

Think Bayes

Allen B. Downey

 Think Bayes

 By Allen B. Downey

 Copyright © 2013 Allen B. Downey. All rights reserved.

 Printed in the United States of America.

 Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most
 titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

 	Editors: Mike Loukides and Ann Spencer

 	Production Editor: Melanie Yarbrough

 	Proofreader: Jasmine Kwityn

 	Indexer: Allen Downey

 	Interior Designer: David Futato

 	Cover Designer: Randy Comer

 	Illustrator: Rebecca Demarest

 	September, 2013: First Edition

 Revision History for the First Edition

 	2013-09-10: First release

 	2014-02-10: Second release

 	2014-08-22: Third release

 	2016-06-03: Fourth release

 See http://oreilly.com/catalog/errata.csp?isbn=9781449370787 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Think Bayes, the cover image of a red striped mullet, and related trade dress are trademarks of O’Reilly Media, Inc.

 While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

 Think Bayes is available under the Creative Commons Attribution-NonCommercial 3.0 Unported License. The author maintains an online version at http://thinkbayes.com.

 978-1-449-37078-7

 [LSI]

Preface
My theory, which is mine
The premise of this book, and the other books in the Think
 X series, is that if you know how to program, you can use that
 skill to learn other topics.
Most books on Bayesian statistics use mathematical notation and
 present ideas in terms of mathematical concepts like calculus. This book
 uses Python code instead of math, and discrete approximations instead of
 continuous mathematics. As a result, what would be an integral in a math
 book becomes a summation, and most operations on probability distributions
 are simple loops.
I think this presentation is easier to understand, at least for
 people with programming skills. It is also more general, because when we
 make modeling decisions, we can choose the most appropriate model without
 worrying too much about whether the model lends itself to conventional
 analysis.
Also, it provides a smooth development path from simple examples to
 real-world problems. Chapter 3 is a good example. It
 starts with a simple example involving dice, one of the staples of basic
 probability. From there it proceeds in small steps to the locomotive
 problem, which I borrowed from Mosteller’s Fifty Challenging
 Problems in Probability with Solutions, and from there to the
 German tank problem, a famously successful application of Bayesian methods
 during World War II.

Modeling and approximation
Most chapters in this book are motivated by a real-world problem, so
 they involve some degree of modeling. Before we can apply Bayesian methods
 (or any other analysis), we have to make decisions about which parts of
 the real-world system to include in the model and which details we can
 abstract away.
For example, in Chapter 7, the motivating
 problem is to predict the winner of a hockey game. I model goal-scoring as
 a Poisson process, which implies that a goal is equally likely at any
 point in the game. That is not exactly true, but it is probably a good
 enough model for most purposes.
In Chapter 12 the motivating problem is
 interpreting SAT scores (the SAT is a standardized test used for college
 admissions in the United States). I start with a simple model that assumes
 that all SAT questions are equally difficult, but in fact the designers of
 the SAT deliberately include some questions that are relatively easy and
 some that are relatively hard. I present a second model that accounts for
 this aspect of the design, and show that it doesn’t have a big effect on
 the results after all.
I think it is important to include modeling as an explicit part of
 problem solving because it reminds us to think about modeling errors (that
 is, errors due to simplifications and assumptions of the model).
Many of the methods in this book are based on discrete
 distributions, which makes some people worry about numerical errors. But
 for real-world problems, numerical errors are almost always smaller than
 modeling errors.
Furthermore, the discrete approach often allows better modeling
 decisions, and I would rather have an approximate solution to a good model
 than an exact solution to a bad model.
On the other hand, continuous methods sometimes yield performance
 advantages—for example by replacing a linear- or quadratic-time
 computation with a constant-time solution.
So I recommend a general process with these steps:
	While you are exploring a problem, start with simple models and
 implement them in code that is clear, readable, and demonstrably
 correct. Focus your attention on good modeling decisions, not
 optimization.

	Once you have a simple model working, identify the biggest
 sources of error. You might need to increase the number of values in a
 discrete approximation, or increase the number of iterations in a
 Monte Carlo simulation, or add details to the model.

	If the performance of your solution is good enough for your
 application, you might not have to do any optimization. But if you do,
 there are two approaches to consider. You can review your code and
 look for optimizations; for example, if you cache previously computed
 results you might be able to avoid redundant computation. Or you can
 look for analytic methods that yield computational shortcuts.

One benefit of this process is that Steps 1 and 2 tend to be fast,
 so you can explore several alternative models before investing heavily in
 any of them.
Another benefit is that if you get to Step 3, you will be starting
 with a reference implementation that is likely to be correct, which you
 can use for regression testing (that is, checking that the optimized code
 yields the same results, at least approximately).

Working with the code
The code and sound samples used in this book are available from https://github.com/AllenDowney/ThinkBayes. Git is a version control system that allows you to keep track of the files that make up a project. A collection of files under Git’s control is called a “repository”. GitHub is a hosting service that provides storage for Git repositories and a convenient web interface.
The GitHub homepage for my repository provides several ways to work with the code:
	You can create a copy of my repository on GitHub by pressing the Fork button. If you don’t already have a GitHub account, you’ll need to create one. After forking, you’ll have your own repository on GitHub that you can use to keep track of code you write while working on this book. Then you can clone the repo, which means that you copy the files to your computer.

	Or you could clone my repository. You don’t need a GitHub account to do this, but you won’t be able to write your changes back to GitHub.

	If you don’t want to use Git at all, you can download the files in a Zip file using the button in the lower-right corner of the GitHub page.

The code for the first edition of the book works with Python 2. If you are using Python 3, you might want to use the updated code in https://github.com/AllenDowney/ThinkBayes2 instead.
I developed this book using Anaconda from Continuum Analytics, which is a free Python distribution that includes all the packages you’ll need to run the code (and lots more). I found Anaconda easy to install. By default it does a user-level installation, not system-level, so you don’t need administrative privileges. You can download Anaconda from http://continuum.io/downloads.
If you don’t want to use Anaconda, you will need the following packages:
	NumPy for basic numerical computation, http://www.numpy.org/;

	SciPy for scientific computation, http://www.scipy.org/;

	matplotlib for visualization, http://matplotlib.org/.

Although these are commonly used packages, they are not included with all Python installations, and they can be hard to install in some environments. If you have trouble installing them, I recommend using Anaconda or one of the other Python distributions that include these packages.
Many of the examples in this book use classes and functions defined in thinkbayes.py. Some of them also use thinkplot.py, which provides wrappers for some of the functions in pyplot, which is part of matplotlib.

Code style
Experienced Python programmers will notice that the code in this
 book does not comply with PEP 8, which is the most common style guide for
 Python (http://www.python.org/dev/peps/pep-0008/).
Specifically, PEP 8 calls for lowercase function names with
 underscores between words, like_this. In this book and the accompanying code,
 function and method names begin with a capital letter and use camel case,
 LikeThis.
I broke this rule because I developed some of the code while I was a
 Visiting Scientist at Google, so I followed the Google style guide, which
 deviates from PEP 8 in a few places. Once I got used to Google style, I
 found that I liked it. And at this point, it would be too much trouble to
 change.
Also on the topic of style, I write “Bayes’s theorem” with an
 s after the apostrophe, which is preferred in some
 style guides and deprecated in others. I don’t have a strong preference. I
 had to choose one, and this is the one I chose.
And finally one typographical note: throughout the book, I use PMF
 and CDF for the mathematical concept of a probability mass function or
 cumulative distribution function, and Pmf and Cdf to refer to the Python
 objects I use to represent them.

Prerequisites
There are several excellent modules for doing Bayesian statistics in
 Python, including pymc and OpenBUGS. I
 chose not to use them for this book because you need a fair amount of
 background knowledge to get started with these modules, and I want to keep
 the prerequisites minimal. If you know Python and a little bit about
 probability, you are ready to start this book.
Chapter 1 is about probability and Bayes’s theorem;
 it has no code. Chapter 2 introduces Pmf, a thinly disguised Python dictionary I use
 to represent a probability mass function (PMF). Then Chapter 3 introduces Suite, a kind of Pmf that provides a framework
 for doing Bayesian updates. And that’s just about all there is to
 it.
Well, almost. In some of the later chapters, I use analytic
 distributions including the Gaussian (normal) distribution, the
 exponential and Poisson distributions, and the beta distribution. In Chapter 15 I break out the less-common Dirichlet distribution,
 but I explain it as I go along. If you are not familiar with these
 distributions, you can read about them on Wikipedia. You could also read
 the companion to this book, Think Stats, or an
 introductory statistics book (although I’m afraid most of them take a
 mathematical approach that is not particularly helpful for practical
 purposes).

Conventions Used in This Book
The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Safari® Books Online
Note
Safari Books Online (www.safaribooksonline.com) is
 an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business.

Technology professionals, software developers, web designers, and
 business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
 Safari Books Online offers a range of plans and pricing for enterprise, government, education, and individuals. Members have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at http://oreil.ly/think-bayes.
To comment or ask technical questions about this book, send email to
 bookquestions@oreilly.com.
For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Contributor List
If you have a suggestion or correction, please send email to
 downey@allendowney.com. If I make a change based on
 your feedback, I will add you to the contributor list (unless you ask to
 be omitted).
If you include at least part of the sentence the error appears in,
 that makes it easy for me to search. Page and section numbers are fine,
 too, but not as easy to work with. Thanks!
	First, I have to acknowledge David MacKay’s excellent book,
 Information Theory, Inference, and Learning
 Algorithms, which is where I first came to understand
 Bayesian methods. With his permission, I use several problems from
 his book as examples.

	This book also benefited from my interactions with Sanjoy
 Mahajan, especially in fall 2012, when I audited his class on
 Bayesian Inference at Olin College.

	I wrote parts of this book during project nights with the
 Boston Python User Group, so I would like to thank them for their
 company and pizza.

	Jonathan Edwards sent in the first typo.

	George Purkins found a markup error.

	Olivier Yiptong sent several helpful suggestions.

	Yuriy Pasichnyk found several errors.

	Kristopher Overholt sent a long list of corrections and
 suggestions.

	Robert Marcus found a misplaced i.

	Max Hailperin suggested a clarification in Chapter 1.

	Markus Dobler pointed out that drawing cookies from a bowl
 with replacement is an unrealistic scenario.

	Tom Pollard and Paul A. Giannaros spotted a version problem
 with some of the numbers in the train example.

	Ram Limbu found a typo and suggested a clarification.

	In spring 2013, students in my class, Computational Bayesian
 Statistics, made many helpful corrections and suggestions: Kai
 Austin, Claire Barnes, Kari Bender, Rachel Boy, Kat Mendoza, Arjun
 Iyer, Ben Kroop, Nathan Lintz, Kyle McConnaughay, Alec Radford,
 Brendan Ritter, and Evan Simpson.

	Greg Marra and Matt Aasted helped me clarify the discussion of
 The Price is Right problem.

	Marcus Ogren pointed out that the original statement of the
 locomotive problem was ambiguous.

	Jasmine Kwityn and Dan Fauxsmith at O’Reilly Media proofread
 the book and found many opportunities for improvement.

Chapter 1. Bayes’s Theorem
Conditional probability
The fundamental idea behind all Bayesian statistics is Bayes’s
 theorem, which is surprisingly easy to derive, provided that you
 understand conditional probability. So we’ll start with probability, then
 conditional probability, then Bayes’s theorem, and on to Bayesian
 statistics.
A probability is a number between 0 and 1 (including both) that
 represents a degree of belief in a fact or prediction. The value 1
 represents certainty that a fact is true, or that a prediction will come
 true. The value 0 represents certainty that the fact is false.
Intermediate values represent degrees of certainty. The value 0.5,
 often written as 50%, means that a predicted outcome is as likely to
 happen as not. For example, the probability that a tossed coin lands face
 up is very close to 50%.
A conditional probability is a probability based on some background
 information. For example, I want to know the probability that I will have
 a heart attack in the next year. According to the CDC, “Every year about
 785,000 Americans have a first coronary attack (http://www.cdc.gov/heartdisease/facts.htm).”
The U.S. population is about 311 million, so the probability that a
 randomly chosen American will have a heart attack in the next year is
 roughly 0.3%.
But I am not a randomly chosen American. Epidemiologists have
 identified many factors that affect the risk of heart attacks; depending
 on those factors, my risk might be higher or lower than average.
I am male, 45 years old, and I have borderline high cholesterol.
 Those factors increase my chances. However, I have low blood pressure and
 I don’t smoke, and those factors decrease my chances.
Plugging everything into the online calculator at http://cvdrisk.nhlbi.nih.gov/calculator.asp,
 I find that my risk of a heart attack in the next year is about 0.2%, less
 than the national average. That value is a conditional probability,
 because it is based on a number of factors that make up my
 “condition.”
The usual notation for conditional probability is , which is the probability of A given that B is
 true. In this example, A represents the
 prediction that I will have a heart attack in the next year, and B is the set of conditions I listed.

Conjoint probability
Conjoint probability is a fancy way
 to say the probability that two things are true. I write to mean the probability that A and B are both
 true.
If you learned about probability in the context of coin tosses and
 dice, you might have learned the following formula:

For example, if I toss two coins, and A means the first coin lands face up, and B means the second coin lands face up, then
 , and sure enough, .
But this formula only works because in this case A and B are
 independent; that is, knowing the outcome of the first event does not
 change the probability of the second. Or, more formally, = .
Here is a different example where the events are not independent.
 Suppose that A means that it rains today
 and B means that it rains tomorrow. If I
 know that it rained today, it is more likely that it will rain tomorrow,
 so .
In general, the probability of a conjunction is

for any A and B. So if the chance of rain on any given day is
 0.5, the chance of rain on two consecutive days is not 0.25, but probably
 a bit higher.

The cookie problem
We’ll get to Bayes’s theorem soon, but I want to motivate it with an
 example called the cookie problem.1 Suppose there are two bowls of cookies. Bowl 1 contains 30
 vanilla cookies and 10 chocolate cookies. Bowl 2 contains 20 of
 each.
Now suppose you choose one of the bowls at random and, without
 looking, select a cookie at random. The cookie is vanilla. What is the
 probability that it came from Bowl 1?
This is a conditional probability; we want , but it is not obvious how to compute it. If I asked a
 different question—the probability of a vanilla cookie given Bowl 1—it
 would be easy:

Sadly, is not the same as
 , but there is a way to get from one to the other:
 Bayes’s theorem.

Bayes’s theorem
At this point we have everything we need to derive Bayes’s theorem.
 We’ll start with the observation that conjunction is commutative; that
 is

for any events A and B.
Next, we write the probability of a conjunction:

Since we have not said anything about what A and B mean, they
 are interchangeable. Interchanging them yields

That’s all we need. Pulling those pieces together, we get

Which means there are two ways to compute the conjunction. If you
 have , you multiply by the conditional probability
 . Or you can do it the other way around; if you know
 , you multiply by . Either way you should get the same thing.
Finally we can divide through by :

And that’s Bayes’s theorem! It might not look like much, but it
 turns out to be surprisingly powerful.
For example, we can use it to solve the cookie problem. I’ll write
 B1 for the
 hypothesis that the cookie came from Bowl 1 and V for the vanilla cookie. Plugging in Bayes’s
 theorem we get

The term on the left is what we want: the probability of Bowl 1,
 given that we chose a vanilla cookie. The terms on the right are:
	: This is the probability that we chose Bowl 1,
 unconditioned by what kind of cookie we got. Since the problem says we
 chose a bowl at random, we can assume .

	: This is the probability of getting a vanilla
 cookie from Bowl 1, which is 3/4.

	: This is the probability of drawing a vanilla
 cookie from either bowl. Since we had an equal chance of choosing
 either bowl and the bowls contain the same number of cookies, we had
 the same chance of choosing any cookie. Between the two bowls there
 are 50 vanilla and 30 chocolate cookies, so = 5/8.

Putting it together, we have

which reduces to 3/5. So the vanilla cookie is evidence in favor of
 the hypothesis that we chose Bowl 1, because vanilla cookies are more
 likely to come from Bowl 1.
This example demonstrates one use of Bayes’s theorem: it provides a
 strategy to get from to . This strategy is useful in cases, like the cookie
 problem, where it is easier to compute the terms on the right side of
 Bayes’s theorem than the term on the left.

The diachronic interpretation
There is another way to think of Bayes’s theorem: it gives us a way
 to update the probability of a hypothesis, H, in light of some body of data, D.
This way of thinking about Bayes’s theorem is called the diachronic interpretation. “Diachronic” means that
 something is happening over time; in this case the probability of the
 hypotheses changes, over time, as we see new data.
Rewriting Bayes’s theorem with H
 and D yields:

In this interpretation, each term has a name:
	 is the probability of the hypothesis before we see
 the data, called the prior probability, or just prior.

	 is what we want to compute, the probability of the
 hypothesis after we see the data, called the posterior.

	 is the probability of the data under the
 hypothesis, called the likelihood.

	 is the probability of the data under any
 hypothesis, called the normalizing
 constant.

Sometimes we can compute the prior based on background information.
 For example, the cookie problem specifies that we choose a bowl at random
 with equal probability.
In other cases the prior is subjective; that is, reasonable people
 might disagree, either because they use different background information
 or because they interpret the same information differently.
The likelihood is usually the easiest part to compute. In the cookie
 problem, if we know which bowl the cookie came from, we find the
 probability of a vanilla cookie by counting.
The normalizing constant can be tricky. It is supposed to be the
 probability of seeing the data under any hypothesis at all, but in the
 most general case it is hard to nail down what that means.
Most often we simplify things by specifying a set of hypotheses that
 are
	Mutually exclusive:
	At most one hypothesis in the set can be true, and

	Collectively exhaustive:
	There are no other possibilities; at least one of the
 hypotheses has to be true.

I use the word suite for a set of
 hypotheses that has these properties.
In the cookie problem, there are only two hypotheses—the cookie came
 from Bowl 1 or Bowl 2—and they are mutually exclusive and collectively
 exhaustive.
In that case we can compute using the law of total probability, which says that if
 there are two exclusive ways that something might happen, you can add up
 the probabilities like this:

Plugging in the values from the cookie problem, we have

which is what we computed earlier by mentally combining the two
 bowls.

The M&M problem
M&M’s are small candy-coated chocolates that come in a variety
 of colors. Mars, Inc., which makes M&M’s, changes the mixture of
 colors from time to time.
In 1995, they introduced blue M&M’s. Before then, the color mix
 in a bag of plain M&M’s was 30% Brown, 20% Yellow, 20% Red, 10% Green,
 10% Orange, 10% Tan. Afterward it was 24% Blue, 20% Green, 16% Orange, 14%
 Yellow, 13% Red, 13% Brown.
Suppose a friend of mine has two bags of M&M’s, and he tells me
 that one is from 1994 and one from 1996. He won’t tell me which is which,
 but he gives me one M&M from each bag. One is yellow and one is green.
 What is the probability that the yellow one came from the 1994 bag?
This problem is similar to the cookie problem, with the twist that I
 draw one sample from each bowl/bag. This problem also gives me a chance to
 demonstrate the table method, which is useful for solving problems like
 this on paper. In the next chapter we will solve them
 computationally.
The first step is to enumerate the hypotheses. The bag the yellow
 M&M came from I’ll call Bag 1; I’ll call the other Bag 2. So the
 hypotheses are:
	A: Bag 1 is from 1994, which implies that Bag 2 is from
 1996.

	B: Bag 1 is from 1996 and Bag 2 from 1994.

Now we construct a table with a row for each hypothesis and a column
 for each term in Bayes’s theorem:
		 Prior

	 Likelihood

	

	 Posterior

	A
	 1/2
	 (20)(20)
	 200
	 20/27

	B
	 1/2
	 (10)(14)
	 70
	 7/27

The first column has the priors. Based on the statement of the
 problem, it is reasonable to choose .
The second column has the likelihoods, which follow from the
 information in the problem. For example, if A is true, the yellow M&M came from the 1994
 bag with probability 20%, and the green came from the 1996 bag with
 probability 20%. Because the selections are independent, we get the
 conjoint probability by multiplying.
The third column is just the product of the previous two. The sum of
 this column, 270, is the normalizing constant. To get the last column,
 which contains the posteriors, we divide the third column by the
 normalizing constant.
That’s it. Simple, right?
Well, you might be bothered by one detail. I write in terms of percentages, not probabilities, which
 means it is off by a factor of 10,000. But that cancels out when we divide
 through by the normalizing constant, so it doesn’t affect the
 result.
When the set of hypotheses is mutually exclusive and collectively
 exhaustive, you can multiply the likelihoods by any factor, if it is
 convenient, as long as you apply the same factor to the entire
 column.

The Monty Hall problem
The Monty Hall problem might be the most contentious question in the
 history of probability. The scenario is simple, but the correct answer is
 so counterintuitive that many people just can’t accept it, and many smart
 people have embarrassed themselves not just by getting it wrong but by
 arguing the wrong side, aggressively, in public.
Monty Hall was the original host of the game show Let’s
 Make a Deal. The Monty Hall problem is based on one of the
 regular games on the show. If you are on the show, here’s what
 happens:
	Monty shows you three closed doors and tells you that there is a
 prize behind each door: one prize is a car, the other two are less
 valuable prizes like peanut butter and fake finger nails. The prizes
 are arranged at random.

	The object of the game is to guess which door has the car. If
 you guess right, you get to keep the car.

	You pick a door, which we will call Door A. We’ll call the other
 doors B and C.

	Before opening the door you chose, Monty increases the suspense
 by opening either Door B or C, whichever does not have the car. (If
 the car is actually behind Door A, Monty can safely open B or C, so he
 chooses one at random.)

	Then Monty offers you the option to stick with your original
 choice or switch to the one remaining unopened door.

The question is, should you “stick” or “switch” or does it make no
 difference?
Most people have the strong intuition that it makes no difference.
 There are two doors left, they reason, so the chance that the car is
 behind Door A is 50%.
But that is wrong. In fact, the chance of winning if you stick with
 Door A is only 1/3; if you switch, your chances are 2/3.
By applying Bayes’s theorem, we can break this problem into simple
 pieces, and maybe convince ourselves that the correct answer is, in fact,
 correct.
To start, we should make a careful statement of the data. In this
 case D consists of two parts: Monty
 chooses Door B and there is no car there.
Next we define three hypotheses: A,
 B, and C
 represent the hypothesis that the car is behind Door A, Door B, or Door C.
 Again, let’s apply the table method:
		 Prior

	 Likelihood

	

	 Posterior

	A
	 1/3
	 1/2
	 1/6
	 1/3

	B
	 1/3
	 0
	 0
	 0

	C
	 1/3
	 1
	 1/3
	 2/3

Filling in the priors is easy because we are told that the prizes
 are arranged at random, which suggests that the car is equally likely to
 be behind any door.
Figuring out the likelihoods takes some thought, but with reasonable
 care we can be confident that we have it right:
	If the car is actually behind A, Monty could safely open Doors B
 or C. So the probability that he chooses B is 1/2. And since the car
 is actually behind A, the probability that the car is not behind B is
 1.

	If the car is actually behind B, Monty has to open door C, so
 the probability that he opens door B is 0.

	Finally, if the car is behind Door C, Monty opens B with
 probability 1 and finds no car there with probability 1.

Now the hard part is over; the rest is just arithmetic. The sum of
 the third column is 1/2. Dividing through yields and . So you are better off switching.
There are many variations of the Monty Hall problem. One of the
 strengths of the Bayesian approach is that it generalizes to handle these
 variations.
For example, suppose that Monty always chooses B if he can, and only
 chooses C if he has to (because the car is behind B). In that case the
 revised table is:
		 Prior

	 Likelihood

	

	 Posterior

	A
	 1/3
	 1
	 1/3
	 1/2

	B
	 1/3
	 0
	 0
	 0

	C
	 1/3
	 1
	 1/3
	 1/2

The only change is . If the car is behind A, Monty can choose to open B or C. But in this
 variation he always chooses B, so .
As a result, the likelihoods are the same for A and C, and the
 posteriors are the same: . In this case, the fact that Monty chose B reveals no
 information about the location of the car, so it doesn’t matter whether
 the contestant sticks or switches.
On the other hand, if he had opened C, we would know .
I included the Monty Hall problem in this chapter because I think it
 is fun, and because Bayes’s theorem makes the complexity of the problem a
 little more manageable. But it is not a typical use of Bayes’s theorem, so
 if you found it confusing, don’t worry!

Discussion
For many problems involving conditional probability, Bayes’s theorem
 provides a divide-and-conquer strategy. If is hard to compute, or hard to measure experimentally,
 check whether it might be easier to compute the other terms in Bayes’s
 theorem, , and .
If the Monty Hall problem is your idea of fun, I have collected a
 number of similar problems in an article called “All your Bayes are belong
 to us,” which you can read at http://allendowney.blogspot.com/2011/10/all-your-bayes-are-belong-to-us.html.

1 Based on an example from http://en.wikipedia.org/wiki/Bayes’_theorem
 that is no longer there.

Chapter 2. Computational Statistics
Distributions
In statistics a distribution is a
 set of values and their corresponding probabilities.
For example, if you roll a six-sided die, the set of possible values
 is the numbers 1 to 6, and the probability associated with each value is
 1/6.
As another example, you might be interested in how many times each
 word appears in common English usage. You could build a distribution that
 includes each word and how many times it appears.
To represent a distribution in Python, you could use a dictionary
 that maps from each value to its probability. I have written a class
 called Pmf that uses a Python
 dictionary in exactly that way, and provides a number of useful methods. I
 called the class Pmf in reference to a probability
 mass function, which is a way to represent a distribution
 mathematically.
Pmf is defined in a Python module
 I wrote to accompany this book, thinkbayes.py. You can download it from http://thinkbayes.com/thinkbayes.py.
 For more information see “Working with the code”.
To use Pmf you can import it like
 this:
from thinkbayes import Pmf
The following code builds a Pmf to represent the distribution of
 outcomes for a six-sided die:
pmf = Pmf()
for x in [1,2,3,4,5,6]:
 pmf.Set(x, 1/6.0)
Pmf creates an empty
 Pmf with no values. The Set method sets the probability associated with
 each value to .
Here’s another example that counts the number of times each word
 appears in a sequence:
pmf = Pmf()
for word in word_list:
 pmf.Incr(word, 1)
Incr increases the
 “probability” associated with each word by 1. If a word is not already in
 the Pmf, it is added.
I put “probability” in quotes because in this example, the
 probabilities are not normalized; that is, they do not add up to 1. So
 they are not true probabilities.
But in this example the word counts are proportional to the
 probabilities. So after we count all the words, we can compute
 probabilities by dividing through by the total number of words. Pmf provides a method, Normalize, that does exactly that:
pmf.Normalize()
Once you have a Pmf object, you can ask for the probability
 associated with any value:
print pmf.Prob('the')
And that would print the frequency of the word “the” as a fraction
 of the words in the list.
Pmf uses a Python dictionary to store the values and their
 probabilities, so the values in the Pmf can be any hashable type. The
 probabilities can be any numerical type, but they are usually
 floating-point numbers (type float).

The cookie problem
In the context of Bayes’s theorem, it is natural to use a Pmf to map
 from each hypothesis to its probability. In the cookie problem, the
 hypotheses are B1
 and B2. In Python,
 I represent them with strings:
pmf = Pmf()
pmf.Set('Bowl 1', 0.5)
pmf.Set('Bowl 2', 0.5)
This distribution, which contains the priors for each hypothesis, is
 called (wait for it) the prior
 distribution.
To update the distribution based on new data (the vanilla cookie),
 we multiply each prior by the corresponding likelihood. The likelihood of
 drawing a vanilla cookie from Bowl 1 is 3/4. The likelihood for Bowl 2 is
 1/2.
pmf.Mult('Bowl 1', 0.75)
pmf.Mult('Bowl 2', 0.5)
Mult does what you
 would expect. It gets the probability for the given hypothesis and
 multiplies by the given likelihood.
After this update, the distribution is no longer normalized, but
 because these hypotheses are mutually exclusive and collectively
 exhaustive, we can renormalize:
pmf.Normalize()
The result is a distribution that contains the posterior probability
 for each hypothesis, which is called (wait now) the posterior distribution.
Finally, we can get the posterior probability for Bowl 1:
print pmf.Prob('Bowl 1')
And the answer is 0.6. You can download this example from http://thinkbayes.com/cookie.py.
 For more information see “Working with the code”.

The Bayesian framework
Before we go on to other problems, I want to rewrite the
 code from the previous section to make it more general. First I’ll define
 a class to encapsulate the code related to this problem:
class Cookie(Pmf):

 def __init__(self, hypos):
 Pmf.__init__(self)
 for hypo in hypos:
 self.Set(hypo, 1)
 self.Normalize()
A Cookie object is a Pmf that maps from hypotheses to their
 probabilities. The __init__ method gives each hypothesis the same
 prior probability. As in the previous section, there are two
 hypotheses:
 hypos = ['Bowl 1', 'Bowl 2']
 pmf = Cookie(hypos)
Cookie provides an
 Update method that takes
 data as a parameter and updates the probabilities:
 def Update(self, data):
 for hypo in self.Values():
 like = self.Likelihood(data, hypo)
 self.Mult(hypo, like)
 self.Normalize()
Update loops through
 each hypothesis in the suite and multiplies its probability by the
 likelihood of the data under the hypothesis, which is computed by Likelihood:
 mixes = {
 'Bowl 1':dict(vanilla=0.75, chocolate=0.25),
 'Bowl 2':dict(vanilla=0.5, chocolate=0.5),
 }

 def Likelihood(self, data, hypo):
 mix = self.mixes[hypo]
 like = mix[data]
 return like
Likelihood uses
 mixes, which is a
 dictionary that maps from the name of a bowl to the mix of cookies in the
 bowl.
Here’s what the update looks like:
 pmf.Update('vanilla')
And then we can print the posterior probability of each
 hypothesis:
 for hypo, prob in pmf.Items():
 print hypo, prob
The result is
Bowl 1 0.6
Bowl 2 0.4
which is the same as what we got before. This code is more
 complicated than what we saw in the previous section. One advantage is
 that it generalizes to the case where we draw more than one cookie from
 the same bowl (with replacement):
 dataset = ['vanilla', 'chocolate', 'vanilla']
 for data in dataset:
 pmf.Update(data)
The other advantage is that it provides a framework for solving many
 similar problems. In the next section we’ll solve the Monty Hall problem
 computationally and then see what parts of the framework are the
 same.
The code in this section is available from http://thinkbayes.com/cookie2.py.
 For more information see “Working with the code”.

The Monty Hall problem
To solve the Monty Hall problem, I’ll define a new class:
class Monty(Pmf):

 def __init__(self, hypos):
 Pmf.__init__(self)
 for hypo in hypos:
 self.Set(hypo, 1)
 self.Normalize()
So far Monty and
 Cookie are exactly the
 same. And the code that creates the Pmf is the same, too, except for the
 names of the hypotheses:
 hypos = 'ABC'
 pmf = Monty(hypos)
Calling Update is
 pretty much the same:
 data = 'B'
 pmf.Update(data)
And the implementation of Update is exactly the same:
 def Update(self, data):
 for hypo in self.Values():
 like = self.Likelihood(data, hypo)
 self.Mult(hypo, like)
 self.Normalize()
The only part that requires some work is Likelihood:
 def Likelihood(self, data, hypo):
 if hypo == data:
 return 0
 elif hypo == 'A':
 return 0.5
 else:
 return 1
Finally, printing the results is the same:
 for hypo, prob in pmf.Items():
 print hypo, prob
And the answer is
A 0.333333333333
B 0.0
C 0.666666666667
In this example, writing Likelihood is a little complicated, but the
 framework of the Bayesian update is simple. The code in this section is
 available from http://thinkbayes.com/monty.py.
 For more information see “Working with the code”.

Encapsulating the framework
Now that we see what elements of the framework are the same,
 we can encapsulate them in an object—a Suite is a Pmf that provides __init__, Update, and Print:
class Suite(Pmf):
 """Represents a suite of hypotheses and their probabilities."""

 def __init__(self, hypo=tuple()):
 """Initializes the distribution."""

 def Update(self, data):
 """Updates each hypothesis based on the data."""

 def Print(self):
 """Prints the hypotheses and their probabilities."""
The implementation of Suite is in thinkbayes.py. To use Suite, you should write a class that inherits from
 it and provides Likelihood. For example, here is the solution to
 the Monty Hall problem rewritten to use Suite:
from thinkbayes import Suite

class Monty(Suite):

 def Likelihood(self, data, hypo):
 if hypo == data:
 return 0
 elif hypo == 'A':
 return 0.5
 else:
 return 1
And here’s the code that uses this class:
 suite = Monty('ABC')
 suite.Update('B')
 suite.Print()
You can download this example from http://thinkbayes.com/monty2.py.
 For more information see “Working with the code”.

The M&M problem
We can use the Suite framework to solve the
 M&M problem. Writing the Likelihood function is tricky, but everything else
 is straightforward.
First I need to encode the color mixes from before and after
 1995:
 mix94 = dict(brown=30,
 yellow=20,
 red=20,
 green=10,
 orange=10,
 tan=10)

 mix96 = dict(blue=24,
 green=20,
 orange=16,
 yellow=14,
 red=13,
 brown=13)
Then I have to encode the hypotheses:
 hypoA = dict(bag1=mix94, bag2=mix96)
 hypoB = dict(bag1=mix96, bag2=mix94)
hypoA represents the
 hypothesis that Bag 1 is from 1994 and Bag 2 from 1996. hypoB is the other way
 around.
Next I map from the name of the hypothesis to the
 representation:
 hypotheses = dict(A=hypoA, B=hypoB)
And finally I can write Likelihood. In this case the hypothesis, hypo, is a string, either A or B. The data is a tuple that specifies a bag and a
 color.
 def Likelihood(self, data, hypo):
 bag, color = data
 mix = self.hypotheses[hypo][bag]
 like = mix[color]
 return like
Here’s the code that creates the suite and updates it:
 suite = M_and_M('AB')

 suite.Update(('bag1', 'yellow'))
 suite.Update(('bag2', 'green'))

 suite.Print()
And here’s the result:
A 0.740740740741
B 0.259259259259
The posterior probability of A is approximately , which is what we got before.
The code in this section is available from http://thinkbayes.com/m_and_m.py.
 For more information see “Working with the code”.

Discussion
This chapter presents the Suite class, which encapsulates the
 Bayesian update framework.
Suite is an abstract type, which means that it defines the
 interface a Suite is supposed to have, but does not provide a complete
 implementation. The Suite interface
 includes Update and Likelihood, but the Suite class only provides an implementation of
 Update, not Likelihood.
A concrete type is a class that
 extends an abstract parent class and provides an implementation of the
 missing methods. For example, Monty
 extends Suite, so it inherits Update and provides Likelihood.
If you are familiar with design patterns, you might recognize this
 as an example of the template method pattern. You can read about this
 pattern at http://en.wikipedia.org/wiki/Template_method_pattern.
Most of the examples in the following chapters follow the same
 pattern; for each problem we define a new class that extends Suite, inherits Update, and provides Likelihood. In a few cases we override Update, usually to improve performance.

Exercises
Exercise 2-1.
In “The Bayesian framework” I said that the solution to the
 cookie problem generalizes to the case where we draw multiple cookies
 with replacement.
But in the more likely scenario where we eat the cookies we
 draw, the likelihood of each draw depends on the previous
 draws.
Modify the solution in this chapter to handle selection without
 replacement. Hint: add instance variables to Cookie to represent the hypothetical state
 of the bowls, and modify Likelihood
 accordingly. You might want to define a Bowl object.

Chapter 3. Estimation
The dice problem
Suppose I have a box of dice that contains a 4-sided die, a
 6-sided die, an 8-sided die, a 12-sided die, and a 20-sided die. If you
 have ever played Dungeons & Dragons, you know
 what I am talking about.
Suppose I select a die from the box at random, roll it, and get a 6.
 What is the probability that I rolled each die?
Let me suggest a three-step strategy for approaching a problem like
 this.
	Choose a representation for the hypotheses.

	Choose a representation for the data.

	Write the likelihood function.

In previous examples I used strings to represent hypotheses and
 data, but for the die problem I’ll use numbers. Specifically, I’ll use the
 integers 4, 6, 8, 12, and 20 to represent hypotheses:
 suite = Dice([4, 6, 8, 12, 20])
And integers from 1 to 20 for the data. These representations make
 it easy to write the likelihood function:
class Dice(Suite):
 def Likelihood(self, data, hypo):
 if hypo < data:
 return 0
 else:
 return 1.0/hypo
Here’s how Likelihood works. If hypo<data, that means the roll is greater than
 the number of sides on the die. That can’t happen, so the likelihood is
 0.
Otherwise the question is, “Given that there are hypo sides, what is the chance of rolling
 data?” The answer is 1/hypo, regardless of data.
Here is the statement that does the update (if I roll a 6):
 suite.Update(6)
And here is the posterior distribution:
4 0.0
6 0.392156862745
8 0.294117647059
12 0.196078431373
20 0.117647058824
After we roll a 6, the probability for the 4-sided die is 0. The
 most likely alternative is the 6-sided die, but there is still almost a
 12% chance for the 20-sided die.
What if we roll a few more times and get 6, 8, 7, 7, 5, and
 4?
 for roll in [6, 8, 7, 7, 5, 4]:
 suite.Update(roll)
With this data the 6-sided die is eliminated, and the 8-sided die
 seems quite likely. Here are the results:
4 0.0
6 0.0
8 0.943248453672
12 0.0552061280613
20 0.0015454182665
Now the probability is 94% that we are rolling the 8-sided die, and
 less than 1% for the 20-sided die.
The dice problem is based on an example I saw in Sanjoy Mahajan’s
 class on Bayesian inference. You can download the code in this section
 from http://thinkbayes.com/dice.py.
 For more information see “Working with the code”.

The locomotive problem
I found the locomotive problem in Frederick Mosteller’s,
 Fifty Challenging Problems in Probability with
 Solutions (Dover, 1987):
“A railroad numbers its locomotives in order 1..N. One day you see
 a locomotive with the number 60. Estimate how many locomotives the
 railroad has.”

Based on this observation, we know the railroad has 60 or more
 locomotives. But how many more? To apply Bayesian reasoning, we can break
 this problem into two steps:
	What did we know about N before
 we saw the data?

	For any given value of N, what
 is the likelihood of seeing the data (a locomotive with number
 60)?

The answer to the first question is the prior. The answer to the
 second is the likelihood.
We don’t have much basis to choose a prior, but we can start with
 something simple and then consider alternatives. Let’s assume that
 N is equally likely to be any value from
 1 to 1000.
 hypos = xrange(1, 1001)
Now all we need is a likelihood function. In a hypothetical fleet of
 N locomotives, what is the probability
 that we would see number 60? If we assume that there is only one
 train-operating company (or only one we care about) and that we are
 equally likely to see any of its locomotives, then the chance of seeing
 any particular locomotive is .
Here’s the likelihood function:
class Train(Suite):
 def Likelihood(self, data, hypo):
 if hypo < data:
 return 0
 else:
 return 1.0/hypo
This might look familiar; the likelihood functions for the
 locomotive problem and the dice problem are identical.
Here’s the update:
 suite = Train(hypos)
 suite.Update(60)
There are too many hypotheses to print, so I plotted the results in
 Figure 3-1. Not surprisingly, all values of N below 60 have been eliminated.
Figure 3-1. Posterior distribution for the locomotive problem, based on a
 uniform prior.

The most likely value, if you had to guess, is 60. That might not
 seem like a very good guess; after all, what are the chances that you just
 happened to see the train with the highest number? Nevertheless, if you
 want to maximize the chance of getting the answer exactly right, you
 should guess 60.
But maybe that’s not the right goal. An alternative is to compute
 the mean of the posterior distribution:
def Mean(suite):
 total = 0
 for hypo, prob in suite.Items():
 total += hypo * prob
 return total

print Mean(suite)
Or you could use the very similar method provided by Pmf:
 print suite.Mean()
The mean of the posterior is 333, so that might be a good guess if
 you wanted to minimize error. If you played this guessing game over and
 over, using the mean of the posterior as your estimate would minimize the
 mean squared error over the long run (see http://en.wikipedia.org/wiki/Minimum_mean_square_error).
You can download this example from http://thinkbayes.com/train.py.
 For more information see “Working with the code”.

What about that prior?
To make any progress on the locomotive problem we had to make
 assumptions, and some of them were pretty arbitrary. In particular, we
 chose a uniform prior from 1 to 1000, without much justification for
 choosing 1000, or for choosing a uniform distribution.
It is not crazy to believe that a railroad company might operate
 1000 locomotives, but a reasonable person might guess more or fewer. So we
 might wonder whether the posterior distribution is sensitive to these
 assumptions. With so little data—only one observation—it probably
 is.
Recall that with a uniform prior from 1 to 1000, the mean of the
 posterior is 333. With an upper bound of 500, we get a posterior mean of
 207, and with an upper bound of 2000, the posterior mean is 552.
So that’s bad. There are two ways to proceed:
	Get more data.

	Get more background information.

With more data, posterior distributions based on different priors
 tend to converge. For example, suppose that in addition to train 60 we
 also see trains 30 and 90. We can update the distribution like
 this:
 for data in [60, 30, 90]:
 suite.Update(data)
With these data, the means of the posteriors are
	Upper
Bound
	Posterior
Mean

	500
	 152

	1000
	 164

	2000
	 171

So the differences are smaller.

An alternative prior
If more data are not available, another option is to improve the
 priors by gathering more background information. It is probably not
 reasonable to assume that a train-operating company with 1000 locomotives
 is just as likely as a company with only 1.
With some effort, we could probably find a list of companies that
 operate locomotives in the area of observation. Or we could interview an
 expert in rail shipping to gather information about the typical size of
 companies.
But even without getting into the specifics of railroad economics,
 we can make some educated guesses. In most fields, there are many small
 companies, fewer medium-sized companies, and only one or two very large
 companies. In fact, the distribution of company sizes tends to follow a
 power law, as Robert Axtell reports in Science (see
 http://www.sciencemag.org/content/293/5536/1818.full.pdf).
This law suggests that if there are 1000 companies with fewer than
 10 locomotives, there might be 100 companies with 100 locomotives, 10
 companies with 1000, and possibly one company with 10,000
 locomotives.
Mathematically, a power law means that the number of companies with
 a given size is inversely proportional to size, or

where is the probability mass function of x and α is a
 parameter that is often near 1.
We can construct a power law prior like this:
class Train(Dice):

 def __init__(self, hypos, alpha=1.0):
 Pmf.__init__(self)
 for hypo in hypos:
 self.Set(hypo, hypo**(-alpha))
 self.Normalize()
And here’s the code that constructs the prior:
 hypos = range(1, 1001)
 suite = Train(hypos)
Again, the upper bound is arbitrary, but with a power law prior, the
 posterior is less sensitive to this choice.
Figure 3-2 shows the new posterior based on the
 power law, compared to the posterior based on the uniform prior. Using the
 background information represented in the power law prior, we can all but
 eliminate values of N greater than
 700.
Figure 3-2. Posterior distribution based on a power law prior, compared to a
 uniform prior.

If we start with this prior and observe trains 30, 60, and 90, the
 means of the posteriors are:
	Upper
Bound
	Posterior
Mean

	500
	 131

	1000
	 133

	2000
	 134

Now the differences are much smaller. In fact, with an arbitrarily
 large upper bound, the mean converges on 134.
So the power law prior is more realistic, because it is based on
 general information about the size of companies, and it behaves better in
 practice.
You can download the examples in this section from http://thinkbayes.com/train3.py.
 For more information see “Working with the code”.

Credible intervals
Once you have computed a posterior distribution, it is often useful
 to summarize the results with a single point estimate or an interval. For
 point estimates it is common to use the mean, median, or the value with
 maximum likelihood.
For intervals we usually report two values computed so that there is
 a 90% chance that the unknown value falls between them (or any other
 probability). These values define a credible
 interval.
A simple way to compute a credible interval is to add up the
 probabilities in the posterior distribution and record the values that
 correspond to probabilities 5% and 95%. In other words, the 5th and 95th
 percentiles.
thinkbayes provides
 a function that computes percentiles:
def Percentile(pmf, percentage):
 p = percentage / 100.0
 total = 0
 for val, prob in pmf.Items():
 total += prob
 if total >= p:
 return val
And here’s the code that uses it:
 interval = Percentile(suite, 5), Percentile(suite, 95)
 print interval
For the previous example—the locomotive problem with a power law
 prior and three trains—the 90% credible interval is . The width of this range suggests, correctly, that we
 are still quite uncertain about how many locomotives there are.

Cumulative distribution functions
In the previous section we computed percentiles by iterating through
 the values and probabilities in a Pmf. If we need to compute more than a
 few percentiles, it is more efficient to use a cumulative distribution
 function, or Cdf.
Cdfs and Pmfs are equivalent in the sense that they contain the same
 information about the distribution, and you can always convert from one to
 the other. The advantage of the Cdf is that you can compute percentiles
 more efficiently.
thinkbayes provides a Cdf class that represents a cumulative
 distribution function. Pmf provides a
 method that makes the corresponding Cdf:
cdf = suite.MakeCdf()
And Cdf provides a function named
 Percentile
 interval = cdf.Percentile(5), cdf.Percentile(95)
Converting from a Pmf to a Cdf takes time proportional to the number
 of values, len(pmf). The Cdf stores the
 values and probabilities in sorted lists, so looking up a probability to
 get the corresponding value takes “log time”: that is, time proportional
 to the logarithm of the number of values. Looking up a value to get the
 corresponding probability is also logarithmic, so Cdfs are efficient for
 many calculations.
The examples in this section are in http://thinkbayes.com/train3.py.
 For more information see “Working with the code”.

The German tank problem
During World War II, the Economic Warfare Division of the American
 Embassy in London used statistical analysis to estimate German production
 of tanks and other equipment.1
The Western Allies had captured log books, inventories, and repair
 records that included chassis and engine serial numbers for individual
 tanks.
Analysis of these records indicated that serial numbers were
 allocated by manufacturer and tank type in blocks of 100 numbers, that
 numbers in each block were used sequentially, and that not all numbers in
 each block were used. So the problem of estimating German tank production
 could be reduced, within each block of 100 numbers, to a form of the
 locomotive problem.
Based on this insight, American and British analysts produced
 estimates substantially lower than estimates from other forms of
 intelligence. And after the war, records indicated that they were
 substantially more accurate.
They performed similar analyses for tires, trucks, rockets, and
 other equipment, yielding accurate and actionable economic
 intelligence.
The German tank problem is historically interesting; it is also a
 nice example of real-world application of statistical estimation. So far
 many of the examples in this book have been toy problems, but it will not
 be long before we start solving real problems. I think it is an advantage
 of Bayesian analysis, especially with the computational approach we are
 taking, that it provides such a short path from a basic introduction to
 the research frontier.

Discussion
Among Bayesians, there are two approaches to choosing prior
 distributions. Some recommend choosing the prior that best represents
 background information about the problem; in that case the prior is said
 to be informative. The problem with using
 an informative prior is that people might use different background
 information (or interpret it differently). So informative priors often
 seem subjective.
The alternative is a so-called uninformative
 prior, which is intended to be as unrestricted as possible, in
 order to let the data speak for themselves. In some cases you can identify
 a unique prior that has some desirable property, like representing minimal
 prior information about the estimated quantity.
Uninformative priors are appealing because they seem more objective.
 But I am generally in favor of using informative priors. Why? First,
 Bayesian analysis is always based on modeling decisions. Choosing the
 prior is one of those decisions, but it is not the only one, and it might
 not even be the most subjective. So even if an uninformative prior is more
 objective, the entire analysis is still subjective.
Also, for most practical problems, you are likely to be in one of
 two regimes: either you have a lot of data or not very much. If you have a
 lot of data, the choice of the prior doesn’t matter very much; informative
 and uninformative priors yield almost the same results. We’ll see an
 example like this in the next chapter.
But if, as in the locomotive problem, you don’t have much data,
 using relevant background information (like the power law distribution)
 makes a big difference.
And if, as in the German tank problem, you have to make
 life-and-death decisions based on your results, you should probably use
 all of the information at your disposal, rather than maintaining the
 illusion of objectivity by pretending to know less than you do.

Exercises
Exercise 3-1.
To write a likelihood function for the locomotive problem, we
 had to answer this question: “If the railroad has N locomotives, what is the probability that we
 see number 60?”
The answer depends on what sampling process we use when we
 observe the locomotive. In this chapter, I resolved the ambiguity by
 specifying that there is only one train-operating company (or only one
 that we care about).
But suppose instead that there are many companies with different
 numbers of trains. And suppose that you are equally likely to see any
 train operated by any company. In that case, the likelihood function
 is different because you are more likely to see a train operated by a
 large company.
As an exercise, implement the likelihood function for this
 variation of the locomotive problem, and compare the results.

1 Ruggles and Brodie, “An Empirical Approach to Economic
 Intelligence in World War II,” Journal of the American
 Statistical Association, Vol. 42, No. 237 (March
 1947).

Chapter 4. More Estimation
The Euro problem
In Information Theory, Inference, and Learning
 Algorithms, David MacKay poses this problem:
A statistical statement appeared in “The Guardian” on Friday
 January 4, 2002:
When spun on edge 250 times, a Belgian one-euro coin came up
 heads 140 times and tails 110. ‘It looks very suspicious to me,’ said
 Barry Blight, a statistics lecturer at the London School of Economics.
 ‘If the coin were unbiased, the chance of getting a result as extreme
 as that would be less than 7%.’

But do these data give evidence that the coin is biased rather
 than fair?

To answer that question, we’ll proceed in two steps. The first is to
 estimate the probability that the coin lands face up. The second is to
 evaluate whether the data support the hypothesis that the coin is
 biased.
You can download the code in this section from http://thinkbayes.com/euro.py.
 For more information see “Working with the code”.
Any given coin has some probability, x, of landing heads up when spun on edge. It seems
 reasonable to believe that the value of x
 depends on some physical characteristics of the coin, primarily the
 distribution of weight.
If a coin is perfectly balanced, we expect x to be close to 50%, but for a lopsided coin,
 x might be substantially different. We
 can use Bayes’s theorem and the observed data to estimate x.
Let’s define 101 hypotheses, where Hx is the hypothesis that
 the probability of heads is x%, for
 values from 0 to 100. I’ll start with a uniform prior where the
 probability of Hx
 is the same for all x. We’ll come back
 later to consider other priors.
The likelihood function is relatively easy: If Hx is true, the probability
 of heads is and the probability of tails is .
class Euro(Suite):

 def Likelihood(self, data, hypo):
 x = hypo
 if data == 'H':
 return x/100.0
 else:
 return 1 - x/100.0
Here’s the code that makes the suite and updates it:
 suite = Euro(xrange(0, 101))
 dataset = 'H' * 140 + 'T' * 110

 for data in dataset:
 suite.Update(data)
The result is in Figure 4-1.
Figure 4-1. Posterior distribution for the Euro problem on a uniform
 prior.

Summarizing the posterior
Again, there are several ways to summarize the posterior
 distribution. One option is to find the most likely value in the posterior
 distribution. thinkbayes
 provides a function that does that:
def MaximumLikelihood(pmf):
 """Returns the value with the highest probability."""
 prob, val = max((prob, val) for val, prob in pmf.Items())
 return val
In this case the result is 56, which is also the observed percentage
 of heads, . So that suggests (correctly) that the observed
 percentage is the maximum likelihood estimator for the population.
We might also summarize the posterior by computing the mean and
 median:
 print 'Mean', suite.Mean()
 print 'Median', thinkbayes.Percentile(suite, 50)
The mean is 55.95; the median is 56. Finally, we can compute a
 credible interval:
 print 'CI', thinkbayes.CredibleInterval(suite, 90)
The result is .
Now, getting back to the original question, we would like to know
 whether the coin is fair. We observe that the posterior credible interval
 does not include 50%, which suggests that the coin is not fair.
But that is not exactly the question we started with. MacKay asked,
 “ Do these data give evidence that the coin is biased rather than fair?”
 To answer that question, we will have to be more precise about what it
 means to say that data constitute evidence for a hypothesis. And that is
 the subject of the next chapter.
But before we go on, I want to address one possible source of
 confusion. Since we want to know whether the coin is fair, it might be
 tempting to ask for the probability that x is 50%:
 print suite.Prob(50)
The result is 0.021, but that value is almost meaningless. The
 decision to evaluate 101 hypotheses was arbitrary; we could have divided
 the range into more or fewer pieces, and if we had, the probability for
 any given hypothesis would be greater or less.

Swamping the priors
We started with a uniform prior, but that might not be a good
 choice. I can believe that if a coin is lopsided, x might deviate substantially from 50%, but it
 seems unlikely that the Belgian Euro coin is so imbalanced that x is 10% or 90%.
It might be more reasonable to choose a prior that gives higher
 probability to values of x near 50% and
 lower probability to extreme values.
As an example, I constructed a triangular prior, shown in Figure 4-2. Here’s the code that constructs the prior:
def TrianglePrior():
 suite = Euro()
 for x in range(0, 51):
 suite.Set(x, x)
 for x in range(51, 101):
 suite.Set(x, 100-x)
 suite.Normalize()
Figure 4-2. Uniform and triangular priors for the Euro problem.

Figure 4-2 shows the result (and the uniform prior
 for comparison). Updating this prior with the same dataset yields the
 posterior distribution shown in Figure 4-3. Even with
 substantially different priors, the posterior distributions are very
 similar. The medians and the credible intervals are identical; the means
 differ by less than 0.5%.
Figure 4-3. Posterior distributions for the Euro problem.

This is an example of swamping the
 priors: with enough data, people who start with different
 priors will tend to converge on the same posterior.

Optimization
The code I have shown so far is meant to be easy to read, but it is
 not very efficient. In general, I like to develop code that is
 demonstrably correct, then check whether it is fast enough for my
 purposes. If so, there is no need to optimize. For this example, if we
 care about run time, there are several ways we can speed it up.
The first opportunity is to reduce the number of times we normalize
 the suite. In the original code, we call Update once for each spin.
 dataset = 'H' * heads + 'T' * tails

 for data in dataset:
 suite.Update(data)
And here’s what Update looks like:
 def Update(self, data):
 for hypo in self.Values():
 like = self.Likelihood(data, hypo)
 self.Mult(hypo, like)
 return self.Normalize()
Each update iterates through the hypotheses, then calls Normalize, which iterates through
 the hypotheses again. We can save some time by doing all of the updates
 before normalizing.
Suite provides a
 method called UpdateSet
 that does exactly that. Here it is:
 def UpdateSet(self, dataset):
 for data in dataset:
 for hypo in self.Values():
 like = self.Likelihood(data, hypo)
 self.Mult(hypo, like)
 return self.Normalize()
And here’s how we can invoke it:
 dataset = 'H' * heads + 'T' * tails
 suite.UpdateSet(dataset)
This optimization speeds things up, but the run time is still
 proportional to the amount of data. We can speed things up even more by
 rewriting Likelihood to
 process the entire dataset, rather than one spin at a time.
In the original version, data is a string that encodes either heads or
 tails:
 def Likelihood(self, data, hypo):
 x = hypo / 100.0
 if data == 'H':
 return x
 else:
 return 1-x
As an alternative, we could encode the dataset as a tuple of two
 integers: the number of heads and tails. In that case Likelihood looks like
 this:
 def Likelihood(self, data, hypo):
 x = hypo / 100.0
 heads, tails = data
 like = x**heads * (1-x)**tails
 return like
And then we can call Update like this:
 heads, tails = 140, 110
 suite.Update((heads, tails))
Since we have replaced repeated multiplication with exponentiation,
 this version takes the same time for any number of spins.

The beta distribution
There is one more optimization that solves this problem even
 faster.
So far we have used a Pmf object to represent a discrete set of
 values for x. Now we will use a
 continuous distribution, specifically the beta distribution (see http://en.wikipedia.org/wiki/Beta_distribution).
The beta distribution is defined on the interval from 0 to 1
 (including both), so it is a natural choice for describing proportions and
 probabilities. But wait, it gets better.
It turns out that if you do a Bayesian update with a binomial
 likelihood function, which is what we did in the previous section, the beta
 distribution is a conjugate prior. That
 means that if the prior distribution for x is a beta distribution, the posterior is also
 a beta distribution. But wait, it gets even better.
The shape of the beta distribution depends on two parameters,
 written α and β, or alpha and
 beta. If the prior is a beta
 distribution with parameters alpha and
 beta, and we see data with h heads and t
 tails, the posterior is a beta distribution with parameters alpha+h and beta+t. In other words, we can do an update with
 two additions.
So that’s great, but it only works if we can find a beta
 distribution that is a good choice for a prior. Fortunately, for many
 realistic priors there is a beta distribution that is at least a good
 approximation, and for a uniform prior there is a perfect match. The beta
 distribution with alpha=1 and beta=1 is uniform from 0 to 1.
Let’s see how we can take advantage of all this. thinkbayes.py provides a class that represents a
 beta distribution:
class Beta(object):

 def __init__(self, alpha=1, beta=1):
 self.alpha = alpha
 self.beta = beta
By default __init__
 makes a uniform distribution. Update
 performs a Bayesian update:
 def Update(self, data):
 heads, tails = data
 self.alpha += heads
 self.beta += tails
data is a pair of integers
 representing the number of heads and tails.
So we have yet another way to solve the Euro problem:
 beta = thinkbayes.Beta()
 beta.Update((140, 110))
 print beta.Mean()
Beta provides Mean, which computes a simple function of
 alpha and beta:
 def Mean(self):
 return float(self.alpha) / (self.alpha + self.beta)
For the Euro problem the posterior mean is 56%, which is the same
 result we got using Pmfs.
Beta also provides EvalPdf, which evaluates the probability density
 function (PDF) of the beta distribution:
 def EvalPdf(self, x):
 return x**(self.alpha-1) * (1-x)**(self.beta-1)
Finally, Beta provides MakePmf, which uses EvalPdf to generate a discrete approximation of
 the beta distribution.

Discussion
In this chapter we solved the same problem with two different priors
 and found that with a large dataset, the priors get swamped. If two people
 start with different prior beliefs, they generally find, as they see more
 data, that their posterior distributions converge. At some point the
 difference between their distributions is small enough that it has no
 practical effect.
When this happens, it relieves some of the worry about objectivity
 that I discussed in the previous chapter. And for many real-world problems
 even stark prior beliefs can eventually be reconciled by data.
But that is not always the case. First, remember that all Bayesian
 analysis is based on modeling decisions. If you and I do not choose the
 same model, we might interpret data differently. So even with the same
 data, we would compute different likelihoods, and our posterior beliefs
 might not converge.
Also, notice that in a Bayesian update, we multiply each prior
 probability by a likelihood, so if is 0, is also 0, regardless of D. In the Euro problem, if you are convinced that
 x is less than 50%, and you assign
 probability 0 to all other hypotheses, no amount of data will convince you
 otherwise.
This observation is the basis of Cromwell’s
 rule, which is the recommendation that you should avoid giving
 a prior probability of 0 to any hypothesis that is even remotely possible
 (see http://en.wikipedia.org/wiki/Cromwell’s_rule).
Cromwell’s rule is named after Oliver Cromwell, who wrote, “I
 beseech you, in the bowels of Christ, think it possible that you may be
 mistaken.” For Bayesians, this turns out to be good advice (even if it’s a
 little overwrought).

Exercises
Exercise 4-1.
Suppose that instead of observing coin tosses directly, you
 measure the outcome using an instrument that is not always correct.
 Specifically, suppose there is a probability y that an actual heads is reported as tails,
 or actual tails reported as heads.
Write a class that estimates the bias of a coin given a series
 of outcomes and the value of y.
How does the spread of the posterior distribution depend on
 y?

Exercise 4-2.
This exercise is inspired by a question posted by a
 “redditor” named dominosci on Reddit’s statistics “subreddit” at
 http://reddit.com/r/statistics.
Reddit is an online forum with many interest groups called
 subreddits. Users, called redditors, post links to online content and
 other web pages. Other redditors vote on the links, giving an “upvote”
 to high-quality links and a “downvote” to links that are bad or
 irrelevant.
A problem, identified by dominosci, is that some redditors are
 more reliable than others, and Reddit does not take this into
 account.
The challenge is to devise a system so that when a redditor
 casts a vote, the estimated quality of the link is updated in
 accordance with the reliability of the redditor, and the estimated
 reliability of the redditor is updated in accordance with the quality
 of the link.
One approach is to model the quality of the link as the
 probability of garnering an upvote, and to model the reliability of
 the redditor as the probability of correctly giving an upvote to a
 high-quality item.
Write class definitions for redditors and links and an update
 function that updates both objects whenever a redditor casts a
 vote.

Chapter 5. Odds and Addends
Odds
One way to represent a probability is with a number between 0 and 1,
 but that’s not the only way. If you have ever bet on a football game or a
 horse race, you have probably encountered another representation of
 probability, called odds.
You might have heard expressions like “the odds are three to one,”
 but you might not know what they mean. The odds in
 favor of an event are the ratio of the probability it will
 occur to the probability that it will not.
So if I think my team has a 75% chance of winning, I would say that
 the odds in their favor are three to one, because the chance of winning is
 three times the chance of losing.
You can write odds in decimal form, but it is most common to write
 them as a ratio of integers. So “three to one” is written .
When probabilities are low, it is more common to report the
 odds against rather than the odds in
 favor. For example, if I think my horse has a 10% chance of winning, I
 would say that the odds against are .
Probabilities and odds are different representations of the same
 information. Given a probability, you can compute the odds like
 this:
def Odds(p):
 return p / (1-p)
Given the odds in favor, in decimal form, you can convert to
 probability like this:
def Probability(o):
 return o / (o+1)
If you represent odds with a numerator and denominator, you can
 convert to probability like this:
def Probability2(yes, no):
 return yes / (yes + no)
When I work with odds in my head, I find it helpful to picture
 people at the track. If 20% of them think my horse will win, then 80% of
 them don’t, so the odds in favor are or .
If the odds are against my horse, then five out of six people think
 she will lose, so the probability of winning is .

The odds form of Bayes’s theorem
In Chapter 1 I wrote Bayes’s theorem in the
 probability form:

If we have two hypotheses, A and
 B, we can write the ratio of posterior
 probabilities like this:

Notice that the normalizing constant, , drops out of this equation.
If A and B are mutually exclusive and collectively
 exhaustive, that means , so we can rewrite the ratio of the priors, and the
 ratio of the posteriors, as odds.
Writing for odds in favor of A, we get:

In words, this says that the posterior odds are the prior odds times
 the likelihood ratio. This is the odds
 form of Bayes’s theorem.
This form is most convenient for computing a Bayesian update on
 paper or in your head. For example, let’s go back to the cookie
 problem:
Suppose there are two bowls of cookies. Bowl 1 contains 30 vanilla
 cookies and 10 chocolate cookies. Bowl 2 contains 20 of each.
Now suppose you choose one of the bowls at random and, without
 looking, select a cookie at random. The cookie is vanilla. What is the
 probability that it came from Bowl 1?

The prior probability is 50%, so the prior odds are , or just 1. The likelihood ratio is , or . So the posterior odds are , which corresponds to probability .

Oliver’s blood
Here is another problem from MacKay’s Information
 Theory, Inference, and Learning Algorithms:
Two people have left traces of their own blood at the scene of a
 crime. A suspect, Oliver, is tested and found to have type ‘O’ blood.
 The blood groups of the two traces are found to be of type ‘O’ (a common
 type in the local population, having frequency 60%) and of type ‘AB’ (a
 rare type, with frequency 1%). Do these data [the traces found at the
 scene] give evidence in favor of the proposition that Oliver was one of
 the people [who left blood at the scene]?

To answer this question, we need to think about what it means for
 data to give evidence in favor of (or against) a hypothesis. Intuitively,
 we might say that data favor a hypothesis if the hypothesis is more likely
 in light of the data than it was before.
In the cookie problem, the prior odds are , or probability 50%. The posterior odds are
 , or probability 60%. So we could say that the vanilla
 cookie is evidence in favor of Bowl 1.
The odds form of Bayes’s theorem provides a way to make this
 intuition more precise. Again

Or dividing through by :

The term on the left is the ratio of the posterior and prior odds.
 The term on the right is the likelihood ratio, also called the Bayes factor.
If the Bayes factor value is greater than 1, that means that the
 data were more likely under A than under
 B. And since the odds ratio is also
 greater than 1, that means that the odds are greater, in light of the
 data, than they were before.
If the Bayes factor is less than 1, that means the data were less
 likely under A than under B, so the odds in favor of A go down.
Finally, if the Bayes factor is exactly 1, the data are equally
 likely under either hypothesis, so the odds do not change.
Now we can get back to the Oliver’s blood problem. If Oliver is one
 of the people who left blood at the crime scene, then he accounts for the
 ‘O’ sample, so the probability of the data is just the probability that a
 random member of the population has type ‘AB’ blood, which is 1%.
If Oliver did not leave blood at the scene, then we have two samples
 to account for. If we choose two random people from the population, what
 is the chance of finding one with type ‘O’ and one with type ‘AB’? Well,
 there are two ways it might happen: the first person we choose might have
 type ‘O’ and the second ‘AB’, or the other way around. So the total
 probability is .
The likelihood of the data is slightly higher if Oliver is
 not one of the people who left blood at the scene, so
 the blood data is actually evidence against Oliver’s guilt.
This example is a little contrived, but it is an example of the
 counterintuitive result that data consistent with a
 hypothesis are not necessarily in favor of the
 hypothesis.
If this result is so counterintuitive that it bothers you, this way
 of thinking might help: the data consist of a common event, type ‘O’
 blood, and a rare event, type ‘AB’ blood. If Oliver accounts for the
 common event, that leaves the rare event still unexplained. If Oliver
 doesn’t account for the ‘O’ blood, then we have two chances to find
 someone in the population with ‘AB’ blood. And that factor of two makes
 the difference.

Addends
The fundamental operation of Bayesian statistics is Update, which takes a prior distribution and a
 set of data, and produces a posterior distribution. But solving real
 problems usually involves a number of other operations, including scaling,
 addition and other arithmetic operations, max and min, and
 mixtures.
This chapter presents addition and max; I will present other
 operations as we need them.
The first example is based on
 Dungeons & Dragons,
 a role-playing game where the results of players’ decisions are usually
 determined by rolling dice. In fact, before game play starts, players
 generate each attribute of their characters—strength, intelligence,
 wisdom, dexterity, constitution, and charisma—by rolling three 6-sided
 dice and adding them up.
So you might be curious to know the distribution of this sum. There
 are two ways you might compute it:
	Simulation:
	Given a Pmf that represents the distribution for a single die,
 you can draw random samples, add them up, and accumulate the
 distribution of simulated sums.

	Enumeration:
	Given two Pmfs, you can enumerate all possible pairs of values
 and compute the distribution of the sums.

thinkbayes provides
 functions for both. Here’s an example of the first approach. First, I’ll
 define a class to represent a single die as a Pmf:
class Die(thinkbayes.Pmf):

 def __init__(self, sides):
 thinkbayes.Pmf.__init__(self)
 for x in xrange(1, sides+1):
 self.Set(x, 1)
 self.Normalize()
Now I can create a 6-sided die:
d6 = Die(6)
And use thinkbayes.SampleSum to generate a sample of 1000
 rolls.
dice = [d6] * 3
three = thinkbayes.SampleSum(dice, 1000)
SampleSum takes list
 of distributions (either Pmf or Cdf objects) and the sample size, n. It generates n random sums and returns their distribution as
 a Pmf object.
def SampleSum(dists, n):
 pmf = MakePmfFromList(RandomSum(dists) for i in xrange(n))
 return pmf
SampleSum uses
 RandomSum, also in
 thinkbayes.py:
def RandomSum(dists):
 total = sum(dist.Random() for dist in dists)
 return total
RandomSum invokes Random on each distribution and adds up the
 results.
The drawback of simulation is that the result is only approximately
 correct. As n gets larger,
 it gets more accurate, but of course the run time increases as
 well.
The other approach is to enumerate all pairs of values and compute
 the sum and probability of each pair. This is implemented in Pmf.__add__:
class Pmf

 def __add__(self, other):
 pmf = Pmf()
 for v1, p1 in self.Items():
 for v2, p2 in other.Items():
 pmf.Incr(v1+v2, p1*p2)
 return pmf
self is a Pmf, of course;
 other can be a Pmf or anything else
 that provides Items. The result is a
 new Pmf. The time to run __add__ depends on the number of items in self and other; it is proportional to len(self) * len(other).
And here’s how it’s used:
 three_exact = d6 + d6 + d6
When you apply the + operator to
 a Pmf, Python invokes __add__. In this example, __add__ is invoked twice.
Figure 5-1 shows an approximate result
 generated by simulation and the exact result computed by
 enumeration.
Figure 5-1. Approximate and exact distributions for the sum of three 6-sided
 dice.

Pmf.__add__ is based
 on the assumption that the random selections from each Pmf are
 independent. In the example of rolling several dice, this assumption is
 pretty good. In other cases, we would have to extend this method to use
 conditional probabilities.
The code from this section is available from http://thinkbayes.com/dungeons.py.
 For more information see “Working with the code”.

Maxima
When you generate a
 Dungeons & Dragons
 character, you are particularly interested in the character’s best
 attributes, so you might like to know the distribution of the maximum
 attribute.
There are three ways to compute the distribution of a
 maximum:
	Simulation:
	Given a Pmf that represents the distribution for a single
 selection, you can generate random samples, find the maximum, and
 accumulate the distribution of simulated maxima.

	Enumeration:
	Given two Pmfs, you can enumerate all possible pairs of values
 and compute the distribution of the maximum.

	Exponentiation:
	If we convert a Pmf to a Cdf, there is a simple and efficient
 algorithm for finding the Cdf of the maximum.

The code to simulate maxima is almost identical to the code for
 simulating sums:
def RandomMax(dists):
 total = max(dist.Random() for dist in dists)
 return total

def SampleMax(dists, n):
 pmf = MakePmfFromList(RandomMax(dists) for i in xrange(n))
 return pmf
All I did was replace “sum” with “max”. And the code for enumeration
 is almost identical, too:
def PmfMax(pmf1, pmf2):
 res = thinkbayes.Pmf()
 for v1, p1 in pmf1.Items():
 for v2, p2 in pmf2.Items():
 res.Incr(max(v1, v2), p1*p2)
 return res
In fact, you could generalize this function by taking the
 appropriate operator as a parameter.
The only problem with this algorithm is that if each Pmf has
 m values, the run time is proportional to
 m2. And if we
 want the maximum of k selections, it
 takes time proportional to .
If we convert the Pmfs to Cdfs, we can do the same calculation much
 faster! The key is to remember the definition of the cumulative
 distribution function:

where X is a random variable that
 means “a value chosen randomly from this distribution.” So, for example,
 is the probability that a value from this distribution
 is less than or equal to 5.
If I draw X from CDF1 and Y from CDF2, and compute the
 maximum , what is the chance that Z is less than or equal to 5? Well, in that case
 both X and Y must be less than or equal to 5.
If the selections of X and
 Y are independent,

where CDF3
 is the distribution of Z. I chose the
 value 5 because I think it makes the formulas easy to read, but we can
 generalize for any value of z:

In the special case where we draw k
 values from the same distribution,

So to find the distribution of the maximum of k values, we can enumerate the probabilities in the
 given Cdf and raise them to the kth
 power. Cdf provides a
 method that does just that:
class Cdf

 def Max(self, k):
 cdf = self.Copy()
 cdf.ps = [p**k for p in cdf.ps]
 return cdf
Max takes the number
 of selections, k, and returns a new Cdf
 that represents the distribution of the maximum of k selections. The run time for this method is
 proportional to m, the number of items in
 the Cdf.
Pmf.Max does the
 same thing for Pmfs. It has to do a little more work to convert the Pmf to
 a Cdf, so the run time is proportional to , but that’s still better than quadratic.
Finally, here’s an example that computes the distribution of a
 character’s best attribute:
 best_attr_cdf = three_exact.Max(6)
 best_attr_pmf = best_attr_cdf.MakePmf()
Where three_exact is
 defined in the previous section. If we print the results, we see that the
 chance of generating a character with at least one attribute of 18 is
 about 3%. Figure 5-2 shows the distribution.
Figure 5-2. Distribution of the maximum of six rolls of three dice.

Mixtures
Let’s do one more example from
 Dungeons & Dragons.
 Suppose I have a box of dice with the following inventory:
5 4-sided dice
4 6-sided dice
3 8-sided dice
2 12-sided dice
1 20-sided die
I choose a die from the box and roll it. What is the distribution of
 the outcome?
If you know which die it is, the answer is easy. A die with n sides yields a uniform distribution from 1 to
 n, including both.
But if we don’t know which die it is, the resulting distribution is
 a mixture of uniform distributions with
 different bounds. In general, this kind of mixture does not fit any simple
 mathematical model, but it is straightforward to compute the distribution
 in the form of a PMF.
As always, one option is to simulate the scenario, generate a random
 sample, and compute the PMF of the sample. This approach is simple and it
 generates an approximate solution quickly. But if we want an exact
 solution, we need a different approach.
Let’s start with a simple version of the problem where there are
 only two dice, one with 6 sides and one with 8. We can make a Pmf to
 represent each die:
 d6 = Die(6)
 d8 = Die(8)
Then we create a Pmf to represent the mixture:
 mix = thinkbayes.Pmf()
 for die in [d6, d8]:
 for outcome, prob in die.Items():
 mix.Incr(outcome, prob)
 mix.Normalize()
The first loop enumerates the dice; the second enumerates the
 outcomes and their probabilities. Inside the loop, Pmf.Incr adds up the contributions from the two
 distributions.
This code assumes that the two dice are equally likely. More
 generally, we need to know the probability of each die so we can weight
 the outcomes accordingly.
First we create a Pmf that maps from each die to the probability it
 is selected:
 pmf_dice = thinkbayes.Pmf()
 pmf_dice.Set(Die(4), 5)
 pmf_dice.Set(Die(6), 4)
 pmf_dice.Set(Die(8), 3)
 pmf_dice.Set(Die(12), 2)
 pmf_dice.Set(Die(20), 1)
 pmf_dice.Normalize()
Next we need a more general version of the mixture algorithm:
 mix = thinkbayes.Pmf()
 for die, weight in pmf_dice.Items():
 for outcome, prob in die.Items():
 mix.Incr(outcome, weight*prob)
Now each die has a weight associated with it (which makes it a
 weighted die, I suppose). When we add each outcome to the mixture, its
 probability is multiplied by weight.
Figure 5-3 shows the result. As expected,
 values 1 through 4 are the most likely because any die can produce them.
 Values above 12 are unlikely because there is only one die in the box that
 can produce them (and it does so less than half the time).
Figure 5-3. Distribution outcome for random die from a box.

thinkbayes provides a function
 named MakeMixture that encapsulates
 this algorithm, so we could have written:
 mix = thinkbayes.MakeMixture(pmf_dice)
We’ll use MakeMixture again in
 Chapters 7 and
 8.

Discussion
Other than the odds form of Bayes’s theorem, this chapter is not
 specifically Bayesian. But Bayesian analysis is all about distributions,
 so it is important to understand the concept of a distribution well. From
 a computational point of view, a distribution is any data structure that
 represents a set of values (possible outcomes of a random process) and
 their probabilities.
We have seen two representations of distributions: Pmfs and Cdfs.
 These representations are equivalent in the sense that they contain the
 same information, so you can convert from one to the other. The primary
 difference between them is performance: some operations are faster and
 easier with a Pmf; others are faster with a Cdf.
The other goal of this chapter is to introduce operations that act
 on distributions, like Pmf.__add__, Cdf.Max, and thinkbayes.MakeMixture. We will use these
 operations later, but I introduce them now to encourage you to think of a
 distribution as a fundamental unit of computation, not just a container
 for values and probabilities.

Chapter 6. Decision Analysis
The Price is Right problem
On November 1, 2007, contestants named Letia and Nathaniel appeared
 on The Price is Right, an American game show. They
 competed in a game called The Showcase, where the
 objective is to guess the price of a showcase of prizes. The contestant
 who comes closest to the actual price of the showcase, without going over,
 wins the prizes.
Nathaniel went first. His showcase included a dishwasher, a wine
 cabinet, a laptop computer, and a car. He bid $26,000.
Letia’s showcase included a pinball machine, a video arcade game, a
 pool table, and a cruise of the Bahamas. She bid $21,500.
The actual price of Nathaniel’s showcase was $25,347. His bid was
 too high, so he lost.
The actual price of Letia’s showcase was $21,578. She was only off
 by $78, so she won her showcase and, because her bid was off by less than
 $250, she also won Nathaniel’s showcase.
For a Bayesian thinker, this scenario suggests several
 questions:
	Before seeing the prizes, what prior beliefs should the
 contestant have about the price of the showcase?

	After seeing the prizes, how should the contestant update those
 beliefs?

	Based on the posterior distribution, what should the contestant
 bid?

The third question demonstrates a common use of Bayesian analysis:
 decision analysis. Given a posterior distribution, we can choose the bid
 that maximizes the contestant’s expected return.
This problem is inspired by an example in Cameron Davidson-Pilon’s
 book, Bayesian Methods for Hackers. The code I wrote
 for this chapter is available from http://thinkbayes.com/price.py;
 it reads data files you can download from http://thinkbayes.com/showcases.2011.csv
 and http://thinkbayes.com/showcases.2012.csv.
 For more information see “Working with the code”.

The prior
To choose a prior distribution of prices, we can take advantage of
 data from previous episodes. Fortunately, fans of the show keep detailed
 records. When I corresponded with Mr. Davidson-Pilon
 about his book, he sent me data collected by Steve Gee at http://tpirsummaries.8m.com. It
 includes the price of each showcase from the 2011 and 2012 seasons and the
 bids offered by the contestants.
Figure 6-1 shows the distribution of prices for
 these showcases. The most common value for both showcases is around
 $28,000, but the first showcase has a second mode near $50,000, and the
 second showcase is occasionally worth more than $70,000.
Figure 6-1. Distribution of prices for showcases on The Price is Right,
 2011-12.

These distributions are based on actual data, but they have been
 smoothed by Gaussian kernel density estimation (KDE). Before we go on, I
 want to take a detour to talk about probability density functions and
 KDE.

Probability density functions
So far we have been working with probability mass functions, or
 PMFs. A PMF is a map from each possible value to its probability. In my
 implementation, a Pmf object provides a method named Prob that takes a value and returns a
 probability, also known as a probability
 mass.
In mathematical notation, PDFs are usually written as functions; for
 example, here is the PDF of a Gaussian distribution with mean 0 and
 standard deviation 1:

For a given value of x, this
 function computes a probability density. A density is similar to a
 probability mass in the sense that a higher density indicates that a value
 is more likely.
But a density is not a probability. A density can be 0 or any
 positive value; it is not bounded, like a probability, between 0 and
 1.
If you integrate a density over a continuous range, the result is a
 probability. But for the applications in this book we seldom have to do
 that.
Instead we primarily use probability densities as part of a
 likelihood function. We will see an example soon.

Representing PDFs
To represent PDFs in Python, thinkbayes.py provides a class named Pdf. Pdf is
 an abstract type, which means that it
 defines the interface a Pdf is supposed to have, but does not provide a
 complete implementation. The Pdf
 interface includes two methods, Density
 and MakePmf:
class Pdf(object):

 def Density(self, x):
 raise UnimplementedMethodException()

 def MakePmf(self, xs):
 pmf = Pmf()
 for x in xs:
 pmf.Set(x, self.Density(x))
 pmf.Normalize()
 return pmf
Density takes a value, x, and returns the corresponding density.
 MakePmf makes a discrete approximation
 to the PDF.
Pdf provides an implementation of
 MakePmf, but not Density, which has to be provided by a child
 class.
A concrete type is a child
 class that extends an abstract type and provides an implementation of the
 missing methods. For example, GaussianPdf extends Pdf and provides Density:
class GaussianPdf(Pdf):

 def __init__(self, mu, sigma):
 self.mu = mu
 self.sigma = sigma

 def Density(self, x):
 return scipy.stats.norm.pdf(x, self.mu, self.sigma)
__init__ takes
 mu and sigma, which are the mean and standard deviation
 of the distribution, and stores them as attributes.
Density uses a function from
 scipy.stats to evaluate the Gaussian
 PDF. The function is called norm.pdf
 because the Gaussian distribution is also called the “normal”
 distribution.
The Gaussian PDF is defined by a simple mathematical function, so it
 is easy to evaluate. And it is useful because many quantities in the real
 world have distributions that are approximately Gaussian.
But with real data, there is no guarantee that the distribution is
 Gaussian or any other simple mathematical function. In that case we can
 use a sample to estimate the PDF of the whole population.
For example, in The Price Is Right data, we
 have 313 prices for the first showcase. We can think of these values as a
 sample from the population of all possible showcase prices.
This sample includes the following values (in order):

In the sample, no values appear between 28801 and 28867, but there
 is no reason to think that these values are impossible. Based on our
 background information, we expect all values in this range to be equally
 likely. In other words, we expect the PDF to be fairly smooth.
Kernel density estimation (KDE) is an algorithm that takes a sample
 and finds an appropriately smooth PDF that fits the data. You can read
 details at http://en.wikipedia.org/wiki/Kernel_density_estimation.
scipy provides an implementation
 of KDE and thinkbayes provides a class
 called EstimatedPdf that uses
 it:
class EstimatedPdf(Pdf):

 def __init__(self, sample):
 self.kde = scipy.stats.gaussian_kde(sample)

 def Density(self, x):
 return self.kde.evaluate(x)
__init__ takes a
 sample and computes a kernel density estimate. The result is a gaussian_kde object that provides
 an evaluate method.
Density takes a value, calls
 gaussian_kde.evaluate, and
 returns the resulting density.
Finally, here’s an outline of the code I used to generate Figure 6-1:
 prices = ReadData()
 pdf = thinkbayes.EstimatedPdf(prices)

 low, high = 0, 75000
 n = 101
 xs = numpy.linspace(low, high, n)
 pmf = pdf.MakePmf(xs)
pdf is a Pdf object, estimated by KDE. pmf is a Pmf object that approximates the Pdf by
 evaluating the density at a sequence of equally spaced values.
linspace stands for “linear
 space.” It takes a range, low and
 high, and the number of points,
 n, and returns a new numpy array with n elements equally spaced between low and high,
 including both.
And now back to The Price is Right.

Modeling the contestants
The PDFs in Figure 6-1 estimate the distribution
 of possible prices. If you were a contestant on the show, you could use
 this distribution to quantify your prior belief about the price of each
 showcase (before you see the prizes).
To update these priors, we have to answer these questions:
	What data should we consider and how should we quantify
 it?

	Can we compute a likelihood function; that is, for each
 hypothetical value of price, can we
 compute the conditional likelihood of the data?

To answer these questions, I am going to model the contestant as a
 price-guessing instrument with known error characteristics. In other
 words, when the contestant sees the prizes, he or she guesses the price of
 each prize—ideally without taking into consideration the fact that the
 prize is part of a showcase—and adds up the prices. Let’s call this total
 guess.
Under this model, the question we have to answer is, “If the actual
 price is price, what is the likelihood
 that the contestant’s estimate would be guess?”
Or if we define:
 error = price - guess
then we could ask, “What is the likelihood that the contestant’s
 estimate is off by error?”
To answer this question, we can use the historical data again. Figure 6-2 shows the cumulative distribution of diff, the difference between the contestant’s
 bid and the actual price of the showcase.
The definition of diff is:
 diff = price - bid
When diff is negative, the bid is
 too high. As an aside, we can use this distribution to compute the
 probability that the contestants overbid: the first contestant overbids
 25% of the time; the second contestant overbids 29% of the time.
We can also see that the bids are biased; that is, they are more
 likely to be too low than too high. And that makes sense, given the rules
 of the game.
Finally, we can use this distribution to estimate the reliability of
 the contestants’ guesses. This step is a little tricky because we don’t
 actually know the contestant’s guesses; we only know what they bid.
Figure 6-2. Cumulative distribution (CDF) of the difference between the
 contestant’s bid and the actual price.

So we’ll have to make some assumptions. Specifically, I assume that
 the distribution of error is Gaussian
 with mean 0 and the same variance as diff.
The Player class implements this
 model:
class Player(object):

 def __init__(self, prices, bids, diffs):
 self.pdf_price = thinkbayes.EstimatedPdf(prices)
 self.cdf_diff = thinkbayes.MakeCdfFromList(diffs)

 mu = 0
 sigma = numpy.std(diffs)
 self.pdf_error = thinkbayes.GaussianPdf(mu, sigma)
prices is a sequence of showcase
 prices, bids is a sequence of bids, and
 diffs is a sequence of diffs, where
 again diff = price - bid.
pdf_price is the
 smoothed PDF of prices, estimated by KDE. cdf_diff is the cumulative distribution of diff, which we saw in Figure 6-2. And pdf_error is the PDF that characterizes the
 distribution of errors; where error = price -
 guess.
Again, we use the variance of diff to estimate the variance of error. This estimate is not perfect because
 contestants’ bids are sometimes strategic; for example, if Player 2 thinks
 that Player 1 has overbid, Player 2 might make a very low bid. In that
 case diff does not reflect error. If this happens a lot, the observed
 variance in diff might overestimate the
 variance in error. Nevertheless, I
 think it is a reasonable modeling decision.
As an alternative, someone preparing to appear on the show could
 estimate their own distribution of error by watching previous shows and recording
 their guesses and the actual prices.

Likelihood
Now we are ready to write the likelihood function. As usual, I
 define a new class that extends thinkbayes.Suite:
class Price(thinkbayes.Suite):

 def __init__(self, pmf, player):
 thinkbayes.Suite.__init__(self, pmf)
 self.player = player
pmf represents the prior
 distribution and player is a Player
 object as described in the previous section. Here’s Likelihood:
 def Likelihood(self, data, hypo):
 price = hypo
 guess = data

 error = price - guess
 like = self.player.ErrorDensity(error)

 return like
hypo is the hypothetical price of
 the showcase. data is the contestant’s
 best guess at the price. error is the
 difference, and like is the likelihood
 of the data, given the hypothesis.
ErrorDensity is defined in
 Player:
class Player:

 def ErrorDensity(self, error):
 return self.pdf_error.Density(error)
ErrorDensity works by evaluating
 pdf_error at the given
 value of error. The result is a
 probability density, so it is not really a probability. But remember that
 Likelihood doesn’t need to compute a
 probability; it only has to compute something
 proportional to a probability. As long as the
 constant of proportionality is the same for all likelihoods, it gets
 canceled out when we normalize the posterior distribution.
And therefore, a probability density is a perfectly good
 likelihood.

Update
Player provides a method that
 takes the contestant’s guess and computes the posterior
 distribution:
class Player

 def MakeBeliefs(self, guess):
 pmf = self.PmfPrice()
 self.prior = Price(pmf, self)
 self.posterior = self.prior.Copy()
 self.posterior.Update(guess)
PmfPrice generates a discrete
 approximation to the PDF of price, which we use to construct the
 prior.
PmfPrice uses MakePmf, which evaluates pdf_price at a sequence of
 values:
class Player

 n = 101
 price_xs = numpy.linspace(0, 75000, n)

 def PmfPrice(self):
 return self.pdf_price.MakePmf(self.price_xs)
To construct the posterior, we make a copy of the prior and then
 invoke Update, which invokes Likelihood for each hypothesis, multiplies the
 priors by the likelihoods, and renormalizes.
So let’s get back to the original scenario. Suppose you are Player 1
 and when you see your showcase, your best guess is that the total price of
 the prizes is $20,000.
Figure 6-3 shows prior and posterior beliefs
 about the actual price. The posterior is shifted to the left because your
 guess is on the low end of the prior range.
On one level, this result makes sense. The most likely value in the
 prior is $27,750, your best guess is $20,000, and the mean of the
 posterior is somewhere in between: $25,096.
On another level, you might find this result bizarre, because it
 suggests that if you think the price is $20,000, then
 you should believe the price is $24,000.
To resolve this apparent paradox, remember that you are combining
 two sources of information, historical data about past showcases and
 guesses about the prizes you see.
Figure 6-3. Prior and posterior distributions for Player 1, based on a best
 guess of $20,000.

We are treating the historical data as the prior and updating it
 based on your guesses, but we could equivalently use your guess as a prior
 and update it based on historical data.
If you think of it that way, maybe it is less surprising that the
 most likely value in the posterior is not your original guess.

Optimal bidding
Now that we have a posterior distribution, we can use it to compute
 the optimal bid, which I define as the bid that maximizes expected return
 (see http://en.wikipedia.org/wiki/Expected_return).
I’m going to present the methods in this section top-down, which
 means I will show you how they are used before I show you how they work.
 If you see an unfamiliar method, don’t worry; the definition will be along
 shortly.
To compute optimal bids, I wrote a class called GainCalculator:
class GainCalculator(object):

 def __init__(self, player, opponent):
 self.player = player
 self.opponent = opponent
player and opponent are Player objects.
GainCalculator provides ExpectedGains, which computes a sequence of bids
 and the expected gain for each bid:
 def ExpectedGains(self, low=0, high=75000, n=101):
 bids = numpy.linspace(low, high, n)

 gains = [self.ExpectedGain(bid) for bid in bids]

 return bids, gains
low and high specify the range of possible bids;
 n is the number of bids to try.
ExpectedGains calls ExpectedGain, which computes expected gain for a
 given bid:
 def ExpectedGain(self, bid):
 suite = self.player.posterior
 total = 0
 for price, prob in sorted(suite.Items()):
 gain = self.Gain(bid, price)
 total += prob * gain
 return total
ExpectedGain loops through the
 values in the posterior and computes the gain for each bid, given the
 actual prices of the showcase. It weights each gain with the corresponding
 probability and returns the total.
ExpectedGain invokes Gain, which takes a bid and an actual price and
 returns the expected gain:
 def Gain(self, bid, price):
 if bid > price:
 return 0

 diff = price - bid
 prob = self.ProbWin(diff)

 if diff <= 250:
 return 2 * price * prob
 else:
 return price * prob
If you overbid, you get nothing. Otherwise we compute the difference
 between your bid and the price, which determines your probability of
 winning.
If diff is less than $250, you
 win both showcases. For simplicity, I assume that both showcases have the
 same price. Since this outcome is rare, it doesn’t make much
 difference.
Finally, we have to compute the probability of winning based on
 diff:
 def ProbWin(self, diff):
 prob = (self.opponent.ProbOverbid() +
 self.opponent.ProbWorseThan(diff))
 return prob
If your opponent overbids, you win. Otherwise, you have to hope that
 your opponent is off by more than diff.
 Player provides methods to compute both
 probabilities:
class Player:

 def ProbOverbid(self):
 return self.cdf_diff.Prob(-1)

 def ProbWorseThan(self, diff):
 return 1 - self.cdf_diff.Prob(diff)
This code might be confusing because the computation is now from the
 point of view of the opponent, who is computing, “What is the probability
 that I overbid?” and “What is the probability that my bid is off by more
 than diff?”
Both answers are based on the CDF of diff. If the opponent’s diff is less than or equal to -1, you win. If
 the opponent’s diff is worse than
 yours, you win. Otherwise you lose.
Finally, here’s the code that computes optimal bids:
class Player:

 def OptimalBid(self, guess, opponent):
 self.MakeBeliefs(guess)
 calc = GainCalculator(self, opponent)
 bids, gains = calc.ExpectedGains()
 gain, bid = max(zip(gains, bids))
 return bid, gain
Given a guess and an opponent, OptimalBid computes the posterior distribution,
 instantiates a GainCalculator, computes
 expected gains for a range of bids and returns the optimal bid and
 expected gain. Whew!
Figure 6-4 shows the results for both players,
 based on a scenario where Player 1’s best guess is $20,000 and Player 2’s
 best guess is $40,000.
Figure 6-4. Expected gain versus bid in a scenario where Player 1’s best
 guess is $20,000 and Player 2’s best guess is $40,000.

For Player 1 the optimal bid is $21,000, yielding an expected return
 of almost $16,700. This is a case (which turns out to be unusual) where
 the optimal bid is actually higher than the contestant’s best
 guess.
For Player 2 the optimal bid is $31,500, yielding an expected return
 of almost $19,400. This is the more typical case where the optimal bid is
 less than the best guess.

Discussion
One of the features of Bayesian estimation is that the result comes
 in the form of a posterior distribution. Classical estimation usually
 generates a single point estimate or a confidence interval, which is
 sufficient if estimation is the last step in the process, but if you want
 to use an estimate as an input to a subsequent analysis, point estimates
 and intervals are often not much help.
In this example, we use the posterior distribution to compute an
 optimal bid. The return on a given bid is asymmetric and discontinuous (if
 you overbid, you lose), so it would be hard to solve this problem
 analytically. But it is relatively simple to do computationally.
Newcomers to Bayesian thinking are often tempted to summarize the
 posterior distribution by computing the mean or the maximum likelihood
 estimate. These summaries can be useful, but if that’s all you need, then
 you probably don’t need Bayesian methods in the first place.
Bayesian methods are most useful when you can carry the posterior
 distribution into the next step of the analysis to perform some kind of
 decision analysis, as we did in this chapter, or some kind of prediction,
 as we see in the next chapter.

Chapter 7. Prediction
The Boston Bruins problem
In the 2010-11 National Hockey League (NHL) Finals, my beloved
 Boston Bruins played a best-of-seven championship series against the
 despised Vancouver Canucks. Boston lost the first two games 0-1 and 2-3,
 then won the next two games 8-1 and 4-0. At this point in the series, what
 is the probability that Boston will win the next game, and what is their
 probability of winning the championship?
As always, to answer a question like this, we need to make some
 assumptions. First, it is reasonable to believe that goal scoring in
 hockey is at least approximately a Poisson process, which means that it is
 equally likely for a goal to be scored at any time during a game. Second,
 we can assume that against a particular opponent, each team has some
 long-term average goals per game, denoted λ.
Given these assumptions, my strategy for answering this question
 is
	Use statistics from previous games to choose a prior
 distribution for λ.

	Use the score from the first four games to estimate λ for each team.

	Use the posterior distributions of λ to compute distribution of goals for each
 team, the distribution of the goal differential, and the probability
 that each team wins the next game.

	Compute the probability that each team wins the series.

To choose a prior distribution, I got some statistics from http://www.nhl.com,
 specifically the average goals per game for each team in the 2010-11
 season. The distribution is roughly Gaussian with mean 2.8 and standard
 deviation 0.3.
The Gaussian distribution is continuous, but we’ll approximate it
 with a discrete Pmf. thinkbayes provides MakeGaussianPmf to do exactly that:
def MakeGaussianPmf(mu, sigma, num_sigmas, n=101):
 pmf = Pmf()
 low = mu - num_sigmas*sigma
 high = mu + num_sigmas*sigma

 for x in numpy.linspace(low, high, n):
 p = scipy.stats.norm.pdf(mu, sigma, x)
 pmf.Set(x, p)
 pmf.Normalize()
 return pmf
mu and sigma are the mean and standard deviation of the
 Gaussian distribution. num_sigmas is the number of standard deviations
 above and below the mean that the Pmf will span, and n is the number of values in the Pmf.
Again we use numpy.linspace to
 make an array of n equally spaced
 values between low and high, including both.
norm.pdf evaluates
 the Gaussian probability density function (PDF).
Getting back to the hockey problem, here’s the definition for a
 suite of hypotheses about the value of λ.
class Hockey(thinkbayes.Suite):

 def __init__(self):
 pmf = thinkbayes.MakeGaussianPmf(2.7, 0.3, 4)
 thinkbayes.Suite.__init__(self, pmf)
So the prior distribution is Gaussian with mean 2.7, standard
 deviation 0.3, and it spans 4 sigmas above and below the mean.
As always, we have to decide how to represent each hypothesis; in
 this case I represent the hypothesis that with the floating-point value x.

Poisson processes
In mathematical statistics, a process is a stochastic model of a physical system
 (“stochastic” means that the model has some kind of randomness in it). For
 example, a Bernoulli process is a model of a sequence of events, called
 trials, in which each trial has two possible outcomes, like success and
 failure. So a Bernoulli process is a natural model for a series of coin
 flips, or a series of shots on goal.
A Poisson process is the continuous version of a Bernoulli process,
 where an event can occur at any point in time with equal probability.
 Poisson processes can be used to model customers arriving in a store,
 buses arriving at a bus stop, or goals scored in a hockey game.
In many real systems the probability of an event changes over time.
 Customers are more likely to go to a store at certain times of day, buses
 are supposed to arrive at fixed intervals, and goals are more or less
 likely at different times during a game.
But all models are based on simplifications, and in this case
 modeling a hockey game with a Poisson process is a reasonable choice.
 Heuer, Müller and Rubner (2010) analyze scoring in a German soccer league
 and come to the same conclusion; see http://www.cimat.mx/Eventos/vpec10/img/poisson.pdf.
The benefit of using this model is that we can compute the
 distribution of goals per game efficiently, as well as the distribution of
 time between goals. Specifically, if the average number of goals in a game
 is lam, the distribution of goals per
 game is given by the Poisson PMF:
def EvalPoissonPmf(lam, k):
 return (lam)**k * math.exp(-lam) / math.factorial(k)
And the distribution of time between goals is given by the
 exponential PDF:
def EvalExponentialPdf(lam, x):
 return lam * math.exp(-lam * x)
I use the variable lam because
 lambda is a reserved keyword in Python.
 Both of these functions are in thinkbayes.py.

The posteriors
Now we can compute the likelihood that a team with a hypothetical
 value of lam scores k goals in a game:
class Hockey

 def Likelihood(self, data, hypo):
 lam = hypo
 k = data
 like = thinkbayes.EvalPoissonPmf(lam, k)
 return like
Each hypothesis is a possible value of λ; data is the
 observed number of goals, k.
With the likelihood function in place, we can make a suite for each
 team and update them with the scores from the first four games.
 suite1 = Hockey('bruins')
 suite1.UpdateSet([0, 2, 8, 4])

 suite2 = Hockey('canucks')
 suite2.UpdateSet([1, 3, 1, 0])
Figure 7-1 shows the resulting posterior
 distributions for lam. Based on the
 first four games, the most likely values for lam are 2.6 for the Canucks and 2.9 for the
 Bruins.
Figure 7-1. Posterior distribution of the number of goals per game.

The distribution of goals
To compute the probability that each team wins the next game, we
 need to compute the distribution of goals for each team.
If we knew the value of lam
 exactly, we could use the Poisson distribution again. thinkbayes provides a method that
 computes a truncated approximation of a Poisson distribution:
def MakePoissonPmf(lam, high):
 pmf = Pmf()
 for k in xrange(0, high+1):
 p = EvalPoissonPmf(lam, k)
 pmf.Set(k, p)
 pmf.Normalize()
 return pmf
The range of values in the computed Pmf is from 0
 to high. So if the value of lam were exactly 3.4, we would compute:
lam = 3.4
goal_dist = thinkbayes.MakePoissonPmf(lam, 10)
I chose the upper bound, 10, because the probability of scoring more
 than 10 goals in a game is quite low.
That’s simple enough so far; the problem is that we don’t know the
 value of lam exactly. Instead, we have
 a distribution of possible values for lam.
For each value of lam, the
 distribution of goals is Poisson. So the overall distribution of goals is
 a mixture of these Poisson distributions, weighted according to the
 probabilities in the distribution of lam.
Given the posterior distribution of lam, here’s the code that makes the distribution
 of goals:
def MakeGoalPmf(suite):
 metapmf = thinkbayes.Pmf()

 for lam, prob in suite.Items():
 pmf = thinkbayes.MakePoissonPmf(lam, 10)
 metapmf.Set(pmf, prob)

 mix = thinkbayes.MakeMixture(metapmf)
 return mix
For each value of lam we make a
 Poisson Pmf and add it to the meta-Pmf. I call it a meta-Pmf because it is
 a Pmf that contains Pmfs as its values.
Then we use MakeMixture to compute the mixture (we saw MakeMixture in “Mixtures”).
Figure 7-2 shows the resulting distribution of
 goals for the Bruins and Canucks. The Bruins are less likely to score 3
 goals or fewer in the next game, and more likely to score 4 or
 more.
Figure 7-2. Distribution of goals in a single game.

The probability of winning
To get the probability of winning, first we compute the distribution
 of the goal differential:
 goal_dist1 = MakeGoalPmf(suite1)
 goal_dist2 = MakeGoalPmf(suite2)
 diff = goal_dist1 - goal_dist2
The subtraction operator invokes Pmf.__sub__, which enumerates pairs of values and
 computes the difference. Subtracting two distributions is almost the same
 as adding, which we saw in “Addends”.
If the goal differential is positive, the Bruins win; if negative,
 the Canucks win; if 0, it’s a tie:
 p_win = diff.ProbGreater(0)
 p_loss = diff.ProbLess(0)
 p_tie = diff.Prob(0)
With the distributions from the previous section, p_win is 46%, p_loss is 37%, and p_tie is 17%.
In the event of a tie at the end of “regulation play,” the teams
 play overtime periods until one team scores. Since the game ends
 immediately when the first goal is scored, this overtime format is known
 as “sudden death.”

Sudden death
To compute the probability of winning in a sudden death overtime,
 the important statistic is not goals per game, but time until the first
 goal. The assumption that goal-scoring is a Poisson process implies that
 the time between goals is exponentially distributed.
Given lam, we can compute the
 time between goals like this:
lam = 3.4
time_dist = thinkbayes.MakeExponentialPmf(lam, high=2, n=101)
high is the upper bound of the
 distribution. In this case I chose 2, because the probability of going
 more than two games without scoring is small. n is the number of values in the Pmf.
If we know lam exactly, that’s
 all there is to it. But we don’t; instead we have a posterior distribution
 of possible values. So as we did with the distribution of goals, we make a
 meta-Pmf and compute a mixture of Pmfs.
def MakeGoalTimePmf(suite):
 metapmf = thinkbayes.Pmf()

 for lam, prob in suite.Items():
 pmf = thinkbayes.MakeExponentialPmf(lam, high=2, n=2001)
 metapmf.Set(pmf, prob)

 mix = thinkbayes.MakeMixture(metapmf)
 return mix
Figure 7-3 shows the resulting distributions.
 For time values less than one period (one third of a game), the Bruins are
 more likely to score. The time until the Canucks score is more likely to
 be longer.
I set the number of values, n,
 fairly high in order to minimize the number of ties, since it is not
 possible for both teams to score simultaneously.
Now we compute the probability that the Bruins score first:
 time_dist1 = MakeGoalTimePmf(suite1)
 time_dist2 = MakeGoalTimePmf(suite2)
 p_overtime = thinkbayes.PmfProbLess(time_dist1, time_dist2)
For the Bruins, the probability of winning in overtime is
 52%.
Figure 7-3. Distribution of time between goals.

Finally, the total probability of winning is the chance of winning
 at the end of regulation play plus the probability of winning in
 overtime.
 p_tie = diff.Prob(0)
 p_overtime = thinkbayes.PmfProbLess(time_dist1, time_dist2)

 p_win = diff.ProbGreater(0) + p_tie * p_overtime
For the Bruins, the overall chance of winning the next game is
 55%.
To win the series, the Bruins can either win the next two games or
 split the next two and win the third. Again, we can compute the total
 probability:
 # win the next two
 p_series = p_win**2

 # split the next two, win the third
 p_series += 2 * p_win * (1-p_win) * p_win
The chance that the Bruins will win the series is 57%. And in 2011,
 they did.

Discussion
As always, the analysis in this chapter is based on modeling
 decisions, and modeling is almost always an iterative process. In general,
 you want to start with something simple that yields an approximate answer,
 identify likely sources of error, and look for opportunities for
 improvement.
In this example, I would consider these options:
	I chose a prior based on the average goals per game for each
 team. But this statistic is averaged across all opponents. Against a
 particular opponent, we might expect more variability. For example, if
 the team with the best offense plays the team with the worst defense,
 the expected goals per game might be several standard deviations above
 the mean.

	For data I used only the first four games of the championship
 series. If the same teams played each other during the regular season,
 I could use the results from those games as well. One complication is
 that the composition of teams changes during the season due to trades
 and injuries. So it might be best to give more weight to recent
 games.

	To take advantage of all available information, we could use
 results from all regular season games to estimate each team’s goal
 scoring rate, possibly adjusted by estimating an additional factor for
 each pairwise match-up. This approach would be more complicated, but
 it is still feasible.

For the first option, we could use the results from the regular
 season to estimate the variability across all pairwise match-ups. Thanks
 to Dirk Hoag at http://forechecker.blogspot.com/,
 I was able to get the number of goals scored during regulation play (not
 overtime) for each game in the regular season.
Teams in different conferences only play each other one or two times
 in the regular season, so I focused on pairs that played each other 4–6
 times. For each pair, I computed the average goals per game, which is an
 estimate of λ, then plotted the
 distribution of these estimates.
The mean of these estimates is 2.8, again, but the standard
 deviation is 0.85, substantially higher than what we got computing one
 estimate for each team.
If we run the analysis again with the higher-variance prior, the
 probability that the Bruins win the series is 80%, substantially higher
 than the result with the low-variance prior, 57%.
So it turns out that the results are sensitive to the prior, which
 makes sense considering how little data we have to work with. Based on the
 difference between the low-variance model and the high-variable model, it
 seems worthwhile to put some effort into getting the prior right.
The code and data for this chapter are available from http://thinkbayes.com/hockey.py
 and http://thinkbayes.com/hockey_data.csv.
 For more information see “Working with the code”.

Exercises
Exercise 7-1.
If buses arrive at a bus stop every 20 minutes, and you arrive
 at the bus stop at a random time, your wait time until the bus arrives
 is uniformly distributed from 0 to 20 minutes.
But in reality, there is variability in the time between buses.
 Suppose you are waiting for a bus, and you know the historical
 distribution of time between buses. Compute your distribution of wait
 times.
Hint: Suppose that the time between buses is either 5 or 10
 minutes with equal probability. What is the probability that you
 arrive during one of the 10 minute intervals?
I solve a version of this problem in the next chapter.

Exercise 7-2.
Suppose that passengers arriving at the bus stop are
 well-modeled by a Poisson process with parameter λ. If you arrive at the stop and find 3 people
 waiting, what is your posterior distribution for the time since the
 last bus arrived.
I solve a version of this problem in the next chapter.

Exercise 7-3.
Suppose that you are an ecologist sampling the insect population
 in a new environment. You deploy 100 traps in a test area and come
 back the next day to check on them. You find that 37 traps have been
 triggered, trapping an insect inside. Once a trap triggers, it cannot
 trap another insect until it has been reset.
If you reset the traps and come back in two days, how many traps
 do you expect to find triggered? Compute a posterior predictive
 distribution for the number of traps.

Exercise 7-4.
Suppose you are the manager of an apartment building with 100
 light bulbs in common areas. It is your responsibility to replace
 light bulbs when they break.
On January 1, all 100 bulbs are working. When you inspect them
 on February 1, you find 3 light bulbs out. If you come back on April
 1, how many light bulbs do you expect to find broken?
In the previous exercise, you could reasonably assume that an
 event is equally likely at any time. For light bulbs, the likelihood
 of failure depends on the age of the bulb. Specifically, old bulbs
 have an increasing failure rate due to evaporation of the
 filament.
This problem is more open-ended than some; you will have to make
 modeling decisions. You might want to read about the Weibull
 distribution (http://en.wikipedia.org/wiki/Weibull_distribution).
 Or you might want to look around for information about light bulb
 survival curves.

Chapter 8. Observer Bias
The Red Line problem
In Massachusetts, the Red Line is a subway that connects Cambridge
 and Boston. When I was working in Cambridge I took the Red Line from
 Kendall Square to South Station and caught the commuter rail to Needham.
 During rush hour Red Line trains run every 7–8 minutes, on
 average.
When I arrived at the station, I could estimate the time until the
 next train based on the number of passengers on the platform. If there
 were only a few people, I inferred that I just missed a train and expected
 to wait about 7 minutes. If there were more passengers, I expected the
 train to arrive sooner. But if there were a large number of passengers, I
 suspected that trains were not running on schedule, so I would go back to
 the street level and get a taxi.
While I was waiting for trains, I thought about how Bayesian
 estimation could help predict my wait time and decide when I should give
 up and take a taxi. This chapter presents the analysis I came up
 with.
This chapter is based on a project by Brendan Ritter and Kai Austin,
 who took a class with me at Olin College. The code in this chapter is
 available from http://thinkbayes.com/redline.py.
 The code I used to collect data is in http://thinkbayes.com/redline_data.py.
 For more information see “Working with the code”.

The model
Before we get to the analysis, we have to make some modeling
 decisions. First, I will treat passenger arrivals as a Poisson process,
 which means I assume that passengers are equally likely to arrive at any
 time, and that they arrive at an unknown rate, λ, measured in passengers per minute. Since I
 observe passengers during a short period of time, and at the same time
 every day, I assume that λ is
 constant.
On the other hand, the arrival process for trains is not Poisson.
 Trains to Boston are supposed to leave from the end of the line (Alewife
 station) every 7–8 minutes during peak times, but by the time they get to
 Kendall Square, the time between trains varies between 3 and 12
 minutes.
To gather data on the time between trains, I wrote a script that
 downloads real-time data from http://www.mbta.com/rider_tools/developers/,
 selects south-bound trains arriving at Kendall square, and records their
 arrival times in a database. I ran the script from 4pm to 6pm every
 weekday for 5 days, and recorded about 15 arrivals per day. Then I
 computed the time between consecutive arrivals; the distribution of these
 gaps is shown in Figure 8-1, labeled z.
Figure 8-1. PMF of gaps between trains, based on collected data, smoothed by
 KDE. z is the actual distribution; zb is the biased distribution seen by
 passengers.

If you stood on the platform from 4pm to 6pm and recorded the time
 between trains, this is the distribution you would see. But if you arrive
 at some random time (without regard to the train schedule) you would see a
 different distribution. The average time between trains, as seen by a
 random passenger, is substantially higher than the true average.
Why? Because a passenger is more like to arrive during a large
 interval than a small one. Consider a simple example: suppose that the
 time between trains is either 5 minutes or 10 minutes with equal
 probability. In that case the average time between trains is 7.5
 minutes.
But a passenger is more likely to arrive during a 10 minute gap than
 a 5 minute gap; in fact, twice as likely. If we surveyed arriving
 passengers, we would find that 2/3 of them arrived during a 10 minute gap,
 and only 1/3 during a 5 minute gap. So the average time between trains, as
 seen by an arriving passenger, is 8.33 minutes.
This kind of observer bias appears
 in many contexts. Students think that classes are bigger than they are
 because more of them are in the big classes. Airline passengers think that
 planes are fuller than they are because more of them are on full
 flights.
In each case, values from the actual distribution are oversampled in
 proportion to their value. In the Red Line example, a gap that is twice as
 big is twice as likely to be observed.
So given the actual distribution of gaps, we can compute the
 distribution of gaps as seen by passengers. BiasPmf does this computation:
def BiasPmf(pmf):
 new_pmf = pmf.Copy()

 for x, p in pmf.Items():
 new_pmf.Mult(x, x)

 new_pmf.Normalize()
 return new_pmf
pmf is the actual distribution;
 new_pmf is the biased
 distribution. Inside the loop, we multiply the probability of each value,
 x, by the likelihood it will be
 observed, which is proportional to x.
 Then we normalize the result.
Figure 8-1 shows the actual distribution of
 gaps, labeled z, and the distribution
 of gaps seen by passengers, labeled zb
 for “z biased”.

Wait times
Wait time, which I call y, is the
 time between the arrival of a passenger and the next arrival of a train.
 Elapsed time, which I call x, is the
 time between the arrival of the previous train and the arrival of a
 passenger. I chose these definitions so that zb =
 x + y.
Given the distribution of zb, we
 can compute the distribution of y. I’ll
 start with a simple case and then generalize. Suppose, as in the previous
 example, that zb is either 5 minutes
 with probability 1/3, or 10 minutes with probability 2/3.
If we arrive at a random time during a 5 minute gap, y is uniform from 0 to 5 minutes. If we arrive
 during a 10 minute gap, y is uniform
 from 0 to 10. So the overall distribution is a mixture of uniform
 distributions weighted according to the probability of each gap.
The following function takes the distribution of zb and computes the distribution of y:
def PmfOfWaitTime(pmf_zb):
 metapmf = thinkbayes.Pmf()
 for gap, prob in pmf_zb.Items():
 uniform = MakeUniformPmf(0, gap)
 metapmf.Set(uniform, prob)

 pmf_y = thinkbayes.MakeMixture(metapmf)
 return pmf_y
PmfOfWaitTime makes a meta-Pmf
 that maps from each uniform distribution to its probability. Then it uses
 MakeMixture, which we saw in “Mixtures”, to compute the mixture.
PmfOfWaitTime also uses MakeUniformPmf, defined here:
def MakeUniformPmf(low, high):
 pmf = thinkbayes.Pmf()
 for x in MakeRange(low=low, high=high):
 pmf.Set(x, 1)
 pmf.Normalize()
 return pmf
low and high are the range of the uniform distribution,
 (both ends included). Finally, MakeUniformPmf uses MakeRange, defined here:
def MakeRange(low, high, skip=10):
 return range(low, high+skip, skip)
MakeRange defines a set of
 possible values for wait time (expressed in seconds). By default it
 divides the range into 10 second intervals.
To encapsulate the process of computing these distributions, I
 created a class called WaitTimeCalculator:
class WaitTimeCalculator(object):

 def __init__(self, pmf_z):
 self.pmf_z = pmf_z
 self.pmf_zb = BiasPmf(pmf)

 self.pmf_y = self.PmfOfWaitTime(self.pmf_zb)
 self.pmf_x = self.pmf_y
The parameter, pmf_z, is the unbiased distribution of z. pmf_zb is the biased distribution of gap time, as
 seen by passengers.
pmf_y is the
 distribution of wait time. pmf_x is the distribution of elapsed time, which is
 the same as the distribution of wait time. To see why, remember that for a
 particular value of zp, the
 distribution of y is uniform from 0 to
 zp. Also
x = zp - y
So the distribution of x is also
 uniform from 0 to zp.
Figure 8-2 shows the distribution of z, zb, and
 y based on the data I collected from
 the Red Line website.
Figure 8-2. CDF of z, zb, and the wait time seen by passengers, y.

To present these distributions, I am switching from Pmfs to Cdfs.
 Most people are more familiar with Pmfs, but I think Cdfs are easier to
 interpret, once you get used to them. And if you want to plot several
 distributions on the same axes, Cdfs are the way to go.
The mean of z is 7.8 minutes. The
 mean of zb is 8.8 minutes, about 13%
 higher. The mean of y is 4.4, half the
 mean of zb.
As an aside, the Red Line schedule reports that trains run every 9
 minutes during peak times. This is close to the average of zb, but higher than the average of z. I exchanged email with a representative of
 the MBTA, who confirmed that the reported time between trains is
 deliberately conservative in order to account for variability.

Predicting wait times
Let’s get back to the motivating question: suppose that when I
 arrive at the platform I see 10 people waiting. How long should I expect
 to wait until the next train arrives?
As always, let’s start with the easiest version of the problem and
 work our way up. Suppose we are given the actual distribution of z, and we know that the passenger arrival rate,
 λ, is 2 passengers per minute.
In that case we can:
	Use the distribution of z to
 compute the prior distribution of zp, the time between trains as seen by a
 passenger.

	Then we can use the number of passengers to estimate the
 distribution of x, the elapsed time
 since the last train.

	Finally, we use the relation y = zp -
 x to get the distribution of y.

The first step is to create a WaitTimeCalculator that encapsulates the
 distributions of zp, x, and y,
 prior to taking into account the number of passengers.
 wtc = WaitTimeCalculator(pmf_z)
pmf_z is the given
 distribution of gap times.
The next step is to make an ElapsedTimeEstimator (defined below), which
 encapsulates the posterior distribution of x and the predictive distribution of y.
 ete = ElapsedTimeEstimator(wtc,
 lam=2.0/60,
 num_passengers=15)
The parameters are the WaitTimeCalculator, the passenger arrival rate,
 lam (expressed in passengers per
 second), and the observed number of passengers, let’s say 15.
Here is the definition of ElapsedTimeEstimator:
class ElapsedTimeEstimator(object):

 def __init__(self, wtc, lam, num_passengers):
 self.prior_x = Elapsed(wtc.pmf_x)

 self.post_x = self.prior_x.Copy()
 self.post_x.Update((lam, num_passengers))

 self.pmf_y = PredictWaitTime(wtc.pmf_zb, self.post_x)
prior_x and posterior_x are the prior and
 posterior distributions of elapsed time. pmf_y is the predictive distribution of wait
 time.
ElapsedTimeEstimator uses
 Elapsed and PredictWaitTime, defined below.
Elapsed is a Suite that
 represents the hypothetical distribution of x. The prior distribution of x comes straight from the WaitTimeCalculator. Then we use the data, which
 consists of the arrival rate, lam, and
 the number of passengers on the platform, to compute the posterior
 distribution.
Here’s the definition of Elapsed:
class Elapsed(thinkbayes.Suite):

 def Likelihood(self, data, hypo):
 x = hypo
 lam, k = data
 like = thinkbayes.EvalPoissonPmf(lam * x, k)
 return like
As always, Likelihood takes a
 hypothesis and data, and computes the likelihood of the data under the
 hypothesis. In this case hypo is the
 elapsed time since the last train and data is a tuple of lam and the number of passengers.
The likelihood of the data is the probability of getting k arrivals in x time, given arrival rate lam. We compute that using the PMF of the
 Poisson distribution.
Finally, here’s the definition of PredictWaitTime:
def PredictWaitTime(pmf_zb, pmf_x):
 pmf_y = pmf_zb - pmf_x
 RemoveNegatives(pmf_y)
 return pmf_y
pmf_zb is the
 distribution of gaps between trains; pmf_x is the distribution of elapsed time, based on
 the observed number of passengers. Since y = zb -
 x, we can compute
 pmf_y = pmf_zb - pmf_x
The subtraction operator invokes Pmf.__sub__, which enumerates all pairs of zb and x,
 computes the differences, and adds the results to pmf_y.
The resulting Pmf includes some negative values, which we know are
 impossible. For example, if you arrive during a gap of 5 minutes, you
 can’t wait more than 5 minutes. RemoveNegatives removes the impossible values
 from the distribution and renormalizes.
def RemoveNegatives(pmf):
 for val in pmf.Values():
 if val < 0:
 pmf.Remove(val)
 pmf.Normalize()
Figure 8-3 shows the results. The prior
 distribution of x is the same as the
 distribution of y in Figure 8-2. The posterior distribution of x shows that, after seeing 15 passengers on the
 platform, we believe that the time since the last train is probably 5-10
 minutes. The predictive distribution of y indicates that we expect the next train in
 less than 5 minutes, with about 80% confidence.
Figure 8-3. Prior and posterior of x and predicted y.

Estimating the arrival rate
The analysis so far has been based on the assumption that we know
 (1) the distribution of gaps and (2) the passenger arrival rate. Now we
 are ready to relax the second assumption.
Suppose that you just moved to Boston, so you don’t know much about
 the passenger arrival rate on the Red Line. After a few days of commuting,
 you could make a guess, at least qualitatively. With a little more effort,
 you could estimate λ
 quantitatively.
Each day when you arrive at the platform, you should note the time
 and the number of passengers waiting (if the platform is too big, you
 could choose a sample area). Then you should record your wait time and the
 number of new arrivals while you are waiting.
After five days, you might have data like this:
k1 y k2
-- --- --
17 4.6 9
22 1.0 0
23 1.4 4
18 5.4 12
4 5.8 11
where k1 is the number of
 passengers waiting when you arrive, y
 is your wait time in minutes, and k2 is
 the number of passengers who arrive while you are waiting.
Over the course of one week, you waited 18 minutes and saw 36
 passengers arrive, so you would estimate that the arrival rate is 2
 passengers per minute. For practical purposes that estimate is good
 enough, but for the sake of completeness I will compute a posterior
 distribution for λ and show how to use
 that distribution in the rest of the analysis.
ArrivalRate is a Suite that represents hypotheses about λ. As always, Likelihood takes a hypothesis and data, and
 computes the likelihood of the data under the hypothesis.
In this case the hypothesis is a value of λ. The data is a pair, y,
 k, where y is a wait time and
 k is the number of passengers that
 arrived.
class ArrivalRate(thinkbayes.Suite):

 def Likelihood(self, data, hypo):
 lam = hypo
 y, k = data
 like = thinkbayes.EvalPoissonPmf(lam * y, k)
 return like
This Likelihood might look
 familiar; it is almost identical to Elapsed.Likelihood in “Predicting wait times”. The difference is that in Elapsed.Likelihood the hypothesis is x, the elapsed time; in ArrivalRate.Likelihood the hypothesis is
 lam, the arrival rate. But in both
 cases the likelihood is the probability of seeing k arrivals in some period of time, given
 lam.
ArrivalRateEstimator encapsulates
 the process of estimating λ. The
 parameter, passenger_data,
 is a list of k1, y, k2 tuples, as in
 the table above.
class ArrivalRateEstimator(object):

 def __init__(self, passenger_data):
 low, high = 0, 5
 n = 51
 hypos = numpy.linspace(low, high, n) / 60

 self.prior_lam = ArrivalRate(hypos)

 self.post_lam = self.prior_lam.Copy()
 for k1, y, k2 in passenger_data:
 self.post_lam.Update((y, k2))
__init__ builds
 hypos, which is a sequence of
 hypothetical values for lam, then
 builds the prior distribution, prior_lam. The for loop updates the prior with data, yielding
 the posterior distribution, post_lam.
Figure 8-4 shows the prior and posterior
 distributions. As expected, the mean and median of the posterior are near
 the observed rate, 2 passengers per minute. But the spread of the
 posterior distribution captures our uncertainty about λ based on a small sample.
Figure 8-4. Prior and posterior distributions of lam based on five days of
 passenger data.

Incorporating uncertainty
Whenever there is uncertainty about one of the inputs to an
 analysis, we can take it into account by a process like this:
	Implement the analysis based on a deterministic value of the
 uncertain parameter (in this case λ).

	Compute the distribution of the uncertain parameter.

	Run the analysis for each value of the parameter, and generate a
 set of predictive distributions.

	Compute a mixture of the predictive distributions, using the
 weights from the distribution of the parameter.

We have already done steps (1) and (2). I wrote a class called
 WaitMixtureEstimator to handle steps
 (3) and (4).
class WaitMixtureEstimator(object):

 def __init__(self, wtc, are, num_passengers=15):
 self.metapmf = thinkbayes.Pmf()

 for lam, prob in sorted(are.post_lam.Items()):
 ete = ElapsedTimeEstimator(wtc, lam, num_passengers)
 self.metapmf.Set(ete.pmf_y, prob)

 self.mixture = thinkbayes.MakeMixture(self.metapmf)
wtc is the WaitTimeCalculator that contains the
 distribution of zb. are is the ArrivalTimeEstimator that contains the
 distribution of lam.
The first line makes a meta-Pmf that maps from each possible
 distribution of y to its probability.
 For each value of lam, we use ElapsedTimeEstimator to compute the
 corresponding distribution of y and
 store it in the Meta-Pmf. Then we use MakeMixture to compute the mixture.
Figure 8-5 shows the results. The shaded lines
 in the background are the distributions of y for each value of lam, with line thickness that represents
 likelihood. The dark line is the mixture of these distributions.
Figure 8-5. Predictive distributions of y for possible values of lam.

In this case we could get a very similar result using a single point
 estimate of lam. So it was not
 necessary, for practical purposes, to include the uncertainty of the
 estimate.
In general, it is important to include variability if the system
 response is non-linear; that is, if small changes in the input can cause
 big changes in the output. In this case, posterior variability in lam is small and the system response is
 approximately linear for small perturbations.

Decision analysis
At this point we can use the number of passengers on the platform to
 predict the distribution of wait times. Now let’s get to the second part
 of the question: when should I stop waiting for the train and go catch a
 taxi?
Remember that in the original scenario, I am trying to get to South
 Station to catch the commuter rail. Suppose I leave the office with enough
 time that I can wait 15 minutes and still make my connection at South
 Station.
In that case I would like to know the probability that y exceeds 15 minutes as a function of num_passengers. It is easy enough
 to use the analysis from “Predicting wait times” and run it for a range
 of num_passengers.
But there’s a problem. The analysis is sensitive to the frequency of
 long delays, and because long delays are rare, it is hard to estimate their
 frequency.
I only have data from one week, and the longest delay I observed was
 15 minutes. So I can’t estimate the frequency of longer delays
 accurately.
However, I can use previous observations to make at least a coarse
 estimate. When I commuted by Red Line for a year, I saw three long delays
 caused by a signaling problem, a power outage, and “police activity” at
 another stop. So I estimate that there are about 3 major delays per
 year.
But remember that my observations are biased. I am more likely to
 observe long delays because they affect a large number of passengers. So
 we should treat my observations as a sample of zb rather than z. Here’s how we can do that.
During my year of commuting, I took the Red Line home about 220
 times. So I take the observed gap times, gap_times, generate a sample of 220 gaps, and
 compute their Pmf:
 n = 220
 cdf_z = thinkbayes.MakeCdfFromList(gap_times)
 sample_z = cdf_z.Sample(n)
 pmf_z = thinkbayes.MakePmfFromList(sample_z)
Next I bias pmf_z to
 get the distribution of zb, draw a
 sample, and then add in delays of 30, 40, and 50 minutes (expressed in
 seconds):
 cdf_zp = BiasPmf(pmf_z).MakeCdf()
 sample_zb = cdf_zp.Sample(n) + [1800, 2400, 3000]
Cdf.Sample is more efficient than
 Pmf.Sample, so it is usually faster to
 convert a Pmf to a Cdf before sampling.
Next I use the sample of zb to
 estimate a Pdf using KDE, and then convert the Pdf to a Pmf:
 pdf_zb = thinkbayes.EstimatedPdf(sample_zb)
 xs = MakeRange(low=60)
 pmf_zb = pdf_zb.MakePmf(xs)
Finally I unbias the distribution of zb to get the distribution of z, which I use to create the WaitTimeCalculator:
 pmf_z = UnbiasPmf(pmf_zb)
 wtc = WaitTimeCalculator(pmf_z)
This process is complicated, but all of the steps are operations we
 have seen before. Now we are ready to compute the probability of a long
 wait.
def ProbLongWait(num_passengers, minutes):
 ete = ElapsedTimeEstimator(wtc, lam, num_passengers)
 cdf_y = ete.pmf_y.MakeCdf()
 prob = 1 - cdf_y.Prob(minutes * 60)
Given the number of passengers on the platform, ProbLongWait makes an ElapsedTimeEstimator, extracts the distribution
 of wait time, and computes the probability that wait time exceeds minutes.
Figure 8-6 shows the result. When the number of
 passengers is less than 20, we infer that the system is operating
 normally, so the probability of a long delay is small. If there are 30
 passengers, we estimate that it has been 15 minutes since the last train;
 that’s longer than a normal delay, so we infer that something is wrong and
 expect longer delays.
If we are willing to accept a 10% chance of missing the connection
 at South Station, we should stay and wait as long as there are fewer than
 30 passengers, and take a taxi if there are more.
Or, to take this analysis one step further, we could quantify the
 cost of missing the connection and the cost of taking a taxi, then choose
 the threshold that minimizes expected cost.
Figure 8-6. Probability that wait time exceeds 15 minutes as a function of
 the number of passengers on the platform.

Discussion
The analysis so far has been based on the assumption that the
 arrival rate of passengers is the same every day. For a commuter train
 during rush hour, that might not be a bad assumption, but there are some
 obvious exceptions. For example, if there is a special event nearby, a
 large number of people might arrive at the same time. In that case, the
 estimate of lam would be too low, so
 the estimates of x and y would be too high.
If special events are as common as major delays, it would be
 important to include them in the model. We could do that by extending the
 distribution of lam to include
 occasional large values.
We started with the assumption that we know distribution of z. As an alternative, a passenger could estimate
 z, but it would not be easy. As a
 passenger, you only observe only your own wait time, y. Unless you skip the first train and wait for
 the second, you don’t observe the gap between trains, z.
However, we could make some inferences about zb. If we note the number of passengers waiting
 when we arrive, we can estimate the elapsed time since the last train,
 x. Then we observe y. If we add the posterior distribution of
 x to the observed y, we get a distribution that represents our
 posterior belief about the observed value of zb.
We can use this distribution to update our beliefs about the
 distribution of zb. Finally, we can
 compute the inverse of BiasPmf to get
 from the distribution of zb to the
 distribution of z.
I leave this analysis as an exercise for the reader. One suggestion:
 you should read Chapter 15 first. You can find the outline
 of a solution in http://thinkbayes.com/redline.py.
 For more information see “Working with the code”.

Exercises
Exercise 8-1.
This exercise is from MacKay, Information Theory,
 Inference, and Learning Algorithms:
Unstable particles are emitted from a source and decay at a
 distance x, a real number that has
 an exponential probability distribution with [parameter] λ. Decay events can only be observed if they
 occur in a window extending from cm to cm. N decays
 are observed at locations cm. What is the posterior distribution of
 λ?

You can download a solution to this exercise from http://thinkbayes.com/decay.py.

Chapter 9. Two Dimensions
Paintball
Paintball is a sport in which competing teams try to shoot each
 other with guns that fire paint-filled pellets that break on impact,
 leaving a colorful mark on the target. It is usually played in an arena
 decorated with barriers and other objects that can be used as
 cover.
Suppose you are playing paintball in an indoor arena 30 feet wide
 and 50 feet long. You are standing near one of the 30 foot walls, and you
 suspect that one of your opponents has taken cover nearby. Along the wall,
 you see several paint spatters, all the same color, that you think your
 opponent fired recently.
The spatters are at 15, 16, 18, and 21 feet, measured from the
 lower-left corner of the room. Based on these data, where do you think
 your opponent is hiding?
Figure 9-1 shows a diagram of the arena. Using
 the lower-left corner of the room as the origin, I denote the unknown
 location of the shooter with coordinates α and β, or
 alpha and beta. The location of a spatter is labeled
 x. The angle the opponent shoots at is
 θ or theta.
The Paintball problem is a modified version of the Lighthouse
 problem, a common example of Bayesian analysis. My notation follows the
 presentation of the problem in D.S. Sivia’s, Data Analysis: a
 Bayesian Tutorial, Second Edition (Oxford, 2006).
You can download the code in this chapter from http://thinkbayes.com/paintball.py.
 For more information see “Working with the code”.
Figure 9-1. Diagram of the layout for the paintball problem.

The suite
To get started, we need a Suite that represents a set of hypotheses
 about the location of the opponent. Each hypothesis is a pair of
 coordinates: (alpha, beta).
Here is the definition of the Paintball suite:
class Paintball(thinkbayes.Suite, thinkbayes.Joint):

 def __init__(self, alphas, betas, locations):
 self.locations = locations
 pairs = [(alpha, beta)
 for alpha in alphas
 for beta in betas]
 thinkbayes.Suite.__init__(self, pairs)
Paintball inherits from Suite, which we have seen before, and Joint, which I will explain soon.
alphas is the list of possible
 values for alpha; betas is the list of values for beta. pairs
 is a list of all (alpha, beta)
 pairs.
locations is a list of possible
 locations along the wall; it is stored for use in Likelihood.
The room is 30 feet wide and 50 feet long, so here’s the code that
 creates the suite:
 alphas = range(0, 31)
 betas = range(1, 51)
 locations = range(0, 31)

 suite = Paintball(alphas, betas, locations)
This prior distribution assumes that all locations in the room are
 equally likely. Given a map of the room, we might choose a more detailed
 prior, but we’ll start simple.

Trigonometry
Now we need a likelihood function, which means we have to figure out
 the likelihood of hitting any spot along the wall, given the location of
 the opponent.
As a simple model, imagine that the opponent is like a rotating
 turret, equally likely to shoot in any direction. In that case, he is most
 likely to hit the wall at location alpha, and less likely to hit the wall far away
 from alpha.
With a little trigonometry, we can compute the probability of
 hitting any spot along the wall. Imagine that the shooter fires a shot at
 angle θ; the pellet would hit the wall at
 location x, where

Solving this equation for θ
 yields

So given a location on the wall, we can find θ.
Taking the derivative of the first equation with respect to
 θ yields

This derivative is what I’ll call the “strafing speed”, which is the
 speed of the target location along the wall as θ increases. The probability of hitting a given
 point on the wall is inversely related to strafing speed.
If we know the coordinates of the shooter and a location along the
 wall, we can compute strafing speed:
def StrafingSpeed(alpha, beta, x):
 theta = math.atan2(x - alpha, beta)
 speed = beta / math.cos(theta)**2
 return speed
alpha and beta are the coordinates of the shooter;
 x is the location of a spatter. The
 result is the derivative of x with
 respect to theta.
Now we can compute a Pmf that represents the probability of hitting
 any location on the wall. MakeLocationPmf takes alpha and beta, the coordinates of the shooter, and
 locations, a list of possible values of
 x.
def MakeLocationPmf(alpha, beta, locations):
 pmf = thinkbayes.Pmf()
 for x in locations:
 prob = 1.0 / StrafingSpeed(alpha, beta, x)
 pmf.Set(x, prob)
 pmf.Normalize()
 return pmf
MakeLocationPmf computes the
 probability of hitting each location, which is inversely related to
 strafing speed. The result is a Pmf of locations and their
 probabilities.
Figure 9-2 shows the Pmf of location with
 alpha = 10 and a range of values for
 beta. For all values of beta the most
 likely spatter location is x = 10; as
 beta increases, so does the spread of
 the Pmf.
Figure 9-2. PMF of location given alpha=10, for several values of
 beta.

Likelihood
Now all we need is a likelihood function. We can use MakeLocationPmf to compute the likelihood of any
 value of x, given the coordinates of
 the opponent.
 def Likelihood(self, data, hypo):
 alpha, beta = hypo
 x = data
 pmf = MakeLocationPmf(alpha, beta, self.locations)
 like = pmf.Prob(x)
 return like
Again, alpha and beta are the hypothetical coordinates of the
 shooter, and x is the location of an
 observed spatter.
pmf contains the probability of
 each location, given the coordinates of the shooter. From this Pmf, we
 select the probability of the observed location.
And we’re done. To update the suite, we can use UpdateSet, which is inherited from Suite.
suite.UpdateSet([15, 16, 18, 21])
The result is a distribution that maps each (alpha, beta) pair to a posterior
 probability.

Joint distributions
When each value in a distribution is a tuple of variables, it is
 called a joint distribution because it
 represents the distributions of the variables together, that is “jointly”.
 A joint distribution contains the distributions of the variables, as well
 information about the relationships among them.
Given a joint distribution, we can compute the distributions of each
 variable independently, which are called the marginal distributions.
thinkbayes.Joint provides a
 method that computes marginal distributions:
class Joint:

 def Marginal(self, i):
 pmf = Pmf()
 for vs, prob in self.Items():
 pmf.Incr(vs[i], prob)
 return pmf
i is the index of the variable we
 want; in this example i=0 indicates the
 distribution of alpha, and i=1 indicates the distribution of beta.
Here’s the code that extracts the marginal distributions:
 marginal_alpha = suite.Marginal(0)
 marginal_beta = suite.Marginal(1)
Figure 9-3 shows the results (converted to
 CDFs). The median value for alpha is
 18, near the center of mass of the observed spatters. For beta, the most likely values are close to the
 wall, but beyond 10 feet the distribution is almost uniform, which
 indicates that the data do not distinguish strongly between these possible
 locations.
Given the posterior marginals, we can compute credible intervals for
 each coordinate independently:
 print 'alpha CI', marginal_alpha.CredibleInterval(50)
 print 'beta CI', marginal_beta.CredibleInterval(50)
The 50% credible intervals are (14,
 21) for alpha and (5, 31) for beta. So the data provide evidence that the
 shooter is in the near side of the room. But it is not strong evidence.
 The 90% credible intervals cover most of the room!
Figure 9-3. Posterior CDFs for alpha and beta, given the data.

Conditional distributions
The marginal distributions contain information about the variables
 independently, but they do not capture the dependence between variables,
 if any.
One way to visualize dependence is by computing conditional distributions. thinkbayes.Joint provides a method that does
 that:
 def Conditional(self, i, j, val):
 pmf = Pmf()
 for vs, prob in self.Items():
 if vs[j] != val: continue
 pmf.Incr(vs[i], prob)

 pmf.Normalize()
 return pmf
Again, i is the index of the
 variable we want; j is the index of the
 conditioning variable, and val is the
 conditional value.
The result is the distribution of the ith variable under the condition that the jth variable is val.
For example, the following code computes the conditional
 distributions of alpha for a range of
 values of beta:
 betas = [10, 20, 40]

 for beta in betas:
 cond = suite.Conditional(0, 1, beta)
Figure 9-4 shows the results, which we could
 fully describe as “posterior conditional marginal distributions.”
 Whew!
Figure 9-4. Posterior distributions for alpha conditioned on several values
 of beta.

If the variables were independent, the conditional distributions
 would all be the same. Since they are all different, we can tell the
 variables are dependent. For example, if we know (somehow) that beta = 10, the conditional distribution of
 alpha is fairly narrow. For larger
 values of beta, the distribution of
 alpha is wider.

Credible intervals
Another way to visualize the posterior joint distribution is to
 compute credible intervals. When we looked at credible intervals in “Credible intervals”, I skipped over a subtle point: for a given
 distribution, there are many intervals with the same level of credibility.
 For example, if you want a 50% credible interval, you could choose any set
 of values whose probability adds up to 50%.
When the values are one-dimensional, it is most common to choose the
 central credible interval; for example,
 the central 50% credible interval contains all values between the 25th and
 75th percentiles.
In multiple dimensions it is less obvious what the right credible
 interval should be. The best choice might depend on context, but one
 common choice is the maximum likelihood credible interval, which contains
 the most likely values that add up to 50% (or some other
 percentage).
thinkbayes.Joint provides a
 method that computes maximum likelihood credible intervals.
class Joint:

 def MaxLikeInterval(self, percentage=90):
 interval = []
 total = 0

 t = [(prob, val) for val, prob in self.Items()]
 t.sort(reverse=True)

 for prob, val in t:
 interval.append(val)
 total += prob
 if total >= percentage/100.0:
 break

 return interval
The first step is to make a list of the values in the suite, sorted
 in descending order by probability. Next we traverse the list, adding each
 value to the interval, until the total probability exceeds percentage. The result is a list of values from
 the suite. Notice that this set of values is not necessarily
 contiguous.
To visualize the intervals, I wrote a function that “colors” each
 value according to how many intervals it appears in:
def MakeCrediblePlot(suite):
 d = dict((pair, 0) for pair in suite.Values())

 percentages = [75, 50, 25]
 for p in percentages:
 interval = suite.MaxLikeInterval(p)
 for pair in interval:
 d[pair] += 1

 return d
d is a dictionary that maps from
 each value in the suite to the number of intervals it appears in. The loop
 computes intervals for several percentages and modifies d.
Figure 9-5 shows the result. The 25% credible
 interval is the darkest region near the bottom wall. For higher
 percentages, the credible interval is bigger, of course, and skewed toward
 the right side of the room.
Figure 9-5. Credible intervals for the coordinates of the opponent.

Discussion
This chapter shows that the Bayesian framework from the previous
 chapters can be extended to handle a two-dimensional parameter space. The
 only difference is that each hypothesis is represented by a tuple of
 parameters.
I also presented Joint, which is
 a parent class that provides methods that apply to joint distributions:
 Marginal, Conditional, and MakeLikeInterval. In object-oriented terms,
 Joint is a mixin (see http://en.wikipedia.org/wiki/Mixin).
There is a lot of new vocabulary in this chapter, so let’s
 review:
	Joint distribution:
	A distribution that represents all possible values in a
 multidimensional space and their probabilities. The example in this
 chapter is a two-dimensional space made up of the coordinates
 alpha and beta. The joint distribution represents
 the probability of each (alpha,
 beta) pair.

	Marginal distribution:
	The distribution of one parameter in a joint distribution,
 treating the other parameters as unknown. For example, Figure 9-3 shows the distributions of alpha and beta independently.

	Conditional distribution:
	The distribution of one parameter in a joint distribution,
 conditioned on one or more of the other parameters. Figure 9-4 several distributions for alpha, conditioned on different values of
 beta.

Given the joint distribution, you can compute marginal and
 conditional distributions. With enough conditional distributions, you
 could re-create the joint distribution, at least approximately. But given
 the marginal distributions you cannot re-create the joint distribution
 because you have lost information about the dependence between
 variables.
If there are n possible values for
 each of two parameters, most operations on the joint distribution take
 time proportional to n2. If there are
 d parameters, run time is proportional to
 nd, which
 quickly becomes impractical as the number of dimensions increases.
If you can process a million hypotheses in a reasonable amount of
 time, you could handle two dimensions with 1000 values for each parameter,
 or three dimensions with 100 values each, or six dimensions with 10 values
 each.
If you need more dimensions, or more values per dimension, there are
 optimizations you can try. I present an example in Chapter 15.
You can download the code in this chapter from http://thinkbayes.com/paintball.py.
 For more information see “Working with the code”.

Exercises
Exercise 9-1.
In our simple model, the opponent is equally likely to shoot in
 any direction. As an exercise, let’s consider improvements to this
 model.
The analysis in this chapter suggests that a shooter is most
 likely to hit the closest wall. But in reality, if the opponent is
 close to a wall, he is unlikely to shoot at the wall because he is
 unlikely to see a target between himself and the wall.
Design an improved model that takes this behavior into account.
 Try to find a model that is more realistic, but not too
 complicated.

Chapter 10. Approximate Bayesian Computation
The Variability Hypothesis
I have a soft spot for crank science. Recently I visited Norumbega
 Tower, which is an enduring monument to the crackpot theories of Eben
 Norton Horsford, inventor of double-acting baking powder and fake history.
 But that’s not what this chapter is about.
This chapter is about the Variability Hypothesis, which
“originated in the early nineteenth century with Johann Meckel,
 who argued that males have a greater range of ability than females,
 especially in intelligence. In other words, he believed that most
 geniuses and most mentally retarded people are men. Because he
 considered males to be the ’superior animal,’ Meckel concluded that
 females’ lack of variation was a sign of inferiority.”
From http://en.wikipedia.org/wiki/Variability_hypothesis.

I particularly like that last part, because I suspect that if it
 turns out that women are actually more variable, Meckel would take that as
 a sign of inferiority, too. Anyway, you will not be surprised to hear that
 the evidence for the Variability Hypothesis is weak.
Nevertheless, it came up in my class recently when we looked at data
 from the CDC’s Behavioral Risk Factor Surveillance System (BRFSS),
 specifically the self-reported heights of adult American men and women.
 The dataset includes responses from 154407 men and 254722 women. Here’s
 what we found:
	The average height for men is 178 cm; the average height for
 women is 163 cm. So men are taller, on average. No surprise
 there.

	For men the standard deviation is 7.7 cm; for women it is 7.3
 cm. So in absolute terms, men’s heights are more variable.

	But to compare variability between groups, it is more meaningful
 to use the coefficient of variation (CV), which is the standard
 deviation divided by the mean. It is a dimensionless measure of
 variability relative to scale. For men CV is 0.0433; for women it is
 0.0444.

That’s very close, so we could conclude that this dataset provides
 weak evidence against the Variability Hypothesis. But we can use Bayesian
 methods to make that conclusion more precise. And answering this question
 gives me a chance to demonstrate some techniques for working with large
 datasets.
I will proceed in a few steps:
	We’ll start with the simplest implementation, but it only works
 for datasets smaller than 1000 values.

	By computing probabilities under a log transform, we can scale
 up to the full size of the dataset, but the computation gets
 slow.

	Finally, we speed things up substantially with Approximate
 Bayesian Computation, also known as ABC.

You can download the code in this chapter from http://thinkbayes.com/variability.py.
 For more information see “Working with the code”.

Mean and standard deviation
In Chapter 9 we estimated two parameters
 simultaneously using a joint distribution. In this chapter we use the same
 method to estimate the parameters of a Gaussian distribution: the mean,
 mu, and the standard deviation,
 sigma.
For this problem, I define a Suite called Height that represents a map from each mu, sigma pair to its probability:
class Height(thinkbayes.Suite, thinkbayes.Joint):

 def __init__(self, mus, sigmas):

 pairs = [(mu, sigma)
 for mu in mus
 for sigma in sigmas]

 thinkbayes.Suite.__init__(self, pairs)
mus is a sequence of possible
 values for mu; sigmas is a sequence of values for sigma. The prior distribution is uniform over
 all mu, sigma pairs.
The likelihood function is easy. Given hypothetical values of
 mu and sigma, we compute the likelihood of a particular
 value, x. That’s what EvalGaussianPdf does, so all we have to do is
 use it:
class Height

 def Likelihood(self, data, hypo):
 x = data
 mu, sigma = hypo
 like = thinkbayes.EvalGaussianPdf(x, mu, sigma)
 return like
If you have studied statistics from a mathematical perspective, you
 know that when you evaluate a PDF, you get a probability density. In order
 to get a probability, you have to integrate probability densities over
 some range.
But for our purposes, we don’t need a probability; we just need
 something proportional to the probability we want. A probability density
 does that job nicely.
The hardest part of this problem turns out to be choosing
 appropriate ranges for mus and sigmas. If the range is too small, we omit some
 possibilities with non-negligible probability and get the wrong answer. If
 the range is too big, we get the right answer, but waste computational
 power.
So this is an opportunity to use classical estimation to make
 Bayesian techniques more efficient. Specifically, we can use classical
 estimators to find a likely location for mu and sigma,
 and use the standard errors of those estimates to choose a likely
 spread.
If the true parameters of the distribution are μ and σ, and we
 take a sample of n values, an estimator
 of μ is the sample mean, m.
And an estimator of σ is the sample
 standard variance, s.
The standard error of the estimated μ is and the standard error of the estimated σ is .
Here’s the code to compute all that:
def FindPriorRanges(xs, num_points, num_stderrs=3.0):

 # compute m and s
 n = len(xs)
 m = numpy.mean(xs)
 s = numpy.std(xs)

 # compute ranges for m and s
 stderr_m = s / math.sqrt(n)
 mus = MakeRange(m, stderr_m, num_stderrs)

 stderr_s = s / math.sqrt(2 * (n-1))
 sigmas = MakeRange(s, stderr_s, num_stderrs)

 return mus, sigmas
xs is the dataset. num_points is the desired number of
 values in the range. num_stderrs is the width of the range on each side
 of the estimate, in number of standard errors.
The return value is a pair of sequences, mus and sigmas.
Here’s MakeRange:
def MakeRange(estimate, stderr, num_stderrs):
 spread = stderr * num_stderrs
 array = numpy.linspace(estimate-spread,
 estimate+spread,
 num_points)
 return array
numpy.linspace makes an array of
 equally spaced elements between estimate-spread and estimate+spread, including both.

Update
Finally here’s the code to make and update the suite:
 mus, sigmas = FindPriorRanges(xs, num_points)
 suite = Height(mus, sigmas)
 suite.UpdateSet(xs)
 print suite.MaximumLikelihood()
This process might seem bogus, because we use the data to choose the
 range of the prior distribution, and then use the data again to do the
 update. In general, using the same data twice is, in fact,
 bogus.
But in this case it is ok. Really. We use the data to choose the
 range for the prior, but only to avoid computing a lot of probabilities
 that would have been very small anyway. With num_stderrs=4, the range is big enough to cover all
 values with non-negligible likelihood. After that, making it bigger has no
 effect on the results.
In effect, the prior is uniform over all values of mu and sigma,
 but for computational efficiency we ignore all the values that don’t
 matter.

The posterior distribution of CV
Once we have the posterior joint distribution of mu and sigma,
 we can compute the distribution of CV for men and women, and then the
 probability that one exceeds the other.
To compute the distribution of CV, we enumerate
 pairs of mu and sigma:
def CoefVariation(suite):
 pmf = thinkbayes.Pmf()
 for (mu, sigma), p in suite.Items():
 pmf.Incr(sigma/mu, p)
 return pmf
Then we use thinkbayes.PmfProbGreater to compute the
 probability that men are more variable.
The analysis itself is simple, but there are two more issues we have
 to deal with:
	As the size of the dataset increases, we run into a series of
 computational problems due to the limitations of floating-point
 arithmetic.

	The dataset contains a number of extreme values that are almost
 certainly errors. We will need to make the estimation process robust
 in the presence of these outliers.

The following sections explain these problems and their
 solutions.

Underflow
If we select the first 100 values from the BRFSS dataset and run the
 analysis I just described, it runs without errors and we get posterior
 distributions that look reasonable.
If we select the first 1000 values and run the program again, we get
 an error in Pmf.Normalize:
ValueError: total probability is zero.
The problem is that we are using probability densities to compute
 likelihoods, and densities from continuous distributions tend to be small.
 And if you take 1000 small values and multiply them together, the result
 is very small. In this case it is so small it can’t be represented by a
 floating-point number, so it gets rounded down to zero, which is called
 underflow. And if all probabilities in
 the distribution are 0, it’s not a distribution any more.
A possible solution is to renormalize the Pmf after each update, or
 after each batch of 100. That would work, but it would be slow.
A better alternative is to compute likelihoods under a log
 transform. That way, instead of multiplying small values, we can add up
 log likelihoods. Pmf provides methods
 Log, LogUpdateSet and Exp to make this process easy.
Log computes the log of the
 probabilities in a Pmf:
class Pmf

 def Log(self):
 m = self.MaxLike()
 for x, p in self.d.iteritems():
 if p:
 self.Set(x, math.log(p/m))
 else:
 self.Remove(x)
Before applying the log transform Log uses MaxLike to find m, the highest probability in the Pmf. It divide
 all probabilities by m, so the highest
 probability gets normalized to 1, which yields a log of 0. The other log
 probabilities are all negative. If there are any values in the Pmf with
 probability 0, they are removed.
While the Pmf is under a log transform, we can’t use Update, UpdateSet, or Normalize. The result would be nonsensical; if
 you try, Pmf raises an exception. Instead, we have to use LogUpdate and LogUpdateSet.
Here’s the implementation of LogUpdateSet:
class Suite

 def LogUpdateSet(self, dataset):
 for data in dataset:
 self.LogUpdate(data)
LogUpdateSet loops through the
 data and calls LogUpdate:
class Suite

 def LogUpdate(self, data):
 for hypo in self.Values():
 like = self.LogLikelihood(data, hypo)
 self.Incr(hypo, like)
LogUpdate is just like Update except that it calls LogLikelihood instead of Likelihood, and Incr instead of Mult.
Using log-likelihoods avoids the problem with underflow, but while
 the Pmf is under the log transform, there’s not much we can do with it. We
 have to use Exp to invert the
 transform:
class Pmf

 def Exp(self):
 m = self.MaxLike()
 for x, p in self.d.iteritems():
 self.Set(x, math.exp(p-m))
If the log-likelihoods are large negative numbers, the resulting
 likelihoods might underflow. So Exp
 finds the maximum log-likelihood, m,
 and shifts all the likelihoods up by m.
 The resulting distribution has a maximum likelihood of 1. This process
 inverts the log transform with minimal loss of precision.

Log-likelihood
Now all we need is LogLikelihood.
class Height

 def LogLikelihood(self, data, hypo):
 x = data
 mu, sigma = hypo
 loglike = scipy.stats.norm.logpdf(x, mu, sigma)
 return loglike
norm.logpdf computes the
 log-likelihood of the Gaussian PDF.
Here’s what the whole update process looks like:
 suite.Log()
 suite.LogUpdateSet(xs)
 suite.Exp()
 suite.Normalize()
To review, Log puts the suite
 under a log transform. LogUpdateSet
 calls LogUpdate, which calls LogLikelihood. LogUpdate uses Pmf.Incr, because adding a log-likelihood is the
 same as multiplying by a likelihood.
After the update, the log-likelihoods are large negative numbers, so
 Exp shifts them up before inverting the
 transform, which is how we avoid underflow.
Once the suite is transformed back, the probabilities are “linear”
 again, which means “not logarithmic”, so we can use Normalize again.
Using this algorithm, we can process the entire dataset without
 underflow, but it is still slow. On my computer it might take an hour. We
 can do better.

A little optimization
This section uses math and computational optimization to speed
 things up by a factor of 100. But the following section presents an
 algorithm that is even faster. So if you want to get right to the good
 stuff, feel free to skip this section.
Suite.LogUpdateSet calls LogUpdate once for each data point. We can speed
 it up by computing the log-likelihood of the entire dataset at
 once.
We’ll start with the Gaussian PDF:

and compute the log (dropping the constant term):

Given a sequence of values, xi, the total log-likelihood
 is

Pulling out the terms that don’t depend on i, we get

which we can translate into Python:
class Height

 def LogUpdateSetFast(self, data):
 xs = tuple(data)
 n = len(xs)

 for hypo in self.Values():
 mu, sigma = hypo
 total = Summation(xs, mu)
 loglike = -n * math.log(sigma) - total / 2 / sigma**2
 self.Incr(hypo, loglike)
By itself, this would be a small improvement, but it creates an
 opportunity for a bigger one. Notice that the summation only depends on
 mu, not sigma, so we only have to compute it once for
 each value of mu.
To avoid recomputing, I factor out a function that computes the
 summation, and memoize it so it stores
 previously computed results in a dictionary (see http://en.wikipedia.org/wiki/Memoization):
def Summation(xs, mu, cache={}):
 try:
 return cache[xs, mu]
 except KeyError:
 ds = [(x-mu)**2 for x in xs]
 total = sum(ds)
 cache[xs, mu] = total
 return total
cache stores previously computed
 sums. The try statement returns a
 result from the cache if possible; otherwise it computes the summation,
 then caches and returns the result.
The only catch is that we can’t use a list as a key in the cache,
 because it is not a hashable type. That’s why LogUpdateSetFast converts the dataset to a
 tuple.
This optimization speeds up the computation by about a factor of
 100, processing the entire dataset (154407 men and
 254722 women) in less than a minute on my not-very-fast
 computer.

ABC
But maybe you don’t have that kind of time. In that case,
 Approximate Bayesian Computation (ABC) might be the way to go. The
 motivation behind ABC is that the likelihood of any particular dataset
 is:
	Very small, especially for large datasets, which is why we had
 to use the log transform,

	Expensive to compute, which is why we had to do so much
 optimization, and

	Not really what we want anyway.

We don’t really care about the likelihood of seeing the exact
 dataset we saw. Especially for continuous variables, we care about the
 likelihood of seeing any dataset like the one we saw.
For example, in the Euro problem, we don’t care about the order of
 the coin flips, only the total number of heads and tails. And in the
 locomotive problem, we don’t care about which particular trains were seen,
 only the number of trains and the maximum of the serial numbers.
Similarly, in the BRFSS sample, we don’t really want to know the
 probability of seeing one particular set of values (especially since there
 are hundreds of thousands of them). It is more relevant to ask, “If we
 sample 100,000 people from a population with hypothetical values of
 μ and σ,
 what would be the chance of collecting a sample with the observed mean and
 variance?”
For samples from a Gaussian distribution, we can answer this
 question efficiently because we can find the distribution of the sample
 statistics analytically. In fact, we already did it when we computed the
 range of the prior.
If you draw n values from a
 Gaussian distribution with parameters μ
 and σ, and compute the sample mean,
 m, the distribution of m is Gaussian with parameters μ and .
Similarly, the distribution of the sample standard deviation,
 s, is Gaussian with parameters σ and .
We can use these sample distributions to compute the
 likelihood of the sample statistics, m
 and s, given hypothetical values for
 μ and σ.
 Here’s a new version of LogUpdateSet that does it:
 def LogUpdateSetABC(self, data):
 xs = data
 n = len(xs)

 # compute sample statistics
 m = numpy.mean(xs)
 s = numpy.std(xs)

 for hypo in sorted(self.Values()):
 mu, sigma = hypo

 # compute log likelihood of m, given hypo
 stderr_m = sigma / math.sqrt(n)
 loglike = EvalGaussianLogPdf(m, mu, stderr_m)

 #compute log likelihood of s, given hypo
 stderr_s = sigma / math.sqrt(2 * (n-1))
 loglike += EvalGaussianLogPdf(s, sigma, stderr_s)

 self.Incr(hypo, loglike)
On my computer this function processes the entire dataset in about a
 second, and the result agrees with the exact result with about 5 digits of
 precision.

Robust estimation
We are almost ready to look at results, but we have one more problem
 to deal with. There are a number of outliers in this dataset that are
 almost certainly errors. For example, there are three adults with reported
 height of 61 cm, which would place them among the shortest living adults
 in the world. At the other end, there are four women with reported height
 229 cm, just short of the tallest women in the world.
It is not impossible that these values are correct, but it is
 unlikely, which makes it hard to know how to deal with them. And we have
 to get it right, because these extreme values have a disproportionate
 effect on the estimated variability.
Because ABC is based on summary statistics, rather than the entire
 dataset, we can make it more robust by choosing summary statistics that
 are robust in the presence of outliers. For example, rather than use the
 sample mean and standard deviation, we could use the median and
 inter-quartile range (IQR), which is the difference between the 25th and
 75th percentiles.
More generally, we could compute an inter-percentile range (IPR)
 that spans any given fraction of the distribution, p:
def MedianIPR(xs, p):
 cdf = thinkbayes.MakeCdfFromList(xs)
 median = cdf.Percentile(50)

 alpha = (1-p) / 2
 ipr = cdf.Value(1-alpha) - cdf.Value(alpha)
 return median, ipr
xs is a sequence of values.
 p is the desired range; for example,
 p=0.5 yields the inter-quartile
 range.
MedianIPR works by computing the
 CDF of xs, then extracting the median
 and the difference between two percentiles.
We can convert from ipr to an
 estimate of sigma using the Gaussian
 CDF to compute the fraction of the distribution covered by a given number
 of standard deviations. For example, it is a well-known rule of thumb that
 68% of a Gaussian distribution falls within one standard deviation of the
 mean, which leaves 16% in each tail. If we compute the range between the
 16th and 84th percentiles, we expect the result to be 2 * sigma. So we can estimate sigma by computing the 68% IPR and dividing by
 2.
More generally we could use any number of sigmas. MedianS performs the more general version of
 this computation:
def MedianS(xs, num_sigmas):
 half_p = thinkbayes.StandardGaussianCdf(num_sigmas) - 0.5

 median, ipr = MedianIPR(xs, half_p * 2)
 s = ipr / 2 / num_sigmas

 return median, s
Again, xs is the sequence of
 values; num_sigmas is the
 number of standard deviations the results should be based on. The result
 is median, which estimates μ, and s, which
 estimates σ.
Finally, in LogUpdateSetABC we
 can replace the sample mean and standard deviation with median and s.
 And that pretty much does it.
It might seem odd that we are using observed percentiles to estimate
 μ and σ,
 but it is an example of the flexibility of the Bayesian approach. In
 effect we are asking, “Given hypothetical values for μ and σ, and a
 sampling process that has some chance of introducing errors, what is the
 likelihood of generating a given set of sample statistics?”
We are free to choose any sample statistics we like, up to a point:
 μ and σ
 determine the location and spread of a distribution, so we need to choose
 statistics that capture those characteristics. For example, if we chose
 the 49th and 51st percentiles, we would get very little information about
 spread, so it would leave the estimate of σ relatively unconstrained by the data. All values
 of sigma would have nearly the same
 likelihood of producing the observed values, so the posterior distribution
 of sigma would look a lot like the
 prior.

Who is more variable?
Finally we are ready to answer the question we started with: is the
 coefficient of variation greater for men than for women?
Using ABC based on the median and IPR with num_sigmas=1, I computed posterior joint
 distributions for mu and sigma. Figures 10-1 and 10-2 show the results as a contour plot with
 mu on the x-axis, sigma on the y-axis, and probability on the
 z-axis.
Figure 10-1. Contour plot of the posterior joint distribution of mean and
 standard deviation of height for men in the U.S.

Figure 10-2. Contour plot of the posterior joint distribution of mean and
 standard deviation of height for women in the U.S.

For each joint distribution, I computed the posterior distribution
 of CV. Figure 10-3 shows these distributions for
 men and women. The mean for men is 0.0410; for women it is 0.0429. Since
 there is no overlap between the distributions, we conclude with near
 certainty that women are more variable in height than men.
Figure 10-3. Posterior distributions of CV for men and women, based on robust
 estimators.

So is that the end of the Variability Hypothesis? Sadly, no. It
 turns out that this result depends on the choice of the inter-percentile
 range. With num_sigmas=1,
 we conclude that women are more variable, but with num_sigmas=2 we conclude with equal
 confidence that men are more variable.
The reason for the difference is that there are more men of short
 stature, and their distance from the mean is greater.
So our evaluation of the Variability Hypothesis depends on the
 interpretation of “variability.” With num_sigmas=1 we focus on people near the mean. As
 we increase num_sigmas, we
 give more weight to the extremes.
To decide which emphasis is appropriate, we would need a more
 precise statement of the hypothesis. As it is, the Variability Hypothesis
 may be too vague to evaluate.
Nevertheless, it helped me demonstrate several new ideas and, I hope
 you agree, it makes an interesting example.

Discussion
There are two ways you might think of ABC. One interpretation is
 that it is, as the name suggests, an approximation that is faster to
 compute than the exact value.
But remember that Bayesian analysis is always based on modeling
 decisions, which implies that there is no “exact” solution. For any
 interesting physical system there are many possible models, and each model
 yields different results. To interpret the results, we have to evaluate
 the models.
So another interpretation of ABC is that it represents an
 alternative model of the likelihood. When we compute , we are asking “What is the likelihood of the data
 under a given hypothesis?”
For large datasets, the likelihood of the data is very small, which
 is a hint that we might not be asking the right question. What we really
 want to know is the likelihood of any outcome like the data, where the
 definition of “like” is yet another modeling decision.
The underlying idea of ABC is that two datasets are alike if they
 yield the same summary statistics. But in some cases, like the example in
 this chapter, it is not obvious which summary statistics to
 choose.
You can download the code in this chapter from http://thinkbayes.com/variability.py.
 For more information see “Working with the code”.

Exercises
Exercise 10-1.
An “effect size” is a statistic intended to measure the
 difference between two groups (see http://en.wikipedia.org/wiki/Effect_size).
For example, we could use data from the BRFSS to estimate the
 difference in height between men and women. By sampling values from
 the posterior distributions of μ and
 σ, we could generate the posterior
 distribution of this difference.
But it might be better to use a dimensionless measure of effect
 size, rather than a difference measured in cm. One option is to use
 divide through by the standard deviation (similar to what we did with
 the coefficient of variation).
If the parameters for Group 1 are , and the parameters for Group 2 are
 , the dimensionless effect size is

Write a function that takes joint distributions of mu and sigma for two groups and returns the
 posterior distribution of effect size.
Hint: if enumerating all pairs from the two distributions takes
 too long, consider random sampling.

Chapter 11. Hypothesis Testing
Back to the Euro problem
In “The Euro problem” I presented a problem from MacKay’s
 Information Theory, Inference, and Learning
 Algorithms:
A statistical statement appeared in “The Guardian” on Friday
 January 4, 2002:
When spun on edge 250 times, a Belgian one-euro coin came up
 heads 140 times and tails 110. ‘It looks very suspicious to me,’ said
 Barry Blight, a statistics lecturer at the London School of Economics.
 ‘If the coin were unbiased, the chance of getting a result as extreme
 as that would be less than 7%.’

But do these data give evidence that the coin is biased rather
 than fair?

We estimated the probability that the coin would land face up, but
 we didn’t really answer MacKay’s question: Do the data give evidence that
 the coin is biased?
In Chapter 4 I proposed that data are in favor of a
 hypothesis if the data are more likely under the hypothesis than under the
 alternative or, equivalently, if the Bayes factor is greater than
 1.
In the Euro example, we have two hypotheses to consider: I’ll use
 F for the hypothesis that the coin is
 fair and B for the hypothesis that it is
 biased.
If the coin is fair, it is easy to compute the likelihood of the
 data, . In fact, we already wrote the function that does
 it.
 def Likelihood(self, data, hypo):
 x = hypo / 100.0
 head, tails = data
 like = x**heads * (1-x)**tails
 return like
To use it we can create a Euro
 suite and invoke Likelihood:
 suite = Euro()
 likelihood = suite.Likelihood(data, 50)
 is , which doesn’t tell us much except that the
 probability of seeing any particular dataset is very small. It takes two
 likelihoods to make a ratio, so we also have to compute .
It is not obvious how to compute the likelihood of B, because it’s not obvious what “biased”
 means.
One possibility is to cheat and look at the data before we define
 the hypothesis. In that case we would say that “biased” means that the
 probability of heads is 140/250.
 actual_percent = 100.0 * 140 / 250
 likelihood = suite.Likelihood(data, actual_percent)
This version of B I call B_cheat; the likelihood of b_cheat is and the likelihood ratio is 6.1. So we would say that
 the data are evidence in favor of this version of B.
But using the data to formulate the hypothesis is obviously bogus.
 By that definition, any dataset would be evidence in favor of B, unless the observed percentage of heads is
 exactly 50%.

Making a fair comparison
To make a legitimate comparison, we have to define B without looking at the data. So let’s try a
 different definition. If you inspect a Belgian Euro coin, you might notice
 that the “heads” side is more prominent than the “tails” side. You might
 expect the shape to have some effect on x, but be unsure whether it makes heads more or
 less likely. So you might say “I think the coin is biased so that
 x is either 0.6 or 0.4, but I am not sure
 which.”
We can think of this version, which I’ll call B_two as a hypothesis made up of
 two sub-hypotheses. We can compute the likelihood for each sub-hypothesis
 and then compute the average likelihood.
 like40 = suite.Likelihood(data, 40)
 like60 = suite.Likelihood(data, 60)
 likelihood = 0.5 * like40 + 0.5 * like60
The likelihood ratio (or Bayes factor) for b_two is 1.3, which means the data provide weak
 evidence in favor of b_two.
More generally, suppose you suspect that the coin is biased, but you
 have no clue about the value of x. In
 that case you might build a Suite, which I call b_uniform, to represent sub-hypotheses from 0 to
 100.
 b_uniform = Euro(xrange(0, 101))
 b_uniform.Remove(50)
 b_uniform.Normalize()
I initialize b_uniform with values from 0 to 100. I removed the
 sub-hypothesis that x is 50%, because if
 x is 50% the coin is fair, but it has
 almost no effect on the result whether you remove it or not.
To compute the likelihood of b_uniform we compute the likelihood of each
 sub-hypothesis and accumulate a weighted average.
def SuiteLikelihood(suite, data):
 total = 0
 for hypo, prob in suite.Items():
 like = suite.Likelihood(data, hypo)
 total += prob * like
 return total
The likelihood ratio for b_uniform is 0.47, which means that the data are
 weak evidence against b_uniform, compared to F.
If you think about the computation performed by SuiteLikelihood, you might notice
 that it is similar to an update. To refresh your memory, here’s the
 Update function:
 def Update(self, data):
 for hypo in self.Values():
 like = self.Likelihood(data, hypo)
 self.Mult(hypo, like)
 return self.Normalize()
And here’s Normalize:
 def Normalize(self):
 total = self.Total()

 factor = 1.0 / total
 for x in self.d:
 self.d[x] *= factor

 return total
The return value from Normalize
 is the total of the probabilities in the Suite, which is the average of
 the likelihoods for the sub-hypotheses, weighted by the prior
 probabilities. And Update passes this
 value along, so instead of using SuiteLikelihood, we could compute the likelihood
 of b_uniform like
 this:
 likelihood = b_uniform.Update(data)

The triangle prior
In Chapter 4 we also considered a triangle-shaped
 prior that gives higher probability to values of x near 50%. If we think of this prior as a suite of
 sub-hypotheses, we can compute its likelihood like this:
 b_triangle = TrianglePrior()
 likelihood = b_triangle.Update(data)
The likelihood ratio for b_triangle is 0.84, compared to F, so again we would say that the data are weak
 evidence against B.
The following table shows the priors we have considered, the
 likelihood of each, and the likelihood ratio (or Bayes factor) relative to
 F.
	Hypothesis
	 Likelihood

	 Bayes
Factor

	F
	 5.5
	 –

	B_cheat
	 34
	 6.1

	B_two
	 7.4
	 1.3

	B_uniform
	 2.6
	 0.47

	B_triangle
	 4.6
	 0.84

Depending on which definition we choose, the data might provide
 evidence for or against the hypothesis that the coin is biased, but in
 either case it is relatively weak evidence.
In summary, we can use Bayesian hypothesis testing to compare the
 likelihood of F and B, but we have to do some work to specify precisely
 what B means. This specification depends
 on background information about coins and their behavior when spun, so
 people could reasonably disagree about the right definition.
My presentation of this example follows David MacKay’s discussion,
 and comes to the same conclusion. You can download the code I used in this
 chapter from http://thinkbayes.com/euro3.py.
 For more information see “Working with the code”.

Discussion
The Bayes factor for B_uniform is 0.47, which means that the data
 provide evidence against this hypothesis, compared to F. In the previous section I characterized this
 evidence as “weak,” but didn’t say why.
Part of the answer is historical. Harold Jeffreys, an early
 proponent of Bayesian statistics, suggested a scale for interpreting Bayes
 factors:
	 Bayes
Factor
	 Strength

	1 – 3
	 Barely worth mentioning

	3 – 10
	 Substantial

	10 – 30
	 Strong

	30 – 100
	 Very strong

	 100
	 Decisive

In the example, the Bayes factor is 0.47 in favor of B_uniform, so it is 2.1 in favor is
 F, which Jeffreys would consider “barely
 worth mentioning.” Other authors have suggested variations on the wording.
 To avoid arguing about adjectives, we could think about odds
 instead.
If your prior odds are 1:1, and you see evidence with Bayes factor
 2, your posterior odds are 2:1. In terms of probability, the data changed
 your degree of belief from 50% to 66%. For most real world problems, that
 change would be small relative to modeling errors and other sources of
 uncertainty.
On the other hand, if you had seen evidence with Bayes factor 100,
 your posterior odds would be 100:1 or more than 99%. Whether or not you
 agree that such evidence is “decisive,” it is certainly strong.

Exercises
Exercise 11-1.
Some people believe in the existence of extra-sensory perception
 (ESP); for example, the ability of some people to guess the value of
 an unseen playing card with probability better than chance.
What is your prior degree of belief in this kind of ESP? Do you
 think it is as likely to exist as not? Or are you more skeptical about
 it? Write down your prior odds.
Now compute the strength of the evidence it would take to
 convince you that ESP is at least 50% likely to exist. What Bayes
 factor would be needed to make you 90% sure that ESP exists?

Exercise 11-2.
Suppose that your answer to the previous question is 1000; that
 is, evidence with Bayes factor 1000 in favor of ESP would be
 sufficient to change your mind.
Now suppose that you read a paper in a respectable peer-reviewed
 scientific journal that presents evidence with Bayes factor 1000 in
 favor of ESP. Would that change your mind?
If not, how do you resolve the apparent contradiction? You might
 find it helpful to read about David Hume’s article, “Of Miracles,” at
 http://en.wikipedia.org/wiki/Of_Miracles.

Chapter 12. Evidence
Interpreting SAT scores
Suppose you are the Dean of Admission at a small engineering college
 in Massachusetts, and you are considering two candidates, Alice and Bob,
 whose qualifications are similar in many ways, with the exception that
 Alice got a higher score on the Math portion of the SAT, a standardized
 test intended to measure preparation for college-level work in
 mathematics.
If Alice got 780 and Bob got a 740 (out of a possible 800), you
 might want to know whether that difference is evidence that Alice is
 better prepared than Bob, and what the strength of that evidence
 is.
Now in reality, both scores are very good, and both candidates are
 probably well prepared for college math. So the real Dean of Admission
 would probably suggest that we choose the candidate who best demonstrates
 the other skills and attitudes we look for in students. But as an example
 of Bayesian hypothesis testing, let’s stick with a narrower question: “How
 strong is the evidence that Alice is better prepared than Bob?”
To answer that question, we need to make some modeling decisions.
 I’ll start with a simplification I know is wrong; then we’ll come back and
 improve the model. I pretend, temporarily, that all SAT questions are
 equally difficult. Actually, the designers of the SAT choose questions
 with a range of difficulty, because that improves the ability to measure
 statistical differences between test-takers.
But if we choose a model where all questions are equally difficult,
 we can define a characteristic, p_correct, for each test-taker, which is the
 probability of answering any question correctly. This simplification makes
 it easy to compute the likelihood of a given score.

The scale
In order to understand SAT scores, we have to understand the scoring
 and scaling process. Each test-taker gets a raw score based on the number
 of correct and incorrect questions. The raw score is converted to a scaled
 score in the range 200–800.
In 2009, there were 54 questions on the math SAT. The raw score for
 each test-taker is the number of questions answered correctly minus a
 penalty of point for each question answered incorrectly.
The College Board, which administers the SAT, publishes the map from
 raw scores to scaled scores. I have downloaded that data and wrapped it in
 an Interpolator object that provides a forward lookup (from raw score to
 scaled) and a reverse lookup (from scaled score to raw).
You can download the code for this example from http://thinkbayes.com/sat.py.
 For more information see “Working with the code”.

The prior
The College Board also publishes the distribution of scaled scores
 for all test-takers. If we convert each scaled score to a raw score, and
 divide by the number of questions, the result is an estimate of p_correct. So we can use the
 distribution of raw scores to model the prior distribution of p_correct.
Here is the code that reads and processes the data:
class Exam(object):

 def __init__(self):
 self.scale = ReadScale()
 scores = ReadRanks()
 score_pmf = thinkbayes.MakePmfFromDict(dict(scores))
 self.raw = self.ReverseScale(score_pmf)
 self.prior = DivideValues(raw, 54)
Exam encapsulates the information
 we have about the exam. ReadScale and
 ReadRanks read files and return objects
 that contain the data: self.scale is
 the Interpolator that converts from raw
 to scaled scores and back; scores is a
 list of (score, frequency) pairs.
score_pmf is the Pmf
 of scaled scores. self.raw is the Pmf
 of raw scores, and self.prior is the
 Pmf of p_correct.
Figure 12-1 shows the prior distribution of
 p_correct. This
 distribution is approximately Gaussian, but it is compressed at the
 extremes. By design, the SAT has the most power to discriminate between
 test-takers within two standard deviations of the mean, and less power
 outside that range.
Figure 12-1. Prior distribution of p_correct for SAT test-takers.

For each test-taker, I define a Suite called Sat that represents the distribution of p_correct. Here’s the
 definition:
class Sat(thinkbayes.Suite):

 def __init__(self, exam, score):
 thinkbayes.Suite.__init__(self)

 self.exam = exam
 self.score = score

 # start with the prior distribution
 for p_correct, prob in exam.prior.Items():
 self.Set(p_correct, prob)

 # update based on an exam score
 self.Update(score)
__init__ takes an
 Exam object and a scaled score. It makes a copy of the prior distribution
 and then updates itself based on the exam score.
As usual, we inherit Update from
 Suite and provide Likelihood:
 def Likelihood(self, data, hypo):
 p_correct = hypo
 score = data

 k = self.exam.Reverse(score)
 n = self.exam.max_score
 like = thinkbayes.EvalBinomialPmf(k, n, p_correct)
 return like
hypo is a hypothetical value of
 p_correct, and data is a scaled score.
To keep things simple, I interpret the raw score as the number of
 correct answers, ignoring the penalty for wrong answers. With this
 simplification, the likelihood is given by the binomial distribution,
 which computes the probability of k
 correct responses out of n
 questions.

Posterior
Figure 12-2 shows the posterior
 distributions of p_correct
 for Alice and Bob based on their exam scores. We can see that they
 overlap, so it is possible that p_correct is actually higher for Bob, but it seems
 unlikely.
Figure 12-2. Posterior distributions of p_correct for Alice and Bob.

Which brings us back to the original question, “How strong is the
 evidence that Alice is better prepared than Bob?” We can use the posterior
 distributions of p_correct
 to answer this question.
To formulate the question in terms of Bayesian hypothesis testing, I
 define two hypotheses:
	A: p_correct is higher for Alice than for
 Bob.

	B: p_correct is higher for Bob than for
 Alice.

To compute the likelihood of A, we
 can enumerate all pairs of values from the posterior distributions and add
 up the total probability of the cases where p_correct is higher for Alice than for Bob. And we
 already have a function, thinkbayes.PmfProbGreater, that does that.
So we can define a Suite that computes the posterior probabilities
 of A and B:
class TopLevel(thinkbayes.Suite):

 def Update(self, data):
 a_sat, b_sat = data

 a_like = thinkbayes.PmfProbGreater(a_sat, b_sat)
 b_like = thinkbayes.PmfProbLess(a_sat, b_sat)
 c_like = thinkbayes.PmfProbEqual(a_sat, b_sat)

 a_like += c_like / 2
 b_like += c_like / 2

 self.Mult('A', a_like)
 self.Mult('B', b_like)

 self.Normalize()
Usually when we define a new Suite, we inherit Update and provide Likelihood. In this case I override Update, because it is easier to evaluate the
 likelihood of both hypotheses at the same time.
The data passed to Update are Sat
 objects that represent the posterior distributions of p_correct.
a_like is the total
 probability that p_correct
 is higher for Alice; b_like is that probability that it is higher for
 Bob.
c_like is the
 probability that they are “equal,” but this equality is an artifact of the
 decision to model p_correct with a set of discrete values. If we use
 more values, c_like is
 smaller, and in the extreme, if p_correct is continuous, c_like is zero. So I treat c_like as a kind of round-off error and split it
 evenly between a_like and
 b_like.
Here is the code that creates TopLevel and updates it:
 exam = Exam()
 a_sat = Sat(exam, 780)
 b_sat = Sat(exam, 740)

 top = TopLevel('AB')
 top.Update((a_sat, b_sat))
 top.Print()
The likelihood of A is 0.79 and the
 likelihood of B is 0.21. The likelihood
 ratio (or Bayes factor) is 3.8, which means that these test scores are
 evidence that Alice is better than Bob at answering SAT questions. If we
 believed, before seeing the test scores, that A and B were
 equally likely, then after seeing the scores we should believe that the
 probability of A is 79%, which means
 there is still a 21% chance that Bob is actually better
 prepared.

A better model
Remember that the analysis we have done so far is based on the
 simplification that all SAT questions are equally difficult. In reality,
 some are easier than others, which means that the difference between Alice
 and Bob might be even smaller.
But how big is the modeling error? If it is small, we conclude that
 the first model—based on the simplification that all questions are equally
 difficult—is good enough. If it’s large, we need a better model.
In the next few sections, I develop a better model and discover
 (spoiler alert!) that the modeling error is small. So if you are satisfied
 with the simple model, you can skip to the next chapter. If you want to
 see how the more realistic model works, read on...
	Assume that each test-taker has some degree of efficacy, which measures their ability to
 answer SAT questions.

	Assume that each question has some level of difficulty.

	Finally, assume that the chance that a test-taker answers a
 question correctly is related to efficacy and difficulty according to this
 function:
def ProbCorrect(efficacy, difficulty, a=1):
 return 1 / (1 + math.exp(-a * (efficacy - difficulty)))

This function is a simplified version of the curve used in item response theory, which you can read about at
 http://en.wikipedia.org/wiki/Item_response_theory.
 efficacy and difficulty are considered to be on the same
 scale, and the probability of getting a question right depends only on the
 difference between them.
When efficacy and difficulty are equal, the probability of getting
 the question right is 50%. As efficacy
 increases, this probability approaches 100%. As it decreases (or as
 difficulty increases), the probability
 approaches 0%.
Given the distribution of efficacy across test-takers and the distribution
 of difficulty across questions, we can
 compute the expected distribution of raw scores. We’ll do that in two
 steps. First, for a person with given efficacy, we’ll compute the distribution of raw
 scores.
def PmfCorrect(efficacy, difficulties):
 pmf0 = thinkbayes.Pmf([0])

 ps = [ProbCorrect(efficacy, diff) for diff in difficulties]
 pmfs = [BinaryPmf(p) for p in ps]
 dist = sum(pmfs, pmf0)
 return dist
difficulties is a list of
 difficulties, one for each question. ps
 is a list of probabilities, and pmfs is
 a list of two-valued Pmf objects; here’s the function that makes
 them:
def BinaryPmf(p):
 pmf = thinkbayes.Pmf()
 pmf.Set(1, p)
 pmf.Set(0, 1-p)
 return pmf
dist is the sum of these Pmfs.
 Remember from “Addends” that when we add up Pmf objects,
 the result is the distribution of the sums. In order to use Python’s
 sum to add up Pmfs, we have to provide
 pmf0 which is the identity for Pmfs, so
 pmf + pmf0 is always pmf.
If we know a person’s efficacy, we can compute their distribution of
 raw scores. For a group of people with a different efficacies, the
 resulting distribution of raw scores is a mixture. Here’s the code that
 computes the mixture:
class Exam:

 def MakeRawScoreDist(self, efficacies):
 pmfs = thinkbayes.Pmf()
 for efficacy, prob in efficacies.Items():
 scores = PmfCorrect(efficacy, self.difficulties)
 pmfs.Set(scores, prob)

 mix = thinkbayes.MakeMixture(pmfs)
 return mix
MakeRawScoreDist takes efficacies, which is a Pmf that represents the
 distribution of efficacy across test-takers. I assume it is Gaussian with
 mean 0 and standard deviation 1.5. This choice is mostly arbitrary. The
 probability of getting a question correct depends on the difference
 between efficacy and difficulty, so we can choose the units of efficacy
 and then calibrate the units of difficulty accordingly.
pmfs is a meta-Pmf that contains
 one Pmf for each level of efficacy, and maps to the fraction of
 test-takers at that level. MakeMixture
 takes the meta-pmf and computes the distribution of the mixture (see “Mixtures”).

Calibration
If we were given the distribution of difficulty, we could use
 MakeRawScoreDist to
 compute the distribution of raw scores. But for us the problem is the
 other way around: we are given the distribution of raw scores and we want
 to infer the distribution of difficulty.
I assume that the distribution of difficulty is uniform with
 parameters center and width. MakeDifficulties makes a list of difficulties
 with these parameters.
def MakeDifficulties(center, width, n):
 low, high = center-width, center+width
 return numpy.linspace(low, high, n)
By trying out a few combinations, I found that center=-0.05 and width=1.8 yield a distribution of raw scores
 similar to the actual data, as shown in Figure 12-3.
So, assuming that the distribution of difficulty is uniform, its
 range is approximately -1.85 to
 1.75, given that efficacy is Gaussian
 with mean 0 and standard deviation 1.5.
The following table shows the range of ProbCorrect for test-takers at different levels
 of efficacy:
		 Difficulty

	Efficacy
	 -1.85
	 -0.05
	 1.75

	3.00
	 0.99
	 0.95
	 0.78

	1.50
	 0.97
	 0.82
	 0.44

	0.00
	 0.86
	 0.51
	 0.15

	-1.50
	 0.59
	 0.19
	 0.04

	-3.00
	 0.24
	 0.05
	 0.01

Someone with efficacy 3 (two standard deviations above the mean) has
 a 99% chance of answering the easiest questions on the exam, and a 78%
 chance of answering the hardest. On the other end of the range, someone
 two standard deviations below the mean has only a 24% chance of answering
 the easiest questions.
Figure 12-3. Actual distribution of raw scores and a model to fit it.

Posterior distribution of efficacy
Now that the model is calibrated, we can compute the posterior
 distribution of efficacy for Alice and Bob. Here is a version of the Sat
 class that uses the new model:
class Sat2(thinkbayes.Suite):

 def __init__(self, exam, score):
 self.exam = exam
 self.score = score

 # start with the Gaussian prior
 efficacies = thinkbayes.MakeGaussianPmf(0, 1.5, 3)
 thinkbayes.Suite.__init__(self, efficacies)

 # update based on an exam score
 self.Update(score)
Update invokes
 Likelihood, which computes
 the likelihood of a given test score for a hypothetical level of
 efficacy.
 def Likelihood(self, data, hypo):
 efficacy = hypo
 score = data
 raw = self.exam.Reverse(score)

 pmf = self.exam.PmfCorrect(efficacy)
 like = pmf.Prob(raw)
 return like
pmf is the distribution of raw
 scores for a test-taker with the given efficacy; like is the probability of the observed
 score.
Figure 12-4 shows the posterior
 distributions of efficacy for Alice and Bob. As expected, the location of
 Alice’s distribution is farther to the right, but again there is some
 overlap.
Figure 12-4. Posterior distributions of efficacy for Alice and Bob.

Using TopLevel again, we compare
 A, the hypothesis that Alice’s efficacy
 is higher, and B, the hypothesis that
 Bob’s is higher. The likelihood ratio is 3.4, a bit smaller than what we
 got from the simple model (3.8). So this model indicates that the data are
 evidence in favor of A, but a little
 weaker than the previous estimate.
If our prior belief is that A and
 B are equally likely, then in light of
 this evidence we would give A a posterior
 probability of 77%, leaving a 23% chance that Bob’s efficacy is
 higher.

Predictive distribution
The analysis we have done so far generates estimates for Alice and
 Bob’s efficacy, but since efficacy is not directly observable, it is hard
 to validate the results.
To give the model predictive power, we can use it to answer a
 related question: “If Alice and Bob take the math SAT again, what is the
 chance that Alice will do better again?”
We’ll answer this question in two steps:
	We’ll use the posterior distribution of efficacy to generate a
 predictive distribution of raw score for each test-taker.

	We’ll compare the two predictive distributions to compute the
 probability that Alice gets a higher score again.

We already have most of the code we need. To compute the predictive
 distributions, we can use MakeRawScoreDist again:
 exam = Exam()
 a_sat = Sat(exam, 780)
 b_sat = Sat(exam, 740)

 a_pred = exam.MakeRawScoreDist(a_sat)
 b_pred = exam.MakeRawScoreDist(b_sat)
Then we can find the likelihood that Alice does better on the second
 test, Bob does better, or they tie:
 a_like = thinkbayes.PmfProbGreater(a_pred, b_pred)
 b_like = thinkbayes.PmfProbLess(a_pred, b_pred)
 c_like = thinkbayes.PmfProbEqual(a_pred, b_pred)
The probability that Alice does better on the second exam is 63%,
 which means that Bob has a 37% chance of doing as well or better.
Notice that we have more confidence about Alice’s efficacy than we
 do about the outcome of the next test. The posterior odds are 3:1 that
 Alice’s efficacy is higher, but only 2:1 that Alice will do better on the
 next exam.

Discussion
We started this chapter with the question, “How strong is the
 evidence that Alice is better prepared than Bob?” On the face of it, that
 sounds like we want to test two hypotheses: either Alice is more prepared
 or Bob is.
But in order to compute likelihoods for these hypotheses, we have to
 solve an estimation problem. For each test-taker we have to find the
 posterior distribution of either p_correct or efficacy.
Values like this are called nuisance
 parameters because we don’t care what they are, but we have to
 estimate them to answer the question we care about.
One way to visualize the analysis we did in this chapter is to plot
 the space of these parameters. thinkbayes.MakeJoint takes two Pmfs, computes their
 joint distribution, and returns a joint pmf of each possible pair of
 values and its probability.
def MakeJoint(pmf1, pmf2):
 joint = Joint()
 for v1, p1 in pmf1.Items():
 for v2, p2 in pmf2.Items():
 joint.Set((v1, v2), p1 * p2)
 return joint
This function assumes that the two distributions are
 independent.
Figure 12-5 shows the joint posterior
 distribution of p_correct
 for Alice and Bob. The diagonal line indicates the part of the space where
 p_correct is the same for
 Alice and Bob. To the right of this line, Alice is more prepared; to the
 left, Bob is more prepared.
In TopLevel.Update, when we
 compute the likelihoods of A and
 B, we add up the probability mass on each
 side of this line. For the cells that fall on the line, we add up the
 total mass and split it between A and
 B.
The process we used in this chapter—estimating nuisance parameters
 in order to evaluate the likelihood of competing hypotheses—is a common
 Bayesian approach to problems like this.
Figure 12-5. Joint posterior distribution of p_correct for Alice and
 Bob.

Chapter 13. Simulation
In this chapter I describe my solution to a problem posed by a patient
 with a kidney tumor. I think the problem is important and relevant to
 patients with these tumors and doctors treating them.
And I think the solution is interesting because, although it is a
 Bayesian approach to the problem, the use of Bayes’s theorem is implicit. I
 present the solution and my code; at the end of the chapter I will explain
 the Bayesian part.
If you want more technical detail than I present here, you can read my
 paper on this work at http://arxiv.org/abs/1203.6890.
The Kidney Tumor problem
I am a frequent reader and occasional contributor to the
 online statistics forum at http://reddit.com/r/statistics.
 In November 2011, I read the following message:
“I have Stage IV Kidney Cancer and am trying to determine if the
 cancer formed before I retired from the military. ... Given the dates of
 retirement and detection is it possible to determine when there was a
 50/50 chance that I developed the disease? Is it possible to determine
 the probability on the retirement date? My tumor was 15.5 cm x 15 cm at
 detection. Grade II.”

I contacted the author of the message and got more information; I
 learned that veterans get different benefits if it is “more likely than
 not” that a tumor formed while they were in military service (among other
 considerations).
Because renal tumors grow slowly, and often do not cause symptoms,
 they are sometimes left untreated. As a result, doctors can observe the
 rate of growth for untreated tumors by comparing scans from the same
 patient at different times. Several papers have reported these growth
 rates.
I collected data from a paper by Zhang et al1. I contacted the authors to see if I could get raw data, but
 they refused on grounds of medical privacy. Nevertheless, I was able to
 extract the data I needed by printing one of their graphs and measuring it
 with a ruler.
They report growth rates in reciprocal doubling time (RDT), which is
 in units of doublings per year. So a tumor with doubles in volume each year; with it quadruples in the same time, and with
 , it halves. Figure 13-1 shows the
 distribution of RDT for 53 patients.
Figure 13-1. CDF of RDT in doublings per year.

The squares are the data points from the paper; the line is a model
 I fit to the data. The positive tail fits an exponential distribution
 well, so I used a mixture of two exponentials.

A simple model
It is usually a good idea to start with a simple model before trying
 something more challenging. Sometimes the simple model is sufficient for
 the problem at hand, and if not, you can use it to validate the more
 complex model.
For my simple model, I assume that tumors grow with a constant
 doubling time, and that they are three-dimensional in the sense that if
 the maximum linear measurement doubles, the volume is multiplied by
 eight.
I learned from my correspondent that the time between his discharge
 from the military and his diagnosis was 3291 days (about 9 years). So my
 first calculation was, “If this tumor grew at the median rate, how big
 would it have been at the date of discharge?”
The median volume doubling time reported by Zhang et al is 811 days.
 Assuming 3-dimensional geometry, the doubling time for a linear measure is
 three times longer.
 # time between discharge and diagnosis, in days
 interval = 3291.0

 # doubling time in linear measure is doubling time in volume * 3
 dt = 811.0 * 3

 # number of doublings since discharge
 doublings = interval / dt

 # how big was the tumor at time of discharge (diameter in cm)
 d1 = 15.5
 d0 = d1 / 2.0 ** doublings
You can download the code in this chapter from http://thinkbayes.com/kidney.py.
 For more information see “Working with the code”.
The result, d0, is about 6 cm. So
 if this tumor formed after the date of discharge, it must have grown
 substantially faster than the median rate. Therefore I concluded that it
 is “more likely than not” that this tumor formed before the date of
 discharge.
In addition, I computed the growth rate that would be implied if
 this tumor had formed after the date of discharge. If we assume an initial
 size of 0.1 cm, we can compute the number of doublings to get to a final
 size of 15.5 cm:
 # assume an initial linear measure of 0.1 cm
 d0 = 0.1
 d1 = 15.5

 # how many doublings would it take to get from d0 to d1
 doublings = log2(d1 / d0)

 # what linear doubling time does that imply?
 dt = interval / doublings

 # compute the volumetric doubling time and RDT
 vdt = dt / 3
 rdt = 365 / vdt
dt is linear doubling time, so
 vdt is volumetric doubling time, and
 rdt is reciprocal doubling time.
The number of doublings, in linear measure, is 7.3, which implies an
 RDT of 2.4. In the data from Zhang et al, only 20% of tumors grew this
 fast during a period of observation. So again, I concluded that is “more
 likely than not” that the tumor formed prior to the date of
 discharge.
These calculations are sufficient to answer the question as posed,
 and on behalf of my correspondent, I wrote a letter explaining my
 conclusions to the Veterans’ Benefit Administration.
Later I told a friend, who is an oncologist, about my results. He
 was surprised by the growth rates observed by Zhang et al, and by what
 they imply about the ages of these tumors. He suggested that the results
 might be interesting to researchers and doctors.
But in order to make them useful, I wanted a more general model of
 the relationship between age and size.

A more general model
Given the size of a tumor at time of diagnosis, it would be most
 useful to know the probability that the tumor formed before any given
 date; in other words, the distribution of ages.
To find it, I run simulations of tumor growth to get the
 distribution of size conditioned on age. Then we can use a Bayesian
 approach to get the distribution of age conditioned on size.
The simulation starts with a small tumor and runs these
 steps:
	Choose a growth rate from the distribution of RDT.

	Compute the size of the tumor at the end of an interval.

	Record the size of the tumor at each interval.

	Repeat until the tumor exceeds the maximum relevant size.

For the initial size I chose 0.3 cm, because carcinomas smaller than
 that are less likely to be invasive and less likely to have the blood
 supply needed for rapid growth (see http://en.wikipedia.org/wiki/Carcinoma_in_situ).
I chose an interval of 245 days (about 8 months) because that is the
 median time between measurements in the data source.
For the maximum size I chose 20 cm. In the data source, the range of
 observed sizes is 1.0 to 12.0 cm, so we are extrapolating beyond the
 observed range at each end, but not by far, and not in a way likely to
 have a strong effect on the results.
The simulation is based on one big simplification: the growth rate
 is chosen independently during each interval, so it does not depend on
 age, size, or growth rate during previous intervals.
In “Serial Correlation” I review these assumptions and consider
 more detailed models. But first let’s look at some examples.
Figure 13-2 shows the size of simulated tumors as
 a function of age. The dashed line at 10 cm shows the range of ages for
 tumors at that size: the fastest-growing tumor gets there in 8 years; the
 slowest takes more than 35.
Figure 13-2. Simulations of tumor growth, size vs. time.

I am presenting results in terms of linear measurements, but the
 calculations are in terms of volume. To convert from one to the other,
 again, I use the volume of a sphere with the given diameter.

Implementation
Here is the kernel of the simulation:
def MakeSequence(rdt_seq, v0=0.01, interval=0.67, vmax=Volume(20.0)):
 seq = v0,
 age = 0

 for rdt in rdt_seq:
 age += interval
 final, seq = ExtendSequence(age, seq, rdt, interval)
 if final > vmax:
 break

 return seq
rdt_seq is an
 iterator that yields random values from the CDF of growth rate. v0 is the initial volume in mL. interval is the time step in years. vmax is the final volume corresponding to a
 linear measurement of 20 cm.
Volume converts from linear
 measurement in cm to volume in mL, based on the simplification that the
 tumor is a sphere:
def Volume(diameter, factor=4*math.pi/3):
 return factor * (diameter/2.0)**3
ExtendSequence computes the
 volume of the tumor at the end of the interval.
def ExtendSequence(age, seq, rdt, interval):
 initial = seq[-1]
 doublings = rdt * interval
 final = initial * 2**doublings
 new_seq = seq + (final,)
 cache.Add(age, new_seq, rdt)

 return final, new_seq
age is the age of the tumor at
 the end of the interval. seq is a tuple
 that contains the volumes so far. rdt
 is the growth rate during the interval, in doublings per year. interval is the size of the time step in
 years.
The return values are final, the
 volume of the tumor at the end of the interval, and new_seq, a new tuple containing the
 volumes in seq plus the new volume
 final.
Cache.Add records the age and
 size of each tumor at the end of each interval, as explained in the next
 section.

Caching the joint distribution
Here’s how the cache works.
class Cache(object):

 def __init__(self):
 self.joint = thinkbayes.Joint()
joint is a joint Pmf that records
 the frequency of each age-size pair, so it approximates the joint
 distribution of age and size.
At the end of each simulated interval, ExtendSequence calls Add:
class Cache

 def Add(self, age, seq):
 final = seq[-1]
 cm = Diameter(final)
 bucket = round(CmToBucket(cm))
 self.joint.Incr((age, bucket))
Again, age is the age of the
 tumor, and seq is the sequence of
 volumes so far.
Before adding the new data to the joint distribution, we use
 Diameter to convert from volume to
 diameter in centimeters:
def Diameter(volume, factor=3/math.pi/4, exp=1/3.0):
 return 2 * (factor * volume) ** exp
And CmToBucket to convert from
 centimeters to a discrete bucket number:
def CmToBucket(x, factor=10):
 return factor * math.log(x)
The buckets are equally spaced on a log scale. Using factor=10 yields a reasonable number of buckets;
 for example, 1 cm maps to bucket 0 and 10 cm maps to bucket 23.
After running the simulations, we can plot the joint distribution as
 a pseudocolor plot, where each cell represents the number of tumors
 observed at a given size-age pair. Figure 13-3 shows
 the joint distribution after 1000 simulations.
Figure 13-3. Joint distribution of age and tumor size.

Conditional distributions
By taking a vertical slice from the joint distribution, we can get
 the distribution of sizes for any given age. By taking a horizontal slice,
 we can get the distribution of ages conditioned on size.
Here’s the code that reads the joint distribution and builds the
 conditional distribution for a given size.
class Cache

 def ConditionalCdf(self, bucket):
 pmf = self.joint.Conditional(0, 1, bucket)
 cdf = pmf.MakeCdf()
 return cdf
bucket is the
 integer bucket number corresponding to tumor size. Joint.Conditional computes the PMF of age
 conditioned on bucket. The result is
 the CDF of age conditioned on bucket.
Figure 13-4 shows several of these CDFs, for a
 range of sizes. To summarize these distributions, we can compute
 percentiles as a function of size.
Figure 13-4. Distributions of age, conditioned on size.

 percentiles = [95, 75, 50, 25, 5]

 for bucket in cache.GetBuckets():
 cdf = ConditionalCdf(bucket)
 ps = [cdf.Percentile(p) for p in percentiles]
Figure 13-5 shows these percentiles for each size
 bucket. The data points are computed from the estimated joint
 distribution. In the model, size and time are discrete, which contributes
 numerical errors, so I also show a least squares fit for each sequence of
 percentiles.
Figure 13-5. Percentiles of tumor age as a function of size.

Serial Correlation
The results so far are based on a number of modeling decisions;
 let’s review them and consider which ones are the most likely sources of
 error:
	To convert from linear measure to volume, we assume that tumors
 are approximately spherical. This assumption is probably fine for
 tumors up to a few centimeters, but not for very large
 tumors.

	The distribution of growth rates in the simulations are based on
 a continuous model we chose to fit the data reported by Zhang et al,
 which is based on 53 patients. The fit is only approximate and, more
 importantly, a larger sample would yield a different
 distribution.

	The growth model does not take into account tumor subtype or
 grade; this assumption is consistent with the conclusion of Zhang et
 al: “Growth rates in renal tumors of different sizes, subtypes and
 grades represent a wide range and overlap substantially.” But with a
 larger sample, a difference might become apparent.

	The distribution of growth rate does not depend on the size of
 the tumor. This assumption would not be realistic for very small and
 very large tumors, whose growth is limited by blood supply.
But tumors observed by Zhang et al ranged from 1 to 12 cm, and
 they found no statistically significant relationship between size and
 growth rate. So if there is a relationship, it is likely to be weak,
 at least in this size range.

	In the simulations, growth rate during each interval is
 independent of previous growth rates. In reality it is plausible that
 tumors that have grown quickly in the past are more likely to grow
 quickly. In other words, there is probably a serial correlation in
 growth rate.

Of these, the first and last seem the most problematic. I’ll
 investigate serial correlation first, then come back to spherical
 geometry.
To simulate correlated growth, I wrote a generator2 that yields a correlated series from a given Cdf. Here’s how
 the algorithm works:
	Generate correlated values from a Gaussian distribution. This is
 easy to do because we can compute the distribution of the next value
 conditioned on the previous value.

	Transform each value to its cumulative probability using the
 Gaussian CDF.

	Transform each cumulative probability to the corresponding value
 using the given Cdf.

Here’s what that looks like in code:
def CorrelatedGenerator(cdf, rho):
 x = random.gauss(0, 1)
 yield Transform(x)

 sigma = math.sqrt(1 - rho**2);
 while True:
 x = random.gauss(x * rho, sigma)
 yield Transform(x)
cdf is the desired Cdf; rho is the desired correlation. The values of
 x are Gaussian; Transform converts them to the desired
 distribution.
The first value of x is Gaussian
 with mean 0 and standard deviation 1. For subsequent values, the mean and
 standard deviation depend on the previous value. Given the previous
 x, the mean of the next value is
 x * rho, and the variance is 1 - rho**2.
Transform maps from each Gaussian
 value, x, to a value from the given
 Cdf, y.
 def Transform(x):
 p = thinkbayes.GaussianCdf(x)
 y = cdf.Value(p)
 return y
GaussianCdf computes the CDF of
 the standard Gaussian distribution at x, returning a cumulative probability. Cdf.Value maps from a cumulative probability to
 the corresponding value in cdf.
Depending on the shape of cdf,
 information can be lost in transformation, so the actual correlation might
 be lower than rho. For example, when I
 generate 10000 values from the distribution of growth rates with rho=0.4, the actual correlation is 0.37. But
 since we are guessing at the right correlation anyway, that’s close
 enough.
Remember that MakeSequence takes
 an iterator as an argument. That interface allows it to work with
 different generators:
 iterator = UncorrelatedGenerator(cdf)
 seq1 = MakeSequence(iterator)

 iterator = CorrelatedGenerator(cdf, rho)
 seq2 = MakeSequence(iterator)
In this example, seq1 and
 seq2 are drawn from the same
 distribution, but the values in seq1
 are uncorrelated and the values in seq2
 are correlated with a coefficient of approximately rho.
Now we can see what effect serial correlation has on the results;
 the following table shows percentiles of age for a 6 cm tumor, using the
 uncorrelated generator and a correlated generator with target
 .
Table 13-1. Percentiles of tumor age conditioned on size.	Serial
	 Diameter
	 Percentiles of age

	Correlation
	 (cm)
	 5th
	 25th
	 50th
	 75th
	 95th

	0.0
	 6.0
	 10.7
	 15.4
	 19.5
	 23.5
	 30.2

	0.4
	 6.0
	 9.4
	 15.4
	 20.8
	 26.2
	 36.9

Correlation makes the fastest growing tumors faster and the slowest
 slower, so the range of ages is wider. The difference is modest for low
 percentiles, but for the 95th percentile it is more than 6 years. To
 compute these percentiles precisely, we would need a better estimate of
 the actual serial correlation.
However, this model is sufficient to answer the question we started
 with: given a tumor with a linear dimension of 15.5 cm, what is the
 probability that it formed more than 8 years ago?
Here’s the code:
class Cache

 def ProbOlder(self, cm, age):
 bucket = CmToBucket(cm)
 cdf = self.ConditionalCdf(bucket)
 p = cdf.Prob(age)
 return 1-p
cm is the size of the tumor;
 age is the age threshold in years.
 ProbOlder converts size to a bucket
 number, gets the Cdf of age conditioned on bucket, and computes the
 probability that age exceeds the given value.
With no serial correlation, the probability that a 15.5 cm tumor is
 older than 8 years is 0.999, or almost certain. With correlation 0.4,
 faster-growing tumors are more likely, but the probability is still 0.995.
 Even with correlation 0.8, the probability is 0.978.
Another likely source of error is the assumption that tumors are
 approximately spherical. For a tumor with linear dimensions 15.5 x 15 cm,
 this assumption is probably not valid. If, as seems likely, a tumor this
 size is relatively flat, it might have the same volume as a 6 cm sphere.
 With this smaller volume and correlation 0.8, the probability of age
 greater than 8 is still 95%.
So even taking into account modeling errors, it is unlikely that
 such a large tumor could have formed less than 8 years prior to the date
 of diagnosis.

Discussion
Well, we got through a whole chapter without using Bayes’s theorem
 or the Suite class that encapsulates
 Bayesian updates. What happened?
One way to think about Bayes’s theorem is as an algorithm for
 inverting conditional probabilities. Given , we can compute , provided we know and . Of course this algorithm is only useful if, for some
 reason, it is easier to compute than .
In this example, it is. By running simulations, we can estimate the
 distribution of size conditioned on age, or . But it is harder to get the distribution of age
 conditioned on size, or . So this seems like a perfect opportunity to use
 Bayes’s theorem.
The reason I didn’t is computational efficiency. To estimate
 for any given size, you have to run a lot of
 simulations. Along the way, you end up computing for a lot of sizes. In fact, you end up computing the
 entire joint distribution of size and age, .
And once you have the joint distribution, you don’t really need
 Bayes’s theorem, you can extract by taking slices from the joint distribution, as
 demonstrated in ConditionalCdf.
So we side-stepped Bayes, but he was with us in spirit.

1 Zhang et al, Distribution of Renal Tumor Growth Rates Determined
 by Using Serial Volumetric CT Measurements, January 2009
 Radiology, 250, 137-144.
2 If you are not familiar with Python generators, see http://wiki.python.org/moin/Generators.

Chapter 14. A Hierarchical Model
The Geiger counter problem
I got the idea for the following problem from Tom Campbell-Ricketts,
 author of the Maximum Entropy blog at http://maximum-entropy-blog.blogspot.com.
 And he got the idea from E.T. Jaynes, author of the classic
 Probability Theory: The Logic of Science:
Suppose that a radioactive source emits particles toward a Geiger
 counter at an average rate of r
 particles per second, but the counter only registers a fraction,
 f, of the particles that hit it. If
 f is 10% and the counter registers 15
 particles in a one second interval, what is the posterior distribution
 of n, the actual number of particles
 that hit the counter, and r, the
 average rate particles are emitted?

To get started on a problem like this, think about the chain of
 causation that starts with the parameters of the system and ends with the
 observed data:
	The source emits particles at an average rate, r.

	During any given second, the source emits n particles toward the counter.

	Out of those n particles, some
 number, k, get counted.

The probability that an atom decays is the same at any point in
 time, so radioactive decay is well modeled by a Poisson process. Given
 r, the distribution of n is Poisson distribution with parameter r.
And if we assume that the probability of detection for each particle
 is independent of the others, the distribution of k is the binomial distribution with parameters
 n and f.
Given the parameters of the system, we can find the distribution of
 the data. So we can solve what is called the forward
 problem.
Now we want to go the other way: given the data, we want the
 distribution of the parameters. This is called the inverse problem. And if you can solve the forward
 problem, you can use Bayesian methods to solve the inverse
 problem.

Start simple
Let’s start with a simple version of the problem where we know the
 value of r. We are given the value of
 f, so all we have to do is estimate
 n.
I define a Suite called Detector
 that models the behavior of the detector and estimates n.
class Detector(thinkbayes.Suite):

 def __init__(self, r, f, high=500, step=1):
 pmf = thinkbayes.MakePoissonPmf(r, high, step=step)
 thinkbayes.Suite.__init__(self, pmf, name=r)
 self.r = r
 self.f = f
If the average emission rate is r
 particles per second, the distribution of n is Poisson with parameter r. high and
 step determine the upper bound for
 n and the step size between hypothetical
 values.
Now we need a likelihood function:
class Detector

 def Likelihood(self, data, hypo):
 k = data
 n = hypo
 p = self.f

 return thinkbayes.EvalBinomialPmf(k, n, p)
data is the number of particles
 detected, and hypo is the hypothetical
 number of particles emitted, n.
If there are actually n particles,
 and the probability of detecting any one of them is f, the probability of detecting k particles is given by the binomial
 distribution.
That’s it for the Detector. We can try it out for a range of values
 of r:
 f = 0.1
 k = 15

 for r in [100, 250, 400]:
 suite = Detector(r, f, step=1)
 suite.Update(k)
 print suite.MaximumLikelihood()
Figure 14-1 shows the posterior distribution of
 n for several given values of r.
Figure 14-1. Posterior distribution of n for three values of r.

Make it hierarchical
In the previous section, we assume r is known. Now let’s relax that assumption. I
 define another Suite, called Emitter,
 that models the behavior of the emitter and estimates r:
class Emitter(thinkbayes.Suite):

 def __init__(self, rs, f=0.1):
 detectors = [Detector(r, f) for r in rs]
 thinkbayes.Suite.__init__(self, detectors)
rs is a sequence of hypothetical
 value for r. detectors is a sequence of Detector objects, one
 for each value of r. The values in the
 Suite are Detectors, so Emitter is a meta-Suite; that is, a Suite that contains other
 Suites as values.
To update the Emitter, we have to compute the likelihood of the data
 under each hypothetical value of r. But
 each value of r is represented by a
 Detector that contains a range of values for n.
To compute the likelihood of the data for a given Detector, we loop
 through the values of n and add up the
 total probability of k. That’s what
 SuiteLikelihood does:
class Detector

 def SuiteLikelihood(self, data):
 total = 0
 for hypo, prob in self.Items():
 like = self.Likelihood(data, hypo)
 total += prob * like
 return total
Now we can write the Likelihood function for the Emitter:
class Emitter

 def Likelihood(self, data, hypo):
 detector = hypo
 like = detector.SuiteLikelihood(data)
 return like
Each hypo is a Detector, so we
 can invoke SuiteLikelihood to get the
 likelihood of the data under the hypothesis.
After we update the Emitter, we have to update each of the
 Detectors, too.
class Emitter

 def Update(self, data):
 thinkbayes.Suite.Update(self, data)

 for detector in self.Values():
 detector.Update()
A model like this, with multiple levels of Suites, is called
 hierarchical.

A little optimization
You might recognize SuiteLikelihood; we saw it in “Making a fair comparison”. At the time, I pointed out that we didn’t really
 need it, because the total probability computed by SuiteLikelihood is exactly the normalizing
 constant computed and returned by Update.
So instead of updating the Emitter and then updating the Detectors,
 we can do both steps at the same time, using the result from Detector.Update as the likelihood of
 Emitter.
Here’s the streamlined version of Emitter.Likelihood:
class Emitter

 def Likelihood(self, data, hypo):
 return hypo.Update(data)
And with this version of Likelihood we can use the default version of
 Update. So this version has fewer lines
 of code, and it runs faster because it does not compute the normalizing
 constant twice.

Extracting the posteriors
After we update the Emitter, we can get the posterior distribution
 of r by looping through the Detectors and
 their probabilities:
class Emitter

 def DistOfR(self):
 items = [(detector.r, prob) for detector, prob in self.Items()]
 return thinkbayes.MakePmfFromItems(items)
items is a list of values of
 r and their probabilities. The result is
 the Pmf of r.
To get the posterior distribution of n, we have to compute the mixture of the Detectors.
 We can use thinkbayes.MakeMixture,
 which takes a meta-Pmf that maps from each distribution to its
 probability. And that’s exactly what the Emitter is:
class Emitter

 def DistOfN(self):
 return thinkbayes.MakeMixture(self)
Figure 14-2 shows the results. Not surprisingly,
 the most likely value for n is 150. Given
 f and n,
 the expected count is , so given f and
 k, the expected value of n is , which is 150.
And if 150 particles are emitted in one second, the most likely
 value of r is 150 particles per second.
 So the posterior distribution of r is
 also centered on 150.
The posterior distributions of r
 and n are similar; the only difference is
 that we are slightly less certain about n. In general, we can be more certain about the
 long-range emission rate, r, than about
 the number of particles emitted in any particular second, n.
Figure 14-2. Posterior distributions of n and r.

You can download the code in this chapter from http://thinkbayes.com/jaynes.py.
 For more information see “Working with the code”.

Discussion
The Geiger counter problem demonstrates the connection between
 causation and hierarchical modeling. In the example, the emission rate
 r has a causal effect on the number of
 particles, n, which has a causal effect
 on the particle count, k.
The hierarchical model reflects the structure of the system, with
 causes at the top and effects at the bottom.
	At the top level, we start with a range of hypothetical values
 for r.

	For each value of r, we have a
 range of values for n, and the prior
 distribution of n depends on
 r.

	When we update the model, we go bottom-up. We compute a
 posterior distribution of n for each
 value of r, then compute the
 posterior distribution of r.

So causal information flows down the hierarchy, and inference flows
 up.

Exercises
Exercise 14-1.
This exercise is also inspired by an example in Jaynes,
 Probability Theory.
Suppose you buy a mosquito trap that is supposed to reduce the
 population of mosquitoes near your house. Each week, you empty the
 trap and count the number of mosquitoes captured. After the first
 week, you count 30 mosquitoes. After the second week, you count 20
 mosquitoes. Estimate the percentage change in the number of mosquitoes
 in your yard.
To answer this question, you have to make some modeling
 decisions. Here are some suggestions:
	Suppose that each week a large number of mosquitoes,
 N, is bred in a wetland near your
 home.

	During the week, some fraction of them, f1, wander into your
 yard, and of those some fraction, f2, are caught in
 the trap.

	Your solution should take into account your prior belief
 about how much N is likely to
 change from one week to the next. You can do that by adding a
 level to the hierarchy to model the percent change in N.

Chapter 15. Dealing with Dimensions
Belly button bacteria
Belly Button Biodiversity 2.0 (BBB2) is a nation-wide citizen
 science project with the goal of identifying bacterial species that can be
 found in human navels (http://bbdata.yourwildlife.org).
 The project might seem whimsical, but it is part of an increasing interest
 in the human microbiome, the set of microorganisms that live on human skin
 and parts of the body.
In their pilot study, BBB2 researchers collected swabs from the
 navels of 60 volunteers, used multiplex pyrosequencing to extract and
 sequence fragments of 16S rDNA, then identified the species or genus the
 fragments came from. Each identified fragment is called a
 “read.”
We can use these data to answer several related questions:
	Based on the number of species observed, can we estimate the
 total number of species in the environment?

	Can we estimate the prevalence of each species; that is, the
 fraction of the total population belonging to each species?

	If we are planning to collect additional samples, can we predict
 how many new species we are likely to discover?

	How many additional reads are needed to increase the fraction of
 observed species to a given threshold?

These questions make up what is called the Unseen Species problem.

Lions and tigers and bears
I’ll start with a simplified version of the problem where we know
 that there are exactly three species. Let’s call them lions, tigers and
 bears. Suppose we visit a wild animal preserve and see 3 lions, 2 tigers
 and one bear.
If we have an equal chance of observing any animal in the preserve,
 the number of each species we see is governed by the multinomial
 distribution. If the prevalence of lions and tigers and bears is p_lion and p_tiger and p_bear, the likelihood of seeing 3 lions, 2 tigers
 and one bear is proportional to
p_lion**3 * p_tiger**2 * p_bear**1
An approach that is tempting, but not correct, is to use beta
 distributions, as in “The beta distribution”, to describe the prevalence
 of each species separately. For example, we saw 3 lions and 3 non-lions;
 if we think of that as 3 “heads” and 3 “tails,” then the posterior
 distribution of p_lion
 is:
 beta = thinkbayes.Beta()
 beta.Update((3, 3))
 print beta.MaximumLikelihood()
The maximum likelihood estimate for p_lion is the observed rate, 50%. Similarly the
 MLEs for p_tiger and
 p_bear are 33% and
 17%.
But there are two problems:
	We have implicitly used a prior for each species that is uniform
 from 0 to 1, but since we know that there are three species, that
 prior is not correct. The right prior should have a mean of 1/3, and
 there should be zero likelihood that any species has a prevalence of
 100%.

	The distributions for each species are not independent, because
 the prevalences have to add up to 1. To capture this dependence, we
 need a joint distribution for the three prevalences.

We can use a Dirichlet distribution to solve both of these problems
 (see http://en.wikipedia.org/wiki/Dirichlet_distribution).
 In the same way we used the beta distribution to describe the distribution
 of bias for a coin, we can use a Dirichlet distribution to describe the
 joint distribution of p_lion, p_tiger and p_bear.
The Dirichlet distribution is the multi-dimensional generalization
 of the beta distribution. Instead of two possible outcomes, like heads and
 tails, the Dirichlet distribution handles any number of outcomes: in this
 example, three species.
If there are n outcomes, the
 Dirichlet distribution is described by n parameters, written α1 through αn.
Here’s the definition, from thinkbayes.py, of a class that represents a
 Dirichlet distribution:
class Dirichlet(object):

 def __init__(self, n):
 self.n = n
 self.params = numpy.ones(n, dtype=numpy.int)
n is the number of dimensions;
 initially the parameters are all 1. I use a numpy array to store the parameters so I can
 take advantage of array operations.
Given a Dirichlet distribution, the marginal distribution for each
 prevalence is a beta distribution, which we can compute like this:
 def MarginalBeta(self, i):
 alpha0 = self.params.sum()
 alpha = self.params[i]
 return Beta(alpha, alpha0-alpha)
i is the index of the marginal
 distribution we want. alpha0 is the sum
 of the parameters; alpha is the
 parameter for the given species.
In the example, the prior marginal distribution for each species is
 Beta(1, 2). We can compute the prior
 means like this:
 dirichlet = thinkbayes.Dirichlet(3)
 for i in range(3):
 beta = dirichlet.MarginalBeta(i)
 print beta.Mean()
As expected, the prior mean prevalence for each species is
 1/3.
To update the Dirichlet distribution, we add the observations to the
 parameters like this:
 def Update(self, data):
 m = len(data)
 self.params[:m] += data
Here data is a sequence of counts
 in the same order as params, so in this
 example, it should be the number of lions, tigers and bears.
data can be shorter than params; in that case there are some species that
 have not been observed.
Here’s code that updates dirichlet with the observed data and computes
 the posterior marginal distributions.
 data = [3, 2, 1]
 dirichlet.Update(data)

 for i in range(3):
 beta = dirichlet.MarginalBeta(i)
 pmf = beta.MakePmf()
 print i, pmf.Mean()
Figure 15-1 shows the results. The posterior
 mean prevalences are 44%, 33%, and 22%.
Figure 15-1. Distribution of prevalences for three species.

The hierarchical version
We have solved a simplified version of the problem: if we know how
 many species there are, we can estimate the prevalence of each.
Now let’s get back to the original problem, estimating the total
 number of species. To solve this problem I’ll define a meta-Suite, which
 is a Suite that contains other Suites as hypotheses. In this case, the
 top-level Suite contains hypotheses about the number of species; the
 bottom level contains hypotheses about prevalences.
Here’s the class definition:
class Species(thinkbayes.Suite):

 def __init__(self, ns):
 hypos = [thinkbayes.Dirichlet(n) for n in ns]
 thinkbayes.Suite.__init__(self, hypos)
__init__ takes a
 list of possible values for n and makes
 a list of Dirichlet objects.
Here’s the code that creates the top-level suite:
 ns = range(3, 30)
 suite = Species(ns)
ns is the list of possible values
 for n. We have seen 3 species, so there
 have to be at least that many. I chose an upper bound that seems
 reasonable, but we will check later that the probability of exceeding this
 bound is low. And at least initially we assume that any value in this
 range is equally likely.
To update a hierarchical model, you have to update all levels.
 Usually you have to update the bottom level first and work up, but in this
 case we can update the top level first:
#class Species

 def Update(self, data):
 thinkbayes.Suite.Update(self, data)
 for hypo in self.Values():
 hypo.Update(data)
Species.Update invokes Update in the parent class, then loops through
 the sub-hypotheses and updates them.
Now all we need is a likelihood function:
class Species

 def Likelihood(self, data, hypo):
 dirichlet = hypo
 like = 0
 for i in range(1000):
 like += dirichlet.Likelihood(data)

 return like
data is a sequence of observed
 counts; hypo is a Dirichlet object.
 Species.Likelihood calls Dirichlet.Likelihood 1000 times and returns the
 total.
Why call it 1000 times? Because Dirichlet.Likelihood doesn’t actually compute
 the likelihood of the data under the whole Dirichlet distribution.
 Instead, it draws one sample from the hypothetical distribution and
 computes the likelihood of the data under the sampled set of
 prevalences.
Here’s what it looks like:
class Dirichlet

 def Likelihood(self, data):
 m = len(data)
 if self.n < m:
 return 0

 x = data
 p = self.Random()
 q = p[:m]**x
 return q.prod()
The length of data is the number
 of species observed. If we see more species than we thought existed, the
 likelihood is 0.
Otherwise we select a random set of prevalences, p, and compute the multinomial PMF, which
 is

pi is the
 prevalence of the ith species, and
 xi is the observed
 number. The first term, cx, is the multinomial
 coefficient; I leave it out of the computation because it is a
 multiplicative factor that depends only on the data, not the hypothesis,
 so it gets normalized away (see http://en.wikipedia.org/wiki/Multinomial_distribution).
m is the number of observed
 species. We only need the first m
 elements of p; for the others,
 xi is 0, so
 pixi
 is 1, and we can leave them out of the product.

Random sampling
There are two ways to generate a random sample from a Dirichlet
 distribution. One is to use the marginal beta distributions, but in that
 case you have to select one at a time and scale the rest so they add up to
 1 (see http://en.wikipedia.org/wiki/Dirichlet_distribution#Random_number_generation).
A less obvious, but faster, way is to select values from n gamma distributions, then normalize by
 dividing through by the total. Here’s the code:
class Dirichlet

 def Random(self):
 p = numpy.random.gamma(self.params)
 return p / p.sum()
Now we’re ready to look at some results. Here is the code that
 extracts the posterior distribution of n:
 def DistOfN(self):
 pmf = thinkbayes.Pmf()
 for hypo, prob in self.Items():
 pmf.Set(hypo.n, prob)
 return pmf
DistOfN iterates through the
 top-level hypotheses and accumulates the probability of each n.
Figure 15-2 shows the result. The most likely
 value is 4. Values from 3 to 7 are reasonably likely; after that the
 probabilities drop off quickly. The probability that there are 29 species
 is low enough to be negligible; if we chose a higher bound, we would get
 nearly the same result.
Figure 15-2. Posterior distribution of n.

Remember that this result is based on a uniform prior for n. If we have background information about the
 number of species in the environment, we might choose a different
 prior.

Optimization
I have to admit that I am proud of this example. The Unseen Species
 problem is not easy, and I think this solution is simple and clear, and
 takes surprisingly few lines of code (about 50 so far).
The only problem is that it is slow. It’s good enough for the
 example with only 3 observed species, but not good enough for the belly
 button data, with more than 100 species in some samples.
The next few sections present a series of optimizations we need to
 make this solution scale. Before we get into the details, here’s a road
 map.
	The first step is to recognize that if we update the Dirichlet
 distributions with the same data, the first m parameters are the same for all of them.
 The only difference is the number of hypothetical unseen species. So
 we don’t really need n Dirichlet
 objects; we can store the parameters in the top level of the
 hierarchy. Species2 implements this
 optimization.

	Species2 also uses the same
 set of random values for all of the hypotheses. This saves time
 generating random values, but it has a second benefit that turns out
 to be more important: by giving all hypotheses the same selection from
 the sample space, we make the comparison between the hypotheses more
 fair, so it takes fewer iterations to converge.

	Even with these changes there is a major performance problem. As
 the number of observed species increases, the array of random
 prevalences gets bigger, and the chance of choosing one that is
 approximately right becomes small. So the vast majority of iterations
 yield small likelihoods that don’t contribute much to the total, and
 don’t discriminate between hypotheses.
The solution is to do the updates one species at a time.
 Species4 is a simple implementation
 of this strategy using Dirichlet objects to represent the
 sub-hypotheses.

	Finally, Species5 combines
 the sub-hypotheses into the top level and uses numpy array operations to speed things
 up.

If you are not interested in the details, feel free to skip to “The belly button data” where we look at results from the belly button
 data.

Collapsing the hierarchy
All of the bottom-level Dirichlet distributions are updated with the
 same data, so the first m parameters
 are the same for all of them. We can eliminate them and merge the
 parameters into the top-level suite. Species2 implements this optimization:
class Species2(object):

 def __init__(self, ns):
 self.ns = ns
 self.probs = numpy.ones(len(ns), dtype=numpy.double)
 self.params = numpy.ones(self.high, dtype=numpy.int)
ns is the list of hypothetical
 values for n; probs is the list of corresponding
 probabilities. And params is the
 sequence of Dirichlet parameters, initially all 1.
Species2.Update updates both
 levels of the hierarchy: first the probability for each value of n, then the Dirichlet parameters:
class Species2

 def Update(self, data):
 like = numpy.zeros(len(self.ns), dtype=numpy.double)
 for i in range(1000):
 like += self.SampleLikelihood(data)

 self.probs *= like
 self.probs /= self.probs.sum()

 m = len(data)
 self.params[:m] += data
SampleLikelihood returns an array
 of likelihoods, one for each value of n. like
 accumulates the total likelihood for 1000 samples. self.probs is multiplied by the total
 likelihood, then normalized. The last two lines, which update the
 parameters, are the same as in Dirichlet.Update.
Now let’s look at SampleLikelihood. There are two opportunities
 for optimization here:
	When the hypothetical number of species, n, exceeds the observed number, m, we only need the first m terms of the multinomial PMF; the rest are
 1.

	If the number of species is large, the likelihood of the data
 might be too small for floating-point (see “Underflow”). So it is safer to compute
 log-likelihoods.

Again, the multinomial PMF is

So the log-likelihood is

which is fast and easy to compute. Again, cx it is the same for all
 hypotheses, so we can drop it. Here’s the code:
class Species2

 def SampleLikelihood(self, data):
 gammas = numpy.random.gamma(self.params)

 m = len(data)
 row = gammas[:m]
 col = numpy.cumsum(gammas)

 log_likes = []
 for n in self.ns:
 ps = row / col[n-1]
 terms = data * numpy.log(ps)
 log_like = terms.sum()
 log_likes.append(log_like)

 log_likes -= numpy.max(log_likes)
 likes = numpy.exp(log_likes)

 coefs = [thinkbayes.BinomialCoef(n, m) for n in self.ns]
 likes *= coefs

 return likes
gammas is an array of values from
 a gamma distribution; its length is the largest hypothetical value of
 n. row is just the first m elements of gammas; since these are the only elements that
 depend on the data, they are the only ones we need.
For each value of n we need to
 divide row by the total of the first
 n values from gamma. cumsum
 computes these cumulative sums and stores them in col.
The loop iterates through the values of n and accumulates a list of
 log-likelihoods.
Inside the loop, ps contains the
 row of probabilities, normalized with the appropriate cumulative sum.
 terms contains the terms of the
 summation, , and log_like contains their sum.
After the loop, we want to convert the log-likelihoods to linear
 likelihoods, but first it’s a good idea to shift them so the largest
 log-likelihood is 0; that way the linear likelihoods are not too small
 (see “Underflow”).
Finally, before we return the likelihood, we have to apply a
 correction factor, which is the number of ways we could have observed
 these m species, if the total number of
 species is n. BinomialCoefficient computes “n choose m”, which
 is written .
As often happens, the optimized version is less readable and more
 error-prone than the original. But that’s one reason I think it is a good
 idea to start with the simple version; we can use it for regression
 testing. I plotted results from both versions and confirmed that they are
 approximately equal, and that they converge as the number of iterations
 increases.

One more problem
There’s more we could do to optimize this code, but there’s another
 problem we need to fix first. As the number of observed species increases,
 this version gets noisier and takes more iterations to converge on a good
 answer.
The problem is that if the prevalences we choose from the Dirichlet
 distribution, the ps, are not at least
 approximately right, the likelihood of the observed data is close to zero
 and almost equally bad for all values of n. So most iterations don’t provide any useful
 contribution to the total likelihood. And as the number of observed
 species, m, gets large, the probability
 of choosing ps with non-negligible
 likelihood gets small. Really small.
Fortunately, there is a solution. Remember that if you observe a set
 of data, you can update the prior distribution with the entire dataset, or
 you can break it up into a series of updates with subsets of the data, and
 the result is the same either way.
For this example, the key is to perform the updates one species at a
 time. That way when we generate a random set of ps, only one of them affects the computed
 likelihood, so the chance of choosing a good one is much better.
Here’s a new version that updates one species at a time:
class Species4(Species):

 def Update(self, data):
 m = len(data)

 for i in range(m):
 one = numpy.zeros(i+1)
 one[i] = data[i]
 Species.Update(self, one)
This version inherits __init__ from Species, so it represents the hypotheses as a
 list of Dirichlet objects (unlike Species2).
Update loops through the observed
 species and makes an array, one, with
 all zeros and one species count. Then it calls Update in the parent class, which computes the
 likelihoods and updates the sub-hypotheses.
So in the running example, we do three updates. The first is
 something like “I have seen three lions.” The second is “I have seen two
 tigers and no additional lions.” And the third is “I have seen one bear
 and no more lions and tigers.”
Here’s the new version of Likelihood:
class Species4

 def Likelihood(self, data, hypo):
 dirichlet = hypo
 like = 0
 for i in range(self.iterations):
 like += dirichlet.Likelihood(data)

 # correct for the number of unseen species the new one
 # could have been
 m = len(data)
 num_unseen = dirichlet.n - m + 1
 like *= num_unseen

 return like
This is almost the same as Species.Likelihood. The difference is the
 factor, num_unseen. This
 correction is necessary because each time we see a species for the first
 time, we have to consider that there were some number of other unseen
 species that we might have seen. For larger values of n there are more unseen species that we could
 have seen, which increases the likelihood of the data.
This is a subtle point and I have to admit that I did not get it
 right the first time. But again I was able to validate this version by
 comparing it to the previous versions.

We’re not done yet
Performing the updates one species at a time solves one problem, but
 it creates another. Each update takes time proportional to , where k is the
 number of hypotheses and m is the number
 of observed species. So if we do m
 updates, the total run time is proportional to .
But we can speed things up using the same trick we used in “Collapsing the hierarchy”: we’ll get rid of the Dirichlet objects and
 collapse the two levels of the hierarchy into a single object. So here’s
 yet another version of Species:
class Species5(Species2):

 def Update(self, data):
 m = len(data)
 for i in range(m):
 self.UpdateOne(i+1, data[i])
 self.params[i] += data[i]
This version inherits __init__ from Species2, so it uses ns and probs
 to represent the distribution of n, and
 params to represent the parameters of
 the Dirichlet distribution.
Update is similar to what we saw
 in the previous section. It loops through the observed species and calls
 UpdateOne:
class Species5

 def UpdateOne(self, i, count):
 likes = numpy.zeros(len(self.ns), dtype=numpy.double)
 for i in range(self.iterations):
 likes += self.SampleLikelihood(i, count)

 unseen_species = [n-i+1 for n in self.ns]
 likes *= unseen_species

 self.probs *= likes
 self.probs /= self.probs.sum()
This function is similar to Species2.Update, with two changes:
	The interface is different. Instead of the whole dataset, we get
 i, the index of the observed
 species, and count, how many of
 that species we’ve seen.

	We have to apply a correction factor for the number of unseen
 species, as in Species4.Likelihood.
 The difference here is that we update all of the likelihoods at once
 with array multiplication.

Finally, here’s SampleLikelihood:
class Species5

 def SampleLikelihood(self, i, count):
 gammas = numpy.random.gamma(self.params)

 sums = numpy.cumsum(gammas)[self.ns[0]-1:]

 ps = gammas[i-1] / sums
 log_likes = numpy.log(ps) * count

 log_likes -= numpy.max(log_likes)
 likes = numpy.exp(log_likes)

 return likes
This is similar to Species2.SampleLikelihood; the difference is
 that each update only includes a single species, so we don’t need a
 loop.
The runtime of this function is proportional to the number of
 hypotheses, k. It runs m times, so the run time of the update is
 proportional to . And the number of iterations we need to get an
 accurate result is usually small.

The belly button data
That’s enough about lions and tigers and bears. Let’s get back to
 belly buttons. To get a sense of what the data look like, consider subject
 B1242, whose sample of 400 reads yielded 61 species with the following
 counts:
92, 53, 47, 38, 15, 14, 12, 10, 8, 7, 7, 5, 5,
4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
There are a few dominant species that make up a large fraction of
 the whole, but many species that yielded only a single read. The number of
 these “singletons” suggests that there are likely to be at least a few
 unseen species.
In the example with lions and tigers, we assume that each animal in
 the preserve is equally likely to be observed. Similarly, for the belly
 button data, we assume that each bacterium is equally likely to yield a
 read.
In reality, each step in the data-collection process might introduce
 biases. Some species might be more likely to be picked up by a swab, or to
 yield identifiable amplicons. So when we talk about the prevalence of each
 species, we should remember this source of error.
I should also acknowledge that I am using the term “species”
 loosely. First, bacterial species are not well defined. Second, some reads
 identify a particular species, others only identify a genus. To be more
 precise, I should say “operational taxonomic unit”, or OTU.
Now let’s process some of the belly button data. I define a class
 called Subject to represent information
 about each subject in the study:
class Subject(object):

 def __init__(self, code):
 self.code = code
 self.species = []
Each subject has a string code, like “B1242”, and a list of (count,
 species name) pairs, sorted in increasing order by count. Subject provides several methods to make it easy
 to access these counts and species names. You can see the details in
 http://thinkbayes.com/species.py.
 For more information see “Working with the code”.
Subject provides a method named
 Process that creates and updates a
 Species5 suite, which represents the
 distributions of n and the
 prevalences.
And Suite2 provides DistOfN, which returns the posterior
 distribution of n.
class Suite2

 def DistN(self):
 items = zip(self.ns, self.probs)
 pmf = thinkbayes.MakePmfFromItems(items)
 return pmf
Figure 15-3 shows the distribution of n for subject B1242. The probability that there
 are exactly 61 species, and no unseen species, is nearly zero. The most
 likely value is 72, with 90% credible interval 66 to 79. At the high end,
 it is unlikely that there are as many as 87 species.
Figure 15-3. Distribution of n for subject B1242.

Next we compute the posterior distribution of prevalence for each
 species. Species2 provides DistOfPrevalence:
class Species2

 def DistOfPrevalence(self, index):
 metapmf = thinkbayes.Pmf()

 for n, prob in zip(self.ns, self.probs):
 beta = self.MarginalBeta(n, index)
 pmf = beta.MakePmf()
 metapmf.Set(pmf, prob)

 mix = thinkbayes.MakeMixture(metapmf)
 return metapmf, mix
index indicates which species we
 want. For each n, we have a different
 posterior distribution of prevalence.
The loop iterates through the possible values of n and their probabilities. For each value of
 n it gets a Beta object representing
 the marginal distribution for the indicated species. Remember that Beta
 objects contain the parameters alpha
 and beta; they don’t have values and
 probabilities like a Pmf, but they provide MakePmf, which generates a discrete
 approximation to the continuous beta distribution.
metapmf is a meta-Pmf that
 contains the distributions of prevalence, conditioned on n. MakeMixture combines the meta-Pmf into mix, which combines the conditional
 distributions into a single distribution of prevalence.
Figure 15-4 shows results for the five species
 with the most reads. The most prevalent species accounts for 23% of the
 400 reads, but since there are almost certainly unseen species, the most
 likely estimate for its prevalence is 20%, with 90% credible interval
 between 17% and 23%.
Figure 15-4. Distribution of prevalences for subject B1242.

Predictive distributions
I introduced the hidden species problem in the form of four related
 questions. We have answered the first two by computing the posterior
 distribution for n and the prevalence
 of each species.
The other two questions are:
	If we are planning to collect additional reads, can we predict
 how many new species we are likely to discover?

	How many additional reads are needed to increase the fraction of
 observed species to a given threshold?

To answer predictive questions like this we can use the posterior
 distributions to simulate possible future events and compute predictive
 distributions for the number of species, and fraction of the total, we are
 likely to see.
The kernel of these simulations looks like this:
	Choose n from its posterior
 distribution.

	Choose a prevalence for each species, including possible unseen
 species, using the Dirichlet distribution.

	Generate a random sequence of future observations.

	Compute the number of new species, num_new, as a function of the number of
 additional reads, k.

	Repeat the previous steps and accumulate the joint distribution
 of num_new and
 k.

And here’s the code. RunSimulation runs a single simulation:
class Subject

 def RunSimulation(self, num_reads):
 m, seen = self.GetSeenSpecies()
 n, observations = self.GenerateObservations(num_reads)

 curve = []
 for k, obs in enumerate(observations):
 seen.add(obs)

 num_new = len(seen) - m
 curve.append((k+1, num_new))

 return curve
num_reads is the
 number of additional reads to simulate. m is the number of seen species, and seen is a set of strings with a unique name for
 each species. n is a random value from
 the posterior distribution, and observations is a random sequence of species
 names.
Each time through the loop, we add the new observation to seen and record the number of reads and the
 number of new species so far.
The result of RunSimulation is a
 rarefaction curve, represented as a list
 of pairs with the number of reads and the number of new species.
Before we see the results, let’s look at GetSeenSpecies and GenerateObservations.
#class Subject

 def GetSeenSpecies(self):
 names = self.GetNames()
 m = len(names)
 seen = set(SpeciesGenerator(names, m))
 return m, seen
GetNames returns the list of
 species names that appear in the data files, but for many subjects these
 names are not unique. So I use SpeciesGenerator to extend each name with a
 serial number:
def SpeciesGenerator(names, num):
 i = 0
 for name in names:
 yield '%s-%d' % (name, i)
 i += 1

 while i < num:
 yield 'unseen-%d' % i
 i += 1
Given a name like Corynebacterium, SpeciesGenerator yields Corynebacterium-1. When the list of names is
 exhausted, it yields names like unseen-62.
Here is GenerateObservations:
class Subject

 def GenerateObservations(self, num_reads):
 n, prevalences = self.suite.SamplePosterior()

 names = self.GetNames()
 name_iter = SpeciesGenerator(names, n)

 d = dict(zip(name_iter, prevalences))
 cdf = thinkbayes.MakeCdfFromDict(d)
 observations = cdf.Sample(num_reads)

 return n, observations
Again, num_reads is
 the number of additional reads to generate. n and prevalences are samples from the posterior
 distribution.
cdf is a Cdf object that maps
 species names, including the unseen, to cumulative probabilities. Using a
 Cdf makes it efficient to generate a random sequence of species
 names.
Finally, here is Species2.SamplePosterior:
 def SamplePosterior(self):
 pmf = self.DistOfN()
 n = pmf.Random()
 prevalences = self.SamplePrevalences(n)
 return n, prevalences
And SamplePrevalences, which
 generates a sample of prevalences conditioned on n:
class Species2

 def SamplePrevalences(self, n):
 params = self.params[:n]
 gammas = numpy.random.gamma(params)
 gammas /= gammas.sum()
 return gammas
We saw this algorithm for generating random values from a Dirichlet
 distribution in “Random sampling”.
Figure 15-5 shows 100 simulated rarefaction
 curves for subject B1242. The curves are “jittered;” that is, I shifted
 each curve by a random offset so they would not all overlap. By inspection
 we can estimate that after 400 more reads we are likely to find 2–6 new
 species.
Figure 15-5. Simulated rarefaction curves for subject B1242.

Joint posterior
We can use these simulations to estimate the joint distribution of
 num_new and k, and from that we can get the distribution of
 num_new conditioned on any
 value of k.
def MakeJointPredictive(curves):
 joint = thinkbayes.Joint()
 for curve in curves:
 for k, num_new in curve:
 joint.Incr((k, num_new))
 joint.Normalize()
 return joint
MakeJointPredictive makes a Joint
 object, which is a Pmf whose values are tuples.
curves is a list of rarefaction
 curves created by RunSimulation. Each
 curve contains a list of pairs of k and
 num_new.
The resulting joint distribution is a map from each pair to its
 probability of occurring. Given the joint distribution, we can use
 Joint.Conditional get the distribution
 of num_new conditioned on
 k (see “Conditional distributions”).
Subject.MakeConditionals takes a
 list of ks and computes the conditional
 distribution of num_new
 for each k. The result is a list of Cdf
 objects.
def MakeConditionals(curves, ks):
 joint = MakeJointPredictive(curves)

 cdfs = []
 for k in ks:
 pmf = joint.Conditional(1, 0, k)
 pmf.name = 'k=%d' % k
 cdf = pmf.MakeCdf()
 cdfs.append(cdf)

 return cdfs
Figure 15-6 shows the results. After 100 reads,
 the median predicted number of new species is 2; the 90% credible interval
 is 0 to 5. After 800 reads, we expect to see 3 to 12 new species.
Figure 15-6. Distributions of the number of new species conditioned on the
 number of additional reads.

Coverage
The last question we want to answer is, “How many additional reads
 are needed to increase the fraction of observed species to a given
 threshold?”
To answer this question, we need a version of RunSimulation that computes the fraction of
 observed species rather than the number of new species.
class Subject

 def RunSimulation(self, num_reads):
 m, seen = self.GetSeenSpecies()
 n, observations = self.GenerateObservations(num_reads)

 curve = []
 for k, obs in enumerate(observations):
 seen.add(obs)

 frac_seen = len(seen) / float(n)
 curve.append((k+1, frac_seen))

 return curve
Next we loop through each curve and make a dictionary, d, that maps from the number of additional
 reads, k, to a list of fracs; that is, a list of values for the
 coverage achieved after k reads.
 def MakeFracCdfs(self, curves):
 d = {}
 for curve in curves:
 for k, frac in curve:
 d.setdefault(k, []).append(frac)

 cdfs = {}
 for k, fracs in d.iteritems():
 cdf = thinkbayes.MakeCdfFromList(fracs)
 cdfs[k] = cdf

 return cdfs
Then for each value of k we make
 a Cdf of fracs; this Cdf represents the
 distribution of coverage after k
 reads.
Remember that the CDF tells you the probability of falling below a
 given threshold, so the complementary CDF tells you
 the probability of exceeding it. Figure 15-7 shows
 complementary CDFs for a range of values of k.
To read this figure, select the level of coverage you want to
 achieve along the x-axis. As an example,
 choose 90%.
Now you can read up the chart to find the probability of achieving
 90% coverage after k reads. For
 example, with 200 reads, you have about a 40% chance of getting 90%
 coverage. With 1000 reads, you have a 90% chance of getting 90%
 coverage.
With that, we have answered the four questions that make up the
 unseen species problem. To validate the algorithms in this chapter with
 real data, I had to deal with a few more details. But this chapter is
 already too long, so I won’t discuss them here.
You can read about the problems, and how I addressed them, at http://allendowney.blogspot.com/2013/05/belly-button-biodiversity-end-game.html.
You can download the code in this chapter from http://thinkbayes.com/species.py.
 For more information see “Working with the code”.
Figure 15-7. Complementary CDF of coverage for a range of additional
 reads.

Discussion
The Unseen Species problem is an area of active research, and I
 believe the algorithm in this chapter is a novel contribution. So in fewer
 than 200 pages we have made it from the basics of probability to the
 research frontier. I’m very happy about that.
My goal for this book is to present three related ideas:
	Bayesian thinking: The foundation of Bayesian analysis is the
 idea of using probability distributions to represent uncertain
 beliefs, using data to update those distributions, and using the
 results to make predictions and inform decisions.

	A computational approach: The
 premise of this book is that it is easier to understand Bayesian
 analysis using computation rather than math, and easier to implement
 Bayesian methods with reusable building blocks that can be rearranged
 to solve real-world problems quickly.

	Iterative modeling: Most
 real-world problems involve modeling decisions and trade-offs between
 realism and complexity. It is often impossible to know ahead of time
 what factors should be included in the model and which can be
 abstracted away. The best approach is to iterate, starting with simple
 models and adding complexity gradually, using each model to validate
 the others.

These ideas are versatile and powerful; they are applicable to
 problems in every area of science and engineering, from simple examples to
 topics of current research.
If you made it this far, you should be prepared to apply these tools
 to new problems relevant to your work. I hope you find them useful; let me
 know how it goes!

Index
A
	ABC, ABC
	abstract type, Discussion, Representing PDFs
	Anaconda, Working with the code
	Approximate Bayesian Computation, ABC
	arrival rate, Estimating the arrival rate
	Axtell, Robert, An alternative prior

B
	bacteria, Belly button bacteria
	Bayes factor, Oliver’s blood, Back to the Euro problem-Making a fair comparison, Posterior
	Bayesian framework, The Bayesian framework
	Bayes’s theorem, The cookie problem	derivation, Bayes’s theorem
	odds form, The odds form of Bayes’s theorem

	Behavioral Risk Factor Surveillance System, The Variability Hypothesis
	belly button, Belly button bacteria
	Bernoulli process, Poisson processes
	beta distribution, The beta distribution, Lions and tigers and bears
	Beta object, The beta distribution, The belly button data
	biased coin, Back to the Euro problem
	binomial coefficient, Collapsing the hierarchy
	binomial distribution, The prior, The Geiger counter problem, Start simple
	binomial likelihood function, The beta distribution
	biodiversity, Belly button bacteria
	bogus, Update, Back to the Euro problem
	Boston, The Red Line problem
	Boston Bruins, The Boston Bruins problem
	BRFSS, The Variability Hypothesis, ABC
	bucket, Caching the joint distribution
	bus stop problem, Exercises

C
	cache, A little optimization, Implementation
	calibration, Calibration
	Campbell-Ricketts, Tom, The Geiger counter problem
	carcinoma, A more general model
	causation, The Geiger counter problem, Discussion
	CDC, The Variability Hypothesis
	Cdf, Cumulative distribution functions, Discussion, Modeling the contestants, Wait times, Predictive distributions
	Centers for Disease Control, The Variability Hypothesis
	central credible interval, Credible intervals
	classical estimation, Mean and standard deviation
	clone, Working with the code
	coefficient of variation, The Variability Hypothesis
	coin toss, Conditional probability
	collectively exhaustive, The diachronic interpretation
	College Board, The scale
	complementary CDF, Coverage
	concrete type, Discussion, Representing PDFs
	conditional distribution, Conditional distributions, Discussion, A more general model, Conditional distributions, Discussion, Joint posterior
	conditional probability, Conditional probability
	conjoint probability, Conjoint probability
	conjugate prior, The beta distribution
	conjunction, Bayes’s theorem
	continuous distribution, The beta distribution
	contributors, Contributor List
	convergence, Swamping the priors, Discussion
	cookie problem, The cookie problem, The cookie problem, The odds form of Bayes’s theorem
	cookie.py, The cookie problem
	correlated random value, Serial Correlation
	coverage, Coverage
	crank science, The Variability Hypothesis
	credible interval, Credible intervals, Joint distributions
	Cromwell, Oliver, Discussion
	Cromwell’s rule, Discussion
	cumulative distribution function, Cumulative distribution functions, Wait times
	cumulative probability, Serial Correlation, Predictive distributions
	cumulative sum, Collapsing the hierarchy

D
	Davidson-Pilon, Cameron, The Price is Right problem
	decision analysis, The Price is Right problem, Optimal bidding, Discussion, Decision analysis
	degree of belief, Conditional probability
	density, Probability density functions, Representing PDFs, Likelihood, Mean and standard deviation
	dependence, Conjoint probability, Conditional distributions, Conditional distributions
	diachronic interpretation, The diachronic interpretation
	dice, Distributions, The dice problem
	Dice problem, The dice problem
	dice problem, The locomotive problem
	Dirichlet distribution, Lions and tigers and bears, Predictive distributions
	distribution, Distributions, Discussion, Discussion	operations, Addends

	divide-and-conquer, Discussion
	doubling time, The Kidney Tumor problem
	Dungeons and Dragons, The dice problem, Addends

E
	efficacy, A better model
	enumeration, Addends, Maxima
	error, Modeling the contestants
	ESP, Exercises
	Euro problem, The Euro problem, Discussion, ABC, Back to the Euro problem
	evidence, Bayes’s theorem, Summarizing the posterior, Oliver’s blood, Oliver’s blood, Joint distributions, The Variability Hypothesis, Back to the Euro problem-Making a fair comparison, Interpreting SAT scores
	exception, Underflow
	exponential distribution, Poisson processes, Sudden death, The Kidney Tumor problem
	exponentiation, Maxima
	extra-sensory perception, Exercises

F
	fair coin, Back to the Euro problem
	fork, Working with the code
	forward problem, The Geiger counter problem

G
	gamma distribution, Random sampling, Collapsing the hierarchy
	Gaussian distribution, Probability density functions, Representing PDFs, Representing PDFs, Modeling the contestants, The Boston Bruins problem, Mean and standard deviation, ABC, Robust estimation, The prior, A better model, Calibration, Serial Correlation
	Gaussian PDF, Representing PDFs
	Gee, Steve, The prior
	Geiger counter problem, The Geiger counter problem, Discussion
	generator, Serial Correlation, Serial Correlation, Predictive distributions
	German tank problem, The locomotive problem, Discussion
	Git, Working with the code
	GitHub, Working with the code
	growth rate, Serial Correlation

H
	heart attack, Conditional probability
	height, The Variability Hypothesis
	Heuer, Andreas, Poisson processes
	hierarchical model, Make it hierarchical, Discussion, The hierarchical version
	Hoag, Dirk, Discussion
	hockey, The Boston Bruins problem
	horse racing, Odds
	Horsford, Eben Norton, The Variability Hypothesis
	Hume, David, Exercises
	hypothesis testing, Back to the Euro problem

I
	implementation, Discussion, Representing PDFs
	independence, Conjoint probability, The M&M problem, Addends, Maxima, Conditional distributions, Conditional distributions, Discussion, A more general model, Lions and tigers and bears
	informative prior, Discussion
	insect sampling problem, Exercises
	installation, Working with the code
	inter-quartile range, Robust estimation
	interface, Discussion, Representing PDFs
	intuition, The Monty Hall problem
	inverse problem, The Geiger counter problem
	IQR, Robust estimation
	item response theory, A better model
	iterative modeling, Discussion
	iterator, Implementation

J
	Jaynes, E.T., The Geiger counter problem
	Joint, Joint distributions, Conditional distributions, Credible intervals, Discussion, Mean and standard deviation
	joint distribution, Joint distributions, Discussion, Mean and standard deviation, Discussion, Caching the joint distribution, Conditional distributions, Discussion, Lions and tigers and bears, Predictive distributions, Joint posterior
	Joint object, Joint posterior
	Joint pmf, The suite

K
	KDE, The prior, Representing PDFs
	kernel density estimation, The prior, Representing PDFs
	Kidney tumor problem, The Kidney Tumor problem

L
	least squares fit, Conditional distributions
	light bulb problem, Exercises
	likelihood, The diachronic interpretation, Modeling the contestants, Predicting wait times, Trigonometry, Likelihood, Mean and standard deviation, Discussion, Making a fair comparison, Start simple
	Likelihood, The Bayesian framework
	likelihood function, The locomotive problem
	likelihood ratio, Oliver’s blood, Making a fair comparison, The triangle prior, Posterior
	linspace, Mean and standard deviation
	lions and tigers and bears, Lions and tigers and bears
	locomotive problem, The locomotive problem, Discussion, ABC
	log scale, Caching the joint distribution
	log transform, Underflow
	log-likelihood, Log-likelihood, Collapsing the hierarchy, Collapsing the hierarchy
	logarithm, Underflow

M
	M and M problem, The M&M problem, The M&M problem
	MacKay, David, The Euro problem, Oliver’s blood, Exercises, Back to the Euro problem
	MakeMixture, The distribution of goals, Sudden death, Wait times, Incorporating uncertainty, A better model, The belly button data
	marginal distribution, Joint distributions, Discussion, Lions and tigers and bears
	matplotlib, Working with the code
	maximum, Maxima
	maximum likelihood, Credible intervals, Summarizing the posterior, Discussion, Credible intervals, Update, Underflow, Lions and tigers and bears
	mean squared error, The locomotive problem
	Meckel, Johann, The Variability Hypothesis
	median, Summarizing the posterior
	memoization, A little optimization
	meta-Pmf, The distribution of goals, Sudden death, Wait times, Incorporating uncertainty, A better model, The belly button data
	meta-Suite, Make it hierarchical, The hierarchical version
	microbiome, Belly button bacteria
	mixture, Mixtures, The distribution of goals, Sudden death, Wait times, Incorporating uncertainty, The Kidney Tumor problem, The belly button data
	modeling, Modeling and approximation, Discussion, Discussion, Discussion, Discussion, Interpreting SAT scores, A simple model, A more general model
	modeling error, A better model, Serial Correlation, Serial Correlation
	Monty Hall problem, The Monty Hall problem, The Monty Hall problem
	Mosteller, Frederick, The locomotive problem
	Mult, The cookie problem
	multinomial coefficient, The hierarchical version
	multinomial distribution, Lions and tigers and bears, The hierarchical version, Collapsing the hierarchy
	mutually exclusive, The diachronic interpretation

N
	National Hockey League, The Boston Bruins problem
	navel, Belly button bacteria
	NHL, The Boston Bruins problem
	non-linear, Incorporating uncertainty
	normal distribution, Representing PDFs
	normalize, Update
	normalizing constant, The diachronic interpretation, The M&M problem, The odds form of Bayes’s theorem, A little optimization
	nuisance parameter, Discussion
	NumPy, Working with the code
	numpy, Representing PDFs, Modeling the contestants, Optimal bidding, The Boston Bruins problem, Estimating the arrival rate, Mean and standard deviation, Calibration, Lions and tigers and bears, Random sampling, Optimization-We’re not done yet

O
	objectivity, Discussion
	observer bias, The model, Decision analysis
	odds, Odds
	Olin College, The Red Line problem
	Oliver’s blood problem, Oliver’s blood
	operational taxonomic unit, The belly button data
	optimization, Optimization, A little optimization, A little optimization, A little optimization, Optimization
	OTU, The belly button data
	overtime, The probability of winning

P
	Paintball problem, Paintball
	parameter, The beta distribution
	PDF, The beta distribution, The Boston Bruins problem
	Pdf, Probability density functions, Representing PDFs
	PEP 8, Code style
	percentile, Credible intervals, Conditional distributions, Serial Correlation
	Pmf, Discussion, Probability density functions
	Pmf class, Distributions
	Pmf methods, Distributions
	Poisson distribution, Poisson processes, The distribution of goals, The distribution of goals, Predicting wait times, Start simple
	Poisson process, Modeling and approximation, The Boston Bruins problem, Poisson processes, Sudden death, Exercises, The model, The Geiger counter problem
	posterior, The diachronic interpretation
	posterior distribution, The cookie problem, Summarizing the posterior
	power law, An alternative prior
	predictive distribution, Exercises, Predicting wait times, Predicting wait times, Incorporating uncertainty, Predictive distribution, Predictive distributions
	prevalence, Belly button bacteria, The hierarchical version, The belly button data
	Price is Right, The Price is Right problem
	prior, The diachronic interpretation
	prior distribution, The cookie problem, What about that prior?
	Prob, Distributions
	probability, Probability density functions	conditional, Conditional probability
	conjoint, Conjoint probability

	probability density, Probability density functions
	probability density function, The beta distribution, Probability density functions, The Boston Bruins problem
	probability mass function, Distributions
	process, Poisson processes
	pseudocolor plot, Caching the joint distribution
	pyrosequencing, Belly button bacteria

R
	radioactive decay, The Geiger counter problem
	random sample, Random sampling, Predictive distributions
	rarefaction curve, Predictive distributions, Joint posterior
	raw score, The prior
	rDNA, Belly button bacteria
	Red Line problem, The Red Line problem
	Reddit, Exercises, The Kidney Tumor problem
	regression testing, Modeling and approximation, Collapsing the hierarchy, One more problem
	renormalize, The cookie problem
	repository, Working with the code
	robust estimation, Robust estimation

S
	sample bias, The belly button data
	sample statistics, ABC
	SAT, Interpreting SAT scores
	scaled score, The scale
	SciPy, Working with the code
	scipy, Representing PDFs, Representing PDFs, Log-likelihood
	serial correlation, Serial Correlation, Serial Correlation
	Showcase, The Price is Right problem
	simulation, Addends, Maxima, Mixtures, A more general model, Implementation, Predictive distributions
	Sivia, D.S., Paintball
	species, Belly button bacteria, The belly button data
	sphere, A more general model, Serial Correlation
	standardized test, Interpreting SAT scores
	stick, The Monty Hall problem
	strafing speed, Trigonometry
	subjective prior, The diachronic interpretation
	subjectivity, Discussion
	sudden death, The probability of winning
	suite, The diachronic interpretation
	Suite class, Encapsulating the framework
	summary statistic, Discussion, Robust estimation, Discussion
	swamping the priors, Swamping the priors, Discussion
	switch, The Monty Hall problem

T
	table method, The M&M problem
	template method pattern, Discussion
	total probability, The diachronic interpretation
	triangle distribution, Swamping the priors, The triangle prior
	trigonometry, Trigonometry
	tumor type, Serial Correlation
	tuple, Optimization

U
	uncertainty, Incorporating uncertainty
	underflow, Underflow, Collapsing the hierarchy
	uniform distribution, The Euro problem, Mixtures, Wait times, Random sampling
	uninformative prior, Discussion
	Unseen Species problem, Belly button bacteria
	Update, The Bayesian framework

V
	Vancouver Canucks, The Boston Bruins problem
	Variability Hypothesis, The Variability Hypothesis
	Veterans’ Benefit Administration, A simple model
	volume, A more general model

W
	Weibull distribution, Exercises
	word frequency, Distributions

About the Author

Allen Downey is a Professor of Computer Science at the Olin College of Engineering. He has taught computer science at Wellesley College, Colby College, and U.C. Berkeley. He has a PhD in Computer Science from U.C. Berkeley and Master’s and Bachelor’s degrees from MIT.

 Colophon

 The animal on the cover of Think Bayes is a red
 striped mullet (Mullus surmuletus). This species of
 goatfish can be found in the Mediterranean Sea, east North Atlantic Ocean,
 and the Black Sea. Known for its distinct striped first dorsal fin, the red
 striped mullet is a favored delicacy in the Mediterranean—along with its
 brother goatfish, Mullus barbatus, which has a first
 dorsal fin that is not striped. However, the red striped mullet tends to be
 more prized and is said to taste similar to oysters. Stories of ancient
 Romans rearing the red striped mullet in ponds, attending to, caressing, and
 even teaching them to feed at the sound of a bell. These fish, generally
 weighing in under two pounds even when farm-raised, were sometimes sold for
 their weight in silver.

 When left to the wild, red mullets are small bottom-feeding fish with
 a distinct double beard—known as barbels—on its lower lip, which it uses to
 probe the ocean floor for food. Because the red striped mullet feed on sandy
 and rocky bottoms at shallower depths, its barbels are less sensitive than
 its deep water feeding brother, the Mullus
 barbatus.

 The cover image is from Meyers Kleines Lexicon.
 The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

OEBPS/assets/eq_97.png

OEBPS/assets/eq_161.png
x; log p.

OEBPS/assets/eq_70.png

OEBPS/assets/eq_2.png
p(A

OEBPS/assets/eq_156.png

OEBPS/assets/eq_53.png
p(A1D)=1/3

OEBPS/assets/eq_121.png
s/N2(n—1)

OEBPS/assets/thba_1506.png
Prob

Nl

0.0

I2 : é g 10 12 14
new species

OEBPS/assets/eq_142.png

OEBPS/assets/eq_141.png

OEBPS/assets/thba_1507.png
Probability

1.0

0.8

o
o

o©
>

0.2

o8

Fraction of species seen

1\
i 800 T
N\
600
400
200
100
lok
65 070 075 080 085 090 005 1.00

1.05

OEBPS/assets/eq_12.png

OEBPS/assets/thba_1401.png
0.045 - - . .
=100
0.040¢f ”]

= 250
0.035} w4001

0.030f

. 0.025} n

o
0.020f

M

0.015f

0.010f

0.005f

0.000 “

0 100 200 300 400 500
Number of particles (n)

OEBPS/assets/eq_82.png

OEBPS/assets/thba_0401.png
| —I uniforml

J \

100

80

60

40

20

0.14

0.12f

o
-
o

% ©
S 9

o o
Annigeqoud

<
Q
o

0.02f

0.000

OEBPS/assets/eq_40.png
p(D)=1/2)37/4)+(1/2)(1/2) =578

OEBPS/assets/thba_0603.png
0.08

= prior
0.07¢ === posterior

0.06f]
0.05f]

L
E 0.04

0.03f]

0.02f]

0.01f]

0'000 10000 20600 30600 40000 50000 60000 70000 80000

price ($)

OEBPS/assets/thba_0803.png
CDF

1.0

= prior X

=== posterior X
0.8 — pred y 1
0.6 1
0.4 1
0.2 1
0.0 5 10 15

Time (min)

20

OEBPS/assets/thba_0904.png
0.09

0.08f

0.07

0.06

0.05

Prob

0.04

0.03

=== peta = 10
=== pbeta = 20 1
=== peta = 40

0.02

0.01

0.00

5 10 15 20 25 30
Distance

OEBPS/assets/eq_21.png

OEBPS/assets/thba_0806.png
0.12

0.10

o
o
®

P(y > 15 min)
o
o
[*)]

0.04

0.02

0.00

10

15 20
Num passengers

25

30

35

OEBPS/assets/eq_76.png

OEBPS/assets/eq_9.png
p(AandB) = p(A)p(B | A)

OEBPS/assets/eq_43.png

OEBPS/assets/eq_85.png

OEBPS/assets/eq_71.png
PMF(x) « (1)

OEBPS/assets/eq_89.png

OEBPS/assets/eq_39.png
p(D) =pB)pD | B))+p(b,)pD | b,)

OEBPS/assets/eq_118.png
0= tan_l(x —Q

OEBPS/assets/eq_101.png
olAlD) pDIA)
o(A) — p(DIB)

OEBPS/assets/eq_72.png

OEBPS/assets/eq_16.png
p(BandA) = p(B)p(A | B)

OEBPS/assets/eq_73.png

OEBPS/assets/eq_165.png
km

OEBPS/assets/eq_88.png

OEBPS/assets/eq_29.png

OEBPS/assets/eq_28.png

OEBPS/assets/eq_90.png

OEBPS/assets/thba_1304.png
CDF

1.0

0.8f

0.6f

0.0

Distribution of age for several diameters

2cm
5cm
10 cm
15cm

10 20 30
tumor age (years)

40

50

OEBPS/assets/eq_109.png
CDF,(z) = CDF (z)"

OEBPS/assets/eq_108.png
CDF,(z) = CDF(2)CDF,(z)

OEBPS/toc01.html
		Preface		My theory, which is mine

		Modeling and approximation

		Working with the code

		Code style

		Prerequisites

		Conventions Used in This Book

		Safari® Books Online

		How to Contact Us

		Contributor List

		1. Bayes’s Theorem		Conditional probability

		Conjoint probability

		The cookie problem

		Bayes’s theorem

		The diachronic interpretation

		The M&M problem

		The Monty Hall problem

		Discussion

		2. Computational Statistics		Distributions

		The cookie problem

		The Bayesian framework

		The Monty Hall problem

		Encapsulating the framework

		The M&M problem

		Discussion

		Exercises

		3. Estimation		The dice problem

		The locomotive problem

		What about that prior?

		An alternative prior

		Credible intervals

		Cumulative distribution functions

		The German tank problem

		Discussion

		Exercises

		4. More Estimation		The Euro problem

		Summarizing the posterior

		Swamping the priors

		Optimization

		The beta distribution

		Discussion

		Exercises

		5. Odds and Addends		Odds

		The odds form of Bayes’s theorem

		Oliver’s blood

		Addends

		Maxima

		Mixtures

		Discussion

		6. Decision Analysis		The Price is Right problem

		The prior

		Probability density functions

		Representing PDFs

		Modeling the contestants

		Likelihood

		Update

		Optimal bidding

		Discussion

		7. Prediction		The Boston Bruins problem

		Poisson processes

		The posteriors

		The distribution of goals

		The probability of winning

		Sudden death

		Discussion

		Exercises

		8. Observer Bias		The Red Line problem

		The model

		Wait times

		Predicting wait times

		Estimating the arrival rate

		Incorporating uncertainty

		Decision analysis

		Discussion

		Exercises

		9. Two Dimensions		Paintball

		The suite

		Trigonometry

		Likelihood

		Joint distributions

		Conditional distributions

		Credible intervals

		Discussion

		Exercises

		10. Approximate Bayesian Computation		The Variability Hypothesis

		Mean and standard deviation

		Update

		The posterior distribution of CV

		Underflow

		Log-likelihood

		A little optimization

		ABC

		Robust estimation

		Who is more variable?

		Discussion

		Exercises

		11. Hypothesis Testing		Back to the Euro problem

		Making a fair comparison

		The triangle prior

		Discussion

		Exercises

		12. Evidence		Interpreting SAT scores

		The scale

		The prior

		Posterior

		A better model

		Calibration

		Posterior distribution of efficacy

		Predictive distribution

		Discussion

		13. Simulation		The Kidney Tumor problem

		A simple model

		A more general model

		Implementation

		Caching the joint distribution

		Conditional distributions

		Serial Correlation

		Discussion

		14. A Hierarchical Model		The Geiger counter problem

		Start simple

		Make it hierarchical

		A little optimization

		Extracting the posteriors

		Discussion

		Exercises

		15. Dealing with Dimensions		Belly button bacteria

		Lions and tigers and bears

		The hierarchical version

		Random sampling

		Optimization

		Collapsing the hierarchy

		One more problem

		We’re not done yet

		The belly button data

		Predictive distributions

		Joint posterior

		Coverage

		Discussion

		Index

OEBPS/assets/eq_115.png

OEBPS/assets/thba_1003.png
Probability

1.0

0.8

o
o

o©
>

0.2

88

== male
=== female j
405 00410 0.0415 00420 0.0425 0.0430

Coefficient of variation

0.0435

OEBPS/assets/eq_31.png

OEBPS/assets/thba_0702.png
Probability

0.25

=== Pruins
=== Ccanucks
0.20
0.15
0.10
0.05
0.00

OEBPS/assets/eq_44.png

OEBPS/assets/thba_0602.png
CDF

1.0

0.8

0.6f

0.4

0.2

player 1
player 2

9é)OOOO—ZOOOO—lOOOO

0

10000 20000
diff (%)

30000 40000 50000

OEBPS/assets/eq_24.png
P(BHV):%

OEBPS/assets/eq_143.png

OEBPS/assets/eq_102.png
2(0.6)(0.01) =12 %

OEBPS/assets/eq_45.png

OEBPS/assets/eq_4.png

OEBPS/assets/eq_15.png
p(AandB) = p(A)p(B | A)

OEBPS/assets/eq_61.png

OEBPS/assets/eq_37.png

OEBPS/assets/eq_52.png

OEBPS/assets/thba_1202.png
CDF

1.0

0.8

0.6

0.4

0.2

°f

=== posterior 780
=== posterior 740

70

0.75 0.80

0.85
p_correct

0.90

0.95

1.00

OEBPS/assets/thba_0905.png
beta

10

OEBPS/assets/eq_13.png

OEBPS/assets/eq_67.png

OEBPS/assets/eq_129.png

OEBPS/assets/eq_64.png

OEBPS/assets/thba_0503.png
8

0.1

o
—

w

o
o o

Ayngeqoud

Outcome

OEBPS/assets/eq_56.png

OEBPS/assets/eq_163.png
km

OEBPS/assets/eq_147.png

OEBPS/assets/eq_150.png
p(size | age)

OEBPS/assets/eq_152.png
p(size | age)

OEBPS/assets/eq_136.png
34.10°'°

OEBPS/assets/eq_26.png
p(B)) =1/2

OEBPS/assets/eq_34.png

OEBPS/assets/eq_32.png

OEBPS/assets/eq_22.png

OEBPS/assets/thba_0804.png
CDF

1.0

0.8

0.6

0.4

0.2

0.0

== prior

=== posterior

2 3
Arrival rate (passengers / min)

OEBPS/assets/eq_94.png

OEBPS/assets/eq_128.png

OEBPS/assets/eq_75.png

OEBPS/assets/eq_78.png

OEBPS/assets/thba_0903.png
Q

Pro

0.055

0.050

0.045

0.040

0.035

0.030

0.025

0.020

0.015

0.010

beta = 10
beta = 20|
beta = 40

0 5 10 15 20
Distance

25 30

OEBPS/assets/eq_1.png

OEBPS/assets/thba_1503.png
0.12

0.10}

0.08
Q
20.06f
o

0.04

0.02

00— 65 70 75 80 8 90 9 100
Number of species

OEBPS/assets/eq_11.png
p(vanilla | Bowl 1) =3/4

OEBPS/assets/eq_107.png
CDF;(5) = CDF,(5)CDF5(5)

OEBPS/assets/eq_126.png
c/\n

OEBPS/assets/eq_105.png

OEBPS/assets/eq_87.png
p(A!D) _ p(A)pD1A)
p(BI D) pB)p(D! B)

OEBPS/assets/eq_154.png

OEBPS/assets/eq_110.png

OEBPS/assets/eq_17.png
p(B)p(A | B) = p(A)p(B | A)

OEBPS/assets/eq_140.png

OEBPS/assets/eq_41.png

OEBPS/assets/eq_124.png

OEBPS/assets/eq_158.png

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/assets/eq_122.png

OEBPS/assets/thba_1502.png
0.12

0.10

0.08
Q
20.06
o

0.04

0.02

0.00

10

15
Number of species

20

25

30

OEBPS/UbuntuMono-Regular.otf

OEBPS/assets/eq_113.png

OEBPS/assets/eq_135.png

OEBPS/assets/eq_81.png

OEBPS/assets/eq_153.png
p(size | age)

OEBPS/assets/eq_98.png

OEBPS/DejaVuSans-Bold.otf

OEBPS/assets/eq_42.png

OEBPS/DejaVuSerif.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/assets/thba_1302.png
diameter (cm, log scale)

15 20 25
tumor age (years)

40

OEBPS/assets/eq_18.png

OEBPS/assets/thba_0801.png
CDF

0.025

0.020

0.015

0.010

0.005

I Z

7D

10
Time (min)

20

OEBPS/assets/eq_96.png

OEBPS/assets/eq_125.png
1

—n log o — —22(xl- - /,t)2
20

OEBPS/assets/eq_46.png

OEBPS/assets/thba_0502.png
Probability

0.20

0.15

0.10

0.05

0.00

8

10 12
Sum of three d6

14

16

18

OEBPS/assets/eq_134.png
55.10°'°

OEBPS/assets/eq_164.png
A

OEBPS/assets/thba_0302.png
Probability

0.018

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

=== yniform

=== power law ||

200

400 600
Number of trains

800

1000

OEBPS/assets/eq_160.png
log ¢, + x; logp1+ e+ X, logpn

OEBPS/assets/eq_117.png
X—a=ptan 6

OEBPS/assets/eq_38.png

OEBPS/assets/eq_68.png

OEBPS/assets/thba_1205.png
p_correct Bob

1.00

0.95¢

0.90}

0.85f

0880 0.85 0.90
p_correct Alice

0.95

1.00

OEBPS/assets/eq_69.png

OEBPS/assets/eq_86.png
p(D)

OEBPS/assets/thba_1501.png
0.035

=== |iONS
0.030 — Tors
=== pears
0.025
0.020
QO
e
o

0.4 0.6 0.8 =
Prevalence

OEBPS/assets/eq_146.png

OEBPS/assets/eq_93.png
I

|t

OEBPS/assets/thba_1204.png
CDF

1.0

0.8

0.6

0.4

0.2

0.0

=== posterior 780
=== posterior 740

efficacy

OEBPS/assets/thba_0402.png
Probability

0.025

uniform
triangle

0.020

0.015

0.010

0.005

0.0000 20 40 60 80 100

OEBPS/assets/thba_0601.png
PDF

0.05

0.04

0.03

0.02

0.01

0.00

=== showcase 1
=== showcase 2

10000 20000 30000 40000 50000
price ($)

60000

70000 80000

OEBPS/assets/eq_30.png
p(B, 1 vy = 120

OEBPS/assets/eq_14.png
p(AandB) = p(BandA)

OEBPS/assets/eq_84.png

OEBPS/assets/eq_49.png

OEBPS/assets/thba_0802.png
CDF

1.0

0.8

0.6

0.4

0.2

0.0

10
Time (min)

OEBPS/assets/eq_35.png

OEBPS/assets/eq_104.png
CDF(x) = p(X < x)

OEBPS/assets/thba_0301.png
Probability

0.006

0.005

0.004

0.003

0.002

0.001

0.000

200

400 600
Number of trains

800

1000

OEBPS/assets/thba_1203.png
CDF

1.0

0.8

0.6f

0.4

0.2

0.0

10

20

30
raw score

40

50

60

OEBPS/assets/cover.png
Bayesian Statistics in Python

Allen B. Downey

O’REILLY"

OEBPS/assets/thba_0701.png
Probability

0.018

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.00(1

=== Pruins

m== canucks||

.5 2.0

2.5 3.0
Goals per game

3.5

OEBPS/assets/eq_120.png
s/ n

OEBPS/assets/thba_1303.png
15 20 25 30
ages

10

20

10f

Te} o —

(3]e2s Bo| ‘WD) Jorswelp

n
o

OEBPS/assets/eq_159.png

OEBPS/assets/eq_7.png

OEBPS/assets/eq_111.png
f(x) = \/ﬂ exp (—x* /2)

OEBPS/assets/eq_103.png
A

OEBPS/assets/eq_59.png

OEBPS/assets/eq_60.png

OEBPS/assets/eq_50.png

OEBPS/assets/thba_1301.png
CDF

D|str|but|on of RDT

1.0 T
- wE =
="
S
o
0.8} a
4
V' 4
¥ 4
0.6} v
’
’
’

0.4}]

[]

]
0.2} I

[|

’ =« model
o = = data
0_0__.-___¢ L L . L L L 1
-2 -1 0 1 2 3 4 5 6

RDT (volume doublings per year)

OEBPS/assets/eq_25.png
pP(5y)

OEBPS/assets/eq_51.png

OEBPS/assets/eq_130.png

OEBPS/assets/eq_74.png
x/ 100

OEBPS/assets/eq_65.png

OEBPS/assets/eq_123.png
oo o — L(ETHY
go 2(aﬂ)

OEBPS/assets/eq_145.png

OEBPS/assets/thba_0604.png
expected gain ($)

20000

15000

10000

5000

Player 1
Player 2

0

10000 20000

30600 40000 50000 60000 70000 80000
bid ($)

OEBPS/assets/eq_106.png

OEBPS/assets/eq_157.png

OEBPS/assets/eq_83.png

OEBPS/assets/eq_20.png

OEBPS/assets/eq_100.png

OEBPS/assets/eq_112.png

OEBPS/assets/thba_1505.png
species

200 250
samples

300

350

200

450

OEBPS/assets/eq_23.png
p(B)

OEBPS/assets/eq_95.png

OEBPS/assets/eq_3.png
p(AandB) = p(A)p(B) WARNING: not always true

OEBPS/assets/eq_148.png

OEBPS/assets/thba_1201.png
CDF

08.0 0.2 0.4 0.6 0.8 1.0
p_correct

OEBPS/assets/eq_132.png

OEBPS/assets/eq_80.png

OEBPS/assets/eq_5.png
p(AandB) = p(A)p(B) = 0.25

OEBPS/assets/eq_144.png

OEBPS/assets/eq_36.png

OEBPS/assets/eq_99.png
p(D1A)

o(A I D) = o(A) (DB
)

OEBPS/assets/eq_92.png

OEBPS/assets/eq_77.png

OEBPS/assets/eq_63.png

OEBPS/assets/eq_149.png

OEBPS/assets/eq_162.png
(.

m

OEBPS/assets/eq_47.png

OEBPS/assets/eq_27.png

OEBPS/assets/thba_1402.png
0.06
0.05
0.04
[T
E 0.03
0.02
0.01

0.00

=== posterior r

=== posterior n|

100

200 300
Emission rate

400

500

OEBPS/assets/eq_19.png

OEBPS/assets/eq_62.png

OEBPS/assets/eq_91.png
p(D1A)

o(A I D) = o(A) (DB
)

OEBPS/assets/eq_155.png
p(age | size)

OEBPS/assets/thba_1305.png
N N w w B »
o Ul o ul o Ul

tumor age (years)

=
[9)]

Credible interval for age vs diameter

95th

0.5 1 2 5 10
diameter (cm, log scale)

20

OEBPS/assets/eq_10.png
p(Bowl 1 | vanilla)

OEBPS/assets/thba_1001.png
Stddev (cm)

Posterior joint distribution

7.35

7.34

7.33

7.32

7.31

7.30

7.29

7.28

178.46

178.48 17850 178.52
Mean height (cm)

178.54

OEBPS/assets/eq_119.png
dx _ _P
do ~0<20

OEBPS/assets/eq_79.png

OEBPS/assets/thba_0805.png
CDF

0 2 4 6
Wait time (min)

0.0

ot

10

OEBPS/assets/eq_8.png

OEBPS/assets/eq_66.png

OEBPS/assets/eq_48.png

OEBPS/assets/eq_151.png
p(age | size)

OEBPS/assets/eq_138.png

OEBPS/assets/thba_1504.png
Prob

1.0

0.8f

0.6f

0.4

0.2}

°f

1(92)

2 (53)
3 (47)
4 (38)
5 (15)

00

0.05

0.10

0.15
Prevalence

0.20

0.25

OEBPS/assets/eq_114.png

OEBPS/assets/eq_133.png

OEBPS/assets/thba_1002.png
Stddev (cm)

Posterior joint distribution

7.04

7.03

7.02

7.01

7.00

6.99

163.46 163.47 163.48 163.49 163.50 163.51 163.52 163.53
Mean height (cm)

OEBPS/assets/eq_33.png
p(D)

OEBPS/assets/eq_116.png
{1.5, 2, 3, 4

y

5,12}

OEBPS/assets/eq_54.png
p(C1D)=2/3

OEBPS/assets/eq_55.png

OEBPS/assets/thba_0902.png
Prob

0.0

Distance

30

40

50

OEBPS/assets/eq_57.png

OEBPS/assets/thba_0403.png
Probability

0.14

0.12

uniform
triangle

0.10

0.08

0.06

0.04

J \

0.00

100

OEBPS/assets/eq_139.png

OEBPS/assets/eq_6.png

OEBPS/assets/thba_0703.png
Probability

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

bruins
canucks

0.000875 05 1.0

Games until goal

1.5

2.0

OEBPS/assets/eq_58.png

OEBPS/assets/eq_131.png

OEBPS/assets/thba_0501.png
Probability

0.14

0.12

0.10

0.08

0.06

0.04

0.02f

sample

0.00 ,

10 12
Sum of three d6

OEBPS/assets/eq_137.png

OEBPS/assets/thba_0901.png

OEBPS/assets/eq_127.png
c/\N2(n—1)

