.ClientFactory):
 def __init__(self, quote):
 self.quote = quote

 def buildProtocol(self, addr):
 return QuoteProtocol(self)

 def clientConnectionFailed(self, connector, reason):
 print 'connection failed:', reason.getErrorMessage()
 maybeStopReactor()

 def clientConnectionLost(self, connector, reason):
 print 'connection lost:', reason.getErrorMessage()
 maybeStopReactor()

def maybeStopReactor():
 global quote_counter
 quote_counter -= 1
 if not quote_counter:
 reactor.stop()

quotes = [
 "You snooze you lose",
 "The early bird gets the worm",
 "Carpe diem"
]
quote_counter = len(quotes)

for quote in quotes:
 reactor.connectTCP('localhost', 8000, QuoteClientFactory(quote))
reactor.run()

Start the server in one terminal with python
 quoteserver.py and then run the client in another terminal with
 python quoteclient.py. Transcripts from these
 sessions will look something like the following—note that because this
 communication is asynchronous, the order in which connections are made and
 terminated may vary between runs:
$ python quoteserver.py
Number of active connections: 2
> Received: ``You snooze you lose''
> Sending: ``An apple a day keeps the doctor away.''
Number of active connections: 2
> Received: ``The early bird gets the worm''
> Sending: ``You snooze you lose''
Number of active connections: 3
> Received: ``Carpe diem''
> Sending: ``The early bird gets the worm''
$ python quoteclient.py
Received quote: The early bird gets the worm
Received quote: You snooze you lose
connection lost: Connection was closed cleanly.
connection lost: Connection was closed cleanly.
Received quote: Carpe diem
connection lost: Connection was closed cleanly.
This quote server and client pair highlight some key points about
 client/server communication in Twisted:
	Persistent protocol state is kept in the
 factory.
Because a new instance of a protocol class is created for each
 connection, protocols can’t contain persistent state; that information
 must instead be stored in a protocol factory. In the echo server, the
 number of current connections is stored in numConnections in QuoteFactory.
It is common for a factory’s buildProtocol method to do nothing beyond
 return an instance of a Protocol. For that simple case, Twisted provides a
 shortcut: instead of implementing buildProtocol, just define a
 protocol class variable for the factory; the default implementation of
 buildProtocol will take care of creating an instance of your
 Protocol and setting a factory attribute on the protocol
 pointing back to the factory (making it easy for protocol instances to access the shared
 state stored in the factory).
For example, you could get rid of QuoteProtocol’s
 __init__ method and QuoteFactory could be rewritten as:
class QuoteFactory(Factory):
 numConnections = 0
 protocol = QuoteProtocol

 def __init__(self, quote=None):
 self.quote = quote or "An apple a day keeps the doctor away."
This is a common idiom in Twisted programs, so keep an eye out
 for it!

	Protocols can retrieve the reason why a
 connection was terminated.
The reason is passed as an argument to clientConnectionLost and clientConnectionFailed. If you run
 quoteclient.py without a server waiting for its
 connections, you’ll get:
$ python quoteclient.py
connection failed: Connection was refused by other side...
connection failed: Connection was refused by other side...
connection failed: Connection was refused by other side...

	Clients can make make many simultaneous
 connections to a server.
To do this, simply call connectTCP repeatedly, as was done in the
 quote client before starting the reactor.

Lastly, our use of maybeStopReactor is hinting at a
 general client design issue of how to determine when all of the connections you wanted to make
 have terminated (often so that you can shut down the reactor). maybeStopReactor gets the job done here, but we’ll explore a more idiomatic way of
 accomplishing this using objects called Deferreds later in
 the next book.

Protocol State Machines

Protocols typically have different states and can be expressed in client and
 server code as a state machine. Example 2-5 is a chat server that
 implements a small state machine. It also subclasses the LineReceiver class, which is a convenience class that makes it easy to write
 line-based protocols. When using LineReceiver, a client should send messages with
 sendLine and a server should process received messages in
 lineReceived.
Example 2-5. chatserver.py
from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver
from twisted.internet import reactor

class ChatProtocol(LineReceiver):
 def __init__(self, factory):
 self.factory = factory
 self.name = None
 self.state = "REGISTER"

 def connectionMade(self):
 self.sendLine("What's your name?")

 def connectionLost(self, reason):
 if self.name in self.factory.users:
 del self.factory.users[self.name]
 self.broadcastMessage("%s has left the channel." % (self.name,))

 def lineReceived(self, line):
 if self.state == "REGISTER":
 self.handle_REGISTER(line)
 else:
 self.handle_CHAT(line)

 def handle_REGISTER(self, name):
 if name in self.factory.users:
 self.sendLine("Name taken, please choose another.")
 return
 self.sendLine("Welcome, %s!" % (name,))
 self.broadcastMessage("%s has joined the channel." % (name,))
 self.name = name
 self.factory.users[name] = self
 self.state = "CHAT"

 def handle_CHAT(self, message):
 message = "<%s> %s" % (self.name, message)
 self.broadcastMessage(message)

 def broadcastMessage(self, message):
 for name, protocol in self.factory.users.iteritems():
 if protocol != self:
 protocol.sendLine(message)

class ChatFactory(Factory):
 def __init__(self):
 self.users = {}

 def buildProtocol(self, addr):
 return ChatProtocol(self)

reactor.listenTCP(8000, ChatFactory())
reactor.run()

Run the chat server with python chatserver.py. You can then connect
 to the chat server with the telnet utility. Example 2-6 shows a sample transcript of two users chatting.
Example 2-6. Using the chat server
$ telnet localhost 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
What's your name?
Jessica
Welcome, Jessica!
Adam has joined the channel.
Hey Adam!
<Adam> How's it going?
I've got a working Twisted chat server now, so pretty great!
^]
telnet> quit
Connection closed.
$ telnet localhost 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
What's your name?
Adam
Welcome, Adam!
<Jessica> Hey Adam!
How's it going?
<Jessica> I've got a working Twisted chat server now, so pretty great!
Jessica has left the channel.

Tip
To terminate a telnet connection, hold down
 the Control key and press the right-bracket key. That will drop you to a
 telnet> prompt; from there, type
 quit and press the Return key to
 terminate the connection.

ChatProtocol has two states, REGISTER
 and CHAT. lineReceived calls the correct
 handler based on the current state of the protocol.
Note that the persistent protocol state—the dictionary of connected
 users—is stored in ChatFactory.
Tip
Avoid mixing application-specific logic with protocol code. This
 will make testing your protocol and application easier and facilitate
 protocol reuse.

 As you can see, the servers and clients for the echo, quote, and chat
 services are all structurally very similar. The shared recipe is:

	Define a protocol class, subclassing twisted.internet.protocol.Protocol for
 arbitrary data or twisted.protocols.basic.LineReceiver for
 line-oriented protocols.

	Define a factory class, subclassing twisted.internet.protocol.Factory for
 servers and twisted.internet.protocol.ClientFactory for clients. That
 factory creates instances of the protocol and stores state shared across protocol
 instances.

	Clients use reactor.connectTCP to initiate a connection to a server.
 Invoking connectTCP registers callbacks with the reactor to notify your
 protocol when new data has arrived across a socket for processing. Servers use
 reactor.listenTCP to listen for and respond to client
 connections.

	Communication doesn’t start until reactor.run is called, which starts the
 reactor event loop.

More Practice and Next Steps

This chapter introduced the core components of Twisted servers and
 clients: the reactor, transports, protocols, and protocol factories.
 Because a new instance of a protocol class is created for each connection,
 persistent state is kept in a protocol factory. Protocols and transports
 are decoupled, which makes transport reuse and protocol testing
 easy.
The Twisted Core examples directory has many
 additional examples of basic servers and clients, including implementations for UDP and
 SSL.
The Twisted Core HOWTO index has an extended
 “Twisted from Scratch” tutorial that builds a finger service
 from scratch.
One real-world example of building a protocol in Twisted is AutobahnPython, a WebSockets implementation.
Twisted has been developing a new higher-level endpoints API for
 creating a connection between a client and server. The endpoints API wraps lower-level APIs
 like listenTCP and connectTCP, and provides greater flexibility
 because it decouples constructing a connection from initiating use of the connection, allowing
 parameterization of the endpoint. You’ll start seeing the endpoints API in more documentation
 and examples through the next couple of Twisted releases, so keep an eye out for it. You can
 read more about that at the Twisted
 endpoints API page.

Chapter 3. Writing Asynchronous Code with Deferreds

Callbacks are a fundamental part of event-driven programming and are
 the way that the reactor indicates to an application that an event has
 arrived. As event-driven programs grow, handling both the success and error
 cases for the events in one’s application becomes increasingly complex.
 Failing to register an appropriate callback can leave a program blocking on
 event processing that will never happen, and errors might have to propagate
 up a chain of callbacks from the networking stack through the layers of an
 application.
Twisted provides an elegant abstraction called a Deferred to manage these callbacks. This chapter
 will give you practice using Deferreds by
 themselves and then demonstrate their real-world utility by integrating
 Deferreds into some client and server examples.
We’ll use Deferreds while writing
 asynchronous servers and clients throughout the remainder of this
 book.
What Deferreds Do and Don’t Do

It’s worth heading off a common misconception up front:
	Deferreds do help you write asynchronous
 code.

	Deferreds do not automatically
 make code asynchronous or nonblocking. To turn a synchronous function into an
 asynchronous function, it’ll need to be refactored to return a Deferred with which callbacks are registered.

Practice will help you develop an intuition for how to structure
 asynchronous code. Let’s look at a Deferred so you can start getting some of that
 practice.

The Structure of a Deferred Object

Deferreds have a pair of callback
 chains, one for success (callbacks) and one for errors (errbacks). Deferreds start out with two empty chains. You
 add pairs of callbacks and errbacks to the Deferred to handle successes and failures at
 each point in the event processing. When an asynchronous result arrives,
 the Deferred is “fired” and the
 appropriate callbacks or errbacks are invoked in the order in which they
 were added to the chains. Figure 3-1
 diagrams a Deferred and its callback
 chains.
[image: A Deferred with its callback and errback chains]

Figure 3-1. A Deferred with its callback and errback chains

To get a feel for how Deferreds
 work, we can create them, register callbacks and errbacks with them, and
 fire them without involving the reactor.
Example 3-1 creates a Deferred d
 and uses its addCallback method to
 register the function myCallback with
 the callback chain. d.callback “fires”
 d and invokes the callback chain, which
 only contains myCallback. The argument
 passed to callback is propagated as an
 argument to the first function in the callback chain.
Example 3-1. Using addCallback
from twisted.internet.defer import Deferred

def myCallback(result):
 print result

d = Deferred()
d.addCallback(myCallback)
d.callback("Triggering callback.")

Running Example 3-1 produces the
 following:
 Triggering callback.
Example 3-2 creates a Deferred d
 and uses its addErrback method to
 register the function myErrback with the
 errback chain. d.errback “fires” d and invokes the first function in the
 errback chain, which only contains myErrback. The argument passed to errback is wrapped in a Failure object before getting passed to the
 errback function.
Example 3-2. Using addErrback
from twisted.internet.defer import Deferred

def myErrback(failure):
 print failure

d = Deferred()
d.addErrback(myErrback)
d.errback("Triggering errback.")

A Failure is Twisted’s
 implementation of a dressed-up Exception
 suitable for asynchronous communication. It contains a stack trace for
 where an asynchronous error actually happened (which might not be the
 current stack trace).
Running Example 3-2 produces the
 following:
 [Failure instance: Traceback (failure with no frames):
 <class 'twisted.python.failure.DefaultException'>:
 Triggering errback.
]
An asynchronous event may have many processing steps, each requiring
 a level of callbacks and errbacks. For example, a web request might need
 to be deserialized, formatted, and then cause a database insert, and each
 of those steps might possibly fail. Deferreds make it easy to manage these
 multiple levels of success and error handling in one place.
To register multiple levels of callbacks and errbacks with a Deferred, simply attach them to their callback
 chains in the order you want them invoked using addCallback and addErrback, as illustrated in Example 3-3. The result returned by a callback or
 errback in a Deferred chain is passed as
 the first argument to the next callback or errback in the chain.
Example 3-3. Registering multiple callbacks
from twisted.internet.defer import Deferred

def addBold(result):
 return "%s" % (result,)

def addItalic(result):
 return "<i>%s</i>" % (result,)

def printHTML(result):
 print result

d = Deferred()
d.addCallback(addBold)
d.addCallback(addItalic)
d.addCallback(printHTML)
d.callback("Hello World")

Running Example 3-3 produces:
 <i>Hello World</i>
Note that registering a callback with addCallback also registers a
 “pass-through” for that level of the errback chain. Similarly, registering an errback with
 addErrback also registers a “pass-through” for that level of the callback
 chain. The chains always have the same length.
Deferreds also sport an addCallbacks method, which registers both a
 callback and an errback at the same level in their respective callback
 chains. For example:
d = Deferred()
d.addCallbacks(myCallback, myErrback)
d.callback("Triggering callback.")

Callback Chains and Using Deferreds in the Reactor

Now that we have experience playing with callbacks and errbacks outside the reactor, let’s
 use them inside the reactor.
Example 3-4 retrieves a headline and
 then processes it, either converting it to HTML and then printing it or
 printing an error to stderr if the headline is too
 long.
Example 3-4. An asynchronous headline retriever
from twisted.internet import reactor, defer

class HeadlineRetriever(object):
 def processHeadline(self, headline):
 if len(headline) > 50:
 self.d.errback(
 "The headline ``%s'' is too long!" % (headline,))
 else:
 self.d.callback(headline)

 def _toHTML(self, result):
 return "<h1>%s</h1>" % (result,)

 def getHeadline(self, input):
 self.d = defer.Deferred()
 reactor.callLater(1, self.processHeadline, input)
 self.d.addCallback(self._toHTML)
 return self.d

def printData(result):
 print result
 reactor.stop()

def printError(failure):
 print failure
 reactor.stop()

h = HeadlineRetriever()
d = h.getHeadline("Breaking News: Twisted Takes Us to the Moon!")
d.addCallbacks(printData, printError)

reactor.run()

Running Example 3-4 produces:
 <h1>Breaking News: Twisted Takes Us to the Moon!</h1>
Because the provided headline is fewer than 50 characters long, HeadlineRetriever fires the callback chain, invoking _toHTML and then printData, which prints the HTML
 headline.
Example 3-4 uses a helpful reactor method called callLater, which you can use to schedule events. In this
 example, we use callLater in getHeadline to fake an asynchronous event arriving after one second.
What happens when we replace the three lines before
 reactor.run() with the
 following?
 h = HeadlineRetriever()
 d = h.getHeadline("1234567890"*6)
 d.addCallbacks(printData, printError)
Running this version of the example, we get:
 [Failure instance: Traceback (failure with no frames):
 <class 'twisted.python.failure.DefaultException'>:
 The headline ``1234567890123456789<...>01234567890'' is too long!
]
In this version, HeadlineRetriever
 encounters a headline that is too long and fires the errback chain: a
 pass-through (from the call to addCallback(self._toHTML)), then printError. Figure 3-2 traces the path followed through the
 Deferred.
[image: Error path through HeadlineRetriever’s Deferred]

Figure 3-2. Error path through HeadlineRetriever’s Deferred

Practice: What Do These Deferred Chains Do?

In this section, we’ll look at a series of examples where the
 functions from Example 3-5 are chained
 together in various ways as callbacks and errbacks in a Deferred that is then fired. For each example,
 think about what sequence of callbacks and errbacks is executed and what
 the resulting output is. In examples where the output includes a
 traceback, the middle of the traceback has been elided for brevity and
 clarity.
Example 3-5. Various functions for use as callbacks and errbacks
from twisted.internet.defer import Deferred

def callback1(result):
 print "Callback 1 said:", result
 return result

def callback2(result):
 print "Callback 2 said:", result

def callback3(result):
 raise Exception("Callback 3")

def errback1(failure):
 print "Errback 1 had an an error on", failure
 return failure

def errback2(failure):
 raise Exception("Errback 2")

def errback3(failure):
 print "Errback 3 took care of", failure
 return "Everything is fine now."

Exercise 1

d = Deferred()
d.addCallback(callback1)
d.addCallback(callback2)
d.callback("Test")
When this Deferred fires,
 execution starts at the top of the callback chain; callback1 is executed, followed by callback2. The result is:
Callback 1 said: Test
Callback 2 said: Test

Exercise 2

d = Deferred()
d.addCallback(callback1)
d.addCallback(callback2)
d.addCallback(callback3)
d.callback("Test")
When this Deferred fires,
 execution starts at the top of the callback chain; callback1 is executed, followed by callback2, followed by callback3. callback3 raises an Exception, and because there is no
 registered errback to handle the Exception, the program terminates and
 reports an Unhandled Error to the
 user. The result is:
Callback 1 said: Test
Callback 2 said: Test
Unhandled error in Deferred:
Unhandled Error
Traceback (most recent call last):
 File "/tmp/test.py", line 33, in <module>
 d.callback("Test")
<...>
 File "/tmp/test.py", line 11, in callback3
 raise Exception("Callback 3")
exceptions.Exception: Callback 3

Exercise 3

d = Deferred()
d.addCallback(callback1)
d.addCallback(callback2)
d.addCallback(callback3)
d.addErrback(errback3)
d.callback("Test")
This Deferred has the same
 callbacks as the previous example, except that errback3 is also registered before firing.
 errback3 handles the Exception raised by callback3. The result is:
Callback 1 said: Test
Callback 2 said: Test
Errback 3 took care of [Failure instance:
Traceback: <type 'exceptions.Exception'>: Callback 3
test.py:40:<module>
<...>
test.py:11:callback3

Exercise 4

d = Deferred()
d.addErrback(errback1)
d.errback("Test")
This Deferred fires its errback chain. The first argument to an errback is
 always a Failure (being wrapped in one if necessary, as is the case with the
 “Test” string); errback1 returns the Failure, so that
 Failure is passed along as the argument to the next errback in the chain for
 processing. Because there is no additional errback to handle the Failure,
 execution stops with an Unhandled Error:
Errback 1 had an an error on [Failure instance:
Traceback (failure with no frames):
<class 'twisted.python.failure.DefaultException'>: Test
]
Unhandled error in Deferred:
Unhandled Error
Traceback (most recent call last):
Failure: twisted.python.failure.DefaultException: Test

Exercise 5

d = Deferred()
d.addErrback(errback1)
d.addErrback(errback3)
d.errback("Test")
This Deferred fires its errback chain, and
 errback1 propagates a Failure to
 errback3. errback3 handles the
 Failure by virtue of not raising an
 Exception or returning a Failure. It instead
 returns a string; because there is no callback at the next level to
 process the result, the Deferred is done firing.
Errback 1 had an an error on [Failure instance:
Traceback (failure with no frames):
<class 'twisted.python.failure.DefaultException'>: Test
]
Errback 3 took care of [Failure instance:
Traceback (failure with no frames):
<class 'twisted.python.failure.DefaultException'>: Test
]

Exercise 6

d = Deferred()
d.addErrback(errback2)
d.errback("Test")
This Deferred fires its errback
 chain, starting with errback2, which
 raises an Exception. Since raising an
 Exception passes control to the next
 errback in the chain, and there is no errback to handle the Exception, an Unhandled Error is raised:
Unhandled error in Deferred:
Unhandled Error
Traceback (most recent call last):
 File "test.py", line 59, in <module>
 d.errback("Test")
<...>
 File "test.py", line 18, in errback2
 raise Exception("Errback 2")
exceptions.Exception: Errback 2

The Truth About addCallbacks

Now that you have some Deferred
 practice under your belt, a somewhat subtle point needs to be made: addCallbacks is not the same as sequential
 calls to addCallback and addErrback.
What’s the difference?
	addCallbacks
	Registers a callback with the callback chain and an errback with the errback chain,
 at the same level

	 addCallback
	Registers a callback with the callback chain and a pass-through with the
 errback chain, which simply returns the result passed to it

	 addErrback
	 Registers an errback with the errback chain and
 a pass-through with the callback chain

The salient difference is that callbacks and errbacks registered
 together using addCallbacks do
 not interact. Put another way, when a callback and an errback
 are registered together using addCallbacks, that errback can’t handle
 exceptions raised by that callback: exceptions raised at level N in the
 callback chain are processed by the errback at level N + 1.
Figures 3-3 and 3-4 depict
 the difference between a call to addCallbacks and sequential calls to addCallback and addErrback.
[image: A single call to addCallbacks]

Figure 3-3. A single call to addCallbacks

[image: Sequential calls to addCallback and addErrback]

Figure 3-4. Sequential calls to addCallback and addErrback

Given this distinction, what do the following Deferred chains do?
Exercise 7

d = Deferred()
d.addCallback(callback1)
d.addCallback(callback2)
d.addCallbacks(callback3, errback3)
d.callback("Test")
This Deferred chain is the same
 as the one in Exercise 3, except that instead of calling addCallback(callback3) and addErrback(errback3) sequentially, they are
 registered together using addCallbacks. These code fragments
 are not equivalent! In Exercise 3, callback3 and a pass-through were registered
 as the callback and errback at level 3 for this Deferred, and then a pass-through and errback3 were registered as the callback and
 errback at level 4. This meant that an Exception raised on level 3 could be handled
 by the errback at level 4.
In Exercise 7, callback3 and
 errback3 are registered together as
 the callback and errback on level 3. This means there is no errback at
 level 4 to handle Exceptions raised at
 level 3. The result is:
Callback 1 said: Test
Callback 2 said: Test
Unhandled error in Deferred:
Unhandled Error
Traceback (most recent call last):
 File "test.py", line 46, in <module>
 d.callback("Test")
<...>
 File "test.py", line 11, in callback3
 raise Exception("Callback 3")
exceptions.Exception: Callback 3

Exercise 8

d = Deferred()
d.addCallback(callback3)
d.addCallbacks(callback2, errback3)
d.addCallbacks(callback1, errback2)
d.callback("Test")
This Deferred fires its callback
 chain. callback3 raises an Exception, so control passes to the next
 errback in the chain, errback3. errback3 handles the Exception, so control passes back to the
 callback chain and callback1 is
 invoked. The result is:
Errback 3 took care of [Failure instance:
Traceback: <type 'exceptions.Exception'>: Callback 3
test.py:75:<module>
<...>
test.py:11:callback3
]
Callback 1 said: Everything is fine now.

Key Facts About Deferreds

This section reiterates some important points about Deferreds and introduces a few new
 ones:
	A Deferred is “fired” by
 invoking its callback or errback method.

	A Deferred can only be fired
 once. Attempting to fire it again results in an AlreadyCalledError. This helps prevent
 accidentally processing an event more than once.

	Exceptions at level N in the
 callback and errback chains are handled by the errback at level N +
 1.
If a callback or errback raises an Exception or returns a Failure at level N, the errback at level N
 + 1 is invoked to handle that error. If there is no errback, program
 execution stops and an Unhandled
 Error is reported.
If a callback or errback at level N doesn’t
 raise an Exception or return a Failure, control is passed to the callback
 at level N + 1. Note that this applies to errbacks! If an errback
 doesn’t produce an error, control passes to the callback chain.
 Control will criss-cross between the errback and callback
 chains depending on the results of processing the
 event.

	The result returned by a callback in a Deferred
 chain is passed as the first argument to the next callback in the chain. This is what
 allows chaining processing of results. Don’t forget to return the result from your
 callbacks for further processing!

	If the object passed to an errback is not already a Failure, it is first wrapped in one. This
 includes objects passed to the errback chain when firing a Deferred and Exceptions raised by callbacks, which
 switch control to the errback chain for processing.

Summary of the Deferred API

The Deferred API has one last method for adding
 callbacks, addBoth, which adds the same callback to both the
 callback and errback chains for the Deferred. Note that
 while we haven’t been passing arguments to our callback yet, that is supported by the API. The
 supported methods are:
	addCallback
	Add a callback to the callback chain for the Deferred and add a pass-through to the errback chain.

	addErrback
	Add an errback to the errback chain for the Deferred and add a pass-through to the callback chain. The analogous
 synchronous logic is the except part of a try/except block.

	addCallbacks
	Add a callback and errback parallel to each other in the
 callback chains for the Deferred.

	addBoth
	Add the same callback to both the callback and errback chains
 for the Deferred. The analogous
 synchronous logic is the finally
 part of a try/except/finally
 block.

More Practice and Next Steps

This chapter introduced the Deferred, an abstraction
 that simplifies and centralizes the management of callbacks for success and error handling in
 your asynchronous programs.
We’ll use Deferreds while writing
 HTTP servers and clients in the next two chapters.
The Twisted Core HOWTO has two main documents on Deferreds, an overview of using them, and a guide to writing functions that generate them.

Chapter 4. Web Servers

This chapter will first extend our experience with writing basic TCP
 servers to the construction of basic HTTP servers. With that context and
 understanding of the HTTP protocol in hand, we’ll then abandon the low-level
 API in favor of the high-level twisted.web
 APIs used for constructing sophisticated web servers.
Note
Twisted Web is the Twisted subproject focusing on HTTP
 communication. It has robust HTTP 1.1 and HTTPS client and server
 implementations, proxy support, WSGI integration, basic HTML templating,
 and more.

Responding to HTTP Requests: A Low-Level Review

The HyperText Transfer Protocol (HTTP) is a request/response
 application-layer protocol, where requests are initiated by a client to a
 server, which responds with the requested resource. It is text-based and
 newline-delimited, and thus easy for humans to read.
To experiment with the HTTP protocol we’ll create a subclass of protocol.Protocol, the same class we used to build our echo servers and clients in
 Chapter 2. Our protocol will know how to accept a connection,
 process the request, and send back an HTTP-formatted response.
This section is intended as both a glimpse under the hood and a
 refresher on the HTTP protocol. When building real web servers, you’ll
 almost certainly use the higher-level twisted.web APIs Twisted provides. If you’d
 prefer to skip to that content, head over to Handling GET Requests.
The Structure of an HTTP Request

Every HTTP request starts with a single line containing the HTTP
 method, the path to the desired resource, and the HTTP version.
 Following this line are an arbitrary number of header lines. A blank
 line indicates the end of the headers. The header section is optionally
 followed by additional data called the body of the
 request, such as data being posted from an HTML form.
Here’s an example of a minimal HTTP request. This request asks the
 server to perform the method GET on
 the root resource / using HTTP version 1.1:
GET / HTTP/1.1
Host: www.example.com
We can emulate a web browser and make this HTTP GET request
 manually using the telnet utility (taking care to
 remember the newline after the headers):
$ telnet www.google.com 80
Trying 74.125.131.99...
Connected to www.l.google.com.
Escape character is '^]'.
GET / HTTP/1.1 Host: www.google.com
The server responds with a line containing the HTTP version used for the response and an
 HTTP status code. Like the request, the response contains header lines followed by a blank
 line and the message body. A minimal HTTP response might look like this:
HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 17
Connection: Close

Hello HTTP world!
www.google.com’s response is more
 complicated, since it is setting cookies and various security headers,
 but the format is the same.
To write our own HTTP server, we can implement a Protocol that parses newline-delimited input,
 parses out the headers, and returns an HTTP-formatted response. Example 4-1 shows a simple HTTP implementation
 that echoes each request back to the client.
Example 4-1. webecho.py
from twisted.protocols import basic
from twisted.internet import protocol, reactor

class HTTPEchoProtocol(basic.LineReceiver):
 def __init__(self):
 self.lines = []

 def lineReceived(self, line):
 self.lines.append(line)
 if not line:
 self.sendResponse()

 def sendResponse(self):
 self.sendLine("HTTP/1.1 200 OK")
 self.sendLine("")
 responseBody = "You said:\r\n\r\n" + "\r\n".join(self.lines)
 self.transport.write(responseBody)
 self.transport.loseConnection()

class HTTPEchoFactory(protocol.ServerFactory):
 def buildProtocol(self, addr):
 return HTTPEchoProtocol()

reactor.listenTCP(8000, HTTPEchoFactory())
reactor.run()

As with our basic TCP servers from Chapter 2, we create a protocol factory, HTTPEchoFactory, inheriting from protocol.ServerFactory. It builds instances
 of our HTTPEchoProtocol, which
 inherits from basic.LineReceiver so we
 don’t have to write our own boilerplate code for handling
 newline-delimited protocols.
We keep track of lines as they are received in lineReceived until we reach an empty line,
 the carriage return and line feed (\r\n) marking the end of the headers sent by
 the client. We then echo back the request text and terminate the
 connection.
HTTP uses TCP as its transport-layer protocol, so we use listenTCP to
 register callbacks with the reactor to get notified when TCP packets containing our HTTP
 data arrive on our designated port.
We can start this web server with python webecho.py
 then interact with the server through telnet or a web browser.
Using telnet, the communication will look
 something like:
$ telnet localhost 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
GET / HTTP/1.1 Host: localhost:8000 X-Header: "My test header"

HTTP/1.1 200 OK

You said:

GET / HTTP/1.1
Host: localhost:8000
X-Header: "My test header"
Connection closed by foreign host.
It’s interesting to see what extra information your browser adds
 when making HTTP requests. To send a request to the server from a
 browser, visit http://localhost:8000.
Figure 4-1 shows what I get when I
 make this request from Chrome on my MacBook.
[image: Browser GET request]

Figure 4-1. Browser GET request

By default, Chrome is telling websites about my operating system and browser and that I
 browse in English, as well as passing other headers specifying properties for the response.

Parsing HTTP Requests

The HTTPEchoProtocol class in
 Example 4-1 understands the structure of an
 HTTP request, but it doesn’t know how to parse the request and respond
 with the resource being requested. To do this, we’ll need to make our
 first foray into twisted.web.
An HTTP request is represented by twisted.web.http.Request. We can specify how
 requests are processed by subclassing http.Request and overriding its process method. Example 4-2 subclasses http.Request to serve one of three
 resources: an HTML page for the root resource /, a
 page for /about, and a 404 http.NOT_FOUND if any other path is
 specified.
Example 4-2. requesthandler.py
from twisted.internet import reactor
from twisted.web import http

class MyRequestHandler(http.Request):
 resources = {
 '/': '<h1>Home</h1>Home page',
 '/about': '<h1>About</h1>All about me',
 }

 def process(self):
 self.setHeader('Content-Type', 'text/html')
 if self.resources.has_key(self.path):
 self.write(self.resources[self.path])
 else:
 self.setResponseCode(http.NOT_FOUND)
 self.write("<h1>Not Found</h1>Sorry, no such resource.")
 self.finish()

class MyHTTP(http.HTTPChannel):
 requestFactory = MyRequestHandler

class MyHTTPFactory(http.HTTPFactory):
 def buildProtocol(self, addr):
 return MyHTTP()

reactor.listenTCP(8000, MyHTTPFactory())
reactor.run()

As always, we register a factory that generates instances of our protocol with the
 reactor. In this case, instead of subclassing protocol.Protocol directly, we are taking advantage of a higher-level API, http.HTTPChannel, which inherits from basic.LineReceiver and already understands the structure of an
 HTTP request and the numerous behaviors required by the HTTP RFCs.
Our MyHTTP protocol specifies how to process
 requests by setting its requestFactory instance variable
 to MyRequestHander, which subclasses http.Request. Request’s
 process method is a noop that must be overridden in
 subclasses, which we do here. The HTTP response code is 200 unless overridden with setResponseCode, as we do to send a 404 http.NOT_FOUND when an unknown resource is requested.
To test this server, run python
 requesthandler.py; this will start up the web server on port
 8000. You can then test accessing the supported resources,
 http://localhost:8000/ and
 http://localhost:8000/about, and an unsupported
 resource like http://localhost:8000/foo.

Handling GET Requests

Now that we have a good grasp of the structure of the HTTP protocol
 and how the low-level APIs work, we can move up to the high-level APIs in
 twisted.web.server that facilitate the
 construction of more sophisticated web servers.
Serving Static Content

A common task for a web server is to be able to serve static
 content out of some directory. Example 4-3
 shows a basic implementation.
Example 4-3. static_content.py
from twisted.internet import reactor
from twisted.web.server import Site
from twisted.web.static import File

resource = File('/var/www/mysite')
factory = Site(resource)
reactor.listenTCP(8000, factory)
reactor.run()

At this level we no longer have to worry about HTTP protocol
 details. Instead, we use a Site, which
 subclasses http.HTTPFactory and
 manages HTTP sessions and dispatching to resources for us. A Site is initialized with the resource to
 which it is managing access.
A resource must provide the IResource interface, which describes how the
 resource gets rendered and how child resources in the resource hierarchy
 are added and accessed. In this case, we initialize our Site with a File resource representing a regular,
 non-interpreted file.
Tip
twisted.web contains implementations for many common
 resources. Besides File, available resources include a
 customizable DirectoryListing and ErrorPage, a ProxyResource that renders
 results retrieved from another server, and an XMLRPC implementation.

The Site is registered with the
 reactor, which will then listen for requests on port 8000.
After starting the web server with python static_content.py, we can
 visit http://localhost:8000 in a web browser. The server serves up a
 directory listing for all of the files in /var/www/mysite/ (replace
 that path with a valid path to a directory on your system).
Static URL dispatch

What if you’d like to serve different content at different
 URLs?
We can create a hierarchy of resources to serve at different
 URLs by registering Resources as
 children of the root resource using its putChild method. Example 4-4 demonstrates this static URL
 dispatch.
Example 4-4. static_dispatch.py
from twisted.internet import reactor
from twisted.web.server import Site
from twisted.web.static import File

root = File('/var/www/mysite')
root.putChild("doc", File("/usr/share/doc"))
root.putChild("logs", File("/var/log/mysitelogs"))
factory = Site(root)
reactor.listenTCP(8000, factory)
reactor.run()

Now, visiting http://localhost:8000/ in a
 web browser will serve content from
 /var/www/mysite,
 http://localhost:8000/doc will serve content from
 /usr/share/doc, and
 http://localhost:8000/logs/ will serve content
 from /var/log/mysitelogs.
These Resource hierarchies can
 be extended to arbitrary depths by registering child resources with
 existing resources in the hierarchy.

Serving Dynamic Content

Serving dynamic content looks very similar to serving static
 content—the big difference is that instead of using an existing Resource, like File, you’ll subclass Resource to define the new dynamic resource
 you want a Site to serve.
Example 4-5 implements a simple clock
 page that displays the local time when you visit any URL.
Example 4-5. dynamic_content.py
from twisted.internet import reactor
from twisted.web.resource import Resource
from twisted.web.server import Site

import time

class ClockPage(Resource):
 isLeaf = True
 def render_GET(self, request):
 return "The local time is %s" % (time.ctime(),)

resource = ClockPage()
factory = Site(resource)
reactor.listenTCP(8000, factory)
reactor.run()

ClockPage is a subclass of Resource. We implement a render_ method for every HTTP method we want
 to support; in this case we only care about supporting GET requests, so
 render_GET is all we implement. If we
 were to POST to this web server, we’d get a 405 Method Not Allowed
 unless we also implemented render_POST.
The rendering method is passed the request made by the client.
 This is not an instance of twisted.web.http.Request, as in Example 4-2; it is instead an instance of twisted.web.server.Request, which subclasses
 http.Request and understands
 application-layer ideas like session management and rendering.
render_GET returns whatever we
 want served as a response to a GET request. In this case, we return a
 string containing the local time. If we start our server with
 python dynamic_content.py, we can visit any URL on
 http://localhost:8000 with a web browser and see
 the local time displayed and updated as we reload.
The isLeaf instance variable
 describes whether or not a resource will have children. Without more
 work on our part (as demonstrated in Example 4-6), only leaf resources get rendered;
 if we set isLeaf to False and restart the server, attempting to
 view any URL will produce a 404 No Such Resource.

Dynamic Dispatch

We know how to serve static and dynamic content. The next step is
 to be able to respond to requests dynamically, serving different
 resources based on the URL.
Example 4-6 demonstrates a calendar server that displays the
 calendar for the year provided in the URL. For example, visiting
 http://localhost:8000/2013 will display the calendar for 2013, as
 shown in Figure 4-2.
Example 4-6. dynamic_dispatch.py
from twisted.internet import reactor
from twisted.web.resource import Resource, NoResource
from twisted.web.server import Site

from calendar import calendar

class YearPage(Resource):
 def __init__(self, year):
 Resource.__init__(self)
 self.year = year

 def render_GET(self, request):
 return "<html><body><pre>%s</pre></body></html>" % (calendar(self.year),)

class CalendarHome(Resource):
 def getChild(self, name, request):
 if name == '':
 return self
 if name.isdigit():
 return YearPage(int(name))
 else:
 return NoResource()

 def render_GET(self, request):
 return "<html><body>Welcome to the calendar server!</body></html>"

root = CalendarHome()
factory = Site(root)
reactor.listenTCP(8000, factory)
reactor.run()

[image: Calendar]

Figure 4-2. Calendar

This example has the same structure as Example 4-3. A TCP server is started on port
 8000, serving the content registered with a Site, which is a subclass of twisted.web.http.HTTPFactory and knows how
 to manage access to resources.
The root resource is CalendarHome, which subclasses Resource to specify how to look up child
 resources and how to render itself.
CalendarHome.getChild describes how to traverse a URL
 from left to right until we get a renderable resource. If there is no additional component
 to the requested URL (i.e., the request was for /), CalendarHome returns itself to be rendered by invoking its
 render_GET method. If the URL has an additional
 component to its path that is an integer, an instance of YearPage is rendered. If that path component couldn’t be converted to a number, an
 instance of twisted.web.error.NoResource is returned
 instead, which will render a generic 404 page.
There are a few subtle points to this example that deserve
 highlighting.
Creating resources that are both renderable and have
 children

Note that CalendarHome does
 not set isLeaf to True, and yet it is still rendered when we
 visit http://localhost:8000.
In general, only resources that are leaves are rendered; this
 can be because isLeaf is set to
 True or because when traversing the
 resource hierarchy, that resource is where we are when the URL runs
 out. However, when isLeaf is True for a resource, its getChild method is never called. Thus, for
 resources that have children, isLeaf
 cannot be set to True.
If we want CalendarHome to
 both get rendered and have children, we must override its getChild method to dictate resource
 generation.
In CalendarHome.getChild, if
 name == '' (i.e., if we are
 requesting the root resource), we return ourself to get rendered.
 Without that if condition, visiting
 http://localhost:8000 would produce a 404.
Similarly, YearPage does not have isLeaf set to True. That
 means that when we visit http://localhost:8000/2013, we get a
 rendered calendar because 2013 is at the end of the URL, but if we visit
 http://localhost:8000/2013/foo, we get a 404.
If we want http://localhost:8000/2013/foo to generate a calendar
 just like http://localhost:8000/2013, we need to set isLeaf to True or have
 YearPage override getChild to return itself, like we do in CalendarHome.

Redirects

In Example 4-6, visiting
 http://localhost:8000 produced a welcome page.
 What if we wanted http://localhost:8000 to
 instead redirect to the calendar for the current year?
In the relevant render method (e.g., render_GET),
 instead of rendering the resource at a given URL, we need to construct a redirect with
 twisted.web.util.redirectTo. redirectTo takes as arguments the URL component to which to
 redirect, and the request, which still needs to be rendered.
Example 4-7 shows a revised CalenderHome.render_GET that redirects to the URL for the current year’s
 calendar (e.g., http://localhost:8000/2013) upon requesting the root
 resource at http://localhost:8000.
Example 4-7. redirectTo
from datetime import datetime
from twisted.web.util import redirectTo

def render_GET(self, request):
 return redirectTo(datetime.now().year, request)

Handling POST Requests

To handle POST requests, implement a render_POST method in your Resource.
A Minimal POST Example

Example 4-8 serves a page where users
 can fill out and submit to the web server the contents of a text box.
 The server will then display that text back to the user.
Example 4-8. handle_post.py
from twisted.internet import reactor
from twisted.web.resource import Resource
from twisted.web.server import Site

import cgi

class FormPage(Resource):
 isLeaf = True
 def render_GET(self, request):
 return """
<html>
 <body>
 <form method="POST">
 <input name="form-field" type="text" />
 <input type="submit" />
 </form>
 </body>
 </html>
"""

 def render_POST(self, request):
 return """
<html>
 <body>You submitted: %s</body>
 </html>
""" % (cgi.escape(request.args["form-field"][0]),)

factory = Site(FormPage())
reactor.listenTCP(8000, factory)
reactor.run()

The FormPage Resource in
 handle_post.py implements both render_GET and render_POST methods.
render_GET returns the HTML for
 a blank page with a text box called "form-field". When a visitor visits
 http://localhost:8000, she will see this
 form.
render_POST extracts the text
 inputted by the user from request.args, sanitizes it with cgi.escape, and returns HTML displaying what
 the user submitted.

Asynchronous Responses

In all of the Twisted web server examples up to this point, we have assumed that the
 server can instantaneously respond to clients without having to first retrieve an expensive
 resource (say, from a database query) or do expensive computation. What happens when
 responding to a request blocks?
Example 4-9 implements a dummy BusyPage resource that sleeps for five seconds before returning a response to the
 request.
Example 4-9. blocking.py
from twisted.internet import reactor
from twisted.web.resource import Resource
from twisted.web.server import Site

import time

class BusyPage(Resource):
 isLeaf = True
 def render_GET(self, request):
 time.sleep(5)
 return "Finally done, at %s" % (time.asctime(),)

factory = Site(BusyPage())
reactor.listenTCP(8000, factory)
reactor.run()

If you run this server and then load
 http://localhost:8000 in several browser tabs in
 quick succession, you’ll observe that the last page to load will load N*5
 seconds after the first page request, where N is the number of requests to
 the server. In other words, the requests are processed serially.
This is terrible performance! We need our web server to be
 responding to other requests while an expensive resource is being
 processed.
One of the great properties of this asynchronous framework is that we can achieve the
 responsiveness that we want without introducing threads by using the Deferred API we already know and love.
Example 4-10 demonstrates how to use a Deferred instead of blocking on an expensive resource. deferLater replaces the blocking time.sleep(5) with a Deferred that will fire after
 five seconds, with a callback to _delayedRender to finish
 the request when the fake resource becomes available. Then, instead of waiting on that
 resource, render_GET returns NOT_DONE_YET immediately, freeing up the web server to process other
 requests.
Example 4-10. non_blocking.py
from twisted.internet import reactor
from twisted.internet.task import deferLater
from twisted.web.resource import Resource
from twisted.web.server import Site, NOT_DONE_YET

import time

class BusyPage(Resource):
 isLeaf = True

 def _delayedRender(self, request):
 request.write("Finally done, at %s" % (time.asctime(),))
 request.finish()

 def render_GET(self, request):
 d = deferLater(reactor, 5, lambda: request)
 d.addCallback(self._delayedRender)
 return NOT_DONE_YET

factory = Site(BusyPage())
reactor.listenTCP(8000, factory)
reactor.run()

Tip
If you run Example 4-10 and then load
 multiple instances of http://localhost:8000 in a
 browser, you may still find that the requests are processed serially.
 This is not Twisted’s fault: some browsers, notably Chrome, serialize
 requests to the same resource. You can verify that the web server isn’t
 blocking by issuing several simultaneous requests through cURL or a quick Python script.

More Practice and Next Steps

This chapter introduced Twisted HTTP servers, from the lowest-level
 APIs up through twisted.web.server. We
 saw examples of serving static and dynamic content, handling GET and POST
 requests, and how to keep our servers responsive with asynchronous
 responses using Deferreds.
The Twisted Web HOWTO
 index has several in-depth tutorials related to HTTP servers, including on
 deployment and templating. This
 page is an excellent series of short, self-contained examples of Twisted Web
 concepts.
The Twisted Web examples
 directory has a variety of server examples, including examples for proxies, an
 XML-RPC server, and rendering the output of a server process.
Twisted is not a “web framework” like Django, web.py, or Flask. However, one of its many
 roles is as a framework for building frameworks! An example of this is the Klein micro-web framework, which
 you can also browse and download at that GitHub page.

Chapter 5. Web Clients

This chapter will talk about the HTTP client side of Twisted Web,
 starting with quick web resource retrieval for one-off applications and
 ending with the Agent API for developing
 flexible web clients.
Basic HTTP Resource Retrieval

Twisted has several high-level convenience classes for quick one-off
 resource retrieval.
Printing a Web Resource

twisted.web.client.getPage
 asynchronously retrieves a resource at a given URL. It returns a Deferred, which fires its callback with the
 resource as a string. Example 5-1
 demonstrates the use of getPage; it
 retrieves and prints the resource at the user-supplied URL.
Example 5-1. print_resource.py
from twisted.internet import reactor
from twisted.web.client import getPage
import sys

def printPage(result):
 print result

def printError(failure):
 print >>sys.stderr, failure

def stop(result):
 reactor.stop()

if len(sys.argv) != 2:
 print >>sys.stderr, "Usage: python print_resource.py <URL>"
 exit(1)

d = getPage(sys.argv[1])
d.addCallbacks(printPage, printError)
d.addBoth(stop)

reactor.run()

We can test this script with:
python print_resource.py http://www.google.com
which will print the contents of Google’s home page to the
 screen.
An invalid URL will produce something like the following:
$ python print_resource.py http://notvalid.foo
[Failure instance: Traceback (failure with no frames):
<class 'twisted.internet.error.DNSLookupError'>:
DNS lookup failed: address 'notvalid.foo' not found:
[Errno 8] nodename nor servname provided, or not known.
]
Despite its name, getPage can
 make any HTTP request type. To make an HTTP POST request with getPage, supply the method and postdata keyword arguments: for example,
 getPage(sys.argv[1], method='POST',
 postdata="My test data").
getPage also supports using cookies, following
 redirects, and changing the User-Agent for the request.

Downloading a Web Resource

twisted.web.client.downloadPage
 asynchronously downloads a resource at a given URL to the specified
 file. Example 5-2 demonstrates the use of
 getPage.
Example 5-2. download_resource.py
from twisted.internet import reactor
from twisted.web.client import downloadPage
import sys

def printError(failure):
 print >>sys.stderr, failure

def stop(result):
 reactor.stop()

if len(sys.argv) != 3:
 print >>sys.stderr, "Usage: python download_resource.py <URL> <output file>"
 exit(1)

d = downloadPage(sys.argv[1], sys.argv[2])
d.addErrback(printError)
d.addBoth(stop)

reactor.run()

We can test this script with:
python download_resource.py http://www.google.com google.html
which will save the contents of Google’s home page to the file
 google.html.

Agent

getPage and downloadPage are useful for getting small jobs
 done, but the main Twisted HTTP client API, which supports a broad range
 of RFC-compliant behaviors in a flexible and extensible way, is the Agent.
Requesting Resources with Agent

Example 5-3 implements the same
 functionality as print_resource.py
 from Example 5-1 using the
 Agent API.
Example 5-3. agent_print_resource.py
import sys

from twisted.internet import reactor
from twisted.internet.defer import Deferred
from twisted.internet.protocol import Protocol
from twisted.web.client import Agent

class ResourcePrinter(Protocol):
 def __init__(self, finished):
 self.finished = finished

 def dataReceived(self, data):
 print data

 def connectionLost(self, reason):
 self.finished.callback(None)

def printResource(response):
 finished = Deferred()
 response.deliverBody(ResourcePrinter(finished))
 return finished

def printError(failure):
 print >>sys.stderr, failure

def stop(result):
 reactor.stop()

if len(sys.argv) != 2:
 print >>sys.stderr, "Usage: python agent_print_resource.py URL"
 exit(1)

agent = Agent(reactor)
d = agent.request('GET', sys.argv[1])
d.addCallbacks(printResource, printError)
d.addBoth(stop)

reactor.run()

The agent version requires a bit more work but is much more
 general-purpose. Let’s break down the steps involved:
	Initialize an instance of twisted.web.client.Agent. Because the
 agent handles connection setup, it must be initialized with a
 reactor.

	Make an HTTP request with the agent’s request method. It takes at minimum the
 HTTP method and URL. On success, agent.request returns a Deferred that fires with a Response object encapsulating the
 response to the request.

	Register a callback with the Deferred returned by agent.request to handle the Response body as it becomes available
 through response.deliverBody.
 Because the response is coming across the network in chunks, we need
 a Protocol that will process the
 data as it is received and notify us when the body has been
 completely delivered.
To accomplish this, we create a Protocol subclass
 called ResourcePrinter, similar to how we did when
 constructing basic TCP servers and clients in Chapter 2. The
 big difference is that we want to be able to continue processing the event outside of
 ResourcePrinter. That link to the outside world will
 be a Deferred that is passed to a ResourcePrinter instance on initialization and is fired
 when the connection has been terminated. That Deferred
 is created and returned by printResource so more
 callbacks can be registered for additional processing. As chunks of the response body
 arrive, the reactor invokes dataReceived, and we print
 the data to the screen. When the reactor invokes connectionLost, we trigger the Deferred.

	Once the connection has been terminated, stop the reactor. To
 do this, we register callbacks to a stop function with the Deferred triggered by connectionLost and returned by printResource. Recall that addBoth registers the same function with
 both the callback and errback chains, so the reactor will be stopped
 whether or not the download was successful.

	Finally, run the reactor, which will kick off the HTTP
 request.

Running this example with python agent_print_resource.py
 http://www.google.com produces the same output as Example 5-1.

Retrieving Response Metadata

Agent supports all HTTP methods and arbitrary HTTP
 headers. Example 5-4 demonstrates this functionality with an
 HTTP HEAD request.
The Response object in the Deferred returned by agent.request contains lots of useful HTTP
 response metadata, including the HTTP status code, HTTP version, and
 headers. Example 5-4 also demonstrates
 extracting this information.
Example 5-4. print_metadata.py
import sys

from twisted.internet import reactor
from twisted.web.client import Agent
from twisted.web.http_headers import Headers

def printHeaders(response):
 print 'HTTP version:', response.version
 print 'Status code:', response.code
 print 'Status phrase:', response.phrase
 print 'Response headers:'
 for header, value in response.headers.getAllRawHeaders():
 print header, value

def printError(failure):
 print >>sys.stderr, failure

def stop(result):
 reactor.stop()

if len(sys.argv) != 2:
 print >>sys.stderr, "Usage: python print_metadata.py URL"
 exit(1)

agent = Agent(reactor)
headers = Headers({'User-Agent': ['Twisted WebBot'],
 'Content-Type': ['text/x-greeting']})

d = agent.request('HEAD', sys.argv[1], headers=headers)
d.addCallbacks(printHeaders, printError)
d.addBoth(stop)

reactor.run()

Testing this script with a URL like:
python print_metadata.py http://www.google.com/
produces the following output:
HTTP version: ('HTTP', 1, 1)
Status code: 200
Status phrase: OK
Response headers:
X-Xss-Protection ['1; mode=block']
Set-Cookie ['PREF=ID=b1401ec53122a4e5:FF=0:TM=1340750440...
Expires ['-1']
Server ['gws']
Cache-Control ['private, max-age=0']
Date ['Tue, 26 Jun 2012 22:40:40 GMT']
P3p ['CP="This is not a P3P policy! See http://www.google.com/support/...
Content-Type ['text/html; charset=ISO-8859-1']
X-Frame-Options ['SAMEORIGIN']

POSTing Data with Agent

To POST HTTP data with Agent, we need to construct a
 producer, providing the IBodyProducer interface, which will produce the
 POST data when the Agent needs it.
Tip
The producer/consumer design pattern facilitates streaming potentially large amounts
 of data in a way that is memory- and CPU-efficient even if processes are producing and
 consuming at different rates.
You can also read more about Twisted’s
 producer/consumer APIs.

To provide the IBodyProducer interface, which is
 enforced by Twisted’s use of zope.interface.implements, a
 class must implement the following methods, as well as a length attribute tracking the length of the data the producer will eventually produce:
	startProducing

	stopProducing

	pauseProducing

	resumeProducing

For this example, we can construct a simple StringProducer that just writes out the POST data to the waiting consumer when
 startProducing is invoked. StringProducer is passed as the bodyProducer
 argument to agent.request.
Example 5-5 shows a complete POSTing client. Beyond the
 StringProducer, the code is almost identical to the
 resource-requesting client in Example 5-3.
Example 5-5. post_data.py
import sys
from twisted.internet import reactor
from twisted.internet.defer import Deferred, succeed
from twisted.internet.protocol import Protocol
from twisted.web.client import Agent
from twisted.web.iweb import IBodyProducer

from zope.interface import implements

class StringProducer(object):
 implements(IBodyProducer)

 def __init__(self, body):
 self.body = body
 self.length = len(body)

 def startProducing(self, consumer):
 consumer.write(self.body)
 return succeed(None)

 def pauseProducing(self):
 pass

 def stopProducing(self):
 pass

class ResourcePrinter(Protocol):
 def __init__(self, finished):
 self.finished = finished

 def dataReceived(self, data):
 print data

 def connectionLost(self, reason):
 self.finished.callback(None)

def printResource(response):
 finished = Deferred()
 response.deliverBody(ResourcePrinter(finished))
 return finished

def printError(failure):
 print >>sys.stderr, failure

def stop(result):
 reactor.stop()

if len(sys.argv) != 3:
 print >>sys.stderr, "Usage: python post_resource.py URL 'POST DATA'"
 exit(1)

agent = Agent(reactor)
body = StringProducer(sys.argv[2])
d = agent.request('POST', sys.argv[1], bodyProducer=body)
d.addCallbacks(printResource, printError)
d.addBoth(stop)

reactor.run()
To test this example, we need a URL that accepts POST requests.
 http://www.google.com is not such a URL, as it turns out.
 This:
python post_data.py http://www.google.com 'Hello World'
prints:
The request method POST is inappropriate for the URL /. That’s all we know.
This is an occasion where being able to spin up a basic web server easily for testing
 would be useful. Fortunately, we covered Twisted web servers in the previous chapter!
Example 5-6 is a simple web server that echoes the body of a
 POST, only reversed.
Example 5-6. test_server.py
from twisted.internet import reactor
from twisted.web.resource import Resource
from twisted.web.server import Site

class TestPage(Resource):
 isLeaf = True
 def render_POST(self, request):
 return request.content.read()[::-1]

resource = TestPage()
factory = Site(resource)
reactor.listenTCP(8000, factory)
reactor.run()

python test_server.py will start the web server listening on port
 8000. With that server running, we can then test our client with:
$ python post_data.py http://127.0.0.1:8000 'Hello World'
dlroW olleH

More Practice and Next Steps

This chapter introduced Twisted HTTP clients. High-level helpers
 getPage and downloadPage make quick resource retrieval
 easy. The Agent is a flexible and
 comprehensive API for writing web clients.
The Twisted Web Client HOWTO discusses the Agent API in detail, including handling proxies and cookies.
The Twisted Web examples directory has a variety
 of HTTP client examples.

Part II. Building Production-Grade Twisted Services

Chapter 6. Deploying Twisted Applications

Twisted is an engine for producing scalable, cross-platform network
 servers and clients. Making it easy to deploy these applications in a
 standardized fashion in production environments is an important part of a
 platform like this getting wide-scale adoption.
To that end, Twisted provides an application infrastructure: a
 reusable and configurable way to deploy a Twisted application. It allows a
 programmer to avoid boilerplate code by hooking an application into existing
 tools for customizing the way it is run, including daemonization, logging,
 using a custom reactor, profiling code, and more.
The Twisted Application Infrastructure

The application infrastructure has five main components: services,
 applications, TAC files, plugins, and the twistd
 command-line utility. To illustrate this infrastructure, we’ll turn the
 echo server from Chapter 2 into an application.
 Example 6-1 reproduces the server
 code.
Example 6-1. echoserver.py from Chapter 2
from twisted.internet import protocol, reactor

class Echo(protocol.Protocol):
 def dataReceived(self, data):
 self.transport.write(data)

class EchoFactory(protocol.Factory):
 def buildProtocol(self, addr):
 return Echo()

reactor.listenTCP(8000, EchoFactory())
reactor.run()

Services

A service is anything that can be started and stopped and that
 implements the IService interface.
 Twisted comes with service implementations for TCP, FTP, HTTP, SSH, DNS,
 and many other protocols. Many services can register with a single
 application.
The core of the IService
 interface is:
	startService
	Start the service. This might include loading configuration
 data, setting up database connections, or listening on a
 port.

	stopService
	Shut down the service. This might include saving state to
 disk, closing database connections, or stopping listening on a
 port.

Our echo service uses TCP, so we can use Twisted’s default TCPServer implementation of this IService interface.

Applications

An application is the top-level container for one or more services that are deployed
 together. Services register themselves with an application, and the
 twistd deployment utility described shortly searches for and runs applications.
We’ll create an echo application with which the echo service can
 register.

TAC Files

When writing a Twisted program as a regular Python file, the
 developer is responsible for writing code to start and stop the reactor
 and to configure the program. Under the Twisted application
 infrastructure, protocol implementations live in a module, services
 using those protocols are registered in a Twisted application
 configuration (TAC) file, and the reactor and configuration are managed
 by an external utility.
To turn our echo server into an echo application, we can follow a
 simple algorithm:
	Move the Protocol and Factory for the service into their own
 module.

	Inside a TAC file:
	Create an instance of twisted.application.service.Application.

	Instead of registering the Protocol Factory with a reactor, like in
 Chapter 2, register the factory with a
 service, and register that service with the Application.

In our case, this means creating an instance of the TCPServer service, which will use our EchoFactory to create instances of the Echo protocol on port 8000.
The code for managing the reactor will be taken care of by twistd,
 which we’ll discuss next. The application code is now split into two files:
 echo.py, shown in Example 6-2; and
 echo_server.tac, shown in Example 6-3.
Example 6-2. echo.py, a module containing the Protocol and Factory
 definitions
from twisted.internet import protocol, reactor

class Echo(protocol.Protocol):
 def dataReceived(self, data):
 self.transport.write(data)

class EchoFactory(protocol.Factory):
 def buildProtocol(self, addr):
 return Echo()

Example 6-3. echo_server.tac, a Twisted application configuration
 file
from twisted.application import internet, service
from echo import EchoFactory

application = service.Application("echo")
echoService = internet.TCPServer(8000, EchoFactory())
echoService.setServiceParent(application)

twistd

twistd (pronounced “twist-dee”) is a
 cross-platform utility for deploying Twisted applications. It runs TAC
 files and handles starting and stopping the application. As part of
 Twisted’s batteries-included approach to network programming,
 twistd comes with a number of useful configuration
 flags, including flags for daemonizing the application, specifying the
 location of log files, dropping privileges, running in a chroot, running
 under a non-default reactor, or even running the application under a
 profiler.
We can run our echo server application with:
twistd -y echo_server.tac
In this simplest case, twistd starts a
 daemonized instance of the application, logging to
 twistd.log, with a PID stored in
 twisted.pid. After starting and stopping the
 application, the log looks like this:
2012-11-19 22:23:07-0500 [-] Log opened.
2012-11-19 22:23:07-0500 [-] twistd 12.1.0 (/usr/bin/python 2.7.1) ...
2012-11-19 22:23:07-0500 [-] reactor class: twisted.internet.select...
2012-11-19 22:23:07-0500 [-] echo.EchoFactory starting on 8000
2012-11-19 22:23:07-0500 [-] Starting factory <echo.EchoFactory ...
2012-11-19 22:23:20-0500 [-] Received SIGTERM, shutting down.
2012-11-19 22:23:20-0500 [-] (TCP Port 8000 Closed)
2012-11-19 22:23:20-0500 [-] Stopping factory <echo.EchoFactory ...
2012-11-19 22:23:20-0500 [-] Main loop terminated.
2012-11-19 22:23:20-0500 [-] Server Shut Down.
To suppress daemonization and log to stdout,
 pass -n (--nodaemon). For a
 full list of twistd’s capabilities, run
 twistd --help or consult the manpage.
Without writing any code ourselves, we got free daemonization and
 logging. Running a service using the Twisted application infrastructure
 allows developers to skip writing boilerplate code for common server
 functionalities.

Plugins

An alternative to the TAC-based system for running Twisted applications is the plugin
 system. While the TAC system makes it easy to register simple hierarchies of predefined
 services within an application configuration file, the plugin system makes it easy to
 register custom services as subcommands of the twistd utility and to
 extend the command-line interface to an application.
Using this system:
	Only the plugin API is required to remain stable, which makes
 it easy for third-party developers to extend the software.

	Plugin discoverability is codified. Plugins can be loaded and
 saved when a program is first run, rediscovered each time the
 program starts up, or polled for repeatedly at runtime, allowing the
 discovery of new plugins installed after the program has
 started.

To extend a program using the Twisted plugin system, all you have
 to do is create objects that implement the IPlugin interface and put them in a
 particular location where the plugin system knows to look for
 them.
Having already converted our echo server to a Twisted application,
 transformation into a Twisted plugin is straightforward. Alongside the
 echo module from before, which
 contains the Echo protocol and EchoFactory definitions, we add a directory
 called twisted, containing a subdirectory called
 plugins containing our echo plugin definition.
 Graphically, the directory structure is:
echoproject/
├── echo.py
└── twisted
 └── plugins
 └── echo_plugin.py
Let’s make the port our echo service uses configurable through
 twistd. Example 6-4
 shows the necessary logic.
Example 6-4. echo_plugin.py
from zope.interface import implements

from twisted.application.service import IServiceMaker
from twisted.application import internet
from twisted.plugin import IPlugin
from twisted.python import usage

from echo import EchoFactory

class Options(usage.Options):
 optParameters = [["port", "p", 8000, "The port number to listen on."]]

class EchoServiceMaker(object):
 implements(IServiceMaker, IPlugin)
 tapname = "echo"
 description = "A TCP-based echo server."
 options = Options

 def makeService(self, options):
 """
 Construct a TCPServer from a factory defined in echo.py.
 """
 return internet.TCPServer(int(options["port"]), EchoFactory())

serviceMaker = EchoServiceMaker()

A service plugin needs a minimum of two components:
	A subclass of twisted.python.usage.Options, with a
 class variable optParameters describing each of the
 command-line options to the service.
In our case, optParameters
 describes a single
 -p/--port configuration
 option, which has a default of 8000.

	An implementor of both IPlugin and IServiceMaker. This class implements a
 makeService method that passes the
 command-line configuration options to the service. It also defines
 the name and description of the service as displayed by
 twistd.
In our case, as with the TAC implementation, we’ll create
 instances of the TCPServer
 service, but with a port pulled from the command-line options
 instead of hardcoding 8000.

With this plugin defined, if we run twistd
 from the top-level project directory our echo server will now show up as
 a server option in the output of twistd --help, and
 running twistd echo --port=1235 will start an echo
 server on port 1235.

More twistd Examples

twistd ships with many commands that make it
 easy to spin up simple services with zero lines of code. Here are some
 examples:
	twistd web --port 8080 --path .
	Run an HTTP server on port 8080, serving both static and
 dynamic content out of the current working directory. Visit
 http://localhost:8080 to see the directory
 listing.

	twistd dns -v -p 5553 --hosts-file=hosts
	Run a DNS server on port 5553, resolving domains out of a file
 called hosts in the format of
 /etc/hosts.
For example, say you’d like to run your own Twisted DNS
 resolver and are also trying to cut back on social media. Create a
 hosts file that resolves
 facebook.com, twitter.com,
 and reddit.com to
 localhost, 127.0.0.1:
127.0.0.1 facebook.com
127.0.0.1 twitter.com
127.0.0.1 reddit.com
Then run your twistd DNS resolver,
 configure your operating system to try that resolver first, and
 effectively disable your ability to view those sites.
A quick command-line way to prove that the resolver is working
 is to use the dig DNS lookup utility. First,
 query the default resolver, then query the
 twistd resolver:
$ dig +short twitter.com
199.59.150.7
199.59.148.10
199.59.150.39
$ dig @localhost -p 5553 +short twitter.com
127.0.0.1

	sudo twistd conch -p tcp:2222
	Run an ssh server on port 2222.
 ssh keys must be set up independently.

	twistd mail -E -H localhost -d localhost=emails
	Run an ESMTP POP3 server, accepting email for
 localhost and saving it to the
 emails directory.

I don’t know about you, but I get pretty excited by the networking
 power of these simple twistd one-liners.

More Practice and Next Steps

This chapter introduced the Twisted application infrastructure for
 configuring and deploying Twisted programs in a standardized
 fashion.
There are two main ways of deploying applications using this
 infrastructure: TAC files and plugins. TAC files are simpler but less
 extensible, making them ideal for simple server deployments that want to
 take advantage of Twisted’s built-in deployment features, like logging and
 daemonization. Plugins have a higher initial development cost but expose a
 clear API for extending your application. Plugins are ideal for
 applications that need a stable interface for third-party developers or
 more control over plugin discovery and loading.
The Twisted Core HOWTO provides an overview of the application framework and TAC files, as well as information about the plugin philosophy and twistd plugins
 specifically.
Twisted comes with a pluggable authentication system for servers called Twisted Cred, and
 a common use of the plugin system is to add authentication to an application. Twisted Cred is
 discussed in detail in Chapter 9.
Suggested Exercises

	Converting a Twisted program into a TAC-based or plugin-based
 service follows a straightforward algorithm that you can practice on
 any of the servers we build in this book.
Try converting the chat server from Example 2-5 to a
 Twisted application, and converting the nonblocking web server from Example 4-8 to a plugin-based service.

	All of the commands listed in twistd --help are plugins that
 you can browse in the Twisted source code at twisted/plugins/. Pick
 one and read through the service definition.

Chapter 7. Logging

Twisted has its own logging systems that we’ve already seen used under
 the hood by twistd. This system plays nicely with
 Twisted-specific concepts like Failures
 but is also compatible with Python’s standard library logging
 facilities.
Basic In-Application Logging

The simplest way to add logging to your Twisted application is to
 import twisted.python.log, start logging
 to a file or stdout, and log events at particular log
 levels as you would with the Python standard logging module. For instance,
 Example 7-1 adds logging to a file for
 our echo server from Chapter 2.
Example 7-1. logging_echoserver.py
from twisted.internet import protocol, reactor
from twisted.python import log

class Echo(protocol.Protocol):
 def dataReceived(self, data):
 log.msg(data)
 self.transport.write(data)

class EchoFactory(protocol.Factory):
 def buildProtocol(self, addr):
 return Echo()

log.startLogging(open('echo.log', 'w'))
reactor.listenTCP(8000, EchoFactory())
reactor.run()

Logging starts once log.startLogging has been called.
 After that, information can be logged with log.msg or
 log.err; use log.msg to log strings and use
 log.err to log exceptions and
 failures. The default logging format produces output like this log of the
 echo server starting up, echoing one message, and terminating:
2012-11-15 20:26:37-0500 [-] Log opened.
2012-11-15 20:26:37-0500 [-] EchoFactory starting on 8000
2012-11-15 20:26:37-0500 [-] Starting factory <__main__.EchoFactory ...
2012-11-15 20:26:40-0500 [Echo,0,127.0.0.1] Hello, world!
2012-11-15 20:26:43-0500 [-] Received SIGINT, shutting down.
2012-11-15 20:26:43-0500 [__main__.EchoFactory] (TCP Port 8000 Closed)
2012-11-15 20:26:43-0500 [__main__.EchoFactory] Stopping factory <__...
2012-11-15 20:26:43-0500 [-] Main loop terminated.
To log to stdout, call startLogging with sys.stdout, as in Example 7-2.
Example 7-2. logging_test.py
import sys
from twisted.python import log

log.startLogging(sys.stdout)
log.msg("Starting experiment")

log.msg("Logging an exception")

try:
 1 / 0
except ZeroDivisionError, e:
 log.err(e)

log.msg("Ending experiment")

By default, in addition to logging messages when you invoke log.msg and log.err, the logging facilities will
 log stdout (e.g., print statements) as well as tracebacks for uncaught
 exceptions. They will also listen for and log events emitted by Twisted
 modules. That’s why we see various EchoFactory events in the
 preceding logs.
Twisted has some convenience classes for customizing your log file
 management. One example is twisted.python.logfile.LogFile, which can be
 rotated manually or when a specified log size has been reached. Example 7-3 illustrates both features.
Example 7-3. log_rotation.py
from twisted.python import log
from twisted.python import logfile

Log to /tmp/test.log ... test.log.N, rotating every 100 bytes.
f = logfile.LogFile("test.log", "/tmp", rotateLength=100)
log.startLogging(f)

log.msg("First message")

Rotate manually.
f.rotate()

for i in range(5):
 log.msg("Test message", i)

log.msg("Last message")

As log_rotation.py runs, messages will be
 logged to /tmp/test.log. When the logs are rotated
 manually or rotateLength is met, the
 existing log numbers are incremented (e.g.,
 /tmp/test.log.1 becomes
 /tmp/test.log.2, and
 /tmp/test.log becomes
 /tmp/test.log.1) and a fresh
 /tmp/test.log is produced. By the end, “First
 message” is in the oldest log, /tmp/test.log.2, and
 “Last message” is in /tmp/test.log.
Since daily log rotation is such a common action, Twisted also has a
 DailyLogFile class that will auto-rotate
 logs each day.

twistd Logging

As we saw in Chapter 6, Twisted
 applications run with twistd utilize Twisted’s
 logging by default, printing to twistd.log if
 daemonized or to stdout if not.
twistd’s built-in logging can be customized through command-line
 arguments: specify a log file with --logfile (use -
 for stdout) and pass --syslog to log to
 syslog instead of a log file.
For further customization of logging, including changing the log prefix (by default, a
 timestamp like 2012-08-20 22:08:34-0400), we’ll need to
 implement our own LogObserver.

Custom Loggers

As an example, what if we wanted a logger that logged to
 stdout and colored error messages red? Example 7-4 demonstrates how to subclass
 FileLogObserver and override the emit method to achieve this.
Example 7-4. log_colorizer.py
import sys

from twisted.python.log import FileLogObserver

class ColorizedLogObserver(FileLogObserver):
 def emit(self, eventDict):
 # Reset text color.
 self.write("\033[0m")

 if eventDict["isError"]:
 # ANSI escape sequence to color text red.
 self.write("\033[91m")

 FileLogObserver.emit(self, eventDict)

def logger():
 return ColorizedLogObserver(sys.stdout).emit

FileLogObserver.emit is an
 observer. Whenever log.msg or log.err is called, observers registered
 through log.addObserver receive that
 event. You can register as many observers as you want, so a single event
 can be processed in many ways.
startLogging and
 twistd call log.addObserver under the hood. As an example
 of registering your own observer, we can add ColorizedLogObserver’s colorized alert logging
 to our logging test from Example 7-2,
 as shown in Example 7-5.
Example 7-5. colorized_logging_test.py
import sys
from twisted.python import log
from log_colorizer import ColorizedLogObserver

observer = ColorizedLogObserver(sys.stdout)
log.addObserver(observer.emit)

log.msg("Starting experiment")

log.msg("Logging an exception")

try:
 1 / 0
except ZeroDivisionError, e:
 log.err(e)

log.msg("Ending experiment")

The only change we had to make to use our custom logger was
 registering an instance of ColorizedLogObserver with log.addObserver.
We can also use ColorizedLogObserver as a custom logger for
 twistd programs by passing a log observer factory
 (i.e., the emit method of an instance of
 a LogObserver) through the
 --logger command-line option. For example, to run our
 echo_server.tac from Chapter 6 with colorized logging to
 stdout, we could use this command line:
twistd -ny echo_server.tac --logger=log_colorizer.logger --logfile=-
The hyphen at the end of --logfile=- specifies logging to
 stdout. -n says don’t daemonize.

Key Facts and Caveats About Logging

Here are some things to keep in mind regarding logging in
 Twisted:
	Use log.startLogging to start
 logging to a file, either directly or through a convenience class like
 DailyLogFile.

	Events are logged with log.msg
 and log.err. By default, log.startLogging will also redirect
 stdout and stderr to the
 log.

	Use log.addObserver to
 register custom loggers.

	When you are writing custom log observers, never block, or your
 whole event loop will block. The observer must also be thread-safe if
 it is going to be used in multithreaded programs.

	Applications run with twistd have logging
 enabled automatically. Logging can be customized through
 --logfile, --syslog, and
 --logger.

Chapter 8. Databases

Because Twisted applications run in an event loop, the application
 must not make blocking calls in the main thread or the entire event loop
 will stall. Because most databases expose a blocking API, Twisted provides
 twisted.enterprise.adbapi as a
 non-blocking interface to the DB-API 2.0 API implemented by Python bindings
 for most popular databases, including MySQL, Postgres, and SQLite.
Nonblocking Database Queries

Switching from the blocking API to adbapi is a
 straightforward transformation: instead of creating
 individual database connections, use a connection from adbapi.ConnectionPool, which manages a pool of connections run in separate threads
 for you. Once you have a database cursor, instead of using the blocking execute and fetchall methods,
 use dbpool.runQuery to execute a SQL query and return the
 result.
Example 8-1 demonstrates executing a nonblocking SELECT query on a hypothetical SQLite database called
 users.db (the errback has been omitted for brevity).
Example 8-1. db_test.py
from twisted.internet import reactor
from twisted.enterprise import adbapi

dbpool = adbapi.ConnectionPool("sqlite3", "users.db")

def getName(email):
 return dbpool.runQuery("SELECT name FROM users WHERE email = ?",
 (email,))

def printResults(results):
 for elt in results:
 print elt[0]

def finish():
 dbpool.close()
 reactor.stop()

d = getName("jane@foo.com")
d.addCallback(printResults)

reactor.callLater(1, finish)
reactor.run()

Tip
When using adbapi with SQLite,
 if you encounter an error of the form:
sqlite3.ProgrammingError: SQLite objects created in a thread
can only be used in that same thread.The object was created in
thread id 5972 and this is thread id 4916
you’ll need to create your ConnectionPool with
 check_same_thread=False, as in:
dbpool = adbapi.ConnectionPool("sqlite3", "users.db",
 check_same_thread=False)
See Twisted ticket
 3629 for details.

The first argument to adbapi.ConnectPool is the import string for the
 desired database bindings. The rest of the arguments are passed to the underlying connect method for your database bindings and thus differ based
 on which database you are using. For example, connecting to a MySQL database might look like
 adbapi.ConnectionPool("MySQLdb", db="users").
dbpool.runQuery returns a Deferred, so we can attach callbacks and
 errbacks for processing the result of the query just as we’ve done with
 Deferreds in previous chapters.
The parts of the API you are most likely to use map neatly to
 blocking counterparts:
	adbapi.ConnectionPool()
	connection =
 db-module.connect() followed by cursor
 =
 connection.cursor()

	runOperation()
	cursor.execute()

	runQuery()
	cursor.execute() followed by
 cursor.fetchall()

	runInteraction()
	Running multiple queries inside a transaction

Note that because we are using a ConnectionPool, we don’t have to take care of
 connecting to or disconnecting from the database.
Example 8-2 uses runInteraction to create the SQLite users
 database from Example 8-1.
Example 8-2. db_transaction_test.py
from twisted.internet import reactor
from twisted.enterprise import adbapi

dbpool = adbapi.ConnectionPool("sqlite3", "users.db")

def _createUsersTable(transaction, users):
 transaction.execute("CREATE TABLE users (email TEXT, name TEXT)")
 for email, name in users:
 transaction.execute("INSERT INTO users (email, name) VALUES(?, ?)",
 (email, name))

def createUsersTable(users):
 return dbpool.runInteraction(_createUsersTable, users)

def getName(email):
 return dbpool.runQuery("SELECT name FROM users WHERE email = ?",
 (email,))

def printResults(results):
 for elt in results:
 print elt[0]

def finish():
 dbpool.close()
 reactor.stop()

users = [("jane@foo.com", "Jane"), ("joel@foo.com", "Joel")]
d = createUsersTable(users)
d.addCallback(lambda x: getName("jane@foo.com"))
d.addCallback(printResults)

reactor.callLater(1, finish)
reactor.run()

Note that the function called by dbpool.runInteraction uses the blocking cursor
 methods of the underlying database driver and runs in a separate thread.
 It must be a thread-safe function.
dbpool.runInteraction returns a
 Deferred. In this example, _createUsersTable implicitly returns None, which Twisted considers success,
 invoking the first callback in the callback chain.

More Practice and Next Steps

 This chapter discussed how to interact with databases in a non-blocking fashion using
 Twisted’s adbapi. adbapi provides an asynchronous interface to
 Python’s DB-API 2.0 specification, which is defined in PEP 249. The methods in the
 asynchronous interface map directly to methods in the blocking API, so converting a service
 from blocking database queries to adbapi is straightforward.
 For an example of how a large project uses Twisted’s relational
 database support, check out the Buildbot continuous integration
 framework.
Twistar is a library that builds an object-relational mapper (ORM) on top of
 adbapi.

Chapter 9. Authentication

Twisted comes with a protocol-independent, pluggable, asynchronous authentication system
 called Cred that can be used to add any type of authentication support to
 your Twisted server. Twisted also ships with a variety of common authentication mechanisms that
 you can use off the shelf through this system.
Because it is a general and extensible system, there are a number of components to
 understand and use in even a basic example. Getting over the initial learning curve will pay off
 for using Cred in real-world systems, so stick with me through the terminology and these
 examples.
Let me state up front that this is not a chapter on cryptography or password management best
 practices. This chapter uses hashing examples that are short and convenient for describing the
 capabilities of Twisted Cred with minimal overhead; if you want more information on securely
 managing user data, please consult a resource dedicated to this topic like Secure
 Coding: Principles and Practices (O’Reilly).
The Components of Twisted Cred

Before we get into the usage examples, there are a few terms that you should familiarize
 yourself with:
	Credentials
	Information used to identify and authenticate a user. Common credentials are a
 username and password, but they can be any data or object used to prove a user’s
 identity, such as a certificate or challenge/response protocol. Objects that provide
 credentials implement twisted.cred.credentials.ICredentials.

	Avatar
	A business logic object in a server application that
 represents the actions and data available to a user. For example, an
 avatar for a mail server might be a mailbox object, an avatar for a
 web server might be a resource, and an avatar for an SSH server
 might be a remote shell.
Avatars implement an interface that inherits from zope.interface.Interface.

	Avatar ID
	A string returned by the credentials checker that identifies the avatar for a user.
 This is often a username, but it could be any unique identifier. Example avatar IDs are
 “Joe Smith”, “joe@localhost”, and “user926344”.

	Credentials checker
	An object that takes credentials and attempts to verify them. The credentials
 checker is the bridge between the many ways credentials can be stored—for example, in a
 database, in a file, or in memory—and the rest of Cred.
If the credentials correctly identify a user, the credentials checker will return an
 avatar ID. Credentials checkers can also support anonymous access by returning
 twisted.cred.checkers.ANONYMOUS.
Credentials checkers implement the twisted.cred.checker.ICredentialsChecker
 interface.

	Realm
	An object that provides access to all the possible avatars in an application. A
 realm will take an avatar ID identifying a specific user and return an avatar object
 that will work on behalf of that user. A realm can support multiple types of avatars,
 allowing different types of users to have access to different services on a
 server.
Realm objects implement the twisted.cred.portal.IRealm
 interface.

	Portal
	The portal mediates interactions between the many parts of Cred. At the protocol
 level, the only thing you need to use Cred is a reference to a portal. The portal’s
 login method will authenticate users to the system.
The portal is not subclassed. Customization instead happens in the realm,
 credentials checkers, and avatars.

Twisted Cred: An Example

Now that we’re primed with those definitions, let’s look at a basic example. Example 9-1 shows an authenticating echo server.
Example 9-1. echo_cred.py
from zope.interface import implements, Interface

from twisted.cred import checkers, credentials, portal
from twisted.internet import protocol, reactor
from twisted.protocols import basic

class IProtocolAvatar(Interface):
 def logout():
 """
 Clean up per-login resources allocated to this avatar.
 """

class EchoAvatar(object):
 implements(IProtocolAvatar)

 def logout(self):
 pass

class Echo(basic.LineReceiver):
 portal = None
 avatar = None
 logout = None

 def connectionLost(self, reason):
 if self.logout:
 self.logout()
 self.avatar = None
 self.logout = None

 def lineReceived(self, line):
 if not self.avatar:
 username, password = line.strip().split(" ")
 self.tryLogin(username, password)
 else:
 self.sendLine(line)

 def tryLogin(self, username, password):
 self.portal.login(credentials.UsernamePassword(username,
 password),
 None,
 IProtocolAvatar).addCallbacks(self._cbLogin,
 self._ebLogin)

 def _cbLogin(self, (interface, avatar, logout)):
 self.avatar = avatar
 self.logout = logout
 self.sendLine("Login successful, please proceed.")

 def _ebLogin(self, failure):
 self.sendLine("Login denied, goodbye.")
 self.transport.loseConnection()

class EchoFactory(protocol.Factory):
 def __init__(self, portal):
 self.portal = portal

 def buildProtocol(self, addr):
 proto = Echo()
 proto.portal = self.portal
 return proto

class Realm(object):
 implements(portal.IRealm)

 def requestAvatar(self, avatarId, mind, *interfaces):
 if IProtocolAvatar in interfaces:
 avatar = EchoAvatar()
 return IProtocolAvatar, avatar, avatar.logout
 raise NotImplementedError(
 "This realm only supports the IProtocolAvatar interface.")

realm = Realm()
myPortal = portal.Portal(realm)
checker = checkers.InMemoryUsernamePasswordDatabaseDontUse()
checker.addUser("user", "pass")
myPortal.registerChecker(checker)

reactor.listenTCP(8000, EchoFactory(myPortal))
reactor.run()
To test the echo server, start it with python echo_cred.py. Connect
 to the server over telnet with telnet localhost
 8000. To log in successfully, provide as the first line of client input
 user pass. You will then get a login message, and future lines
 will be echoed. Logging in with invalid credentials causes the server to send an invalid login
 message and terminate the connection. Here is an example client transcript:
$ telnet localhost 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
user pass
Login successful, please proceed.
Hi
Hi
Quit
Quit
^]
telnet> quit
Connection closed.
localhost:~ jesstess$ telnet localhost 8000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
foo bar
Login denied, goodbye.
Connection closed by foreign host.
Figure 9-1 illustrates Cred’s authentication process
 diagrammatically.
[image: The Twisted Cred authentication process]

Figure 9-1. The Twisted Cred authentication process

The steps are:
	Our protocol factory, EchoFactory, produces instances of Echo in its buildProtocol method, just like in Chapter 2. Unlike in Chapter 2, these protocols have a reference to a
 Portal.
When we receive our first line from a connected client in Echo.lineReceived, we call our Portal’s login method to initiate a login request. Portal.login’s function signature is login(credentials, mind, *interfaces). In detail, the three
 arguments it requires are:
	Credentials, in this case a credentials.UsernamePassword created
 from the username and password parsed out of the line
 received.

	A “mind” which is almost always None. We won’t
 ever care about the mind in this book; if you are curious, the
 Portal.login documentation explains it.

	A list of avatar interfaces for which we are requesting authentication. This is
 usually a single interface (in this example, IProtocolAvatar).

	The Portal hands off the credentials to the appropriate credentials
 checker based on the avatar interface requested.
Each credentials checker exposes a set of credentialInterfaces for which it is able to authenticate. This example has only
 one checker, a toy
 checkers.InMemoryUsernamePasswordDatabaseDontUse
 that Twisted provides for learning about cred. This checker happens to support two types
 of credentials, credentials.IUsernamePassword and credentials.IUsernameHashedPassword. Because the call to
 Portal.login specified credentials.UsernamePassword, which implements credentials.IUsernamePassword, this credentials checker is able to authenticate
 the provided credentials.

	A credentials checker returns a Deferred to the
 Portal, containing either an avatar ID if the
 credentials were correct or a login failure that terminates the login process and fires
 the errback chain for Portal.login. In this example, a
 failure would invoke Echo._ebLogin.

	At this point, the user has successfully logged in. The Portal invokes the Realm’s requestAvatar method, providing the avatar ID and the
 appropriate avatar interface.

	requestAvatar returns a triple of avatar interface,
 avatar instance, and avatar logout method. If no
 per-login resources need to get cleaned up after a user logs out, the logout method can do nothing.

	Portal.login returns a Deferred containing either the avatar interface, avatar instance, and avatar
 logout method triple or a login failure, as mentioned
 in Step 3. In this example, on success _cbLogin is
 called, sending a welcome message to the now-authenticated user.

Once authenticated, the echo client and server interact as in Chapter 2.

Credentials Checkers

With a minimal example under our belt, we can start to explore why cred’s flexibility
 makes it so powerful. First, what if instead of using the toy in-memory checker we wanted to
 check the username and password against a file-based username and password database?
Twisted comes with a FilePasswordDB checker, so all we have to do
 is create a credentials file containing some usernames and passwords and
 swap in this FilePasswordDB
 checker:
-checker = checkers.InMemoryUsernamePasswordDatabaseDontUse()
-checker.addUser("user", "pass")
+checker = checkers.FilePasswordDB("passwords.txt")
FilePasswordDB’s line format is customizable and
 defaults to username:password. Try running
 echo_cred.py with these changes and a test
 passwords.txt.
What if we wanted to use hashed passwords in our password file instead? FilePasswordDB takes an optional hash argument that it will
 apply to a password before comparing it to the hash stored on disk. To augment Example 9-1 to support hashed passwords, swap in:
+import hashlib
+def hash(username, password, passwordHash):
+ return hashlib.md5(password).hexdigest()
+
 realm = Realm()
 myPortal = portal.Portal(realm)
-checker = checkers.InMemoryUsernamePasswordDatabaseDontUse()
-checker.addUser("user", "pass")
+checker = checkers.FilePasswordDB("passwords.txt", hash=hash)
and use the same hash logic to generate the passwords in
 passwords.txt.
What if we wanted to store our passwords in a database?
Twisted does not ship with a database-backed credentials checker, so
 we’ll need to write our own. It must implement the ICredentialsChecker interface, namely:
	Expose a class variable credentialInterfaces, which
 lists the credentials types the checker is able to check

	Implement the requestAvatarId method, which, given a
 set of credentials, must either authenticate the user and return its avatar ID or return a
 login failure

Example 9-2 implements a database-backed credentials checker.
Example 9-2. db_checker.py
from twisted.cred import error
from twisted.cred.checkers import ICredentialsChecker
from twisted.cred.credentials import IUsernameHashedPassword
from twisted.internet.defer import Deferred

from zope.interface import implements

class DBCredentialsChecker(object):
 implements(ICredentialsChecker)

 credentialInterfaces = (IUsernameHashedPassword,)

 def __init__(self, runQuery, query):
 self.runQuery = runQuery
 self.query = query

 def requestAvatarId(self, credentials):
 for interface in self.credentialInterfaces:
 if interface.providedBy(credentials):
 break
 else:
 raise error.UnhandledCredentials()

 dbDeferred = self.runQuery(self.query, (credentials.username,))
 deferred = Deferred()
 dbDeferred.addCallbacks(self._cbAuthenticate, self._ebAuthenticate,
 callbackArgs=(credentials, deferred),
 errbackArgs=(credentials, deferred))
 return deferred

 def _cbAuthenticate(self, result, credentials, deferred):
 if not result:
 deferred.errback(error.UnauthorizedLogin('User not in database'))
 else:
 username, password = result[0]
 if credentials.checkPassword(password):
 deferred.callback(credentials.username)
 else:
 deferred.errback(error.UnauthorizedLogin('Password mismatch'))

 def _ebAuthenticate(self, failure, credentials, deferred):
 deferred.errback(error.LoginFailed(failure))

To be database-agnostic, an instance of DBCredentialsChecker is initialized with an adbapi.ConnectionPool handle and the query to run to retrieve user
 credentials.
requestAvatarID returns a Deferred containing the avatar ID. The method takes a set of credentials, does a
 database lookup on the username from those credentials, and checks the password provided in
 the credentials against the one looked up in the database. On a password match, the Deferred’s callback chain is invoked with credentials.username, which will be the avatar ID for this user.
 If the passwords don’t match, the errback chain is invoked with cred.error.UnauthorizedLogin.
This checker expects credentials implementing IUsernameHashedPassword; the passwords are hashed before insertion into the database
 so the checker does not have access to the plain-text password, and credentials.checkPassword is invoked with the user-provided password to determine a
 match.
 The only modifications needed to our original authenticating echo server are to swap in
 the DBCredentialsChecker and store hashed credentials in a database. Make
 these changes in echo_server.py:
 First, at the top of the file define the hash used when inserting passwords into the
 database:

+import hashlib
+def hash(password):
+ return hashlib.md5(password).hexdigest()

Then, swap in the new type of credentials expected:

- self.portal.login(credentials.UsernamePassword(
- username, password),
+ self.portal.login(credentials.UsernameHashedPassword(
+ username, hash(password)),

 Finally, swap in the new DBCredentialsChecker:
-checker = checkers.InMemoryUsernamePasswordDatabaseDontUse()
-checker.addUser("user", "pass")
+from twisted.enterprise import adbapi
+from db_checker import DBCredentialsChecker
+dbpool = adbapi.ConnectionPool("sqlite3", "users.db")
+checker = DBCredentialsChecker(
+ dbpool.runQuery,
+ query="SELECT username, password FROM users WHERE username = ?")
Where a simple hash implementation could be something
 similar to the function from our earlier modification to Example 9-1:
Tip
Let me again remind you that this chapter is intentionally sticking to simple, concise
 examples. Don’t use md5 to hash passwords. Don’t store passwords in plaintext, do salt your
 passwords, and do use a cryptographically secure hash. If you want more information on how
 to securely manage user data, consult a resource dedicated to the topic. Your users will
 thank you!

Authentication in Twisted Applications

So far these Twisted Cred examples have used servers outside the
 Twisted application infrastructure discussed in Chapter 6. Twisted makes it easy to integrate
 authentication into applications deployed through
 twistd using the AuthOptionMixin class, and this is in fact
 where Twisted Cred really shines for providing a standard interface for
 swapping in and out authentication mechanisms decoupled from the business
 logic of your application.
As a concrete example, let’s convert our authenticating echo server from Example 9-1 to a Twisted application. First, delete the realm,
 portal, and reactor code, which twistd and the plugin will handle
 instead, from that server file:
-realm = Realm()
-myPortal = portal.Portal(realm)
-checker = checkers.InMemoryUsernamePasswordDatabaseDontUse()
-checker.addUser("user", "pass")
-myPortal.registerChecker(checker)
-
-reactor.listenTCP(8000, EchoFactory(myPortal))
-reactor.run()
Then, create a plugin for this application using the same template from Example 6-4: in the directory containing the server application,
 create a twisted directory containing a plugins
 directory containing a file echo_cred_plugin.py. Example 9-3 has the
 code for this plugin.
Example 9-3. echo_cred_plugin.py
from twisted.application.service import IServiceMaker
from twisted.application import internet
from twisted.cred import credentials, portal, strcred
from twisted.plugin import IPlugin
from twisted.python import usage

from zope.interface import implements

from echo_cred import EchoFactory, Realm

class Options(usage.Options, strcred.AuthOptionMixin):
 supportedInterfaces = (credentials.IUsernamePassword,)
 optParameters = [["port", "p", 8000, "The port number to listen on."]]

class EchoServiceMaker(object):
 implements(IServiceMaker, IPlugin)
 tapname = "echo"
 description = "A TCP-based echo server."
 options = Options

 def makeService(self, options):
 """
 Construct a TCPServer from EchoFactory.
 """
 p = portal.Portal(Realm(), options["credCheckers"])
 return internet.TCPServer(int(options["port"]), EchoFactory(p))

serviceMaker = EchoServiceMaker()

This echo_cred_plugin.py looks exactly like the plugin from Example 6-4, with one difference: the authenticating EchoFactory needs to interface with a Portal,
 which in turn needs to interface with a Realm and register credentials
 checkers. We want to be able to configure the available credentials checkers from the command
 line, and to do this we make our command-line Options class
 inherit from strcred.AuthOptionMixin.
Using AuthOptionMixin, all we have to do is enumerate
 the supported credentials types in a supportedInterface
 class variable; and that gives us full access to command-line credentials configuration. For
 this example, let’s reuse a credentials type we’ve seen before, credentials.IUsernamePassword.
With this AuthOptionMixin-enabled plugin in place,
 twistd echo grows command-line authentication configuration and
 documentation:
$ twistd echo --help-auth
Usage: --auth AuthType[:ArgString]
For detailed help: --help-auth-type AuthType

AuthTypeArgString format
========================
memory A colon-separated list (name:password:...)
file Location of a FilePasswordDB-formatted file.
unix No argstring required.
Let’s try out our authenticating echo server with the twistd
 command-line version of checkers.InMemoryUsernamePasswordDatabaseDontUse from Example 9-1:
$ twistd -n echo --auth memory:user:pass:foo:bar
2012-12-01 14:04:11-0500 [-] Log opened.
2012-12-01 14:04:11-0500 [-] twistd 12.1.0 (/usr/bin/python 2.7.1) ...
2012-12-01 14:04:11-0500 [-] reactor class: twisted.internet.select...
2012-12-22 14:07:26-0500 [-] EchoFactory starting on 8000
2012-12-01 14:04:11-0500 [-] Starting factory <echo.EchoFactory ...
As before, we can now run telnet localhost 8000 to play with this
 server.
With no application configuration, we can switch to authenticating against a password file
 like our passwords.txt by specifying the file auth type:
twistd -n echo --auth file:passwords.txt
On Unix, we can even use a built-in unix checker that “will attempt
 to use every resource available to authenticate against the list of users on the local UNIX
 system,” which currently includes checking against /etc/passwd and
 /etc/shadow:
sudo twistd -n echo --auth unix
You can then use your login username and password for this machine to authenticate to the
 echo server.
What if we wanted to add one of our custom checkers to this pool of available command-line
 checkers, alongside memory, file, and
 unix?
We do this with, as you might guess, a plugin. If you look in
 twisted/plugins/ in the Twisted source code, you’ll see a
 cred_* file for each of the checkers we’ve used so far, as well as some
 others. Each Cred plugin implements and exposes a credentials checker factory. The list of
 credentials checkers available in twistd --help-auth is the set of
 checkers that implement the credentials interfaces specified in AuthOptionMixin’s supportedInterfaces in your
 server’s plugin file. In this echo example we specified credentials.IUsernamePassword, so the checkers available are those in
 twisted/plugins/ that list IUsernamePassword in
 their credentialInterfaces.
So, to add our own checker for a particular credential interface to
 twistd, we would place the credentials checker and factory plugin in
 the twisted/plugins/ subdirectory of our top-level project. After that,
 the checker will show up as an option in twisted --help-auth!

More Practice and Next Steps

This chapter discussed Twisted’s Cred authentication system. In the
 Cred model, protocols authenticate users through a
 Portal, which mediates the validation of credentials
 against a credentials checker and returns an avatar which can act on
 behalf of the authenticated user. Cred uses the plugin system
 introduced in Chapter 6 to be a general and extensible
 framework.
 Twisted’s Web in 60 Seconds series walks through adding basic or
 digest HTTP authentication to a web server using Twisted Cred. For more practice, try adding
 authentication to one of your web servers from Chapter 4.
Conch, Twisted’s SSH subproject, is discussed in Chapter 14 and makes extensive use of Twisted Cred.

Chapter 10. Threads and Subprocesses

A mantra from Chapter 3 bears repeating: Twisted does not
 automatically make your code asynchronous or nonblocking.
What does Twisted do? It provides nonblocking primitives for common networking,
 filesystem, and timer activities, which wrap underlying nonblocking APIs exposed by the
 operating system. Twisted programs are event-driven; they use callbacks and are structured
 differently from synchronous programs. Twisted provides the Deferred abstraction to help manage these callbacks.
Even though Twisted programs use this event-driven model, sometimes you’ll still need to
 use threads or processes. This chapter covers some of the common cases and the relevant
 Twisted APIs.
Threads

In some cases—for example, when you’re using a blocking third-party API—the functions
 you’d like to use in your Twisted program aren’t under your control to be refactored into
 asynchronous ones using callbacks and Deferreds.
You are stuck with a blocking API, and you can’t use it as-is or
 you’ll block the entire event loop. To use it, you will need to make the
 blocking calls in threads. Twisted provides several methods related to
 making threaded calls, including:
	callInThread
	Execute a blocking function in its own thread.

	deferToThread
	Execute a blocking function in its own thread, and return the
 result as a Deferred.

In practice, deferToThread gets
 much more use than callInThread because
 you want a uniform interface to results, and Deferreds are that interface in Twisted
 programs.
Example 10-1 interleaves calls to a nonblocking function
 and a blocking function executed through deferToThread. It
 uses a convenient helper class for timing tasks: twisted.internet.task.LoopingCall. LoopingCall
 takes a function and its arguments and executes that function every interval provided to its
 start method. We used another method from the task module, deferLater, to
 execute a function after a specified time had elapsed in Example 4-10 .

Example 10-1. blocking.py
import time

from twisted.internet import reactor, threads
from twisted.internet.task import LoopingCall

def blockingApiCall(arg):
 time.sleep(1)
 return arg

def nonblockingCall(arg):
 print arg

def printResult(result):
 print result

def finish():
 reactor.stop()

d = threads.deferToThread(blockingApiCall, "Goose")
d.addCallback(printResult)

LoopingCall(nonblockingCall, "Duck").start(.25)

reactor.callLater(2, finish)
reactor.run()

Running this example produces:
$ python blocking.py
Duck
Duck
Duck
Duck
Duck
Goose
Duck
Duck
Duck
Duck
We can see by the interleaving of “Duck” and “Goose” output that by
 using threads.deferToThread we were able
 to make a blocking function call without blocking the reactor event
 loop.
Note that the reactor manages timer events, so LoopingCall only repeats function calls once
 the reactor is running.
We know that the reactor manages firing callbacks on Deferreds when events complete. What happens if we tweak the example to shut down
 the reactor before blockingApiCall has completed by changing
 the callLater line to reactor.callLater(.5, finish)?

$ python blocking.py
Duck
Duck
Duck
Because the reactor has shut down before the Deferred
 can be fired, Goose is never printed. To ensure that we wait
 until our deferToThread
 Deferred is done being processed before shutting down the
 reactor, we can make reactor.stop part of the callback
 chain, as shown in Example 10-2.
Example 10-2. blocking_revised.py
import time

from twisted.internet import reactor, threads
from twisted.internet.task import LoopingCall

def blockingApiCall(arg):
 time.sleep(1)
 return arg

def nonblockingCall(arg):
 print arg

def printResult(result):
 print result

def finish(result):
 reactor.stop()

d = threads.deferToThread(blockingApiCall, "Goose")
d.addCallback(printResult)
d.addCallback(finish)

LoopingCall(nonblockingCall, "Duck").start(.25)

reactor.run()

Twisted provides several other methods for running code in threads.
 They tend to come up less often, but it’s good to know what your options
 are:
	callFromThread
	From another thread, execute a function in the reactor
 thread.
Use callFromThread to call
 reactor APIs from outside the reactor thread. For example, use callFromThread when:
	writing data out through a transport from another
 thread

	invoking a custom log observer from another thread

	stopping the reactor from another thread

	callMultipleInThread
	Execute a list of functions in the same thread.

	blockingCallFromThread
	Execute the given function in the reactor thread, blocking the calling thread until
 the function has finished executing. If the function returns a Deferred,
 the result is translated into its synchronous equivalent: returning the result on
 success or raising an exception in the calling thread on failure.
Use blockingCallFromThread
 if you need to interface with an API that expects synchronous
 results.

Subprocesses

Twisted provides a platform-independent API for running subprocesses
 in a non-blocking fashion through the reactor, with the output returned
 through a Deferred. This is one spot
 where Twisted shows its age: the Twisted API parallels the now-deprecated
 commands standard library module, which
 has been superseded by the subprocess
 module.
Running a Subprocess and Getting the Result

If all you need to do is run a process and get the output or
 return code, Twisted has convenience methods that make this easy: getProcessOutput and getProcessValue.
Example 10-3 shows a toy remote manpage server using getProcessOutput. It gets commands from a
 client, runs man <command> on
 each, and sends the output back to the client:
Example 10-3. manpage_server.py
import sys

from twisted.internet import protocol, utils, reactor
from twisted.protocols.basic import LineReceiver
from twisted.python import log

class RunCommand(LineReceiver):
 def lineReceived(self, line):
 log.msg("Man pages requested for: %s" % (line,))
 commands = line.strip().split(" ")
 output = utils.getProcessOutput("man", commands, errortoo=True)
 output.addCallback(self.writeSuccessResponse)

 def writeSuccessResponse(self, result):
 self.transport.write(result)
 self.transport.loseConnection()

class RunCommandFactory(protocol.Factory):
 def buildProtocol(self, addr):
 return RunCommand()

log.startLogging(sys.stdout)
reactor.listenTCP(8000, RunCommandFactory())
reactor.run()

As with our basic servers from Chapter 2, we create a protocol.Factory subclass RunCommandFactory, which creates instances
 of our custom RunCommand protocol as
 clients connect to the service. Since clients are sending line-delimited
 data, RunCommand subclasses LineReceiver. The server logs reactor
 activity and each client request to stdout.
When a line is received, getProcessOutput spawns a subprocess and
 returns a Deferred that will be fired
 when the process has completed. We attach a callback to writeSuccessResponse, which writes the
 command output to the underlying transport and then terminates the
 connection.
The environment in which a subprocess is executed can be customized through optional
 arguments to getProcessOutput. The full signature is getProcessOutput(executable, args=(), env={}, path=None, reactor=None,
 errortoo=False). Because we set errortoo=True
 above, stderr (for example, if a client requests a manpage for a
 non-existent command) is passed along with stdout to the success
 callback.
To execute a command and only retrieve the return code, use getProcessValue. It supports the same
 environment customization as getProcessOutput and has a nearly identical
 signature: getProcessValue(executable,
 args=(), env={}, path=None, reactor=None).

Custom Process Protocols

If you need to do something beyond spawn a subprocess and get the output, you’ll need to
 write an implementor of the IProcessProtocol (in practice,
 a subclass of twisted.internet.protocol.ProcessProtocol) that is invoked with reactor.spawnProcess. This includes writing data to the child
 process’s stdin, executing subprocesses that use redirection, and sending
 signals to the child process.
ProcessProtocol is structurally similar to the Protocol subclasses used when writing basic clients and
 servers. It has a connectionMade method, as well as receive and connection lost
 methods for the child’s file descriptors. The protocol callbacks are registered with the
 reactor through spawnProcess, which has a similar but
 richer syntax than getProcessOutput for specifying the
 child’s environment.

 Example 10-4 uses a custom EchoProcessProtocol to run the echo server application from Example 6-3, killing the server after 10 seconds.
Example 10-4. twistd_spawnecho.py
from twisted.internet import protocol, reactor

class EchoProcessProtocol(protocol.ProcessProtocol):
 def connectionMade(self):
 print "connectionMade called"
 reactor.callLater(10, self.terminateProcess)

 def terminateProcess(self):
 self.transport.signalProcess('TERM')

 def outReceived(self, data):
 print "outReceived called with %d bytes of data:\n%s" % (
 len(data), data)

 def errReceived(self, data):
 print "errReceived called with %d bytes of data:\n%s" % (
 len(data), data)

 def inConnectionLost(self):
 print "inConnectionLost called, stdin closed."

 def outConnectionLost(self):
 print "outConnectionLost called, stdout closed."

 def errConnectionLost(self):
 print "errConnectionLost called, stderr closed."

 def processExited(self, reason):
 print "processExited called with status %d" % (
 reason.value.exitCode,)

 def processEnded(self, reason):
 print "processEnded called with status %d" % (
 reason.value.exitCode,)
 print "All FDs are now closed, and the process has been reaped."
 reactor.stop()

pp = EchoProcessProtocol()

commandAndArgs = ["twistd", "-ny", "echo_server.tac"]
reactor.spawnProcess(pp, commandAndArgs[0], args=commandAndArgs)
reactor.run()

Run the example with python twistd_spawnecho.py. Then, in another
 terminal, connect to the spawned echo server with telnet localhost
 8000. Entered text will be echoed back. After 10 seconds, the echo server
 terminates and the reactor is stopped, ending the parent process as well.
A transcript from the parent process might look like this:
$ python twisted_spawnprocess.py
connectionMade called
outReceived called with 295 bytes of data:
2012-12-01 14:04:11-0500 [-] Log opened.
2012-12-01 14:04:11-0500 [-] twistd 12.1.0 (/usr/bin/python 2.7.1) ...
2012-12-01 14:04:11-0500 [-] reactor class: twisted.internet.select...

outReceived called with 147 bytes of data:
2012-12-01 14:04:11-0500 [-] EchoFactory starting on 8000
2012-12-01 14:04:11-0500 [-] Starting factory <echo.EchoFactory ...

outReceived called with 62 bytes of data:
2012-12-01 14:04:20-0500 [-] Received SIGTERM, shutting down.

outReceived called with 52 bytes of data:
2012-12-01 14:04:20-0500 [-] (TCP Port 8000 Closed)

outReceived called with 89 bytes of data:
2012-12-01 14:04:20-0500 [-] Stopping factory <echo.EchoFactory ...

outReceived called with 51 bytes of data:
2012-12-01 14:04:20-0500 [-] Main loop terminated.

outReceived called with 47 bytes of data:
2012-12-01 14:04:20-0500 [-] Server Shut Down.

errConnectionLost called, stderr closed.
outConnectionLost called, stdout closed.
inConnectionLost called, stdin closed.
processExited called with status 0
processEnded called with status 0
All FDs are now closed, and the process has been reaped.
spawnProcess takes at minimum an instance of an
 implementor of the IProcessProtocol interface and the name
 of the executable to run, in this case twistd. This example also passes
 some command-line arguments to twistd: -n says to
 not daemonize, and -y is followed by the name of the TAC file to
 run.
The example uses a subclass of ProcessProtocol that,
 for illustration, overrides most of the class’s methods:

	connectionMade
	This method is called once the process has started and the
 transport has been set up for communicating with it. Data is
 written to the process’s stdin with
 self.transport.write. You can also specify which file
 descriptor is written to with self.transport.writeToChild.

	outReceived
	This method is called when data has arrived through the pipe for the process’s
 stdout. Data is buffered and will arrive in chunks, so it may
 be appropriate to accumulate the data until processEnded has been
 called. errReceived similarly receives data written to the
 process’s stderr.

	inConnectionLost, outConnectionLost, and
 errConnectionLost

	These methods are called when the stdin,
 stdout, and stderr file descriptors are
 closed, respectively. The parent process might close stdin with
 self.transport.closeStdin to indicate to the child that it
 shouldn’t expect any more data from the parent, which would in turn invoke
 inConnectionLost. All three are called when the process
 terminates gracefully.

	processExited and processEnded
	processExited is called when the process has exited.
 processEnded is the final callback invoked, when all file
 descriptors have closed. processEnded is thus an appropriate
 place to stop the reactor.

To illustrate sending signals to a subprocess, we use self.transport.signalProcess to send the
 server SIGTERM 10 seconds after the
 connection is made. Try sending KILL
 instead to see what happens if the process is not able to shut down
 gracefully.

More Practice and Next Steps

This chapter discussed how to use threads and subprocesses in a Twisted application in a
 nonblocking fashion.
Threads are most commonly required in a Twisted application when you
 are using a blocking third-party API. deferToThread executes a blocking function in
 its own thread and returns the result as a Deferred, giving you a consistent API even
 when working with other libraries.
Similarly, Twisted provides a platform-independent, Deferred-based API for running subprocesses as
 non-blocking events through the reactor, using spawnProcess and convenience functions like
 getProcessOutput. Custom process
 protocols subclass protocol.ProcessProtocol and are structurally
 quite similar to the Protocol
 implementations for network clients and servers.
The Twisted Core HOWTO discusses threads and
 writing functions that return Deferreds, which also gives additional examples of integrating blocking
 3rd-party functions using deferToThread.
When we use Twisted’s threading utilities, Twisted is managing allocations from a thread
 pool under the hood. For an example of using twisted.python.threadpool and the twisted.internet.threads APIs to wrap blocking third party functions, see the
 twisted/enterprise/adbapi.py asynchronous DB-API 2.0
 implementation.
The Twisted Core HOWTO discusses
 processes, and the ptyserv example in the Twisted Core examples directory
 shows a PTY server that spawns a shell upon connection.
ampoule is a process pool implementation built on top of
 Twisted that provides an API mirroring the threading API.

Chapter 11. Testing

Because Twisted programs are event-driven and use Deferreds to wait for and handle events, we
 can’t easily use standard testing frameworks like Python’s unittest to write tests for them.
To handle this, Twisted comes with an extension of Python’s unittest framework for testing event-driven Twisted programs, and a command-line
 utility for running them. These components comprise Trial, Twisted’s
 testing framework.
Writing and Running Twisted Unit Tests with Trial

Tests that don’t exercise event-driven logic import twisted.trial.unittest instead of unittest but otherwise look identical to
 traditional Python unittest
 tests.
 Example 11-1 shows a single test case class called MyFirstTestCase, containing a single test
 called test_something, which makes an
 assertion using the Twisted version of unittest’s TestCase.assertTrue. Most unittest assertions have Twisted versions, and
 Trial has additional assertions for exercising Failures.
Example 11-1. test_foo.py
from twisted.trial import unittest

class MyFirstTestCase(unittest.TestCase):
 def test_something(self):
 self.assertTrue(True)

We can use the trial command-line utility that ships with Twisted to
 run the test file:
$ trial test_foo.py
test_foo
 MyFirstTestCase
 test_something ... [OK]

Ran 1 tests in 0.002s

PASSED (successes=1)
We can run individual test classes by specifying the class name, as in:
trial test_foo.MyFirstTestCase
and run individual tests by specifying the path to the test, as in:
trial test_foo.MyFirstTestCase.test_something

Testing Protocols

Let’s say we wanted to write a unit test suite for our echo protocol logic from Chapter 2 , reproduced Example 11-2 in for convenience.
Example 11-2. echo.py
from twisted.internet import protocol, reactor

class Echo(protocol.Protocol):
 def dataReceived(self, data):
 self.transport.write(data)

class EchoFactory(protocol.Factory):
 def buildProtocol(self, addr):
 return Echo()

These are unit tests; they shouldn’t rely on making network connections. But how do we
 fake making a client connection?
Twisted provides helper modules in twisted.test for
 unit-testing clients and servers. Chief amongst them is proto_helpers, which has a StringTransport
 class for mocking transports. When a protocol uses an instance of StringTransport, instead of pushing bytes out through a
 network connection, they are written to a string which can easily be inspected.
Example 11-3 has a test case for the Echo protocol. It creates an instance of EchoFactory, uses that factory to build an instance of the Echo protocol, and sets the protocol’s transport to an instance of proto_helpers.StringTransport. The protocol’s makeConnection method is called to simulate a client connection, and dataReceived is called to simulate receiving client
 data. At that point, the transport should contain the echoed version of the fake client
 data, so we make an assertion on transport.value().
Example 11-3. test_echo.py
from twisted.test import proto_helpers
from twisted.trial import unittest

from echo import EchoFactory

class EchoServerTestCase(unittest.TestCase):
 def test_echo(self):
 factory = EchoFactory()
 self.proto = factory.buildProtocol(("localhost", 0))
 self.transport = proto_helpers.StringTransport()

 self.proto.makeConnection(self.transport)
 self.proto.dataReceived("test\r\n")
 self.assertEqual(self.transport.value(), "test\r\n")

This idiom of:
	Building a protocol instance

	Giving it a mock transport

	Faking client communication

	Inspecting the mocked transport data

is very common when testing server functionality.
A handy feature built into trial is the generation of coverage information. If we pass
 --coverage to
 trial, it will generate coverage data for every Python module
 exercised during the test run and (by default) store it in
 _trial_temp/. Re-running the echo tests with trial
 --coverage test_echo.py and inspecting the resulting
 _trial_temp/coverage/echo.cover, we can see that we have full
 coverage of the echo module with this test:
$ cat _trial_temp/coverage/echo.cover
 1: from twisted.internet import protocol, reactor

 2: class Echo(protocol.Protocol):
 1: def dataReceived(self, data):
 1: self.transport.write(data)

 2: class EchoFactory(protocol.Factory):
 1: def buildProtocol(self, addr):
 1: return Echo()
As another example of mocking transports using proto_helpers.StringTransport, how about some unit tests for the chat
 protocol from Chapter 2 (reproduced in Example 11-4).
Example 11-4. chatserver.py
from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver

class ChatProtocol(LineReceiver):
 def __init__(self, factory):
 self.factory = factory
 self.name = None
 self.state = "REGISTER"

 def connectionMade(self):
 self.sendLine("What's your name?")

 def connectionLost(self, reason):
 if self.name in self.factory.users:
 del self.factory.users[self.name]
 self.broadcastMessage("%s has left the channel." % (self.name,))

 def lineReceived(self, line):
 if self.state == "REGISTER":
 self.handle_REGISTER(line)
 else:
 self.handle_CHAT(line)

 def handle_REGISTER(self, name):
 if name in self.factory.users:
 self.sendLine("Name taken, please choose another.")
 return
 self.sendLine("Welcome, %s!" % (name,))
 self.broadcastMessage("%s has joined the channel." % (name,))
 self.name = name
 self.factory.users[name] = self
 self.state = "CHAT"

 def handle_CHAT(self, message):
 message = "<%s> %s" % (self.name, message)
 self.broadcastMessage(message)

 def broadcastMessage(self, message):
 for name, protocol in self.factory.users.iteritems():
 if protocol != self:
 protocol.sendLine(message)

class ChatFactory(Factory):
 def __init__(self):
 self.users = {}

 def buildProtocol(self, addr):
 return ChatProtocol(self)

As with the Echo protocol, we first set up an instance
 of the ChatFactory, build a protocol, and mock the
 transport. Since this is a more complicated protocol that will need several tests, we
 can stick the setup work needed by every test in a setUp method, which unittest will run
 before each test (there is a corresponding tearDown
 method to clean up after each test).
After that, we can test each part of the state machine in its own
 unit test by calling lineReceived with
 the appropriate state-changing data and asserting on the contents of the
 mocked transport. Example 11-5 shows the start of a chat server test
 suite.
Example 11-5. Testing chatserver
from twisted.test import proto_helpers
from twisted.trial import unittest

from chatserver import ChatFactory

class ChatServerTestCase(unittest.TestCase):
 def setUp(self):
 self.factory = ChatFactory()
 self.proto = self.factory.buildProtocol(("localhost", 0))
 self.transport = proto_helpers.StringTransport()
 self.proto.makeConnection(self.transport)

 def test_connect(self):
 self.assertEqual(self.transport.value(),
 "What's your name?\r\n")

 def test_register(self):
 self.assertEqual(self.proto.state, "REGISTER")
 self.proto.lineReceived("jesstess")
 self.assertIn("jesstess", self.proto.factory.users)
 self.assertEqual(self.proto.state, "CHAT")

 def test_chat(self):
 self.proto.lineReceived("jesstess")

 proto2 = self.factory.buildProtocol(("localhost", 0))
 transport2 = proto_helpers.StringTransport()
 proto2.makeConnection(transport2)

 self.transport.clear()
 proto2.lineReceived("adamf")

 self.assertEqual(self.transport.value(),
 "adamf has joined the channel.\r\n")

To exercise the new user notification logic, we build a second fake
 client connection in test_chat.
trial --coverage test_foo.py shows a couple of untested code
 paths:
 1: def connectionLost(self, reason):
>>>>>> if self.name in self.factory.users:
>>>>>> del self.factory.users[self.name]
>>>>>> self.broadcastMessage("%s has left the channel." %
 (self.name,))

 1: def lineReceived(self, line):
 3: if self.state == "REGISTER":
 3: self.handle_REGISTER(line)
 else:
>>>>>> self.handle_CHAT(line)

 1: def handle_REGISTER(self, name):
 3: if name in self.factory.users:
>>>>>> self.sendLine("Name taken, please choose another.")
>>>>>> return
 3: self.sendLine("Welcome, %s!" % (name,))
 3: self.broadcastMessage("%s has joined the channel." % (name,))
 3: self.name = name
 3: self.factory.users[name] = self
 3: self.state = "CHAT"

 1: def handle_CHAT(self, message):
>>>>>> message = "<%s> %s" % (self.name, message)
>>>>>> self.broadcastMessage(message)
To have complete test coverage, we’d need to exercise users leaving,
 nickname collision, and sending a chat message. What would those tests
 look like?

Tests and the Reactor

Eventually, you will find yourself needing to test something that
 involves the reactor: typically functions that return Deferreds or use methods like reactor.callLater that register time-based
 event handlers.
trial runs your test suite in a single thread, with a single reactor.
 This means that if a test ever leaves an event source (like a timer, socket, or
 misplaced Deferred) inside the reactor, it can affect
 future tests. At best, this causes them to fail. At worst, it causes tests to fail
 apparently randomly and sporadically, leaving you with a nightmare to debug.
This fact forces a basic rule when writing tests:
Leave the reactor as you found it.
This means:
	You cannot call reactor.run or
 reactor.stop inside a test.

	If a test invokes a function that returns a Deferred, that Deferred must be
 allowed to trigger. To ensure that this happens, return the Deferred. trial will keep
 the reactor running until the Deferred
 fires.
A corollary is that a Deferred
 that is never triggered will cause your test suite to hang
 indefinitely.

	Events scheduled with reactor.callLater need to either happen or
 get cancelled before the test case finishes.

	Sockets—both client connections and listening server sockets—must be closed. Not
 having to worry about this is another reason why mocking connections is
 preferable in unit tests.

Operations to clean up the reactor often live in the unittest.tearDown test method.
Testing Deferreds

 Example 11-6 is a concrete demonstration of what happens when a
 Deferred is left unfired in the
 reactor.
Example 11-6. test_deferred.py
from twisted.internet.defer import Deferred
from twisted.internet import reactor
from twisted.trial import unittest

class DeferredTestCase(unittest.TestCase):
 def slowFunction(self):
 d = Deferred()
 reactor.callLater(1, d.callback, ("foo"))
 return d

 def test_slowFunction(self):
 def cb(result):
 self.assertEqual(result, "foo")

 d = self.slowFunction()
 d.addCallback(cb)

slowFunction is a stand-in for
 any function that returns a Deferred.
 test_slowFunction is an attempt to
 test that when slowFunction’s callback
 chain is fired, it is with the result “foo”.
Try running this test suite. You’ll get something like:
$ trial test_deferred.DeferredTestCase
test_foo
 DeferredTestCase
 test_slowFunction ... [ERROR]

===
[ERROR]
Traceback (most recent call last):
Failure: twisted.trial.util.DirtyReactorAggregateError: Reactor was unclean.
DelayedCalls: (set twisted.internet.base.DelayedCall.debug = True to debug)
<DelayedCall 0x1010e1560 [0.9989798069s] called=0 cancelled=0 Deferred
 .callback(('foo',))>
test_slowFunction broke the rule: it invoked a
 function that returned a Deferred without
 returning the Deferred, causing the test to fail
 with a DirtyReactorAggregateError: Reactor was
 unclean.
To fix this test so it doesn’t leave stray event sources in the
 reactor, return d.
 DBCredentialsChecker.requestAvatarId from Example 9-2 is a method that returns a Deferred. Example 11-7 reproduces the full DBCredentialsChecker class for context. What would a
 test suite for requestAvatarId look like?
Example 11-7. db_checker.py
class DBCredentialsChecker(object):
 implements(ICredentialsChecker)

 credentialInterfaces = (IUsernameHashedPassword,)

 def __init__(self, runQuery, query):
 self.runQuery = runQuery
 self.query = query

 def requestAvatarId(self, credentials):
 for interface in self.credentialInterfaces:
 if interface.providedBy(credentials):
 break
 else:
 raise error.UnhandledCredentials()

 dbDeferred = self.runQuery(self.query, (credentials.username,))
 deferred = Deferred()
 dbDeferred.addCallbacks(self._cbAuthenticate, self._ebAuthenticate,
 callbackArgs=(credentials, deferred),
 errbackArgs=(credentials, deferred))
 return deferred

 def _cbAuthenticate(self, result, credentials, deferred):
 if not result:
 deferred.errback(error.UnauthorizedLogin('User not in database'))
 else:
 username, password = result[0]
 if credentials.checkPassword(password):
 deferred.callback(credentials.username)
 else:
 deferred.errback(error.UnauthorizedLogin('Password mismatch'))

 def _ebAuthenticate(self, failure, credentials, deferred):
 deferred.errback(error.LoginFailed(failure))

Some good candidates for unit tests are:
	A test that a call to requestAvatarId with a
 matching username and password returns the username supplied in the
 credentials

	A test that a call to requestAvatarId with a known
 username but invalid password results in an UnauthorizedLogin error

	A test that a call to requestAvatarId with an
 unknown username results in an UnauthorizedLogin error

In lieu of setting up a test database as part of this test suite,
 we can mock the runQuery and query attributes to return fixed
 results.
Example 11-8 shows one possible implementation of the success test
 case. It instantiates a DBCredentialsChecker with
 a fakeRunqueryMatchingPassword that returns
 hard-coded correct credentials. A callback is attached to the Deferred returned by requestAvatarId to assert that the username in the supplied credentials
 is returned on a password match, and the Deferred
 is returned for Trial to ensure that it has time to fire.
Example 11-8. Testing DBCredentialsChecker
from twisted.trial import unittest
from twisted.cred import credentials
from twisted.cred.error import UnauthorizedLogin
from twisted.internet import reactor
from twisted.internet.defer import Deferred

from db_checker import DBCredentialsChecker

class DBCredentialsCheckerTestCase(unittest.TestCase):

 def test_requestAvatarIdGoodCredentials(self):
 """
 Calling requestAvatarId with correct credentials returns the
 username.
 """
 def fakeRunqueryMatchingPassword(query, username):
 d = Deferred()
 reactor.callLater(0, d.callback, (("user", "pass"),))
 return d

 creds = credentials.UsernameHashedPassword("user", "pass")
 checker = DBCredentialsChecker(fakeRunqueryMatchingPassword,
 "fake query")
 d = checker.requestAvatarId(creds)

 def checkRequestAvatarCb(result):
 self.assertEqual(result, "user")
 d.addCallback(checkRequestAvatarCb)
 return d

Example 11-9 shows the two error test cases, which are structured
 quite similarly. They use a Twisted extension to Python’s unittest assertions: assertFailure, which asserts that a Deferred fires with a Failure wrapping a particular type of Exception.
Example 11-9. Testing errors in DBCredentialsChecker
def test_requestAvatarIdBadCredentials(self):
 """
 Calling requestAvatarId with invalid credentials raises an
 UnauthorizedLogin error.
 """
 def fakeRunqueryBadPassword(query, username):
 d = Deferred()
 reactor.callLater(0, d.callback, (("user", "badpass"),))
 return d

 creds = credentials.UsernameHashedPassword("user", "pass")
 checker = DBCredentialsChecker(fakeRunqueryBadPassword, "fake query")
 d = checker.requestAvatarId(creds)

 def checkError(result):
 self.assertEqual(result.message, "Password mismatch")
 return self.assertFailure(d, UnauthorizedLogin).addCallback(checkError)

 def test_requestAvatarIdNoUser(self):
 """
 Calling requestAvatarId with credentials for an unknown user
 raises an UnauthorizedLogin error.
 """
 def fakeRunqueryMissingUser(query, username):
 d = Deferred()
 reactor.callLater(0, d.callback, ())
 return d

 creds = credentials.UsernameHashedPassword("user", "pass")
 checker = DBCredentialsChecker(fakeRunqueryMissingUser, "fake query")
 d = checker.requestAvatarId(creds)

 def checkError(result):
 self.assertEqual(result.message, "User not in database")
 return self.assertFailure(d, UnauthorizedLogin).addCallback(checkError)

Testing the Passage of Time

When you need to test code scheduled with reactor.callLater, for example protocol timeouts, you need to fake the
 passage of time. Twisted makes this easy with the twisted.internet.task.Clock class. Clock has its own callLater method,
 which replaces reactor.callLater in tests and can
 be advanced manually.
Because Clock.callLater replaces reactor.callLater, and we don’t want to affect the
 global reactor while running tests, we need to parameterize the reactor (i.e., make
 the reactor an argument to a class’s __init__
 method) so it can easily be replaced for testing.
Example 11-11 shows a test case for EchoProcessProtocol from Example 10-4.
 That class has been reproduced in Example 11-10 for convenience,
 with some changes, as discussed after the example code. EchoProcessProtocol terminates itself after 10 seconds using reactor.callLater, and we can use a Clock to exercise this behavior.
Example 11-10. pp.py
from twisted.internet import protocol, reactor

class EchoProcessProtocol(protocol.ProcessProtocol):
 def __init__(self, reactor):
 self.reactor = reactor

 def connectionMade(self):
 print "connectionMade called"
 self.reactor.callLater(10, self.terminateProcess)

 def terminateProcess(self):
 self.transport.signalProcess('TERM')

 def outReceived(self, data):
 print "outReceived called with %d bytes of data:\n%s" % (
 len(data), data)

 def errReceived(self, data):
 print "errReceived called with %d bytes of data:\n%s" % (
 len(data), data)

 def inConnectionLost(self):
 print "inConnectionLost called, stdin closed."

 def outConnectionLost(self):
 print "outConnectionLost called, stdout closed."

 def errConnectionLost(self):
 print "errConnectionLost called, stderr closed."

 def processExited(self, reason):
 print "processExited called with status %d" % (
 reason.value.exitCode,)

 def processEnded(self, reason):
 print "processEnded called with status %d" % (
 reason.value.exitCode,)
 print "All FDs are now closed, and the process has been reaped."
 self.reactor.stop()

Example 11-11. Testing EchoProcessProtocol
from twisted.test import proto_helpers
from twisted.trial import unittest
from twisted.internet import reactor, task

from pp import EchoProcessProtocol

class EchoProcessProtocolTestCase(unittest.TestCase):
 def test_terminate(self):
 """
 EchoProcessProtocol terminates itself after 10 seconds.
 """
 self.terminated = False

 def fakeTerminateProcess():
 self.terminated = True

 clock = task.Clock()
 pp = EchoProcessProtocol(clock)
 pp.terminateProcess = fakeTerminateProcess
 transport = proto_helpers.StringTransport()
 pp.makeConnection(transport)

 self.assertFalse(self.terminated)
 clock.advance(10)
 self.assertTrue(self.terminated)

Before writing this test case, we must parameterize the reactor used by
 EchoProcessProtocol by adding:
def __init__(self, reactor):
 self.reactor = reactor
Then, in the test case, an instance of EchoProcessProtocol can be
 instantiated with an instance of task.Clock. A transport is set
 up, and assertions are made about the state of the protocol before and after a call
 to clock.advance, which simulates the passage of
 10 seconds.
Parameterizing the reactor and using a Clock to simulate the passage of time is a
 common Twisted Trial idiom.

More Practice and Next Steps

This chapter introduced Twisted’s Trial framework for unit-testing your Twisted applications.
The Twisted Core documentation includes a detailed introduction to test-driven development in
 Twisted and an overview of
 trial. trial is, of course,
 itself written in Twisted, and test result processing can be customized using Twisted’s
 plugin system. The trial code and tests live in
 twisted/trial/.
Twisted has a strict test-driven development policy: no code changes get merged without
 accompanying tests. Consequently, Twisted has an extensive test suite that is a great
 resource for examples of how to unit-test different scenarios. Tests live in the
 top-level test/ directory as well as test/
 directories for each subproject.
For example, to see how Twisted Web’s Agent interface is
 tested, including mocking the transport, testing timeouts, and testing errors, have a
 look at twisted/web/test/test_agent.py. To see how to test a
 protocol like twisted.words.protocols.irc, check out
 twisted/words/tests/test_irc.py.
 You can read about Twisted’s test-driven development policy in detail on the Twisted website.
Twisted publishes its own coverage information as part of its continuous integration. Help improve
 Twisted by writing test cases!

Part III. More Protocols and More Practice

Chapter 12. Twisted Words

Twisted Words is an application-agnostic chat framework that gives you
 the building blocks to build clients and servers for popular chat protocols
 and to write new protocols.
Twisted comes with protocol implementations for IRC, Jabber (now XMPP, used by chat services
 like Google Talk and Facebook Chat), and AOL Instant Messenger’s OSCAR.
To give you a taste of the Twisted Words APIs, this chapter will walk through
 implementations of an IRC client and server.
IRC Clients

An IRC client will look structurally quite similar to the basic
 clients from Chapter 2. The protocol will build
 upon twisted.words.protocols.irc.IRCClient, which
 inherits from basic.LineReceiver and
 implements the many user and channel operations supported by the protocol,
 including speaking and taking actions in private messages and in channels,
 managing your nickname, and setting channel properties.
Example 12-1 is an IRC echo bot that joins a particular
 channel on a particular network and echoes messages directed at the bot, as well as actions
 (like /me dances) taken by other users in the channel.
Example 12-1. irc_echo_bot.py
from twisted.internet import reactor, protocol
from twisted.words.protocols import irc

import sys

class EchoBot(irc.IRCClient):
 nickname = "echobot"

 def signedOn(self):
 # Called once the bot has connected to the IRC server
 self.join(self.factory.channel)

 def privmsg(self, user, channel, msg):
 # Despite the name, called when the bot receives any message,
 # be it a private message or in a channel.
 user = user.split('!', 1)[0]
 if channel == self.nickname:
 # This is a private message to me; echo it.
 self.msg(user, msg)
 elif msg.startswith(self.nickname + ":"):
 # This message started with my nickname and is thus
 # directed at me; echo it.
 self.msg(channel, user + ":" + msg[len(self.nickname + ":"):])

 def action(self, user, channel, action):
 # Called when a user in the channel takes an action (e.g., "/me
 # dances"). Imitate the user.
 self.describe(channel, action)

class EchoBotFactory(protocol.ClientFactory):
 def __init__(self, channel):
 self.channel = channel

 def buildProtocol(self, addr):
 proto = EchoBot()
 proto.factory = self
 return proto

 def clientConnectionLost(self, connector, reason):
 # Try to reconnect if disconnected.
 connector.connect()

 def clientConnectionFailed(self, connector, reason):
 reactor.stop()

network = sys.argv[1]
port = int(sys.argv[2])
channel = sys.argv[3]
reactor.connectTCP(network, port, EchoBotFactory(channel))
reactor.run()

Almost all of the work is done by the underlying irc.IRCClient implementation; the only substantial customizations are to the privmsg and action methods, to
 give the bot its echo behavior.
This bot will automatically try to reconnect to the service if disconnected. This behavior
 is achieved by re-establishing the connection with connector.connect in the EchoBotFactory’s clientConnectionLost method.
The bot takes as command-line arguments the IRC server, port, and channel it should join.
 For example, to bring this bot into the #twisted-bots channel on the
 Freenode IRC network, run:
python irc_echo_bot.py irc.freenode.net 6667 twisted-bots
Join that channel as well to see your bot in action. Here’s an
 example transcript:
21:11 -!- echobot [~echobot@] has joined #twisted-bots
21:11 <jesstess> echobot: Hi!
21:11 < echobot> jesstess: Hi!
21:12 <jesstess> adamf: I just finished reading RFC 959 and could use a drink.
21:20 * jesstess goes to sleep
21:20 * echobot goes to sleep
21:25 -!- echobot_ [~echobot@] has quit [Remote host closed the connection]

IRC Servers

The Twisted Words server APIs have had a lot less development and
 use than the client APIs. Support exists for bare-bones services, but the
 rest is up to the developer. If you are interested in contributing to
 Twisted, this is an area that could use your love!
Twisted Words servers build upon twisted.words.service, which exposes
 chat-specific authentication using the Twisted Cred model from Chapter 9 as well as an IRCFactory that generates instances of the
 IRCUser protocol.
Example 12-2 shows an IRC server that listens for IRC
 connections on port 6667 and authenticates users based on the contents of a colon-delimited
 passwords.txt file.
Example 12-2. irc_server.py
from twisted.cred import checkers, portal
from twisted.internet import reactor
from twisted.words import service

wordsRealm = service.InMemoryWordsRealm("example.com")
wordsRealm.createGroupOnRequest = True

checker = checkers.FilePasswordDB("passwords.txt")
portal = portal.Portal(wordsRealm, [checker])

reactor.listenTCP(6667, service.IRCFactory(wordsRealm, portal))
reactor.run()

InMemoryWordsRealm implements the IChatService interface, which describes adding users and groups
 (in our case, channels) to the service. As a Realm in the
 Twisted Cred sense, it produces instances of avatars—in this case, IRCUsers.
Setting createGroupOnRequest =
 True allows users to create new IRC channels on the fly.
To test this server, first create a passwords.txt file containing a
 few colon-delimited credentials. Then run:
python irc_server.py
and connect to the service locally with your favorite IRC client. Here, we’ll use the
 terminal-based irssi client and connect with the username
 jesstess and password pass, as specified in
 passwords.txt:
irssi -c localhost -p 6667 -n jesstess -w pass
Our echo bot can get in on the action, too! We can either configure our credentials
 checker to allow anonymous login, or give the bot a password. The latter is simplest for this
 demonstration—we can just add a password class variable
 alongside the nickname class variable and add those
 credentials to passwords.txt. Then we run the echo bot with
 python irc_echo_bot.py localhost 6667 twisted-bots to join the local
 #twisted-bots channel upon login.
Figures 12-1, 12-2, and 12-3 show some screenshots
 of the irssi IRC client and the echo bot interacting on the Twisted IRC
 server. Various basic commands, like /LIST and /WHOIS, work off the shelf, but we can also customize them by
 subclassing twisted.words.service.IRCUser and implementing
 the irc_* handler for the command. We’d then subclass twisted.words.service.IRCFactory to serve instances of our IRCUser protocol subclass.
[image: Connecting to the Twisted IRC server using irssi]

Figure 12-1. Connecting to the Twisted IRC server using irssi

[image: Talking with the echo bot in #twisted-bots]

Figure 12-2. Talking with the echo bot in #twisted-bots

[image: Issuing some basic commands against the Twisted IRC server]

Figure 12-3. Issuing some basic commands against the Twisted IRC
 server

Some examples of IRC commands implemented by IRCUser and
 its superclass twisted.words.protocols.irc.IRC are:
	irc_JOIN
	Join a set of channels.

	irc_LIST
	List the channels on a server.

	irc_MODE
	Set user and channel modes.

	irc_NAMES
	Request who is in a set of channels.

	irc_NICK
	Set your nickname.

	irc_OPER
	Authenticate as an IRC operator.

	irc_PART
	Leave a set of channels.

	irc_PASS
	Set a password.

	irc_PING
	Send a ping message.

	irc_PRIVMSG
	Send a private message.

	irc_QUIT
	Disconnect from the server.

	irc_TOPIC
	Set the topic for a channel.

	irc_USER
	Set your real name.

	irc_WHO
	Request a list of users matching a particular name.

	irc_WHOIS
	Request information about a set of nicknames.

More Practice and Next Steps

This chapter introduced the Twisted Words subproject through an example IRC client and
 server. Twisted Words was built to be a general and extensible multiprotocol chat framework.
 Primitive support exists for popular protocols like IRC, XMPP, and AOL Instant Messenger’s
 OSCAR, and it is also easy to add new protocols. The Twisted
 Words documentation has a short development guide and several examples, including
 XMPP and AOL Instant Messenger clients and a demo curses-based IRC
 client.
Wokkel, a third-party library built on top of
 Twisted Words, provides substantial enhancements to Twisted’s Jabber/XMPP protocol support.
 Twisted also has a mailing list dedicated to Twisted Jabber
 development.
Twisted Words is one of the less-developed Twisted subprojects, and there is consequently
 a lot of low-hanging fruit in this area for folks interested in contributing to Twisted. In
 particular, an expanded developer guide and more server examples would be welcome additions.
 See tickets with the “words” component in the Twisted bug tracker for open Twisted Words
 issues.

Chapter 13. Twisted Mail

Twisted comes with support for building clients and servers for the three big email
 protocols in common use today: SMTP, IMAP, and POP3.
Each of these protocols has a lot of components and is meticulously documented in multiple
 RFCs; covering the ins and outs of mail servers and clients could be a book in and of
 itself. The goal for this chapter is instead to give you broad-strokes familiarity with the
 protocols and the APIs Twisted provides for them, through some simple but runnable and
 tinker-friendly examples. By the end, you should have a good idea of what you’d need to do
 to build arbitrary email applications in Twisted.
To describe in brief the main uses for each of these protocols:
	SMTP
	SMTP, the Simple Mail Transfer Protocol, is for sending mail; when you send an e-mail from
 the Gmail web interface, your Thunderbird desktop app, or the mail app on your
 smartphone, that message is probably getting sent over SMTP.

	IMAP
	IMAP, the Internet Message Access Protocol, is used for remote access, storage, and management
 of email messages. Remote management makes it easy to read and send mail from
 more than one place. The fact that you see the same messages on your phone, web
 interface, and desktop app is probably because your email provider is using IMAP
 for remote management.

	POP3
	POP3, the Post Office Protocol version 3, is an older and simpler protocol than IMAP, but
 still prevalent. POP3 does one thing, and does it well: it allows a user to log
 into a mail server and download her messages, optionally deleting the copies on
 the server afterwards. If you’ve ever exported your Gmail mail, it was probably
 using POP3.

SMTP Clients and Servers

The standard protocol for sending mail on the Internet is the Simple Mail Transfer
 Protocol (SMTP). SMTP allows one computer to transfer email messages to another computer
 using a standard set of commands. Mail clients use SMTP to send outgoing messages, and
 mail servers use SMTP to forward messages to their final destination. The current
 specification for SMTP is defined in RFC 2821.
The SMTP Protocol

SMTP is a plain-text protocol. To get a feel for what the underlying Twisted protocol
 implementation is doing, we can talk the protocol to an SMTP server to forge emails!
To do this, we need to know the IP address or hostname of an SMTP server. You may know
 one from configuring your email setup at work or school. If not, as it happens,
 Google runs open SMTP servers, so we can look up and use one of them.
The nslookup command makes it
 easy to query domain name servers for a host or domain. In this case,
 we’d like to look up some mail exchange (MX) servers for google.com:
$ nslookup
> set type=MX
> google.com
Server:192.168.1.1
Address:192.168.1.1#53

Non-authoritative answer:
google.commail exchanger = 10 aspmx.l.google.com.
google.commail exchanger = 50 alt4.aspmx.l.google.com.
google.commail exchanger = 20 alt1.aspmx.l.google.com.
google.commail exchanger = 30 alt2.aspmx.l.google.com.
google.commail exchanger = 40 alt3.aspmx.l.google.com.
This query tells us that at the time of this writing,
 aspmx.l.google.com and friends are available mail servers.
 We can use telnet to connect to this server on port 25, the
 traditional SMTP port, and speak SMTP to forge an email from a secret admirer to a
 Gmail user:
$ telnet aspmx.l.google.com 25
Trying 74.125.131.27...
Connected to aspmx.l.google.com.
Escape character is '^]'.
220 mx.google.com ESMTP a4si49083129vdi.29
helo secretadmirer@example.com
250 mx.google.com at your service
mail from: <secretadmirer@example.com>
250 2.1.0 OK a4si49083129vdi.29
rcpt to: <twistedechobot@gmail.com>
250 2.1.5 OK a4si49083129vdi.29
data
354 Go ahead a4si49083129vdi.29
From: "Secret Admirer" <secretadmirer@example.com> Subject: Roses are red Violets are blue Twisted is helping Forge emails to you!.
250 2.0.0 OK 1357178694 a4si49083129vdi.29
The preceding interaction sends an email that appears to be from
 secretadmirer@example.com to
 twistedechobot@gmail.com. Go ahead and try it yourself—note
 that the email will almost certainly end up in the recipients’ spam box because it
 wasn’t sent with the authentication headers Gmail is expecting.
The fourth line of that transcript, 220 mx.google.com ESMTP
 a4si49083129vdi.29, shows that the SMTP server was talking to us over
 Extended SMTP (ESMTP), which most modern clients and servers use and which we’ll
 focus on in this chapter.

Sending Emails Using SMTP

The Twisted Mail equivalent of getPage from Chapter 3—the quick way to send an email—is twisted.mail.smtp.sendmail.
Example 13-1 shows the sendmail equivalent of sending the preceding email.
Example 13-1. Sending an email over SMTP with sendmail
import sys

from email.mime.text import MIMEText

from twisted.internet import reactor
from twisted.mail.smtp import sendmail
from twisted.python import log

log.startLogging(sys.stdout)

host = "aspmx.l.google.com"
sender = "secretadmirer@example.com"
recipients = ["twistedechobot@gmail.com"]

msg = MIMEText("""Violets are blue
Twisted is helping
Forge e-mails to you!
""")
msg["Subject"] = "Roses are red"
msg["From"] = '"Secret Admirer" <%s>' % (sender,)
msg["To"] = ", ".join(recipients)

deferred = sendmail(host, sender, recipients, msg.as_string(), port=25)
deferred.addBoth(lambda result: reactor.stop())

reactor.run()

The email is constructed using the Python standard library’s email module. sendmail spins up an
 instance of twisted.mail.smtp.SMTPSenderFactory
 under the hood, which sends the message to the specified SMTP host on port
 25.

SMTP Servers

Example 13-2 is a simple SMTP server that listens for SMTP clients on
 port 2500 and prints received messages to stdout.
 It will accept mail from any sender but will only process mail to
 recipients on localhost.
Example 13-2. localhost SMTP server, smtp_server.py
import sys

from email.Header import Header
from zope.interface import implements

from twisted.internet import defer, reactor
from twisted.mail import smtp
from twisted.python import log

class StdoutMessageDelivery(object):
 implements(smtp.IMessageDelivery)

 def __init__(self, protocol):
 self.protocol = protocol

 def receivedHeader(self, helo, origin, recipients):
 clientHostname, _ = helo
 myHostname = self.protocol.transport.getHost().host
 headerValue = "from %s by %s with ESMTP ; %s" % (
 clientHostname, myHostname, smtp.rfc822date())
 return "Received: %s" % Header(headerValue)

 def validateFrom(self, helo, origin):
 # Accept any sender.
 return origin

 def validateTo(self, user):
 # Accept recipients @localhost.
 if user.dest.domain == "localhost":
 return StdoutMessage
 else:
 log.msg("Received email for invalid recipient %s" % user)
 raise smtp.SMTPBadRcpt(user)

class StdoutMessage(object):
 implements(smtp.IMessage)

 def __init__(self):
 self.lines = []

 def lineReceived(self, line):
 self.lines.append(line)

 def eomReceived(self):
 print "New message received:"
 print "\n".join(self.lines)
 self.lines = None
 return defer.succeed(None)

class StdoutSMTPFactory(smtp.SMTPFactory):

 def buildProtocol(self, addr):
 proto = smtp.ESMTP()
 proto.delivery = StdoutMessageDelivery(proto)
 return proto

log.startLogging(sys.stdout)

reactor.listenTCP(2500, StdoutSMTPFactory())
reactor.run()

Run this example with python smtp_server.py. We can then tweak our
 sendmail client from Example 13-1 to interact with this localhost server. Just change the host
 to localhost, the recipient to a localhost
 user, and the port to 2500:
-host = "localhost"
+host = "aspmx.l.google.com"
 sender = "secretadmirer@example.com"
-recipients = ["recipient@localhost"]
+recipients = ["twistedechobot@gmail.com"]
-deferred = sendmail(host, sender, recipients, msg.as_string(), port=25)
+deferred = sendmail(host, sender, recipients, msg.as_string(), port=2500)
Then run the SMTP client and watch the server log the message to
 stdout:
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Receiving message for delivery:
 from=secretadmirer@example.com to=['recipient@localhost']
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] New message received:
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Received: from localhost by
 127.0.0.1 with ESMTP ; Sat, 05 Jan 2013 21:17:54 -0500
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Content-Type: text/plain;
 charset="us-ascii"
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] MIME-Version: 1.0
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Content-Transfer-Encoding: 7bit
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Subject: Roses are red
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] From: "Secret Admirer"
 <secretadmirer@example.com>
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] To: recipient@localhost
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1]
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Violets are blue
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Twisted is helping
2013-01-05 21:17:54-0500 [ESMTP,0,127.0.0.1] Forge emails to you!
The SMTP server has three main components:

	An SMTP protocol factory

	An implementor of smtp.IMessageDelivery, which describes how to process a
 message

	An implementor of smtp.IMessage,
 which describes what to do with a received message

Like all of the other protocol factories we’ve seen, StdoutSMTPFactory inherits from a base
 factory and implements buildProtocol,
 which returns an instance of the smtp.ESMTP protocol. The one detail you must
 set for SMTP is is the protocol’s delivery instance variable.
Our delivery class is StdoutMessageDelivery.
 Implementors of the IMessageDelivery interface
 must implement three methods: validateFrom, validateTo, and receivedHeader. validateFrom and validateTo restrict the sender and recipient allowed
 by the server. In our case we only accept messages destined for a user at
 localhost.
receivedHeader returns a Received
 header string: metadata required by the SMTP RFC to be added to the message headers
 for each SMTP server that processes a message. This allows us to trace the route a
 message took to get from its sender to us. We rely on email.Header from the Python standard library to format the header for
 us.

Storing Mail

We’ve got an SMTP server that can validate and accept mail, but it would be more useful
 if we could store that mail so we could access it in the future. To do this, we can
 revamp our SMTP server to write messages to disk in a popular mail storage format
 called Maildir.
Maildir structures each mail folder (e.g., Inbox, Trash) as a directory, and each
 message is its own file. Twisted comes with Maildir support.
We’ll still need the same three SMTP server components: an SMTP protocol factory and an
 implementor of smtp.IMessageDelivery, which will
 be almost unchanged, and an implementor of smtp.IMessage, which will be quite different since what we do with a
 received message is exactly what we’re changing. Example 13-3 shows this revised server.
Example 13-3. SMTP Maildir server
import os
import sys

from email.Header import Header
from zope.interface import implements

from twisted.internet import reactor
from twisted.mail import smtp, maildir
from twisted.python import log

class LocalMessageDelivery(object):
 implements(smtp.IMessageDelivery)

 def __init__(self, protocol, baseDir):
 self.protocol = protocol
 self.baseDir = baseDir

 def receivedHeader(self, helo, origin, recipients):
 clientHostname, clientIP = helo
 myHostname = self.protocol.transport.getHost().host
 headerValue = "from %s by %s with ESMTP ; %s" % (
 clientHostname, myHostname, smtp.rfc822date())
 return "Received: %s" % Header(headerValue)

 def validateFrom(self, helo, origin):
 # Accept any sender.
 return origin

 def _getAddressDir(self, address):
 return os.path.join(self.baseDir, "%s" % address)

 def validateTo(self, user):
 # Accept recipients @localhost.
 if user.dest.domain == "localhost":
 return lambda: MaildirMessage(
 self._getAddressDir(str(user.dest)))
 else:
 log.msg("Received email for invalid recipient %s" % user)
 raise smtp.SMTPBadRcpt(user)

class MaildirMessage(object):
 implements(smtp.IMessage)

 def __init__(self, userDir):
 if not os.path.exists(userDir):
 os.mkdir(userDir)
 inboxDir = os.path.join(userDir, 'Inbox')
 self.mailbox = maildir.MaildirMailbox(inboxDir)
 self.lines = []

 def lineReceived(self, line):
 self.lines.append(line)

 def eomReceived(self):
 print "New message received."
 self.lines.append('') # Add a trailing newline.
 messageData = '\n'.join(self.lines)
 return self.mailbox.appendMessage(messageData)

 def connectionLost(self):
 print "Connection lost unexpectedly!"
 # Unexpected loss of connection; don't save.
 del(self.lines)

class LocalSMTPFactory(smtp.SMTPFactory):
 def __init__(self, baseDir):
 self.baseDir = baseDir

 def buildProtocol(self, addr):
 proto = smtp.ESMTP()
 proto.delivery = LocalMessageDelivery(proto, self.baseDir)
 return proto

log.startLogging(sys.stdout)

reactor.listenTCP(2500, LocalSMTPFactory("/tmp/mail"))
reactor.run()

To test this Maildir-capable server, create a /tmp/mail or
 equivalent test directory, run the server, and re-run the
 sendmail client example. You should see log output
 like:
2013-01-05 21:39:23-0500 [ESMTP,0,127.0.0.1] New message received.
and the creation of a /tmp/mail/recipient@localhost/Inbox/
 directory containing cur, new, and
 tmp directories.
Inside new you’ll find a file like 1357439963.M1476850P45295Q2.localhost
 containing your message.
This SMTP client and server pair are a good starting point for
 experimenting with the Twisted Mail APIs and building up more
 full-fledged SMTP applications.

IMAP Clients and Servers

The Internet Message Access Protocol (IMAP) was designed to allow
 for remote access, storage, and management of email messages. This ability
 to store messages on a central server is useful for a couple of reasons.
 First, it makes email available in more than one place. If your mail is on
 an IMAP server, you can switch between your desktop and your laptop and
 still access your mail. Second, it makes it easier to administer email for
 workgroups and corporations. Instead of having to track and back up email
 across hundreds of hard drives, it can be managed in a single, central
 place.
The specification for the current version of IMAP (version 4, revision 1) is defined in
 RFC 3501. IMAP is
 a powerful but complicated protocol, and the RFC takes up more than 100 pages. It’s the
 kind of protocol that would be a ton of work to implement yourself. Fortunately, the
 Twisted developers have written a complete IMAP implementation, which provides a nice
 API for working with IMAP servers.
For a taste of working with IMAP, let’s write an IMAP server that can serve the Maildir
 messages gathered by the SMTP client we created earlier, and an IMAP client to retrieve
 them.
IMAP Servers

The goal of this book is to help you develop a fluency with Twisted’s primitives and not
 to torture you with the details of any specific protocol, so given IMAP’s
 complexity, we’ll stick with developing the absolute minimal viable IMAP server. It
 will know how to serve messages by sequence number and do basic Twisted Cred
 authentication.
First, take a few moments to think about what components our
 authenticating IMAP server will have based on what you know about
 writing Twisted servers in general, about writing mail servers
 particularly, and about authentication. You already know much of
 this!
First, we need a protocol—in this case, a subclass of imap4.IMAP4Server—and a protocol factory subclassing protocol.Factory. To authenticate, we’ll also need a
 Realm, a Portal, and a credentials checker.
To implement a minimal IMAP server we’ll need three more components:
	An implementor of imap4.IMessage, which represents a
 message.

	An implementor of imap4.IMailbox, which represents
 an individual mailbox. Users can check, add messages to, and expunge
 messages from their mailboxes. The mailbox must understand how a message is
 stored—in our case, in the Maildir format.

	An implementor of imap4.IAccount, which is the
 avatar—the business logic object in the Twisted Cred model. Through this
 mail account, users can manage and list their mailboxes.

Example 13-4 shows a minimal IMAP server implementation.
Example 13-4. IMAP Maildir server, imapserver.py
import email
import os
import random
from StringIO import StringIO
import sys
from zope.interface import implements

from twisted.cred import checkers, portal
from twisted.internet import protocol, reactor
from twisted.mail import imap4, maildir
from twisted.python import log

class IMAPUserAccount(object):
 implements(imap4.IAccount)

 def __init__(self, userDir):
 self.dir = userDir

 def _getMailbox(self, path):
 fullPath = os.path.join(self.dir, path)
 if not os.path.exists(fullPath):
 raise KeyError, "No such mailbox"
 return IMAPMailbox(fullPath)

 def listMailboxes(self, ref, wildcard):
 for box in os.listdir(self.dir):
 yield box, self._getMailbox(box)

 def select(self, path, rw=False):
 return self._getMailbox(path)

class ExtendedMaildir(maildir.MaildirMailbox):
 def __iter__(self):
 return iter(self.list)

 def __len__(self):
 return len(self.list)

 def __getitem__(self, i):
 return self.list[i]

class IMAPMailbox(object):
 implements(imap4.IMailbox)

 def __init__(self, path):
 self.maildir = ExtendedMaildir(path)
 self.listeners = []
 self.uniqueValidityIdentifier = random.randint(1000000, 9999999)

 def getHierarchicalDelimiter(self):
 return "."

 def getFlags(self):
 return []

 def getMessageCount(self):
 return len(self.maildir)

 def getRecentCount(self):
 return 0

 def isWriteable(self):
 return False

 def getUIDValidity(self):
 return self.uniqueValidityIdentifier

 def _seqMessageSetToSeqDict(self, messageSet):
 if not messageSet.last:
 messageSet.last = self.getMessageCount()

 seqMap = {}
 for messageNum in messageSet:
 if messageNum >= 0 and messageNum <= self.getMessageCount():
 seqMap[messageNum] = self.maildir[messageNum - 1]
 return seqMap

 def fetch(self, messages, uid):
 if uid:
 raise NotImplementedError(
 "This server only supports lookup by sequence number ")

 messagesToFetch = self._seqMessageSetToSeqDict(messages)
 for seq, filename in messagesToFetch.items():
 yield seq, MaildirMessage(file(filename).read())

 def addListener(self, listener):
 self.listeners.append(listener)

 def removeListener(self, listener):
 self.listeners.remove(listener)

class MaildirMessage(object):
 implements(imap4.IMessage)

 def __init__(self, messageData):
 self.message = email.message_from_string(messageData)

 def getHeaders(self, negate, *names):
 if not names:
 names = self.message.keys()

 headers = {}
 if negate:
 for header in self.message.keys():
 if header.upper() not in names:
 headers[header.lower()] = self.message.get(header, '')
 else:
 for name in names:
 headers[name.lower()] = self.message.get(name, '')

 return headers

 def getBodyFile(self):
 return StringIO(self.message.get_payload())

 def isMultipart(self):
 return self.message.is_multipart()

class MailUserRealm(object):
 implements(portal.IRealm)

 def __init__(self, baseDir):
 self.baseDir = baseDir

 def requestAvatar(self, avatarId, mind, *interfaces):
 if imap4.IAccount not in interfaces:
 raise NotImplementedError(
 "This realm only supports the imap4.IAccount interface.")

 userDir = os.path.join(self.baseDir, avatarId)
 avatar = IMAPUserAccount(userDir)
 return imap4.IAccount, avatar, lambda: None

class IMAPServerProtocol(imap4.IMAP4Server):
 def lineReceived(self, line):
 print "CLIENT:", line
 imap4.IMAP4Server.lineReceived(self, line)

 def sendLine(self, line):
 imap4.IMAP4Server.sendLine(self, line)
 print "SERVER:", line

class IMAPFactory(protocol.Factory):
 def __init__(self, portal):
 self.portal = portal

 def buildProtocol(self, addr):
 proto = IMAPServerProtocol()
 proto.portal = portal
 return proto

log.startLogging(sys.stdout)

dataDir = sys.argv[1]

portal = portal.Portal(MailUserRealm(dataDir))
checker = checkers.FilePasswordDB(os.path.join(dataDir, 'passwords.txt'))
portal.registerChecker(checker)

reactor.listenTCP(1430, IMAPFactory(portal))
reactor.run()

To run this example, first create some content by running the SMTP server and client
 from the previous section, which will log messages to
 /tmp/mail. Then create a
 /tmp/mail/passwords.txt file with colon-delimited
 plain-text credentials for the recipients of those messages, as in:
recipient@localhost:pass
Run python imapserver.py to start the IMAP server listening on port
 1430, authenticating based on the contents of
 /tmp/mail/passwords.txt, and serving messages out of
 /tmp/mail.
Next, we need an IMAP client to exercise this server.

IMAP Clients

Our minimal IMAP client will do the following:
	Connect to an IMAP server.

	List the mailboxes for the account.

	Select a mailbox to examine.

	Fetch all messages from that mailbox and print them to
 stdout.

	Disconnect from the server.

To keep things simple, we’ll only look for the Inbox mailbox.
 Example 13-5 implements this IMAP4 client task.
Example 13-5. IMAP client, imapclient.py
from twisted.internet import protocol, reactor
from twisted.mail import imap4

USERNAME = 'recipient@localhost'
PASSWORD = 'pass'

class IMAP4LocalClient(imap4.IMAP4Client):
 def connectionMade(self):
 self.login(USERNAME, PASSWORD).addCallbacks(
 self._getMessages, self._ebLogin)

 def connectionLost(self, reason):
 reactor.stop()

 def _ebLogin(self, result):
 print result
 self.transport.loseConnection()

 def _getMessages(self, result):
 return self.list("", "*").addCallback(self._cbPickMailbox)

 def _cbPickMailbox(self, result):
 mbox = filter(lambda x: "Inbox" in x[2], result)[0][2]
 return self.select(mbox).addCallback(self._cbExamineMbox)

 def _cbExamineMbox(self, result):
 return self.fetchMessage('1:*', uid=False).addCallback(
 self._cbFetchMessages)

 def _cbFetchMessages(self, result):
 for seq, message in result.iteritems():
 print seq, message["RFC822"]

 return self.logout()

class IMAP4ClientFactory(protocol.ClientFactory):
 def buildProtocol(self, addr):
 return IMAP4LocalClient()

 def clientConnectionFailed(self, connector, reason):
 print reason
 reactor.stop()

reactor.connectTCP("localhost", 1430, IMAP4ClientFactory())
reactor.run()

Most of the IMAP queries are potentially expensive and thus return
 a Deferred to which we attach
 callbacks to handle the result. The bulk of the work is done for us by
 imap4.IMAP4Client’s list, select, and fetchMessage methods.
With the IMAP server running, run the client to retrieve and print out all stored
 messages for recipient@localhost using the password
 pass. A server transcript might look like this:
$ python imapserver.py /tmp/mail
2013-01-09 09:29:31-0500 [-] Log opened.
2013-01-09 09:29:31-0500 [-] IMAPFactory starting on 1430
2013-01-09 09:29:31-0500 [-] Starting factory <__main__.IMAPFactory instance at
 0x101706ab8>
2013-01-09 09:29:34-0500 [__main__.IMAPFactory] SERVER: * OK [CAPABILITY
 IMAP4rev1 IDLE NAMESPACE] Twisted IMAP4rev1 Ready
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] CLIENT: 0001
 CAPABILITY
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: * CAPABILITY
 IMAP4rev1 IDLE NAMESPACE
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: 0001 OK
 CAPABILITY completed
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] CLIENT: 0002 LOGIN
 "recipient@localhost" "pass"
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: 0002 OK LOGIN
 succeeded
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] CLIENT: 0003 LIST ""
 "*"
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: * LIST () "."
 "Inbox"
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: 0003 OK LIST
 completed
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] CLIENT: 0004 SELECT
 Inbox
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: * 1 EXISTS
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: * 0 RECENT
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: * FLAGS ()
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: * OK
 [UIDVALIDITY 2612314]
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: 0004 OK
 [READ-ONLY] SELECT successful
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] CLIENT: 0005 FETCH 1:*
 (RFC822)
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: 0005 OK FETCH
 completed
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] CLIENT: 0006 LOGOUT
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: * BYE Nice
 talking to you
2013-01-09 09:29:34-0500 [IMAPServerProtocol,0,127.0.0.1] SERVER: 0006 OK LOGOUT
 successful
A client transcript might look like this:
$ python imapclient.py
1 Received: from localhost by 127.0.0.1 with ESMTP ; Wed, 09 Jan 2013 09:29:26
From: "Secret Admirer" <secretadmirer@example.com>
Content-Transfer-Encoding: 7bit
To: recipient@localhost
Mime-Version: 1.0
Content-Type: text/plain; charset="us-ascii"
Subject: Roses are red

Violets are blue
Twisted is helping
Forge emails to you!

POP3 Clients and Servers

The POP3 specification is defined in RFC 1939.
For a taste of working with POP3, let’s write a POP3 server that can serve the Maildir
 messages gathered by the SMTP client we created earlier, and a POP3 client to retrieve
 them.
POP3 Servers

A Twisted POP3 server will be structurally very similar to the
 IMAP server from the previous section. Twisted’s maildir implementation actually uses POP3
 mailbox semantics, so we have to write even less custom mailbox
 logic.
As with IMAP, we’ll first need a protocol: in this case, a subclass of
 twisted.mail.pop3.POP3. We’ll also need a protocol factory
 subclassing protocol.Factory and building
 instances of our POP3 protocol. We can steal wholesale the Realm, Portal, and
 credentials checker from the IMAP server for authentication, thanks to Twisted Cred
 helping us keep our authentication logic decoupled from the business logic.
Example 13-6 shows a minimal POP3 server that serves mail out of the /tmp/mail
 maildir directory structure we
 constructed with the SMTP server example.
Example 13-6. localhost POP3 server, pop3server.py
import os
import sys
from zope.interface import implements

from twisted.cred import checkers, portal
from twisted.internet import protocol, reactor
from twisted.mail import maildir, pop3
from twisted.python import log

class UserInbox(maildir.MaildirMailbox):
 def __init__(self, userDir):
 inboxDir = os.path.join(userDir, 'Inbox')
 maildir.MaildirMailbox.__init__(self, inboxDir)

class POP3ServerProtocol(pop3.POP3):
 def lineReceived(self, line):
 print "CLIENT:", line
 pop3.POP3.lineReceived(self, line)

 def sendLine(self, line):
 print "SERVER:", line
 pop3.POP3.sendLine(self, line)

class POP3Factory(protocol.Factory):
 def __init__(self, portal):
 self.portal = portal

 def buildProtocol(self, address):
 proto = POP3ServerProtocol()
 proto.portal = self.portal
 return proto

class MailUserRealm(object):
 implements(portal.IRealm)

 def __init__(self, baseDir):
 self.baseDir = baseDir

 def requestAvatar(self, avatarId, mind, *interfaces):
 if pop3.IMailbox not in interfaces:
 raise NotImplementedError(
 "This realm only supports the pop3.IMailbox interface.")

 userDir = os.path.join(self.baseDir, avatarId)
 avatar = UserInbox(userDir)
 return pop3.IMailbox, avatar, lambda: None

log.startLogging(sys.stdout)

dataDir = sys.argv[1]

portal = portal.Portal(MailUserRealm(dataDir))
checker = checkers.FilePasswordDB(os.path.join(dataDir, 'passwords.txt'))
portal.registerChecker(checker)

reactor.listenTCP(1100, POP3Factory(portal))
reactor.run()

As before, to run this example, first create some content by running the SMTP server and
 client from the beginning of this chapter, which will log messages to
 /tmp/mail. Then create a
 /tmp/mail/passwords.txt file with colon-delimited,
 plain-text credentials for the recipients of those messages, for example:
recipient@localhost:pass
Run python pop3server.py to start the POP3 server listening on port
 1100, authenticating based on the contents of
 /tmp/mail/passwords.txt, and serving messages out of
 /tmp/mail.
Next, we need a POP3 client to exercise this server. Example 13-7 demonstrates a client
 that will:
	Connect to a POP3 server.

	Get the sizes for the messages in the Inbox.

	Retrieve each message and print it to
 stdout.

	Disconnect from the server.

Example 13-7. POP3 client
from twisted.mail import pop3client
from twisted.internet import reactor, protocol, defer
from cStringIO import StringIO
import email

USERNAME = 'recipient@localhost'
PASSWORD = 'pass'

class POP3LocalClient(pop3client.POP3Client):
 def serverGreeting(self, greeting):
 pop3client.POP3Client.serverGreeting(self, greeting)
 login = self.login(USERNAME, PASSWORD).addCallbacks(
 self._loggedIn, self._ebLogin)

 def connectionLost(self, reason):
 reactor.stop()

 def _loggedIn(self, result):
 return self.listSize().addCallback(self._gotMessageSizes)

 def _ebLogin(self, result):
 print result
 self.transport.loseConnection()

 def _gotMessageSizes(self, sizes):
 retrievers = []
 for i in range(len(sizes)):
 retrievers.append(self.retrieve(i).addCallback(
 self._gotMessageLines))
 return defer.DeferredList(retrievers).addCallback(
 self._finished)

 def _gotMessageLines(self, messageLines):
 for line in messageLines:
 print line

 def _finished(self, downloadResults):
 return self.quit()

class POP3ClientFactory(protocol.ClientFactory):
 def buildProtocol(self, addr):
 return POP3LocalClient()

 def clientConnectionFailed(self, connector, reason):
 print reason
 reactor.stop()

reactor.connectTCP("localhost", 1100, POP3ClientFactory())
reactor.run()

The bulk of the work is done for us by twisted.mail.pop3client’s listSize and retrieve methods. Both return Deferreds to which we attach callbacks to
 handle the results.
With the POP3 server running, run this client to retrieve and print out all stored
 messages for recipient@localhost using the password
 pass. A server transcript might look like this:
$ python pop3server.py /tmp/mail
2013-01-17 21:53:10-0500 [-] Log opened.
2013-01-17 21:53:10-0500 [-] POP3Factory starting on 1100
2013-01-17 21:53:10-0500 [-] Starting factory <__main__.POP3Factory instance
 at 0x10eaba3f8>
2013-01-17 21:53:11-0500 [__main__.POP3Factory] New connection from
 IPv4Address(TCP, '127.0.0.1', 49508)
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] CLIENT: CAPA
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: TOP
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: USER
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: UIDL
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: PIPELINE
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: CELERITY
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: AUSPEX
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: POTENCE
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: .
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] CLIENT: APOP
 recipient@localhost a0f3b61fb00f2473305886aec84ce358
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] Authenticated
 login for recipient@localhost
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] CLIENT: LIST
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] CLIENT: RETR 1
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] SERVER: .
2013-01-17 21:53:11-0500 [POP3ServerProtocol,0,127.0.0.1] CLIENT: QUIT

More Practice and Next Steps

This chapter introduced the Twisted Mail subprojects through simple
 but runnable SMTP, IMAP, and POP3 clients and servers.
The Twisted Mail HOWTO
 has an in-depth tutorial for building an SMTP client that can forward messages to a mail
 exchange server for delivery.
The Twisted Mail examples directory has a
 collection of example clients and servers, including an authenticating SMTP client that
 communicates using Transport Layer Security (TLS).

Chapter 14. SSH

 SSH, the Secure SHell, is an essential tool for many
 developers and administrators. SSH provides a way to establish encrypted, authenticated
 connections. The most common use of an SSH connection is to get a remote shell, but it’s
 possible to do many other things through SSH as well, including transferring files and tunneling
 other connections.

 The twisted.conch package adds SSH support to Twisted. This
 chapter shows how you can use the modules in twisted.conch to
 build SSH servers and clients.

SSH Servers

 The command line is an incredibly efficient interface for certain tasks. System administrators
 love the ability to manage applications by typing commands without having to click through a
 graphical user interface. An SSH shell is even better, as it’s accessible from anywhere on the
 Internet.

 You can use twisted.conch to create an SSH server that
 provides access to a custom shell with commands you define. This shell will even support some
 extra features, like command history, so that you can scroll through the commands you’ve
 already typed.
A Basic SSH Server

	To write an SSH server, implement a subclass of twisted.conch.recvline.HistoricRecvLine that implements your shell
	protocol. HistoricRecvLine is similar to twisted.protocols.basic.LineReceiver, but with higher-level
	features for controlling the terminal.

	To make your shell available through SSH, you need to implement a few different classes that
	twisted.conch needs to build an SSH server. First, you
	need the twisted.cred authentication classes: a portal,
	credentials checkers, and a realm that returns avatars. Use twisted.conch.avatar.ConchUser as the base class for your
	avatar. Your avatar class should also implement twisted.conch.interfaces.ISession, which includes an openShell method in which you create a Protocol to manage the user’s interactive session. Finally, create
	a twisted.conch.ssh.factory.SSHFactory object and set its
	portal attribute to an instance of your portal.

 Example 14-1 demonstrates a custom SSH server that authenticates
 users by their username and password. It gives each user a shell that provides several
 commands.
To test this example, you’ll need to generate a public key with an empty passphrase. The
 OpenSSH SSH implementation that comes with most Linux distributions
 and Mac OS X includes a command-line utility called ssh-keygen that you can use to generate a new private/public key pair:

 $ ssh-keygen -t rsa
 Generating public/private rsa key pair.
 Enter file in which to save the key (/home/jesstess/.ssh/id_rsa):
 Enter passphrase (empty for no passphrase):
 Enter same passphrase again:
 Your identification has been saved in /home/jesstess/.ssh/id_rsa.
 Your public key has been saved in /home/jesstess/.ssh/id_rsa.pub.
 The key fingerprint is:
 6b:13:3a:6e:c3:76:50:c7:39:c2:e0:8b:06:68:b4:11 jesstess@kid-charlemagne
Tip
 Windows users that have installed Git Bash can also use
 ssh-keygen. You can also generate keys with PuTTYgen, which is
 distributed along with the popular free PuTTY SSH
 client.

Example 14-1. sshserver.py
from twisted.conch import avatar, recvline
from twisted.conch.interfaces import IConchUser, ISession
from twisted.conch.ssh import factory, keys, session
from twisted.conch.insults import insults
from twisted.cred import portal, checkers
from twisted.internet import reactor
from zope.interface import implements

class SSHDemoProtocol(recvline.HistoricRecvLine):
 def __init__(self, user):
 self.user = user

 def connectionMade(self):
 recvline.HistoricRecvLine.connectionMade(self)
 self.terminal.write("Welcome to my test SSH server.")
 self.terminal.nextLine()
 self.do_help()
 self.showPrompt()

 def showPrompt(self):
 self.terminal.write("$ ")

 def getCommandFunc(self, cmd):
 return getattr(self, 'do_' + cmd, None)

 def lineReceived(self, line):
 line = line.strip()
 if line:
 cmdAndArgs = line.split()
 cmd = cmdAndArgs[0]
 args = cmdAndArgs[1:]
 func = self.getCommandFunc(cmd)
 if func:
 try:
 func(*args)
 except Exception, e:
 self.terminal.write("Error: %s" % e)
 self.terminal.nextLine()
 else:
 self.terminal.write("No such command.")
 self.terminal.nextLine()
 self.showPrompt()

 def do_help(self):
 publicMethods = filter(
 lambda funcname: funcname.startswith('do_'), dir(self))
 commands = [cmd.replace('do_', '', 1) for cmd in publicMethods]
 self.terminal.write("Commands: " + " ".join(commands))
 self.terminal.nextLine()

 def do_echo(self, *args):
 self.terminal.write(" ".join(args))
 self.terminal.nextLine()

 def do_whoami(self):
 self.terminal.write(self.user.username)
 self.terminal.nextLine()

 def do_quit(self):
 self.terminal.write("Thanks for playing!")
 self.terminal.nextLine()
 self.terminal.loseConnection()

 def do_clear(self):
 self.terminal.reset()

class SSHDemoAvatar(avatar.ConchUser):
 implements(ISession)

 def __init__(self, username):
 avatar.ConchUser.__init__(self)
 self.username = username
 self.channelLookup.update({'session': session.SSHSession})

 def openShell(self, protocol):
 serverProtocol = insults.ServerProtocol(SSHDemoProtocol, self)
 serverProtocol.makeConnection(protocol)
 protocol.makeConnection(session.wrapProtocol(serverProtocol))

 def getPty(self, terminal, windowSize, attrs):
 return None

 def execCommand(self, protocol, cmd):
 raise NotImplementedError()

 def closed(self):
 pass

class SSHDemoRealm(object):
 implements(portal.IRealm)

 def requestAvatar(self, avatarId, mind, *interfaces):
 if IConchUser in interfaces:
 return interfaces[0], SSHDemoAvatar(avatarId), lambda: None
 else:
 raise NotImplementedError("No supported interfaces found.")

def getRSAKeys():
 with open('id_rsa') as privateBlobFile:
 privateBlob = privateBlobFile.read()
 privateKey = keys.Key.fromString(data=privateBlob)

 with open('id_rsa.pub') as publicBlobFile:
 publicBlob = publicBlobFile.read()
 publicKey = keys.Key.fromString(data=publicBlob)

 return publicKey, privateKey

if __name__ == "__main__":
 sshFactory = factory.SSHFactory()
 sshFactory.portal = portal.Portal(SSHDemoRealm())

 users = {'admin': 'aaa', 'guest': 'bbb'}
 sshFactory.portal.registerChecker(
 checkers.InMemoryUsernamePasswordDatabaseDontUse(**users))

 pubKey, privKey = getRSAKeys()
 sshFactory.publicKeys = {'ssh-rsa': pubKey}
 sshFactory.privateKeys = {'ssh-rsa': privKey}

 reactor.listenTCP(2222, sshFactory)
 reactor.run()

 sshserver.py will run an SSH server on port 2222.
 Connect to this server with an SSH client using the username admin and
 password aaa, and try typing some commands:
$ ssh admin@localhost -p 2222
admin@localhost's password: aaa
>>> Welcome to my test SSH server.
Commands: clear echo help quit whoami
$ whoami
admin
$ echo hello SSH world!
hello SSH world!
$ quit
Connection to localhost closed.
Tip

	 If you’ve already been using an SSH server on your local machine, you might get an error
	 when you try to connect to the server in this example. You’ll get a message saying
	 something like “Remote host identification has changed” or “Host key verification failed,”
	 and your SSH client will refuse to connect.
	
 The reason you get this error message is that your SSH client is remembering the
 public key used by your regular localhost SSH server. The server in
 Example 14-1 has its own key, and when the client sees that
 the keys are different, it gets suspicious that this new server may be an impostor
 pretending to be your regular localhost SSH server. To fix this
 problem, edit your ~/.ssh/known_hosts file (or
 wherever your SSH client keeps its list of recognized servers) and remove the
 localhost entry.

 The SSHDemoProtocol class in Example 14-1 inherits from twisted.conch.recvline.HistoricRecvline. HistoricRecvLine is a protocol with built-in features for building command-line
 shells. It gives your shell features that most people take for granted in a modern shell,
 including backspacing, the ability to use the arrow keys to move the cursor forwards and
 backwards on the current line, and a command history that can be accessed using the up and
 down arrows key. twisted.conch.recvline also provides a
 plain RecvLine class that works the same way, but without
 the command history.
 The lineReceived method in HistoricRecvLine is called whenever a user enters a line. Example 14-1 shows how you might override this method to parse and
 execute commands. There are a couple of differences between HistoricRecvLine and a regular Protocol,
 which come from the fact that with HistoricRecvLine
 you’re actually manipulating the current contents of a user’s terminal window, rather than
 just printing out text. To print a line of output, use self.terminal.write; to go to the next line, use self.nextLine.
 The twisted.conch.avatar.ConchUser class represents
 the actions available to an authenticated SSH user. By default, ConchUser doesn’t allow the client to do anything. To make it possible for the
 user to get a shell, make the user’s avatar implement twisted.conch.interfaces.ISession. The SSHDemoAvatar class in Example 14-1 doesn’t
 actually implement all of ISession; it only implements
 enough for the user to get a shell.
The openShell method is called with a
 twisted.conch.ssh.session.SSHSessionProcessProtocol object that
 represents the encrypted client’s end of the encrypted channel. You have to perform a few
 steps to connect the client’s protocol to your shell protocol so they can communicate with
 each other:
	
	 Wrap your protocol class in a twisted.conch.insults.insults.ServerProtocol object.
	 You can pass extra arguments to insults.ServerProtocol,
	 and it will use them to initialize your protocol object.
	

	 This sets up your protocol to use a virtual terminal.
	

	
	 Use makeConnection to connect the two protocols to each
	 other.
	
 The client’s protocol actually expects makeConnection to
 be called with an object implementing the lower-level twisted.internet.interfaces.ITransport interface, not a Protocol; the twisted.conch.session.wrapProtocol function wraps a Protocol in a minimal ITransport interface.

Tip
 The library traditionally used for manipulating a Unix terminal is called curses. The Twisted developers, never willing to pass up the
 chance to use a pun in a module name, therefore chose the name insults for this library of classes for terminal programming.

 To make a realm for your SSH server, create a class that has a requestAvatar method. The SSH server will call requestAvatar with the username as avatarId
 and twisted.conch.interfaces.IAvatar as one of the
 interfaces. Return your subclass of twisted.conch.avatar.ConchUser.
 To run the SSH server, create a twisted.conch.ssh.factory.SSHFactory object. Set its portal attribute to a portal using your realm, and register a credentials
 checker that can handle twisted.cred.credentials.IUsernamePassword credentials. Set the SSHFactory’s publicKeys
 attribute to a dictionary that matches encryption algorithms to keys.
 Once the SSHFactory has the keys, it’s ready to go.
 Call reactor.listenTCP to have it start listening on a
 port, and you’ve got an SSH server.

Using Public Keys for Authentication

 The SSH server in Example 14-1 used usernames and passwords
 for authentication. But heavy SSH users will tell you that one of the nicest features of SSH
 is its support for key-based authentication. With key-based authentication, the server is
 given a copy of a user’s public key. When the user tries to log in, the server asks her to
 prove her identity by signing some data with her private key. The server then checks the
 signed data against its copy of the user’s public key.
 In practice, using public keys for authentication is nice because it saves the user from
 having to manage a lot of passwords. A user can use the same key for multiple servers. She can
 choose to password-protect her key for extra security, or she can use a key with no password
 for a completely transparent login process.
 To change the Twisted Cred backend for Example 14-1 to use
 public key authentication, store a public key for each user and write a credentials checker
 that accepts credentials implementing twisted.conch.credentials.ISSHPrivateKey. Verify the users’ credentials by
 checking to make sure that their public keys match the keys you have stored and that their
 signatures prove that the users possess the matching private keys. Example 14-2 implements this checker.
Example 14-2. pubkeyssh.py
from sshserver import SSHDemoRealm, getRSAKeys
from twisted.conch import error
from twisted.conch.ssh import keys, factory
from twisted.cred import checkers, credentials, portal
from twisted.internet import reactor
from twisted.python import failure
from zope.interface import implements
import base64

class PublicKeyCredentialsChecker(object):
 implements(checkers.ICredentialsChecker)
 credentialInterfaces = (credentials.ISSHPrivateKey,)

 def __init__(self, authorizedKeys):
 self.authorizedKeys = authorizedKeys

 def requestAvatarId(self, credentials):
 userKeyString = self.authorizedKeys.get(credentials.username)
 if not userKeyString:
 return failure.Failure(error.ConchError("No such user"))

 # Remove the 'ssh-rsa' type before decoding.
 if credentials.blob != base64.decodestring(
 userKeyString.split(" ")[1]):
 raise failure.failure(
 error.ConchError("I don't recognize that key"))

 if not credentials.signature:
 return failure.Failure(error.ValidPublicKey())

 userKey = keys.Key.fromString(data=userKeyString)
 if userKey.verify(credentials.signature, credentials.sigData):
 return credentials.username
 else:
 print "signature check failed"
 return failure.Failure(
 error.ConchError("Incorrect signature"))

sshFactory = factory.SSHFactory()
sshFactory.portal = portal.Portal(SSHDemoRealm())

The server's keys.
pubKey, privKey = getRSAKeys()
sshFactory.publicKeys = {"ssh-rsa": pubKey}
sshFactory.privateKeys = {"ssh-rsa": privKey}

Authorized client keys.
authorizedKeys = {
 "admin": "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAgQC2HXjFquK08rpEQC\
xLu/f4btDQ/2r3qRImVV/daKfQDu6QVm2P0BQ91Svyg60/VKxASqA1/PeN8Q0jSrdKcA\
By9OKfkD2BCUk9gL0wCAfm8E5lNSbH54WY8l1XaUbQr+KitN1GSY/MgBvzqm5m7EdIHJ\
juX+54j4i0EEey46qJaQ=="
 }
sshFactory.portal.registerChecker(
 PublicKeyCredentialsChecker(authorizedKeys))

reactor.listenTCP(2222, sshFactory)
reactor.run()

To test this example, you’ll need to generate a public key pair for the SSH client to use,
 if you don’t have one already. You can generate a key using the same command from the previous
 example. Once you’ve generated a key, you can get the public key from the file ~/.ssh/id_rsa.pub. Edit Example 14-2
 to use your public key for the admin user in the
 authorizedKeys dictionary. Then run pubkeyssh.py to start the server on port 2222. You should log right in without
 being prompted for a password:
 $ ssh admin@localhost -p 2222

 >>> Welcome to my test SSH server.
 Commands: clear echo help quit whoami
 $

 If you try to log in as a user who doesn’t possess the matching private key, you’ll be denied
 access:

 $ ssh bob@localhost -p 2222
 Permission denied (publickey).

 Example 14-2 reuses most of the SSH server classes from Example 14-1. To support public key authentication, it uses a new
 credentials checker class named PublicKeyCredentialsChecker. PublicKeyCredentialsChecker accepts credentials implementing ISSHPrivateKey, which have the attributes username, blob, signature, and sigData. To verify the key,
 PublicKeyCredentialsChecker goes through three tests.
 First, it makes sure it has a public key on file for credentials.username. Next, it verifies that the public key provided in blob matches the public key it has on file for that user.
 It’s possible that the user may have provided just the public key at this point, but not
 a signed token. If the public key was valid but no signature was provided, PublicKeyCredentialsChecker.requestAvatar raises the special
 exception twisted.conch.error.ValidPublicKey. The SSH
 server will understand the meaning of this exception and ask the client for the missing
 signature.

 Finally, we use the key’s verify method to check whether
 the data in the signature really is the data in sigData
 signed with the user’s private key. If verify returns
 True, authentication is successful and
 requestAvatarId returns username as the
 avatar ID.

Tip

	You can support both username/password and key-based authentication in an SSH
 server. Just register both credentials checkers with your portal.

Providing an Administrative Python Shell

 Example 14-1 demonstrated how to provide an interactive shell
 through SSH. That example implemented its own language with a small set of commands. But
 there’s another kind of shell that you can run over SSH: the same interactive Python prompt
 you know and love from the command line.
 The twisted.conch.manhole and twisted.conch.manhole_ssh modules have classes designed to provide a remote
 interactive Python shell inside your running server. Example 14-3
 demonstrates a web server that can be modified on the fly using SSH and twisted.conch.manhole.
Example 14-3. manholeserver.py
from twisted.internet import reactor
from twisted.web import server, resource
from twisted.cred import portal, checkers
from twisted.conch import manhole, manhole_ssh

class LinksPage(resource.Resource):
 isLeaf = 1

 def __init__(self, links):
 resource.Resource.__init__(self)
 self.links = links

 def render(self, request):
 return "" + "".join([
 "%s" % (link, title)
 for title, link in self.links.items()]) + ""

links = {'Twisted': 'http://twistedmatrix.com/',
 'Python': 'http://python.org'}
site = server.Site(LinksPage(links))
reactor.listenTCP(8000, site)

def getManholeFactory(namespace, **passwords):
 realm = manhole_ssh.TerminalRealm()
 def getManhole(_): return manhole.Manhole(namespace)
 realm.chainedProtocolFactory.protocolFactory = getManhole
 p = portal.Portal(realm)
 p.registerChecker(
 checkers.InMemoryUsernamePasswordDatabaseDontUse(**passwords))
 f = manhole_ssh.ConchFactory(p)
 return f

reactor.listenTCP(2222, getManholeFactory(globals(), admin='aaa'))
reactor.run()

	manholeserver.py will start up a web server on port
	8000 and an SSH server on port 2222. Figure 14-1 shows what the home page looks like when the server starts.

[image: The default manholeserver.py web page]

Figure 14-1. The default manholeserver.py web page

	Now log in using SSH. You’ll get a Python prompt, with full access to all the objects in the
	server. Try modifying the links dictionary:

$ ssh admin@localhost -p 2222
admin@localhost's password: aaa
>>> dir()
 ['LinksPage', '__builtins__', '__doc__', '__file__', '__name__', 'checkers',
 'getManholeFactory', 'links', 'manhole', 'manhole_ssh', 'portal', 'reactor',
 'resource', 'server', 'site']
 >>> links
 {'Python': 'http://python.org', 'Twisted': 'http://twistedmatrix.com/'}
 >>> links["Django"] = "http://djangoproject.com"
 >>> links["O'Reilly"] = "http://oreilly.com"
 >>> links
 {'Python': 'http://python.org', "O'Reilly": 'http://oreilly.com', 'Twisted':
'http://twistedmatrix.com/', 'Django': 'www.djangoproject.com'}
 >>>
 Then refresh the home page of the web server. Figure 14-2
 shows how your changes will be reflected on the website.
[image: Modified manholeserver.py web page]

Figure 14-2. Modified manholeserver.py web page

 Example 14-3 defines a function called getManholeFactory that makes running a manhole SSH server trivially
 easy. getManholeFactory takes an argument called namespace, which is a dictionary defining which Python objects to
 make available, and then a number of keyword arguments representing usernames and
 passwords. It constructs a manhole_ssh.TerminalRealm and
 sets its chainedProtocolFactory.protocolFactory attribute
 to an anonymous function that returns manhole.Manhole
 objects for the requested namespace. It then sets up a portal using the realm and a dictionary
 of usernames and passwords, attaches the portal to a manhole_ssh.ConchFactory, and returns the factory.

 Note that passing a dictionary of Python objects as namespace is strictly for convenience (to limit the set of objects the user has
 to look through). It is not a security mechanism. Only administrative
 users should have permission to use the manhole server.

 Example 14-3 creates a manhole factory using the built-in globals function, which returns a dictionary of all the objects in
 the current global namespace. When you log in through SSH, you can see all the global objects
 in manholeserver.py, including the
 links dictionary. Because this dictionary is also used to generate the
 home page of the website, any changes you make through SSH are instantly reflected on the Web.
Tip
 The manhole_ssh.ConchFactory class includes
 its own default public/private key pair. For your own projects, however, you shouldn’t rely
 on these built-in keys. Instead, generate your own and set the publicKeys and privateKeys attributes of the ConchFactory.
 See Example 14-1, earlier in this chapter, for an example of how
 to do this.

Running Commands on a Remote Server

 You can use twisted.conch to communicate with a server
 using SSH: logging in, executing commands, and capturing the output.

SSH Clients

 There are several classes that work together to make up a twisted.conch.ssh SSH client. The transport.SSHClientTransport class sets up the connection and verifies the
 identity of the server. The userauth.SSHUserAuthClient
 class logs in using your authentication credentials. The connection.SSHConnection class takes over once you’ve logged in and creates one
 or more channel.SSHChannel objects, which you then use to
 communicate with the server over a secure channel. Example 14-4 shows how you can use these classes to make an SSH client that logs
 into a server, runs a command, and prints the output.
Example 14-4. sshclient.py
from twisted.conch.ssh import transport, connection, userauth, channel, common
from twisted.internet import defer, protocol, reactor
import sys, getpass

class ClientCommandTransport(transport.SSHClientTransport):
 def __init__(self, username, password, command):
 self.username = username
 self.password = password
 self.command = command

 def verifyHostKey(self, pubKey, fingerprint):
 # in a real app, you should verify that the fingerprint matches
 # the one you expected to get from this server
 return defer.succeed(True)

 def connectionSecure(self):
 self.requestService(
 PasswordAuth(self.username, self.password,
 ClientConnection(self.command)))

class PasswordAuth(userauth.SSHUserAuthClient):
 def __init__(self, user, password, connection):
 userauth.SSHUserAuthClient.__init__(self, user, connection)
 self.password = password

 def getPassword(self, prompt=None):
 return defer.succeed(self.password)

class ClientConnection(connection.SSHConnection):
 def __init__(self, cmd, *args, **kwargs):
 connection.SSHConnection.__init__(self)
 self.command = cmd

 def serviceStarted(self):
 self.openChannel(CommandChannel(self.command, conn=self))

class CommandChannel(channel.SSHChannel):
 name = 'session'

 def __init__(self, command, *args, **kwargs):
 channel.SSHChannel.__init__(self, *args, **kwargs)
 self.command = command

 def channelOpen(self, data):
 self.conn.sendRequest(
 self, 'exec', common.NS(self.command), wantReply=True).addCallback(
 self._gotResponse)

 def _gotResponse(self, _):
 self.conn.sendEOF(self)

 def dataReceived(self, data):
 print data

 def closed(self):
 reactor.stop()

class ClientCommandFactory(protocol.ClientFactory):
 def __init__(self, username, password, command):
 self.username = username
 self.password = password
 self.command = command

 def buildProtocol(self, addr):
 protocol = ClientCommandTransport(
 self.username, self.password, self.command)
 return protocol

server = sys.argv[1]
command = sys.argv[2]
username = raw_input("Username: ")
password = getpass.getpass("Password: ")
factory = ClientCommandFactory(username, password, command)
reactor.connectTCP(server, 22, factory)
reactor.run()

	Run sshclient.py with two arguments: a hostname and a
	command. It will ask for your username and password, log into the server, execute the
	command, and print the output. For example, you could run the who command to get a list of who’s currently logged in to the
	server:

 $ python sshclient.py myserver.example.com who
 Username: jesstess
 Password: password
 root pts/0 Jun 11 21:35 (192.168.0.13)
 phil pts/2 Jun 22 13:58 (192.168.0.1)
 phil pts/3 Jun 22 13:58 (192.168.0.1)
 The ClientCommandTransport class in Example 14-4 handles the initial connection to the SSH server. Its
 verifyHostKey method checks to make sure the server’s
 public key matches your expectations. Typically, you’d remember each server the first time
 you connected and then check on subsequent connections to make sure that another server
 wasn’t maliciously trying to pass itself off as the server you expected. Here, it just
 returns a True value without bothering to check the key.

 The connectionSecure method is called as soon as the
 initial encrypted connection has been established. This is the appropriate time to send your
 login credentials, by passing a userauth.SSHUserAuthClient
 to self.requestService, along with a connection.SSHConnection object that should manage the connection
 after authentication succeeds.

 The PasswordAuth class inherits from userauth.SSHUserAuthClient. It has to implement only a single
 method, getPassword, which returns the password it will
 use to log in. If you wanted to use public key authentication, you’d implement the methods
 getPublicKey and getPrivateKey instead, returning the appropriate key as a string in each case.
 The ClientConnection class in Example 14-4 will have its serviceStarted method called as soon as the client has
 successfully logged in. It calls self.openChannel with a
 CommandChannel object, which is a subclass of channel.SSHChannel. This object is used to work with an
 authenticated channel to the SSH server. Its channelOpen
 method is called when the channel is ready.

 At this point, you can call self.conn.sendRequest to send a
 command to the server. You have to encode data sent over SSH as a specially formatted
 network string; to get a string in this format, pass it to the twisted.conch.common.NS function. Set the keyword argument wantReply to True if you’re
 interested in getting a response from the command; this setting will cause sendRequest to return a Deferred
 that will be called back when the command is completed. (If you don’t set wantReply to True, sendRequest will return None.) As
 data is received from the server, it will be passed to dataReceived. Once you’re done using the channel, close it by
 calling self.conn.sendEOF. The closed method will be called to let you know when the channel has
 been successfully closed.

More Practice and Next Steps

 This chapter introduced the Twisted Conch subproject through example SSH clients and
 servers. Some of the examples utilized insults, Twisted’s terminal
 control library. Others utilized the twisted.conch.manhole module for
 introspecting and interacting with a running Python process.
 The Twisted Conch HOWTO
 walks through implementing an SSH client. Prolific Twisted Core developer JP Calderone walks
 through implementing an SSH server in his “Twisted Conch in 60 Seconds” series.
 The Twisted Conch
 examples include an insults-based drawing application, a Python
 interpreter with syntax highlighting, a telnet server, and scrolling.

Chapter 15. The End

 We’ve reached the end of our tour through the Twisted library.

 We started with an overview of Twisted’s architecture and the event-driven programming
 model. We practiced using Twisted’s primitives and common idioms to write basic clients and
 servers, and then built up and deployed production-grade servers that log, authenticate, talk
 to databases, and more. We finished by surveying client and server implementations for several
 popular protocols.

 You now have all of the tools you need to build and deploy event-driven clients and servers
 for any protocol, and I think you’ll find that to be a powerful tool to have in your back
 pocket. Twisted powers everything from networked game engines and streaming media servers to
 web crawling frameworks and continuous integration systems to BitTorrent clients and AMQP
 peers. The next time you need to programmaticaly download data from a website, test an HTTP
 client, process your email, or annoy your friends with an IRC bot, you know what to do.

 Thank you for reading! We’d love to hear your thoughts on this book. Please send feedback and
 technical questions to bookquestions@oreilly.com. You can find more information
 about the book, and a list of errata, at http://oreil.ly/twisted-network-2e.

Contributing to Twisted

Twisted exists because of the collective effort of dozens of core developers and hundreds
 of contributors. For over a decade, they have volunteered their time to the library and
 sourrounding infrastructure. Please join us in improving Twisted.
There are many ways to help: writing code, documentation, and tests; maintaining the
 website and build infrastructure; and helping users on the mailing lists and IRC. Join the
 twisted-python mailing list or #twisted-dev IRC channel on Freenode, say hello, and we’ll help you get started!

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

A
	adbapi
		switching from blocking API to, Nonblocking Database Queries–Nonblocking Database Queries
	
	using with SQLite, Nonblocking Database Queries
	

	addBoth method, Summary of the Deferred API, Requesting Resources with Agent
	
	addCallback method, The Structure of a Deferred Object, Exercise 1–Exercise 8, Summary of the Deferred API
	
	addCallbacks method, The Structure of a Deferred Object–Callback Chains and Using Deferreds in the Reactor, The Truth About addCallbacks–Key Facts About Deferreds, Summary of the Deferred API
	
	addErrback method, The Structure of a Deferred Object–The Structure of a Deferred Object, Exercise 1–Exercise 8, Summary of the Deferred API
	
	administrative Python shell, SSH providing, Providing an Administrative Python Shell–Providing an Administrative Python Shell
	
	Agent API, Basic HTTP Resource Retrieval, Agent–POSTing Data with Agent
	
	agent.request, Requesting Resources with Agent
	
	AlreadyCalledError, Key Facts About Deferreds
	
	ampoule, More Practice and Next Steps
	
	API
		Agent, Basic HTTP Resource Retrieval, Agent–POSTing Data with Agent
	
	blocking, Nonblocking Database Queries–Nonblocking Database Queries, Threads
	
	Deferred, Summary of the Deferred API, Asynchronous Responses, Asynchronous Responses
		(see also Deferreds)
	

	platform-independent, Subprocesses
	
	producer/consumer, POSTing Data with Agent
	
	threading, More Practice and Next Steps
	

	API documentation, using Twisted, API Documentation–Subproject Documentation
	
	applications, deploying Twisted, Deploying Twisted Applications–More Practice and Next Steps
	
	Applications, in Twisted application infrastructure, Applications
	
	Ascher, David, Learning Python, What You’ll Need
	
	asynchronous code
		about using Deferreds in, What Deferreds Do and Don’t Do
	
	addCallback method vs. addErrback method, The Truth About addCallbacks–Exercise 8
	
	keyfacts about Deferreds, Key Facts About Deferreds
	
	managing callbacks not registered, Writing Asynchronous Code with Deferreds
	
	structure of Deferreds, The Structure of a Deferred Object–Callback Chains and Using Deferreds in the Reactor
	
	structuring, What Deferreds Do and Don’t Do
	
	using callback chains inside of reactor, Callback Chains and Using Deferreds in the Reactor–Callback Chains and Using Deferreds in the Reactor
	
	using callback chains outside of reactor, The Structure of a Deferred Object–Callback Chains and Using Deferreds in the Reactor
	

	asynchronous headline retriever, Callback Chains and Using Deferreds in the Reactor
	
	asynchronous responses, web server, Asynchronous Responses–Asynchronous Responses
	
	authentication
		in Twisted applications, Authentication in Twisted Applications–Authentication in Twisted Applications
	
	using public keys for, Using Public Keys for Authentication–Using Public Keys for Authentication, SSH Clients
	

	authentication, using Cred
		about, Authentication
	
	chat-specific, IRC Servers–More Practice and Next Steps
	
	components of, The Components of Twisted Cred–The Components of Twisted Cred
	
	examples of, Twisted Cred: An Example–Twisted Cred: An Example
	
	process in, Twisted Cred: An Example
	

	AuthOptionMixin class, Authentication in Twisted Applications–Authentication in Twisted Applications
	
	AutobahnPython, Web-Sockets implementation, More Practice and Next Steps
	
	avatar ID, definition of, The Components of Twisted Cred
	
	avatar, definition of, The Components of Twisted Cred
	

B
	blocking API, Nonblocking Database Queries–Nonblocking Database Queries, Threads
	
	blockingApiCall, Threads
	
	blockingCallFromThread method, Threads
	
	blogs, for Twisted, Twisted Blogs
	
	browsers
		GET request, The Structure of an HTTP Request
	
	serializing requests to same resource, Asynchronous Responses
	

	buildProtocol method, Protocol Factories, Twisted Cred: An Example, SMTP Servers
	

C
	C compiler, installing, Installing a C compiler
	
	Calderone, JP, “Twisted Conch in 60 Seconds” series, SSH Clients
	
	callback chains
		in Deferreds, The Structure of a Deferred Object–Callback Chains and Using Deferreds in the Reactor
	
	using inside of reactor, Callback Chains and Using Deferreds in the Reactor–Callback Chains and Using Deferreds in the Reactor
	
	using outside of reactor, The Structure of a Deferred Object–Callback Chains and Using Deferreds in the Reactor
	

	callbacks
		attaching to non-blocking database queries, Nonblocking Database Queries, Nonblocking Database Queries
	
	attaching to writeSuccessResponse, Running a Subprocess and Getting the Result
	
	Deferreds using outside of reactor, The Structure of a Deferred Object–Callback Chains and Using Deferreds in the Reactor
	
	failing to register, Writing Asynchronous Code with Deferreds
	
	practice using, Practice: What Do These Deferred Chains Do?–Exercise 3
	
	registering multiple, The Structure of a Deferred Object–Callback Chains and Using Deferreds in the Reactor
	

	callFromThread method, Threads
	
	callInThread method, Threads
	
	callLater method, Callback Chains and Using Deferreds in the Reactor, Tests and the Reactor, Testing the Passage of Time
	
	callMultipleInThread method, Threads
	
	channelOpen method, SSH Clients
	
	ChatFactory, Protocol State Machines, Testing Protocols
	
	ChatProtocol states, Protocol State Machines
	
	chatserver, testing, Testing Protocols–Testing Protocols
	
	client, POP3 Servers
		(see also web client)
	
	communication in Twisted, A TCP Quote Server and Client
	
	IRC, IRC Clients–IRC Servers
	
	POP3, POP3 Servers
	
	simultaneous connections to server, A TCP Quote Server and Client
	
	SMTP, Sending Emails Using SMTP–SMTP Servers, More Practice and Next Steps
	
	SSH, Running Commands on a Remote Server–SSH Clients
	
	TCP echo, A TCP Echo Server and Client–Decoupling Transports and Protocols
	

	ClientCommandTransport class, SSH Clients
	
	ClientConnection class, SSH Clients
	
	clients
		IMAP, IMAP Clients–POP3 Clients and Servers
	

	closed method, SSH Clients
	
	ColorizedLogObserver, Custom Loggers
	
	commands standard library module, Subprocesses–Custom Process Protocols
	
	conchFactory, manhole_ssh, Providing an Administrative Python Shell
	
	ConchUser class, A Basic SSH Server
	
	connection.SSHConnection class, Running Commands on a Remote Server
	
	connectionLost method, Protocols, Requesting Resources with Agent
	
	connectionMade method, Protocols, Custom Process Protocols, Custom Process Protocols
	
	connectionSecure method, SSH Clients
	
	connectTCP method, The Reactor
	
	Cred authentication system
		about, Authentication
	
	chat-specific, IRC Servers–More Practice and Next Steps
	
	components of, The Components of Twisted Cred–The Components of Twisted Cred
	
	examples of, Twisted Cred: An Example–Twisted Cred: An Example
	
	process in, Twisted Cred: An Example
	
	SSH server, A Basic SSH Server–A Basic SSH Server
	

	credentialInterfaces class variable, Credentials Checkers
	
	credentialInterfaces, authenticating, Twisted Cred: An Example
	
	credentials checkers
		database-backed, Credentials Checkers–Credentials Checkers
	
	DBCredentialsChecker, Credentials Checkers–Credentials Checkers, Testing Deferreds–Testing the Passage of Time
	
	definition of, Twisted Cred: An Example
	
	FilePasswordDB, Credentials Checkers
	
	IMAP, IMAP Servers
	
	in UNIX systems, Authentication in Twisted Applications
	
	POP3, POP3 Servers
	
	returning Deferred to Portal, Twisted Cred: An Example
	
	SSH server, A Basic SSH Server–A Basic SSH Server, Using Public Keys for Authentication
	

	credentials, definition of, The Components of Twisted Cred
	
	curses library, A Basic SSH Server
	

D
	DailyLogFile class, Basic In-Application Logging
	
	data, streaming large amounts of, POSTing Data with Agent
	
	databases, non-blocking queries, Nonblocking Database Queries–Nonblocking Database Queries
	
	dataReceived method, Protocols, Requesting Resources with Agent
	
	dataReceived methods, IProtocol interface, Protocol State Machines
	
	DBCredentialsChecker, Credentials Checkers–Credentials Checkers, Testing Deferreds–Testing the Passage of Time
	
	decoupling, transports and protocols, Decoupling Transports and Protocols
	
	deferLater method, Threads
	
	Deferreds
		about Deferred API, Summary of the Deferred API
	
	agent.request returning, Requesting Resources with Agent
	
	asynchronous responses on web server using, Asynchronous Responses
	
	credentials checker to Portal, Twisted Cred: An Example
	
	in non-blocking database queries, Nonblocking Database Queries, Nonblocking Database Queries
	
	keyfacts about, Key Facts About Deferreds
	
	POP3 client returning, POP3 Servers
	
	practice using, Practice: What Do These Deferred Chains Do?–Exercise 8
	
	shutting down reactor before firing, Threads
	
	testing, Testing Deferreds–Testing the Passage of Time
	
	using callback chains inside of reactor, Callback Chains and Using Deferreds in the Reactor–Callback Chains and Using Deferreds in the Reactor
	
	using callback chains outside of reactor, The Structure of a Deferred Object–Callback Chains and Using Deferreds in the Reactor
	
	using in asynchronous code, What Deferreds Do and Don’t Do
	

	deferToThread method, Threads
	
	DirtyReactorAggregateError, Testing Deferreds
	
	Dive Into Python (Pilgrim), What You’ll Need
	
	downloading
		Python, What You’ll Need
	
	TortoiseSVN, Installing Twisted from a Source Checkout
	
	Twisted, Getting Started
	
	web resources, Downloading a Web Resource–Downloading a Web Resource
	

	downloadPage helper, Downloading a Web Resource–Downloading a Web Resource
	
	dynamic content, serving, Serving Dynamic Content
	
	dynamic URL dispatch, Dynamic Dispatch–Creating resources that are both renderable and have
 children
	

E
	echo application, turning echo server into, TAC Files
	
	echo bot
		IRC, IRC Clients–IRC Servers
	
	talking in #twisted-bots with, IRC Servers
	

	Echo protocol, testing, Testing Protocols–Testing Protocols
	
	echo TCP servers and clients, A TCP Echo Server and Client–Decoupling Transports and Protocols
	
	EchoFactory class, Protocol Factories, TAC Files, Basic In-Application Logging, Twisted Cred: An Example, Authentication in Twisted Applications, Testing Protocols
	
	emails
		IMAP client for, IMAP Clients–POP3 Clients and Servers
	
	POP3 servers for, POP3 Servers–More Practice and Next Steps
	
	sending using SMTP, Sending Emails Using SMTP–Sending Emails Using SMTP
	
	serving messages using IMAP, IMAP Servers–IMAP Servers
	
	storing using SMTP servers, Storing Mail–Storing Mail
	

	emit method, Custom Loggers
	
	errbacks
		attaching to non-blocking database queries, Nonblocking Database Queries
	
	Deferreds using outside of reactor, The Structure of a Deferred Object–The Structure of a Deferred Object
	
	practice using, Practice: What Do These Deferred Chains Do?–Exercise 6
	

	errReceived method, Custom Process Protocols
	
	event-driven programming, Event-Driven Programming–Event-Driven Programming
	

F
	fakeRunqueryMatchingPassword, Testing Deferreds–Testing Deferreds
	
	FileLogObserver, twistd Logging–Custom Loggers
	
	FilePasswordDB credential checker, Credentials Checkers
	
	Free Software (Open Source movements), Foreword to the First Edition, Preface
	

G
	GET requests
		handling, Handling GET Requests–Redirects
	
	making HTTP, The Structure of an HTTP Request–The Structure of an HTTP Request
	

	getHost method, ITransport interface, Transports
	
	getManholeFactory function, Providing an Administrative Python Shell–Providing an Administrative Python Shell
	
	getPage helper, Basic HTTP Resource Retrieval–Printing a Web Resource
	
	getPassword method, SSH Clients
	
	getPeer method, ITransport interface, Transports
	
	getPrivateKey method, SSH Clients
	
	getPrivateKeyString functions, A Basic SSH Server, A Basic SSH Server
	
	getProcessOutput method, Threads, Running a Subprocess and Getting the Result, Custom Process Protocols
	
	getProcessValue method, Threads
	
	getPu blicKey method, SSH Clients
	
	getPublicKeyString functions, A Basic SSH Server, A Basic SSH Server
	

H
	headline retriever, asynchronous, Callback Chains and Using Deferreds in the Reactor
	
	HistoricRecvLine, A Basic SSH Server, A Basic SSH Server
	
	HTTP client, Agent
		(see also web client)
	
	Agent API, Agent–POSTing Data with Agent
	

	HTTP GET request, The Structure of an HTTP Request–The Structure of an HTTP Request
	
	HTTP HEAD request, Retrieving Response Metadata–Retrieving Response Metadata
	
	HTTP servers, Responding to HTTP Requests: A Low-Level Review
		(see also web servers)
	
	about, Responding to HTTP Requests: A Low-Level Review
	
	parsing requests, Parsing HTTP Requests
	
	responding to requests, Responding to HTTP Requests: A Low-Level Review–The Structure of an HTTP Request
	
	tutorials related to, More Practice and Next Steps
	

	HTTPEchoFactory, The Structure of an HTTP Request, Plugins
	

I
	IAccount, imap4, IMAP Servers
	
	IAvatar, A Basic SSH Server
	
	IBodyProducer interface, POSTing Data with Agent
	
	IChatService interface, InMemoryWordsRealm implementing, IRC Servers
	
	ICredentialsChecker interface, Credentials Checkers
	
	IMailbox, imap4, IMAP Servers
	
	IMAP (Internet Message Access Protocol)
		about, Twisted Mail, IMAP Clients and Servers
	
	clients, IMAP Clients–POP3 Clients and Servers
	
	servers, IMAP Servers–IMAP Servers
	

	imap4
		IAccount, IMAP Servers
	
	IMailbox, IMAP Servers
	
	IMessage, IMAP Servers
	

	IMessage, imap4, IMAP Servers
	
	IMessageDelivery interface, SMTP Servers
	
	in-application logging, Basic In-Application Logging–Basic In-Application Logging
	
	inConnectionLost method, Custom Process Protocols, Custom Process Protocols
	
	infrastructure, Twisted application, Deploying Twisted Applications–Plugins
	
	InMemoryWordsRealm, implementing IChatService interface, IRC Servers
	
	installing Twisted, Getting Started–Installing Optional Dependencies from Source
	
	insults library, A Basic SSH Server
	
	integration-friendly platform, Why Use Twisted?
	
	IPlugin class, Plugins
	
	IProcessProtocol, Custom Process Protocols
	
	IProtocol interface methods, Protocols
	
	IProtocolAvatar interface, Twisted Cred: An Example
	
	IRC channels, for Twisted, Mailing Lists
	
	IRC clients, IRC Clients–IRC Servers
	
	IRC servers, IRC Servers–More Practice and Next Steps
	
	IRCFactory, IRC Servers
	
	IRCUser protocol, IRC Servers
	
	irc_* handler, implementing, IRC Servers
	
	IResource interface, Serving Static Content
	
	irssi, connecting to twisted IRC server using, IRC Servers
	
	IService interface, implementing, Services
	
	IServiceMaker class, Plugins
	
	ISession, A Basic SSH Server
	
	ISSH PrivateKey, Using Public Keys for Authentication
	
	ITransport interface methods, Transports
	
	IUsernameHashedPassword, Credentials Checkers–Credentials Checkers
	

K
	key-based authentication, supporting both username/password and, Using Public Keys for Authentication
	
	Klein micro-web framework, More Practice and Next Steps
	

L
	Learning Python (Lutz and Ascher), What You’ll Need
	
	Lefkowitz, Matthew “the Glyph”, Foreword to the First Edition–Foreword to the First Edition
	
	lineReceived method, The Structure of an HTTP Request, Testing Protocols, A Basic SSH Server, A Basic SSH Server
	
	lineReceived methods, Protocol State Machines
	
	LineReceiver, Running a Subprocess and Getting the Result, A Basic SSH Server
	
	Linux
		installing PyCrypto for, More package options and optional dependencies
	
	installing pyOpenSSL for, More package options and optional dependencies
	
	installing Twisted on, Installation on Linux–More package options and optional dependencies
	

	Linux distributions, OpenSSH SSH implementation on, A Basic SSH Server
	
	listenTCP method, The Reactor, The Structure of an HTTP Request
	
	listSize method, POP3 Servers
	
	log.addObserver, Custom Loggers
	
	logging systems, Basic In-Application Logging–Key Facts and Caveats About Logging
	
	LogObserver, Custom Loggers
	
	LoopingCall, Threads
	
	loseConnection method, ITransport interface, Transports
	
	Lutz, Mark, Learning Python, What You’ll Need
	

M
	Mac OS X, A Basic SSH Server
		(see also OS X)
	
	OpenSSH SSH implementation on, A Basic SSH Server
	

	mail (see emails)
	
	Maildir
		IMAP server, IMAP Servers–IMAP Servers
	
	storage format, Storing Mail–Storing Mail
	
	using POP3, POP3 Servers
	

	mailing lists, for Twisted, Finding Answers to Your Questions–Testing Your Installation
	
	makeConnection method, Protocols
	
	manhole_ssh, Providing an Administrative Python Shell–Providing an Administrative Python Shell
	
	manhole_ssh.ConchFactory class, Providing an Administrative Python Shell
	
	myCallback function, The Structure of a Deferred Object
	
	myErrback function, The Structure of a Deferred Object
	
	MyHTTP protocol, Parsing HTTP Requests
	
	MySQL, non-blocking interface for, Databases
	

N
	namespace argument, Providing an Administrative Python Shell–Providing an Administrative Python Shell
	
	non-blocking code, using Deferreds in, What Deferreds Do and Don’t Do
	
	NOT_DONE_YET method, Asynchronous Responses
	
	nslookup command, The SMTP Protocol
	

O
	Open Source movements (Free Software), Foreword to the First Edition, Preface
	
	openShell method, A Basic SSH Server–A Basic SSH Server, A Basic SSH Server–A Basic SSH Server
	
	OpenSSH SSH implementation, A Basic SSH Server
	
	optParameters instance variable, Plugins
	
	OS X
		installing PyCrypto for, Installation on OS X
	
	installing pyOpenSSL for, Installation on OS X
	
	installing Twisted on, Installation on OS X
	
	OpenSSH SSH implementation on, A Basic SSH Server
	

	outConnectionLost method, Custom Process Protocols
	
	outReceived method, Custom Process Protocols
	

P
	parsing HTTP requests, Parsing HTTP Requests–Parsing HTTP Requests
	
	passage of time, testing, Testing the Passage of Time–Testing the Passage of Time
	
	PasswordAuth class, SSH Clients
	
	pauseProducing method, POSTing Data with Agent
	
	persistent protocol state, stored in protocol factory, A TCP Quote Server and Client
	
	Pilgrim, Mark, Dive Into Python, What You’ll Need
	
	Planet Twisted blogs, Twisted Blogs
	
	platform-independent API, Subprocesses
	
	Plugins, in Twisted application infrastructure, Plugins–Plugins, More Practice and Next Steps
	
	POP3 (Post Office Protocol version 3)
		about, Twisted Mail
	
	servers, POP3 Servers–More Practice and Next Steps
	

	Portal
		definition of, The Components of Twisted Cred
	
	IMAP, IMAP Servers
	
	in Cred authentication process, Twisted Cred: An Example
	
	POP3, POP3 Servers
	
	SSH server, A Basic SSH Server–A Basic SSH Server
	

	POST HTTP data, with Agent, POSTing Data with Agent
	
	POST requests, handling, Handling POST Requests–A Minimal POST Example
	
	Postgres, non-blocking interface for, Databases
	
	printing
		to stderr if headline is too long, Callback Chains and Using Deferreds in the Reactor
	
	web resource, Basic HTTP Resource Retrieval–Printing a Web Resource
	

	printResource method, Requesting Resources with Agent
	
	private keys
		generating for SSH server, A Basic SSH Server
	
	RSA, A Basic SSH Server
	

	processEnded method, Custom Process Protocols
	
	processExited method, Custom Process Protocols
	
	ProcessProtocol, Custom Process Protocols, Custom Process Protocols
	
	producer/consumer API, streaming large amounts of data using, POSTing Data with Agent
	
	protocol code, mixing application-specific logic with, Protocol State Machines
	
	protocol factories
		about, Protocol Factories
	
	IMAP server, IMAP Servers
	
	in Cred authentication process, Twisted Cred: An Example–Twisted Cred: An Example
	
	in HTTP GET request, The Structure of an HTTP Request, Parsing HTTP Requests
	
	persistent protocol state stored in, A TCP Quote Server and Client
	
	POP3, POP3 Servers
	
	SMTP server, SMTP Servers
	

	protocol state machines, Protocol State Machines–Protocol State Machines
	
	protocols
		about, Protocols–Protocol Factories
	
	creating subclass ResourcePrinter, Requesting Resources with Agent
	
	custom process, Custom Process Protocols–Custom Process Protocols
	
	decoupling, Decoupling Transports and Protocols
	
	HistoricRecvLine vs. regular, A Basic SSH Server
	
	IMAP server, IMAP Servers
	
	in Twisted Mail, Twisted Mail
	
	IRCUser, IRC Servers
	
	POP3, POP3 Servers
	
	retrieving reason for terminated connection, A TCP Quote Server and Client
	
	service implementations, Services
	
	SMTP, The SMTP Protocol–The SMTP Protocol
	
	SSH server, A Basic SSH Server–A Basic SSH Server, A Basic SSH Server
	
	testing, Testing Protocols–Testing Protocols
	
	Twisted Words, Twisted Words–More Practice and Next Steps
	

	proto_helpers, Testing Protocols–Testing Protocols
	
	public keys
		generating for SSH server, A Basic SSH Server
	
	using for authentication, Using Public Keys for Authentication, SSH Clients
	

	PublicKeyCre dentialsChecker, Using Public Keys for Authentication
	
	putChild method, Static URL dispatch
	
	PyCrypto, installing
		for Linux, More package options and optional dependencies, More package options and optional dependencies
	
	for OS X, Installation on OS X, Installation on OS X
	

	Python
		about, Preface
	
	checking version of, Testing Your Installation
	
	resources for learning and downloading, What You’ll Need
	

	Python shell, SSH providing administrative, Providing an Administrative Python Shell–Providing an Administrative Python Shell
	
	python-crypto,packages, for Windows, Installation on Windows
	
	python-openssl packages, for Windows, Installation on Windows
	
	python-twisted packages, Installation on Linux
	

Q
	queries, non-blocking database, Nonblocking Database Queries–Nonblocking Database Queries
	
	quote, TCP servers and clients, A TCP Quote Server and Client–A TCP Quote Server and Client
	

R
	reactor
		in serving static content, Serving Static Content–Static URL dispatch
	
	shutting down before events complete, Threads
	
	testing and, Tests and the Reactor–Testing the Passage of Time
	
	using callback chains inside of, Callback Chains and Using Deferreds in the Reactor–Callback Chains and Using Deferreds in the Reactor
	

	reactor event loop, The Reactor
	
	Realm
		IMAP, IMAP Servers
	
	POP3, POP3 Servers
	
	SSH server, A Basic SSH Server–A Basic SSH Server, A Basic SSH Server
	

	realm, definition of, Twisted Cred: An Example
	
	receivedHeader method, SMTP Servers
	
	RecvLine class, A Basic SSH Server
	
	redirects, dynamic URL dispatch, Redirects
	
	release tarball, installing Twisted from, Installing Twisted from a Release Tarball
	
	remote server using SSH, running commands on, Running Commands on a Remote Server–SSH Clients
	
	render_GET method, Serving Dynamic Content, Redirects, Asynchronous Responses
	
	render_POST method, Serving Dynamic Content
	
	request blocks, rendering on web servers, Asynchronous Responses–Asynchronous Responses
	
	requestAvatar method, Twisted Cred: An Example, A Basic SSH Server, Using Public Keys for Authentication
	
	requestAvatarId method, Credentials Checkers, Credentials Checkers, Using Public Keys for Authentication
	
	requestAvatarID method, Testing Deferreds
	
	Resource hierarchies, extending by registering child resources, Static URL dispatch
	
	Resource subclass, defining dynamic resource by, Serving Dynamic Content
	
	ResourcePrinter subclass, Requesting Resources with Agent
	
	resources, for answering questions about Twisted, Finding Answers to Your Questions–Testing Your Installation
	
	Response body, handling through agent.request, Requesting Resources with Agent
	
	Response metadata, retrieving, Retrieving Response Metadata–Retrieving Response Metadata
	
	resumeProducing method, POSTing Data with Agent
	
	retrieve method, POP3 Servers
	
	rotateLength, Basic In-Application Logging, Basic In-Application Logging
	
	RSA private keys, for SSH server, A Basic SSH Server–A Basic SSH Server
	
	RSA.generate, as blocking function, A Basic SSH Server
	
	RunCommand, Running a Subprocess and Getting the Result
	
	RunCommandFactory, Running a Subprocess and Getting the Result
	

S
	Safari Books Online, Safari® Books Online
	
	Scripts directory, adding to PATH in Windows, Installation on Windows–Adding Twisted utilities to your PATH
	
	sendData method, IProtocol interface, Protocol State Machines
	
	sendLine methods, Protocol State Machines
	
	sendRequest, SSH Clients
	
	server, More Practice and Next Steps
		(see also web server)
	
	client simultaneous connections to, A TCP Quote Server and Client
	
	communication in Twisted, A TCP Quote Server and Client
	
	examples at Twisted Web examples directory, More Practice and Next Steps
	
	IMAP, IMAP Servers–IMAP Servers
	
	IRC, IRC Servers–More Practice and Next Steps
	
	POP3, POP3 Servers–More Practice and Next Steps
	
	SMTP, SMTP Servers–Storing Mail
	
	SSH
		creating, SSH Servers–A Basic SSH Server
	
	supporting both username/password and key-based authentication on, Using Public Keys for Authentication
	
	twisted.conch communicationg with, Running Commands on a Remote Server–SSH Clients
	

	TCP echo, A TCP Echo Server and Client–Decoupling Transports and Protocols
	

	service plugin, components of, Plugins
	
	Services, in twisted application infrastructure, Services
	
	serviceStarted method, SSH Clients
	
	serving
		dynamic content, Serving Dynamic Content
	
	static content, Serving Static Content–Static URL dispatch
	

	setResponseCode, Parsing HTTP Requests
	
	slowFunction, Testing Deferreds
	
	SMTP (Simple Mail Transfer Protocol)
		about, Twisted Mail
	
	protocol, The SMTP Protocol–The SMTP Protocol
	
	sending emails using, Sending Emails Using SMTP–Sending Emails Using SMTP
	
	servers, SMTP Servers–Storing Mail
	
	tutorial for building client, More Practice and Next Steps
	

	source, installing Twisted from, Installing Twisted from a Release Tarball
	
	spawnProcess method, Custom Process Protocols, Custom Process Protocols
	
	SQLite
		non-blocking interface for, Databases
	
	using adbapi with, Nonblocking Database Queries
	

	SSH (Secure SHell)
		about, SSH
	
	clients, Running Commands on a Remote Server–SSH Clients
	
	getting error on local machine, A Basic SSH Server
	
	providing administrative Python shell, Providing an Administrative Python Shell–Providing an Administrative Python Shell
	
	running commands on remote server, Running Commands on a Remote Server–SSH Clients
	
	server
		creating, SSH Servers–A Basic SSH Server
	
	supporting both username/password and key-based authentication on, Using Public Keys for Authentication
	
	using public keys for authentication, Using Public Keys for Authentication–Using Public Keys for Authentication
	

	ssh-keygen, using in Windows, A Basic SSH Server
	
	SSHDemoAvatar class, A Basic SSH Server
	
	SSHDemoProtocol class, A Basic SSH Server
	
	Stack Overflow programming Q & A site, for Twisted, Stack Overflow
	
	startLogging, Custom Loggers
	
	startProducing method, POSTing Data with Agent
	
	startService method, Services
	
	static content, serving, Serving Static Content–Static URL dispatch
	
	static URL dispatch, Static URL dispatch
	
	stderr, printing if headline is too long to, Callback Chains and Using Deferreds in the Reactor
	
	stdout, logging to, Basic In-Application Logging–Basic In-Application Logging
	
	StdoutMessageDelivery, SMTP Servers
	
	StdoutSMTPFactory, SMTP Servers
	
	stopProducing method, POSTing Data with Agent
	
	stopService method, Services
	
	storing mail, Storing Mail
	
	streaming, large amounts of data, POSTing Data with Agent
	
	StringProducer, constructing, POSTing Data with Agent–POSTing Data with Agent
	
	StringTransport class, Testing Protocols–Testing Protocols
	
	subprocesses, running, Subprocesses–Custom Process Protocols
	
	subproject documentation, using Twisted, Subproject Documentation
	
	svn (subversion) repository, Twisted, Installing Twisted from a Source Checkout
	

T
	TAC (Twisted Application Configuration) files, in Twisted application infrastructure, TAC Files–twistd, More Practice and Next Steps
	
	task module method, Threads
	
	TCP servers and clients
		echo, A TCP Echo Server and Client–Decoupling Transports and Protocols
	
	quote, A TCP Quote Server and Client–A TCP Quote Server and Client
	

	TCP, HTTP using as transport-layer protocol, The Structure of an HTTP Request
	
	telnet connections, terminating, Protocol State Machines
	
	telnet utility, The Structure of an HTTP Request
	
	TerminalRealm, manhole_ssh, Providing an Administrative Python Shell
	
	testing
		about, Testing
	
	Deferreds, Testing Deferreds–Testing the Passage of Time
	
	passage of time, Testing the Passage of Time–Testing the Passage of Time
	
	protocols, Testing Protocols–Testing Protocols
	
	reactor and, Tests and the Reactor
	
	writing and running unit tests with trial, Testing–Testing Protocols
	

	test_slowFunction, Testing Deferreds
	
	threaded calls, making, Threads–Threads, More Practice and Next Steps
	
	threading API, More Practice and Next Steps
	
	TortoiseSVN, downloading, Installing Twisted from a Source Checkout
	
	transport.SSHClientTransport class, Running Commands on a Remote Server
	
	transports
		about, Transports
	
	decoupling, Decoupling Transports and Protocols
	

	twistd
		examples of, More twistd Examples–More twistd Examples
	
	in Twisted application infrastructure, twistd–twistd
	
	logging, twistd Logging
	

	Twisted
		about, Foreword to the First Edition–Foreword to the First Edition, Preface–Why Use Twisted?
	
	downloading and installing, Getting Started–Installing Twisted from a Source Checkout
	
	resources for answering questions about, Finding Answers to Your Questions–Testing Your Installation
	
	svn repository, Installing Twisted from a Source Checkout
	
	testing installation of, Testing Your Installation–Testing Your Installation
	
	using API documentation, API Documentation
	

	Twisted Application Configuration (TAC) files, in Twisted application infrastructure, TAC Files–twistd
	
	Twisted applications
		authentication in, Authentication in Twisted Applications–Authentication in Twisted Applications
	
	deploying, Deploying Twisted Applications–More Practice and Next Steps
	

	Twisted Conch examples, SSH Clients
	
	Twisted Conch HOWTO, walking through implementing SSH client, SSH Clients
	
	“Twisted Conch in 60 Seconds” series (Calderone), SSH Clients
	
	Twisted Core
		examples directory, More Practice and Next Steps
	
	networking libraries, Subproject Documentation
	

	Twisted Core HOWTO
		documents on Deferreds, Summary of the Deferred API
	
	plugin discussion at, More Practice and Next Steps–More Practice and Next Steps
	
	TAC discussion at, More Practice and Next Steps–More Practice and Next Steps
	
	threads discussion at, More Practice and Next Steps
	
	“Twisted From Scratch” tutorial, More Practice and Next Steps
	

	Twisted Cred
		about, Authentication
	
	authentication process in, Twisted Cred: An Example
	
	chat-specific authentication using, IRC Servers–More Practice and Next Steps
	
	components of, The Components of Twisted Cred–The Components of Twisted Cred
	
	examples of, Twisted Cred: An Example–Twisted Cred: An Example
	
	using on SSH server to support authentication, Using Public Keys for Authentication–A Basic SSH Server
	

	#twisted IRC channel, Mailing Lists
	
	Twisted Mail
		about, Twisted Mail
	
	examples directory, More Practice and Next Steps
	

	Twisted Mail HOWTOtutorial, for building SMTP client, More Practice and Next Steps
	
	Twisted Web Client HOWTO, discussing Agent API at, More Practice and Next Steps
	
	Twisted Web HOWTO, tutorials related to HTTP servers, More Practice and Next Steps
	
	Twisted Words, Twisted Words–More Practice and Next Steps
	
	#twisted-bots, talking with echo bot in, IRC Servers
	
	twisted-python, mailing list, Finding Answers to Your Questions–Mailing Lists
	
	twisted.application.service.Application, creating instance, TAC Files–twistd
	
	twisted.conch
		about, SSH
	
	communicationg with server using SSH, Running Commands on a Remote Server–SSH Clients
	
	writing SSH server and, A Basic SSH Server
	

	twisted.conch.avatar.ConchUser class, A Basic SSH Server
	
	twisted.conch.common.NS function, SSH Clients
	
	twisted.conch.interfaces.IAvatar, A Basic SSH Server
	
	twisted.conch.interfaces.ISession, A Basic SSH Server
	
	twisted.conch.manhole_ssh module, Providing an Administrative Python Shell
	
	twisted.conch.recvline, A Basic SSH Server, A Basic SSH Server
	
	twisted.conch.ssh.keys module, A Basic SSH Server
	
	twisted.enterprise.adbapi, as non-blocking interface, Databases
	
	twisted.internet.protocol.ProcessProtocol, Custom Process Protocols
	
	twisted.internet.task
		Clock class, Testing the Passage of Time
	
	LoopingCall, Threads
	

	twisted.trial.unittest, Testing–Testing Protocols
	
	twisted.web
		implementations for common resources contained on, Serving Static Content
	
	 mailing list, Mailing Lists
	
	parsing http requests from, Parsing HTTP Requests–Parsing HTTP Requests
	
	server, handling GET requests, Handling GET Requests–Redirects
	

	twisted.web.client
		downloadPage, Downloading a Web Resource–Downloading a Web Resource
	
	getPage, Basic HTTP Resource Retrieval–Printing a Web Resource
	
	initializing Agent, Agent–Requesting Resources with Agent
	

U
	Ubuntu PPA, packages for Twisted, More package options and optional dependencies
	
	unit tests, writing and running with trial, Testing–Testing Protocols
	
	unittest framework, Testing
	
	unittest.tearDown test method, Tests and the Reactor
	
	UNIX systems
		curses library in, A Basic SSH Server
	
	using credentials checker in, Authentication in Twisted Applications
	

	URL dispatch
		dynamic, Dynamic Dispatch–Creating resources that are both renderable and have
 children
	
	static, Static URL dispatch
	

	userauth.SSHUserAuthClient class, Running Commands on a Remote Server, SSH Clients
	
	username/password, supporting both key-based authentication and, Using Public Keys for Authentication
	

V
	validateFrom method, SMTP Servers
	
	validateTo method, SMTP Servers
	
	verifyHostKey method, SSH Clients
	
	verifySignature, Using Public Keys for Authentication
	

W
	wantReply, keyword argument, SSH Clients
	
	web browsers
		GET request, The Structure of an HTTP Request
	
	serializing requests to same resource, Asynchronous Responses
	

	web clients, Agent API, Agent–POSTing Data with Agent
	
	web resources, downloading, Downloading a Web Resource–Downloading a Web Resource
	
	web servers
		about, Responding to HTTP Requests: A Low-Level Review
	
	asynchronous responses on, Asynchronous Responses–Asynchronous Responses
	
	handling GET requests, Handling GET Requests–Redirects
	
	handling POST requests, Handling POST Requests–A Minimal POST Example
	
	parsing requests, Parsing HTTP Requests–Parsing HTTP Requests
	
	responding to requests, Responding to HTTP Requests: A Low-Level Review–The Structure of an HTTP Request
	

	Windows
		adding the Scripts directory to PATH in, Installation on Windows–Adding Twisted utilities to your PATH
	
	installing PyCrypto for, Installation on Windows
	
	installing pyOpenSSL for, Installation on Windows
	
	installing Twisted on, Installation on Windows–Adding Twisted utilities to your PATH
	
	using ssh-keygen, A Basic SSH Server
	

	Wokkel library, IRC Servers
	
	write method, ITransport interface, Transports
	
	writeSequence method, ITransport interface, Transports
	
	writeSuccessResponse, attaching callback to, Running a Subprocess and Getting the Result
	

Z
	zope.interface
		import implements, POSTing Data with Agent
	
	installing, Installing zope.interface
	

About the Authors
Jessica McKellar is a software engineer from Cambridge, MA. She enjoys the Internet, networking, low-level systems engineering, and contributing to and helping other people contribute to open source software. She is a Twisted maintainer, organizer for the Boston Python user group, and a local STEM volunteer.
Abe Fettig is a software developer and maintainer of Hep, an open source message server that makes it possible to transparently route information between RSS, email, weblogs, and web services. He speaks frequently at software conferences including PyCon and lives in Portland, Maine with his wife, Hannah.

Colophon
The image on the cover of Twisted Network Programming Essentials, 2nd
 Edition shows a ball of snakes. When the ground begins to thaw in spring, things heat up for
 some species of snakes. Males emerge from their hibernation dens cold, hungry, and randy! An
 estimated 50,000 male snakes can fill a location such as a limestone quarry, waiting patiently
 for nearby females to emerge. When they do, the mating frenzy begins, and it can last up to
 three weeks.
As many as 100 to 1,000 males will compete to mate with a single female, sometimes
 surrounding her before she can fully emerge from her den. The males wrap around the female,
 becoming a living ball that can grow to be two feet high. The constant writhing of the snakes
 can even propel the ball over rocks and tree roots.
In some cases, the size of the snake ball will crush the female to death. However, this does
 not always deter the males, who may continue to mate with her.
A female will normally mate with only one male in the ball; once a male has successfully
 copulated with her, he releases a pheromone that temporarily makes all other males in the ball
 impotent. When the female selects her partner, the ball unravels and the unsuccessful males go
 in search of another female.
Since it is difficult for snakes to determine the gender of their potential partner, males
 detect the female by using their flicking tongues to sense the female’s pheromones, which
 stimulate the males to mate. The male rubs his chin against the grain of the female’s scales to
 squeeze out her pheromones. It is believed that the male can also determine the position of the
 female by detecting the direction of her pheromones and then aligning himself with her body
 accordingly.
The cover image is from a 19th-century engraving from the Dover Pictorial Archive. The cover
 font is Adobe ITC Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
 Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

Twisted Network Programming Essentials

Jessica McKellar

Abe Fettig

Editor
Meghan Blanchette

Editor
Julie Steele

	Revision History
	2013-03-11	First release

Copyright © 2013 Jessica McKellar

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com). For
 more information, contact our corporate/institutional sales department:
 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
 trademarks of O’Reilly Media, Inc. Twisted Network Programming
 Essentials, 2nd Edition, an image of a ball of snakes, and related trade dress are
 trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-03-30T17:05:48-07:00

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/DejaVuSerif.otf

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/httpatomoreillycomsourceoreillyimages1555577.png
Event-driven

Multi-threaded

Single-
threaded

Time

Thread 2 Thread 3

Thread 1

W Task 1

Task 2

w Task 3

OEBPS/httpatomoreillycomsourceoreillyimages1555578.png
fire Deferred.callback

Callback chain

1st callback

2nd callback

3rd callback

Deferred

fire Deferred.errback

Errback chain

1st errback

2nd errback

3rd errback

OEBPS/bk01-toc.html
Twisted Network Programming Essentials

Table of Contents
		Foreword to the First Edition

		Preface		Why Use Twisted?

		What This Book Covers

		Conventions Used in This Book

		What You’ll Need

		Changes Since the Previous Edition

		Using Code Examples

		Safari® Books Online

		How to Contact Us

		Acknowledgments

		I. An Introduction to Twisted		1. Getting Started		Installing Twisted		Installation on Linux		More package options and optional dependencies

		Installation on Windows		Optional dependencies

		Adding Twisted utilities to your PATH

		Installation on OS X		Optional dependencies

		Installing from Source		Required Dependencies		Installing a C compiler

		Installing zope.interface

		Installing Twisted from a Release Tarball

		Installing Twisted from a Source Checkout

		Installing Optional Dependencies from Source

		Testing Your Installation

		Using the Twisted Documentation		API Documentation

		Subproject Documentation

		Finding Answers to Your Questions		Mailing Lists

		IRC Channels

		Stack Overflow

		Twisted Blogs

		2. Building Basic Clients and Servers		A TCP Echo Server and Client

		Event-Driven Programming

		The Reactor

		Transports

		Protocols		Protocol Factories

		Decoupling Transports and Protocols

		A TCP Quote Server and Client

		Protocol State Machines

		More Practice and Next Steps

		3. Writing Asynchronous Code with Deferreds		What Deferreds Do and Don’t Do

		The Structure of a Deferred Object

		Callback Chains and Using Deferreds in the Reactor

		Practice: What Do These Deferred Chains Do?		Exercise 1

		Exercise 2

		Exercise 3

		Exercise 4

		Exercise 5

		Exercise 6

		The Truth About addCallbacks		Exercise 7

		Exercise 8

		Key Facts About Deferreds

		Summary of the Deferred API

		More Practice and Next Steps

		4. Web Servers		Responding to HTTP Requests: A Low-Level Review		The Structure of an HTTP Request

		Parsing HTTP Requests

		Handling GET Requests		Serving Static Content		Static URL dispatch

		Serving Dynamic Content

		Dynamic Dispatch		Creating resources that are both renderable and have
 children

		Redirects

		Handling POST Requests		A Minimal POST Example

		Asynchronous Responses

		More Practice and Next Steps

		5. Web Clients		Basic HTTP Resource Retrieval		Printing a Web Resource

		Downloading a Web Resource

		Agent		Requesting Resources with Agent

		Retrieving Response Metadata

		POSTing Data with Agent

		More Practice and Next Steps

		II. Building Production-Grade Twisted Services		6. Deploying Twisted Applications		The Twisted Application Infrastructure		Services

		Applications

		TAC Files

		twistd

		Plugins

		More twistd Examples

		More Practice and Next Steps		Suggested Exercises

		7. Logging		Basic In-Application Logging

		twistd Logging

		Custom Loggers

		Key Facts and Caveats About Logging

		8. Databases		Nonblocking Database Queries

		More Practice and Next Steps

		9. Authentication		The Components of Twisted Cred

		Twisted Cred: An Example

		Credentials Checkers

		Authentication in Twisted Applications

		More Practice and Next Steps

		10. Threads and Subprocesses		Threads

		Subprocesses		Running a Subprocess and Getting the Result

		Custom Process Protocols

		More Practice and Next Steps

		11. Testing		Writing and Running Twisted Unit Tests with Trial

		Testing Protocols

		Tests and the Reactor		Testing Deferreds

		Testing the Passage of Time

		More Practice and Next Steps

		III. More Protocols and More Practice		12. Twisted Words		IRC Clients

		IRC Servers

		More Practice and Next Steps

		13. Twisted Mail		SMTP Clients and Servers		The SMTP Protocol

		Sending Emails Using SMTP

		SMTP Servers

		Storing Mail

		IMAP Clients and Servers		IMAP Servers

		IMAP Clients

		POP3 Clients and Servers		POP3 Servers

		More Practice and Next Steps

		14. SSH		SSH Servers		A Basic SSH Server

		Using Public Keys for Authentication

		Providing an Administrative Python Shell

		Running Commands on a Remote Server		SSH Clients

		More Practice and Next Steps

		15. The End		Contributing to Twisted

		Index

		About the Authors

		Colophon

		Copyright

OEBPS/cover.jpg
Event-driven Network Programming
with Python

Jessica McKellar

O'REILLY® & Abe Fettig

OEBPS/httpatomoreillycomsourceoreillyimages1555588.png.jpg

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1555581.png
addCallback(myCallback)
addErrback(myErrback)

Callback chain Errback chain
r e EEEES L)
|] |
]] < o [}
Istcallback | 1 [Eeonterd + 1 [OOSR 1 | 1sterrback
1 1 through> |
]] [}
]] [}
]] [}
]] [}
|] [}
1 [1 |
2nd callback | 1 (RS 1 ROGEEEEEd 1 | 2nd errback
1 through> 1 |
]] [}

OEBPS/httpatomoreillycomsourceoreillyimages1555583.png
€ © C @ localhost:8000/2012
2012
January February March
Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su
1 12 3 45 12 3 4

2 3 45 6 78 6 7 8 91011 12 5 6 7 8 91011
9 10 11 12 13 14 15 13 14 15 16 17 18 19 12 13 14 15 16 17 18
16 17 18 19 20 21 22 20 21 22 23 24 25 26 19 20 21 22 23 24 25
23 24 25 26 27 28 29 27 28 29 26 27 28 29 30 31

30 31

OEBPS/httpatomoreillycomsourceoreillyimages1555585.png
Irssi: Looking up localhost
Irssi: Connecting to localhost [127.0.0.1] port 6667
Irssi: Connection to localhost established

- example.com Message of the Day -

End of /MOTD command.

connected to Twisted IRC

Your host is example.com, running version 12.0.0
This server was created on Tue Feb 26 20:19:16 2013
example.com 12.0.0 w n

change with AX)

OEBPS/httpatomoreillycomsourceoreillyimages1555586.png
20:20 -!- jesstess [jesstess@example.com] has joined #twisted-bots

20:20 [Users #twisted-bots]

20:20 [jesstess]

20:20 -!- Irssi: #twisted-bots: Total of 1 nicks [@ ops, @ halfops, @ voices, 1 normal]
20:21 -!'- echobot [echobot@example.com] has joined #twisted-bots

20:21 < jesstess> echobot: nice to see you!

20:21 < cchoboi> jesstess: nice to see you!

2 jesstess 2:localhost/#twisted-bots
[#twisted-bots]

OEBPS/httpatomoreillycomsourceoreillyimages1555580.png
addCallback(myCallback, myErrback)

Callback chain Errback chain

] 1l I
L} (I} |

Istcallback | 1 [ENEIRCEES 1 || 1st errback
[} (I} |
1 1l I

OEBPS/httpatomoreillycomsourceoreillyimages1555584.png
If the login was successful, an avatar can
now act on behalf of the logged in user.

Initiate a login request with o Return the avatar and
the provided credentials. its logout method.

Give the credentials to
the appropriate checker. Return the avatar.

(redentials
Checkers

Return the avatar ID for those The user has successfully logged in.
credentials, or a login failure. Request the avatar for the Avatar ID.

OEBPS/httpatomoreillycomsourceoreillyimages1555579.png
Callback chain

1st callback

2nd callback

processHeadline fires d.errback

Deferred

r——-t———1

<pass-
through>

printError

Errback chain

1st errback

2nd errback

Failure printedto stderr

OEBPS/httpatomoreillycomsourceoreillyimages1555589.png.jpg
w [localhost:8000

OReilly
Twisted
Django

PERNTEY

OEBPS/httpatomoreillycomsourceoreillyimages1555582.png
€« C ® localhost:8000 v | X

You said:

GET / HTTP/1.1

Host: localhost:8000

Connection: keep-alive

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/536.5
(KHTML, like Gecko) Chrome/19.0.1084.56 Safari/536.5

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/%;q=0.8
Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;g=0.8

Accept-Charset: IS0-8859-1,utf-8;g=0.7,%;q=0.3

OEBPS/httpatomoreillycomsourceoreillyimages1555587.png
.8.15 - http://www.irssi.org

Your host is example.com, running version 12.0.0
This server was created on Tue Feb 26 20:19:16 2013
example.com 12.0.0 w n

twisted-bots 1

End of /LIST

echobot [echobot@example.com]

ircname : echobot

server : example.com [Hi mom!]

idle : 0 days @ hours 1 mins 39 secs [signon: Tue Feb 26 20:21:29 2013]
channels : #twisted-bots

1:localhost (change with AX)

