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Preface
My theory, which is mine
The premise of this book, and the other books in the Think
    X series, is that if you know how to program, you can use that
    skill to learn other topics.
Most books on Bayesian statistics use mathematical notation and
    present ideas in terms of mathematical concepts like calculus. This book
    uses Python code instead of math, and discrete approximations instead of
    continuous mathematics. As a result, what would be an integral in a math
    book becomes a summation, and most operations on probability distributions
    are simple loops.
I think this presentation is easier to understand, at least for
    people with programming skills. It is also more general, because when we
    make modeling decisions, we can choose the most appropriate model without
    worrying too much about whether the model lends itself to conventional
    analysis.
Also, it provides a smooth development path from simple examples to
    real-world problems. Chapter 3 is a good example. It
    starts with a simple example involving dice, one of the staples of basic
    probability. From there it proceeds in small steps to the locomotive
    problem, which I borrowed from Mosteller’s Fifty Challenging
    Problems in Probability with Solutions, and from there to the
    German tank problem, a famously successful application of Bayesian methods
    during World War II.

Modeling and approximation
Most chapters in this book are motivated by a real-world problem, so
    they involve some degree of modeling. Before we can apply Bayesian methods
    (or any other analysis), we have to make decisions about which parts of
    the real-world system to include in the model and which details we can
    abstract away.
For example, in Chapter 7, the motivating
    problem is to predict the winner of a hockey game. I model goal-scoring as
    a Poisson process, which implies that a goal is equally likely at any
    point in the game. That is not exactly true, but it is probably a good
    enough model for most purposes.
In Chapter 12 the motivating problem is
    interpreting SAT scores (the SAT is a standardized test used for college
    admissions in the United States). I start with a simple model that assumes
    that all SAT questions are equally difficult, but in fact the designers of
    the SAT deliberately include some questions that are relatively easy and
    some that are relatively hard. I present a second model that accounts for
    this aspect of the design, and show that it doesn’t have a big effect on
    the results after all.
I think it is important to include modeling as an explicit part of
    problem solving because it reminds us to think about modeling errors (that
    is, errors due to simplifications and assumptions of the model).
Many of the methods in this book are based on discrete
    distributions, which makes some people worry about numerical errors. But
    for real-world problems, numerical errors are almost always smaller than
    modeling errors.
Furthermore, the discrete approach often allows better modeling
    decisions, and I would rather have an approximate solution to a good model
    than an exact solution to a bad model.
On the other hand, continuous methods sometimes yield performance
    advantages—for example by replacing a linear- or quadratic-time
    computation with a constant-time solution.
So I recommend a general process with these steps:
	While you are exploring a problem, start with simple models and
        implement them in code that is clear, readable, and demonstrably
        correct. Focus your attention on good modeling decisions, not
        optimization.

	Once you have a simple model working, identify the biggest
        sources of error. You might need to increase the number of values in a
        discrete approximation, or increase the number of iterations in a
        Monte Carlo simulation, or add details to the model.

	If the performance of your solution is good enough for your
        application, you might not have to do any optimization. But if you do,
        there are two approaches to consider. You can review your code and
        look for optimizations; for example, if you cache previously computed
        results you might be able to avoid redundant computation. Or you can
        look for analytic methods that yield computational shortcuts.


One benefit of this process is that Steps 1 and 2 tend to be fast,
    so you can explore several alternative models before investing heavily in
    any of them.
Another benefit is that if you get to Step 3, you will be starting
    with a reference implementation that is likely to be correct, which you
    can use for regression testing (that is, checking that the optimized code
    yields the same results, at least approximately).

Working with the code
The code and sound samples used in this book are available from https://github.com/AllenDowney/ThinkBayes. Git is a version control system that allows you to keep track of the files that make up a project. A collection of files under Git’s control is called a “repository”. GitHub is a hosting service that provides storage for Git repositories and a convenient web interface.
The GitHub homepage for my repository provides several ways to work with the code: 
	You can create a copy of my repository on GitHub by pressing the Fork button. If you don’t already have a GitHub account, you’ll need to create one. After forking, you’ll have your own repository on GitHub that you can use to keep track of code you write while working on this book. Then you can clone the repo, which means that you copy the files to your computer.

	Or you could clone my repository. You don’t need a GitHub account to do this, but you won’t be able to write your changes back to GitHub.

	If you don’t want to use Git at all, you can download the files in a Zip file using the button in the lower-right corner of the GitHub page. 


The code for the first edition of the book works with Python 2. If you are using Python 3, you might want to use the updated code in https://github.com/AllenDowney/ThinkBayes2 instead. 
I developed this book using Anaconda from Continuum Analytics, which is a free Python distribution that includes all the packages you’ll need to run the code (and lots more). I found Anaconda easy to install. By default it does a user-level installation, not system-level, so you don’t need administrative privileges. You can download Anaconda from http://continuum.io/downloads.
If you don’t want to use Anaconda, you will need the following packages: 
	NumPy for basic numerical computation, http://www.numpy.org/;

	SciPy for scientific computation, http://www.scipy.org/;

	matplotlib for visualization, http://matplotlib.org/.


Although these are commonly used packages, they are not included with all Python installations, and they can be hard to install in some environments. If you have trouble installing them, I recommend using Anaconda or one of the other Python distributions that include these packages.
Many of the examples in this book use classes and functions defined in thinkbayes.py. Some of them also use thinkplot.py, which provides wrappers for some of the functions in pyplot, which is part of matplotlib. 

Code style
Experienced Python programmers will notice that the code in this
    book does not comply with PEP 8, which is the most common style guide for
    Python (http://www.python.org/dev/peps/pep-0008/).
Specifically, PEP 8 calls for lowercase function names with
    underscores between words, like_this. In this book and the accompanying code,
    function and method names begin with a capital letter and use camel case,
    LikeThis.
I broke this rule because I developed some of the code while I was a
    Visiting Scientist at Google, so I followed the Google style guide, which
    deviates from PEP 8 in a few places. Once I got used to Google style, I
    found that I liked it. And at this point, it would be too much trouble to
    change.
Also on the topic of style, I write “Bayes’s theorem” with an
    s after the apostrophe, which is preferred in some
    style guides and deprecated in others. I don’t have a strong preference. I
    had to choose one, and this is the one I chose.
And finally one typographical note: throughout the book, I use PMF
    and CDF for the mathematical concept of a probability mass function or
    cumulative distribution function, and Pmf and Cdf to refer to the Python
    objects I use to represent them.

Prerequisites
There are several excellent modules for doing Bayesian statistics in
    Python, including pymc and OpenBUGS. I
    chose not to use them for this book because you need a fair amount of
    background knowledge to get started with these modules, and I want to keep
    the prerequisites minimal. If you know Python and a little bit about
    probability, you are ready to start this book.
Chapter 1 is about probability and Bayes’s theorem;
    it has no code. Chapter 2 introduces Pmf, a thinly disguised Python dictionary I use
    to represent a probability mass function (PMF). Then Chapter 3 introduces Suite, a kind of Pmf that provides a framework
    for doing Bayesian updates. And that’s just about all there is to
    it.
Well, almost. In some of the later chapters, I use analytic
    distributions including the Gaussian (normal) distribution, the
    exponential and Poisson distributions, and the beta distribution. In Chapter 15 I break out the less-common Dirichlet distribution,
    but I explain it as I go along. If you are not familiar with these
    distributions, you can read about them on Wikipedia. You could also read
    the companion to this book, Think Stats, or an
    introductory statistics book (although I’m afraid most of them take a
    mathematical approach that is not particularly helpful for practical
    purposes).

Conventions Used in This Book
The following typographical conventions are used in this
    book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
          file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
          refer to program elements such as variable or function names,
          databases, data types, environment variables, statements, and
          keywords.

	Constant width bold
	Shows commands or other text that should be typed literally by
          the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
          or by values determined by context.


Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.
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Chapter 1. Bayes’s Theorem
Conditional probability
The fundamental idea behind all Bayesian statistics is Bayes’s
    theorem, which is surprisingly easy to derive, provided that you
    understand conditional probability. So we’ll start with probability, then
    conditional probability, then Bayes’s theorem, and on to Bayesian
    statistics.
A probability is a number between 0 and 1 (including both) that
    represents a degree of belief in a fact or prediction. The value 1
    represents certainty that a fact is true, or that a prediction will come
    true. The value 0 represents certainty that the fact is false.
Intermediate values represent degrees of certainty. The value 0.5,
    often written as 50%, means that a predicted outcome is as likely to
    happen as not. For example, the probability that a tossed coin lands face
    up is very close to 50%.
A conditional probability is a probability based on some background
    information. For example, I want to know the probability that I will have
    a heart attack in the next year. According to the CDC, “Every year about
    785,000 Americans have a first coronary attack (http://www.cdc.gov/heartdisease/facts.htm).”
The U.S. population is about 311 million, so the probability that a
    randomly chosen American will have a heart attack in the next year is
    roughly 0.3%.
But I am not a randomly chosen American. Epidemiologists have
    identified many factors that affect the risk of heart attacks; depending
    on those factors, my risk might be higher or lower than average.
I am male, 45 years old, and I have borderline high cholesterol.
    Those factors increase my chances. However, I have low blood pressure and
    I don’t smoke, and those factors decrease my chances.
Plugging everything into the online calculator at http://cvdrisk.nhlbi.nih.gov/calculator.asp,
    I find that my risk of a heart attack in the next year is about 0.2%, less
    than the national average. That value is a conditional probability,
    because it is based on a number of factors that make up my
    “condition.”
The usual notation for conditional probability is , which is the probability of A given that B is
    true. In this example, A represents the
    prediction that I will have a heart attack in the next year, and B is the set of conditions I listed.

Conjoint probability
Conjoint probability is a fancy way
    to say the probability that two things are true. I write  to mean the probability that A and B are both
    true.
If you learned about probability in the context of coin tosses and
    dice, you might have learned the following formula:

For example, if I toss two coins, and A means the first coin lands face up, and B means the second coin lands face up, then
    , and sure enough, .
But this formula only works because in this case A and B are
    independent; that is, knowing the outcome of the first event does not
    change the probability of the second. Or, more formally,  = .
Here is a different example where the events are not independent.
    Suppose that A means that it rains today
    and B means that it rains tomorrow. If I
    know that it rained today, it is more likely that it will rain tomorrow,
    so .
In general, the probability of a conjunction is

for any A and B. So if the chance of rain on any given day is
    0.5, the chance of rain on two consecutive days is not 0.25, but probably
    a bit higher.

The cookie problem
We’ll get to Bayes’s theorem soon, but I want to motivate it with an
    example called the cookie problem.1 Suppose there are two bowls of cookies. Bowl 1 contains 30
    vanilla cookies and 10 chocolate cookies. Bowl 2 contains 20 of
    each.
Now suppose you choose one of the bowls at random and, without
    looking, select a cookie at random. The cookie is vanilla. What is the
    probability that it came from Bowl 1?
This is a conditional probability; we want , but it is not obvious how to compute it. If I asked a
    different question—the probability of a vanilla cookie given Bowl 1—it
    would be easy:

Sadly,  is not the same as
    , but there is a way to get from one to the other:
    Bayes’s theorem.

Bayes’s theorem
At this point we have everything we need to derive Bayes’s theorem.
    We’ll start with the observation that conjunction is commutative; that
    is

for any events A and B.
Next, we write the probability of a conjunction:

Since we have not said anything about what A and B mean, they
    are interchangeable. Interchanging them yields

That’s all we need. Pulling those pieces together, we get

Which means there are two ways to compute the conjunction. If you
    have , you multiply by the conditional probability
    . Or you can do it the other way around; if you know
    , you multiply by . Either way you should get the same thing.
Finally we can divide through by :

And that’s Bayes’s theorem! It might not look like much, but it
    turns out to be surprisingly powerful.
For example, we can use it to solve the cookie problem. I’ll write
    B1 for the
    hypothesis that the cookie came from Bowl 1 and V for the vanilla cookie. Plugging in Bayes’s
    theorem we get

The term on the left is what we want: the probability of Bowl 1,
    given that we chose a vanilla cookie. The terms on the right are:
	: This is the probability that we chose Bowl 1,
        unconditioned by what kind of cookie we got. Since the problem says we
        chose a bowl at random, we can assume .

	: This is the probability of getting a vanilla
        cookie from Bowl 1, which is 3/4.

	: This is the probability of drawing a vanilla
        cookie from either bowl. Since we had an equal chance of choosing
        either bowl and the bowls contain the same number of cookies, we had
        the same chance of choosing any cookie. Between the two bowls there
        are 50 vanilla and 30 chocolate cookies, so  = 5/8.


Putting it together, we have

which reduces to 3/5. So the vanilla cookie is evidence in favor of
    the hypothesis that we chose Bowl 1, because vanilla cookies are more
    likely to come from Bowl 1.
This example demonstrates one use of Bayes’s theorem: it provides a
    strategy to get from  to . This strategy is useful in cases, like the cookie
    problem, where it is easier to compute the terms on the right side of
    Bayes’s theorem than the term on the left.

The diachronic interpretation
There is another way to think of Bayes’s theorem: it gives us a way
    to update the probability of a hypothesis, H, in light of some body of data, D.
This way of thinking about Bayes’s theorem is called the diachronic interpretation. “Diachronic” means that
    something is happening over time; in this case the probability of the
    hypotheses changes, over time, as we see new data.
Rewriting Bayes’s theorem with H
    and D yields:

In this interpretation, each term has a name:
	 is the probability of the hypothesis before we see
        the data, called the prior probability, or just prior.

	 is what we want to compute, the probability of the
        hypothesis after we see the data, called the posterior.

	 is the probability of the data under the
        hypothesis, called the likelihood.

	 is the probability of the data under any
        hypothesis, called the normalizing
        constant.


Sometimes we can compute the prior based on background information.
    For example, the cookie problem specifies that we choose a bowl at random
    with equal probability.
In other cases the prior is subjective; that is, reasonable people
    might disagree, either because they use different background information
    or because they interpret the same information differently.
The likelihood is usually the easiest part to compute. In the cookie
    problem, if we know which bowl the cookie came from, we find the
    probability of a vanilla cookie by counting.
The normalizing constant can be tricky. It is supposed to be the
    probability of seeing the data under any hypothesis at all, but in the
    most general case it is hard to nail down what that means.
Most often we simplify things by specifying a set of hypotheses that
    are
	Mutually exclusive:
	At most one hypothesis in the set can be true, and

	Collectively exhaustive:
	There are no other possibilities; at least one of the
          hypotheses has to be true.


I use the word suite for a set of
    hypotheses that has these properties.
In the cookie problem, there are only two hypotheses—the cookie came
    from Bowl 1 or Bowl 2—and they are mutually exclusive and collectively
    exhaustive.
In that case we can compute  using the law of total probability, which says that if
    there are two exclusive ways that something might happen, you can add up
    the probabilities like this:

Plugging in the values from the cookie problem, we have

which is what we computed earlier by mentally combining the two
    bowls.

The M&M problem
M&M’s are small candy-coated chocolates that come in a variety
    of colors. Mars, Inc., which makes M&M’s, changes the mixture of
    colors from time to time.
In 1995, they introduced blue M&M’s. Before then, the color mix
    in a bag of plain M&M’s was 30% Brown, 20% Yellow, 20% Red, 10% Green,
    10% Orange, 10% Tan. Afterward it was 24% Blue, 20% Green, 16% Orange, 14%
    Yellow, 13% Red, 13% Brown.
Suppose a friend of mine has two bags of M&M’s, and he tells me
    that one is from 1994 and one from 1996. He won’t tell me which is which,
    but he gives me one M&M from each bag. One is yellow and one is green.
    What is the probability that the yellow one came from the 1994 bag?
This problem is similar to the cookie problem, with the twist that I
    draw one sample from each bowl/bag. This problem also gives me a chance to
    demonstrate the table method, which is useful for solving problems like
    this on paper. In the next chapter we will solve them
    computationally.
The first step is to enumerate the hypotheses. The bag the yellow
    M&M came from I’ll call Bag 1; I’ll call the other Bag 2. So the
    hypotheses are:
	A: Bag 1 is from 1994, which implies that Bag 2 is from
        1996.

	B: Bag 1 is from 1996 and Bag 2 from 1994.


Now we construct a table with a row for each hypothesis and a column
    for each term in Bayes’s theorem:
		 Prior 

	 Likelihood 

	 
 
	 Posterior 


	A 
	 1/2 
	 (20)(20) 
	 200 
	 20/27 

	B 
	 1/2 
	 (10)(14) 
	 70 
	 7/27 


The first column has the priors. Based on the statement of the
    problem, it is reasonable to choose .
The second column has the likelihoods, which follow from the
    information in the problem. For example, if A is true, the yellow M&M came from the 1994
    bag with probability 20%, and the green came from the 1996 bag with
    probability 20%. Because the selections are independent, we get the
    conjoint probability by multiplying.
The third column is just the product of the previous two. The sum of
    this column, 270, is the normalizing constant. To get the last column,
    which contains the posteriors, we divide the third column by the
    normalizing constant.
That’s it. Simple, right?
Well, you might be bothered by one detail. I write  in terms of percentages, not probabilities, which
    means it is off by a factor of 10,000. But that cancels out when we divide
    through by the normalizing constant, so it doesn’t affect the
    result.
When the set of hypotheses is mutually exclusive and collectively
    exhaustive, you can multiply the likelihoods by any factor, if it is
    convenient, as long as you apply the same factor to the entire
    column.

The Monty Hall problem
The Monty Hall problem might be the most contentious question in the
    history of probability. The scenario is simple, but the correct answer is
    so counterintuitive that many people just can’t accept it, and many smart
    people have embarrassed themselves not just by getting it wrong but by
    arguing the wrong side, aggressively, in public.
Monty Hall was the original host of the game show Let’s
    Make a Deal. The Monty Hall problem is based on one of the
    regular games on the show. If you are on the show, here’s what
    happens:
	Monty shows you three closed doors and tells you that there is a
        prize behind each door: one prize is a car, the other two are less
        valuable prizes like peanut butter and fake finger nails. The prizes
        are arranged at random.

	The object of the game is to guess which door has the car. If
        you guess right, you get to keep the car.

	You pick a door, which we will call Door A. We’ll call the other
        doors B and C.

	Before opening the door you chose, Monty increases the suspense
        by opening either Door B or C, whichever does not have the car. (If
        the car is actually behind Door A, Monty can safely open B or C, so he
        chooses one at random.)

	Then Monty offers you the option to stick with your original
        choice or switch to the one remaining unopened door.


The question is, should you “stick” or “switch” or does it make no
    difference?
Most people have the strong intuition that it makes no difference.
    There are two doors left, they reason, so the chance that the car is
    behind Door A is 50%.
But that is wrong. In fact, the chance of winning if you stick with
    Door A is only 1/3; if you switch, your chances are 2/3.
By applying Bayes’s theorem, we can break this problem into simple
    pieces, and maybe convince ourselves that the correct answer is, in fact,
    correct.
To start, we should make a careful statement of the data. In this
    case D consists of two parts: Monty
    chooses Door B and there is no car there.
Next we define three hypotheses: A,
    B, and C
    represent the hypothesis that the car is behind Door A, Door B, or Door C.
    Again, let’s apply the table method:
		 Prior 

	 Likelihood 

	 
 
	 Posterior 


	A 
	 1/3 
	 1/2 
	 1/6 
	 1/3 

	B 
	 1/3 
	 0 
	 0 
	 0 

	C 
	 1/3 
	 1 
	 1/3 
	 2/3 


Filling in the priors is easy because we are told that the prizes
    are arranged at random, which suggests that the car is equally likely to
    be behind any door.
Figuring out the likelihoods takes some thought, but with reasonable
    care we can be confident that we have it right:
	If the car is actually behind A, Monty could safely open Doors B
        or C. So the probability that he chooses B is 1/2. And since the car
        is actually behind A, the probability that the car is not behind B is
        1.

	If the car is actually behind B, Monty has to open door C, so
        the probability that he opens door B is 0.

	Finally, if the car is behind Door C, Monty opens B with
        probability 1 and finds no car there with probability 1.


Now the hard part is over; the rest is just arithmetic. The sum of
    the third column is 1/2. Dividing through yields  and . So you are better off switching.
There are many variations of the Monty Hall problem. One of the
    strengths of the Bayesian approach is that it generalizes to handle these
    variations.
For example, suppose that Monty always chooses B if he can, and only
    chooses C if he has to (because the car is behind B). In that case the
    revised table is:
		 Prior 

	 Likelihood 

	 
 
	 Posterior 


	A 
	 1/3 
	 1 
	 1/3 
	 1/2 

	B 
	 1/3 
	 0 
	 0 
	 0 

	C 
	 1/3 
	 1 
	 1/3 
	 1/2 


The only change is . If the car is behind A, Monty can choose to open B or C. But in this
    variation he always chooses B, so .
As a result, the likelihoods are the same for A and C, and the
    posteriors are the same: . In this case, the fact that Monty chose B reveals no
    information about the location of the car, so it doesn’t matter whether
    the contestant sticks or switches.
On the other hand, if he had opened C, we would know .
I included the Monty Hall problem in this chapter because I think it
    is fun, and because Bayes’s theorem makes the complexity of the problem a
    little more manageable. But it is not a typical use of Bayes’s theorem, so
    if you found it confusing, don’t worry!

Discussion
For many problems involving conditional probability, Bayes’s theorem
    provides a divide-and-conquer strategy. If  is hard to compute, or hard to measure experimentally,
    check whether it might be easier to compute the other terms in Bayes’s
    theorem, ,  and .
If the Monty Hall problem is your idea of fun, I have collected a
    number of similar problems in an article called “All your Bayes are belong
    to us,” which you can read at http://allendowney.blogspot.com/2011/10/all-your-bayes-are-belong-to-us.html.

1 Based on an example from http://en.wikipedia.org/wiki/Bayes’_theorem
        that is no longer there.


Chapter 2. Computational Statistics
Distributions
In statistics a distribution is a
    set of values and their corresponding probabilities.
For example, if you roll a six-sided die, the set of possible values
    is the numbers 1 to 6, and the probability associated with each value is
    1/6.
As another example, you might be interested in how many times each
    word appears in common English usage. You could build a distribution that
    includes each word and how many times it appears.
To represent a distribution in Python, you could use a dictionary
    that maps from each value to its probability. I have written a class
    called Pmf that uses a Python
    dictionary in exactly that way, and provides a number of useful methods. I
    called the class Pmf in reference to a probability
    mass function, which is a way to represent a distribution
    mathematically.
Pmf is defined in a Python module
    I wrote to accompany this book, thinkbayes.py. You can download it from http://thinkbayes.com/thinkbayes.py.
    For more information see “Working with the code”.
To use Pmf you can import it like
    this:
from thinkbayes import Pmf
The following code builds a Pmf to represent the distribution of
    outcomes for a six-sided die:
pmf = Pmf()
for x in [1,2,3,4,5,6]:
    pmf.Set(x, 1/6.0)
Pmf creates an empty
    Pmf with no values. The Set method sets the probability associated with
    each value to .
Here’s another example that counts the number of times each word
    appears in a sequence:
pmf = Pmf()
for word in word_list:
    pmf.Incr(word, 1)
Incr increases the
    “probability” associated with each word by 1. If a word is not already in
    the Pmf, it is added.
I put “probability” in quotes because in this example, the
    probabilities are not normalized; that is, they do not add up to 1. So
    they are not true probabilities.
But in this example the word counts are proportional to the
    probabilities. So after we count all the words, we can compute
    probabilities by dividing through by the total number of words. Pmf provides a method, Normalize, that does exactly that:
pmf.Normalize()
Once you have a Pmf object, you can ask for the probability
    associated with any value:
print pmf.Prob('the')
And that would print the frequency of the word “the” as a fraction
    of the words in the list.
Pmf uses a Python dictionary to store the values and their
    probabilities, so the values in the Pmf can be any hashable type. The
    probabilities can be any numerical type, but they are usually
    floating-point numbers (type float).

The cookie problem
In the context of Bayes’s theorem, it is natural to use a Pmf to map
    from each hypothesis to its probability. In the cookie problem, the
    hypotheses are B1
    and B2. In Python,
    I represent them with strings:
pmf = Pmf()
pmf.Set('Bowl 1', 0.5)
pmf.Set('Bowl 2', 0.5)
This distribution, which contains the priors for each hypothesis, is
    called (wait for it) the prior
    distribution.
To update the distribution based on new data (the vanilla cookie),
    we multiply each prior by the corresponding likelihood. The likelihood of
    drawing a vanilla cookie from Bowl 1 is 3/4. The likelihood for Bowl 2 is
    1/2.
pmf.Mult('Bowl 1', 0.75)
pmf.Mult('Bowl 2', 0.5)
Mult does what you
    would expect. It gets the probability for the given hypothesis and
    multiplies by the given likelihood.
After this update, the distribution is no longer normalized, but
    because these hypotheses are mutually exclusive and collectively
    exhaustive, we can renormalize:
pmf.Normalize()
The result is a distribution that contains the posterior probability
    for each hypothesis, which is called (wait now) the posterior distribution.
Finally, we can get the posterior probability for Bowl 1:
print pmf.Prob('Bowl 1')
And the answer is 0.6. You can download this example from http://thinkbayes.com/cookie.py.
    For more information see “Working with the code”.

The Bayesian framework
Before we go on to other problems, I want to rewrite the
    code from the previous section to make it more general. First I’ll define
    a class to encapsulate the code related to this problem:
class Cookie(Pmf):

    def __init__(self, hypos):
        Pmf.__init__(self)
        for hypo in hypos:
            self.Set(hypo, 1)
        self.Normalize()
A Cookie object is a Pmf that maps from hypotheses to their
    probabilities. The __init__ method gives each hypothesis the same
    prior probability. As in the previous section, there are two
    hypotheses:
    hypos = ['Bowl 1', 'Bowl 2']
    pmf = Cookie(hypos)
Cookie provides an
    Update method that takes
    data as a parameter and updates the probabilities:
    def Update(self, data):
        for hypo in self.Values():
            like = self.Likelihood(data, hypo)
            self.Mult(hypo, like)
        self.Normalize()
Update loops through
    each hypothesis in the suite and multiplies its probability by the
    likelihood of the data under the hypothesis, which is computed by Likelihood:
    mixes = {
        'Bowl 1':dict(vanilla=0.75, chocolate=0.25),
        'Bowl 2':dict(vanilla=0.5, chocolate=0.5),
        }

    def Likelihood(self, data, hypo):
        mix = self.mixes[hypo]
        like = mix[data]
        return like
Likelihood uses
    mixes, which is a
    dictionary that maps from the name of a bowl to the mix of cookies in the
    bowl.
Here’s what the update looks like:
    pmf.Update('vanilla')
And then we can print the posterior probability of each
    hypothesis:
    for hypo, prob in pmf.Items():
        print hypo, prob
The result is
Bowl 1 0.6
Bowl 2 0.4
which is the same as what we got before. This code is more
    complicated than what we saw in the previous section. One advantage is
    that it generalizes to the case where we draw more than one cookie from
    the same bowl (with replacement):
    dataset = ['vanilla', 'chocolate', 'vanilla']
    for data in dataset:
        pmf.Update(data)
The other advantage is that it provides a framework for solving many
    similar problems. In the next section we’ll solve the Monty Hall problem
    computationally and then see what parts of the framework are the
    same.
The code in this section is available from http://thinkbayes.com/cookie2.py.
    For more information see “Working with the code”.

The Monty Hall problem
To solve the Monty Hall problem, I’ll define a new class:
class Monty(Pmf):

    def __init__(self, hypos):
        Pmf.__init__(self)
        for hypo in hypos:
            self.Set(hypo, 1)
        self.Normalize()
So far Monty and
    Cookie are exactly the
    same. And the code that creates the Pmf is the same, too, except for the
    names of the hypotheses:
    hypos = 'ABC'
    pmf = Monty(hypos)
Calling Update is
    pretty much the same:
    data = 'B'
    pmf.Update(data)
And the implementation of Update is exactly the same:
    def Update(self, data):
        for hypo in self.Values():
            like = self.Likelihood(data, hypo)
            self.Mult(hypo, like)
        self.Normalize()
The only part that requires some work is Likelihood:
    def Likelihood(self, data, hypo):
        if hypo == data:
            return 0
        elif hypo == 'A':
            return 0.5
        else:
            return 1
Finally, printing the results is the same:
    for hypo, prob in pmf.Items():
        print hypo, prob
And the answer is
A 0.333333333333
B 0.0
C 0.666666666667
In this example, writing Likelihood is a little complicated, but the
    framework of the Bayesian update is simple. The code in this section is
    available from http://thinkbayes.com/monty.py.
    For more information see “Working with the code”.

Encapsulating the framework
Now that we see what elements of the framework are the same,
    we can encapsulate them in an object—a Suite is a Pmf that provides __init__, Update, and Print:
class Suite(Pmf):
    """Represents a suite of hypotheses and their probabilities."""

    def __init__(self, hypo=tuple()):
        """Initializes the distribution."""

    def Update(self, data):
        """Updates each hypothesis based on the data."""

    def Print(self):
        """Prints the hypotheses and their probabilities."""
The implementation of Suite is in thinkbayes.py. To use Suite, you should write a class that inherits from
    it and provides Likelihood. For example, here is the solution to
    the Monty Hall problem rewritten to use Suite:
from thinkbayes import Suite

class Monty(Suite):

    def Likelihood(self, data, hypo):
        if hypo == data:
            return 0
        elif hypo == 'A':
            return 0.5
        else:
            return 1
And here’s the code that uses this class:
    suite = Monty('ABC')
    suite.Update('B')
    suite.Print()
You can download this example from http://thinkbayes.com/monty2.py.
    For more information see “Working with the code”.

The M&M problem
We can use the Suite framework to solve the
    M&M problem. Writing the Likelihood function is tricky, but everything else
    is straightforward.
First I need to encode the color mixes from before and after
    1995:
    mix94 = dict(brown=30,
                 yellow=20,
                 red=20,
                 green=10,
                 orange=10,
                 tan=10)

    mix96 = dict(blue=24,
                 green=20,
                 orange=16,
                 yellow=14,
                 red=13,
                 brown=13)
Then I have to encode the hypotheses:
    hypoA = dict(bag1=mix94, bag2=mix96)
    hypoB = dict(bag1=mix96, bag2=mix94)
hypoA represents the
    hypothesis that Bag 1 is from 1994 and Bag 2 from 1996. hypoB is the other way
    around.
Next I map from the name of the hypothesis to the
    representation:
    hypotheses = dict(A=hypoA, B=hypoB)
And finally I can write Likelihood. In this case the hypothesis, hypo, is a string, either A or B. The data is a tuple that specifies a bag and a
    color.
    def Likelihood(self, data, hypo):
        bag, color = data
        mix = self.hypotheses[hypo][bag]
        like = mix[color]
        return like
Here’s the code that creates the suite and updates it:
    suite = M_and_M('AB')

    suite.Update(('bag1', 'yellow'))
    suite.Update(('bag2', 'green'))

    suite.Print()
And here’s the result:
A 0.740740740741
B 0.259259259259
The posterior probability of A is approximately , which is what we got before.
The code in this section is available from http://thinkbayes.com/m_and_m.py.
    For more information see “Working with the code”.

Discussion
This chapter presents the Suite class, which encapsulates the
    Bayesian update framework.
Suite is an abstract type, which means that it defines the
    interface a Suite is supposed to have, but does not provide a complete
    implementation. The Suite interface
    includes Update and Likelihood, but the Suite class only provides an implementation of
    Update, not Likelihood.
A concrete type is a class that
    extends an abstract parent class and provides an implementation of the
    missing methods. For example, Monty
    extends Suite, so it inherits Update and provides Likelihood.
If you are familiar with design patterns, you might recognize this
    as an example of the template method pattern. You can read about this
    pattern at http://en.wikipedia.org/wiki/Template_method_pattern.
Most of the examples in the following chapters follow the same
    pattern; for each problem we define a new class that extends Suite, inherits Update, and provides Likelihood. In a few cases we override Update, usually to improve performance.

Exercises
Exercise 2-1. 
In “The Bayesian framework” I said that the solution to the
        cookie problem generalizes to the case where we draw multiple cookies
        with replacement.
But in the more likely scenario where we eat the cookies we
        draw, the likelihood of each draw depends on the previous
        draws.
Modify the solution in this chapter to handle selection without
        replacement. Hint: add instance variables to Cookie to represent the hypothetical state
        of the bowls, and modify Likelihood
        accordingly. You might want to define a Bowl object.



Chapter 3. Estimation
The dice problem
Suppose I have a box of dice that contains a 4-sided die, a
    6-sided die, an 8-sided die, a 12-sided die, and a 20-sided die. If you
    have ever played Dungeons & Dragons, you know
    what I am talking about.
Suppose I select a die from the box at random, roll it, and get a 6.
    What is the probability that I rolled each die?
Let me suggest a three-step strategy for approaching a problem like
    this.
	Choose a representation for the hypotheses.

	Choose a representation for the data.

	Write the likelihood function.


In previous examples I used strings to represent hypotheses and
    data, but for the die problem I’ll use numbers. Specifically, I’ll use the
    integers 4, 6, 8, 12, and 20 to represent hypotheses:
    suite = Dice([4, 6, 8, 12, 20])
And integers from 1 to 20 for the data. These representations make
    it easy to write the likelihood function:
class Dice(Suite):
    def Likelihood(self, data, hypo):
        if hypo < data:
            return 0
        else:
            return 1.0/hypo
Here’s how Likelihood works. If hypo<data, that means the roll is greater than
    the number of sides on the die. That can’t happen, so the likelihood is
    0.
Otherwise the question is, “Given that there are hypo sides, what is the chance of rolling
    data?” The answer is 1/hypo, regardless of data.
Here is the statement that does the update (if I roll a 6):
    suite.Update(6)
And here is the posterior distribution:
4 0.0
6 0.392156862745
8 0.294117647059
12 0.196078431373
20 0.117647058824
After we roll a 6, the probability for the 4-sided die is 0. The
    most likely alternative is the 6-sided die, but there is still almost a
    12% chance for the 20-sided die.
What if we roll a few more times and get 6, 8, 7, 7, 5, and
    4?
    for roll in [6, 8, 7, 7, 5, 4]:
        suite.Update(roll)
With this data the 6-sided die is eliminated, and the 8-sided die
    seems quite likely. Here are the results:
4 0.0
6 0.0
8 0.943248453672
12 0.0552061280613
20 0.0015454182665
Now the probability is 94% that we are rolling the 8-sided die, and
    less than 1% for the 20-sided die.
The dice problem is based on an example I saw in Sanjoy Mahajan’s
    class on Bayesian inference. You can download the code in this section
    from http://thinkbayes.com/dice.py.
    For more information see “Working with the code”.

The locomotive problem
I found the locomotive problem in Frederick Mosteller’s,
    Fifty Challenging Problems in Probability with
    Solutions (Dover, 1987):
“A railroad numbers its locomotives in order 1..N. One day you see
      a locomotive with the number 60. Estimate how many locomotives the
      railroad has.”

Based on this observation, we know the railroad has 60 or more
    locomotives. But how many more? To apply Bayesian reasoning, we can break
    this problem into two steps:
	What did we know about N before
        we saw the data?

	For any given value of N, what
        is the likelihood of seeing the data (a locomotive with number
        60)?


The answer to the first question is the prior. The answer to the
    second is the likelihood.
We don’t have much basis to choose a prior, but we can start with
    something simple and then consider alternatives. Let’s assume that
    N is equally likely to be any value from
    1 to 1000.
    hypos = xrange(1, 1001)
Now all we need is a likelihood function. In a hypothetical fleet of
    N locomotives, what is the probability
    that we would see number 60? If we assume that there is only one
    train-operating company (or only one we care about) and that we are
    equally likely to see any of its locomotives, then the chance of seeing
    any particular locomotive is .
Here’s the likelihood function:
class Train(Suite):
    def Likelihood(self, data, hypo):
        if hypo < data:
            return 0
        else:
            return 1.0/hypo
This might look familiar; the likelihood functions for the
    locomotive problem and the dice problem are identical.
Here’s the update:
    suite = Train(hypos)
    suite.Update(60)
There are too many hypotheses to print, so I plotted the results in
    Figure 3-1. Not surprisingly, all values of N below 60 have been eliminated.
Figure 3-1. Posterior distribution for the locomotive problem, based on a
      uniform prior.

The most likely value, if you had to guess, is 60. That might not
    seem like a very good guess; after all, what are the chances that you just
    happened to see the train with the highest number? Nevertheless, if you
    want to maximize the chance of getting the answer exactly right, you
    should guess 60.
But maybe that’s not the right goal. An alternative is to compute
    the mean of the posterior distribution:
def Mean(suite):
    total = 0
    for hypo, prob in suite.Items():
        total += hypo * prob
    return total

print Mean(suite)
Or you could use the very similar method provided by Pmf:
    print suite.Mean()
The mean of the posterior is 333, so that might be a good guess if
    you wanted to minimize error. If you played this guessing game over and
    over, using the mean of the posterior as your estimate would minimize the
    mean squared error over the long run (see http://en.wikipedia.org/wiki/Minimum_mean_square_error).
You can download this example from http://thinkbayes.com/train.py.
    For more information see “Working with the code”.

What about that prior?
To make any progress on the locomotive problem we had to make
    assumptions, and some of them were pretty arbitrary. In particular, we
    chose a uniform prior from 1 to 1000, without much justification for
    choosing 1000, or for choosing a uniform distribution.
It is not crazy to believe that a railroad company might operate
    1000 locomotives, but a reasonable person might guess more or fewer. So we
    might wonder whether the posterior distribution is sensitive to these
    assumptions. With so little data—only one observation—it probably
    is.
Recall that with a uniform prior from 1 to 1000, the mean of the
    posterior is 333. With an upper bound of 500, we get a posterior mean of
    207, and with an upper bound of 2000, the posterior mean is 552.
So that’s bad. There are two ways to proceed:
	Get more data.

	Get more background information.


With more data, posterior distributions based on different priors
    tend to converge. For example, suppose that in addition to train 60 we
    also see trains 30 and 90. We can update the distribution like
    this:
    for data in [60, 30, 90]:
        suite.Update(data)
With these data, the means of the posteriors are
	Upper 
Bound
	Posterior 
Mean

	500 
	 152 

	1000 
	 164

	2000 
	 171


So the differences are smaller.

An alternative prior
If more data are not available, another option is to improve the
    priors by gathering more background information. It is probably not
    reasonable to assume that a train-operating company with 1000 locomotives
    is just as likely as a company with only 1.
With some effort, we could probably find a list of companies that
    operate locomotives in the area of observation. Or we could interview an
    expert in rail shipping to gather information about the typical size of
    companies.
But even without getting into the specifics of railroad economics,
    we can make some educated guesses. In most fields, there are many small
    companies, fewer medium-sized companies, and only one or two very large
    companies. In fact, the distribution of company sizes tends to follow a
    power law, as Robert Axtell reports in Science (see
    http://www.sciencemag.org/content/293/5536/1818.full.pdf).
This law suggests that if there are 1000 companies with fewer than
    10 locomotives, there might be 100 companies with 100 locomotives, 10
    companies with 1000, and possibly one company with 10,000
    locomotives.
Mathematically, a power law means that the number of companies with
    a given size is inversely proportional to size, or

where  is the probability mass function of x and α is a
    parameter that is often near 1.
We can construct a power law prior like this:
class Train(Dice):

    def __init__(self, hypos, alpha=1.0):
        Pmf.__init__(self)
        for hypo in hypos:
            self.Set(hypo, hypo**(-alpha))
        self.Normalize()
And here’s the code that constructs the prior:
    hypos = range(1, 1001)
    suite = Train(hypos)
Again, the upper bound is arbitrary, but with a power law prior, the
    posterior is less sensitive to this choice.
Figure 3-2 shows the new posterior based on the
    power law, compared to the posterior based on the uniform prior. Using the
    background information represented in the power law prior, we can all but
    eliminate values of N greater than
    700.
Figure 3-2. Posterior distribution based on a power law prior, compared to a
      uniform prior.

If we start with this prior and observe trains 30, 60, and 90, the
    means of the posteriors are:
	Upper 
Bound
	Posterior 
Mean

	500 
	 131 

	1000 
	 133 

	2000 
	 134 


Now the differences are much smaller. In fact, with an arbitrarily
    large upper bound, the mean converges on 134.
So the power law prior is more realistic, because it is based on
    general information about the size of companies, and it behaves better in
    practice.
You can download the examples in this section from http://thinkbayes.com/train3.py.
    For more information see “Working with the code”.

Credible intervals
Once you have computed a posterior distribution, it is often useful
    to summarize the results with a single point estimate or an interval. For
    point estimates it is common to use the mean, median, or the value with
    maximum likelihood.
For intervals we usually report two values computed so that there is
    a 90% chance that the unknown value falls between them (or any other
    probability). These values define a credible
    interval.
A simple way to compute a credible interval is to add up the
    probabilities in the posterior distribution and record the values that
    correspond to probabilities 5% and 95%. In other words, the 5th and 95th
    percentiles.
thinkbayes provides
    a function that computes percentiles:
def Percentile(pmf, percentage):
    p = percentage / 100.0
    total = 0
    for val, prob in pmf.Items():
        total += prob
        if total >= p:
            return val
And here’s the code that uses it:
    interval = Percentile(suite, 5), Percentile(suite, 95)
    print interval
For the previous example—the locomotive problem with a power law
    prior and three trains—the 90% credible interval is . The width of this range suggests, correctly, that we
    are still quite uncertain about how many locomotives there are.

Cumulative distribution functions
In the previous section we computed percentiles by iterating through
    the values and probabilities in a Pmf. If we need to compute more than a
    few percentiles, it is more efficient to use a cumulative distribution
    function, or Cdf.
Cdfs and Pmfs are equivalent in the sense that they contain the same
    information about the distribution, and you can always convert from one to
    the other. The advantage of the Cdf is that you can compute percentiles
    more efficiently.
thinkbayes provides a Cdf class that represents a cumulative
    distribution function. Pmf provides a
    method that makes the corresponding Cdf:
cdf = suite.MakeCdf()
And Cdf provides a function named
    Percentile
    interval = cdf.Percentile(5), cdf.Percentile(95)
Converting from a Pmf to a Cdf takes time proportional to the number
    of values, len(pmf). The Cdf stores the
    values and probabilities in sorted lists, so looking up a probability to
    get the corresponding value takes “log time”: that is, time proportional
    to the logarithm of the number of values. Looking up a value to get the
    corresponding probability is also logarithmic, so Cdfs are efficient for
    many calculations.
The examples in this section are in http://thinkbayes.com/train3.py.
    For more information see “Working with the code”.

The German tank problem
During World War II, the Economic Warfare Division of the American
    Embassy in London used statistical analysis to estimate German production
    of tanks and other equipment.1
The Western Allies had captured log books, inventories, and repair
    records that included chassis and engine serial numbers for individual
    tanks.
Analysis of these records indicated that serial numbers were
    allocated by manufacturer and tank type in blocks of 100 numbers, that
    numbers in each block were used sequentially, and that not all numbers in
    each block were used. So the problem of estimating German tank production
    could be reduced, within each block of 100 numbers, to a form of the
    locomotive problem.
Based on this insight, American and British analysts produced
    estimates substantially lower than estimates from other forms of
    intelligence. And after the war, records indicated that they were
    substantially more accurate.
They performed similar analyses for tires, trucks, rockets, and
    other equipment, yielding accurate and actionable economic
    intelligence.
The German tank problem is historically interesting; it is also a
    nice example of real-world application of statistical estimation. So far
    many of the examples in this book have been toy problems, but it will not
    be long before we start solving real problems. I think it is an advantage
    of Bayesian analysis, especially with the computational approach we are
    taking, that it provides such a short path from a basic introduction to
    the research frontier.

Discussion
Among Bayesians, there are two approaches to choosing prior
    distributions. Some recommend choosing the prior that best represents
    background information about the problem; in that case the prior is said
    to be informative. The problem with using
    an informative prior is that people might use different background
    information (or interpret it differently). So informative priors often
    seem subjective.
The alternative is a so-called uninformative
    prior, which is intended to be as unrestricted as possible, in
    order to let the data speak for themselves. In some cases you can identify
    a unique prior that has some desirable property, like representing minimal
    prior information about the estimated quantity.
Uninformative priors are appealing because they seem more objective.
    But I am generally in favor of using informative priors. Why? First,
    Bayesian analysis is always based on modeling decisions. Choosing the
    prior is one of those decisions, but it is not the only one, and it might
    not even be the most subjective. So even if an uninformative prior is more
    objective, the entire analysis is still subjective.
Also, for most practical problems, you are likely to be in one of
    two regimes: either you have a lot of data or not very much. If you have a
    lot of data, the choice of the prior doesn’t matter very much; informative
    and uninformative priors yield almost the same results. We’ll see an
    example like this in the next chapter.
But if, as in the locomotive problem, you don’t have much data,
    using relevant background information (like the power law distribution)
    makes a big difference.
And if, as in the German tank problem, you have to make
    life-and-death decisions based on your results, you should probably use
    all of the information at your disposal, rather than maintaining the
    illusion of objectivity by pretending to know less than you do.

Exercises
Exercise 3-1. 
To write a likelihood function for the locomotive problem, we
        had to answer this question: “If the railroad has N locomotives, what is the probability that we
        see number 60?”
The answer depends on what sampling process we use when we
        observe the locomotive. In this chapter, I resolved the ambiguity by
        specifying that there is only one train-operating company (or only one
        that we care about).
But suppose instead that there are many companies with different
        numbers of trains. And suppose that you are equally likely to see any
        train operated by any company. In that case, the likelihood function
        is different because you are more likely to see a train operated by a
        large company.
As an exercise, implement the likelihood function for this
        variation of the locomotive problem, and compare the results.


1 Ruggles and Brodie, “An Empirical Approach to Economic
        Intelligence in World War II,” Journal of the American
        Statistical Association, Vol. 42, No. 237 (March
        1947).


Chapter 4. More Estimation
The Euro problem
In Information Theory, Inference, and Learning
    Algorithms, David MacKay poses this problem:
A statistical statement appeared in “The Guardian” on Friday
      January 4, 2002:
When spun on edge 250 times, a Belgian one-euro coin came up
        heads 140 times and tails 110. ‘It looks very suspicious to me,’ said
        Barry Blight, a statistics lecturer at the London School of Economics.
        ‘If the coin were unbiased, the chance of getting a result as extreme
        as that would be less than 7%.’

But do these data give evidence that the coin is biased rather
      than fair?

To answer that question, we’ll proceed in two steps. The first is to
    estimate the probability that the coin lands face up. The second is to
    evaluate whether the data support the hypothesis that the coin is
    biased.
You can download the code in this section from http://thinkbayes.com/euro.py.
    For more information see “Working with the code”.
Any given coin has some probability, x, of landing heads up when spun on edge. It seems
    reasonable to believe that the value of x
    depends on some physical characteristics of the coin, primarily the
    distribution of weight.
If a coin is perfectly balanced, we expect x to be close to 50%, but for a lopsided coin,
    x might be substantially different. We
    can use Bayes’s theorem and the observed data to estimate x.
Let’s define 101 hypotheses, where Hx is the hypothesis that
    the probability of heads is x%, for
    values from 0 to 100. I’ll start with a uniform prior where the
    probability of Hx
    is the same for all x. We’ll come back
    later to consider other priors.
The likelihood function is relatively easy: If Hx is true, the probability
    of heads is  and the probability of tails is .
class Euro(Suite):

    def Likelihood(self, data, hypo):
        x = hypo
        if data == 'H':
            return x/100.0
        else:
            return 1 - x/100.0
Here’s the code that makes the suite and updates it:
    suite = Euro(xrange(0, 101))
    dataset = 'H' * 140 + 'T' * 110

    for data in dataset:
        suite.Update(data)
The result is in Figure 4-1.
Figure 4-1. Posterior distribution for the Euro problem on a uniform
      prior.


Summarizing the posterior
Again, there are several ways to summarize the posterior
    distribution. One option is to find the most likely value in the posterior
    distribution. thinkbayes
    provides a function that does that:
def MaximumLikelihood(pmf):
    """Returns the value with the highest probability."""
    prob, val = max((prob, val) for val, prob in pmf.Items())
    return val
In this case the result is 56, which is also the observed percentage
    of heads, . So that suggests (correctly) that the observed
    percentage is the maximum likelihood estimator for the population.
We might also summarize the posterior by computing the mean and
    median:
    print 'Mean', suite.Mean()
    print 'Median', thinkbayes.Percentile(suite, 50)
The mean is 55.95; the median is 56. Finally, we can compute a
    credible interval:
    print 'CI', thinkbayes.CredibleInterval(suite, 90)
The result is .
Now, getting back to the original question, we would like to know
    whether the coin is fair. We observe that the posterior credible interval
    does not include 50%, which suggests that the coin is not fair.
But that is not exactly the question we started with. MacKay asked,
    “ Do these data give evidence that the coin is biased rather than fair?”
    To answer that question, we will have to be more precise about what it
    means to say that data constitute evidence for a hypothesis. And that is
    the subject of the next chapter.
But before we go on, I want to address one possible source of
    confusion. Since we want to know whether the coin is fair, it might be
    tempting to ask for the probability that x is 50%:
    print suite.Prob(50)
The result is 0.021, but that value is almost meaningless. The
    decision to evaluate 101 hypotheses was arbitrary; we could have divided
    the range into more or fewer pieces, and if we had, the probability for
    any given hypothesis would be greater or less.

Swamping the priors
We started with a uniform prior, but that might not be a good
    choice. I can believe that if a coin is lopsided, x might deviate substantially from 50%, but it
    seems unlikely that the Belgian Euro coin is so imbalanced that x is 10% or 90%.
It might be more reasonable to choose a prior that gives higher
    probability to values of x near 50% and
    lower probability to extreme values.
As an example, I constructed a triangular prior, shown in Figure 4-2. Here’s the code that constructs the prior:
def TrianglePrior():
    suite = Euro()
    for x in range(0, 51):
        suite.Set(x, x)
    for x in range(51, 101):
        suite.Set(x, 100-x) 
    suite.Normalize()
Figure 4-2. Uniform and triangular priors for the Euro problem.

Figure 4-2 shows the result (and the uniform prior
    for comparison). Updating this prior with the same dataset yields the
    posterior distribution shown in Figure 4-3. Even with
    substantially different priors, the posterior distributions are very
    similar. The medians and the credible intervals are identical; the means
    differ by less than 0.5%.
Figure 4-3. Posterior distributions for the Euro problem.

This is an example of swamping the
    priors: with enough data, people who start with different
    priors will tend to converge on the same posterior.

Optimization
The code I have shown so far is meant to be easy to read, but it is
    not very efficient. In general, I like to develop code that is
    demonstrably correct, then check whether it is fast enough for my
    purposes. If so, there is no need to optimize. For this example, if we
    care about run time, there are several ways we can speed it up.
The first opportunity is to reduce the number of times we normalize
    the suite. In the original code, we call Update once for each spin.
    dataset = 'H' * heads + 'T' * tails

    for data in dataset:
        suite.Update(data)
And here’s what Update looks like:
    def Update(self, data):
        for hypo in self.Values():
            like = self.Likelihood(data, hypo)
            self.Mult(hypo, like)
        return self.Normalize()
Each update iterates through the hypotheses, then calls Normalize, which iterates through
    the hypotheses again. We can save some time by doing all of the updates
    before normalizing.
Suite provides a
    method called UpdateSet
    that does exactly that. Here it is:
    def UpdateSet(self, dataset):
        for data in dataset:
            for hypo in self.Values():
                like = self.Likelihood(data, hypo)
                self.Mult(hypo, like)
        return self.Normalize()
And here’s how we can invoke it:
    dataset = 'H' * heads + 'T' * tails
    suite.UpdateSet(dataset)
This optimization speeds things up, but the run time is still
    proportional to the amount of data. We can speed things up even more by
    rewriting Likelihood to
    process the entire dataset, rather than one spin at a time.
In the original version, data is a string that encodes either heads or
    tails:
    def Likelihood(self, data, hypo):
        x = hypo / 100.0
        if data == 'H':
            return x
        else:
            return 1-x
As an alternative, we could encode the dataset as a tuple of two
    integers: the number of heads and tails. In that case Likelihood looks like
    this:
    def Likelihood(self, data, hypo):
        x = hypo / 100.0
        heads, tails = data
        like = x**heads * (1-x)**tails
        return like
And then we can call Update like this:
    heads, tails = 140, 110
    suite.Update((heads, tails))
Since we have replaced repeated multiplication with exponentiation,
    this version takes the same time for any number of spins.

The beta distribution
There is one more optimization that solves this problem even
    faster.
So far we have used a Pmf object to represent a discrete set of
    values for x. Now we will use a
    continuous distribution, specifically the beta distribution (see http://en.wikipedia.org/wiki/Beta_distribution).
The beta distribution is defined on the interval from 0 to 1
    (including both), so it is a natural choice for describing proportions and
    probabilities. But wait, it gets better.
It turns out that if you do a Bayesian update with a binomial
    likelihood function, which is what we did in the previous section, the beta
    distribution is a conjugate prior. That
    means that if the prior distribution for x is a beta distribution, the posterior is also
    a beta distribution. But wait, it gets even better.
The shape of the beta distribution depends on two parameters,
    written α and β, or alpha and
    beta. If the prior is a beta
    distribution with parameters alpha and
    beta, and we see data with h heads and t
    tails, the posterior is a beta distribution with parameters alpha+h and beta+t. In other words, we can do an update with
    two additions.
So that’s great, but it only works if we can find a beta
    distribution that is a good choice for a prior. Fortunately, for many
    realistic priors there is a beta distribution that is at least a good
    approximation, and for a uniform prior there is a perfect match. The beta
    distribution with alpha=1 and beta=1 is uniform from 0 to 1.
Let’s see how we can take advantage of all this. thinkbayes.py provides a class that represents a
    beta distribution:
class Beta(object):

    def __init__(self, alpha=1, beta=1):
        self.alpha = alpha
        self.beta = beta
By default __init__
    makes a uniform distribution. Update
    performs a Bayesian update:
    def Update(self, data):
        heads, tails = data
        self.alpha += heads
        self.beta += tails
data is a pair of integers
    representing the number of heads and tails.
So we have yet another way to solve the Euro problem:
    beta = thinkbayes.Beta()
    beta.Update((140, 110))
    print beta.Mean()
Beta provides Mean, which computes a simple function of
    alpha and beta:
    def Mean(self):
        return float(self.alpha) / (self.alpha + self.beta)
For the Euro problem the posterior mean is 56%, which is the same
    result we got using Pmfs.
Beta also provides EvalPdf, which evaluates the probability density
    function (PDF) of the beta distribution:
    def EvalPdf(self, x):
        return x**(self.alpha-1) * (1-x)**(self.beta-1)
Finally, Beta provides MakePmf, which uses EvalPdf to generate a discrete approximation of
    the beta distribution.

Discussion
In this chapter we solved the same problem with two different priors
    and found that with a large dataset, the priors get swamped. If two people
    start with different prior beliefs, they generally find, as they see more
    data, that their posterior distributions converge. At some point the
    difference between their distributions is small enough that it has no
    practical effect.
When this happens, it relieves some of the worry about objectivity
    that I discussed in the previous chapter. And for many real-world problems
    even stark prior beliefs can eventually be reconciled by data.
But that is not always the case. First, remember that all Bayesian
    analysis is based on modeling decisions. If you and I do not choose the
    same model, we might interpret data differently. So even with the same
    data, we would compute different likelihoods, and our posterior beliefs
    might not converge.
Also, notice that in a Bayesian update, we multiply each prior
    probability by a likelihood, so if  is 0,  is also 0, regardless of D. In the Euro problem, if you are convinced that
    x is less than 50%, and you assign
    probability 0 to all other hypotheses, no amount of data will convince you
    otherwise.
This observation is the basis of Cromwell’s
    rule, which is the recommendation that you should avoid giving
    a prior probability of 0 to any hypothesis that is even remotely possible
    (see http://en.wikipedia.org/wiki/Cromwell’s_rule).
Cromwell’s rule is named after Oliver Cromwell, who wrote, “I
    beseech you, in the bowels of Christ, think it possible that you may be
    mistaken.” For Bayesians, this turns out to be good advice (even if it’s a
    little overwrought).

Exercises
Exercise 4-1. 
Suppose that instead of observing coin tosses directly, you
        measure the outcome using an instrument that is not always correct.
        Specifically, suppose there is a probability y that an actual heads is reported as tails,
        or actual tails reported as heads.
Write a class that estimates the bias of a coin given a series
        of outcomes and the value of y.
How does the spread of the posterior distribution depend on
        y?

Exercise 4-2. 
This exercise is inspired by a question posted by a
        “redditor” named dominosci on Reddit’s statistics “subreddit” at
        http://reddit.com/r/statistics.
Reddit is an online forum with many interest groups called
        subreddits. Users, called redditors, post links to online content and
        other web pages. Other redditors vote on the links, giving an “upvote”
        to high-quality links and a “downvote” to links that are bad or
        irrelevant.
A problem, identified by dominosci, is that some redditors are
        more reliable than others, and Reddit does not take this into
        account.
The challenge is to devise a system so that when a redditor
        casts a vote, the estimated quality of the link is updated in
        accordance with the reliability of the redditor, and the estimated
        reliability of the redditor is updated in accordance with the quality
        of the link.
One approach is to model the quality of the link as the
        probability of garnering an upvote, and to model the reliability of
        the redditor as the probability of correctly giving an upvote to a
        high-quality item.
Write class definitions for redditors and links and an update
        function that updates both objects whenever a redditor casts a
        vote.



Chapter 5. Odds and Addends
Odds
One way to represent a probability is with a number between 0 and 1,
    but that’s not the only way. If you have ever bet on a football game or a
    horse race, you have probably encountered another representation of
    probability, called odds.
You might have heard expressions like “the odds are three to one,”
    but you might not know what they mean. The odds in
    favor of an event are the ratio of the probability it will
    occur to the probability that it will not.
So if I think my team has a 75% chance of winning, I would say that
    the odds in their favor are three to one, because the chance of winning is
    three times the chance of losing.
You can write odds in decimal form, but it is most common to write
    them as a ratio of integers. So “three to one” is written .
When probabilities are low, it is more common to report the
    odds against rather than the odds in
    favor. For example, if I think my horse has a 10% chance of winning, I
    would say that the odds against are .
Probabilities and odds are different representations of the same
    information. Given a probability, you can compute the odds like
    this:
def Odds(p):
    return p / (1-p)
Given the odds in favor, in decimal form, you can convert to
    probability like this:
def Probability(o):
    return o / (o+1)
If you represent odds with a numerator and denominator, you can
    convert to probability like this:
def Probability2(yes, no):
    return yes / (yes + no)
When I work with odds in my head, I find it helpful to picture
    people at the track. If 20% of them think my horse will win, then 80% of
    them don’t, so the odds in favor are  or .
If the odds are  against my horse, then five out of six people think
    she will lose, so the probability of winning is .

The odds form of Bayes’s theorem
In Chapter 1 I wrote Bayes’s theorem in the
    probability form:

If we have two hypotheses, A and
    B, we can write the ratio of posterior
    probabilities like this:

Notice that the normalizing constant, , drops out of this equation.
If A and B are mutually exclusive and collectively
    exhaustive, that means , so we can rewrite the ratio of the priors, and the
    ratio of the posteriors, as odds.
Writing  for odds in favor of A, we get:

In words, this says that the posterior odds are the prior odds times
    the likelihood ratio. This is the odds
    form of Bayes’s theorem.
This form is most convenient for computing a Bayesian update on
    paper or in your head. For example, let’s go back to the cookie
    problem:
Suppose there are two bowls of cookies. Bowl 1 contains 30 vanilla
      cookies and 10 chocolate cookies. Bowl 2 contains 20 of each.
Now suppose you choose one of the bowls at random and, without
      looking, select a cookie at random. The cookie is vanilla. What is the
      probability that it came from Bowl 1?

The prior probability is 50%, so the prior odds are , or just 1. The likelihood ratio is , or . So the posterior odds are , which corresponds to probability .

Oliver’s blood
Here is another problem from MacKay’s Information
    Theory, Inference, and Learning Algorithms:
Two people have left traces of their own blood at the scene of a
      crime. A suspect, Oliver, is tested and found to have type ‘O’ blood.
      The blood groups of the two traces are found to be of type ‘O’ (a common
      type in the local population, having frequency 60%) and of type ‘AB’ (a
      rare type, with frequency 1%). Do these data [the traces found at the
      scene] give evidence in favor of the proposition that Oliver was one of
      the people [who left blood at the scene]?

To answer this question, we need to think about what it means for
    data to give evidence in favor of (or against) a hypothesis. Intuitively,
    we might say that data favor a hypothesis if the hypothesis is more likely
    in light of the data than it was before.
In the cookie problem, the prior odds are , or probability 50%. The posterior odds are
    , or probability 60%. So we could say that the vanilla
    cookie is evidence in favor of Bowl 1.
The odds form of Bayes’s theorem provides a way to make this
    intuition more precise. Again

Or dividing through by :

The term on the left is the ratio of the posterior and prior odds.
    The term on the right is the likelihood ratio, also called the Bayes factor.
If the Bayes factor value is greater than 1, that means that the
    data were more likely under A than under
    B. And since the odds ratio is also
    greater than 1, that means that the odds are greater, in light of the
    data, than they were before.
If the Bayes factor is less than 1, that means the data were less
    likely under A than under B, so the odds in favor of A go down.
Finally, if the Bayes factor is exactly 1, the data are equally
    likely under either hypothesis, so the odds do not change.
Now we can get back to the Oliver’s blood problem. If Oliver is one
    of the people who left blood at the crime scene, then he accounts for the
    ‘O’ sample, so the probability of the data is just the probability that a
    random member of the population has type ‘AB’ blood, which is 1%.
If Oliver did not leave blood at the scene, then we have two samples
    to account for. If we choose two random people from the population, what
    is the chance of finding one with type ‘O’ and one with type ‘AB’? Well,
    there are two ways it might happen: the first person we choose might have
    type ‘O’ and the second ‘AB’, or the other way around. So the total
    probability is .
The likelihood of the data is slightly higher if Oliver is
    not one of the people who left blood at the scene, so
    the blood data is actually evidence against Oliver’s guilt.
This example is a little contrived, but it is an example of the
    counterintuitive result that data consistent with a
    hypothesis are not necessarily in favor of the
    hypothesis.
If this result is so counterintuitive that it bothers you, this way
    of thinking might help: the data consist of a common event, type ‘O’
    blood, and a rare event, type ‘AB’ blood. If Oliver accounts for the
    common event, that leaves the rare event still unexplained. If Oliver
    doesn’t account for the ‘O’ blood, then we have two chances to find
    someone in the population with ‘AB’ blood. And that factor of two makes
    the difference.

Addends
The fundamental operation of Bayesian statistics is Update, which takes a prior distribution and a
    set of data, and produces a posterior distribution. But solving real
    problems usually involves a number of other operations, including scaling,
    addition and other arithmetic operations, max and min, and
    mixtures.
This chapter presents addition and max; I will present other
    operations as we need them.
The first example is based on
    Dungeons & Dragons,
    a role-playing game where the results of players’ decisions are usually
    determined by rolling dice. In fact, before game play starts, players
    generate each attribute of their characters—strength, intelligence,
    wisdom, dexterity, constitution, and charisma—by rolling three 6-sided
    dice and adding them up.
So you might be curious to know the distribution of this sum. There
    are two ways you might compute it:
	Simulation:
	Given a Pmf that represents the distribution for a single die,
          you can draw random samples, add them up, and accumulate the
          distribution of simulated sums.

	Enumeration:
	Given two Pmfs, you can enumerate all possible pairs of values
          and compute the distribution of the sums.


thinkbayes provides
    functions for both. Here’s an example of the first approach. First, I’ll
    define a class to represent a single die as a Pmf:
class Die(thinkbayes.Pmf):

    def __init__(self, sides):
        thinkbayes.Pmf.__init__(self)
        for x in xrange(1, sides+1):
            self.Set(x, 1)
        self.Normalize()
Now I can create a 6-sided die:
d6 = Die(6)
And use thinkbayes.SampleSum to generate a sample of 1000
    rolls.
dice = [d6] * 3
three = thinkbayes.SampleSum(dice, 1000)
SampleSum takes list
    of distributions (either Pmf or Cdf objects) and the sample size, n. It generates n random sums and returns their distribution as
    a Pmf object.
def SampleSum(dists, n):
    pmf = MakePmfFromList(RandomSum(dists) for i in xrange(n))
    return pmf
SampleSum uses
    RandomSum, also in
    thinkbayes.py:
def RandomSum(dists):
    total = sum(dist.Random() for dist in dists)
    return total
RandomSum invokes Random on each distribution and adds up the
    results.
The drawback of simulation is that the result is only approximately
    correct. As n gets larger,
    it gets more accurate, but of course the run time increases as
    well.
The other approach is to enumerate all pairs of values and compute
    the sum and probability of each pair. This is implemented in Pmf.__add__:
# class Pmf

    def __add__(self, other):
        pmf = Pmf()
        for v1, p1 in self.Items():
            for v2, p2 in other.Items():
                pmf.Incr(v1+v2, p1*p2)
        return pmf
self is a Pmf, of course;
    other can be a Pmf or anything else
    that provides Items. The result is a
    new Pmf. The time to run __add__ depends on the number of items in self and other; it is proportional to len(self) * len(other).
And here’s how it’s used:
    three_exact = d6 + d6 + d6
When you apply the + operator to
    a Pmf, Python invokes __add__. In this example, __add__ is invoked twice.
Figure 5-1 shows an approximate result
    generated by simulation and the exact result computed by
    enumeration.
Figure 5-1. Approximate and exact distributions for the sum of three 6-sided
      dice.

Pmf.__add__ is based
    on the assumption that the random selections from each Pmf are
    independent. In the example of rolling several dice, this assumption is
    pretty good. In other cases, we would have to extend this method to use
    conditional probabilities.
The code from this section is available from http://thinkbayes.com/dungeons.py.
    For more information see “Working with the code”.

Maxima
When you generate a
    Dungeons & Dragons
    character, you are particularly interested in the character’s best
    attributes, so you might like to know the distribution of the maximum
    attribute.
There are three ways to compute the distribution of a
    maximum:
	Simulation:
	Given a Pmf that represents the distribution for a single
          selection, you can generate random samples, find the maximum, and
          accumulate the distribution of simulated maxima.

	Enumeration:
	Given two Pmfs, you can enumerate all possible pairs of values
          and compute the distribution of the maximum.

	Exponentiation:
	If we convert a Pmf to a Cdf, there is a simple and efficient
          algorithm for finding the Cdf of the maximum.


The code to simulate maxima is almost identical to the code for
    simulating sums:
def RandomMax(dists):
    total = max(dist.Random() for dist in dists)
    return total

def SampleMax(dists, n):
    pmf = MakePmfFromList(RandomMax(dists) for i in xrange(n))
    return pmf
All I did was replace “sum” with “max”. And the code for enumeration
    is almost identical, too:
def PmfMax(pmf1, pmf2):
    res = thinkbayes.Pmf()
    for v1, p1 in pmf1.Items():
        for v2, p2 in pmf2.Items():
            res.Incr(max(v1, v2), p1*p2)
    return res
In fact, you could generalize this function by taking the
    appropriate operator as a parameter.
The only problem with this algorithm is that if each Pmf has
    m values, the run time is proportional to
    m2. And if we
    want the maximum of k selections, it
    takes time proportional to .
If we convert the Pmfs to Cdfs, we can do the same calculation much
    faster! The key is to remember the definition of the cumulative
    distribution function:

where X is a random variable that
    means “a value chosen randomly from this distribution.” So, for example,
     is the probability that a value from this distribution
    is less than or equal to 5.
If I draw X from CDF1 and Y from CDF2, and compute the
    maximum , what is the chance that Z is less than or equal to 5? Well, in that case
    both X and Y must be less than or equal to 5.
If the selections of X and
    Y are independent,

where CDF3
    is the distribution of Z. I chose the
    value 5 because I think it makes the formulas easy to read, but we can
    generalize for any value of z:

In the special case where we draw k
    values from the same distribution,

So to find the distribution of the maximum of k values, we can enumerate the probabilities in the
    given Cdf and raise them to the kth
    power. Cdf provides a
    method that does just that:
# class Cdf

    def Max(self, k):
        cdf = self.Copy()
        cdf.ps = [p**k for p in cdf.ps]
        return cdf
Max takes the number
    of selections, k, and returns a new Cdf
    that represents the distribution of the maximum of k selections. The run time for this method is
    proportional to m, the number of items in
    the Cdf.
Pmf.Max does the
    same thing for Pmfs. It has to do a little more work to convert the Pmf to
    a Cdf, so the run time is proportional to , but that’s still better than quadratic.
Finally, here’s an example that computes the distribution of a
    character’s best attribute:
    best_attr_cdf = three_exact.Max(6)
    best_attr_pmf = best_attr_cdf.MakePmf()
Where three_exact is
    defined in the previous section. If we print the results, we see that the
    chance of generating a character with at least one attribute of 18 is
    about 3%. Figure 5-2 shows the distribution.
Figure 5-2. Distribution of the maximum of six rolls of three dice.


Mixtures
Let’s do one more example from
    Dungeons & Dragons.
    Suppose I have a box of dice with the following inventory:
5   4-sided dice
4   6-sided dice
3   8-sided dice
2  12-sided dice
1  20-sided die
I choose a die from the box and roll it. What is the distribution of
    the outcome?
If you know which die it is, the answer is easy. A die with n sides yields a uniform distribution from 1 to
    n, including both.
But if we don’t know which die it is, the resulting distribution is
    a mixture of uniform distributions with
    different bounds. In general, this kind of mixture does not fit any simple
    mathematical model, but it is straightforward to compute the distribution
    in the form of a PMF.
As always, one option is to simulate the scenario, generate a random
    sample, and compute the PMF of the sample. This approach is simple and it
    generates an approximate solution quickly. But if we want an exact
    solution, we need a different approach.
Let’s start with a simple version of the problem where there are
    only two dice, one with 6 sides and one with 8. We can make a Pmf to
    represent each die:
    d6 = Die(6)
    d8 = Die(8)
Then we create a Pmf to represent the mixture:
    mix = thinkbayes.Pmf()
    for die in [d6, d8]:
        for outcome, prob in die.Items():
            mix.Incr(outcome, prob)
    mix.Normalize()
The first loop enumerates the dice; the second enumerates the
    outcomes and their probabilities. Inside the loop, Pmf.Incr adds up the contributions from the two
    distributions.
This code assumes that the two dice are equally likely. More
    generally, we need to know the probability of each die so we can weight
    the outcomes accordingly.
First we create a Pmf that maps from each die to the probability it
    is selected:
    pmf_dice = thinkbayes.Pmf()
    pmf_dice.Set(Die(4), 5)
    pmf_dice.Set(Die(6), 4)
    pmf_dice.Set(Die(8), 3)
    pmf_dice.Set(Die(12), 2)
    pmf_dice.Set(Die(20), 1)
    pmf_dice.Normalize()
Next we need a more general version of the mixture algorithm:
    mix = thinkbayes.Pmf()
    for die, weight in pmf_dice.Items():
        for outcome, prob in die.Items():
            mix.Incr(outcome, weight*prob)
Now each die has a weight associated with it (which makes it a
    weighted die, I suppose). When we add each outcome to the mixture, its
    probability is multiplied by weight.
Figure 5-3 shows the result. As expected,
    values 1 through 4 are the most likely because any die can produce them.
    Values above 12 are unlikely because there is only one die in the box that
    can produce them (and it does so less than half the time).
Figure 5-3. Distribution outcome for random die from a box.

thinkbayes provides a function
    named MakeMixture that encapsulates
    this algorithm, so we could have written:
    mix = thinkbayes.MakeMixture(pmf_dice)
We’ll use MakeMixture again in
    Chapters 7 and
    8.

Discussion
Other than the odds form of Bayes’s theorem, this chapter is not
    specifically Bayesian. But Bayesian analysis is all about distributions,
    so it is important to understand the concept of a distribution well. From
    a computational point of view, a distribution is any data structure that
    represents a set of values (possible outcomes of a random process) and
    their probabilities.
We have seen two representations of distributions: Pmfs and Cdfs.
    These representations are equivalent in the sense that they contain the
    same information, so you can convert from one to the other. The primary
    difference between them is performance: some operations are faster and
    easier with a Pmf; others are faster with a Cdf.
The other goal of this chapter is to introduce operations that act
    on distributions, like Pmf.__add__, Cdf.Max, and thinkbayes.MakeMixture. We will use these
    operations later, but I introduce them now to encourage you to think of a
    distribution as a fundamental unit of computation, not just a container
    for values and probabilities.


Chapter 6. Decision Analysis
The Price is Right problem
On November 1, 2007, contestants named Letia and Nathaniel appeared
    on The Price is Right, an American game show. They
    competed in a game called The Showcase, where the
    objective is to guess the price of a showcase of prizes. The contestant
    who comes closest to the actual price of the showcase, without going over,
    wins the prizes.
Nathaniel went first. His showcase included a dishwasher, a wine
    cabinet, a laptop computer, and a car. He bid $26,000.
Letia’s showcase included a pinball machine, a video arcade game, a
    pool table, and a cruise of the Bahamas. She bid $21,500.
The actual price of Nathaniel’s showcase was $25,347. His bid was
    too high, so he lost.
The actual price of Letia’s showcase was $21,578. She was only off
    by $78, so she won her showcase and, because her bid was off by less than
    $250, she also won Nathaniel’s showcase.
For a Bayesian thinker, this scenario suggests several
    questions:
	Before seeing the prizes, what prior beliefs should the
        contestant have about the price of the showcase?

	After seeing the prizes, how should the contestant update those
        beliefs?

	Based on the posterior distribution, what should the contestant
        bid?


The third question demonstrates a common use of Bayesian analysis:
    decision analysis. Given a posterior distribution, we can choose the bid
    that maximizes the contestant’s expected return.
This problem is inspired by an example in Cameron Davidson-Pilon’s
    book, Bayesian Methods for Hackers. The code I wrote
    for this chapter is available from http://thinkbayes.com/price.py;
    it reads data files you can download from http://thinkbayes.com/showcases.2011.csv
    and http://thinkbayes.com/showcases.2012.csv.
    For more information see “Working with the code”.

The prior
To choose a prior distribution of prices, we can take advantage of
    data from previous episodes. Fortunately, fans of the show keep detailed
    records. When I corresponded with Mr. Davidson-Pilon
    about his book, he sent me data collected by Steve Gee at http://tpirsummaries.8m.com. It
    includes the price of each showcase from the 2011 and 2012 seasons and the
    bids offered by the contestants.
Figure 6-1 shows the distribution of prices for
    these showcases. The most common value for both showcases is around
    $28,000, but the first showcase has a second mode near $50,000, and the
    second showcase is occasionally worth more than $70,000.
Figure 6-1. Distribution of prices for showcases on The Price is Right,
      2011-12.

These distributions are based on actual data, but they have been
    smoothed by Gaussian kernel density estimation (KDE). Before we go on, I
    want to take a detour to talk about probability density functions and
    KDE.

Probability density functions
So far we have been working with probability mass functions, or
    PMFs. A PMF is a map from each possible value to its probability. In my
    implementation, a Pmf object provides a method named Prob that takes a value and returns a
    probability, also known as a probability
    mass.
In mathematical notation, PDFs are usually written as functions; for
    example, here is the PDF of a Gaussian distribution with mean 0 and
    standard deviation 1:

For a given value of x, this
    function computes a probability density. A density is similar to a
    probability mass in the sense that a higher density indicates that a value
    is more likely.
But a density is not a probability. A density can be 0 or any
    positive value; it is not bounded, like a probability, between 0 and
    1.
If you integrate a density over a continuous range, the result is a
    probability. But for the applications in this book we seldom have to do
    that.
Instead we primarily use probability densities as part of a
    likelihood function. We will see an example soon.

Representing PDFs
To represent PDFs in Python, thinkbayes.py provides a class named Pdf. Pdf is
    an abstract type, which means that it
    defines the interface a Pdf is supposed to have, but does not provide a
    complete implementation. The Pdf
    interface includes two methods, Density
    and MakePmf:
class Pdf(object):

    def Density(self, x):
        raise UnimplementedMethodException()

    def MakePmf(self, xs):
        pmf = Pmf()
        for x in xs:
            pmf.Set(x, self.Density(x))
        pmf.Normalize()
        return pmf
Density takes a value, x, and returns the corresponding density.
    MakePmf makes a discrete approximation
    to the PDF.
Pdf provides an implementation of
    MakePmf, but not Density, which has to be provided by a child
    class.
A concrete type is a child
    class that extends an abstract type and provides an implementation of the
    missing methods. For example, GaussianPdf extends Pdf and provides Density:
class GaussianPdf(Pdf):

    def __init__(self, mu, sigma):
        self.mu = mu
        self.sigma = sigma
        
    def Density(self, x):
        return scipy.stats.norm.pdf(x, self.mu, self.sigma)
__init__ takes
    mu and sigma, which are the mean and standard deviation
    of the distribution, and stores them as attributes.
Density uses a function from
    scipy.stats to evaluate the Gaussian
    PDF. The function is called norm.pdf
    because the Gaussian distribution is also called the “normal”
    distribution.
The Gaussian PDF is defined by a simple mathematical function, so it
    is easy to evaluate. And it is useful because many quantities in the real
    world have distributions that are approximately Gaussian.
But with real data, there is no guarantee that the distribution is
    Gaussian or any other simple mathematical function. In that case we can
    use a sample to estimate the PDF of the whole population.
For example, in The Price Is Right data, we
    have 313 prices for the first showcase. We can think of these values as a
    sample from the population of all possible showcase prices.
This sample includes the following values (in order):

In the sample, no values appear between 28801 and 28867, but there
    is no reason to think that these values are impossible. Based on our
    background information, we expect all values in this range to be equally
    likely. In other words, we expect the PDF to be fairly smooth.
Kernel density estimation (KDE) is an algorithm that takes a sample
    and finds an appropriately smooth PDF that fits the data. You can read
    details at http://en.wikipedia.org/wiki/Kernel_density_estimation.
scipy provides an implementation
    of KDE and thinkbayes provides a class
    called EstimatedPdf that uses
    it:
class EstimatedPdf(Pdf):

    def __init__(self, sample):
        self.kde = scipy.stats.gaussian_kde(sample)

    def Density(self, x):
        return self.kde.evaluate(x)
__init__ takes a
    sample and computes a kernel density estimate. The result is a gaussian_kde object that provides
    an evaluate method.
Density takes a value, calls
    gaussian_kde.evaluate, and
    returns the resulting density.
Finally, here’s an outline of the code I used to generate Figure 6-1:
    prices = ReadData()
    pdf = thinkbayes.EstimatedPdf(prices)

    low, high = 0, 75000
    n = 101
    xs = numpy.linspace(low, high, n) 
    pmf = pdf.MakePmf(xs)
pdf is a Pdf object, estimated by KDE. pmf is a Pmf object that approximates the Pdf by
    evaluating the density at a sequence of equally spaced values.
linspace stands for “linear
    space.” It takes a range, low and
    high, and the number of points,
    n, and returns a new numpy array with n elements equally spaced between low and high,
    including both.
And now back to The Price is Right.

Modeling the contestants
The PDFs in Figure 6-1 estimate the distribution
    of possible prices. If you were a contestant on the show, you could use
    this distribution to quantify your prior belief about the price of each
    showcase (before you see the prizes).
To update these priors, we have to answer these questions:
	What data should we consider and how should we quantify
        it?

	Can we compute a likelihood function; that is, for each
        hypothetical value of price, can we
        compute the conditional likelihood of the data?


To answer these questions, I am going to model the contestant as a
    price-guessing instrument with known error characteristics. In other
    words, when the contestant sees the prizes, he or she guesses the price of
    each prize—ideally without taking into consideration the fact that the
    prize is part of a showcase—and adds up the prices. Let’s call this total
    guess.
Under this model, the question we have to answer is, “If the actual
    price is price, what is the likelihood
    that the contestant’s estimate would be guess?”
Or if we define:
    error = price - guess
then we could ask, “What is the likelihood that the contestant’s
    estimate is off by error?”
To answer this question, we can use the historical data again. Figure 6-2 shows the cumulative distribution of diff, the difference between the contestant’s
    bid and the actual price of the showcase.
The definition of diff is:
    diff = price - bid
When diff is negative, the bid is
    too high. As an aside, we can use this distribution to compute the
    probability that the contestants overbid: the first contestant overbids
    25% of the time; the second contestant overbids 29% of the time.
We can also see that the bids are biased; that is, they are more
    likely to be too low than too high. And that makes sense, given the rules
    of the game.
Finally, we can use this distribution to estimate the reliability of
    the contestants’ guesses. This step is a little tricky because we don’t
    actually know the contestant’s guesses; we only know what they bid.
Figure 6-2. Cumulative distribution (CDF) of the difference between the
      contestant’s bid and the actual price.

So we’ll have to make some assumptions. Specifically, I assume that
    the distribution of error is Gaussian
    with mean 0 and the same variance as diff.
The Player class implements this
    model:
class Player(object):

    def __init__(self, prices, bids, diffs):
        self.pdf_price = thinkbayes.EstimatedPdf(prices)
        self.cdf_diff = thinkbayes.MakeCdfFromList(diffs)

        mu = 0
        sigma = numpy.std(diffs)
        self.pdf_error = thinkbayes.GaussianPdf(mu, sigma)
prices is a sequence of showcase
    prices, bids is a sequence of bids, and
    diffs is a sequence of diffs, where
    again diff = price - bid.
pdf_price is the
    smoothed PDF of prices, estimated by KDE. cdf_diff is the cumulative distribution of diff, which we saw in Figure 6-2. And pdf_error is the PDF that characterizes the
    distribution of errors; where error = price -
    guess.
Again, we use the variance of diff to estimate the variance of error. This estimate is not perfect because
    contestants’ bids are sometimes strategic; for example, if Player 2 thinks
    that Player 1 has overbid, Player 2 might make a very low bid. In that
    case diff does not reflect error. If this happens a lot, the observed
    variance in diff might overestimate the
    variance in error. Nevertheless, I
    think it is a reasonable modeling decision.
As an alternative, someone preparing to appear on the show could
    estimate their own distribution of error by watching previous shows and recording
    their guesses and the actual prices.

Likelihood
Now we are ready to write the likelihood function. As usual, I
    define a new class that extends thinkbayes.Suite:
class Price(thinkbayes.Suite):

    def __init__(self, pmf, player):
        thinkbayes.Suite.__init__(self, pmf)
        self.player = player
pmf represents the prior
    distribution and player is a Player
    object as described in the previous section. Here’s Likelihood:
    def Likelihood(self, data, hypo):
        price = hypo
        guess = data

        error = price - guess
        like = self.player.ErrorDensity(error)

        return like
hypo is the hypothetical price of
    the showcase. data is the contestant’s
    best guess at the price. error is the
    difference, and like is the likelihood
    of the data, given the hypothesis.
ErrorDensity is defined in
    Player:
# class Player:

    def ErrorDensity(self, error):
        return self.pdf_error.Density(error)
ErrorDensity works by evaluating
    pdf_error at the given
    value of error. The result is a
    probability density, so it is not really a probability. But remember that
    Likelihood doesn’t need to compute a
    probability; it only has to compute something
    proportional to a probability. As long as the
    constant of proportionality is the same for all likelihoods, it gets
    canceled out when we normalize the posterior distribution.
And therefore, a probability density is a perfectly good
    likelihood.

Update
Player provides a method that
    takes the contestant’s guess and computes the posterior
    distribution:
# class Player

    def MakeBeliefs(self, guess):
        pmf = self.PmfPrice()
        self.prior = Price(pmf, self)
        self.posterior = self.prior.Copy()
        self.posterior.Update(guess)
PmfPrice generates a discrete
    approximation to the PDF of price, which we use to construct the
    prior.
PmfPrice uses MakePmf, which evaluates pdf_price at a sequence of
    values:
# class Player

    n = 101
    price_xs = numpy.linspace(0, 75000, n)

    def PmfPrice(self):
        return self.pdf_price.MakePmf(self.price_xs)
To construct the posterior, we make a copy of the prior and then
    invoke Update, which invokes Likelihood for each hypothesis, multiplies the
    priors by the likelihoods, and renormalizes.
So let’s get back to the original scenario. Suppose you are Player 1
    and when you see your showcase, your best guess is that the total price of
    the prizes is $20,000.
Figure 6-3 shows prior and posterior beliefs
    about the actual price. The posterior is shifted to the left because your
    guess is on the low end of the prior range.
On one level, this result makes sense. The most likely value in the
    prior is $27,750, your best guess is $20,000, and the mean of the
    posterior is somewhere in between: $25,096.
On another level, you might find this result bizarre, because it
    suggests that if you think the price is $20,000, then
    you should believe the price is $24,000.
To resolve this apparent paradox, remember that you are combining
    two sources of information, historical data about past showcases and
    guesses about the prizes you see.
Figure 6-3. Prior and posterior distributions for Player 1, based on a best
      guess of $20,000.

We are treating the historical data as the prior and updating it
    based on your guesses, but we could equivalently use your guess as a prior
    and update it based on historical data.
If you think of it that way, maybe it is less surprising that the
    most likely value in the posterior is not your original guess.

Optimal bidding
Now that we have a posterior distribution, we can use it to compute
    the optimal bid, which I define as the bid that maximizes expected return
    (see http://en.wikipedia.org/wiki/Expected_return).
I’m going to present the methods in this section top-down, which
    means I will show you how they are used before I show you how they work.
    If you see an unfamiliar method, don’t worry; the definition will be along
    shortly.
To compute optimal bids, I wrote a class called GainCalculator:
class GainCalculator(object):

    def __init__(self, player, opponent):
        self.player = player
        self.opponent = opponent
player and opponent are Player objects.
GainCalculator provides ExpectedGains, which computes a sequence of bids
    and the expected gain for each bid:
    def ExpectedGains(self, low=0, high=75000, n=101):
        bids = numpy.linspace(low, high, n)

        gains = [self.ExpectedGain(bid) for bid in bids]

        return bids, gains
low and high specify the range of possible bids;
    n is the number of bids to try.
ExpectedGains calls ExpectedGain, which computes expected gain for a
    given bid:
    def ExpectedGain(self, bid):
        suite = self.player.posterior
        total = 0
        for price, prob in sorted(suite.Items()):
            gain = self.Gain(bid, price)
            total += prob * gain
        return total
ExpectedGain loops through the
    values in the posterior and computes the gain for each bid, given the
    actual prices of the showcase. It weights each gain with the corresponding
    probability and returns the total.
ExpectedGain invokes Gain, which takes a bid and an actual price and
    returns the expected gain:
    def Gain(self, bid, price):
        if bid > price:
            return 0

        diff = price - bid
        prob = self.ProbWin(diff)

        if diff <= 250:
            return 2 * price * prob
        else:
            return price * prob
If you overbid, you get nothing. Otherwise we compute the difference
    between your bid and the price, which determines your probability of
    winning.
If diff is less than $250, you
    win both showcases. For simplicity, I assume that both showcases have the
    same price. Since this outcome is rare, it doesn’t make much
    difference.
Finally, we have to compute the probability of winning based on
    diff:
    def ProbWin(self, diff):
        prob = (self.opponent.ProbOverbid() + 
                self.opponent.ProbWorseThan(diff))
        return prob
If your opponent overbids, you win. Otherwise, you have to hope that
    your opponent is off by more than diff.
    Player provides methods to compute both
    probabilities:
# class Player:

    def ProbOverbid(self):
        return self.cdf_diff.Prob(-1)

    def ProbWorseThan(self, diff):
        return 1 - self.cdf_diff.Prob(diff)
This code might be confusing because the computation is now from the
    point of view of the opponent, who is computing, “What is the probability
    that I overbid?” and “What is the probability that my bid is off by more
    than diff?”
Both answers are based on the CDF of diff. If the opponent’s diff is less than or equal to -1, you win. If
    the opponent’s diff is worse than
    yours, you win. Otherwise you lose.
Finally, here’s the code that computes optimal bids:
# class Player:

    def OptimalBid(self, guess, opponent):
        self.MakeBeliefs(guess)
        calc = GainCalculator(self, opponent)
        bids, gains = calc.ExpectedGains()
        gain, bid = max(zip(gains, bids))
        return bid, gain
Given a guess and an opponent, OptimalBid computes the posterior distribution,
    instantiates a GainCalculator, computes
    expected gains for a range of bids and returns the optimal bid and
    expected gain. Whew!
Figure 6-4 shows the results for both players,
    based on a scenario where Player 1’s best guess is $20,000 and Player 2’s
    best guess is $40,000.
Figure 6-4. Expected gain versus bid in a scenario where Player 1’s best
      guess is $20,000 and Player 2’s best guess is $40,000.

For Player 1 the optimal bid is $21,000, yielding an expected return
    of almost $16,700. This is a case (which turns out to be unusual) where
    the optimal bid is actually higher than the contestant’s best
    guess.
For Player 2 the optimal bid is $31,500, yielding an expected return
    of almost $19,400. This is the more typical case where the optimal bid is
    less than the best guess.

Discussion
One of the features of Bayesian estimation is that the result comes
    in the form of a posterior distribution. Classical estimation usually
    generates a single point estimate or a confidence interval, which is
    sufficient if estimation is the last step in the process, but if you want
    to use an estimate as an input to a subsequent analysis, point estimates
    and intervals are often not much help.
In this example, we use the posterior distribution to compute an
    optimal bid. The return on a given bid is asymmetric and discontinuous (if
    you overbid, you lose), so it would be hard to solve this problem
    analytically. But it is relatively simple to do computationally.
Newcomers to Bayesian thinking are often tempted to summarize the
    posterior distribution by computing the mean or the maximum likelihood
    estimate. These summaries can be useful, but if that’s all you need, then
    you probably don’t need Bayesian methods in the first place.
Bayesian methods are most useful when you can carry the posterior
    distribution into the next step of the analysis to perform some kind of
    decision analysis, as we did in this chapter, or some kind of prediction,
    as we see in the next chapter.


Chapter 7. Prediction
The Boston Bruins problem
In the 2010-11 National Hockey League (NHL) Finals, my beloved
    Boston Bruins played a best-of-seven championship series against the
    despised Vancouver Canucks. Boston lost the first two games 0-1 and 2-3,
    then won the next two games 8-1 and 4-0. At this point in the series, what
    is the probability that Boston will win the next game, and what is their
    probability of winning the championship?
As always, to answer a question like this, we need to make some
    assumptions. First, it is reasonable to believe that goal scoring in
    hockey is at least approximately a Poisson process, which means that it is
    equally likely for a goal to be scored at any time during a game. Second,
    we can assume that against a particular opponent, each team has some
    long-term average goals per game, denoted λ.
Given these assumptions, my strategy for answering this question
    is
	Use statistics from previous games to choose a prior
        distribution for λ.

	Use the score from the first four games to estimate λ for each team.

	Use the posterior distributions of λ to compute distribution of goals for each
        team, the distribution of the goal differential, and the probability
        that each team wins the next game.

	Compute the probability that each team wins the series.


To choose a prior distribution, I got some statistics from http://www.nhl.com,
    specifically the average goals per game for each team in the 2010-11
    season. The distribution is roughly Gaussian with mean 2.8 and standard
    deviation 0.3.
The Gaussian distribution is continuous, but we’ll approximate it
    with a discrete Pmf. thinkbayes provides MakeGaussianPmf to do exactly that:
def MakeGaussianPmf(mu, sigma, num_sigmas, n=101):
    pmf = Pmf()
    low = mu - num_sigmas*sigma
    high = mu + num_sigmas*sigma

    for x in numpy.linspace(low, high, n):
        p = scipy.stats.norm.pdf(mu, sigma, x)
        pmf.Set(x, p)
    pmf.Normalize()
    return pmf
mu and sigma are the mean and standard deviation of the
    Gaussian distribution. num_sigmas is the number of standard deviations
    above and below the mean that the Pmf will span, and n is the number of values in the Pmf.
Again we use numpy.linspace to
    make an array of n equally spaced
    values between low and high, including both.
norm.pdf evaluates
    the Gaussian probability density function (PDF).
Getting back to the hockey problem, here’s the definition for a
    suite of hypotheses about the value of λ.
class Hockey(thinkbayes.Suite):

    def __init__(self):
        pmf = thinkbayes.MakeGaussianPmf(2.7, 0.3, 4)
        thinkbayes.Suite.__init__(self, pmf)
So the prior distribution is Gaussian with mean 2.7, standard
    deviation 0.3, and it spans 4 sigmas above and below the mean.
As always, we have to decide how to represent each hypothesis; in
    this case I represent the hypothesis that  with the floating-point value x.

Poisson processes
In mathematical statistics, a process is a stochastic model of a physical system
    (“stochastic” means that the model has some kind of randomness in it). For
    example, a Bernoulli process is a model of a sequence of events, called
    trials, in which each trial has two possible outcomes, like success and
    failure. So a Bernoulli process is a natural model for a series of coin
    flips, or a series of shots on goal.
A Poisson process is the continuous version of a Bernoulli process,
    where an event can occur at any point in time with equal probability.
    Poisson processes can be used to model customers arriving in a store,
    buses arriving at a bus stop, or goals scored in a hockey game.
In many real systems the probability of an event changes over time.
    Customers are more likely to go to a store at certain times of day, buses
    are supposed to arrive at fixed intervals, and goals are more or less
    likely at different times during a game.
But all models are based on simplifications, and in this case
    modeling a hockey game with a Poisson process is a reasonable choice.
    Heuer, Müller and Rubner (2010) analyze scoring in a German soccer league
    and come to the same conclusion; see http://www.cimat.mx/Eventos/vpec10/img/poisson.pdf.
The benefit of using this model is that we can compute the
    distribution of goals per game efficiently, as well as the distribution of
    time between goals. Specifically, if the average number of goals in a game
    is lam, the distribution of goals per
    game is given by the Poisson PMF:
def EvalPoissonPmf(lam, k):
    return (lam)**k * math.exp(-lam) / math.factorial(k)
And the distribution of time between goals is given by the
    exponential PDF:
def EvalExponentialPdf(lam, x):
    return lam * math.exp(-lam * x)
I use the variable lam because
    lambda is a reserved keyword in Python.
    Both of these functions are in thinkbayes.py.

The posteriors
Now we can compute the likelihood that a team with a hypothetical
    value of lam scores k goals in a game:
# class Hockey

    def Likelihood(self, data, hypo):
        lam = hypo
        k = data
        like = thinkbayes.EvalPoissonPmf(lam, k)
        return like
Each hypothesis is a possible value of λ; data is the
    observed number of goals, k.
With the likelihood function in place, we can make a suite for each
    team and update them with the scores from the first four games.
    suite1 = Hockey('bruins')
    suite1.UpdateSet([0, 2, 8, 4])
     
    suite2 = Hockey('canucks')
    suite2.UpdateSet([1, 3, 1, 0])
Figure 7-1 shows the resulting posterior
    distributions for lam. Based on the
    first four games, the most likely values for lam are 2.6 for the Canucks and 2.9 for the
    Bruins.
Figure 7-1. Posterior distribution of the number of goals per game.


The distribution of goals
To compute the probability that each team wins the next game, we
    need to compute the distribution of goals for each team.
If we knew the value of lam
    exactly, we could use the Poisson distribution again. thinkbayes provides a method that
    computes a truncated approximation of a Poisson distribution:
def MakePoissonPmf(lam, high):
    pmf = Pmf()
    for k in xrange(0, high+1):
        p = EvalPoissonPmf(lam, k)
        pmf.Set(k, p)
    pmf.Normalize()
    return pmf
The range of values in the computed Pmf is from 0
    to high. So if the value of lam were exactly 3.4, we would compute:
lam = 3.4
goal_dist = thinkbayes.MakePoissonPmf(lam, 10)
I chose the upper bound, 10, because the probability of scoring more
    than 10 goals in a game is quite low.
That’s simple enough so far; the problem is that we don’t know the
    value of lam exactly. Instead, we have
    a distribution of possible values for lam.
For each value of lam, the
    distribution of goals is Poisson. So the overall distribution of goals is
    a mixture of these Poisson distributions, weighted according to the
    probabilities in the distribution of lam.
Given the posterior distribution of lam, here’s the code that makes the distribution
    of goals:
def MakeGoalPmf(suite):
    metapmf = thinkbayes.Pmf()

    for lam, prob in suite.Items():
        pmf = thinkbayes.MakePoissonPmf(lam, 10)
        metapmf.Set(pmf, prob)

    mix = thinkbayes.MakeMixture(metapmf)
    return mix
For each value of lam we make a
    Poisson Pmf and add it to the meta-Pmf. I call it a meta-Pmf because it is
    a Pmf that contains Pmfs as its values.
Then we use MakeMixture to compute the mixture (we saw MakeMixture in “Mixtures”).
Figure 7-2 shows the resulting distribution of
    goals for the Bruins and Canucks. The Bruins are less likely to score 3
    goals or fewer in the next game, and more likely to score 4 or
    more.
Figure 7-2. Distribution of goals in a single game.


The probability of winning
To get the probability of winning, first we compute the distribution
    of the goal differential:
    goal_dist1 = MakeGoalPmf(suite1)
    goal_dist2 = MakeGoalPmf(suite2)
    diff = goal_dist1 - goal_dist2
The subtraction operator invokes Pmf.__sub__, which enumerates pairs of values and
    computes the difference. Subtracting two distributions is almost the same
    as adding, which we saw in “Addends”.
If the goal differential is positive, the Bruins win; if negative,
    the Canucks win; if 0, it’s a tie:
    p_win = diff.ProbGreater(0)
    p_loss = diff.ProbLess(0)
    p_tie = diff.Prob(0)
With the distributions from the previous section, p_win is 46%, p_loss is 37%, and p_tie is 17%.
In the event of a tie at the end of “regulation play,” the teams
    play overtime periods until one team scores. Since the game ends
    immediately when the first goal is scored, this overtime format is known
    as “sudden death.”

Sudden death
To compute the probability of winning in a sudden death overtime,
    the important statistic is not goals per game, but time until the first
    goal. The assumption that goal-scoring is a Poisson process implies that
    the time between goals is exponentially distributed.
Given lam, we can compute the
    time between goals like this:
lam = 3.4
time_dist = thinkbayes.MakeExponentialPmf(lam, high=2, n=101)
high is the upper bound of the
    distribution. In this case I chose 2, because the probability of going
    more than two games without scoring is small. n is the number of values in the Pmf.
If we know lam exactly, that’s
    all there is to it. But we don’t; instead we have a posterior distribution
    of possible values. So as we did with the distribution of goals, we make a
    meta-Pmf and compute a mixture of Pmfs.
def MakeGoalTimePmf(suite):
    metapmf = thinkbayes.Pmf()

    for lam, prob in suite.Items():
        pmf = thinkbayes.MakeExponentialPmf(lam, high=2, n=2001)
        metapmf.Set(pmf, prob)

    mix = thinkbayes.MakeMixture(metapmf)
    return mix
Figure 7-3 shows the resulting distributions.
    For time values less than one period (one third of a game), the Bruins are
    more likely to score. The time until the Canucks score is more likely to
    be longer.
I set the number of values, n,
    fairly high in order to minimize the number of ties, since it is not
    possible for both teams to score simultaneously.
Now we compute the probability that the Bruins score first:
    time_dist1 = MakeGoalTimePmf(suite1)
    time_dist2 = MakeGoalTimePmf(suite2)
    p_overtime = thinkbayes.PmfProbLess(time_dist1, time_dist2)
For the Bruins, the probability of winning in overtime is
    52%.
Figure 7-3. Distribution of time between goals.

Finally, the total probability of winning is the chance of winning
    at the end of regulation play plus the probability of winning in
    overtime.
    p_tie = diff.Prob(0)
    p_overtime = thinkbayes.PmfProbLess(time_dist1, time_dist2)

    p_win = diff.ProbGreater(0) + p_tie * p_overtime
For the Bruins, the overall chance of winning the next game is
    55%.
To win the series, the Bruins can either win the next two games or
    split the next two and win the third. Again, we can compute the total
    probability:
    # win the next two
    p_series = p_win**2

    # split the next two, win the third
    p_series += 2 * p_win * (1-p_win) * p_win
The chance that the Bruins will win the series is 57%. And in 2011,
    they did.

Discussion
As always, the analysis in this chapter is based on modeling
    decisions, and modeling is almost always an iterative process. In general,
    you want to start with something simple that yields an approximate answer,
    identify likely sources of error, and look for opportunities for
    improvement.
In this example, I would consider these options:
	I chose a prior based on the average goals per game for each
        team. But this statistic is averaged across all opponents. Against a
        particular opponent, we might expect more variability. For example, if
        the team with the best offense plays the team with the worst defense,
        the expected goals per game might be several standard deviations above
        the mean.

	For data I used only the first four games of the championship
        series. If the same teams played each other during the regular season,
        I could use the results from those games as well. One complication is
        that the composition of teams changes during the season due to trades
        and injuries. So it might be best to give more weight to recent
        games.

	To take advantage of all available information, we could use
        results from all regular season games to estimate each team’s goal
        scoring rate, possibly adjusted by estimating an additional factor for
        each pairwise match-up. This approach would be more complicated, but
        it is still feasible.


For the first option, we could use the results from the regular
    season to estimate the variability across all pairwise match-ups. Thanks
    to Dirk Hoag at http://forechecker.blogspot.com/,
    I was able to get the number of goals scored during regulation play (not
    overtime) for each game in the regular season.
Teams in different conferences only play each other one or two times
    in the regular season, so I focused on pairs that played each other 4–6
    times. For each pair, I computed the average goals per game, which is an
    estimate of λ, then plotted the
    distribution of these estimates.
The mean of these estimates is 2.8, again, but the standard
    deviation is 0.85, substantially higher than what we got computing one
    estimate for each team.
If we run the analysis again with the higher-variance prior, the
    probability that the Bruins win the series is 80%, substantially higher
    than the result with the low-variance prior, 57%.
So it turns out that the results are sensitive to the prior, which
    makes sense considering how little data we have to work with. Based on the
    difference between the low-variance model and the high-variable model, it
    seems worthwhile to put some effort into getting the prior right.
The code and data for this chapter are available from http://thinkbayes.com/hockey.py
    and http://thinkbayes.com/hockey_data.csv.
    For more information see “Working with the code”.

Exercises
Exercise 7-1. 
If buses arrive at a bus stop every 20 minutes, and you arrive
        at the bus stop at a random time, your wait time until the bus arrives
        is uniformly distributed from 0 to 20 minutes.
But in reality, there is variability in the time between buses.
        Suppose you are waiting for a bus, and you know the historical
        distribution of time between buses. Compute your distribution of wait
        times.
Hint: Suppose that the time between buses is either 5 or 10
        minutes with equal probability. What is the probability that you
        arrive during one of the 10 minute intervals?
I solve a version of this problem in the next chapter.

Exercise 7-2. 
Suppose that passengers arriving at the bus stop are
        well-modeled by a Poisson process with parameter λ. If you arrive at the stop and find 3 people
        waiting, what is your posterior distribution for the time since the
        last bus arrived.
I solve a version of this problem in the next chapter.

Exercise 7-3. 
Suppose that you are an ecologist sampling the insect population
        in a new environment. You deploy 100 traps in a test area and come
        back the next day to check on them. You find that 37 traps have been
        triggered, trapping an insect inside. Once a trap triggers, it cannot
        trap another insect until it has been reset.
If you reset the traps and come back in two days, how many traps
        do you expect to find triggered? Compute a posterior predictive
        distribution for the number of traps.

Exercise 7-4. 
Suppose you are the manager of an apartment building with 100
        light bulbs in common areas. It is your responsibility to replace
        light bulbs when they break.
On January 1, all 100 bulbs are working. When you inspect them
        on February 1, you find 3 light bulbs out. If you come back on April
        1, how many light bulbs do you expect to find broken?
In the previous exercise, you could reasonably assume that an
        event is equally likely at any time. For light bulbs, the likelihood
        of failure depends on the age of the bulb. Specifically, old bulbs
        have an increasing failure rate due to evaporation of the
        filament.
This problem is more open-ended than some; you will have to make
        modeling decisions. You might want to read about the Weibull
        distribution (http://en.wikipedia.org/wiki/Weibull_distribution).
        Or you might want to look around for information about light bulb
        survival curves.



Chapter 8. Observer Bias
The Red Line problem
In Massachusetts, the Red Line is a subway that connects Cambridge
    and Boston. When I was working in Cambridge I took the Red Line from
    Kendall Square to South Station and caught the commuter rail to Needham.
    During rush hour Red Line trains run every 7–8 minutes, on
    average.
When I arrived at the station, I could estimate the time until the
    next train based on the number of passengers on the platform. If there
    were only a few people, I inferred that I just missed a train and expected
    to wait about 7 minutes. If there were more passengers, I expected the
    train to arrive sooner. But if there were a large number of passengers, I
    suspected that trains were not running on schedule, so I would go back to
    the street level and get a taxi.
While I was waiting for trains, I thought about how Bayesian
    estimation could help predict my wait time and decide when I should give
    up and take a taxi. This chapter presents the analysis I came up
    with.
This chapter is based on a project by Brendan Ritter and Kai Austin,
    who took a class with me at Olin College. The code in this chapter is
    available from http://thinkbayes.com/redline.py.
    The code I used to collect data is in http://thinkbayes.com/redline_data.py.
    For more information see “Working with the code”.

The model
Before we get to the analysis, we have to make some modeling
    decisions. First, I will treat passenger arrivals as a Poisson process,
    which means I assume that passengers are equally likely to arrive at any
    time, and that they arrive at an unknown rate, λ, measured in passengers per minute. Since I
    observe passengers during a short period of time, and at the same time
    every day, I assume that λ is
    constant.
On the other hand, the arrival process for trains is not Poisson.
    Trains to Boston are supposed to leave from the end of the line (Alewife
    station) every 7–8 minutes during peak times, but by the time they get to
    Kendall Square, the time between trains varies between 3 and 12
    minutes.
To gather data on the time between trains, I wrote a script that
    downloads real-time data from http://www.mbta.com/rider_tools/developers/,
    selects south-bound trains arriving at Kendall square, and records their
    arrival times in a database. I ran the script from 4pm to 6pm every
    weekday for 5 days, and recorded about 15 arrivals per day. Then I
    computed the time between consecutive arrivals; the distribution of these
    gaps is shown in Figure 8-1, labeled z.
Figure 8-1. PMF of gaps between trains, based on collected data, smoothed by
      KDE. z is the actual distribution; zb is the biased distribution seen by
      passengers.

If you stood on the platform from 4pm to 6pm and recorded the time
    between trains, this is the distribution you would see. But if you arrive
    at some random time (without regard to the train schedule) you would see a
    different distribution. The average time between trains, as seen by a
    random passenger, is substantially higher than the true average.
Why? Because a passenger is more like to arrive during a large
    interval than a small one. Consider a simple example: suppose that the
    time between trains is either 5 minutes or 10 minutes with equal
    probability. In that case the average time between trains is 7.5
    minutes.
But a passenger is more likely to arrive during a 10 minute gap than
    a 5 minute gap; in fact, twice as likely. If we surveyed arriving
    passengers, we would find that 2/3 of them arrived during a 10 minute gap,
    and only 1/3 during a 5 minute gap. So the average time between trains, as
    seen by an arriving passenger, is 8.33 minutes.
This kind of observer bias appears
    in many contexts. Students think that classes are bigger than they are
    because more of them are in the big classes. Airline passengers think that
    planes are fuller than they are because more of them are on full
    flights.
In each case, values from the actual distribution are oversampled in
    proportion to their value. In the Red Line example, a gap that is twice as
    big is twice as likely to be observed.
So given the actual distribution of gaps, we can compute the
    distribution of gaps as seen by passengers. BiasPmf does this computation:
def BiasPmf(pmf):
    new_pmf = pmf.Copy()

    for x, p in pmf.Items():
        new_pmf.Mult(x, x)
        
    new_pmf.Normalize()
    return new_pmf
pmf is the actual distribution;
    new_pmf is the biased
    distribution. Inside the loop, we multiply the probability of each value,
    x, by the likelihood it will be
    observed, which is proportional to x.
    Then we normalize the result.
Figure 8-1 shows the actual distribution of
    gaps, labeled z, and the distribution
    of gaps seen by passengers, labeled zb
    for “z biased”.

Wait times
Wait time, which I call y, is the
    time between the arrival of a passenger and the next arrival of a train.
    Elapsed time, which I call x, is the
    time between the arrival of the previous train and the arrival of a
    passenger. I chose these definitions so that zb =
    x + y.
Given the distribution of zb, we
    can compute the distribution of y. I’ll
    start with a simple case and then generalize. Suppose, as in the previous
    example, that zb is either 5 minutes
    with probability 1/3, or 10 minutes with probability 2/3.
If we arrive at a random time during a 5 minute gap, y is uniform from 0 to 5 minutes. If we arrive
    during a 10 minute gap, y is uniform
    from 0 to 10. So the overall distribution is a mixture of uniform
    distributions weighted according to the probability of each gap.
The following function takes the distribution of zb and computes the distribution of y:
def PmfOfWaitTime(pmf_zb):
    metapmf = thinkbayes.Pmf()
    for gap, prob in pmf_zb.Items():
        uniform = MakeUniformPmf(0, gap)
        metapmf.Set(uniform, prob)

    pmf_y = thinkbayes.MakeMixture(metapmf)
    return pmf_y
PmfOfWaitTime makes a meta-Pmf
    that maps from each uniform distribution to its probability. Then it uses
    MakeMixture, which we saw in “Mixtures”, to compute the mixture.
PmfOfWaitTime also uses MakeUniformPmf, defined here:
def MakeUniformPmf(low, high):
    pmf = thinkbayes.Pmf()
    for x in MakeRange(low=low, high=high):
        pmf.Set(x, 1)
    pmf.Normalize()
    return pmf
low and high are the range of the uniform distribution,
    (both ends included). Finally, MakeUniformPmf uses MakeRange, defined here:
def MakeRange(low, high, skip=10):
    return range(low, high+skip, skip)
MakeRange defines a set of
    possible values for wait time (expressed in seconds). By default it
    divides the range into 10 second intervals.
To encapsulate the process of computing these distributions, I
    created a class called WaitTimeCalculator:
class WaitTimeCalculator(object):

    def __init__(self, pmf_z):
        self.pmf_z = pmf_z
        self.pmf_zb = BiasPmf(pmf)

        self.pmf_y = self.PmfOfWaitTime(self.pmf_zb)
        self.pmf_x = self.pmf_y
The parameter, pmf_z, is the unbiased distribution of z. pmf_zb is the biased distribution of gap time, as
    seen by passengers.
pmf_y is the
    distribution of wait time. pmf_x is the distribution of elapsed time, which is
    the same as the distribution of wait time. To see why, remember that for a
    particular value of zp, the
    distribution of y is uniform from 0 to
    zp. Also
x = zp - y
So the distribution of x is also
    uniform from 0 to zp.
Figure 8-2 shows the distribution of z, zb, and
    y based on the data I collected from
    the Red Line website.
Figure 8-2. CDF of z, zb, and the wait time seen by passengers, y.

To present these distributions, I am switching from Pmfs to Cdfs.
    Most people are more familiar with Pmfs, but I think Cdfs are easier to
    interpret, once you get used to them. And if you want to plot several
    distributions on the same axes, Cdfs are the way to go.
The mean of z is 7.8 minutes. The
    mean of zb is 8.8 minutes, about 13%
    higher. The mean of y is 4.4, half the
    mean of zb.
As an aside, the Red Line schedule reports that trains run every 9
    minutes during peak times. This is close to the average of zb, but higher than the average of z. I exchanged email with a representative of
    the MBTA, who confirmed that the reported time between trains is
    deliberately conservative in order to account for variability.

Predicting wait times
Let’s get back to the motivating question: suppose that when I
    arrive at the platform I see 10 people waiting. How long should I expect
    to wait until the next train arrives?
As always, let’s start with the easiest version of the problem and
    work our way up. Suppose we are given the actual distribution of z, and we know that the passenger arrival rate,
    λ, is 2 passengers per minute.
In that case we can:
	Use the distribution of z to
        compute the prior distribution of zp, the time between trains as seen by a
        passenger.

	Then we can use the number of passengers to estimate the
        distribution of x, the elapsed time
        since the last train.

	Finally, we use the relation y = zp -
        x to get the distribution of y.


The first step is to create a WaitTimeCalculator that encapsulates the
    distributions of zp, x, and y,
    prior to taking into account the number of passengers.
    wtc = WaitTimeCalculator(pmf_z)
pmf_z is the given
    distribution of gap times.
The next step is to make an ElapsedTimeEstimator (defined below), which
    encapsulates the posterior distribution of x and the predictive distribution of y.
    ete = ElapsedTimeEstimator(wtc,
                               lam=2.0/60,
                               num_passengers=15)
The parameters are the WaitTimeCalculator, the passenger arrival rate,
    lam (expressed in passengers per
    second), and the observed number of passengers, let’s say 15.
Here is the definition of ElapsedTimeEstimator:
class ElapsedTimeEstimator(object):

    def __init__(self, wtc, lam, num_passengers):
        self.prior_x = Elapsed(wtc.pmf_x)

        self.post_x = self.prior_x.Copy()
        self.post_x.Update((lam, num_passengers))

        self.pmf_y = PredictWaitTime(wtc.pmf_zb, self.post_x)
prior_x and posterior_x are the prior and
    posterior distributions of elapsed time. pmf_y is the predictive distribution of wait
    time.
ElapsedTimeEstimator uses
    Elapsed and PredictWaitTime, defined below.
Elapsed is a Suite that
    represents the hypothetical distribution of x. The prior distribution of x comes straight from the WaitTimeCalculator. Then we use the data, which
    consists of the arrival rate, lam, and
    the number of passengers on the platform, to compute the posterior
    distribution.
Here’s the definition of Elapsed:
class Elapsed(thinkbayes.Suite):

    def Likelihood(self, data, hypo):
        x = hypo
        lam, k = data
        like = thinkbayes.EvalPoissonPmf(lam * x, k)
        return like
As always, Likelihood takes a
    hypothesis and data, and computes the likelihood of the data under the
    hypothesis. In this case hypo is the
    elapsed time since the last train and data is a tuple of lam and the number of passengers.
The likelihood of the data is the probability of getting k arrivals in x time, given arrival rate lam. We compute that using the PMF of the
    Poisson distribution.
Finally, here’s the definition of PredictWaitTime:
def PredictWaitTime(pmf_zb, pmf_x):
    pmf_y = pmf_zb - pmf_x
    RemoveNegatives(pmf_y)
    return pmf_y
pmf_zb is the
    distribution of gaps between trains; pmf_x is the distribution of elapsed time, based on
    the observed number of passengers. Since y = zb -
    x, we can compute
    pmf_y = pmf_zb - pmf_x
The subtraction operator invokes Pmf.__sub__, which enumerates all pairs of zb and x,
    computes the differences, and adds the results to pmf_y.
The resulting Pmf includes some negative values, which we know are
    impossible. For example, if you arrive during a gap of 5 minutes, you
    can’t wait more than 5 minutes. RemoveNegatives removes the impossible values
    from the distribution and renormalizes.
def RemoveNegatives(pmf):
    for val in pmf.Values():
        if val < 0:
            pmf.Remove(val)
    pmf.Normalize()
Figure 8-3 shows the results. The prior
    distribution of x is the same as the
    distribution of y in Figure 8-2. The posterior distribution of x shows that, after seeing 15 passengers on the
    platform, we believe that the time since the last train is probably 5-10
    minutes. The predictive distribution of y indicates that we expect the next train in
    less than 5 minutes, with about 80% confidence.
Figure 8-3. Prior and posterior of x and predicted y.


Estimating the arrival rate
The analysis so far has been based on the assumption that we know
    (1) the distribution of gaps and (2) the passenger arrival rate. Now we
    are ready to relax the second assumption.
Suppose that you just moved to Boston, so you don’t know much about
    the passenger arrival rate on the Red Line. After a few days of commuting,
    you could make a guess, at least qualitatively. With a little more effort,
    you could estimate λ
    quantitatively.
Each day when you arrive at the platform, you should note the time
    and the number of passengers waiting (if the platform is too big, you
    could choose a sample area). Then you should record your wait time and the
    number of new arrivals while you are waiting.
After five days, you might have data like this:
k1      y     k2
--     ---    --
17     4.6     9
22     1.0     0
23     1.4     4
18     5.4    12
4      5.8    11
where k1 is the number of
    passengers waiting when you arrive, y
    is your wait time in minutes, and k2 is
    the number of passengers who arrive while you are waiting.
Over the course of one week, you waited 18 minutes and saw 36
    passengers arrive, so you would estimate that the arrival rate is 2
    passengers per minute. For practical purposes that estimate is good
    enough, but for the sake of completeness I will compute a posterior
    distribution for λ and show how to use
    that distribution in the rest of the analysis.
ArrivalRate is a Suite that represents hypotheses about λ. As always, Likelihood takes a hypothesis and data, and
    computes the likelihood of the data under the hypothesis.
In this case the hypothesis is a value of λ. The data is a pair, y,
    k, where y is a wait time and
    k is the number of passengers that
    arrived.
class ArrivalRate(thinkbayes.Suite):

    def Likelihood(self, data, hypo):
        lam = hypo
        y, k = data
        like = thinkbayes.EvalPoissonPmf(lam * y, k)
        return like
This Likelihood might look
    familiar; it is almost identical to Elapsed.Likelihood in “Predicting wait times”. The difference is that in Elapsed.Likelihood the hypothesis is x, the elapsed time; in ArrivalRate.Likelihood the hypothesis is
    lam, the arrival rate. But in both
    cases the likelihood is the probability of seeing k arrivals in some period of time, given
    lam.
ArrivalRateEstimator encapsulates
    the process of estimating λ. The
    parameter, passenger_data,
    is a list of k1, y, k2 tuples, as in
    the table above.
class ArrivalRateEstimator(object):

    def __init__(self, passenger_data):
        low, high = 0, 5
        n = 51
        hypos = numpy.linspace(low, high, n) / 60

        self.prior_lam = ArrivalRate(hypos)

        self.post_lam = self.prior_lam.Copy()
        for k1, y, k2 in passenger_data:
            self.post_lam.Update((y, k2))
__init__ builds
    hypos, which is a sequence of
    hypothetical values for lam, then
    builds the prior distribution, prior_lam. The for loop updates the prior with data, yielding
    the posterior distribution, post_lam.
Figure 8-4 shows the prior and posterior
    distributions. As expected, the mean and median of the posterior are near
    the observed rate, 2 passengers per minute. But the spread of the
    posterior distribution captures our uncertainty about λ based on a small sample.
Figure 8-4. Prior and posterior distributions of lam based on five days of
      passenger data.


Incorporating uncertainty
Whenever there is uncertainty about one of the inputs to an
    analysis, we can take it into account by a process like this:
	Implement the analysis based on a deterministic value of the
        uncertain parameter (in this case λ).

	Compute the distribution of the uncertain parameter.

	Run the analysis for each value of the parameter, and generate a
        set of predictive distributions.

	Compute a mixture of the predictive distributions, using the
        weights from the distribution of the parameter.


We have already done steps (1) and (2). I wrote a class called
    WaitMixtureEstimator to handle steps
    (3) and (4).
class WaitMixtureEstimator(object):

    def __init__(self, wtc, are, num_passengers=15):
        self.metapmf = thinkbayes.Pmf()

        for lam, prob in sorted(are.post_lam.Items()):
            ete = ElapsedTimeEstimator(wtc, lam, num_passengers)
            self.metapmf.Set(ete.pmf_y, prob)

        self.mixture = thinkbayes.MakeMixture(self.metapmf)
wtc is the WaitTimeCalculator that contains the
    distribution of zb. are is the ArrivalTimeEstimator that contains the
    distribution of lam.
The first line makes a meta-Pmf that maps from each possible
    distribution of y to its probability.
    For each value of lam, we use ElapsedTimeEstimator to compute the
    corresponding distribution of y and
    store it in the Meta-Pmf. Then we use MakeMixture to compute the mixture.
Figure 8-5 shows the results. The shaded lines
    in the background are the distributions of y for each value of lam, with line thickness that represents
    likelihood. The dark line is the mixture of these distributions.
Figure 8-5. Predictive distributions of y for possible values of lam.

In this case we could get a very similar result using a single point
    estimate of lam. So it was not
    necessary, for practical purposes, to include the uncertainty of the
    estimate.
In general, it is important to include variability if the system
    response is non-linear; that is, if small changes in the input can cause
    big changes in the output. In this case, posterior variability in lam is small and the system response is
    approximately linear for small perturbations.

Decision analysis
At this point we can use the number of passengers on the platform to
    predict the distribution of wait times. Now let’s get to the second part
    of the question: when should I stop waiting for the train and go catch a
    taxi?
Remember that in the original scenario, I am trying to get to South
    Station to catch the commuter rail. Suppose I leave the office with enough
    time that I can wait 15 minutes and still make my connection at South
    Station.
In that case I would like to know the probability that y exceeds 15 minutes as a function of num_passengers. It is easy enough
    to use the analysis from “Predicting wait times” and run it for a range
    of num_passengers.
But there’s a problem. The analysis is sensitive to the frequency of
    long delays, and because long delays are rare, it is hard to estimate their
    frequency.
I only have data from one week, and the longest delay I observed was
    15 minutes. So I can’t estimate the frequency of longer delays
    accurately.
However, I can use previous observations to make at least a coarse
    estimate. When I commuted by Red Line for a year, I saw three long delays
    caused by a signaling problem, a power outage, and “police activity” at
    another stop. So I estimate that there are about 3 major delays per
    year.
But remember that my observations are biased. I am more likely to
    observe long delays because they affect a large number of passengers. So
    we should treat my observations as a sample of zb rather than z. Here’s how we can do that.
During my year of commuting, I took the Red Line home about 220
    times. So I take the observed gap times, gap_times, generate a sample of 220 gaps, and
    compute their Pmf:
    n = 220
    cdf_z = thinkbayes.MakeCdfFromList(gap_times)
    sample_z = cdf_z.Sample(n)
    pmf_z = thinkbayes.MakePmfFromList(sample_z)
Next I bias pmf_z to
    get the distribution of zb, draw a
    sample, and then add in delays of 30, 40, and 50 minutes (expressed in
    seconds):
    cdf_zp = BiasPmf(pmf_z).MakeCdf()
    sample_zb = cdf_zp.Sample(n) + [1800, 2400, 3000]
Cdf.Sample is more efficient than
    Pmf.Sample, so it is usually faster to
    convert a Pmf to a Cdf before sampling.
Next I use the sample of zb to
    estimate a Pdf using KDE, and then convert the Pdf to a Pmf:
    pdf_zb = thinkbayes.EstimatedPdf(sample_zb)
    xs = MakeRange(low=60)
    pmf_zb = pdf_zb.MakePmf(xs)
Finally I unbias the distribution of zb to get the distribution of z, which I use to create the WaitTimeCalculator:
    pmf_z = UnbiasPmf(pmf_zb)
    wtc = WaitTimeCalculator(pmf_z)
This process is complicated, but all of the steps are operations we
    have seen before. Now we are ready to compute the probability of a long
    wait.
def ProbLongWait(num_passengers, minutes):
    ete = ElapsedTimeEstimator(wtc, lam, num_passengers)
    cdf_y = ete.pmf_y.MakeCdf()
    prob = 1 - cdf_y.Prob(minutes * 60)
Given the number of passengers on the platform, ProbLongWait makes an ElapsedTimeEstimator, extracts the distribution
    of wait time, and computes the probability that wait time exceeds minutes.
Figure 8-6 shows the result. When the number of
    passengers is less than 20, we infer that the system is operating
    normally, so the probability of a long delay is small. If there are 30
    passengers, we estimate that it has been 15 minutes since the last train;
    that’s longer than a normal delay, so we infer that something is wrong and
    expect longer delays.
If we are willing to accept a 10% chance of missing the connection
    at South Station, we should stay and wait as long as there are fewer than
    30 passengers, and take a taxi if there are more.
Or, to take this analysis one step further, we could quantify the
    cost of missing the connection and the cost of taking a taxi, then choose
    the threshold that minimizes expected cost.
Figure 8-6. Probability that wait time exceeds 15 minutes as a function of
      the number of passengers on the platform.


Discussion
The analysis so far has been based on the assumption that the
    arrival rate of passengers is the same every day. For a commuter train
    during rush hour, that might not be a bad assumption, but there are some
    obvious exceptions. For example, if there is a special event nearby, a
    large number of people might arrive at the same time. In that case, the
    estimate of lam would be too low, so
    the estimates of x and y would be too high.
If special events are as common as major delays, it would be
    important to include them in the model. We could do that by extending the
    distribution of lam to include
    occasional large values.
We started with the assumption that we know distribution of z. As an alternative, a passenger could estimate
    z, but it would not be easy. As a
    passenger, you only observe only your own wait time, y. Unless you skip the first train and wait for
    the second, you don’t observe the gap between trains, z.
However, we could make some inferences about zb. If we note the number of passengers waiting
    when we arrive, we can estimate the elapsed time since the last train,
    x. Then we observe y. If we add the posterior distribution of
    x to the observed y, we get a distribution that represents our
    posterior belief about the observed value of zb.
We can use this distribution to update our beliefs about the
    distribution of zb. Finally, we can
    compute the inverse of BiasPmf to get
    from the distribution of zb to the
    distribution of z.
I leave this analysis as an exercise for the reader. One suggestion:
    you should read Chapter 15 first. You can find the outline
    of a solution in http://thinkbayes.com/redline.py.
    For more information see “Working with the code”.

Exercises
Exercise 8-1. 
This exercise is from MacKay, Information Theory,
        Inference, and Learning Algorithms:
Unstable particles are emitted from a source and decay at a
          distance x, a real number that has
          an exponential probability distribution with [parameter] λ. Decay events can only be observed if they
          occur in a window extending from  cm to  cm. N decays
          are observed at locations  cm. What is the posterior distribution of
          λ?

You can download a solution to this exercise from http://thinkbayes.com/decay.py.



Chapter 9. Two Dimensions
Paintball
Paintball is a sport in which competing teams try to shoot each
    other with guns that fire paint-filled pellets that break on impact,
    leaving a colorful mark on the target. It is usually played in an arena
    decorated with barriers and other objects that can be used as
    cover.
Suppose you are playing paintball in an indoor arena 30 feet wide
    and 50 feet long. You are standing near one of the 30 foot walls, and you
    suspect that one of your opponents has taken cover nearby. Along the wall,
    you see several paint spatters, all the same color, that you think your
    opponent fired recently.
The spatters are at 15, 16, 18, and 21 feet, measured from the
    lower-left corner of the room. Based on these data, where do you think
    your opponent is hiding?
Figure 9-1 shows a diagram of the arena. Using
    the lower-left corner of the room as the origin, I denote the unknown
    location of the shooter with coordinates α and β, or
    alpha and beta. The location of a spatter is labeled
    x. The angle the opponent shoots at is
    θ or theta.
The Paintball problem is a modified version of the Lighthouse
    problem, a common example of Bayesian analysis. My notation follows the
    presentation of the problem in D.S. Sivia’s, Data Analysis: a
    Bayesian Tutorial, Second Edition (Oxford, 2006).
You can download the code in this chapter from http://thinkbayes.com/paintball.py.
    For more information see “Working with the code”.
Figure 9-1. Diagram of the layout for the paintball problem.


The suite
To get started, we need a Suite that represents a set of hypotheses
    about the location of the opponent. Each hypothesis is a pair of
    coordinates: (alpha, beta).
Here is the definition of the Paintball suite:
class Paintball(thinkbayes.Suite, thinkbayes.Joint):

    def __init__(self, alphas, betas, locations):
        self.locations = locations
        pairs = [(alpha, beta) 
                 for alpha in alphas 
                 for beta in betas]
        thinkbayes.Suite.__init__(self, pairs)
Paintball inherits from Suite, which we have seen before, and Joint, which I will explain soon.
alphas is the list of possible
    values for alpha; betas is the list of values for beta. pairs
    is a list of all (alpha, beta)
    pairs.
locations is a list of possible
    locations along the wall; it is stored for use in Likelihood.
The room is 30 feet wide and 50 feet long, so here’s the code that
    creates the suite:
    alphas = range(0, 31)
    betas = range(1, 51)
    locations = range(0, 31)

    suite = Paintball(alphas, betas, locations)
This prior distribution assumes that all locations in the room are
    equally likely. Given a map of the room, we might choose a more detailed
    prior, but we’ll start simple.

Trigonometry
Now we need a likelihood function, which means we have to figure out
    the likelihood of hitting any spot along the wall, given the location of
    the opponent.
As a simple model, imagine that the opponent is like a rotating
    turret, equally likely to shoot in any direction. In that case, he is most
    likely to hit the wall at location alpha, and less likely to hit the wall far away
    from alpha.
With a little trigonometry, we can compute the probability of
    hitting any spot along the wall. Imagine that the shooter fires a shot at
    angle θ; the pellet would hit the wall at
    location x, where

Solving this equation for θ
    yields

So given a location on the wall, we can find θ.
Taking the derivative of the first equation with respect to
    θ yields

This derivative is what I’ll call the “strafing speed”, which is the
    speed of the target location along the wall as θ increases. The probability of hitting a given
    point on the wall is inversely related to strafing speed.
If we know the coordinates of the shooter and a location along the
    wall, we can compute strafing speed:
def StrafingSpeed(alpha, beta, x):
    theta = math.atan2(x - alpha, beta)
    speed = beta / math.cos(theta)**2
    return speed
alpha and beta are the coordinates of the shooter;
    x is the location of a spatter. The
    result is the derivative of x with
    respect to theta.
Now we can compute a Pmf that represents the probability of hitting
    any location on the wall. MakeLocationPmf takes alpha and beta, the coordinates of the shooter, and
    locations, a list of possible values of
    x.
def MakeLocationPmf(alpha, beta, locations):
    pmf = thinkbayes.Pmf()
    for x in locations:
        prob = 1.0 / StrafingSpeed(alpha, beta, x)
        pmf.Set(x, prob)
    pmf.Normalize()
    return pmf
MakeLocationPmf computes the
    probability of hitting each location, which is inversely related to
    strafing speed. The result is a Pmf of locations and their
    probabilities.
Figure 9-2 shows the Pmf of location with
    alpha = 10 and a range of values for
    beta. For all values of beta the most
    likely spatter location is x = 10; as
    beta increases, so does the spread of
    the Pmf.
Figure 9-2. PMF of location given alpha=10, for several values of
      beta.


Likelihood
Now all we need is a likelihood function. We can use MakeLocationPmf to compute the likelihood of any
    value of x, given the coordinates of
    the opponent.
    def Likelihood(self, data, hypo):
        alpha, beta = hypo
        x = data
        pmf = MakeLocationPmf(alpha, beta, self.locations)
        like = pmf.Prob(x)
        return like
Again, alpha and beta are the hypothetical coordinates of the
    shooter, and x is the location of an
    observed spatter.
pmf contains the probability of
    each location, given the coordinates of the shooter. From this Pmf, we
    select the probability of the observed location.
And we’re done. To update the suite, we can use UpdateSet, which is inherited from Suite.
suite.UpdateSet([15, 16, 18, 21])
The result is a distribution that maps each (alpha, beta) pair to a posterior
    probability.

Joint distributions
When each value in a distribution is a tuple of variables, it is
    called a joint distribution because it
    represents the distributions of the variables together, that is “jointly”.
    A joint distribution contains the distributions of the variables, as well
    information about the relationships among them.
Given a joint distribution, we can compute the distributions of each
    variable independently, which are called the marginal distributions.
thinkbayes.Joint provides a
    method that computes marginal distributions:
# class Joint:

    def Marginal(self, i):
        pmf = Pmf()
        for vs, prob in self.Items():
            pmf.Incr(vs[i], prob)
        return pmf
i is the index of the variable we
    want; in this example i=0 indicates the
    distribution of alpha, and i=1 indicates the distribution of beta.
Here’s the code that extracts the marginal distributions:
    marginal_alpha = suite.Marginal(0)
    marginal_beta = suite.Marginal(1)
Figure 9-3 shows the results (converted to
    CDFs). The median value for alpha is
    18, near the center of mass of the observed spatters. For beta, the most likely values are close to the
    wall, but beyond 10 feet the distribution is almost uniform, which
    indicates that the data do not distinguish strongly between these possible
    locations.
Given the posterior marginals, we can compute credible intervals for
    each coordinate independently:
    print 'alpha CI', marginal_alpha.CredibleInterval(50)
    print 'beta CI', marginal_beta.CredibleInterval(50)
The 50% credible intervals are (14,
    21) for alpha and (5, 31) for beta. So the data provide evidence that the
    shooter is in the near side of the room. But it is not strong evidence.
    The 90% credible intervals cover most of the room!
Figure 9-3. Posterior CDFs for alpha and beta, given the data.


Conditional distributions
The marginal distributions contain information about the variables
    independently, but they do not capture the dependence between variables,
    if any.
One way to visualize dependence is by computing conditional distributions. thinkbayes.Joint provides a method that does
    that:
    def Conditional(self, i, j, val):
        pmf = Pmf()
        for vs, prob in self.Items():
            if vs[j] != val: continue
            pmf.Incr(vs[i], prob)

        pmf.Normalize()
        return pmf
Again, i is the index of the
    variable we want; j is the index of the
    conditioning variable, and val is the
    conditional value.
The result is the distribution of the ith variable under the condition that the jth variable is val.
For example, the following code computes the conditional
    distributions of alpha for a range of
    values of beta:
    betas = [10, 20, 40]

    for beta in betas:
        cond = suite.Conditional(0, 1, beta)
Figure 9-4 shows the results, which we could
    fully describe as “posterior conditional marginal distributions.”
    Whew!
Figure 9-4. Posterior distributions for alpha conditioned on several values
      of beta.

If the variables were independent, the conditional distributions
    would all be the same. Since they are all different, we can tell the
    variables are dependent. For example, if we know (somehow) that beta = 10, the conditional distribution of
    alpha is fairly narrow. For larger
    values of beta, the distribution of
    alpha is wider.

Credible intervals
Another way to visualize the posterior joint distribution is to
    compute credible intervals. When we looked at credible intervals in “Credible intervals”, I skipped over a subtle point: for a given
    distribution, there are many intervals with the same level of credibility.
    For example, if you want a 50% credible interval, you could choose any set
    of values whose probability adds up to 50%.
When the values are one-dimensional, it is most common to choose the
    central credible interval; for example,
    the central 50% credible interval contains all values between the 25th and
    75th percentiles.
In multiple dimensions it is less obvious what the right credible
    interval should be. The best choice might depend on context, but one
    common choice is the maximum likelihood credible interval, which contains
    the most likely values that add up to 50% (or some other
    percentage).
thinkbayes.Joint provides a
    method that computes maximum likelihood credible intervals.
# class Joint:

    def MaxLikeInterval(self, percentage=90):
        interval = []
        total = 0

        t = [(prob, val) for val, prob in self.Items()]
        t.sort(reverse=True)

        for prob, val in t:
            interval.append(val)
            total += prob
            if total >= percentage/100.0:
                break

        return interval
The first step is to make a list of the values in the suite, sorted
    in descending order by probability. Next we traverse the list, adding each
    value to the interval, until the total probability exceeds percentage. The result is a list of values from
    the suite. Notice that this set of values is not necessarily
    contiguous.
To visualize the intervals, I wrote a function that “colors” each
    value according to how many intervals it appears in:
def MakeCrediblePlot(suite):
    d = dict((pair, 0) for pair in suite.Values())

    percentages = [75, 50, 25]
    for p in percentages:
        interval = suite.MaxLikeInterval(p)
        for pair in interval:
            d[pair] += 1

    return d
d is a dictionary that maps from
    each value in the suite to the number of intervals it appears in. The loop
    computes intervals for several percentages and modifies d.
Figure 9-5 shows the result. The 25% credible
    interval is the darkest region near the bottom wall. For higher
    percentages, the credible interval is bigger, of course, and skewed toward
    the right side of the room.
Figure 9-5. Credible intervals for the coordinates of the opponent.


Discussion
This chapter shows that the Bayesian framework from the previous
    chapters can be extended to handle a two-dimensional parameter space. The
    only difference is that each hypothesis is represented by a tuple of
    parameters.
I also presented Joint, which is
    a parent class that provides methods that apply to joint distributions:
    Marginal, Conditional, and MakeLikeInterval. In object-oriented terms,
    Joint is a mixin (see http://en.wikipedia.org/wiki/Mixin).
There is a lot of new vocabulary in this chapter, so let’s
    review:
	Joint distribution:
	A distribution that represents all possible values in a
          multidimensional space and their probabilities. The example in this
          chapter is a two-dimensional space made up of the coordinates
          alpha and beta. The joint distribution represents
          the probability of each (alpha,
          beta) pair.

	Marginal distribution:
	The distribution of one parameter in a joint distribution,
          treating the other parameters as unknown. For example, Figure 9-3 shows the distributions of alpha and beta independently.

	Conditional distribution:
	The distribution of one parameter in a joint distribution,
          conditioned on one or more of the other parameters. Figure 9-4 several distributions for alpha, conditioned on different values of
          beta.


Given the joint distribution, you can compute marginal and
    conditional distributions. With enough conditional distributions, you
    could re-create the joint distribution, at least approximately. But given
    the marginal distributions you cannot re-create the joint distribution
    because you have lost information about the dependence between
    variables.
If there are n possible values for
    each of two parameters, most operations on the joint distribution take
    time proportional to n2. If there are
    d parameters, run time is proportional to
    nd, which
    quickly becomes impractical as the number of dimensions increases.
If you can process a million hypotheses in a reasonable amount of
    time, you could handle two dimensions with 1000 values for each parameter,
    or three dimensions with 100 values each, or six dimensions with 10 values
    each.
If you need more dimensions, or more values per dimension, there are
    optimizations you can try. I present an example in Chapter 15.
You can download the code in this chapter from http://thinkbayes.com/paintball.py.
    For more information see “Working with the code”.

Exercises
Exercise 9-1. 
In our simple model, the opponent is equally likely to shoot in
        any direction. As an exercise, let’s consider improvements to this
        model.
The analysis in this chapter suggests that a shooter is most
        likely to hit the closest wall. But in reality, if the opponent is
        close to a wall, he is unlikely to shoot at the wall because he is
        unlikely to see a target between himself and the wall.
Design an improved model that takes this behavior into account.
        Try to find a model that is more realistic, but not too
        complicated.



Chapter 10. Approximate Bayesian Computation
The Variability Hypothesis
I have a soft spot for crank science. Recently I visited Norumbega
    Tower, which is an enduring monument to the crackpot theories of Eben
    Norton Horsford, inventor of double-acting baking powder and fake history.
    But that’s not what this chapter is about.
This chapter is about the Variability Hypothesis, which
“originated in the early nineteenth century with Johann Meckel,
      who argued that males have a greater range of ability than females,
      especially in intelligence. In other words, he believed that most
      geniuses and most mentally retarded people are men. Because he
      considered males to be the ’superior animal,’ Meckel concluded that
      females’ lack of variation was a sign of inferiority.”
From http://en.wikipedia.org/wiki/Variability_hypothesis.

I particularly like that last part, because I suspect that if it
    turns out that women are actually more variable, Meckel would take that as
    a sign of inferiority, too. Anyway, you will not be surprised to hear that
    the evidence for the Variability Hypothesis is weak.
Nevertheless, it came up in my class recently when we looked at data
    from the CDC’s Behavioral Risk Factor Surveillance System (BRFSS),
    specifically the self-reported heights of adult American men and women.
    The dataset includes responses from 154407 men and 254722 women. Here’s
    what we found:
	The average height for men is 178 cm; the average height for
        women is 163 cm. So men are taller, on average. No surprise
        there.

	For men the standard deviation is 7.7 cm; for women it is 7.3
        cm. So in absolute terms, men’s heights are more variable.

	But to compare variability between groups, it is more meaningful
        to use the coefficient of variation (CV), which is the standard
        deviation divided by the mean. It is a dimensionless measure of
        variability relative to scale. For men CV is 0.0433; for women it is
        0.0444.


That’s very close, so we could conclude that this dataset provides
    weak evidence against the Variability Hypothesis. But we can use Bayesian
    methods to make that conclusion more precise. And answering this question
    gives me a chance to demonstrate some techniques for working with large
    datasets.
I will proceed in a few steps:
	We’ll start with the simplest implementation, but it only works
        for datasets smaller than 1000 values.

	By computing probabilities under a log transform, we can scale
        up to the full size of the dataset, but the computation gets
        slow.

	Finally, we speed things up substantially with Approximate
        Bayesian Computation, also known as ABC.


You can download the code in this chapter from http://thinkbayes.com/variability.py.
    For more information see “Working with the code”.

Mean and standard deviation
In Chapter 9 we estimated two parameters
    simultaneously using a joint distribution. In this chapter we use the same
    method to estimate the parameters of a Gaussian distribution: the mean,
    mu, and the standard deviation,
    sigma.
For this problem, I define a Suite called Height that represents a map from each mu, sigma pair to its probability:
class Height(thinkbayes.Suite, thinkbayes.Joint):

    def __init__(self, mus, sigmas):

        pairs = [(mu, sigma) 
                 for mu in mus
                 for sigma in sigmas]

        thinkbayes.Suite.__init__(self, pairs)
mus is a sequence of possible
    values for mu; sigmas is a sequence of values for sigma. The prior distribution is uniform over
    all mu, sigma pairs.
The likelihood function is easy. Given hypothetical values of
    mu and sigma, we compute the likelihood of a particular
    value, x. That’s what EvalGaussianPdf does, so all we have to do is
    use it:
# class Height

    def Likelihood(self, data, hypo):
        x = data
        mu, sigma = hypo
        like = thinkbayes.EvalGaussianPdf(x, mu, sigma)
        return like
If you have studied statistics from a mathematical perspective, you
    know that when you evaluate a PDF, you get a probability density. In order
    to get a probability, you have to integrate probability densities over
    some range.
But for our purposes, we don’t need a probability; we just need
    something proportional to the probability we want. A probability density
    does that job nicely.
The hardest part of this problem turns out to be choosing
    appropriate ranges for mus and sigmas. If the range is too small, we omit some
    possibilities with non-negligible probability and get the wrong answer. If
    the range is too big, we get the right answer, but waste computational
    power.
So this is an opportunity to use classical estimation to make
    Bayesian techniques more efficient. Specifically, we can use classical
    estimators to find a likely location for mu and sigma,
    and use the standard errors of those estimates to choose a likely
    spread.
If the true parameters of the distribution are μ and σ, and we
    take a sample of n values, an estimator
    of μ is the sample mean, m.
And an estimator of σ is the sample
    standard variance, s.
The standard error of the estimated μ is  and the standard error of the estimated σ is .
Here’s the code to compute all that:
def FindPriorRanges(xs, num_points, num_stderrs=3.0):

    # compute m and s
    n = len(xs)
    m = numpy.mean(xs)
    s = numpy.std(xs)

    # compute ranges for m and s
    stderr_m = s / math.sqrt(n)
    mus = MakeRange(m, stderr_m, num_stderrs)

    stderr_s = s / math.sqrt(2 * (n-1))
    sigmas = MakeRange(s, stderr_s, num_stderrs)

    return mus, sigmas
xs is the dataset. num_points is the desired number of
    values in the range. num_stderrs is the width of the range on each side
    of the estimate, in number of standard errors.
The return value is a pair of sequences, mus and sigmas.
Here’s MakeRange:
def MakeRange(estimate, stderr, num_stderrs):
    spread = stderr * num_stderrs
    array = numpy.linspace(estimate-spread,
                        estimate+spread,
                        num_points)
    return array
numpy.linspace makes an array of
    equally spaced elements between estimate-spread and estimate+spread, including both.

Update
Finally here’s the code to make and update the suite:
    mus, sigmas = FindPriorRanges(xs, num_points)
    suite = Height(mus, sigmas)
    suite.UpdateSet(xs)
    print suite.MaximumLikelihood()
This process might seem bogus, because we use the data to choose the
    range of the prior distribution, and then use the data again to do the
    update. In general, using the same data twice is, in fact,
    bogus.
But in this case it is ok. Really. We use the data to choose the
    range for the prior, but only to avoid computing a lot of probabilities
    that would have been very small anyway. With num_stderrs=4, the range is big enough to cover all
    values with non-negligible likelihood. After that, making it bigger has no
    effect on the results.
In effect, the prior is uniform over all values of mu and sigma,
    but for computational efficiency we ignore all the values that don’t
    matter.

The posterior distribution of CV
Once we have the posterior joint distribution of mu and sigma,
    we can compute the distribution of CV for men and women, and then the
    probability that one exceeds the other.
To compute the distribution of CV, we enumerate
    pairs of mu and sigma:
def CoefVariation(suite):
    pmf = thinkbayes.Pmf()
    for (mu, sigma), p in suite.Items():
        pmf.Incr(sigma/mu, p)
    return pmf
Then we use thinkbayes.PmfProbGreater to compute the
    probability that men are more variable.
The analysis itself is simple, but there are two more issues we have
    to deal with:
	As the size of the dataset increases, we run into a series of
        computational problems due to the limitations of floating-point
        arithmetic.

	The dataset contains a number of extreme values that are almost
        certainly errors. We will need to make the estimation process robust
        in the presence of these outliers.


The following sections explain these problems and their
    solutions.

Underflow
If we select the first 100 values from the BRFSS dataset and run the
    analysis I just described, it runs without errors and we get posterior
    distributions that look reasonable.
If we select the first 1000 values and run the program again, we get
    an error in Pmf.Normalize:
ValueError: total probability is zero.
The problem is that we are using probability densities to compute
    likelihoods, and densities from continuous distributions tend to be small.
    And if you take 1000 small values and multiply them together, the result
    is very small. In this case it is so small it can’t be represented by a
    floating-point number, so it gets rounded down to zero, which is called
    underflow. And if all probabilities in
    the distribution are 0, it’s not a distribution any more.
A possible solution is to renormalize the Pmf after each update, or
    after each batch of 100. That would work, but it would be slow.
A better alternative is to compute likelihoods under a log
    transform. That way, instead of multiplying small values, we can add up
    log likelihoods. Pmf provides methods
    Log, LogUpdateSet and Exp to make this process easy.
Log computes the log of the
    probabilities in a Pmf:
# class Pmf

    def Log(self):
        m = self.MaxLike()
        for x, p in self.d.iteritems():
            if p:
                self.Set(x, math.log(p/m))
            else:
                self.Remove(x)
Before applying the log transform Log uses MaxLike to find m, the highest probability in the Pmf. It divide
    all probabilities by m, so the highest
    probability gets normalized to 1, which yields a log of 0. The other log
    probabilities are all negative. If there are any values in the Pmf with
    probability 0, they are removed.
While the Pmf is under a log transform, we can’t use Update, UpdateSet, or Normalize. The result would be nonsensical; if
    you try, Pmf raises an exception. Instead, we have to use LogUpdate and LogUpdateSet.
Here’s the implementation of LogUpdateSet:
# class Suite

    def LogUpdateSet(self, dataset):
        for data in dataset:
            self.LogUpdate(data)
LogUpdateSet loops through the
    data and calls LogUpdate:
# class Suite

    def LogUpdate(self, data):
        for hypo in self.Values():
            like = self.LogLikelihood(data, hypo)
            self.Incr(hypo, like)
LogUpdate is just like Update except that it calls LogLikelihood instead of Likelihood, and Incr instead of Mult.
Using log-likelihoods avoids the problem with underflow, but while
    the Pmf is under the log transform, there’s not much we can do with it. We
    have to use Exp to invert the
    transform:
# class Pmf

    def Exp(self):
        m = self.MaxLike()
        for x, p in self.d.iteritems():
            self.Set(x, math.exp(p-m))
If the log-likelihoods are large negative numbers, the resulting
    likelihoods might underflow. So Exp
    finds the maximum log-likelihood, m,
    and shifts all the likelihoods up by m.
    The resulting distribution has a maximum likelihood of 1. This process
    inverts the log transform with minimal loss of precision.

Log-likelihood
Now all we need is LogLikelihood.
# class Height

    def LogLikelihood(self, data, hypo):
        x = data
        mu, sigma = hypo
        loglike = scipy.stats.norm.logpdf(x, mu, sigma)
        return loglike
norm.logpdf computes the
    log-likelihood of the Gaussian PDF.
Here’s what the whole update process looks like:
    suite.Log()
    suite.LogUpdateSet(xs)
    suite.Exp()
    suite.Normalize()
To review, Log puts the suite
    under a log transform. LogUpdateSet
    calls LogUpdate, which calls LogLikelihood. LogUpdate uses Pmf.Incr, because adding a log-likelihood is the
    same as multiplying by a likelihood.
After the update, the log-likelihoods are large negative numbers, so
    Exp shifts them up before inverting the
    transform, which is how we avoid underflow.
Once the suite is transformed back, the probabilities are “linear”
    again, which means “not logarithmic”, so we can use Normalize again.
Using this algorithm, we can process the entire dataset without
    underflow, but it is still slow. On my computer it might take an hour. We
    can do better.

A little optimization
This section uses math and computational optimization to speed
    things up by a factor of 100. But the following section presents an
    algorithm that is even faster. So if you want to get right to the good
    stuff, feel free to skip this section.
Suite.LogUpdateSet calls LogUpdate once for each data point. We can speed
    it up by computing the log-likelihood of the entire dataset at
    once.
We’ll start with the Gaussian PDF:

and compute the log (dropping the constant term):

Given a sequence of values, xi, the total log-likelihood
    is

Pulling out the terms that don’t depend on i, we get

which we can translate into Python:
# class Height

    def LogUpdateSetFast(self, data):
        xs = tuple(data)
        n = len(xs)

        for hypo in self.Values():
            mu, sigma = hypo
            total = Summation(xs, mu)
            loglike = -n * math.log(sigma) - total / 2 / sigma**2
            self.Incr(hypo, loglike)
By itself, this would be a small improvement, but it creates an
    opportunity for a bigger one. Notice that the summation only depends on
    mu, not sigma, so we only have to compute it once for
    each value of mu.
To avoid recomputing, I factor out a function that computes the
    summation, and memoize it so it stores
    previously computed results in a dictionary (see http://en.wikipedia.org/wiki/Memoization):
def Summation(xs, mu, cache={}):
    try:
        return cache[xs, mu]
    except KeyError:
        ds = [(x-mu)**2 for x in xs]
        total = sum(ds)
        cache[xs, mu] = total
        return total
cache stores previously computed
    sums. The try statement returns a
    result from the cache if possible; otherwise it computes the summation,
    then caches and returns the result.
The only catch is that we can’t use a list as a key in the cache,
    because it is not a hashable type. That’s why LogUpdateSetFast converts the dataset to a
    tuple.
This optimization speeds up the computation by about a factor of
    100, processing the entire dataset (154407 men and
    254722 women) in less than a minute on my not-very-fast
    computer.

ABC
But maybe you don’t have that kind of time. In that case,
    Approximate Bayesian Computation (ABC) might be the way to go. The
    motivation behind ABC is that the likelihood of any particular dataset
    is:
	Very small, especially for large datasets, which is why we had
        to use the log transform,

	Expensive to compute, which is why we had to do so much
        optimization, and

	Not really what we want anyway.


We don’t really care about the likelihood of seeing the exact
    dataset we saw. Especially for continuous variables, we care about the
    likelihood of seeing any dataset like the one we saw.
For example, in the Euro problem, we don’t care about the order of
    the coin flips, only the total number of heads and tails. And in the
    locomotive problem, we don’t care about which particular trains were seen,
    only the number of trains and the maximum of the serial numbers.
Similarly, in the BRFSS sample, we don’t really want to know the
    probability of seeing one particular set of values (especially since there
    are hundreds of thousands of them). It is more relevant to ask, “If we
    sample 100,000 people from a population with hypothetical values of
    μ and σ,
    what would be the chance of collecting a sample with the observed mean and
    variance?”
For samples from a Gaussian distribution, we can answer this
    question efficiently because we can find the distribution of the sample
    statistics analytically. In fact, we already did it when we computed the
    range of the prior.
If you draw n values from a
    Gaussian distribution with parameters μ
    and σ, and compute the sample mean,
    m, the distribution of m is Gaussian with parameters μ and .
Similarly, the distribution of the sample standard deviation,
    s, is Gaussian with parameters σ and .
We can use these sample distributions to compute the
    likelihood of the sample statistics, m
    and s, given hypothetical values for
    μ and σ.
    Here’s a new version of LogUpdateSet that does it:
    def LogUpdateSetABC(self, data):
        xs = data
        n = len(xs)

        # compute sample statistics
        m = numpy.mean(xs)
        s = numpy.std(xs)

        for hypo in sorted(self.Values()):
            mu, sigma = hypo

            # compute log likelihood of m, given hypo
            stderr_m = sigma / math.sqrt(n)
            loglike = EvalGaussianLogPdf(m, mu, stderr_m)

            #compute log likelihood of s, given hypo
            stderr_s = sigma / math.sqrt(2 * (n-1))
            loglike += EvalGaussianLogPdf(s, sigma, stderr_s)

            self.Incr(hypo, loglike)
On my computer this function processes the entire dataset in about a
    second, and the result agrees with the exact result with about 5 digits of
    precision.

Robust estimation
We are almost ready to look at results, but we have one more problem
    to deal with. There are a number of outliers in this dataset that are
    almost certainly errors. For example, there are three adults with reported
    height of 61 cm, which would place them among the shortest living adults
    in the world. At the other end, there are four women with reported height
    229 cm, just short of the tallest women in the world.
It is not impossible that these values are correct, but it is
    unlikely, which makes it hard to know how to deal with them. And we have
    to get it right, because these extreme values have a disproportionate
    effect on the estimated variability.
Because ABC is based on summary statistics, rather than the entire
    dataset, we can make it more robust by choosing summary statistics that
    are robust in the presence of outliers. For example, rather than use the
    sample mean and standard deviation, we could use the median and
    inter-quartile range (IQR), which is the difference between the 25th and
    75th percentiles.
More generally, we could compute an inter-percentile range (IPR)
    that spans any given fraction of the distribution, p:
def MedianIPR(xs, p):
    cdf = thinkbayes.MakeCdfFromList(xs)
    median = cdf.Percentile(50)

    alpha = (1-p) / 2
    ipr = cdf.Value(1-alpha) - cdf.Value(alpha)
    return median, ipr
xs is a sequence of values.
    p is the desired range; for example,
    p=0.5 yields the inter-quartile
    range.
MedianIPR works by computing the
    CDF of xs, then extracting the median
    and the difference between two percentiles.
We can convert from ipr to an
    estimate of sigma using the Gaussian
    CDF to compute the fraction of the distribution covered by a given number
    of standard deviations. For example, it is a well-known rule of thumb that
    68% of a Gaussian distribution falls within one standard deviation of the
    mean, which leaves 16% in each tail. If we compute the range between the
    16th and 84th percentiles, we expect the result to be 2 * sigma. So we can estimate sigma by computing the 68% IPR and dividing by
    2.
More generally we could use any number of sigmas. MedianS performs the more general version of
    this computation:
def MedianS(xs, num_sigmas):
    half_p = thinkbayes.StandardGaussianCdf(num_sigmas) - 0.5

    median, ipr = MedianIPR(xs, half_p * 2)
    s = ipr / 2 / num_sigmas

    return median, s
Again, xs is the sequence of
    values; num_sigmas is the
    number of standard deviations the results should be based on. The result
    is median, which estimates μ, and s, which
    estimates σ.
Finally, in LogUpdateSetABC we
    can replace the sample mean and standard deviation with median and s.
    And that pretty much does it.
It might seem odd that we are using observed percentiles to estimate
    μ and σ,
    but it is an example of the flexibility of the Bayesian approach. In
    effect we are asking, “Given hypothetical values for μ and σ, and a
    sampling process that has some chance of introducing errors, what is the
    likelihood of generating a given set of sample statistics?”
We are free to choose any sample statistics we like, up to a point:
    μ and σ
    determine the location and spread of a distribution, so we need to choose
    statistics that capture those characteristics. For example, if we chose
    the 49th and 51st percentiles, we would get very little information about
    spread, so it would leave the estimate of σ relatively unconstrained by the data. All values
    of sigma would have nearly the same
    likelihood of producing the observed values, so the posterior distribution
    of sigma would look a lot like the
    prior.

Who is more variable?
Finally we are ready to answer the question we started with: is the
    coefficient of variation greater for men than for women?
Using ABC based on the median and IPR with num_sigmas=1, I computed posterior joint
    distributions for mu and sigma. Figures 10-1 and 10-2 show the results as a contour plot with
    mu on the x-axis, sigma on the y-axis, and probability on the
    z-axis.
Figure 10-1. Contour plot of the posterior joint distribution of mean and
      standard deviation of height for men in the U.S.

Figure 10-2. Contour plot of the posterior joint distribution of mean and
      standard deviation of height for women in the U.S.

For each joint distribution, I computed the posterior distribution
    of CV. Figure 10-3 shows these distributions for
    men and women. The mean for men is 0.0410; for women it is 0.0429. Since
    there is no overlap between the distributions, we conclude with near
    certainty that women are more variable in height than men.
Figure 10-3. Posterior distributions of CV for men and women, based on robust
      estimators.

So is that the end of the Variability Hypothesis? Sadly, no. It
    turns out that this result depends on the choice of the inter-percentile
    range. With num_sigmas=1,
    we conclude that women are more variable, but with num_sigmas=2 we conclude with equal
    confidence that men are more variable.
The reason for the difference is that there are more men of short
    stature, and their distance from the mean is greater.
So our evaluation of the Variability Hypothesis depends on the
    interpretation of “variability.” With num_sigmas=1 we focus on people near the mean. As
    we increase num_sigmas, we
    give more weight to the extremes.
To decide which emphasis is appropriate, we would need a more
    precise statement of the hypothesis. As it is, the Variability Hypothesis
    may be too vague to evaluate.
Nevertheless, it helped me demonstrate several new ideas and, I hope
    you agree, it makes an interesting example.

Discussion
There are two ways you might think of ABC. One interpretation is
    that it is, as the name suggests, an approximation that is faster to
    compute than the exact value.
But remember that Bayesian analysis is always based on modeling
    decisions, which implies that there is no “exact” solution. For any
    interesting physical system there are many possible models, and each model
    yields different results. To interpret the results, we have to evaluate
    the models.
So another interpretation of ABC is that it represents an
    alternative model of the likelihood. When we compute , we are asking “What is the likelihood of the data
    under a given hypothesis?”
For large datasets, the likelihood of the data is very small, which
    is a hint that we might not be asking the right question. What we really
    want to know is the likelihood of any outcome like the data, where the
    definition of “like” is yet another modeling decision.
The underlying idea of ABC is that two datasets are alike if they
    yield the same summary statistics. But in some cases, like the example in
    this chapter, it is not obvious which summary statistics to
    choose.
You can download the code in this chapter from http://thinkbayes.com/variability.py.
    For more information see “Working with the code”.

Exercises
Exercise 10-1. 
An “effect size” is a statistic intended to measure the
        difference between two groups (see http://en.wikipedia.org/wiki/Effect_size).
For example, we could use data from the BRFSS to estimate the
        difference in height between men and women. By sampling values from
        the posterior distributions of μ and
        σ, we could generate the posterior
        distribution of this difference.
But it might be better to use a dimensionless measure of effect
        size, rather than a difference measured in cm. One option is to use
        divide through by the standard deviation (similar to what we did with
        the coefficient of variation).
If the parameters for Group 1 are , and the parameters for Group 2 are
        , the dimensionless effect size is

Write a function that takes joint distributions of mu and sigma for two groups and returns the
        posterior distribution of effect size.
Hint: if enumerating all pairs from the two distributions takes
        too long, consider random sampling.



Chapter 11. Hypothesis Testing
Back to the Euro problem
In “The Euro problem” I presented a problem from MacKay’s
    Information Theory, Inference, and Learning
    Algorithms:
A statistical statement appeared in “The Guardian” on Friday
      January 4, 2002:
When spun on edge 250 times, a Belgian one-euro coin came up
        heads 140 times and tails 110. ‘It looks very suspicious to me,’ said
        Barry Blight, a statistics lecturer at the London School of Economics.
        ‘If the coin were unbiased, the chance of getting a result as extreme
        as that would be less than 7%.’

But do these data give evidence that the coin is biased rather
      than fair?

We estimated the probability that the coin would land face up, but
    we didn’t really answer MacKay’s question: Do the data give evidence that
    the coin is biased?
In Chapter 4 I proposed that data are in favor of a
    hypothesis if the data are more likely under the hypothesis than under the
    alternative or, equivalently, if the Bayes factor is greater than
    1.
In the Euro example, we have two hypotheses to consider: I’ll use
    F for the hypothesis that the coin is
    fair and B for the hypothesis that it is
    biased.
If the coin is fair, it is easy to compute the likelihood of the
    data, . In fact, we already wrote the function that does
    it.
    def Likelihood(self, data, hypo):
        x = hypo / 100.0
        head, tails = data
        like = x**heads * (1-x)**tails
        return like
To use it we can create a Euro
    suite and invoke Likelihood:
    suite = Euro()
    likelihood = suite.Likelihood(data, 50)
 is , which doesn’t tell us much except that the
    probability of seeing any particular dataset is very small. It takes two
    likelihoods to make a ratio, so we also have to compute .
It is not obvious how to compute the likelihood of B, because it’s not obvious what “biased”
    means.
One possibility is to cheat and look at the data before we define
    the hypothesis. In that case we would say that “biased” means that the
    probability of heads is 140/250.
    actual_percent = 100.0 * 140 / 250
    likelihood = suite.Likelihood(data, actual_percent)
This version of B I call B_cheat; the likelihood of b_cheat is  and the likelihood ratio is 6.1. So we would say that
    the data are evidence in favor of this version of B.
But using the data to formulate the hypothesis is obviously bogus.
    By that definition, any dataset would be evidence in favor of B, unless the observed percentage of heads is
    exactly 50%.

Making a fair comparison
To make a legitimate comparison, we have to define B without looking at the data. So let’s try a
    different definition. If you inspect a Belgian Euro coin, you might notice
    that the “heads” side is more prominent than the “tails” side. You might
    expect the shape to have some effect on x, but be unsure whether it makes heads more or
    less likely. So you might say “I think the coin is biased so that
    x is either 0.6 or 0.4, but I am not sure
    which.”
We can think of this version, which I’ll call B_two as a hypothesis made up of
    two sub-hypotheses. We can compute the likelihood for each sub-hypothesis
    and then compute the average likelihood.
    like40 = suite.Likelihood(data, 40)
    like60 = suite.Likelihood(data, 60)
    likelihood = 0.5 * like40 + 0.5 * like60
The likelihood ratio (or Bayes factor) for b_two is 1.3, which means the data provide weak
    evidence in favor of b_two.
More generally, suppose you suspect that the coin is biased, but you
    have no clue about the value of x. In
    that case you might build a Suite, which I call b_uniform, to represent sub-hypotheses from 0 to
    100.
    b_uniform = Euro(xrange(0, 101))
    b_uniform.Remove(50)
    b_uniform.Normalize()
I initialize b_uniform with values from 0 to 100. I removed the
    sub-hypothesis that x is 50%, because if
    x is 50% the coin is fair, but it has
    almost no effect on the result whether you remove it or not.
To compute the likelihood of b_uniform we compute the likelihood of each
    sub-hypothesis and accumulate a weighted average.
def SuiteLikelihood(suite, data):
    total = 0
    for hypo, prob in suite.Items():
        like = suite.Likelihood(data, hypo)
        total += prob * like
    return total
The likelihood ratio for b_uniform is 0.47, which means that the data are
    weak evidence against b_uniform, compared to F.
If you think about the computation performed by SuiteLikelihood, you might notice
    that it is similar to an update. To refresh your memory, here’s the
    Update function:
    def Update(self, data):
        for hypo in self.Values():
            like = self.Likelihood(data, hypo)
            self.Mult(hypo, like)
        return self.Normalize()
And here’s Normalize:
    def Normalize(self):
        total = self.Total()
        
        factor = 1.0 / total
        for x in self.d:
            self.d[x] *= factor

        return total
The return value from Normalize
    is the total of the probabilities in the Suite, which is the average of
    the likelihoods for the sub-hypotheses, weighted by the prior
    probabilities. And Update passes this
    value along, so instead of using SuiteLikelihood, we could compute the likelihood
    of b_uniform like
    this:
    likelihood = b_uniform.Update(data)

The triangle prior
In Chapter 4 we also considered a triangle-shaped
    prior that gives higher probability to values of x near 50%. If we think of this prior as a suite of
    sub-hypotheses, we can compute its likelihood like this:
    b_triangle = TrianglePrior()
    likelihood = b_triangle.Update(data)
The likelihood ratio for b_triangle is 0.84, compared to F, so again we would say that the data are weak
    evidence against B.
The following table shows the priors we have considered, the
    likelihood of each, and the likelihood ratio (or Bayes factor) relative to
    F.
	Hypothesis 
	 Likelihood 

	 Bayes 
Factor

	F 
	 5.5 
	 – 

	B_cheat 
	 34 
	 6.1 

	B_two 
	 7.4 
	 1.3 

	B_uniform 
	 2.6 
	 0.47 

	B_triangle 
	 4.6 
	 0.84 


Depending on which definition we choose, the data might provide
    evidence for or against the hypothesis that the coin is biased, but in
    either case it is relatively weak evidence.
In summary, we can use Bayesian hypothesis testing to compare the
    likelihood of F and B, but we have to do some work to specify precisely
    what B means. This specification depends
    on background information about coins and their behavior when spun, so
    people could reasonably disagree about the right definition.
My presentation of this example follows David MacKay’s discussion,
    and comes to the same conclusion. You can download the code I used in this
    chapter from http://thinkbayes.com/euro3.py.
    For more information see “Working with the code”.

Discussion
The Bayes factor for B_uniform is 0.47, which means that the data
    provide evidence against this hypothesis, compared to F. In the previous section I characterized this
    evidence as “weak,” but didn’t say why.
Part of the answer is historical. Harold Jeffreys, an early
    proponent of Bayesian statistics, suggested a scale for interpreting Bayes
    factors:
	 Bayes 
Factor
	 Strength 

	1 – 3 
	 Barely worth mentioning 

	3 – 10 
	 Substantial 

	10 – 30 
	 Strong 

	30 – 100 
	 Very strong 

	 100 
	 Decisive 


In the example, the Bayes factor is 0.47 in favor of B_uniform, so it is 2.1 in favor is
    F, which Jeffreys would consider “barely
    worth mentioning.” Other authors have suggested variations on the wording.
    To avoid arguing about adjectives, we could think about odds
    instead.
If your prior odds are 1:1, and you see evidence with Bayes factor
    2, your posterior odds are 2:1. In terms of probability, the data changed
    your degree of belief from 50% to 66%. For most real world problems, that
    change would be small relative to modeling errors and other sources of
    uncertainty.
On the other hand, if you had seen evidence with Bayes factor 100,
    your posterior odds would be 100:1 or more than 99%. Whether or not you
    agree that such evidence is “decisive,” it is certainly strong.

Exercises
Exercise 11-1. 
Some people believe in the existence of extra-sensory perception
        (ESP); for example, the ability of some people to guess the value of
        an unseen playing card with probability better than chance.
What is your prior degree of belief in this kind of ESP? Do you
        think it is as likely to exist as not? Or are you more skeptical about
        it? Write down your prior odds.
Now compute the strength of the evidence it would take to
        convince you that ESP is at least 50% likely to exist. What Bayes
        factor would be needed to make you 90% sure that ESP exists?

Exercise 11-2. 
Suppose that your answer to the previous question is 1000; that
        is, evidence with Bayes factor 1000 in favor of ESP would be
        sufficient to change your mind.
Now suppose that you read a paper in a respectable peer-reviewed
        scientific journal that presents evidence with Bayes factor 1000 in
        favor of ESP. Would that change your mind?
If not, how do you resolve the apparent contradiction? You might
        find it helpful to read about David Hume’s article, “Of Miracles,” at
        http://en.wikipedia.org/wiki/Of_Miracles.



Chapter 12. Evidence
Interpreting SAT scores
Suppose you are the Dean of Admission at a small engineering college
    in Massachusetts, and you are considering two candidates, Alice and Bob,
    whose qualifications are similar in many ways, with the exception that
    Alice got a higher score on the Math portion of the SAT, a standardized
    test intended to measure preparation for college-level work in
    mathematics.
If Alice got 780 and Bob got a 740 (out of a possible 800), you
    might want to know whether that difference is evidence that Alice is
    better prepared than Bob, and what the strength of that evidence
    is.
Now in reality, both scores are very good, and both candidates are
    probably well prepared for college math. So the real Dean of Admission
    would probably suggest that we choose the candidate who best demonstrates
    the other skills and attitudes we look for in students. But as an example
    of Bayesian hypothesis testing, let’s stick with a narrower question: “How
    strong is the evidence that Alice is better prepared than Bob?”
To answer that question, we need to make some modeling decisions.
    I’ll start with a simplification I know is wrong; then we’ll come back and
    improve the model. I pretend, temporarily, that all SAT questions are
    equally difficult. Actually, the designers of the SAT choose questions
    with a range of difficulty, because that improves the ability to measure
    statistical differences between test-takers.
But if we choose a model where all questions are equally difficult,
    we can define a characteristic, p_correct, for each test-taker, which is the
    probability of answering any question correctly. This simplification makes
    it easy to compute the likelihood of a given score.

The scale
In order to understand SAT scores, we have to understand the scoring
    and scaling process. Each test-taker gets a raw score based on the number
    of correct and incorrect questions. The raw score is converted to a scaled
    score in the range 200–800.
In 2009, there were 54 questions on the math SAT. The raw score for
    each test-taker is the number of questions answered correctly minus a
    penalty of  point for each question answered incorrectly.
The College Board, which administers the SAT, publishes the map from
    raw scores to scaled scores. I have downloaded that data and wrapped it in
    an Interpolator object that provides a forward lookup (from raw score to
    scaled) and a reverse lookup (from scaled score to raw).
You can download the code for this example from http://thinkbayes.com/sat.py.
    For more information see “Working with the code”.

The prior
The College Board also publishes the distribution of scaled scores
    for all test-takers. If we convert each scaled score to a raw score, and
    divide by the number of questions, the result is an estimate of p_correct. So we can use the
    distribution of raw scores to model the prior distribution of p_correct.
Here is the code that reads and processes the data:
class Exam(object):

    def __init__(self):
        self.scale = ReadScale()
        scores = ReadRanks()
        score_pmf = thinkbayes.MakePmfFromDict(dict(scores))
        self.raw = self.ReverseScale(score_pmf)
        self.prior = DivideValues(raw, 54)
Exam encapsulates the information
    we have about the exam. ReadScale and
    ReadRanks read files and return objects
    that contain the data: self.scale is
    the Interpolator that converts from raw
    to scaled scores and back; scores is a
    list of (score, frequency) pairs.
score_pmf is the Pmf
    of scaled scores. self.raw is the Pmf
    of raw scores, and self.prior is the
    Pmf of p_correct.
Figure 12-1 shows the prior distribution of
    p_correct. This
    distribution is approximately Gaussian, but it is compressed at the
    extremes. By design, the SAT has the most power to discriminate between
    test-takers within two standard deviations of the mean, and less power
    outside that range.
Figure 12-1. Prior distribution of p_correct for SAT test-takers.

For each test-taker, I define a Suite called Sat that represents the distribution of p_correct. Here’s the
    definition:
class Sat(thinkbayes.Suite):

    def __init__(self, exam, score):
        thinkbayes.Suite.__init__(self)

        self.exam = exam
        self.score = score

        # start with the prior distribution
        for p_correct, prob in exam.prior.Items():
            self.Set(p_correct, prob)

        # update based on an exam score
        self.Update(score)
__init__ takes an
    Exam object and a scaled score. It makes a copy of the prior distribution
    and then updates itself based on the exam score.
As usual, we inherit Update from
    Suite and provide Likelihood:
    def Likelihood(self, data, hypo):
        p_correct = hypo
        score = data

        k = self.exam.Reverse(score)
        n = self.exam.max_score
        like = thinkbayes.EvalBinomialPmf(k, n, p_correct)
        return like
hypo is a hypothetical value of
    p_correct, and data is a scaled score.
To keep things simple, I interpret the raw score as the number of
    correct answers, ignoring the penalty for wrong answers. With this
    simplification, the likelihood is given by the binomial distribution,
    which computes the probability of k
    correct responses out of n
    questions.

Posterior
Figure 12-2 shows the posterior
    distributions of p_correct
    for Alice and Bob based on their exam scores. We can see that they
    overlap, so it is possible that p_correct is actually higher for Bob, but it seems
    unlikely.
Figure 12-2. Posterior distributions of p_correct for Alice and Bob.

Which brings us back to the original question, “How strong is the
    evidence that Alice is better prepared than Bob?” We can use the posterior
    distributions of p_correct
    to answer this question.
To formulate the question in terms of Bayesian hypothesis testing, I
    define two hypotheses:
	A: p_correct is higher for Alice than for
        Bob.

	B: p_correct is higher for Bob than for
        Alice.


To compute the likelihood of A, we
    can enumerate all pairs of values from the posterior distributions and add
    up the total probability of the cases where p_correct is higher for Alice than for Bob. And we
    already have a function, thinkbayes.PmfProbGreater, that does that.
So we can define a Suite that computes the posterior probabilities
    of A and B:
class TopLevel(thinkbayes.Suite):

    def Update(self, data):
        a_sat, b_sat = data

        a_like = thinkbayes.PmfProbGreater(a_sat, b_sat)
        b_like = thinkbayes.PmfProbLess(a_sat, b_sat)
        c_like = thinkbayes.PmfProbEqual(a_sat, b_sat)

        a_like += c_like / 2
        b_like += c_like / 2

        self.Mult('A', a_like)
        self.Mult('B', b_like)

        self.Normalize()
Usually when we define a new Suite, we inherit Update and provide Likelihood. In this case I override Update, because it is easier to evaluate the
    likelihood of both hypotheses at the same time.
The data passed to Update are Sat
    objects that represent the posterior distributions of p_correct.
a_like is the total
    probability that p_correct
    is higher for Alice; b_like is that probability that it is higher for
    Bob.
c_like is the
    probability that they are “equal,” but this equality is an artifact of the
    decision to model p_correct with a set of discrete values. If we use
    more values, c_like is
    smaller, and in the extreme, if p_correct is continuous, c_like is zero. So I treat c_like as a kind of round-off error and split it
    evenly between a_like and
    b_like.
Here is the code that creates TopLevel and updates it:
    exam = Exam()
    a_sat = Sat(exam, 780)
    b_sat = Sat(exam, 740)

    top = TopLevel('AB')
    top.Update((a_sat, b_sat))
    top.Print()
The likelihood of A is 0.79 and the
    likelihood of B is 0.21. The likelihood
    ratio (or Bayes factor) is 3.8, which means that these test scores are
    evidence that Alice is better than Bob at answering SAT questions. If we
    believed, before seeing the test scores, that A and B were
    equally likely, then after seeing the scores we should believe that the
    probability of A is 79%, which means
    there is still a 21% chance that Bob is actually better
    prepared.

A better model
Remember that the analysis we have done so far is based on the
    simplification that all SAT questions are equally difficult. In reality,
    some are easier than others, which means that the difference between Alice
    and Bob might be even smaller.
But how big is the modeling error? If it is small, we conclude that
    the first model—based on the simplification that all questions are equally
    difficult—is good enough. If it’s large, we need a better model.
In the next few sections, I develop a better model and discover
    (spoiler alert!) that the modeling error is small. So if you are satisfied
    with the simple model, you can skip to the next chapter. If you want to
    see how the more realistic model works, read on...
	Assume that each test-taker has some degree of efficacy, which measures their ability to
        answer SAT questions.

	Assume that each question has some level of difficulty.

	Finally, assume that the chance that a test-taker answers a
        question correctly is related to efficacy and difficulty according to this
        function:
def ProbCorrect(efficacy, difficulty, a=1):
    return 1 / (1 + math.exp(-a * (efficacy - difficulty)))


This function is a simplified version of the curve used in item response theory, which you can read about at
    http://en.wikipedia.org/wiki/Item_response_theory.
    efficacy and difficulty are considered to be on the same
    scale, and the probability of getting a question right depends only on the
    difference between them.
When efficacy and difficulty are equal, the probability of getting
    the question right is 50%. As efficacy
    increases, this probability approaches 100%. As it decreases (or as
    difficulty increases), the probability
    approaches 0%.
Given the distribution of efficacy across test-takers and the distribution
    of difficulty across questions, we can
    compute the expected distribution of raw scores. We’ll do that in two
    steps. First, for a person with given efficacy, we’ll compute the distribution of raw
    scores.
def PmfCorrect(efficacy, difficulties):
    pmf0 = thinkbayes.Pmf([0])

    ps = [ProbCorrect(efficacy, diff) for diff in difficulties]
    pmfs = [BinaryPmf(p) for p in ps]
    dist = sum(pmfs, pmf0)
    return dist
difficulties is a list of
    difficulties, one for each question. ps
    is a list of probabilities, and pmfs is
    a list of two-valued Pmf objects; here’s the function that makes
    them:
def BinaryPmf(p):
    pmf = thinkbayes.Pmf()
    pmf.Set(1, p)
    pmf.Set(0, 1-p)
    return pmf
dist is the sum of these Pmfs.
    Remember from “Addends” that when we add up Pmf objects,
    the result is the distribution of the sums. In order to use Python’s
    sum to add up Pmfs, we have to provide
    pmf0 which is the identity for Pmfs, so
    pmf + pmf0 is always pmf.
If we know a person’s efficacy, we can compute their distribution of
    raw scores. For a group of people with a different efficacies, the
    resulting distribution of raw scores is a mixture. Here’s the code that
    computes the mixture:
# class Exam:

    def MakeRawScoreDist(self, efficacies):
        pmfs = thinkbayes.Pmf()
        for efficacy, prob in efficacies.Items():
            scores = PmfCorrect(efficacy, self.difficulties)
            pmfs.Set(scores, prob)

        mix = thinkbayes.MakeMixture(pmfs)
        return mix
MakeRawScoreDist takes efficacies, which is a Pmf that represents the
    distribution of efficacy across test-takers. I assume it is Gaussian with
    mean 0 and standard deviation 1.5. This choice is mostly arbitrary. The
    probability of getting a question correct depends on the difference
    between efficacy and difficulty, so we can choose the units of efficacy
    and then calibrate the units of difficulty accordingly.
pmfs is a meta-Pmf that contains
    one Pmf for each level of efficacy, and maps to the fraction of
    test-takers at that level. MakeMixture
    takes the meta-pmf and computes the distribution of the mixture (see “Mixtures”).

Calibration
If we were given the distribution of difficulty, we could use
    MakeRawScoreDist to
    compute the distribution of raw scores. But for us the problem is the
    other way around: we are given the distribution of raw scores and we want
    to infer the distribution of difficulty.
I assume that the distribution of difficulty is uniform with
    parameters center and width. MakeDifficulties makes a list of difficulties
    with these parameters.
def MakeDifficulties(center, width, n):
    low, high = center-width, center+width
    return numpy.linspace(low, high, n)
By trying out a few combinations, I found that center=-0.05 and width=1.8 yield a distribution of raw scores
    similar to the actual data, as shown in Figure 12-3.
So, assuming that the distribution of difficulty is uniform, its
    range is approximately -1.85 to
    1.75, given that efficacy is Gaussian
    with mean 0 and standard deviation 1.5.
The following table shows the range of ProbCorrect for test-takers at different levels
    of efficacy:
		 Difficulty
              

	Efficacy 
	 -1.85 
	 -0.05 
	 1.75 

	3.00 
	 0.99 
	 0.95 
	 0.78 

	1.50 
	 0.97 
	 0.82 
	 0.44 

	0.00 
	 0.86 
	 0.51 
	 0.15 

	-1.50 
	 0.59 
	 0.19 
	 0.04 

	-3.00 
	 0.24 
	 0.05 
	 0.01 


Someone with efficacy 3 (two standard deviations above the mean) has
    a 99% chance of answering the easiest questions on the exam, and a 78%
    chance of answering the hardest. On the other end of the range, someone
    two standard deviations below the mean has only a 24% chance of answering
    the easiest questions.
Figure 12-3. Actual distribution of raw scores and a model to fit it.


Posterior distribution of efficacy
Now that the model is calibrated, we can compute the posterior
    distribution of efficacy for Alice and Bob. Here is a version of the Sat
    class that uses the new model:
class Sat2(thinkbayes.Suite):

    def __init__(self, exam, score):
        self.exam = exam
        self.score = score

        # start with the Gaussian prior
        efficacies = thinkbayes.MakeGaussianPmf(0, 1.5, 3)
        thinkbayes.Suite.__init__(self, efficacies)

        # update based on an exam score
        self.Update(score)
Update invokes
    Likelihood, which computes
    the likelihood of a given test score for a hypothetical level of
    efficacy.
    def Likelihood(self, data, hypo):
        efficacy = hypo
        score = data
        raw = self.exam.Reverse(score)

        pmf = self.exam.PmfCorrect(efficacy)
        like = pmf.Prob(raw)
        return like
pmf is the distribution of raw
    scores for a test-taker with the given efficacy; like is the probability of the observed
    score.
Figure 12-4 shows the posterior
    distributions of efficacy for Alice and Bob. As expected, the location of
    Alice’s distribution is farther to the right, but again there is some
    overlap.
Figure 12-4. Posterior distributions of efficacy for Alice and Bob.

Using TopLevel again, we compare
    A, the hypothesis that Alice’s efficacy
    is higher, and B, the hypothesis that
    Bob’s is higher. The likelihood ratio is 3.4, a bit smaller than what we
    got from the simple model (3.8). So this model indicates that the data are
    evidence in favor of A, but a little
    weaker than the previous estimate.
If our prior belief is that A and
    B are equally likely, then in light of
    this evidence we would give A a posterior
    probability of 77%, leaving a 23% chance that Bob’s efficacy is
    higher.

Predictive distribution
The analysis we have done so far generates estimates for Alice and
    Bob’s efficacy, but since efficacy is not directly observable, it is hard
    to validate the results.
To give the model predictive power, we can use it to answer a
    related question: “If Alice and Bob take the math SAT again, what is the
    chance that Alice will do better again?”
We’ll answer this question in two steps:
	We’ll use the posterior distribution of efficacy to generate a
        predictive distribution of raw score for each test-taker.

	We’ll compare the two predictive distributions to compute the
        probability that Alice gets a higher score again.


We already have most of the code we need. To compute the predictive
    distributions, we can use MakeRawScoreDist again:
    exam = Exam()
    a_sat = Sat(exam, 780)
    b_sat = Sat(exam, 740)

    a_pred = exam.MakeRawScoreDist(a_sat)
    b_pred = exam.MakeRawScoreDist(b_sat)
Then we can find the likelihood that Alice does better on the second
    test, Bob does better, or they tie:
    a_like = thinkbayes.PmfProbGreater(a_pred, b_pred)
    b_like = thinkbayes.PmfProbLess(a_pred, b_pred)
    c_like = thinkbayes.PmfProbEqual(a_pred, b_pred)
The probability that Alice does better on the second exam is 63%,
    which means that Bob has a 37% chance of doing as well or better.
Notice that we have more confidence about Alice’s efficacy than we
    do about the outcome of the next test. The posterior odds are 3:1 that
    Alice’s efficacy is higher, but only 2:1 that Alice will do better on the
    next exam.

Discussion
We started this chapter with the question, “How strong is the
    evidence that Alice is better prepared than Bob?” On the face of it, that
    sounds like we want to test two hypotheses: either Alice is more prepared
    or Bob is.
But in order to compute likelihoods for these hypotheses, we have to
    solve an estimation problem. For each test-taker we have to find the
    posterior distribution of either p_correct or efficacy.
Values like this are called nuisance
    parameters because we don’t care what they are, but we have to
    estimate them to answer the question we care about.
One way to visualize the analysis we did in this chapter is to plot
    the space of these parameters. thinkbayes.MakeJoint takes two Pmfs, computes their
    joint distribution, and returns a joint pmf of each possible pair of
    values and its probability.
def MakeJoint(pmf1, pmf2):
    joint = Joint()
    for v1, p1 in pmf1.Items():
        for v2, p2 in pmf2.Items():
            joint.Set((v1, v2), p1 * p2)
    return joint
This function assumes that the two distributions are
    independent.
Figure 12-5 shows the joint posterior
    distribution of p_correct
    for Alice and Bob. The diagonal line indicates the part of the space where
    p_correct is the same for
    Alice and Bob. To the right of this line, Alice is more prepared; to the
    left, Bob is more prepared.
In TopLevel.Update, when we
    compute the likelihoods of A and
    B, we add up the probability mass on each
    side of this line. For the cells that fall on the line, we add up the
    total mass and split it between A and
    B.
The process we used in this chapter—estimating nuisance parameters
    in order to evaluate the likelihood of competing hypotheses—is a common
    Bayesian approach to problems like this.
Figure 12-5. Joint posterior distribution of p_correct for Alice and
      Bob.



Chapter 13. Simulation
In this chapter I describe my solution to a problem posed by a patient
  with a kidney tumor. I think the problem is important and relevant to
  patients with these tumors and doctors treating them.
And I think the solution is interesting because, although it is a
  Bayesian approach to the problem, the use of Bayes’s theorem is implicit. I
  present the solution and my code; at the end of the chapter I will explain
  the Bayesian part.
If you want more technical detail than I present here, you can read my
  paper on this work at http://arxiv.org/abs/1203.6890.
The Kidney Tumor problem
I am a frequent reader and occasional contributor to the
    online statistics forum at http://reddit.com/r/statistics.
    In November 2011, I read the following message:
“I have Stage IV Kidney Cancer and am trying to determine if the
      cancer formed before I retired from the military. ... Given the dates of
      retirement and detection is it possible to determine when there was a
      50/50 chance that I developed the disease? Is it possible to determine
      the probability on the retirement date? My tumor was 15.5 cm x 15 cm at
      detection. Grade II.”

I contacted the author of the message and got more information; I
    learned that veterans get different benefits if it is “more likely than
    not” that a tumor formed while they were in military service (among other
    considerations).
Because renal tumors grow slowly, and often do not cause symptoms,
    they are sometimes left untreated. As a result, doctors can observe the
    rate of growth for untreated tumors by comparing scans from the same
    patient at different times. Several papers have reported these growth
    rates.
I collected data from a paper by Zhang et al1. I contacted the authors to see if I could get raw data, but
    they refused on grounds of medical privacy. Nevertheless, I was able to
    extract the data I needed by printing one of their graphs and measuring it
    with a ruler.
They report growth rates in reciprocal doubling time (RDT), which is
    in units of doublings per year. So a tumor with  doubles in volume each year; with  it quadruples in the same time, and with
    , it halves. Figure 13-1 shows the
    distribution of RDT for 53 patients.
Figure 13-1. CDF of RDT in doublings per year.

The squares are the data points from the paper; the line is a model
    I fit to the data. The positive tail fits an exponential distribution
    well, so I used a mixture of two exponentials.

A simple model
It is usually a good idea to start with a simple model before trying
    something more challenging. Sometimes the simple model is sufficient for
    the problem at hand, and if not, you can use it to validate the more
    complex model.
For my simple model, I assume that tumors grow with a constant
    doubling time, and that they are three-dimensional in the sense that if
    the maximum linear measurement doubles, the volume is multiplied by
    eight.
I learned from my correspondent that the time between his discharge
    from the military and his diagnosis was 3291 days (about 9 years). So my
    first calculation was, “If this tumor grew at the median rate, how big
    would it have been at the date of discharge?”
The median volume doubling time reported by Zhang et al is 811 days.
    Assuming 3-dimensional geometry, the doubling time for a linear measure is
    three times longer.
    # time between discharge and diagnosis, in days 
    interval = 3291.0

    # doubling time in linear measure is doubling time in volume * 3
    dt = 811.0 * 3

    # number of doublings since discharge
    doublings = interval / dt

    # how big was the tumor at time of discharge (diameter in cm)
    d1 = 15.5
    d0 = d1 / 2.0 ** doublings
You can download the code in this chapter from http://thinkbayes.com/kidney.py.
    For more information see “Working with the code”.
The result, d0, is about 6 cm. So
    if this tumor formed after the date of discharge, it must have grown
    substantially faster than the median rate. Therefore I concluded that it
    is “more likely than not” that this tumor formed before the date of
    discharge.
In addition, I computed the growth rate that would be implied if
    this tumor had formed after the date of discharge. If we assume an initial
    size of 0.1 cm, we can compute the number of doublings to get to a final
    size of 15.5 cm:
    # assume an initial linear measure of 0.1 cm
    d0 = 0.1
    d1 = 15.5

    # how many doublings would it take to get from d0 to d1
    doublings = log2(d1 / d0)

    # what linear doubling time does that imply?
    dt = interval / doublings

    # compute the volumetric doubling time and RDT
    vdt = dt / 3
    rdt = 365 / vdt
dt is linear doubling time, so
    vdt is volumetric doubling time, and
    rdt is reciprocal doubling time.
The number of doublings, in linear measure, is 7.3, which implies an
    RDT of 2.4. In the data from Zhang et al, only 20% of tumors grew this
    fast during a period of observation. So again, I concluded that is “more
    likely than not” that the tumor formed prior to the date of
    discharge.
These calculations are sufficient to answer the question as posed,
    and on behalf of my correspondent, I wrote a letter explaining my
    conclusions to the Veterans’ Benefit Administration.
Later I told a friend, who is an oncologist, about my results. He
    was surprised by the growth rates observed by Zhang et al, and by what
    they imply about the ages of these tumors. He suggested that the results
    might be interesting to researchers and doctors.
But in order to make them useful, I wanted a more general model of
    the relationship between age and size.

A more general model
Given the size of a tumor at time of diagnosis, it would be most
    useful to know the probability that the tumor formed before any given
    date; in other words, the distribution of ages.
To find it, I run simulations of tumor growth to get the
    distribution of size conditioned on age. Then we can use a Bayesian
    approach to get the distribution of age conditioned on size.
The simulation starts with a small tumor and runs these
    steps:
	Choose a growth rate from the distribution of RDT.

	Compute the size of the tumor at the end of an interval.

	Record the size of the tumor at each interval.

	Repeat until the tumor exceeds the maximum relevant size.


For the initial size I chose 0.3 cm, because carcinomas smaller than
    that are less likely to be invasive and less likely to have the blood
    supply needed for rapid growth (see http://en.wikipedia.org/wiki/Carcinoma_in_situ).
I chose an interval of 245 days (about 8 months) because that is the
    median time between measurements in the data source.
For the maximum size I chose 20 cm. In the data source, the range of
    observed sizes is 1.0 to 12.0 cm, so we are extrapolating beyond the
    observed range at each end, but not by far, and not in a way likely to
    have a strong effect on the results.
The simulation is based on one big simplification: the growth rate
    is chosen independently during each interval, so it does not depend on
    age, size, or growth rate during previous intervals.
In “Serial Correlation” I review these assumptions and consider
    more detailed models. But first let’s look at some examples.
Figure 13-2 shows the size of simulated tumors as
    a function of age. The dashed line at 10 cm shows the range of ages for
    tumors at that size: the fastest-growing tumor gets there in 8 years; the
    slowest takes more than 35.
Figure 13-2. Simulations of tumor growth, size vs. time.

I am presenting results in terms of linear measurements, but the
    calculations are in terms of volume. To convert from one to the other,
    again, I use the volume of a sphere with the given diameter.

Implementation
Here is the kernel of the simulation:
def MakeSequence(rdt_seq, v0=0.01, interval=0.67, vmax=Volume(20.0)):
    seq = v0,
    age = 0

    for rdt in rdt_seq:
        age += interval
        final, seq = ExtendSequence(age, seq, rdt, interval)
        if final > vmax:
            break

    return seq
rdt_seq is an
    iterator that yields random values from the CDF of growth rate. v0 is the initial volume in mL. interval is the time step in years. vmax is the final volume corresponding to a
    linear measurement of 20 cm.
Volume converts from linear
    measurement in cm to volume in mL, based on the simplification that the
    tumor is a sphere:
def Volume(diameter, factor=4*math.pi/3):
    return factor * (diameter/2.0)**3
ExtendSequence computes the
    volume of the tumor at the end of the interval.
def ExtendSequence(age, seq, rdt, interval):
    initial = seq[-1]
    doublings = rdt * interval
    final = initial * 2**doublings
    new_seq = seq + (final,)
    cache.Add(age, new_seq, rdt)
    
    return final, new_seq
age is the age of the tumor at
    the end of the interval. seq is a tuple
    that contains the volumes so far. rdt
    is the growth rate during the interval, in doublings per year. interval is the size of the time step in
    years.
The return values are final, the
    volume of the tumor at the end of the interval, and new_seq, a new tuple containing the
    volumes in seq plus the new volume
    final.
Cache.Add records the age and
    size of each tumor at the end of each interval, as explained in the next
    section.

Caching the joint distribution
Here’s how the cache works.
class Cache(object):

    def __init__(self):
        self.joint = thinkbayes.Joint()
joint is a joint Pmf that records
    the frequency of each age-size pair, so it approximates the joint
    distribution of age and size.
At the end of each simulated interval, ExtendSequence calls Add:
# class Cache

    def Add(self, age, seq):
        final = seq[-1]
        cm = Diameter(final)
        bucket = round(CmToBucket(cm))
        self.joint.Incr((age, bucket))
Again, age is the age of the
    tumor, and seq is the sequence of
    volumes so far.
Before adding the new data to the joint distribution, we use
    Diameter to convert from volume to
    diameter in centimeters:
def Diameter(volume, factor=3/math.pi/4, exp=1/3.0):
    return 2 * (factor * volume) ** exp
And CmToBucket to convert from
    centimeters to a discrete bucket number:
def CmToBucket(x, factor=10):
    return factor * math.log(x)
The buckets are equally spaced on a log scale. Using factor=10 yields a reasonable number of buckets;
    for example, 1 cm maps to bucket 0 and 10 cm maps to bucket 23.
After running the simulations, we can plot the joint distribution as
    a pseudocolor plot, where each cell represents the number of tumors
    observed at a given size-age pair. Figure 13-3 shows
    the joint distribution after 1000 simulations.
Figure 13-3. Joint distribution of age and tumor size.


Conditional distributions
By taking a vertical slice from the joint distribution, we can get
    the distribution of sizes for any given age. By taking a horizontal slice,
    we can get the distribution of ages conditioned on size.
Here’s the code that reads the joint distribution and builds the
    conditional distribution for a given size.
# class Cache

    def ConditionalCdf(self, bucket):
        pmf = self.joint.Conditional(0, 1, bucket)
        cdf = pmf.MakeCdf()
        return cdf
bucket is the
    integer bucket number corresponding to tumor size. Joint.Conditional computes the PMF of age
    conditioned on bucket. The result is
    the CDF of age conditioned on bucket.
Figure 13-4 shows several of these CDFs, for a
    range of sizes. To summarize these distributions, we can compute
    percentiles as a function of size.
Figure 13-4. Distributions of age, conditioned on size.

    percentiles = [95, 75, 50, 25, 5]

    for bucket in cache.GetBuckets():
        cdf = ConditionalCdf(bucket)      
        ps = [cdf.Percentile(p) for p in percentiles]
Figure 13-5 shows these percentiles for each size
    bucket. The data points are computed from the estimated joint
    distribution. In the model, size and time are discrete, which contributes
    numerical errors, so I also show a least squares fit for each sequence of
    percentiles.
Figure 13-5. Percentiles of tumor age as a function of size.


Serial Correlation
The results so far are based on a number of modeling decisions;
    let’s review them and consider which ones are the most likely sources of
    error:
	To convert from linear measure to volume, we assume that tumors
        are approximately spherical. This assumption is probably fine for
        tumors up to a few centimeters, but not for very large
        tumors.

	The distribution of growth rates in the simulations are based on
        a continuous model we chose to fit the data reported by Zhang et al,
        which is based on 53 patients. The fit is only approximate and, more
        importantly, a larger sample would yield a different
        distribution.

	The growth model does not take into account tumor subtype or
        grade; this assumption is consistent with the conclusion of Zhang et
        al: “Growth rates in renal tumors of different sizes, subtypes and
        grades represent a wide range and overlap substantially.” But with a
        larger sample, a difference might become apparent.

	The distribution of growth rate does not depend on the size of
        the tumor. This assumption would not be realistic for very small and
        very large tumors, whose growth is limited by blood supply.
But tumors observed by Zhang et al ranged from 1 to 12 cm, and
        they found no statistically significant relationship between size and
        growth rate. So if there is a relationship, it is likely to be weak,
        at least in this size range.

	In the simulations, growth rate during each interval is
        independent of previous growth rates. In reality it is plausible that
        tumors that have grown quickly in the past are more likely to grow
        quickly. In other words, there is probably a serial correlation in
        growth rate.


Of these, the first and last seem the most problematic. I’ll
    investigate serial correlation first, then come back to spherical
    geometry.
To simulate correlated growth, I wrote a generator2 that yields a correlated series from a given Cdf. Here’s how
    the algorithm works:
	Generate correlated values from a Gaussian distribution. This is
        easy to do because we can compute the distribution of the next value
        conditioned on the previous value.

	Transform each value to its cumulative probability using the
        Gaussian CDF.

	Transform each cumulative probability to the corresponding value
        using the given Cdf.


Here’s what that looks like in code:
def CorrelatedGenerator(cdf, rho):
    x = random.gauss(0, 1)
    yield Transform(x)

    sigma = math.sqrt(1 - rho**2);    
    while True:
        x = random.gauss(x * rho, sigma)
        yield Transform(x)
cdf is the desired Cdf; rho is the desired correlation. The values of
    x are Gaussian; Transform converts them to the desired
    distribution.
The first value of x is Gaussian
    with mean 0 and standard deviation 1. For subsequent values, the mean and
    standard deviation depend on the previous value. Given the previous
    x, the mean of the next value is
    x * rho, and the variance is 1 - rho**2.
Transform maps from each Gaussian
    value, x, to a value from the given
    Cdf, y.
    def Transform(x):
        p = thinkbayes.GaussianCdf(x)
        y = cdf.Value(p)
        return y
GaussianCdf computes the CDF of
    the standard Gaussian distribution at x, returning a cumulative probability. Cdf.Value maps from a cumulative probability to
    the corresponding value in cdf.
Depending on the shape of cdf,
    information can be lost in transformation, so the actual correlation might
    be lower than rho. For example, when I
    generate 10000 values from the distribution of growth rates with rho=0.4, the actual correlation is 0.37. But
    since we are guessing at the right correlation anyway, that’s close
    enough.
Remember that MakeSequence takes
    an iterator as an argument. That interface allows it to work with
    different generators:
    iterator = UncorrelatedGenerator(cdf)
    seq1 = MakeSequence(iterator)

    iterator = CorrelatedGenerator(cdf, rho)
    seq2 = MakeSequence(iterator)
In this example, seq1 and
    seq2 are drawn from the same
    distribution, but the values in seq1
    are uncorrelated and the values in seq2
    are correlated with a coefficient of approximately rho.
Now we can see what effect serial correlation has on the results;
    the following table shows percentiles of age for a 6 cm tumor, using the
    uncorrelated generator and a correlated generator with target
    .
Table 13-1. Percentiles of tumor age conditioned on size.	Serial 
	 Diameter 
	 Percentiles of age
              

	Correlation 
	 (cm) 
	 5th 
	 25th 
	 50th 
	 75th 
	 95th 

	0.0 
	 6.0 
	 10.7 
	 15.4 
	 19.5 
	 23.5 
	 30.2 

	0.4 
	 6.0 
	 9.4 
	 15.4 
	 20.8 
	 26.2 
	 36.9 


Correlation makes the fastest growing tumors faster and the slowest
    slower, so the range of ages is wider. The difference is modest for low
    percentiles, but for the 95th percentile it is more than 6 years. To
    compute these percentiles precisely, we would need a better estimate of
    the actual serial correlation.
However, this model is sufficient to answer the question we started
    with: given a tumor with a linear dimension of 15.5 cm, what is the
    probability that it formed more than 8 years ago?
Here’s the code:
# class Cache

    def ProbOlder(self, cm, age):
        bucket = CmToBucket(cm)
        cdf = self.ConditionalCdf(bucket)
        p = cdf.Prob(age)
        return 1-p
cm is the size of the tumor;
    age is the age threshold in years.
    ProbOlder converts size to a bucket
    number, gets the Cdf of age conditioned on bucket, and computes the
    probability that age exceeds the given value.
With no serial correlation, the probability that a 15.5 cm tumor is
    older than 8 years is 0.999, or almost certain. With correlation 0.4,
    faster-growing tumors are more likely, but the probability is still 0.995.
    Even with correlation 0.8, the probability is 0.978.
Another likely source of error is the assumption that tumors are
    approximately spherical. For a tumor with linear dimensions 15.5 x 15 cm,
    this assumption is probably not valid. If, as seems likely, a tumor this
    size is relatively flat, it might have the same volume as a 6 cm sphere.
    With this smaller volume and correlation 0.8, the probability of age
    greater than 8 is still 95%.
So even taking into account modeling errors, it is unlikely that
    such a large tumor could have formed less than 8 years prior to the date
    of diagnosis.

Discussion
Well, we got through a whole chapter without using Bayes’s theorem
    or the Suite class that encapsulates
    Bayesian updates. What happened?
One way to think about Bayes’s theorem is as an algorithm for
    inverting conditional probabilities. Given , we can compute , provided we know  and . Of course this algorithm is only useful if, for some
    reason, it is easier to compute  than .
In this example, it is. By running simulations, we can estimate the
    distribution of size conditioned on age, or . But it is harder to get the distribution of age
    conditioned on size, or . So this seems like a perfect opportunity to use
    Bayes’s theorem.
The reason I didn’t is computational efficiency. To estimate
     for any given size, you have to run a lot of
    simulations. Along the way, you end up computing  for a lot of sizes. In fact, you end up computing the
    entire joint distribution of size and age, .
And once you have the joint distribution, you don’t really need
    Bayes’s theorem, you can extract  by taking slices from the joint distribution, as
    demonstrated in ConditionalCdf.
So we side-stepped Bayes, but he was with us in spirit.

1 Zhang et al, Distribution of Renal Tumor Growth Rates Determined
        by Using Serial Volumetric CT Measurements, January 2009
        Radiology, 250, 137-144.
2 If you are not familiar with Python generators, see http://wiki.python.org/moin/Generators.


Chapter 14. A Hierarchical Model
The Geiger counter problem
I got the idea for the following problem from Tom Campbell-Ricketts,
    author of the Maximum Entropy blog at http://maximum-entropy-blog.blogspot.com.
    And he got the idea from E.T. Jaynes, author of the classic
    Probability Theory: The Logic of Science:
Suppose that a radioactive source emits particles toward a Geiger
      counter at an average rate of r
      particles per second, but the counter only registers a fraction,
      f, of the particles that hit it. If
      f is 10% and the counter registers 15
      particles in a one second interval, what is the posterior distribution
      of n, the actual number of particles
      that hit the counter, and r, the
      average rate particles are emitted?

To get started on a problem like this, think about the chain of
    causation that starts with the parameters of the system and ends with the
    observed data:
	The source emits particles at an average rate, r.

	During any given second, the source emits n particles toward the counter.

	Out of those n particles, some
        number, k, get counted.


The probability that an atom decays is the same at any point in
    time, so radioactive decay is well modeled by a Poisson process. Given
    r, the distribution of n is Poisson distribution with parameter r.
And if we assume that the probability of detection for each particle
    is independent of the others, the distribution of k is the binomial distribution with parameters
    n and f.
Given the parameters of the system, we can find the distribution of
    the data. So we can solve what is called the forward
    problem.
Now we want to go the other way: given the data, we want the
    distribution of the parameters. This is called the inverse problem. And if you can solve the forward
    problem, you can use Bayesian methods to solve the inverse
    problem.

Start simple
Let’s start with a simple version of the problem where we know the
    value of r. We are given the value of
    f, so all we have to do is estimate
    n.
I define a Suite called Detector
    that models the behavior of the detector and estimates n.
class Detector(thinkbayes.Suite):

    def __init__(self, r, f, high=500, step=1):
        pmf = thinkbayes.MakePoissonPmf(r, high, step=step)
        thinkbayes.Suite.__init__(self, pmf, name=r)
        self.r = r
        self.f = f
If the average emission rate is r
    particles per second, the distribution of n is Poisson with parameter r. high and
    step determine the upper bound for
    n and the step size between hypothetical
    values.
Now we need a likelihood function:
# class Detector

    def Likelihood(self, data, hypo):
        k = data
        n = hypo
        p = self.f

        return thinkbayes.EvalBinomialPmf(k, n, p)
data is the number of particles
    detected, and hypo is the hypothetical
    number of particles emitted, n.
If there are actually n particles,
    and the probability of detecting any one of them is f, the probability of detecting k particles is given by the binomial
    distribution.
That’s it for the Detector. We can try it out for a range of values
    of r:
    f = 0.1
    k = 15

    for r in [100, 250, 400]:
        suite = Detector(r, f, step=1)
        suite.Update(k)
        print suite.MaximumLikelihood()
Figure 14-1 shows the posterior distribution of
    n for several given values of r.
Figure 14-1. Posterior distribution of n for three values of r.


Make it hierarchical
In the previous section, we assume r is known. Now let’s relax that assumption. I
    define another Suite, called Emitter,
    that models the behavior of the emitter and estimates r:
class Emitter(thinkbayes.Suite):

    def __init__(self, rs, f=0.1):
        detectors = [Detector(r, f) for r in rs]
        thinkbayes.Suite.__init__(self, detectors)
rs is a sequence of hypothetical
    value for r. detectors is a sequence of Detector objects, one
    for each value of r. The values in the
    Suite are Detectors, so Emitter is a meta-Suite; that is, a Suite that contains other
    Suites as values.
To update the Emitter, we have to compute the likelihood of the data
    under each hypothetical value of r. But
    each value of r is represented by a
    Detector that contains a range of values for n.
To compute the likelihood of the data for a given Detector, we loop
    through the values of n and add up the
    total probability of k. That’s what
    SuiteLikelihood does:
# class Detector

    def SuiteLikelihood(self, data):
        total = 0
        for hypo, prob in self.Items():
            like = self.Likelihood(data, hypo)
            total += prob * like
        return total
Now we can write the Likelihood function for the Emitter:
# class Emitter

    def Likelihood(self, data, hypo):
        detector = hypo
        like = detector.SuiteLikelihood(data)
        return like
Each hypo is a Detector, so we
    can invoke SuiteLikelihood to get the
    likelihood of the data under the hypothesis.
After we update the Emitter, we have to update each of the
    Detectors, too.
# class Emitter

    def Update(self, data):
        thinkbayes.Suite.Update(self, data)
        
        for detector in self.Values():
            detector.Update()
A model like this, with multiple levels of Suites, is called
    hierarchical.

A little optimization
You might recognize SuiteLikelihood; we saw it in “Making a fair comparison”. At the time, I pointed out that we didn’t really
    need it, because the total probability computed by SuiteLikelihood is exactly the normalizing
    constant computed and returned by Update.
So instead of updating the Emitter and then updating the Detectors,
    we can do both steps at the same time, using the result from Detector.Update as the likelihood of
    Emitter.
Here’s the streamlined version of Emitter.Likelihood:
# class Emitter

    def Likelihood(self, data, hypo):
        return hypo.Update(data)
And with this version of Likelihood we can use the default version of
    Update. So this version has fewer lines
    of code, and it runs faster because it does not compute the normalizing
    constant twice.

Extracting the posteriors
After we update the Emitter, we can get the posterior distribution
    of r by looping through the Detectors and
    their probabilities:
# class Emitter

    def DistOfR(self):
        items = [(detector.r, prob) for detector, prob in self.Items()]
        return thinkbayes.MakePmfFromItems(items)
items is a list of values of
    r and their probabilities. The result is
    the Pmf of r.
To get the posterior distribution of n, we have to compute the mixture of the Detectors.
    We can use thinkbayes.MakeMixture,
    which takes a meta-Pmf that maps from each distribution to its
    probability. And that’s exactly what the Emitter is:
# class Emitter

    def DistOfN(self):
        return thinkbayes.MakeMixture(self)
Figure 14-2 shows the results. Not surprisingly,
    the most likely value for n is 150. Given
    f and n,
    the expected count is , so given f and
    k, the expected value of n is , which is 150.
And if 150 particles are emitted in one second, the most likely
    value of r is 150 particles per second.
    So the posterior distribution of r is
    also centered on 150.
The posterior distributions of r
    and n are similar; the only difference is
    that we are slightly less certain about n. In general, we can be more certain about the
    long-range emission rate, r, than about
    the number of particles emitted in any particular second, n.
Figure 14-2. Posterior distributions of n and r.

You can download the code in this chapter from http://thinkbayes.com/jaynes.py.
    For more information see “Working with the code”.

Discussion
The Geiger counter problem demonstrates the connection between
    causation and hierarchical modeling. In the example, the emission rate
    r has a causal effect on the number of
    particles, n, which has a causal effect
    on the particle count, k.
The hierarchical model reflects the structure of the system, with
    causes at the top and effects at the bottom.
	At the top level, we start with a range of hypothetical values
        for r.

	For each value of r, we have a
        range of values for n, and the prior
        distribution of n depends on
        r.

	When we update the model, we go bottom-up. We compute a
        posterior distribution of n for each
        value of r, then compute the
        posterior distribution of r.


So causal information flows down the hierarchy, and inference flows
    up.

Exercises
Exercise 14-1. 
This exercise is also inspired by an example in Jaynes,
        Probability Theory.
Suppose you buy a mosquito trap that is supposed to reduce the
        population of mosquitoes near your house. Each week, you empty the
        trap and count the number of mosquitoes captured. After the first
        week, you count 30 mosquitoes. After the second week, you count 20
        mosquitoes. Estimate the percentage change in the number of mosquitoes
        in your yard.
To answer this question, you have to make some modeling
        decisions. Here are some suggestions:
	Suppose that each week a large number of mosquitoes,
            N, is bred in a wetland near your
            home.

	During the week, some fraction of them, f1, wander into your
            yard, and of those some fraction, f2, are caught in
            the trap.

	Your solution should take into account your prior belief
            about how much N is likely to
            change from one week to the next. You can do that by adding a
            level to the hierarchy to model the percent change in N.





Chapter 15. Dealing with Dimensions
Belly button bacteria
Belly Button Biodiversity 2.0 (BBB2) is a nation-wide citizen
    science project with the goal of identifying bacterial species that can be
    found in human navels (http://bbdata.yourwildlife.org).
    The project might seem whimsical, but it is part of an increasing interest
    in the human microbiome, the set of microorganisms that live on human skin
    and parts of the body.
In their pilot study, BBB2 researchers collected swabs from the
    navels of 60 volunteers, used multiplex pyrosequencing to extract and
    sequence fragments of 16S rDNA, then identified the species or genus the
    fragments came from. Each identified fragment is called a
    “read.”
We can use these data to answer several related questions:
	Based on the number of species observed, can we estimate the
        total number of species in the environment?

	Can we estimate the prevalence of each species; that is, the
        fraction of the total population belonging to each species?

	If we are planning to collect additional samples, can we predict
        how many new species we are likely to discover?

	How many additional reads are needed to increase the fraction of
        observed species to a given threshold?


These questions make up what is called the Unseen Species problem.

Lions and tigers and bears
I’ll start with a simplified version of the problem where we know
    that there are exactly three species. Let’s call them lions, tigers and
    bears. Suppose we visit a wild animal preserve and see 3 lions, 2 tigers
    and one bear.
If we have an equal chance of observing any animal in the preserve,
    the number of each species we see is governed by the multinomial
    distribution. If the prevalence of lions and tigers and bears is p_lion and p_tiger and p_bear, the likelihood of seeing 3 lions, 2 tigers
    and one bear is proportional to
p_lion**3 * p_tiger**2 * p_bear**1
An approach that is tempting, but not correct, is to use beta
    distributions, as in “The beta distribution”, to describe the prevalence
    of each species separately. For example, we saw 3 lions and 3 non-lions;
    if we think of that as 3 “heads” and 3 “tails,” then the posterior
    distribution of p_lion
    is:
    beta = thinkbayes.Beta()
    beta.Update((3, 3))
    print beta.MaximumLikelihood()
The maximum likelihood estimate for p_lion is the observed rate, 50%. Similarly the
    MLEs for p_tiger and
    p_bear are 33% and
    17%.
But there are two problems:
	We have implicitly used a prior for each species that is uniform
        from 0 to 1, but since we know that there are three species, that
        prior is not correct. The right prior should have a mean of 1/3, and
        there should be zero likelihood that any species has a prevalence of
        100%.

	The distributions for each species are not independent, because
        the prevalences have to add up to 1. To capture this dependence, we
        need a joint distribution for the three prevalences.


We can use a Dirichlet distribution to solve both of these problems
    (see http://en.wikipedia.org/wiki/Dirichlet_distribution).
    In the same way we used the beta distribution to describe the distribution
    of bias for a coin, we can use a Dirichlet distribution to describe the
    joint distribution of p_lion, p_tiger and p_bear.
The Dirichlet distribution is the multi-dimensional generalization
    of the beta distribution. Instead of two possible outcomes, like heads and
    tails, the Dirichlet distribution handles any number of outcomes: in this
    example, three species.
If there are n outcomes, the
    Dirichlet distribution is described by n parameters, written α1 through αn.
Here’s the definition, from thinkbayes.py, of a class that represents a
    Dirichlet distribution:
class Dirichlet(object):

    def __init__(self, n):
        self.n = n
        self.params = numpy.ones(n, dtype=numpy.int)
n is the number of dimensions;
    initially the parameters are all 1. I use a numpy array to store the parameters so I can
    take advantage of array operations.
Given a Dirichlet distribution, the marginal distribution for each
    prevalence is a beta distribution, which we can compute like this:
    def MarginalBeta(self, i):
        alpha0 = self.params.sum()
        alpha = self.params[i]
        return Beta(alpha, alpha0-alpha)
i is the index of the marginal
    distribution we want. alpha0 is the sum
    of the parameters; alpha is the
    parameter for the given species.
In the example, the prior marginal distribution for each species is
    Beta(1, 2). We can compute the prior
    means like this:
    dirichlet = thinkbayes.Dirichlet(3)
    for i in range(3):
        beta = dirichlet.MarginalBeta(i)
        print beta.Mean()
As expected, the prior mean prevalence for each species is
    1/3.
To update the Dirichlet distribution, we add the observations to the
    parameters like this:
    def Update(self, data):
        m = len(data)
        self.params[:m] += data
Here data is a sequence of counts
    in the same order as params, so in this
    example, it should be the number of lions, tigers and bears.
data can be shorter than params; in that case there are some species that
    have not been observed.
Here’s code that updates dirichlet with the observed data and computes
    the posterior marginal distributions.
    data = [3, 2, 1]
    dirichlet.Update(data)

    for i in range(3):
        beta = dirichlet.MarginalBeta(i)
        pmf = beta.MakePmf()
        print i, pmf.Mean()
Figure 15-1 shows the results. The posterior
    mean prevalences are 44%, 33%, and 22%.
Figure 15-1. Distribution of prevalences for three species.


The hierarchical version
We have solved a simplified version of the problem: if we know how
    many species there are, we can estimate the prevalence of each.
Now let’s get back to the original problem, estimating the total
    number of species. To solve this problem I’ll define a meta-Suite, which
    is a Suite that contains other Suites as hypotheses. In this case, the
    top-level Suite contains hypotheses about the number of species; the
    bottom level contains hypotheses about prevalences.
Here’s the class definition:
class Species(thinkbayes.Suite):

    def __init__(self, ns):
        hypos = [thinkbayes.Dirichlet(n) for n in ns]
        thinkbayes.Suite.__init__(self, hypos)
__init__ takes a
    list of possible values for n and makes
    a list of Dirichlet objects.
Here’s the code that creates the top-level suite:
    ns = range(3, 30)
    suite = Species(ns)
ns is the list of possible values
    for n. We have seen 3 species, so there
    have to be at least that many. I chose an upper bound that seems
    reasonable, but we will check later that the probability of exceeding this
    bound is low. And at least initially we assume that any value in this
    range is equally likely.
To update a hierarchical model, you have to update all levels.
    Usually you have to update the bottom level first and work up, but in this
    case we can update the top level first:
#class Species

    def Update(self, data):
        thinkbayes.Suite.Update(self, data)
        for hypo in self.Values():
            hypo.Update(data)
Species.Update invokes Update in the parent class, then loops through
    the sub-hypotheses and updates them.
Now all we need is a likelihood function:
# class Species

    def Likelihood(self, data, hypo):
        dirichlet = hypo
        like = 0
        for i in range(1000):
            like += dirichlet.Likelihood(data)

        return like
data is a sequence of observed
    counts; hypo is a Dirichlet object.
    Species.Likelihood calls Dirichlet.Likelihood 1000 times and returns the
    total.
Why call it 1000 times? Because Dirichlet.Likelihood doesn’t actually compute
    the likelihood of the data under the whole Dirichlet distribution.
    Instead, it draws one sample from the hypothetical distribution and
    computes the likelihood of the data under the sampled set of
    prevalences.
Here’s what it looks like:
# class Dirichlet

    def Likelihood(self, data):
        m = len(data)
        if self.n < m:
            return 0

        x = data
        p = self.Random()
        q = p[:m]**x
        return q.prod()
The length of data is the number
    of species observed. If we see more species than we thought existed, the
    likelihood is 0.
Otherwise we select a random set of prevalences, p, and compute the multinomial PMF, which
    is

pi is the
    prevalence of the ith species, and
    xi is the observed
    number. The first term, cx, is the multinomial
    coefficient; I leave it out of the computation because it is a
    multiplicative factor that depends only on the data, not the hypothesis,
    so it gets normalized away (see http://en.wikipedia.org/wiki/Multinomial_distribution).
m is the number of observed
    species. We only need the first m
    elements of p; for the others,
    xi is 0, so
    pixi
    is 1, and we can leave them out of the product.

Random sampling
There are two ways to generate a random sample from a Dirichlet
    distribution. One is to use the marginal beta distributions, but in that
    case you have to select one at a time and scale the rest so they add up to
    1 (see http://en.wikipedia.org/wiki/Dirichlet_distribution#Random_number_generation).
A less obvious, but faster, way is to select values from n gamma distributions, then normalize by
    dividing through by the total. Here’s the code:
# class Dirichlet

    def Random(self):
        p = numpy.random.gamma(self.params)
        return p / p.sum()
Now we’re ready to look at some results. Here is the code that
    extracts the posterior distribution of n:
    def DistOfN(self):
        pmf = thinkbayes.Pmf()
        for hypo, prob in self.Items():
            pmf.Set(hypo.n, prob)
        return pmf
DistOfN iterates through the
    top-level hypotheses and accumulates the probability of each n.
Figure 15-2 shows the result. The most likely
    value is 4. Values from 3 to 7 are reasonably likely; after that the
    probabilities drop off quickly. The probability that there are 29 species
    is low enough to be negligible; if we chose a higher bound, we would get
    nearly the same result.
Figure 15-2. Posterior distribution of n.

Remember that this result is based on a uniform prior for n. If we have background information about the
    number of species in the environment, we might choose a different
    prior.

Optimization
I have to admit that I am proud of this example. The Unseen Species
    problem is not easy, and I think this solution is simple and clear, and
    takes surprisingly few lines of code (about 50 so far).
The only problem is that it is slow. It’s good enough for the
    example with only 3 observed species, but not good enough for the belly
    button data, with more than 100 species in some samples.
The next few sections present a series of optimizations we need to
    make this solution scale. Before we get into the details, here’s a road
    map.
	The first step is to recognize that if we update the Dirichlet
        distributions with the same data, the first m parameters are the same for all of them.
        The only difference is the number of hypothetical unseen species. So
        we don’t really need n Dirichlet
        objects; we can store the parameters in the top level of the
        hierarchy. Species2 implements this
        optimization.

	Species2 also uses the same
        set of random values for all of the hypotheses. This saves time
        generating random values, but it has a second benefit that turns out
        to be more important: by giving all hypotheses the same selection from
        the sample space, we make the comparison between the hypotheses more
        fair, so it takes fewer iterations to converge.

	Even with these changes there is a major performance problem. As
        the number of observed species increases, the array of random
        prevalences gets bigger, and the chance of choosing one that is
        approximately right becomes small. So the vast majority of iterations
        yield small likelihoods that don’t contribute much to the total, and
        don’t discriminate between hypotheses.
The solution is to do the updates one species at a time.
        Species4 is a simple implementation
        of this strategy using Dirichlet objects to represent the
        sub-hypotheses.

	Finally, Species5 combines
        the sub-hypotheses into the top level and uses numpy array operations to speed things
        up.


If you are not interested in the details, feel free to skip to “The belly button data” where we look at results from the belly button
    data.

Collapsing the hierarchy
All of the bottom-level Dirichlet distributions are updated with the
    same data, so the first m parameters
    are the same for all of them. We can eliminate them and merge the
    parameters into the top-level suite. Species2 implements this optimization:
class Species2(object):
    
    def __init__(self, ns):
        self.ns = ns
        self.probs = numpy.ones(len(ns), dtype=numpy.double)
        self.params = numpy.ones(self.high, dtype=numpy.int)
ns is the list of hypothetical
    values for n; probs is the list of corresponding
    probabilities. And params is the
    sequence of Dirichlet parameters, initially all 1.
Species2.Update updates both
    levels of the hierarchy: first the probability for each value of n, then the Dirichlet parameters:
# class Species2

    def Update(self, data):
        like = numpy.zeros(len(self.ns), dtype=numpy.double)
        for i in range(1000):
            like += self.SampleLikelihood(data)

        self.probs *= like
        self.probs /= self.probs.sum()

        m = len(data)
        self.params[:m] += data
SampleLikelihood returns an array
    of likelihoods, one for each value of n. like
    accumulates the total likelihood for 1000 samples. self.probs is multiplied by the total
    likelihood, then normalized. The last two lines, which update the
    parameters, are the same as in Dirichlet.Update.
Now let’s look at SampleLikelihood. There are two opportunities
    for optimization here:
	When the hypothetical number of species, n, exceeds the observed number, m, we only need the first m terms of the multinomial PMF; the rest are
        1.

	If the number of species is large, the likelihood of the data
        might be too small for floating-point (see “Underflow”). So it is safer to compute
        log-likelihoods.


Again, the multinomial PMF is

So the log-likelihood is

which is fast and easy to compute. Again, cx it is the same for all
    hypotheses, so we can drop it. Here’s the code:
# class Species2

    def SampleLikelihood(self, data):
        gammas = numpy.random.gamma(self.params)

        m = len(data)
        row = gammas[:m]
        col = numpy.cumsum(gammas)

        log_likes = []
        for n in self.ns:
            ps = row / col[n-1]
            terms = data * numpy.log(ps)
            log_like = terms.sum()
            log_likes.append(log_like)

        log_likes -= numpy.max(log_likes)
        likes = numpy.exp(log_likes)

        coefs = [thinkbayes.BinomialCoef(n, m) for n in self.ns]
        likes *= coefs

        return likes
gammas is an array of values from
    a gamma distribution; its length is the largest hypothetical value of
    n. row is just the first m elements of gammas; since these are the only elements that
    depend on the data, they are the only ones we need.
For each value of n we need to
    divide row by the total of the first
    n values from gamma. cumsum
    computes these cumulative sums and stores them in col.
The loop iterates through the values of n and accumulates a list of
    log-likelihoods.
Inside the loop, ps contains the
    row of probabilities, normalized with the appropriate cumulative sum.
    terms contains the terms of the
    summation, , and log_like contains their sum.
After the loop, we want to convert the log-likelihoods to linear
    likelihoods, but first it’s a good idea to shift them so the largest
    log-likelihood is 0; that way the linear likelihoods are not too small
    (see “Underflow”).
Finally, before we return the likelihood, we have to apply a
    correction factor, which is the number of ways we could have observed
    these m species, if the total number of
    species is n. BinomialCoefficient computes “n choose m”, which
    is written .
As often happens, the optimized version is less readable and more
    error-prone than the original. But that’s one reason I think it is a good
    idea to start with the simple version; we can use it for regression
    testing. I plotted results from both versions and confirmed that they are
    approximately equal, and that they converge as the number of iterations
    increases.

One more problem
There’s more we could do to optimize this code, but there’s another
    problem we need to fix first. As the number of observed species increases,
    this version gets noisier and takes more iterations to converge on a good
    answer.
The problem is that if the prevalences we choose from the Dirichlet
    distribution, the ps, are not at least
    approximately right, the likelihood of the observed data is close to zero
    and almost equally bad for all values of n. So most iterations don’t provide any useful
    contribution to the total likelihood. And as the number of observed
    species, m, gets large, the probability
    of choosing ps with non-negligible
    likelihood gets small. Really small.
Fortunately, there is a solution. Remember that if you observe a set
    of data, you can update the prior distribution with the entire dataset, or
    you can break it up into a series of updates with subsets of the data, and
    the result is the same either way.
For this example, the key is to perform the updates one species at a
    time. That way when we generate a random set of ps, only one of them affects the computed
    likelihood, so the chance of choosing a good one is much better.
Here’s a new version that updates one species at a time:
class Species4(Species):

    def Update(self, data):
        m = len(data)

        for i in range(m):
            one = numpy.zeros(i+1)
            one[i] = data[i]            
            Species.Update(self, one)
This version inherits __init__ from Species, so it represents the hypotheses as a
    list of Dirichlet objects (unlike Species2).
Update loops through the observed
    species and makes an array, one, with
    all zeros and one species count. Then it calls Update in the parent class, which computes the
    likelihoods and updates the sub-hypotheses.
So in the running example, we do three updates. The first is
    something like “I have seen three lions.” The second is “I have seen two
    tigers and no additional lions.” And the third is “I have seen one bear
    and no more lions and tigers.”
Here’s the new version of Likelihood:
# class Species4

    def Likelihood(self, data, hypo):
        dirichlet = hypo
        like = 0
        for i in range(self.iterations):
            like += dirichlet.Likelihood(data)

        # correct for the number of unseen species the new one
        # could have been
        m = len(data)
        num_unseen = dirichlet.n - m + 1
        like *= num_unseen

        return like
This is almost the same as Species.Likelihood. The difference is the
    factor, num_unseen. This
    correction is necessary because each time we see a species for the first
    time, we have to consider that there were some number of other unseen
    species that we might have seen. For larger values of n there are more unseen species that we could
    have seen, which increases the likelihood of the data.
This is a subtle point and I have to admit that I did not get it
    right the first time. But again I was able to validate this version by
    comparing it to the previous versions.

We’re not done yet
Performing the updates one species at a time solves one problem, but
    it creates another. Each update takes time proportional to , where k is the
    number of hypotheses and m is the number
    of observed species. So if we do m
    updates, the total run time is proportional to .
But we can speed things up using the same trick we used in “Collapsing the hierarchy”: we’ll get rid of the Dirichlet objects and
    collapse the two levels of the hierarchy into a single object. So here’s
    yet another version of Species:
class Species5(Species2):
    
    def Update(self, data):
        m = len(data)
        for i in range(m):
            self.UpdateOne(i+1, data[i])
            self.params[i] += data[i]
This version inherits __init__ from Species2, so it uses ns and probs
    to represent the distribution of n, and
    params to represent the parameters of
    the Dirichlet distribution.
Update is similar to what we saw
    in the previous section. It loops through the observed species and calls
    UpdateOne:
# class Species5

    def UpdateOne(self, i, count):
        likes = numpy.zeros(len(self.ns), dtype=numpy.double)
        for i in range(self.iterations):
            likes += self.SampleLikelihood(i, count)

        unseen_species = [n-i+1 for n in self.ns]
        likes *= unseen_species

        self.probs *= likes
        self.probs /= self.probs.sum()
This function is similar to Species2.Update, with two changes:
	The interface is different. Instead of the whole dataset, we get
        i, the index of the observed
        species, and count, how many of
        that species we’ve seen.

	We have to apply a correction factor for the number of unseen
        species, as in Species4.Likelihood.
        The difference here is that we update all of the likelihoods at once
        with array multiplication.


Finally, here’s SampleLikelihood:
# class Species5

    def SampleLikelihood(self, i, count):
        gammas = numpy.random.gamma(self.params)

        sums = numpy.cumsum(gammas)[self.ns[0]-1:]

        ps = gammas[i-1] / sums
        log_likes = numpy.log(ps) * count

        log_likes -= numpy.max(log_likes)
        likes = numpy.exp(log_likes)

        return likes
This is similar to Species2.SampleLikelihood; the difference is
    that each update only includes a single species, so we don’t need a
    loop.
The runtime of this function is proportional to the number of
    hypotheses, k. It runs m times, so the run time of the update is
    proportional to . And the number of iterations we need to get an
    accurate result is usually small.

The belly button data
That’s enough about lions and tigers and bears. Let’s get back to
    belly buttons. To get a sense of what the data look like, consider subject
    B1242, whose sample of 400 reads yielded 61 species with the following
    counts:
92, 53, 47, 38, 15, 14, 12, 10, 8, 7, 7, 5, 5, 
4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
There are a few dominant species that make up a large fraction of
    the whole, but many species that yielded only a single read. The number of
    these “singletons” suggests that there are likely to be at least a few
    unseen species.
In the example with lions and tigers, we assume that each animal in
    the preserve is equally likely to be observed. Similarly, for the belly
    button data, we assume that each bacterium is equally likely to yield a
    read.
In reality, each step in the data-collection process might introduce
    biases. Some species might be more likely to be picked up by a swab, or to
    yield identifiable amplicons. So when we talk about the prevalence of each
    species, we should remember this source of error.
I should also acknowledge that I am using the term “species”
    loosely. First, bacterial species are not well defined. Second, some reads
    identify a particular species, others only identify a genus. To be more
    precise, I should say “operational taxonomic unit”, or OTU.
Now let’s process some of the belly button data. I define a class
    called Subject to represent information
    about each subject in the study:
class Subject(object):

    def __init__(self, code):
        self.code = code
        self.species = []
Each subject has a string code, like “B1242”, and a list of (count,
    species name) pairs, sorted in increasing order by count. Subject provides several methods to make it easy
    to access these counts and species names. You can see the details in
    http://thinkbayes.com/species.py.
    For more information see “Working with the code”.
Subject provides a method named
    Process that creates and updates a
    Species5 suite, which represents the
    distributions of n and the
    prevalences.
And Suite2 provides DistOfN, which returns the posterior
    distribution of n.
# class Suite2

    def DistN(self):
        items = zip(self.ns, self.probs)
        pmf = thinkbayes.MakePmfFromItems(items)
        return pmf
Figure 15-3 shows the distribution of n for subject B1242. The probability that there
    are exactly 61 species, and no unseen species, is nearly zero. The most
    likely value is 72, with 90% credible interval 66 to 79. At the high end,
    it is unlikely that there are as many as 87 species.
Figure 15-3. Distribution of n for subject B1242.

Next we compute the posterior distribution of prevalence for each
    species. Species2 provides DistOfPrevalence:
# class Species2

    def DistOfPrevalence(self, index):
        metapmf = thinkbayes.Pmf()

        for n, prob in zip(self.ns, self.probs):
            beta = self.MarginalBeta(n, index)
            pmf = beta.MakePmf()
            metapmf.Set(pmf, prob)

        mix = thinkbayes.MakeMixture(metapmf)
        return metapmf, mix
index indicates which species we
    want. For each n, we have a different
    posterior distribution of prevalence.
The loop iterates through the possible values of n and their probabilities. For each value of
    n it gets a Beta object representing
    the marginal distribution for the indicated species. Remember that Beta
    objects contain the parameters alpha
    and beta; they don’t have values and
    probabilities like a Pmf, but they provide MakePmf, which generates a discrete
    approximation to the continuous beta distribution.
metapmf is a meta-Pmf that
    contains the distributions of prevalence, conditioned on n. MakeMixture combines the meta-Pmf into mix, which combines the conditional
    distributions into a single distribution of prevalence.
Figure 15-4 shows results for the five species
    with the most reads. The most prevalent species accounts for 23% of the
    400 reads, but since there are almost certainly unseen species, the most
    likely estimate for its prevalence is 20%, with 90% credible interval
    between 17% and 23%.
Figure 15-4. Distribution of prevalences for subject B1242.


Predictive distributions
I introduced the hidden species problem in the form of four related
    questions. We have answered the first two by computing the posterior
    distribution for n and the prevalence
    of each species.
The other two questions are:
	If we are planning to collect additional reads, can we predict
        how many new species we are likely to discover?

	How many additional reads are needed to increase the fraction of
        observed species to a given threshold?


To answer predictive questions like this we can use the posterior
    distributions to simulate possible future events and compute predictive
    distributions for the number of species, and fraction of the total, we are
    likely to see.
The kernel of these simulations looks like this:
	Choose n from its posterior
        distribution.

	Choose a prevalence for each species, including possible unseen
        species, using the Dirichlet distribution.

	Generate a random sequence of future observations.

	Compute the number of new species, num_new, as a function of the number of
        additional reads, k.

	Repeat the previous steps and accumulate the joint distribution
        of num_new and
        k.


And here’s the code. RunSimulation runs a single simulation:
# class Subject

    def RunSimulation(self, num_reads):
        m, seen = self.GetSeenSpecies()
        n, observations = self.GenerateObservations(num_reads)

        curve = []
        for k, obs in enumerate(observations):
            seen.add(obs)

            num_new = len(seen) - m
            curve.append((k+1, num_new))

        return curve
num_reads is the
    number of additional reads to simulate. m is the number of seen species, and seen is a set of strings with a unique name for
    each species. n is a random value from
    the posterior distribution, and observations is a random sequence of species
    names.
Each time through the loop, we add the new observation to seen and record the number of reads and the
    number of new species so far.
The result of RunSimulation is a
    rarefaction curve, represented as a list
    of pairs with the number of reads and the number of new species.
Before we see the results, let’s look at GetSeenSpecies and GenerateObservations.
#class Subject

    def GetSeenSpecies(self):
        names = self.GetNames()
        m = len(names)
        seen = set(SpeciesGenerator(names, m))
        return m, seen
GetNames returns the list of
    species names that appear in the data files, but for many subjects these
    names are not unique. So I use SpeciesGenerator to extend each name with a
    serial number:
def SpeciesGenerator(names, num):
    i = 0
    for name in names:
        yield '%s-%d' % (name, i)
        i += 1

    while i < num:
        yield 'unseen-%d' % i
        i += 1
Given a name like Corynebacterium, SpeciesGenerator yields Corynebacterium-1. When the list of names is
    exhausted, it yields names like unseen-62.
Here is GenerateObservations:
# class Subject

    def GenerateObservations(self, num_reads):
        n, prevalences = self.suite.SamplePosterior()

        names = self.GetNames()
        name_iter = SpeciesGenerator(names, n)

        d = dict(zip(name_iter, prevalences))
        cdf = thinkbayes.MakeCdfFromDict(d)
        observations = cdf.Sample(num_reads)

        return n, observations
Again, num_reads is
    the number of additional reads to generate. n and prevalences are samples from the posterior
    distribution.
cdf is a Cdf object that maps
    species names, including the unseen, to cumulative probabilities. Using a
    Cdf makes it efficient to generate a random sequence of species
    names.
Finally, here is Species2.SamplePosterior:
    def SamplePosterior(self):
        pmf = self.DistOfN()
        n = pmf.Random()
        prevalences = self.SamplePrevalences(n)
        return n, prevalences
And SamplePrevalences, which
    generates a sample of prevalences conditioned on n:
# class Species2

    def SamplePrevalences(self, n):
        params = self.params[:n]
        gammas = numpy.random.gamma(params)
        gammas /= gammas.sum()
        return gammas
We saw this algorithm for generating random values from a Dirichlet
    distribution in “Random sampling”.
Figure 15-5 shows 100 simulated rarefaction
    curves for subject B1242. The curves are “jittered;” that is, I shifted
    each curve by a random offset so they would not all overlap. By inspection
    we can estimate that after 400 more reads we are likely to find 2–6 new
    species.
Figure 15-5. Simulated rarefaction curves for subject B1242.


Joint posterior
We can use these simulations to estimate the joint distribution of
    num_new and k, and from that we can get the distribution of
    num_new conditioned on any
    value of k.
def MakeJointPredictive(curves):
    joint = thinkbayes.Joint()
    for curve in curves:
        for k, num_new in curve:
            joint.Incr((k, num_new))
    joint.Normalize()
    return joint
MakeJointPredictive makes a Joint
    object, which is a Pmf whose values are tuples.
curves is a list of rarefaction
    curves created by RunSimulation. Each
    curve contains a list of pairs of k and
    num_new.
The resulting joint distribution is a map from each pair to its
    probability of occurring. Given the joint distribution, we can use
    Joint.Conditional get the distribution
    of num_new conditioned on
    k (see “Conditional distributions”).
Subject.MakeConditionals takes a
    list of ks and computes the conditional
    distribution of num_new
    for each k. The result is a list of Cdf
    objects.
def MakeConditionals(curves, ks):
    joint = MakeJointPredictive(curves)

    cdfs = []
    for k in ks:
        pmf = joint.Conditional(1, 0, k)
        pmf.name = 'k=%d' % k
        cdf = pmf.MakeCdf()
        cdfs.append(cdf)

    return cdfs
Figure 15-6 shows the results. After 100 reads,
    the median predicted number of new species is 2; the 90% credible interval
    is 0 to 5. After 800 reads, we expect to see 3 to 12 new species.
Figure 15-6. Distributions of the number of new species conditioned on the
      number of additional reads.


Coverage
The last question we want to answer is, “How many additional reads
    are needed to increase the fraction of observed species to a given
    threshold?”
To answer this question, we need a version of RunSimulation that computes the fraction of
    observed species rather than the number of new species.
# class Subject

    def RunSimulation(self, num_reads):
        m, seen = self.GetSeenSpecies()
        n, observations = self.GenerateObservations(num_reads)

        curve = []
        for k, obs in enumerate(observations):
            seen.add(obs)

            frac_seen = len(seen) / float(n)
            curve.append((k+1, frac_seen))

        return curve
Next we loop through each curve and make a dictionary, d, that maps from the number of additional
    reads, k, to a list of fracs; that is, a list of values for the
    coverage achieved after k reads.
    def MakeFracCdfs(self, curves):
        d = {}
        for curve in curves:
            for k, frac in curve:
                d.setdefault(k, []).append(frac)

        cdfs = {}
        for k, fracs in d.iteritems():
            cdf = thinkbayes.MakeCdfFromList(fracs)
            cdfs[k] = cdf

        return cdfs
Then for each value of k we make
    a Cdf of fracs; this Cdf represents the
    distribution of coverage after k
    reads.
Remember that the CDF tells you the probability of falling below a
    given threshold, so the complementary CDF tells you
    the probability of exceeding it. Figure 15-7 shows
    complementary CDFs for a range of values of k.
To read this figure, select the level of coverage you want to
    achieve along the x-axis. As an example,
    choose 90%.
Now you can read up the chart to find the probability of achieving
    90% coverage after k reads. For
    example, with 200 reads, you have about a 40% chance of getting 90%
    coverage. With 1000 reads, you have a 90% chance of getting 90%
    coverage.
With that, we have answered the four questions that make up the
    unseen species problem. To validate the algorithms in this chapter with
    real data, I had to deal with a few more details. But this chapter is
    already too long, so I won’t discuss them here.
You can read about the problems, and how I addressed them, at http://allendowney.blogspot.com/2013/05/belly-button-biodiversity-end-game.html.
You can download the code in this chapter from http://thinkbayes.com/species.py.
    For more information see “Working with the code”.
Figure 15-7. Complementary CDF of coverage for a range of additional
      reads.


Discussion
The Unseen Species problem is an area of active research, and I
    believe the algorithm in this chapter is a novel contribution. So in fewer
    than 200 pages we have made it from the basics of probability to the
    research frontier. I’m very happy about that.
My goal for this book is to present three related ideas:
	Bayesian thinking: The foundation of Bayesian analysis is the
        idea of using probability distributions to represent uncertain
        beliefs, using data to update those distributions, and using the
        results to make predictions and inform decisions.

	A computational approach: The
        premise of this book is that it is easier to understand Bayesian
        analysis using computation rather than math, and easier to implement
        Bayesian methods with reusable building blocks that can be rearranged
        to solve real-world problems quickly.

	Iterative modeling: Most
        real-world problems involve modeling decisions and trade-offs between
        realism and complexity. It is often impossible to know ahead of time
        what factors should be included in the model and which can be
        abstracted away. The best approach is to iterate, starting with simple
        models and adding complexity gradually, using each model to validate
        the others.


These ideas are versatile and powerful; they are applicable to
    problems in every area of science and engineering, from simple examples to
    topics of current research.
If you made it this far, you should be prepared to apply these tools
    to new problems relevant to your work. I hope you find them useful; let me
    know how it goes!
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