

The Hitchhiker’s Guide to Python

Best Practices for Development

Kenneth Reitz and Tanya Schlusser

The Hitchhiker’s Guide to Python

by Kenneth Reitz and Tanya Schlusser

Copyright © 2016 Kenneth Reitz, Tanya Schlusser. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Editor: Dawn Schanafelt

		Production Editor: Nicole Shelby, Nicholas Adams

		Copyeditor: Jasmine Kwityn

		Proofreader: Amanda Kersey

		Indexer: WordCo Indexing Services, Inc.

		Interior Designer: David Futato

		Cover Designer: Randy Comer

		Illustrator: Rebecca Demarest

		September 2016: First Edition

Revision History for the First Edition

		2016-08-26: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491933176 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Hitchhiker’s Guide to Python, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-491-93317-6

[LSI]

Dedication

Dedicated to you

Preface

Python is big. Really big. You just won’t believe how vastly hugely mind-bogglingly big it is.

This guide is not intended to teach you the Python language (we cite lots of great resources that do that) but is rather an (opinionated) insider’s guide to our community’s favorite tools and best practices. The primary audience is new to mid-level Python programmers who are interested in contributing to open source or in beginning a career or starting a company using Python, although casual Python users should also find Part I and Chapter 5 helpful.

The first part will help you choose the text editor or interactive development environment that fits your situation (for example, those using Java frequently may prefer Eclipse with a Python plug-in) and surveys options for other interpreters that may meet needs you don’t yet know Python could address (e.g., there’s a MicroPython implementation based around the ARM Cortex-M4 chip). The second section demonstrates Pythonic style by highlighting exemplary code in the open source community that will hopefully encourage more in-depth reading and experimentation with open source code. The final section briefly surveys the vast galaxy of libraries most commonly used in the Python community—providing an idea of the scope of what Python can do right now.

All of the royalties from the print version of this book will be directly donated to the Django Girls, a giddily joyous global organization dedicated to organizing free Django and Python workshops, creating open-sourced online tutorials, and curating amazing first experiences with technology. Those who wish to contribute to the online version can read more about how to do it at our website.

Conventions Used in This Book

The following typographical conventions are used in this book:

	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	Constant width bold

	
Shows commands or other text that should be typed literally by the user.

	Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Safari® Books Online

Note

Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government, education, and individuals.

Members have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-998-9938 (in the United States or Canada)

 	707-829-0515 (international or local)

 	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://bit.ly/the-hitchhikers-guide-to-python.

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Welcome, friends, to The Hitchhiker’s Guide to Python.

This book is, to the best of my knowledge, the first of its kind: designed and curated by a single author (myself—Kenneth), with the majority of the content provided by hundreds of people from all over the world, for free. Never before in the history of mankind has the technology been available to allow a beautiful collaboration of this size and scale.

This book was made possible with:

	Community

	
Love brings us together to conquer all obstacles.

	Software projects

	
Python, Sphinx, Alabaster, and Git.

	Services

	
GitHub and Read the Docs.

Lastly, I’d like to extend a personal thank you to Tanya, who did all the hard work of converting this work into book form and preparing it for publication, and the incredible O’Reilly team—Dawn, Jasmine, Nick, Heather, Nicole, Meg, and the dozens of other people who worked behind the scenes to make this book the best it could be.

Part I. Getting Started

This part of the guide focuses on setting up a Python environment.
It was inspired by Stuart Ellis’s
guide for Python on Windows,
and consists of the following chapters and topics:

	Chapter 1, Picking an Interpreter

	
We compare Python 2 and Python 3, and share some interpreter options other than CPython.

	Chapter 2, Properly Installing Python

	
We show how to get Python, pip, and virtualenv.

	Chapter 3, Your Development Environment

	
We describe our favorite text editors and IDEs for Python development.

Chapter 1. Picking an Interpreter

The State of Python 2 Versus Python 3

When choosing a Python interpreter, one looming
question is always present: “Should I choose Python 2
or Python 3?” The answer is not as obvious as
one might think (although 3 is becoming more compelling every day).

Here is the state of things:

	
Python 2.7 has been the standard for a long time.

	
Python 3 introduced major changes to the language, which some developers are unhappy with.1

	
Python 2.7 will receive necessary security updates
until 2020.

	
Python 3 is continually evolving, like Python 2
did in years past.

You can now see why this is not such an easy
decision.

Recommendations

The way we see it, a truly hoopy frood2
would use Python 3. But if you can only use Python 2, at least you’re still using Python.
These are our recommendations:

	Use Python 3 if…

	

	
You love Python 3.

	
You don’t know which one to use.

	
You embrace change.

	Use Python 2 if…

	

	
You love Python 2 and are saddened by the future
being Python 3.

	
The stability requirements of your software would
be impacted.3

	
Software that you depend on requires it.

So…3?

If you’re choosing a Python interpreter to use,
and aren’t opinionated, then use
the newest Python 3.x—every version brings
new and improved standard library modules, security,
and bug fixes. Progress is progress. So
only use Python 2 if you have a strong reason to,
such as a Python 2–exclusive library that has
no adequate Python 3–ready alternative, a need for a specific
implementation (see “Implementations”), or you
(like some of us) love and are
inspired by Python 2.

Check out Can I Use Python 3?
to see whether any Python projects
you’re depending on will block adoption of
Python 3.

For further reading, try Python2orPython3,
which lays out some of the reasoning behind
a backward-incompatible break in
the language specification,
and links to detailed specifications of the differences.

If you’re a beginner, there are far more important
things to worry about than cross-compatibility between
all of the Python versions. Just get something working
for the system you’ve got, and cross this bridge later.

Implementations

When people speak of Python, they often mean not just
the language but also the CPython implementation.
Python is actually a specification for a language
that can be implemented in many different ways.

The different implementations may be for compatibility with
other libraries, or maybe for a little speed.
Pure Python libraries should work regardless of your Python implementation,
but those built on C (like NumPy) won’t.
This section provides a quick rundown on the most popular implementations.

Note

This guide presumes you’re working
with the standard CPython implementation of Python 3,
although we’ll frequently add notes
when relevant for Python 2.

CPython

CPython is the
reference implementation4
of Python, written in C. It compiles Python code to intermediate
bytecode which is then interpreted by a virtual machine.
CPython provides the highest level of compatibility with
Python packages and C extension modules.5

If you are writing open source Python code and want
to reach the widest possible audience, use CPython.
To use packages that rely on C extensions to
function, CPython is your only implementation option.

All versions of the Python language are implemented in C
because CPython is the reference implementation.

Stackless

Stackless Python
is regular CPython (so it should work with all of the libraries that
CPython can use), but with a patch that decouples the Python interpreter
from the call stack, making it possible to change the order of execution
of code. Stackless introduces the contepts of tasklets, which can wrap
functions and turn them into “micro-threads” that can be serialized to
disk for future execution and scheduled, by default in round-robin execution.

The greenlet library implements
this same stack-switching functionality for CPython users. Much of the
functionality has also been implemented in PyPy.

PyPy

PyPy is a Python interpreter implemented
in a restricted statically typed subset of the Python
language called RPython, making certain kinds of optimization
possible. The interpreter features a
just-in-time compiler and supports multiple backends,
such as C, Common Intermediate Language (CIL), and Java Virtual Machine (JVM) bytecode.

PyPy aims for maximum compatibility with the reference
CPython implementation while improving performance. If you are looking to increase performance of your Python
code, it’s worth giving PyPy a try. On a suite of
benchmarks, it’s currently over five times faster than CPython.

It supports Python 2.7, and PyPy3
targets Python 3. Both versions are available from the PyPy download page.

Jython

Jython is a Python interpreter implementation that
compiles Python code to Java bytecode which is then
executed by the JVM.
Additionally, it is able to import and use any Java
class like a Python module.

If you need to interface with an existing Java
code base or have other reasons for needing to write
Python code for the JVM, Jython is the best choice.

Jython currently supports up to
Python 2.7.

IronPython

IronPython is an implementation of Python for
the .NET framework. It can use both Python and .NET
framework libraries, and can also expose Python code
to other languages in the .NET framework.

Python Tools for Visual Studio
integrates IronPython directly into the Visual Studio development
environment, making it an ideal choice for Windows
developers.

IronPython supports
Python2.7.

PythonNet

Python for .NET is
a package that provides near
seamless integration of a natively installed Python
installation with the .NET Common Language Runtime (CLR).
This is the inverse approach to that taken by
IronPython, meaning PythonNet and IronPython complement
rather than compete with each other.

In conjunction with Mono,
PythonNet enables native Python
installations on non-Windows operating systems, such as
OS X and Linux, to operate within the .NET framework.
It can be run in addition to IronPython without conflict.

PythonNet supports from Python 2.3 up to Python 2.7; the installation instructions are on the PythonNet readme page.

Skulpt

Skulpt is a JavaScript implementation
of Python. It has not ported all of the CPython standard library;
the library has the modules math, random, turtle, image, unittest, and parts of
time, urllib, DOM, and re. It is intended for use in teaching.
There is also a way to
add your own modules.

Notable examples of its use are
Interactive Python and
CodeSkulptor.

Skulpt supports most of Python 2.7 and Python 3.3. See the Skulpt GitHub page for details.

MicroPython

MicroPython is an implementation of Python 3
optimized to run on a microcontroller; it supports
 32-bit ARM processors with the Thumb v2 instruction set,
such as the Cortex-M range used in low-cost microcontrollers.
It includes
these modules
from Python’s Standard Library, plus a few MicroPython-specific
libraries for board details, memory information, network access, and
a modified version of the ctypes optimized for smaller size.
It is not the same as the Raspberry Pi, which has a Debian or other C-based operating system, with Python installed. The pyboard actually uses MicroPython as its
operating system.

Note

From here on out, we’re using CPython on a Unix-like system, on OS X, or on a
Windows system.

On to installation—grab your towel!

1 If you don’t do much low-level networking programming, the change was barely noticeable outside of the print statement becoming a function. Otherwise, “unhappy with” is kind of a polite understatement—developers responsible for large, popular web, socket, or networking libraries that deal with unicode and byte strings had (or still have) extensive changes to make. Details about the change, direct from the first introduction of Python 3 to the world, start off with: “Everything you thought you knew about binary data and Unicode has changed.”
2 Someone who’s really amazingly together. We mean, who really knows where their towel is.
3 Here’s a link to a high-level list of changes to Python’s Standard Library.
4 The reference implementation accurately reflects the language’s definition. Its behavior is how all other implementations should behave.
5 C extension modules are written in C for use in Python.

Chapter 2. Properly Installing Python

This chapter walks through CPython installation on the Mac OS X, Linux, and Windows platforms. Sections on packaging tools (like Setuptools and pip) are repetitive, so you should skip straight to the section for your particular operating system, and ignore the others.

If you are part of an organization that recommends you
use a commercial Python distribution, such as Anaconda or
Canopy, you should follow your vendor’s instructions.
There is also a small note for you in “Commercial Python Redistributions”.

Caution

If Python already exists on your system,
do not, on any account, allow anybody to change the
symbolic link to the python executable to point at anything
other than what it is already pointing at.
That would be almost as bad as reading
Vogon poetry
out loud. (Think of the system-installed code that
depends on a specific Python in a specific place…)

Installing Python on Mac OS X

The latest version of Mac OS X, El Capitan, comes with
its own Mac-specific implementation of Python 2.7.

You don’t need to install or configure anything else
to use Python. But we strongly recommend installing Setuptools, pip, and virtualenv before you start building Python applications for
real-world use (i.e., contributing to collaborative projects).
You’ll learn more about these tools and how to install
them later in this section.
In particular, you should always install Setuptools,
as it makes it much easier for you to use other
third-party Python libraries.

The version of Python that ships with OS X is great for
learning, but it’s not good for collaborative development.
The version shipped with OS X may also be out of date from
the official current Python release, which is considered
the stable production version.1
So, if all you want to do
is write scripts for yourself to pull information from websites,
or process data, you don’t need
anything else. But if you are contributing to open source projects,
or working on a team with people that may have other operating
systems (or ever intend to in the future2),
use the CPython release.

Before you download anything, read through the end of the
next few paragraphs for notes and warnings.
Before installing Python, you’ll need to install GCC.
It can be obtained by downloading
Xcode,
the smaller
Command-Line Tools
(you need an Apple account to download it), or the even smaller
osx-gcc-installer package.

Caution

If you already have Xcode installed, do not install
osx-gcc-installer. In combination,
the software can cause issues that are difficult to diagnose.

While OS X comes with a large number of Unix utilities,
those familiar with Linux systems will notice one key
component missing: a decent package manager.
Homebrew
fills this void.

To install Homebrew, open Terminal or your favorite OS X
terminal emulator and run the following code:

$ BREW_URI=https://raw.githubusercontent.com/Homebrew/install/master/install
$ ruby -e "$(curl -fsSL ${BREW_URI})"

The script will explain what changes it will make and prompt
you before the installation begins.
Once you’ve installed Homebrew, insert the Homebrew directory
at the top of your PATH environment variable.3
You can do this by adding the following
line at the bottom of your ~/.profile file:

export PATH=/usr/local/bin:/usr/local/sbin:$PATH

And then to install Python, run this once in a terminal:

$ brew install python3

Or for Python 2:

$ brew install python

By default, Python will then be installed in
/usr/local/Cellar/python3/ or /usr/local/Cellar/python/
with symbolic links4
to the interpreter at /usr/local/python3 or /usr/local/python.
People who use the --user option to pip install
will need to work around a bug
involving distutils
and the Homebrew configuration. We recommend
just using virtual environments, described in
“virtualenv”.

Setuptools and pip

Homebrew installs Setuptools and pip for you. The executable installed with pip will be mapped to pip3 if you are using Python 3 or to pip if you are using Python 2.

With Setuptools, you can download and install any
compliant5
Python software over a network (usually the Internet)
with a single command (easy_install). It also enables you
to add this network installation capability to your own
Python software with very little work.

Both pip’s pip command and Setuptools’s easy_install command are tools to install and manage Python packages. pip is recommended over easy_install
because it can also uninstall packages,
its error messages are more digestible, and
partial package installs can’t happen (installs that fail
partway through will unwind everything that happened so far).
For a more nuanced discussion, see pip vs easy_install in the
Python Packaging User Guide, which should be your first reference for current packaging
information.

To upgrade your installation of pip, type the following in a shell:

$ pip install --upgrade pip

virtualenv

virtualenv creates isolated Python environments.
It creates a folder containing all the necessary
executables to use the packages that a Python project would need.
Some people believe best practice is to install nothing
except virtualenv and Setuptools and to then always
use virtual environments.6

To install virtualenv via pip, run pip at the command line
of a terminal shell:

$ pip3 install virtualenv

or if you are using Python 2:

$ pip install virtualenv

Once you are in a virtual environment, you can always use the command pip, whether you are working with Python 2 or Python 3, so that is what we will do in the rest of this guide. “Virtual Environments” describes usage and
motivation in more detail.

Installing Python on Linux

Ubuntu started releasing with only Python 3 installed
(and Python 2 available via apt-get) as of Wily Werewolf (Ubuntu 15.10).
All of the details are on Ubuntu’s Python page.
Fedora’s release 23 is the first with only Python 3 (both Python 2.7
and 3 are available on releases 20–22),
and otherwise Python 2.7 will be available via its package manager.

Most parallel installations of Python 2 and Python 3
make a symbolic link from python2 to a Python 2
interpreter and from python3 to a Python 3 interpreter.
If you decide to use Python 2, the current recommendation on Unix-like
systems (see Python Enhancement Proposal [PEP 394])
is to explicitly specify python2 in your shebang notation (e.g., #!/usr/bin/env python2
as the first line in the file)
rather than rely on the environment python pointing where
you expect.

Although not in PEP 394, it has also become convention
to use pip2 and pip3 to link to the respective pip
package installers.

Setuptools and pip

Even if pip is available through a package installer
on your system, to ensure you get the most recent version, follow these steps.

First, download get-pip.py.7

Next, open a shell, change directories to the
same location as get-pip.py, and type:

$ wget https://bootstrap.pypa.io/get-pip.py
$ sudo python3 get-pip.py

or for Python 2:

$ wget https://bootstrap.pypa.io/get-pip.py
$ sudo python get-pip.py

This will also install Setuptools.

With the easy_install command that’s installed with Setuptools, you can download and install any
compliant8
Python software over a network (usually the Internet). It also enables you
to add this network installation capability to your own
Python software with very little work.

pip is a tool that helps you easily install and manage
Python packages. It
is recommended over easy_install
because it can also uninstall packages,
its error messages are more digestible, and
partial package installs can’t happen (installs that fail
partway through will unwind everything that happened so far).
For a more nuanced discussion, see “pip vs easy_install” in the
Python Packaging User Guide, which should be your first reference for current packaging
information.

Development Tools

Almost everyone will at some point want
to use Python libraries that depend on C extensions.
Sometimes your package manager will have these, prebuilt, so you
can check first (using yum search or apt-cache search);
and with the newer wheels format
(precompiled, platform-specific binary files), you
may be able to get binaries directly from PyPI, using pip.
But if you expect to create C extensions in the future, or if the
people maintaining your library haven’t made wheels for your platform,
you will need the development tools for Python: various C libraries, make,
and the GCC compiler.
The following are some useful packages that use C libraries:

	Concurrency tools

	

	
The threading library threading

	
The event-handling library (Python 3.4+) asyncio

	
The coroutine-based networking library curio

	
The coroutine-based networking library gevent

	
The event-driven networking library Twisted

	Scientific analysis

	

	
The linear algebra library NumPy

	
The numerical toolkit SciPy

	
The machine learning library scikit-learn

	
The plotting library Matplotlib

	Data/database interface

	

	
The interface to the HDF5 data format h5py

	
The PostgreSQL database adapter Psycopg

	
The database abstraction and object-relational mapper SQLAlchemy

On Ubuntu, in a terminal shell, type:

$ sudo apt-get update --fix-missing
$ sudo apt-get install python3-dev # For Python 3
$ sudo apt-get install python-dev # For Python 2

Or on Fedora, in a terminal shell, type:

$ sudo yum update
$ sudo yum install gcc
$ sudo yum install python3-devel # For Python 3
$ sudo yum install python2-devel # For Python 2

and then pip3 install --user desired-package will be able to build tools that must be compiled. (Or pip install --user desired-package for Python 2.) You also will need the tool itself installed (for details on how to do this, see the HDF5 installation documentation). For PostgreSQL on Ubuntu, you’d type this in a terminal shell:

$ sudo apt-get install libpq-dev

or on Fedora:

$ sudo yum install postgresql-devel

virtualenv

virtualenv is a command installed with the virtualenv package that creates isolated Python environments.
It creates a folder containing all the necessary
executables to use the packages that a Python project would need.

To install virtualenv using Ubuntu’s package manager, type:

$ sudo apt-get install python-virtualenv

or on Fedora:

$ sudo yum install python-virtualenv

Or via pip, run pip at the command line
of a terminal shell, and use the --user option to
install it locally for yourself rather than doing a
system install:

$ pip3 install --user virtualenv

or if you are using Python 2:

$ sudo pip install --user virtualenv

Once you are in a virtual environment, you can always use the command pip, whether you are working with Python 2 or Python 3, so that is what we will do in the rest of this guide. “Virtual Environments” describes usage and motivation in more detail.

Installing Python on Windows

Windows users have it harder than other Pythonistas—because it’s harder
to compile anything on Windows,
and many Python libraries
use C extensions under the hood.
Thanks to wheels, binaries can
be downloaded from PyPI using pip (if they exist), so things have
gotten a little easier.

There are two paths here: a commercial distribution
(discussed in “Commercial Python Redistributions”) or
straight-up CPython. Anaconda is much easier, especially
when you’re going to do scientific work.
Actually, pretty much everyone who does scientific computing on
Windows with Python (except those developing C-based Python libraries of their own)
will recommend Anaconda.
But if you know your way around compiling and linking, if you
want to contribute to open source projects that use C code,
or if you just don’t want a commercial distribution (what you need is free),
we hope you consider installing straight-up CPython.9

As time progresses, more and more packages with C libraries
will have wheels on PyPI, and so can be obtained via pip.
The trouble comes when required C library dependencies are not bundled
with the wheel. This dependency problem is another reason you may prefer commercial Python redistributions like Anaconda.

Use CPython if you are the kind of Windows user who:

	
Doesn’t need Python libraries that rely on C extensions

	
Owns a Visual C++ compiler (not the free one)

	
Can handle setting up MinGW

	
Is game to download binaries by hand10 and then pip install the binary

If you will use Python as a substitute for R or MATLAB, or just want to get up to speed quickly and will install CPython later if necessary (see “Commercial Python Redistributions” for some tips), use Anaconda.11

If you want your interface to be mostly graphical (point-and-click), or if Python is your first language and this is your first install, use Canopy.

If your entire team has already committed to one of these options, then you should go with whatever is currently being used.

To install the standard CPython implementation on Windows, you first need to download the latest version of
Python 3
or
Python 2.7
from the official website. If you want to be sure you are installing a
fully up-to-date version (or are certain you really, really want the
64-bit installer12), then use the
Python Releases for Windows site
to find the release you need.

The Windows version is provided as an MSI package. This format allows
Windows administrators to automate installation with their standard tools.
To install the package manually, just double-click the file.

By design, Python installs to a directory with the version number embedded
(e.g., Python version 3.5 will install at C:\Python35\) so that you can
have multiple versions of Python on the same system without conflicts.
Of course, only one interpreter can be the default application for Python file types.
The installer does not automatically modify the PATH environment variable,13
so that you always have control over which copy of Python is run.

Typing the full path name for a Python interpreter each time quickly gets tedious,
so add the directories for your default Python version to the PATH. Assuming
that the Python installation you want to use is in C:\Python35\,
you will want to add this to your PATH:

C:\Python35;C:\Python35\Scripts\

You can do this easily by running the following in PowerShell:14

PS C:\> [Environment]::SetEnvironmentVariable(
 "Path",
 "$env:Path;C:\Python35\;C:\Python35\Scripts\",
 "User")

The second directory (Scripts) receives command files when
certain packages are installed, so it is a very useful addition.
You do not need to install or configure anything
else to use Python.

Having said that, we strongly recommend installing
Setuptools, pip, and virtualenv before
you start building Python applications for
real-world use (i.e., contributing to collaborative projects).
You’ll learn more about these tools and how to install
them later in this section.
In particular, you should always install Setuptools, as
it makes it much easier for you to use other third-party
Python libraries.

Setuptools and pip

The current MSI packaged installers
install Setuptools and pip for you with Python,
so if you are following along with this book
and just installed now, you have them already.
Otherwise, the best way to get them with Python 2.7 installed is to
upgrade to the newest release.15
For Python 3, in versions 3.3 and prior, download the script
get-pip.py,16
and run it. Open a shell, change directories to the
same location as get-pip.py, and then type:

PS C:\> python get-pip.py

With Setuptools, you can download and install any
compliant17 Python software over a network (usually the Internet)
with a single command (easy_install). It also enables you
to add this network installation capability to your own
Python software with very little work.

Both pip’s pip command and Setuptools’s easy_install command are tools to install and manage Python packages. pip
is recommended over easy_install
because it can also uninstall packages,
its error messages are more digestible, and
partial package installs can’t happen (installs that fail
partway through will unwind everything that happened so far).
For a more nuanced discussion, see “pip vs easy_install” in the
Python Packaging User Guide, which should be your first reference for current packaging
information.

virtualenv

The virtualenv command
creates isolated Python environments. It creates a folder containing all the necessary
executables to use the packages that a Python project would need.
Then, when you activate the environment using a command in
the new folder, it prepends that folder to your PATH environment
variable—the Python in the new folder becomes the first
one found, and the packages in its subfolders are the ones
used.

To install virtualenv via pip, run pip at the command line
of a PowerShell terminal:

PS C:\> pip install virtualenv

“Virtual Environments” describes usage and
motivation in more detail. On OS X and Linux, because
Python comes installed for use by system or third-party software,
they must specifically distinguish between the Python 2 and Python 3
versions of pip. On Windows, there is no need to do this, so
whenever we say pip3, we mean pip for Windows users. Regardless of OS, once you are in a virtual environment, you can always use the command pip, whether you are working with Python 2 or Python 3, so that is what we will do in the rest of this guide.

Commercial Python Redistributions

Your IT department or classroom teaching assistant may have asked you to
install a commercial redistribution of Python.
This is intended to simplify the work an organization needs to do to
maintain a consistent environment for multiple users.
All of the ones listed here provide the C implementation of Python (CPython).

A technical reviewer for the first draft of
this chapter said we massively understated the
trouble it is to use a regular CPython installation on Windows
for most users: that even with wheels,
compiling and/or linking to external C libraries
is painful for everyone but seasoned developers.
We have a bias toward plain CPython,
but the truth is if you’re going to be a consumer of
libraries and packages (as opposed to a creator or contributor),
you should just download
a commercial redistribution and get on with your life—doubly so if you’re a Windows user.
Later, when you want to contribute to open source,
you can install the regular distribution of CPython.

Tip

It is easier to go back to a standard Python installation
if you do not alter the default settings in vendor-specific
installations.

Here’s what these commercial distributions have to offer:

	The Intel Distribution for Python

	
The purpose of the Intel Distribution for Python
is to deliver high-performance Python in an easy-to-access, free package.
The primary boost to performance comes from linking Python packages with
native libraries such as the Intel Math Kernel Library (MKL), and
enhanced threading capabilities that include
the Intel Threading Building Blocks (TBB) library.
It relies on Continuum’s conda for package management, but also
comes with pip. It can be downloaded by itself or installed from https://anaconda.org/ in a
conda environment.18

It provides the SciPy stack and the other common libraries listed in
the release notes (PDF).
Customers of Intel Parallel Studio XE get commercial support and
everyone else can use the forums for help. So, this option gives
you the scientific libraries without too much fuss, and otherwise
is a regular Python distribution.

	Continuum Analytics’ Anaconda

	
Continuum Analytics’ distribution
of Python is released under the BSD license
and provides tons of precompiled science and math binaries on its
 free package index.
It has a different package manager than pip, called conda,
that also manages virtual environments, but acts more
like Buildout (discussed in “Buildout”) than like virtualenv—managing libraries and other external dependencies for the user.
The package formats are incompatibile, so each installer can’t install
from the other’s package index.

The Anaconda distribution comes with the SciPy stack and other tools.
Anaconda has the best license and the most stuff for free; if you’re
going to use a commercial distribution—especially if you’re already comfortable working with
the command line already and like R or Scala (also bundled)—choose this.
If you don’t need all of those other things, use the
miniconda distribution instead.
Customers get various levels of indemnification (related to open
source licenses, and who can use what when, or whom gets sued for what),
commercial support, and extra Python libraries.

	ActiveState’s ActivePython

	
ActiveState’s distribution
is released under the ActiveState Community License and is
free for evaluation only; otherwise it requires a license.
ActiveState also provides solutions for Perl and Tcl.
The main selling point of this distribution is broad indemnification
(again related to open source licenses) for the more than
7,000 packages in its cultivated
package index,
reachable using the ActiveState pypm tool, a replacement for pip.

	Enthought’s Canopy

	
Enthought’s distribution
is released under the Canopy Software License, with a
package manager, enpkg, that is used in place of pip to connect to
Canopy’s package index.

Enthought provides free academic licenses to students and staff from degree-granting
institutions. Distinguishing features from Enthought’s distribution are
graphical tools to interact with Python, including its own IDE that resembles
MATLAB, a graphical package manager, a graphical debugger,
and a graphical data manipulation tool.
Like the other commercial redistributors, there is indemnification and
commercial support, in addition to more packages for customers.

1 Other people have different opinions. The OS X Python implementation is not the same. It even has some separate OS X–specific libraries. A small rant on this subject criticizing our recommendation is at the Stupid Python Ideas blog. It raises valid concerns about collision of some names for people who switch-hit between OS X’s CPython 2.7 and the canonical CPython 2.7. If this is a concern, use a virtual environment. Or, at the very least, leave the OS X Python 2.7 where it is so that the system runs smoothly, install the standard Python 2.7 implemented in CPython, modify your path, and never use the OS X version. Then everything works fine, including products that rely on Apple’s OS X–specific version.
2 The best option is to pick Python 3, honestly, or to use virtual environments from the start and install nothing but virtualenv and maybe virtualenvwrapper according to the advice of Hynek Schlawack.
3 This will ensure that the Python you use is the one Homebrew just installed, while leaving the system’s original Python exactly as it is.
4 A symbolic link is a pointer to the actual file location. You can confirm where the link points to by typing, for example, ls -l /usr/local/bin/python3 at the command prompt.
5 Packages that are compliant with Setuptools at a minimum provide enough information for the library to identify and obtain all package dependencies. For more information, see the documentation for Packaging and Distributing Python Projects, PEP 302, and PEP 241.
6 Advocates of this practice say it is the only way to ensure nothing ever overwrites an existing installed library with a new version that could break other version-dependent code in the OS.
7 For additional details, see the pip installation instructions.
8 Packages that are compliant with Setuptools at a minimum provide enough information for it to identify and obtain all package dependencies. For more information, see the documentation for Packaging and Distributing Python Projects, PEP 302, and PEP 241.
9 Or consider IronPython (discussed in “IronPython”) if you want to integrate Python with the .NET framework. But if you’re a beginner, this should probably not be your first Python interpreter. This whole book talks about CPython.
10 You must know at least what version of Python you’re using and whether you selected 32-bit or 64-bit Python. We recommend 32-bit, as every third-party DLL will have a 32-bit version and some may not have 64-bit versions. The most widely cited location to obtain compiled binaries is Christoph Gohlke’s resource site. For scikit-learn, Carl Kleffner is building binaries using MinGW in preparation for eventual release on PyPI.
11 Anaconda has more free stuff, and comes bundled with Spyder, a better IDE. If you use Anaconda, you’ll find Anaconda’s free package index and Canopy’s package index to be helpful.
12 Meaning you are 100% certain that any Dynamically Linked Libraries (DLLs) and drivers you need are available in 64 bit.
13 The PATH lists every location the operating system will look to find executable programs, like Python and Python scripts like pip. Each entry is separated by a semicolon.
14 Windows PowerShell provides a command-line shell and scripting language that is similar enough to Unix shells that Unix users will be able to function without reading a manual, but with features specifically for use with Windows. It is built on the .NET Framework. For more information, see Microsoft’s “Using Windows PowerShell.”
15 The installer will prompt you whether it’s OK to overwrite the existing installation. Say yes; releases in the same minor version are backward-compatible.
16 For additional details, see the pip installation instructions.
17 Packages that are compliant with Setuptools at a minimum provide enough information for the library to identify and obtain all package dependencies. For more information, see the documentation for “Packaging and Distributing Python Projects,” PEP 302, and PEP 241.
18 Intel and Anaconda have a partnership, and all of the Intel accelerated packages are only available using conda. However, you can always conda install pip and use pip (or pip install conda and use conda) when you want to.

Chapter 3. Your Development Environment

This chapter provides an overview of the
text editors, integrated development environments (IDEs),
and other development tools currently
popular in the Python edit → test → debug cycle.

We unabashedly prefer Sublime Text (discussed in
“Sublime Text”) as an editor
and PyCharm/IntelliJ IDEA (discussed in “PyCharm/IntelliJ IDEA”) as an IDE
but recognize that the
best option depends on the type of coding you do
and the other languages you use. This chapter
lists a number of the most popular ones and reasons
for choosing them.

Python does not need build tools like Make or
Java’s Ant or Maven because it is interpreted, not compiled,1 so we do not discuss them here.
But in Chapter 6, we’ll
describe how to use Setuptools to package projects and Sphinx
to build documentation.

We also won’t cover version control systems, as these are
language-independent, but the people who maintain the
C (reference) implementation of Python just moved from Mercurial
to Git (see PEP 512). The original justification to use Mercurial, in PEP 374, contains a small but useful comparison between today’s top four options: Subversion, Bazaar, Git, and Mercurial.

This chapter concludes with a brief review of
the current ways to manage different interpreters
to replicate different deployment situations while coding.

Text Editors

Just about anything that can edit plain text will work for writing
Python code; however, choosing the right editor can save you hours
per week.
All of the text editors listed in this section
support syntax highlighting and can be extended via plug-ins
to use static code checkers (linters) and debuggers.

Table 3-1 lists our favorite text editors in
descending order of preference and
articulates why a developer would choose
one over the other. The rest of the chapter briefly elaborates
on each editor.
Wikipedia has a
very detailed text editor comparison chart
for those who need to check for specific features.

Table 3-1. Text editors at a glance

	Tool
	Availability
	Reason to use

	Sublime Text

	

	
Open API/has free trial

	
OS X, Linux, Windows

	

	
It’s fast, with a small footprint.

	
It handles large (> 2 GB) files well.

	
Extensions are written in Python.

	Vim

	

	
Open source/donations appreciated

	
OS X, Linux, Windows, Unix

	

	
You already love Vi/Vim.

	
It (or at least Vi) is preinstalled on every OS except Windows.

	
It can be a console application.

	Emacs

	

	
Open source/donations appreciated

	
OS X, Linux, Windows, Unix

	

	
You already love Emacs.

	
Extensions are written in Lisp.

	
It can be a console application.

	TextMate

	

	
Open source/need a license

	
OS X only

	

	
Great UI.

	
Nearly all interfaces (static code check/debug/test) come preinstalled.

	
Good Apple tools—for example, the interface to xcodebuild (via the Xcode bundle).

	Atom

	

	
Open source/free

	
OS X, Linux, Windows

	

	
Extensions are written in JavaScript/HTML/CSS.

	
Very nice GitHub integration.

	Code

	

	
Open API (eventually)/free

	
OS X, Linux, Windows (but Visual Studio, the corresponding IDE, only works on Windows)

	

	
IntelliSense (code completion) worthy of Microsoft’s VisualStudio.

	
Good for Windows devs, with support for .Net, C#, and F#.

	
Caveat: not yet extensible (to come).

Sublime Text

Sublime Text
is our recommended text editor for code,
markup, and prose.
Its speed is the first thing cited when
people recommend it; the number of packages
available (3,000+) is next.

Sublime Text was first released in 2008 by Jon Skinner.
Written in Python, it has excellent support for editing Python code
and uses Python for its package extension API.
A “Projects” feature allows the user to add/remove files or folders—these can then be searched via the “Goto Anything” function,
which identifies locations within the project
that contain the search term(s).

You need
PackageControl to
access the Sublime Text package repository.
Popular packages include SublimeLinter, an interface to the
user’s selection of installed static code checkers;
Emmett for web development snippets;2
and Sublime SFTP for remote editing via FTP.

Anaconda (no relation to the
commercial Python distribution of the same name), released
in 2013, by itself turns
Sublime almost into an IDE, complete with static code checks,
docstring checks, a test runner, and capability to look up the
definition of or locate uses of highlighted objects.

Vim

Vim is a console-based text editor (with optional GUI)
that uses keyboard shortcuts for
editing instead of menus or icons.
It was first released in 1991 by Bram Moolenaar, and
its predecessor, Vi, was released in 1976 by Bill Joy.
Both are written in C.

Vim is extensible via vimscript, a simple
scripting language. There are options to use other languages:
to enable Python scripting, set the build configuration flags when building from the C source to
--enable-pythoninterp and/or --enable-python3interp before
you build from source.
To check whether Python or Python3 are enabled,
type :echo has("python") or :echo has("python3");
the result will be “1” if True or “0” if False.

Vi (and frequently Vim) is available out of the box
on pretty much
every system but Windows, and there is an
executable installer for Vim on Windows.
Users who can tolerate the learning curve will become extremely
efficient; so much that the basic Vi key bindings are available
as a configuration option in most other editors and IDEs.

Note

If you want to work for a large company in any sort of IT role,
a functioning awareness of Vi is necessary.3
Vim is much more featureful than Vi, but is close enough that
a Vim user can function in Vi.

If you only develop in Python, you can set the default settings
for indentation and line wrapping to values compliant with
PEP 8.
To do that, create a file called .vimrc in your home directory,4 and add the following:

set textwidth=79 " lines longer than 79 columns will be broken
set shiftwidth=4 " operation >> indents 4 columns; << unindents 4 columns
set tabstop=4 " a hard TAB displays as 4 columns
set expandtab " insert spaces when hitting TABs
set softtabstop=4 " insert/delete 4 spaces when hitting a TAB/BACKSPACE
set shiftround " round indent to multiple of 'shiftwidth'
set autoindent " align the new line indent with the previous line

With these settings, newlines are inserted after 79 characters and
indentation is set to four spaces per tab, and if you are
inside an indented statement, your next line will also be indented
to the same level.

There is also a syntax plug-in called
python.vim
that features some improvements over the syntax file included in Vim 6.1,
and a small plug-in,
SuperTab,
that makes code completion more convenient
by using the Tab key or any other customized keys.
If you also use Vim for other
languages, there is a handy plug-in called
indent,
which handles indentation settings for Python source files.

These plug-ins supply you with a basic environment for developing in Python.
If your Vim is compiled with +python (the default for Vim 7 and newer),
you can also use the plug-in vim-flake8
to do static code checks from
within the editor.
It provides the function Flake8, which runs
PEP8 and
Pyflakes,
and can be mapped to any hotkey or action you
want in Vim.
The
plug-in will display errors at the bottom of the screen and provide an
easy way to jump to the corresponding line.

If you think it’s handy, you can make Vim
call Flake8 every time you save a Python file by adding the following
line to your .vimrc:

autocmd BufWritePost *.py call Flake8()

Or, if you are already using
syntastic,
you can set it to run Pyflakes on write and show errors and
warnings in the quickfix window. Here’s an example configuration
to do that and also show status and warning messages
in the status bar:

set statusline+=%#warningmsg#
set statusline+=%{SyntasticStatuslineFlag()}
set statusline+=%*
let g:syntastic_auto_loc_list=1
let g:syntastic_loc_list_height=5

Python-mode

Python-mode
is a complex solution for working with Python code in Vim.
If you like any of the features listed here, use it (but be
aware it will slow down Vim’s launch a little bit):

	
Asynchronous Python code checking (pylint, pyflakes, pep8,
mccabe), in any combination

	
Code refactoring and autocompletion with
rope

	
Fast Python folding (you can hide and show code within indents)

	
Support for virtualenv

	
The ability to search through Python documentation and run Python code

	
Auto PEP8 error fixes

Emacs

Emacs is another powerful text editor. It now has a GUI but
can still be run directly in the console.
It is fully programmable (Lisp),
and with a little work can be wired up as a Python IDE.
Masochists and
Raymond Hettinger5
use it.

Emacs is written in Lisp and was first released in
1976 by Richard Stallman and Guy L. Steele, Jr.
Built-in features include remote edit (via FTP),
a calendar, mail send/read, and even
a shrink (Esc, then x, then doctor).
Popular plug-ins include YASnippet to map custom code
snippets to keystrokes, and Tramp for debugging.
It is extensible via its own dialect of Lisp, elisp plus.

If you are
already an Emacs user, EmacsWiki’s
“Python Programming in Emacs”
has the best advice for Python packages and configuration.
Those new to Emacs can get started with the
official Emacs tutorial.

There are three major Python modes for Emacs right now:

	
Fabián Ezequiel Gallina’s python.el,
now bundled with Emacs (version 24.3+), implements
syntax highlighting, indentation, movement, shell interaction,
and a number of other
common Emacs edit-mode features.

	
Jorgen Schäfer’s
Elpy aims to provide a full-featured
interative development environment within Emacs, including
debugging, linters, and code completion.

	
Python’s source distribution
ships with an alternate version in the directory Misc/python-mode.el.
 You can download it from the Web as a separate file from
 launchpad.
 It has some tools for programming by speech, additional
 keystroke shortcuts, and allows you to
 set up a complete Python IDE.

TextMate

TextMate is a GUI with Emacs
roots that works only on OS X. It
has a truly Apple-worthy user interface that somehow
manages to be unobtrusive while exposing all of the commands
with minimal discovery effort.

TextMate is written in C++ and was first released in 2004
by Allan Oddgard and Ciarán Walsh.
Sublime Text (discussed in “Sublime Text”) can directly
import TextMate snippets, and Microsoft’s Code (discussed in “Code”)
can directly import TextMate syntax highlighting.

Snippets in any language can be added in bundled groups, and
it can otherwise be extended with shell scripts: the
user can highlight some text and pipe it as standard input
through the script using the Cmd+| (pipe) key combination.
The script output replaces the highlighted text.

It has built-in syntax highlighting for Apple’s
Swift and Objective C, and (via the Xcode bundle) an
interface to xcodebuild. A veteran TextMate user will
not have problems coding in Python using this editor.
New users who don’t spend much time coding for Apple
products are probably better off with
the newer cross-platform editors that borrow heavily
from TextMate’s best-loved features.

Atom

Atom is a “hackable text editor for
the 21st century,” according to the folks at GitHub
who created it.
It was first released in 2014, is written in
CoffeeScript (JavaScript) and Less (CSS), and
is built on top of Electron (formerly Atom Shell),6 which is GitHub’s
application shell based on io.js and Chromium.

Atom is extensible via JavaScript and CSS, and
users can add snippets in any language
(including TextMate-style snippet definitions).
As you’d expect, it has very nice GitHub integration.
It comes with native package control and a plethora
of packages (2,000+).
Recommended for Python development is
Linter combined with
linter-flake8.
Web developers may also like the
Atom development server,
which runs a small HTTP server and can display the HTML preview
within Atom.

Code

Microsoft announced Code in 2015.
It is a free, closed source text editor
in the Visual Studio family,
also built on GitHub’s Electron.
It is cross-platform and has key bindings just like TextMate.

It comes with an extension API—check out the VS Code Extension Marketplace to browse existing extensions—and merges what
its developers thought were the best parts of TextMate
and Atom with Microsoft. It has
IntelliSense (code completion) worthy of VisualStudio,
and good support for .Net, C#, and F#.

Visual Studio (the sister IDE to the Code text editor) still
only works on Windows, even though Code is cross-platform.

IDEs

Many developers use both a text editor and an IDE, switching
to the IDE for larger, more complex, or more collaborative projects.
Table 3-2
highlights the distinguishing
features of some popular IDEs, and the sections that follow provide more in-depth information on each one.

One feature frequently cited as a reason to go to a full IDE
(outside of great code
completion and debugging tools) is the ability to quickly
switch between Python interpreters (e.g., from Python 2 to
Python 3 to IronPython);
this is available in the free version of all of the IDEs
listed in Table 3-2, Visual Studio now offers this at all levels.7

Additional features that may or may not come free are
tools that interface with ticketing systems,
deployment tools (e.g., Heroku or Google App Engine),
collaboration tools, remote debugging, and extra features for
using web development frameworks such as Django.

Table 3-2. IDEs at a glance

	Tool
	Availability
	Reason to use

	PyCharm/Intellij IDEA

	

	
Open API/paid professional edition

	
Open source/free community edition

	
OS X, Linux, Windows

	

	
Nearly perfect code completion.

	
Good support for virtual environments.

	
Good support for web frameworks (in the paid version).

	Aptana Studio 3 / Eclipse + LiClipse + PyDev

	

	
Open source/free

	
OS X, Linux, Windows

	

	
You already love Eclipse.

	
Java support (LiClipse/Eclipse).

	WingIDE

	

	
Open API/free trial

	
OS X, Linux, Windows

	

	
Great debugger (web)—best of the IDEs listed here.

	
Extensible via Python.

	Spyder

	

	
Open source/free

	
OS X, Linux, Windows

	

	
Data science: IPython integrated, and it is bundled with NumPy, SciPy, and matplotlib.

	
The default IDE in popular scientific Python distributions: Anaconda, Python(x,y), and WinPython.

	NINJA-IDE

	

	
Open source/donations appreciated

	
OS X, Linux, Windows

	

	
Intentionally lightweight.

	
Strong Python focus.

	Komodo IDE

	

	
Open API/text editor (Komodo Edit) is open source

	
OS X, Linux, Windows

	

	
Python, PHP, Perl, Ruby, Node.

	
Extensions are based on Mozilla add-ons.

	Eric (the Eric Python IDE)

	

	
Open source/donations appreciated

	
OS X, Linux, Windows

	

	
Ruby + Python.

	
Intentionally lightweight.

	
Great debugger (scientific)—can debug one thread while others continue.

	Visual Studio (Community)

	

	
Open API/free community edition

	
Paid professional or enterprise edition

	
Windows only

	

	
Great integration with Microsoft languages and tools.

	
IntelliSense (code completion) is fantastic.

	
Project management and deployment assistance, including sprint planning
tools and manifest templates in the Enterprise edition.

	
Caveat: cannot use virtual environments except in the Enterprise
(most expensive) edition.

PyCharm/IntelliJ IDEA

PyCharm
is our favorite Python IDE.
The top reasons are its nearly perfect code completion
tools, and the quality of its tools for web development.
Those in the scientific community recommend the
free edition (which doesn’t have the web development tools)
as just fine for their needs,
but not as often as they choose Spyder (discussed in “Spyder”).

PyCharm is developed by JetBrains, also known
for IntelliJ IDEA, a proprietary Java IDE that competes
with Eclipse. PyCharm (first released in 2010) and
IntelliJ IDEA (first released in 2001) share the same code base,
and most of PyCharm’s features can be brought to IntelliJ
with the free
Python plug-in.

JetBrains recommends PyCharm for a simpler UI,
or IntelliJ IDEA if you want to introspect into Jython functions,
perform cross-language navigation, or do
Java-to-Python refactoring.
(PyCharm works with Jython but only as a possible choice for
interpreter; the introspection tools aren’t there.)
The two are licensed separately—so choose before you buy.

The IntelliJ Community Edition and PyCharm Commuity Edition
are open sourced (Apache 2.0 License) and free.

Aptana Studio 3/Eclipse + LiClipse + PyDev

Eclipse is written in Java and was first released in 2001 by
IBM as an open, versatile Java IDE.
PyDev, the Eclipse plug-in for Python
development, was released in 2003 by Aleks Totic,
who later passed the torch to Fabio Zadrozny.
It is the most popular Eclipse plug-in for Python development.

Although the Eclipse community doesn’t push back
online when people advocate for IntelliJ IDEA in forums
comparing the two, Eclipse is still the most commonly
used Java IDE. This is relevant for Python developers who
interface with tools written in Java, as
many popular ones (e.g., Hadoop, Spark, and
proprietary versions of these) come with
instructions and plug-ins for development with Eclipse.

A fork of PyDev is baked into
Aptana’s Studio 3,
which is an open source suite of plug-ins bundled
with Eclipse that provide an IDE for Python (and Django), Ruby (and Rails),
HTML, CSS, and PHP.
The primary focus of Aptanta’s owner, Appcelerator, is the
Appcelerator Studio, a proprietary mobile platform for HTML, CSS, and JavaScript
that requires a monthly license (once your app goes live).
General PyDev and Python support is there, but is not a priority.
That said, if you like Eclipse and are primarily a JavaScript developer
making apps for mobile platforms with occasional forays into Python,
especially if you use Appcelerator at work, Aptana’s Studio 3 is
a good choice.

LiClipse was born out of a desire to have a better multilanguge
experience in Eclipse, and easy access to fully dark themes
(i.e., in addition to the text background, menus and borders will also be dark).
It is a proprietary suite of Eclipse plug-ins written by
Zadrozny; part of the license fees (optional) go to keeping PyDev
totally free and open source (EPL License; the same as Eclipse).
It comes bundled with PyDev, so Python users don’t need to
install it themselves.

WingIDE

WingIDE is a Python-specific IDE;
probably the second most popular Python IDE after PyCharm.
It runs on Linux,
Windows, and OS X.

Its debugging tools are very good and include
tools to debug Django templates.
WingIDE users cite its debugger, the quick learning curve, and a
lightweight footprint as reasons they prefer this IDE.

Wing was released in 2000 by Wingware and is
written in Python, C, and C++. It supports extensions
but does not have a plug-in repository yet, so users
have to search for others’ blogs or GitHub accounts to
find existing packages.

Spyder

Spyder
(an abbreviation of
Scientific PYthon Development EnviRonment)
is an IDE specifically geared toward working with
scientific Python libraries.

Spyder is written in Python by Carlos Córdoba.
It is open source (MIT License), and offers code completion, syntax
highlighting, a class and function browser, and object inspection.
Other features are available via community plug-ins.

Spyder includes integration with
pyflakes,
pylint, and
rope,
and comes bundled with NumPy, SciPy, IPython, and Matplotlib.
It is itself bundled with the popular Scientific Python
distributions Anaconda, Python(x, y), and WinPython.

NINJA-IDE

NINJA-IDE (from the recursive
acronym: “Ninja-IDE Is Not Just Another IDE”) is a
cross-platform IDE designed to build Python
applications. It runs on Linux/X11, Mac OS X, and Windows. Installers for these platforms
can be downloaded from NINJA-IDE’s website.

NINJA-IDE is developed in Python and Qt, open sourced (GPLv3 License),
and is intentionally lightweight. Out of the
box, its best-liked feature is that it highlights problem code
when running static code checkers or debugging, and the
ability to preview web pages in-browser. It is extensible
via Python, and has a plug-in repository. The idea is that
users will add only the tools they need.

Development slowed for a while, but a new NINJA-IDE v3 is
planned for some time in 2016, and there is still active communication
on the NINJA-IDE listserv.
The community has many native Spanish speakers, including the
core development team.

Komodo IDE

Komodo IDE
is developed by ActiveState and is a commercial
IDE for Windows, Mac, and Linux.
KomodoEdit,
the IDE’s text editor, is the open source (Mozilla public license) alternative.

Komodo was first released in 2000 by ActiveState
and uses the Mozilla and Scintilla code base.
It is extensible via Mozilla add-ons.
It suports Python, Perl, Ruby, PHP, Tcl, SQL, Smarty, CSS, HTML, and XML.
Komodo Edit does not have a debugger, but one is available as a plug-in.
The IDE does not support virtual environments, but does allow
the user to select which Python interpreter to use.
Django support is not as extensive as in WingIDE, PyCharm, or
Eclipse + PyDev.

Eric (the Eric Python IDE)

Eric is open source
(GPLv3 licence) with more than 10 years
of active development. It is written in Python and based
on the Qt GUI toolkit, integrating the Scintilla
editor control.
It is named after Eric Idle, a member of the Monty Python troupe,
and in homage to the IDLE IDE, bundled with Python distributions.

Its features include source code autocompletion, syntax highlighting,
support for version control systems, Python 3 support,
an integrated web browser, a Python shell, an integrated debugger,
and a flexible plug-in system. It does not have extra
tools for web frameworks.

Like NINJA-IDE and Komodo IDE, it is intentionally lightweight.
Faithful users believe it has the best debugging tools around,
including the ability to stop and debug one thread while others continue
to run. If you wish to use Matplotlib for interactive plotting in
this IDE, you must use the Qt4 backend:

This must come first:
import matplotlib
matplotlib.use('Qt4Agg')

And then pyplot will use the Qt4 backend:
import matplotlib.pyplot as plt

This link is to
the most recent documentation for the Eric IDE.
Users leaving positive notes on Eric IDE’s web page are almost
all from the scientific computation (e.g., weather models, or
computational fluid dynamics) community.

Visual Studio

Professional programmers who work with Microsoft
products on Windows will want
Visual Studio.
It is written in C++ and C#, and its first version appeared
in 1995. In late 2014, the first Visual Studio Community Edition
was made available for free for noncommercial developers.

If you intend to work with primarily with enterprise software and use Microsoft products like C# and F#, this is your IDE.

Be sure to install with the
Python Tools for Visual Studio (PTVS),
which is a checkbox in the list of custom installation
options that is by default unchecked.
The instructions for installing with Visual Studio or
after installing Visual Studio are on the
PTVS wiki page.

Enhanced Interactive Tools

The tools listed here enhance the interactive shell experience.
IDLE is actually an IDE, but not included in the preceding section because most
people do not consider it robust enough to use in the same way
(for enterprise projects) as the other IDEs listed;
however, it is fantastic for teaching.
IPython is incorporated into Spyder by default,
and can be incorporated into others of the IDEs.
They do not replace the Python interpreter, but rather
augment the user’s chosen
interpreter shell with additional tools and features.

IDLE

IDLE,
which stands for Integrated Development and Learning Environment
(and is also the last name of Monty Python member Eric Idle),
is part of the Python standard library; it is
distributed with Python.

IDLE is completely written in Python by Guido van
Rossum (Python’s BDFL—Benevolent Dictator for Life) and uses the
Tkinter GUI toolkit. Though IDLE is not suited for
full-blown development using Python, it is quite
helpful to try out small Python snippets and
experiment with different features in Python.

It provides the following features:

	
A Python shell window (interpreter)

	
A multiwindow text editor that colorizes Python code

	
Minimal debugging capability

IPython

IPython provides a rich toolkit to
help you make the most out of using Python interactively.
Its main components are:

	
Powerful Python shells (terminal- and Qt-based)

	
A web-based notebook with the same core features as the terminal shell,
plus support for rich media, text, code, mathematical
expressions, and inline plots

	
Support for interactive data visualization (i.e., when configured, your Matplotlib plots pop up in windows)
and use of GUI toolkits

	
Flexible, embeddable interpreters to load into your own projects

	
Tools for high-level and interactive parallel computing

To install IPython, type the following in a terminal shell
or in PowerShell:

$ pip install ipython

bpython

bpython is an alternative
interface to the Python interpreter for Unix-like operating
systems. It has the following features:

	
Inline syntax highlighting

	
Auto indentation and autocompletion

	
Expected parameter list for any Python function

	
A “rewind” function to pop the last line of code from memory and re-evaluate it

	
The ability to send entered code to a pastebin
(to share code online)

	
The ability to save entered code to a file

To install bpython, type the following in a terminal shell:

$ pip install bpython

Isolation Tools

This section provides more details about
the most widely used isolation tools,
from virtualenv, which isolates Python
environments from each other, to Docker, which
virtualizes the entire system.

These tools provide various levels
of isolation between the running application and its host
environment. They make it possible to test and debug
code against different versions of Python and library dependencies,
and can be used to provide a consistent deployment environment.

Virtual Environments

A Python virtual environment keeps dependencies
required by different projects in separate places.
By installing multiple Python environments,
your global site-packages directory (where
user-installed Python packages are stored) can stay clean
and manageable, and you can simultaneously work on a project
that, for example, requires Django 1.3 while also maintaining a
project that requires Django 1.0.

The virtualenv command does this by creating a separate folder that
contains a softlink to the Python executable, a copy of pip, and
a place for Python libraries. It prepends that location to
the PATH upon activation, and then returns the PATH to
its original state when deactivated. It is also possible to
use the system-installed version of Python and
system-installed libraries, via command-line options.

Note

You can’t move a virtual environment once it’s created—the
paths in the executables are all hardcoded to the current
absolute path to the interpreter in the virtual environment’s
bin/ directory.

Create and activate the virtual environment

Setup and activation of Python virtual environments
is slightly different on different operating systems.

On Mac OS X and Linux

You can specify the version of Python with the --python argument.
Then, use the activate script to set the PATH, entering
the virtual environment:

$ cd my-project-folder
$ virtualenv --python python3 my-venv
$ source my-venv/bin/activate

On Windows

If you haven’t already, you should set the system
execution policies to allow a locally created script to run.8 To do this, open PowerShell as an administrator, and type:

PS C:\> Set-ExecutionPolicy RemoteSigned

Reply Y to the question that appears, exit, and
then, in a regular PowerShell, you can
create a virtual environment like so:

PS C:\> cd my-project-folder
PS C:\> virtualenv --python python3 my-venv
PS C:\> .\my-venv\Scripts\activate

Add libraries to the virtual environment

Once you have activated the virtual environment,
the first pip executable in your path
 will be the one located in the my-venv folder
you just made, and it will install libraries into
the following directory:

	
my-venv/lib/python3.4/site-packages/ (on POSIX9 systems)

	
my-venv\Lib\site-packages (on Windows)

When bundling your own packages or projects for other people, you can use:

$ pip freeze > requirements.txt

while the virtual environment is active. This writes all of the
currently installed packages (which are hopefully also project
dependencies) to the file requirements.txt. Collaborators
can install all of the dependencies in their own virtual environment
when given a requirements.txt file
by typing:

$ pip install -r requirements.txt

pip will install the listed dependencies, overriding dependency
specifications in subpackages if conflicts exist. Dependencies specified in requirements.txt are intended
to set the entire Python environment.
To set dependencies when distributing a library, it is
better to use the install_requires keyword
argument to the setup() function in a setup.py file.

Warning

Be careful to not use pip install -r requirements.txt outside of
a virtual environment. If you do, and anything in requirements.txt
is a different version than the one installed on your computer, pip
will overwrite the other version of the library with the one specified
in requirements.txt.

Deactivate the virtual environment

To return to normal system settings, type:

$ deactivate

For more information, see the
Virtual Environments docs,
the
official virtualenv docs,
or the official Python packaging guide.
The package pyvenv, which is distributed
as part of the Python standard library in Python versions 3.3 and above,
does not replace virtualenv (in fact, it is a dependency of virtualenv),
so these instructions work for all versions of Python.

pyenv

pyenv is a tool that allows multiple
versions of the Python interpreter
to be used at the same time. This solves the problem of
having different projects that each require different versions of Python,
but you would still need to use virtual environments if the
dependency conflict was in the libraries (e.g., requiring
different Django versions).
For example, you can install Python 2.7
for compatibility in one project, and still use
Python 3.5 as the default interpreter. pyenv isn’t just limited
to the CPython versions—it will also install PyPy, Anaconda,
Miniconda, Stackless, Jython, and IronPython interpreters.

Pyenv works by filling a shims directory with a shim version
of the Python interpreter and executables like pip and 2to3.
These will be the executables found if the directory is
prepended to the $PATH environment variable.
A shim is a pass-through function that
interprets the current situation
and selects the most appropriate function to perform the desired task.
For example, when the
system looks for a program named python, it looks inside the shims
directory first, and uses the shim version, which in turn passes
the command on to pyenv. Pyenv then works out which version of Python
should be run based on environment variables, *.python-version files,
and the global default.

For virtual environments, there is
the plug-in pyenv-virtualenv,
which automates the creation of different
environments, and also makes it possible to use the existing pyenv
tools to switch to different environments.

Autoenv

Autoenv
provides a lightweight option to manage different
environment settings outside of the scope of virtualenv.
It overrides the cd shell command so that when you change
into a directory containing a .env file (e.g., setting the PATH and
an environment variable with a database URL), Autoenv automagically
activates the environment, and when you cd out of it,
the effect is undone.
It does not work in Windows PowerShell.

Install it on Mac OS X using brew:

$ brew install autoenv

or on Linux:

$ git clone git://github.com/kennethreitz/autoenv.git ~/.autoenv
$ echo 'source ~/.autoenv/activate.sh' >> ~/.bashrc

and then open a new terminal shell.

virtualenvwrapper

virtualenvwrapper
provides a set of commands that extend Python virtual environments
for more control and better manageability.
It places all your virtual environments in one directory
and provides empty hook functions that can be run before
or after creation/activation of the virtual environment
or of a project—for example, the hook could set environment variables by sourcing
the .env file within a directory.

The problem with placing such functions with the installed items
is that the user must somehow acquire these scripts
to completely duplicate the environment on another machine.
It could be useful on a shared development server, if all of the environments were placed in a shared folder and used by
multiple users.

To skip the
full
virtualenvwrapper installation instructions,
first make sure virtualenv is already
installed. Then, on OS X or Linux, type the following in a command terminal:

$ pip install virtualenvwrapper

Or use pip install virtualenvwrapper if you are using Python 2, and add this to your ~/.profile:

export VIRTUALENVWRAPPER_PYTHON=/usr/local/bin/python3

and then add the following to you ~/.bash_profile or favorite other
shell profile:

source /usr/local/bin/virtualenvwrapper.sh

Finally, close the current terminal window, and open a new one
to activate your new profile, and virtualenvwrapper will be available.

On Windows, use
virtualenvwrapper-win
instead. With virtualenv already installed, type:

PS C:\> pip install virtualenvwrapper-win

Then, on both platforms, the following commands are the most commonly used:

	mkvirtualenv my_venv

	
Creates the virtual environment in the folder ~/.virtualenvs/my_venv. Or on Windows, my_venv will be created in the directory identified by typing %USERPROFILE%\Envs on the command line. The location is customizable via the environment variable $WORKON_HOME.

	workon my_venv

	
Activates the virtual environment or switches from the current environment to the specified one.

	deactivate

	
Deactivates the virtual environment.

	rmvirtualenv my_venv

	
Deletes the virtual environment.

virtualenvwrapper provides tab-completion on environment names,
which really helps when you have a lot of environments and have
trouble remembering their names. A number of other convenient
functions are documented in the
full list of virtualenvwrapper commands.

Buildout

Buildout is a
Python framework that allows you to
create and compose recipes—Python modules containing
arbitrary code (usually system calls to make directories
or to check out and build source code, and to add non-Python parts
to the project, such as a database or a web server).
Install it using pip:

$ pip install zc.buildout

Projects that use Buildout would include zc.buildout and the recipes
they need in their requirements.txt, or would directly include custom recipes
with the source code.
They also include the configuration file buildout.cfg, and
the bootstrap.py script in its top directory.
If you run the script by typing python bootstrap.py, it will read the
configuration file to determine which recipes to use,
plus each recipe’s configuration options (e.g., the
specific compiler flags and library linking flags).

Buildout gives a Python project with non-Python parts portability—another user can reconstruct the same environment.
This is different from the script hooks in Virtualenvwrapper, which
would need to be copied and transmitted along with the requirements.txt
file to be able to re-create a virtual environment.

It includes parts to install eggs,10
which can be skipped in the newer versions of Python that use wheels instead.
See the Buildout tutorial
for more information.

Conda

Conda is like pip, virtualenv, and Buildout
together. It comes with the Anaconda distribution of Python and is
Anaconda’s default package manager. It can be installed via pip:

$ pip install conda

And pip can be installed via conda:

$ conda install pip

The packages are stored on different repositories
(pip pulls from http://pypi.python.org,
and conda pulls from https://repo.continuum.io/),
and they use different formats, so the tools
are not interchangeable.

Tip

This table created by Continuum (the creators of Anaconda) provides a side-by-side comparison of all three options: conda, pip, and virtualenv.

conda-build, Continuum’s analogue to Buildout, can be installed on all
platforms by typing:

conda install conda-build

Like with Buildout, the conda-build configuration file format is
called a “recipe,” and the recipes are not limited to using
Python tools.
Unlike Buildout, the code is specified in shell script, not Python,
and the configuration is specified in YAML,11 not Python’s
ConfigParser format.

The main advantage of conda over pip and virtualenv is for
Windows users—Python libraries built as C extensions may
or may not be present as wheels,
but they are almost always present on
the Anaconda package index.
And if a package is not available via conda, it is possible to install
pip and then install packages hosted on
PyPI.

Docker

Docker helps with environment isolation like virtualenv, conda, or Buildout,
but instead of providing a virtual environment, it provides a Docker container.
Containers provide greater isolation than environments.
For example, you can have containers running, each with different network
interfaces, firewalling rules, and a different hostname.
These running containers are managed by a separate utility, the
Docker Engine, that coordinates access
to the underlying operating system.
If you’re running Docker containers
on OS X, Windows, or on a remote host, you’ll also need
Docker Machine, which interfaces
with the virtual machine(s)12
that will run the Docker Engine.

Docker containers were originally based on Linux Containers, which were
themselves originally related to the shell command
chroot.
chroot is kind of a system-level version of the virtualenv command:
it makes it appear that the root directory (/)
is at a user-specified path instead of the actual root,
providing a completely separate
user space.

Docker doesn’t use chroot, and it doesn’t even use Linux Containers
anymore (allowing the universe of Docker images to include
Citrix and Solaris machines), but the Docker Containers are still
doing about the same thing. Its configuration files are called
Dockerfiles,
which build
Docker images
that can then be hosted on the Docker Hub,
the Docker package repository (like PyPI).

Docker images, when configured correctly, can take up less space than
environments created using Buildout or conda because Docker users the
AUFS
union file system, which stores the “diff” of an image, instead of the
whole image. So, for example, if you want to build and test your package
against multiple releases of a dependency, you could make a base Docker image that contains a virtual environment13
(or Buildout environment, or conda environment) containing all of the
other dependencies. You’d then inherit from that base for
all of your other images, adding only the single changing dependency in
the last layer. Then, all of the derived containers will contain only the
different new library, sharing the contents of the base image.
For more information, see the Docker documentation.

1 If at some point you want to build C extensions for Python, check out “Extending Python with C or C++.” For more details, see Chapter 15 of Python Cookbook.
2 Snippets are sets of frequently typed code, like CSS styles or class definitions, that can be autocompleted if you type a few charaters and then hit the Tab key.
3 Just open the editor by typing vi (or vim) then Enter on the command line, and once inside, type :help then Enter for the tutorial.
4 To locate your home directory on Windows, open Vim and type :echo $HOME.
5 We love Raymond Hettinger. If everyone coded the way he recommends, the world would be a much better place.
6 Electron is a platform to build cross-platform desktop applications using HTML, CSS, and JavaScript.
7 https://github.com/Microsoft/PTVS/wiki/Features-Matrix
8 Or if you prefer, use Set-ExecutionPolicy AllSigned instead.
9 POSIX stands for Portable Operating System Interface. It comprises a set of IEEE standards for how an operating system should behave: the behavior of and interface to basic shell commands, I/O, threading, and other services and utilities. Most Linux and Unix distributions are considered POSIX compatible, and Darwin (the operating system underneath Mac OS X and iOS) has been compatible since Leopard (10.5). A “POSIX system” is a system that is considered POSIX compatible.
10 An egg is a ZIP file with a specific structure, containing distribution content. Eggs have been replaced by wheels as of PEP 427. They were introduced by the very popular (and now de facto) packaging library, Setuptools, which provides a useful interface to the Python Standard Library’s distutils. You can read all about the differences between the formats in “Wheel vs Egg” in the Python Packaging User Guide.
11 YAML YAML Ain’t Markup Language, is a markup language intended to be both human-readable and machine-readable.
12 A virtual machine is an application that emulates a computer system by imitating the desired hardware and providing the desired operating system on a host computer.
13 A virtual environment inside of a Docker container will isolate your Python environment, preserving the OS’s Python for the utilities that may be needed to support your application—in keeping with our advice to not install anything via pip (or anything else) in your system Python directory.

Part II. Getting Down to Business

We’ve got our towels, a Python interpreter, virtual environments,
and an editor or IDE—we’re ready
to get down to business. This part does not teach you the language; “Learning Python”
lists great resources that already do that. Instead, we want you
to come out of this part feeling froody, like a real Python insider, knowing the
tricks of some of the best Pythonistas in our community. This part includes the following chapters:

	Chapter 4, Writing Great Code

	
We briefly cover style, conventions, idioms, and gotchas
 that can help new Pythonistas.

	Chapter 5, Reading Great Code

	
We take you on a guided tour of parts of our favorite Python
libraries, with the hope that you’ll be encouraged to do more reading on your own.

	Chapter 6, Shipping Great Code

	
We briefly talk about the Python Packaging Authority and how to
load libraries to PyPI, plus options to build and ship executables.

Chapter 4. Writing Great Code

This chapter focuses on best practices
for writing great Python code.
We will review coding style conventions that will
be used in Chapter 5,
and briefly cover logging best practices, plus
list a few of the major differences between
available open source licenses.
All of this is intended to help you write code that
is easy for us, your community, to use and
extend.

Code Style

Pythonistas (veteran Python developers)
celebrate having a language so accessible that people
who have never programmed can still understand what a Python
program does when they read its source code.
Readability is at the heart of Python’s design,
following the recognition
that code is read much more often than it is written.

One reason Python code can be easily understood
is its relatively complete set of code style guidelines
(collected in the two Python Enhancement Proposals PEP 20 and PEP 8, described in the next few pages) and “Pythonic” idioms.
When a Pythonista
points to portions of code and says they are not “Pythonic,”
it usually means that those lines of code do not follow
the common guidelines and fail to express the intent
in what is considered the most readable way.
Of course, “a foolish consistency is the hobgoblin of little minds.”1 Pedantic devotion to the letter of the PEP can
undermine readability and understandability.

PEP 8

PEP 8 is the
de facto code style guide for Python. It covers
naming conventions, code layout, whitespace (tabs versus spaces),
and other similar style topics.

This is highly recommended reading. The entire Python community does its
best to adhere to the guidelines laid out within this document.
Some projects may stray from it from time to time, while others (like
Requests) may
amend its recommendations.

Conforming your Python code to PEP 8 is generally a
good idea and helps make code more consistent when
working on projects with other developers.
The PEP 8 guidelines are explicit enough that they can be
programmatically checked.
There
is a command-line program, pep8,
that can check your code for conformity.
Install it by running the following
command in your terminal:

$ pip3 install pep8

Here’s an example of the kinds of things you might see when you run pep8:

$ pep8 optparse.py

optparse.py:69:11: E401 multiple imports on one line
optparse.py:77:1: E302 expected 2 blank lines, found 1
optparse.py:88:5: E301 expected 1 blank line, found 0
optparse.py:222:34: W602 deprecated form of raising exception
optparse.py:347:31: E211 whitespace before '('
optparse.py:357:17: E201 whitespace after '{'
optparse.py:472:29: E221 multiple spaces before operator
optparse.py:544:21: W601 .has_key() is deprecated, use 'in'

The fixes to most of the complaints are straightforward and stated
directly in PEP 8. The
code style guide for Requests
gives examples of good and bad code and is only
slightly modified from the original PEP 8.

The linters referenced in “Text Editors” usually
use pep8, so you can also install one of these
to run checks within your editor or IDE.
Or, the program autopep8 can be used to automatically reformat
code in the PEP 8 style. Install the program with:

$ pip3 install autopep8

Use it to format a file in-place (overwriting the original) with:

$ autopep8 --in-place optparse.py

Excluding the --in-place flag will cause the program to output the modified
code directly to the console for review (or piping to another file). The --aggressive flag will
perform more substantial changes and can be applied multiple times for greater effect.

PEP 20 (a.k.a. The Zen of Python)

PEP 20,
the set of guiding principles for decision making in Python, is
always available via import this in a Python shell.
Despite its name, PEP 20 only contains 19 aphorisms, not 20
(the last has not been written down…).

The true history of the Zen of Python is immortalized in Barry Warsaw’s blog post “import this and the Zen of Python.”

The Zen of Python by Tim Peters2

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one—and preferably only one—obvious way to do it.

Although that way may not be obvious at first unless you’re Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea—let’s do more of those!

For an example of each Zen aphorism in action, see Hunter Blanks’
presentation

“PEP 20 (The Zen of Python) by Example.”
Raymond Hettinger also put these principles to fantastic use in
his talk “Beyond PEP 8: Best Practices for Beautiful, Intelligible Code.”

General Advice

This section contains style concepts that
are hopefully easy to accept
without debate, and often applicable to
languages other than Python.
Some of them are direct from the Zen of Python, but others
are just plain common sense.
They reaffirm our preference in Python
to select the most obvious way to present code, when
multiple options are possible.

Explicit is better than implicit

While any kind of black magic is possible with Python, the
simplest, most explicit way to express something is preferred:

	Bad
	Good

	
def make_dict(*args):
 x, y = args
 return dict(**locals())

	
def make_dict(x, y):
 return {'x': x, 'y': y}

In the good code, x and y are explicitly received from
the caller, and an explicit dictionary is returned. A good rule
of thumb is that another developer should be able to read the first and last lines of your function and understand what it does. That’s not the case with the bad example. (Of course, it’s also pretty easy when the function is only two lines long.)

Sparse is better than dense

Make only one statement per line.
Some compound statements, such as list comprehensions, are
allowed and appreciated for their brevity and their expressiveness,
but it is good practice to keep disjoint statements
on separate lines of code.
It also makes for more understandable diffs3 when
revisions to one statement are made:

	Bad
	Good

	
print('one'); print('two')

	
print('one')
print('two')

	
if x == 1: print('one')

	
if x == 1:
 print('one')

	
if (<complex comparison> and
 <other complex comparison>):
 # do something

	
cond1 = <complex comparison>
cond2 = <other complex comparison>
if cond1 and cond2:
 # do something

Gains in readability, to Pythonistas, are more valuable than
a few bytes of total code (for the two-prints-on-one-line statement)
or a few microseconds of computation time (for the
extra-conditionals-on-separate-lines statement).
Plus, when a group is contributing to open source, the “good”
code’s revision history will be easier to decipher because
a change on one line can only affect one thing.

Errors should never pass silently / Unless explicitly silenced

Error handling in Python is done using the try statement. An example
from Ben Gleitzman’s HowDoI package (described more
in “HowDoI”) shows when silencing an error is OK:

def format_output(code, args):
 if not args['color']:
 return code
 lexer = None

 # try to find a lexer using the Stack Overflow tags
 # or the query arguments
 for keyword in args['query'].split() + args['tags']:
 try:
 lexer = get_lexer_by_name(keyword)
 break
 except ClassNotFound:
 pass

 # no lexer found above, use the guesser
 if not lexer:
 lexer = guess_lexer(code)

 return highlight(code,
 lexer,
 TerminalFormatter(bg='dark'))

This is part of a package that provides a command-line script
to query the Internet (Stack Overflow, by default) for how
to do a particular coding task, and prints it to the screen. The function
format_output() applies syntax highlighting by first searching through the
question’s tags for a string understood by the lexer (also called a tokenizer; a “python”, “java”, or “bash” tag will identify which lexer to use to split and colorize the code), and then if that fails,
to try inferring the language from the code itself. There are three paths
the program can follow when it reaches the try statement:

	
Execution enters the try clause (everything between the try and the except),
a lexer is successfully found, the loop breaks, and the function
returns the code highlighted with the selected lexer.

	
The lexer is not found, the ClassNotFound exception is thrown,
it’s caught, and nothing is done. The loop continues until it finishes naturally
or a lexer is found.

	
Some other exception occurs (like a KeyboardInterrupt) that is not
handled, and it is raised up to the top level, stopping execution.

The “should never pass silently” part of the zen aphorism
discourages the use of overzealous error trapping.
Here’s an example you can try in a separate terminal so that you
can kill it more easily once you get the point:

>>> while True:
... try:
... print("nyah", end=" ")
... except:
... pass

Or don’t try it. The except clause without any specified exception
will catch everything, including KeyboardInterrupt (Ctrl+C in a POSIX terminal),
and ignore it; so it swallows the dozens of interrupts
you try to give it to shut the thing down.
It’s not just the interrupt issue—a broad except clause can
also hide bugs, leaving them to cause some problem later on, when
it will be harder to diagnose. We repeat, don’t let errors
pass silently:
always explicitly identify by name the exceptions you will catch,
and handle only those exceptions.
If you simply want to log or otherwise acknowledge the exception
and re-raise it, like in the following snippet, that’s OK. Just don’t let the error pass silently (without handling or re-raising it):

>>> while True:
... try:
... print("ni", end="-")
... except:
... print("An exception happened. Raising.")
... raise

Function arguments should be intuitive to use

Your choices in API design will determine the downstream developer’s experience
when interacting with a function.
Arguments can be passed to functions in four different ways:

 [image: 1] [image: 2] [image: 3] [image: 4]
def func(positional, keyword=value, *args, **kwargs):
 pass

	[image: 1]

	Positional arguments are mandatory and have no default values.

	[image: 2]

	Keyword arguments are optional and have default values.

	[image: 3]

	An arbitrary argument list is optional and has no default values.

	[image: 4]

	An arbitrary keyword argument dictionary is optional and has no default
values.

Here are tips for when to use each method of argument passing:

	Positional arguments

	
Use these when there are only a few function arguments, which are fully part of the function’s meaning, with a natural order. For instance, in send(message, recipient) or point(x, y) the user of the function has no difficulty remembering that those two functions require two arguments, and in which order.

Usage antipattern: It is possible to use argument names, and switch the order of arguments when calling functions—for example, calling send(recipient="World", message="The answer is 42.") and point(y=2, x=1). This reduces readability and is unnecessarily verbose. Use the more straightforward calls to send("The answer is 42", "World") and point(1, 2).

	Keyword arguments

	
When a function has more than two or three positional parameters, its signature is more difficult to remember, and using keyword arguments with default values is helpful. For instance, a more complete send function could have the signature send(message, to, cc=None, bcc=None). Here cc and bcc are optional and evaluate to None when they are not passed another value.

Usage antipattern: It is possible to follow the order of arguments in the definition without explicitly naming the arguments, like in send("42", "Frankie", "Benjy", "Trillian"), sending a blind carbon copy to Trillian. It is also possible to name arguments in another order, like in send("42", "Frankie", bcc="Trillian", cc="Benjy"). Unless there’s a strong reason not to, it’s better to use the form that is the closest to the function definition: send("42", "Frankie", cc="Benjy", bcc="Trillian").

Never is often better than right now

It is often harder to remove an optional argument
(and its logic inside the function) that was added “just in case”
and is seemingly never used,
than to add a new optional argument and its logic when needed.

	Arbitrary argument list

	
Defined with the *args construct, it denotes an extensible number of positional arguments. In the function body, args will be a tuple of all the remaining positional arguments. For example, send(message, *args) can also be called with each recipient as an argument: send("42", "Frankie", "Benjy", "Trillian"); and in the function body, args will be equal to ("Frankie", "Benjy", "Trillian"). A good example of when this works is the print function.

Caveat: If a function receives a list of arguments of the same nature, it’s often more clear to use a list or any sequence. Here, if send has multiple recipients, we can define it explicitly: send(message, recipients) and call it with send("42", ["Benjy", "Frankie", "Trillian"]).

	Arbitrary keyword argument dictionary

	
Defined via the **kwargs construct, it passes an undetermined series of named arguments to the function. In the function body, kwargs will be a dictionary of all the passed named arguments that have not been caught by other keyword arguments in the function signature. An example of when this is useful is in logging; formatters at different levels can seamlessly take what information they need without inconveniencing the user.

Caveat: The same caution as in the case of *args is necessary, for similar reasons: these powerful techniques are to be used when there is a proven necessity to use them, and they should not be used if the simpler and clearer construct is sufficient to express the function’s intention.

Note

The variable names *args and **kwargs can (and should) be replaced
with other names, when other names make more sense.

It is up to the programmer writing the function to determine which arguments
are positional arguments and which are optional keyword arguments, and to
decide whether to use the advanced techniques of arbitrary argument passing.
After all, there should be one—and preferably only one—obvious way to do it.
Other users will appreciate your effort when your Python functions are:

	
Easy to read (meaning the name and arguments need no explanation)

	
Easy to change (meaning adding a new keyword argument won’t break other parts of the code)

If the implementation is hard to explain, it’s a bad idea

A powerful tool for hackers, Python comes with a very
rich set of hooks and tools
allowing you to do almost any kind of tricky tricks.
For instance, it is
possible to:

	
Change how objects are created and instantiated

	
Change how the Python interpreter imports modules

	
Embed C routines in Python

All these options have drawbacks,
and it is always better to use
the most straightforward way to achieve your goal.
The main drawback is that
readability suffers when using these constructs,
so whatever you gain must be more important than the loss of readability.
Many code analysis tools, such as pylint or pyflakes,
will be unable to parse this “magic” code.

A Python developer should know about
these nearly infinite possibilities, because it instills
confidence that no impassable problem will
be on the way. However, knowing how and particularly
when not to use
them is very important.

Like a kung fu master, a Pythonista knows how to kill
with a single finger, and never to actually do it.

We are all responsible users

As already demonstrated, Python allows many tricks, and some
of them are potentially dangerous.
A good example is that any client code can override an object’s
properties and methods: there is no “private” keyword in Python.
This philosophy is very different from highly defensive
languages like Java, which provide a lot of mechanisms
to prevent any misuse, and is expressed by the saying: “We
are all responsible users.”

This doesn’t mean that, for example, no properties are
considered private, and that proper encapsulation
is impossible in Python.
Rather, instead of relying on concrete walls erected
by the developers between their code and others’ code, the
Python community prefers to rely on a set of conventions
indicating that these elements should not be accessed directly.

The main convention for private properties and
implementation details is to prefix all “internals”
with an underscore (e.g., sys._getframe).
If the client code breaks this rule
and accesses these marked elements, any misbehavior
or problems encountered if the code is modified
are the responsibility of the client code.

Using this convention generously is encouraged:
any method or property that is not intended to be
used by client code should be prefixed with an underscore.
This will guarantee a better separation of duties
and easier modification of existing code; it will
always be possible to publicize a private property,
but making a public property private might be
a much harder operation.

Return values from one place

When a function grows in complexity, it is not uncommon to use multiple
return statements inside the function’s body.
However, to keep a clear intent and sustain readability, it is best
to return meaningful values from as few points in the body as possible.

The two ways to exit from a function are upon error, or with a
return value after the function has been processed normally.
In cases when the function cannot perform correctly, it can be
appropriate to return a None or False value.
In this case, it is better to return from the function
as early as the incorrect context has been detected, to
flatten the structure of the function: all the code after the
return-because-of-failure statement can assume the condition
is met to further compute the function’s main result.
Having multiple such return statements is often necessary.

Still, when possible, keep a single exit point—it’s
difficult to debug functions when you first have to identify
which return statement is responsible for your result.
Forcing the function to exit in just one place also helps to
factor out some code paths, as the multiple exit points probably
are a hint that such a refactoring is needed.
This example is not bad code, but it could possibly be made
more clear, as indicated in the comments:

def select_ad(third_party_ads, user_preferences):
 if not third_party_ads:
 return None # Raising an exception might be better
 if not user_preferences:
 return None # Raising an exception might be better
 # Some complex code to pick the best_ad given the
 # available ads and the individual's preferences...
 # Resist the temptation to return best_ad if succeeded...
 if not best_ad:
 # Some Plan-B computation of best_ad
 return best_ad # A single exit point for the returned value
 # will help when maintaining the code

Conventions

Conventions make sense to everyone, but may not
be the only way to do things. The conventions
we show here are the more commonly used choices,
and we recommend them as the more readable option.

Alternatives to checking for equality

When you don’t need to explicitly compare a value to
True, or None, or 0, you can
just add it to the if statement, like in the following examples.
(See
“Truth Value Testing”
for a list of what is considered false).

	Bad
	Good

	
if attr == True:
 print 'True!'

	
Just check the value
if attr:
 print 'attr is truthy!'

or check for the opposite
if not attr:
 print 'attr is falsey!'

but if you only want 'True'
if attr is True:
 print 'attr is True'

	
if attr == None:
 print 'attr is None!'

	
or explicitly check for None
if attr is None:
 print 'attr is None!'

Accessing dictionary elements

Use the x in d syntax instead of
the dict.has_key method,
or pass a default argument to dict.get():

	Bad
	Good

	
>>> d = {'hello': 'world'}
>>>
>>> if d.has_key('hello'):
... print(d['hello']) # prints 'world'
... else:
... print('default_value')
...
world

	
>>> d = {'hello': 'world'}
>>>
>>> print d.get('hello', 'default_value')
world
>>> print d.get('howdy', 'default_value')
default_value
>>>
>>> # Or:
... if 'hello' in d:
... print(d['hello'])
...
world

Manipulating lists

List comprehensions provide a powerful, concise way to work with lists (for more information, see the entry in The Python Tutorial).
Also, the map() and filter() functions
can perform operations on lists using a different,
more concise syntax:

	Standard loop
	List comprehension

	
Filter elements greater than 4
a = [3, 4, 5]
b = []
for i in a:
 if i > 4:
 b.append(i)

	
The list comprehension is clearer
a = [3, 4, 5]
b = [i for i in a if i > 4]

Or:
b = filter(lambda x: x > 4, a)

	
Add three to all list members.
a = [3, 4, 5]
for i in range(len(a)):
 a[i] += 3

	
Also clearer in this case
a = [3, 4, 5]
a = [i + 3 for i in a]

Or:
a = map(lambda i: i + 3, a)

Use enumerate() to keep a count of your place in the list.
It is more readable than manually creating a counter,
and it is better optimized for iterators:

>>> a = ["icky", "icky", "icky", "p-tang"]
>>> for i, item in enumerate(a):
... print("{i}: {item}".format(i=i, item=item))
...
0: icky
1: icky
2: icky
3: p-tang

Continuing a long line of code

When a logical line of code is longer than the
accepted limit,4
you need to
split it over multiple physical lines.
The Python interpreter will join
consecutive lines if the last character of the
line is a backslash. This is
helpful in some cases, but should usually
be avoided because of its fragility:
a whitespace character added to the end of the line,
after the backslash, will break the
code and may have unexpected results.

A better solution is to use parentheses
around your elements. Left with an
unclosed parenthesis on an end-of-line, the
Python interpreter will join the
next line until the parentheses are closed.
The same behavior holds for curly
and square braces:

	Bad
	Good

	
french_insult = \
"Your mother was a hamster, and \
your father smelt of elderberries!"

	
french_insult = (
 "Your mother was a hamster, and "
 "your father smelt of elderberries!"
)

	
from some.deep.module.in.a.module \
 import a_nice_function, \
 another_nice_function, \
 yet_another_nice_function

	
from some.deep.module.in.a.module import (
 a_nice_function,
 another_nice_function,
 yet_another_nice_function
)

However, more often than not, having to split a long
logical line is a sign that you are trying to do
too many things at the same time, which may hinder
readability.

Idioms

Although there usually is one—and preferably only one—obvious
way to do it, the way to write idiomatic (or Pythonic) code can be
non-obvious to Python beginners at first (unless they’re Dutch5).
So, good idioms must be consciously acquired.

Unpacking

If you know the length of a list or tuple, you can assign names to its
elements with unpacking. For example, because it’s possible to specify
the number of times to split a string in split() and rsplit(),
the righthand side of an assignment can be made to split only once
(e.g., into a filename and an extension), and the lefthand side can
contain both destinations simultaneously, in the correct order, like this:

>>> filename, ext = "my_photo.orig.png".rsplit(".", 1)
>>> print(filename, "is a", ext, "file.")
my_photo.orig is a png file.

You can use unpacking to swap variables as well:

a, b = b, a

Nested unpacking works, too:

a, (b, c) = 1, (2, 3)

In Python 3, a new method of extended unpacking was introduced by
PEP 3132:

a, *rest = [1, 2, 3]
a = 1, rest = [2, 3]

a, *middle, c = [1, 2, 3, 4]
a = 1, middle = [2, 3], c = 4

Ignoring a value

If you need to assign something while unpacking, but
will not need that variable, use a double underscore (__):

filename = 'foobar.txt'
basename, __, ext = filename.rpartition('.')

Note

Many Python style guides recommend a single underscore (_)
for throwaway variables rather than the double underscore (__)
recommended here. The issue is that a single underscore is commonly used as an alias
for the gettext.gettext() function, and is also used at the
interactive prompt to hold the value of the last operation. Using a
double underscore instead is just as clear and almost as convenient,
and eliminates the risk of accidentally overwriting the single underscore
variable, in either of these other use cases.

Creating a length-N list of the same thing

Use the Python list * operator to make a list
of the same immutable item:

>>> four_nones = [None] * 4
>>> print(four_nones)
[None, None, None, None]

But be careful with mutable objects: because
lists are mutable, the * operator
will create a list of N references to the same list,
which is not likely what you want.
Instead, use a list comprehension:

	Bad
	Good

	
>>> four_lists = [[]] * 4
>>> four_lists[0].append("Ni")
>>> print(four_lists)
[['Ni'], ['Ni'], ['Ni'], ['Ni']]

	
>>> four_lists = [[] for __ in range(4)]
>>> four_lists[0].append("Ni")
>>> print(four_lists)
[['Ni'], [], [], []]

A common idiom for creating strings is to use str.join()
on an empty string. This idiom can be applied to lists and tuples:

>>> letters = ['s', 'p', 'a', 'm']
>>> word = ''.join(letters)
>>> print(word)
spam

Sometimes we need to search through a collection of things.
Let’s look at two options: lists and sets.

Take the following code for example:

>>> x = list(('foo', 'foo', 'bar', 'baz'))
>>> y = set(('foo', 'foo', 'bar', 'baz'))
>>>
>>> print(x)
['foo', 'foo', 'bar', 'baz']
>>> print(y)
{'foo', 'bar', 'baz'}
>>>
>>> 'foo' in x
True
>>> 'foo' in y
True

Even though both boolean tests for list and set membership
look identical, foo in y is utilizing the fact that sets
(and dictionaries) in Python are hash tables,6 the lookup performance
between the two examples is different. Python will have to step through each item
in the list to find a matching case, which is time-consuming (the time
difference becomes significant for larger collections).
But finding keys in the set can be done quickly, using the hash lookup.
Also, sets and dictionaries drop duplicate entries, which is why
dictionaries cannot have two identical keys.
For more information, see this Stack Overflow
discussion on list versus dict.

Exception-safe contexts

It is common to use try/finally clauses to manage
resources like files or thread locks when exceptions may occur.
PEP 343
introduced the with statement and a context manager protocol
into Python (in version 2.5 and beyond)—an idiom to replace these try/finally clauses with
more readable code. The protocol consists of two
methods, __enter__() and __exit__(), that when
implemented for an object allow it to be used via
the new with statement, like this:

>>> import threading
>>> some_lock = threading.Lock()
>>>
>>> with some_lock:
... # Make Earth Mark One, run it for 10 million years ...
... print(
... "Look at me: I design coastlines.\n"
... "I got an award for Norway."
...)
...

which would previously have been:

>>> import threading
>>> some_lock = threading.Lock()
>>>
>>> some_lock.acquire()
>>> try:
... # Make Earth Mark One, run it for 10 million years ...
... print(
... "Look at me: I design coastlines.\n"
... "I got an award for Norway."
...)
... finally:
... some_lock.release()

The standard library module contextlib
provides additional tools that help turn functions into context managers,
enforce the call of an object’s close() method, suppress
exceptions (Python 3.4 and greater), and redirect standard output
and error streams (Python 3.4 or 3.5 and greater).
Here is an example use of contextlib.closing():

>>> from contextlib import closing
>>> with closing(open("outfile.txt", "w")) as output:
... output.write("Well, he's...he's, ah...probably pining for the fjords.")
...
56

but because __enter__() and __exit__() methods are
defined for the object that handles file I/O,7
we can use the with statement directly, without the closing:

>>> with open("outfile.txt", "w") as output:
 output.write(
 "PININ' for the FJORDS?!?!?!? "
 "What kind of talk is that?, look, why did he fall "
 "flat on his back the moment I got 'im home?\n"
)
...
123

Common Gotchas

For the most part, Python aims to be a clean and consistent language that
avoids surprises. However, there are a few cases that can be confusing to
newcomers.

Some of these cases are intentional but can be potentially surprising. Some
could arguably be considered language warts. In general, though, what follows
is a collection of potentially tricky behaviors that might seem strange at first
glance, but are generally sensible once you’re aware of the underlying cause for
the surprise.

Mutable default arguments

Seemingly the most common surprise new Python programmers encounter is
Python’s treatment of mutable default arguments in function definitions.

	What you wrote:

	

def append_to(element, to=[]):
 to.append(element)
 return to

	What you might have expected to happen:

	

my_list = append_to(12)
print(my_list)

my_other_list = append_to(42)
print(my_other_list)

A new list is created each time the function is called if a second argument
isn’t provided, so that the output is:

[12]
[42]

	What actually happens:

	

[12]
[12, 42]

A new list is created once when the function is defined, and the same list is
used in each successive call: Python’s default arguments are evaluated once when the function is defined,
not each time the function is called (like it is in say, Ruby). This means that
if you use a mutable default argument and mutate it, you will have
mutated that object for all future calls to the function as well.

	What you should do instead:

	
Create a new object each time the function is called, by using a default arg to
signal that no argument was provided (None is often a good choice):

def append_to(element, to=None):
 if to is None:
 to = []
 to.append(element)
 return to

	When this gotcha isn’t a gotcha:

	

Sometimes you can specifically “exploit” (i.e., use as intended) this behavior
to maintain state between calls of a function. This is often done when writing
a caching function (which stores results in-memory), for example:

def time_consuming_function(x, y, cache={}):
 args = (x, y)
 if args in cache:
 return cache[args]
 # Otherwise this is the first time with these arguments.
 # Do the time-consuming operation...
 cache[args] = result
 return result

Late binding closures

Another common source of confusion is the way Python binds its variables in
closures (or in the surrounding global scope).

	What you wrote:

	

def create_multipliers():
 return [lambda x : i * x for i in range(5)]

	What you might have expected to happen:

	

for multiplier in create_multipliers():
 print(multiplier(2), end=" ... ")
print()

A list containing five functions that each have their own closed-over i
variable that multiplies their argument, producing:

0 ... 2 ... 4 ... 6 ... 8 ...

	What actually happens:

	

8 ... 8 ... 8 ... 8 ... 8 ...

Five functions are created; instead all of them just multiply x by 4. Why?
Python’s closures are late binding.
This means that the values of variables used in closures are looked
up at the time the inner function is called.

Here, whenever any of the returned functions are called, the value of i
is looked up in the surrounding scope at call time. By then, the loop has
completed, and i is left with its final value of 4.

What’s particularly nasty about this gotcha is the seemingly prevalent
misinformation that this has something to do with
lambda expressions
in Python. Functions created with a lambda expression are in no way special,
and in fact the same exact behavior is exhibited by just using an ordinary
def:

def create_multipliers():
 multipliers = []

 for i in range(5):
 def multiplier(x):
 return i * x
 multipliers.append(multiplier)

 return multipliers

	What you should do instead:

	
The most general solution is arguably a bit of a hack. Due to Python’s
aforementioned behavior concerning evaluating default arguments to functions
(see “Mutable default arguments”), you can create a closure that binds immediately to
its arguments by using a default argument:

def create_multipliers():
 return [lambda x, i=i : i * x for i in range(5)]

Alternatively, you can use the functools.partial() function:

from functools import partial
from operator import mul

def create_multipliers():
 return [partial(mul, i) for i in range(5)]

	When this gotcha isn’t a gotcha:

	
Sometimes you want your closures to behave this way. Late binding is good in
lots of situations (e.g., in the Diamond project, “Example use of a closure (when the gotcha isn’t a gotcha)”).
Looping to create unique functions is unfortunately a case
where it can cause hiccups.

Structuring Your Project

By structure we mean the decisions you make concerning how your project
best meets its objective. The goal is to best leverage
Python’s features to create clean, effective code. In practical terms,
that means the logic and dependencies in both your code and in your
file and folder structure are clear.

Which functions should go into which modules? How does data flow through
the project? What features and functions can be grouped together and isolated?
By answering questions like these, you can begin to plan, in a broad sense,
what your finished product will look like.

The Python Cookbook has a chapter on
modules and packages
that describes in detail how __import__ statements
and packaging works. The purpose of this
section is to outline
aspects of Python’s module and import systems that
are central to enforcing structure in your project.
We then discuss various perspectives on how to build
code that can be extended and tested reliably.

Thanks to the way imports and modules are handled in Python, it is
relatively easy to structure a Python project:
there are few constraints and the model for importing modules
is easy to grasp. Therefore, you are left with the pure architectural
task of crafting the different parts of your project and their interactions.

Modules

Modules are one of Python’s main abstraction layers,
and probably the most natural one.
Abstraction layers allow a programmer to separate code
into parts that hold related data and functionality.

For example, if one layer of a project handles interfacing
with user actions, while another handles low-level manipulation of data,
the most natural way to separate these two layers is to regroup
all interfacing functionality
in one file, and all low-level operations in another file.
This grouping places them into two separate modules.
The interface file would then import the low-level file with the
import module or from module import attribute statements.

As soon as you use import statements, you also use modules.
These can be either built-in modules (such as os and sys),
third-party packages you have installed
in your environment (such as Requests or NumPy),
or your project’s internal modules.
The following code shows some example import statements
and confirms that an imported module is a Python object
with its own data type:

>>> import sys # built-in module
>>> import matplotlib.pyplot as plt # third-party module
>>>
>>> import mymodule as mod # internal project module
>>>
>>> print(type(sys), type(plt), type(mod))
<class 'module'> <class 'module'> <class 'module'>

To keep in line with the style guide, keep module names short and lowercase.
And be sure to avoid using special symbols like the dot (.) or
question mark (?), which would
interfere with the way Python looks for modules.
So a filename like my.spam.py8 is one you should avoid;
Python would expect to find a spam.py file in a
folder named my, which is not the case. The
Python documentation
gives more details about using dot notation.

Importing modules

Aside from some naming restrictions, nothing special is required to use
a Python file as a module, but it helps to understand the import
mechanism.
First, the import modu statement will look for the
definition of modu in a file named
modu.py in the same directory as the caller if a file with
that name exists.
If it is not found, the Python interpreter will search for modu.py in
Python’s search path
recursively and raise
an ImportError exception if it is not found.
The value of the search path is platform-dependent and includes
any user- or system-defined directories in the
environment’s $PYTHONPATH (or %PYTHONPATH% in Windows).
It can be manipulated or inspected in a Python session:

import sys
>>> sys.path
['', '/current/absolute/path', 'etc']
The actual list contains every path that is searched
when you import libraries into Python, in the order
that they'll be searched.

Once modu.py is found, the Python interpreter will execute the module
in an isolated scope. Any top-level statement in modu.py will
be executed, including other imports, if any exist.
Function and class definitions are stored in the module’s dictionary.

Finally, the module’s variables, functions, and classes will be available
to the caller through the module’s namespace,
a central concept in
programming that is particularly helpful and powerful in Python.
Namespaces provide a scope containing named attributes that are
visible to each other but not directly accessible outside of the namespace.

In many languages, an include file directive causes the preprocessor
to, effectively, copy the contents of the included file into the
caller’s code.
It’s different in Python: the included code is isolated in a module
namespace. The result of the import modu statement will
be a module object named modu in the global namespace,
with the attributes defined in the module accessible
via dot notation:
modu.sqrt would be the sqrt object defined inside of modu.py,
for example.
This means you generally don’t have to worry
that the included code could have unwanted effects—for example, overriding an existing function with the same name.

Namespace Tools

The functions dir(), globals(), and locals() help
with quick namespace introspection:

	
dir(object) returns a list of attributes
that are accessible via the object

	
globals() returns a dictionary of the attributes
currently in the global namespace, along with their values.

	
locals() returns a dictionary of the attributes in
the current local namespace (e.g., within a function),
along with their values.

For more information, see
“Data model”
in Python’s official documentation.

It is possible to simulate the more standard behavior by using a
special syntax of the import statement: from modu import *.
However, this is generally considered bad practice:
using import * makes code harder to read, makes dependencies
less compartmentalized, and can clobber (overwrite) existing defined
objects with the new definitions inside the imported module.

Using from modu import func is a way to import only
the attribute you want into the global namespace.
While much less harmful than from modu import * because it
shows explicitly
what is imported in the global namespace. Its only advantage
over a simpler import modu is that it will save you a little typing.

Table 4-1 compares the different
ways to import definitions from other modules.

Table 4-1. Different ways to import definitions from modules

	Very bad
 (confusing for a reader)
	Better
 (obvious which new names are
 in the global namespace)
	Best
 (immediately obvious where
 the attribute comes from)

	
from modu import *

x = sqrt(4)

	
from modu import sqrt

x = sqrt(4)

	
import modu

x = modu.sqrt(4)

	Is sqrt part of modu? Or a built-in?

 Or defined above?

	Has sqrt been modified or redefined

 in between, or is it the one in modu?

	Now sqrt is visibly part of modu’s namespace.

As mentioned in “Code Style”, readability is one
of the main features of Python. Readable code avoids
useless boilerplate text and clutter.
But terseness and obscurity are the limits where brevity should stop.
Explicitly stating where a class or function comes from,
as in the modu.func() idiom, greatly improves code readability
and understandability in all but the simplest single-file projects.

Structure Is Key

Though you can structure a project however you like, some pitfalls to avoid are:

	Multiple and messy circular dependencies

	
If your classes Table and
Chair in furn.py need to import Carpenter from workers.py to
answer a question such as table.is_done_by(), and if the
class Carpenter needs to import Table and Chair, to answer carpenter.what_do(), then you have a circular dependency—furn.py depends on workers.py, which depends on furn.py.
In this case, you will have to resort to fragile hacks such as using
import statements inside methods to avoid causing an ImportError.

	Hidden coupling

	
Each and every change in Table’s implementation
breaks 20 tests in unrelated test cases because it breaks
Carpenter’s code, which requires very careful surgery to adapt
the change. This means you have too many assumptions about Table
in Carpenter’s code.

	Heavy use of global state or context

	
Instead of explicitly
passing (height, width, type, wood) to each other, Table and
Carpenter rely on global variables that can be modified and are
modified on the fly by different agents. You need to scrutinize
all access to these global variables to understand why a
rectangular table became a square, and discover that remote
template code is also modifying this context, messing with table dimensions.

	Spaghetti code

	
Multiple pages of nested if clauses and for
loops with a lot of copy-pasted procedural code and no proper
segmentation are known as spaghetti code.
Python’s meaningful indentation (one of its most controversial
features) makes it hard to maintain this kind of code, so you may not see too much of it.

	Ravioli code

	
This is more likely in Python than spaghetti code.
Ravioli code consists of hundreds
of similar little pieces of logic, often classes or objects,
without proper structure. If you never can remember whether you
have to use FurnitureTable, AssetTable or Table, or even
TableNew for your task at hand, you might be swimming in ravioli code.
Diamond, Requests, and Werkzeug (in the next chapter) avoid ravioli code by collecting their useful but unrelated pieces of logic into a utils.py module or a utils package to reuse across the project.

Packages

Python provides a very straightforward packaging system,
which extends the module mechanism to a directory.

Any directory with an __init__.py file is considered a Python package.
The top-level directory with an __init__.py is the root package.9
The different modules in the package are imported in a similar manner
as plain modules, but with a special behavior for
the __init__.py file,
which is used to gather all package-wide definitions.

A file modu.py in the directory pack/ is imported with the
statement import pack.modu. The interpreter will look for an
__init__.py file in pack and execute all of
its top-level statements.
Then it will look for a file named pack/modu.py and execute
all of its top-level statements.
After these operations, any variable, function, or class defined in
modu.py is available in the pack.modu
namespace.

A commonly seen issue is too much code in __init__.py files.
When the project’s complexity grows, there may be subpackages
and sub-subpackages in a deep directory structure. In this case,
importing a single item from a sub-sub-package will require executing
all __init__.py files met while traversing the tree.

It is normal, even good practice, to leave an __init__.py empty
when the package’s modules and subpackages do not need to share any code—the HowDoI and Diamond projects that are used as examples
in the next section both have no code except version numbers in their
__init__.py files. The Tablib, Requests, and Flask projects
contain a top-level documentation string and import statements that
expose the intended API for each project, and the Werkzeug project
also exposes its top-level API but does it using lazy loading (extra code
that only adds content to the namespace as it is used, which speeds up
the initial import statement).

Lastly, a convenient syntax is available for importing deeply
nested packages: import very.deep.module as mod.
This allows you to use mod in place of the verbose
repetition of very.deep.module.

Object-Oriented Programming

Python is sometimes described as an object-oriented
programming language.
This can be somewhat misleading and needs to be clarified.

In Python, everything is an object, and can be handled as such.
This is what is meant when we say that functions
are first-class objects. Functions, classes, strings, and even
types are objects in Python: they all have a type,
can be passed as function arguments, and may have methods
and properties.
In this understanding, Python is an object-oriented language.

However, unlike Java, Python does not impose object-oriented
programming as the main programming paradigm.
It is perfectly viable for a Python project to
not be object oriented—that is, to use no (or very few) class
definitions, class inheritance, or any other mechanisms
that are specific to object-oriented programming.
These features are available, but
not obligatory, for us Pythonistas.
Moreover, as seen in “Modules”, the way
Python handles modules and namespaces gives the developer
a natural way to ensure the encapsulation and separation
of abstraction layers—the most common reasons
to use object orientation—without classes.

Proponents of functional programming (a paradigm that,
in its purest form, has no assignment operator, no side
effects, and basically chains functions to accomplish tasks),
say that bugs and confusion occur when a function
does different things depending on the external state of
the system—for example, a global variable that indicates
whether or not a person is logged in.
Python, although not a purely functional language, has tools that make functional programming possible,
and then we can restrict our use of custom classes
to situations where we want to glue together a state and
a functionality.

In some architectures, typically web applications, multiple instances
of Python processes are spawned to respond to external requests
that can happen at the same time. In this case, holding some
state into instantiated objects, which means keeping some
static information about the world, is prone to
race conditions, a term used to describe the
situation where, at some point between the initialization of
the state of an object
(usually done with the Class.__init__() method in Python)
and the actual use of the object state through
one of its methods, the state of the world has changed.

For example, a request may load an item in memory and
later mark it as added to a user’s shopping cart.
If another request sells the item to another person
at the same time, it may happen that the sale actually
occurs after the first session loaded the item, and then we
are trying to sell inventory already flagged as sold.
This and other issues led to a preference for stateless
functions.

Our recommendation is as follows: when working with code that relies on some
persistent context or global state (like most web applications),
use functions and procedures with as few implicit contexts and
side effects as possible.
A function’s implicit context is made up of any of the global
variables or items in the persistence layer that are accessed
from within the function.
Side effects
are the changes that a function makes to its implicit context.
If a function saves or deletes data in a global variable
or in the persistence layer, it is said to have a side effect.

Custom classes in Python should be used to
carefully isolate functions with context and side effects
from functions with logic (called pure functions).
Pure functions are deterministic: given a fixed input,
the output will always be the same. This is because they do not
depend on context, and do not have side effects. The print() function,
for example, is impure because it returns nothing but writes to standard
output as a side effect.
Here are some benefits of having pure, separate functions:

	
Pure functions are much easier to change or replace
if they need to be refactored or optimized.

	
Pure functions are easier to test with unit-tests there is less need for complex context setup and data cleaning afterward.

	
Pure functions are easier to manipulate, decorate (more on decorators in a moment), and pass around.

In summary, for some architectures, pure functions are more efficient
building blocks than classes and objects because they have no context
or side effects. As an example, the I/O functions related to each of the
file formats in the Tablib library (tablib/formats/*.py—we’ll look at
Tablib in the next chapter) are pure
functions, and not part of a class, because all they do is read data
into a separate Dataset object that persists the data, or write the
Dataset to a file. But the Session object in the Requests library
(also coming up in the next chapter) is a class, because it has to persist
the cookie and authentication information that may be exchanged in an HTTP session.

Note

Object orientation is useful and even necessary in
many cases—for example, when developing graphical desktop
applications or games, where the things that are manipulated
(windows, buttons, avatars, vehicles) have a relatively long life
of their own in the computer’s memory.
This is also one motive behind object-relational mapping, which
maps rows in databases to objects in code, discussed further
in “Database Libraries”.

Decorators

Decorators were added to Python in version 2.4
and are defined and discussed in PEP 318.
A decorator is a function or a class method
that wraps (or decorates) another function or method.
The decorated function or method will replace the original
function or method. Because functions are
first-class objects in Python, this can be done manually,
but using the @decorator syntax is clearer and preferred.
Here is an example of how to use a decorator:

>>> def foo():
... print("I am inside foo.")
...
...
...
>>> import logging
>>> logging.basicConfig()
>>>
>>> def logged(func, *args, **kwargs):
... logger = logging.getLogger()
... def new_func(*args, **kwargs):
... logger.debug("calling {} with args {} and kwargs {}".format(
... func.__name__, args, kwargs))
... return func(*args, **kwargs)
... return new_func
...
>>>
>>>
... @logged
... def bar():
... print("I am inside bar.")
...
>>> logging.getLogger().setLevel(logging.DEBUG)
>>> bar()
DEBUG:root:calling bar with args () and kwargs {}
I am inside bar.
>>> foo()
I am inside foo.

This mechanism is useful for isolating
the core logic of the function or method.
A good example of a task that is better handled with
decoration is memoization or caching: you want to store the results of an
expensive function in a table and use them directly instead of recomputing
them when they have already been computed. This is clearly not part
of the function logic.
As of PEP 3129,
starting in Python 3, decorators can also be applied to classes.

Dynamic Typing

Python is dynamically typed (as opposed to statically typed),
meaning variables do not have a fixed type.
Variables are implemented as pointers to an object,
making it possible for
the variable a to be set to the value 42, then to the value
“thanks for all the fish”, then to a function.

The dynamic typing used in Python is often considered to be a weakness,
because it can lead to complexities and hard-to-debug code:
if something named a can be set to many different things, the
developer or the maintainer must track this name in the code
to make sure it has not been set to a completely unrelated object.
Table 4-2 illustrates good and
bad practice when using names.

Table 4-2. Avoid using the same variable name for different things

	Advice
	Bad
	Good

	Use short functions or methods to reduce the risk of using the
same name for two unrelated things.

	
a = 1
a = 'answer is {}'.format(a)

	
def get_answer(a):
 return 'answer is {}'.format(a)

a = get_answer(1)

	Use different names for related items when they have a different type.

	
A string ...
items = 'a b c d'
No, a list ...
items = items.split(' ')
No, a set ...
items = set(items)

	
items_string = 'a b c d'
items_list = items.split(' ')
items = set(items_list)

There is no efficiency gain when reusing names: the assignment
will still create a new object. And when the complexity
grows and each assignment is separated by other lines of code,
including branches and loops, it becomes harder to
determine a given variable’s type.

Some coding practices, like functional programming, recommend
against reassigning variables. In Java, a variable can be
forced to always contain the same value after assignment by
using the final keyword.
Python does not have a final keyword, and it would be against its
philosophy. But assigning a varible only once may be a good discipline;
it helps reinforce the concept of mutable versus immutable types.

Tip

Pylint
will warn you if you reassign a variable to two different types.

Mutable and Immutable Types

Python has two kinds of built-in or user-defined10 types:

Lists are mutable
my_list = [1, 2, 3]
my_list[0] = 4
print my_list # [4, 2, 3] <- The same list, changed.

Integers are immutable
x = 6
x = x + 1 # The new x occupies a different location in memory.

	Mutable types

	
These allow in-place modification of the object’s content.
Examples are lists and dictionaries, which have mutating methods
like list.append() or dict.pop() and can be modified in place.

	Immutable types

	
These types provide no method for changing their content.
For instance, the variable x set to the integer 6
has no “increment” method. To compute x + 1, you have
to create another integer and give it a name.

One consequence of this difference in behavior is that mutable
types cannot be used as dictionary keys, because if the value ever
changes, it will not hash to the same value, and dictionaries
use hashing11 for key storage.
The immutable equivalent of a list is the tuple,
created with parentheses—for example, (1, 2).
It cannot be changed in place
and so can be used as a dictionary key.

Using properly mutable types for objects that are intended
to be mutable (e.g., my_list = [1, 2, 3]) and immutable
types for objects that are intended to have a fixed value
(e.g., islington_phone = ("220", "7946", "0347"))
clarifies the intent of the code for other developers.

One peculiarity of Python that can surprise newcomers
is that strings are immutable; attempting to change one will
yield a type error:

>>> s = "I'm not mutable"
>>> s[1:7] = " am"
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

This means that when constructing a string from its parts,
it is much more efficient to accumulate the parts in a list,
because it is mutable, and then join the parts together
to make the full string.
Also, a Python list comprehension,
which is a shorthand syntax to iterate over an input to
create a list, is better and faster than constructing a list
from calls to append() within a loop.
Table 4-3 shows different ways to create a string
from an iterable.

Table 4-3. Example ways to concatenate a string

	Bad
	Good
	Best

	
>>> s = ""
>>> for c in (97, 98, 98):
... s += unichr(c)
...
>>> print(s)
abc

	
>>> s = []
>>> for c in (97, 98, 99):
... s.append(unichr(c))
...
>>> print("".join(s))
abc

	
>>> r = (97, 98, 99)
>>> s = [unichr(c) for c in r]
>>> print("".join(s))
abc

The main Python page has a

good discussion on this kind of optimization.

Finally, if the number of elements in a concatenation
is known, pure string addition is faster (and more
straightforward) than creating a list of items just to
do a "".join(). All of the following formatting
options to define cheese do the same thing:12

>>> adj = "Red"
>>> noun = "Leicester"
>>>
>>> cheese = "%s %s" % (adj, noun) # This style was deprecated (PEP 3101)
>>> cheese = "{} {}".format(adj, noun) # Possible since Python 3.1
>>> cheese = "{0} {1}".format(adj, noun) # Numbers can also be reused
>>> cheese = "{adj} {noun}".format(adj=adj, noun=noun) # This style is best
>>> print(cheese)
Red Leicester

Vendorizing Dependencies

A package that vendorizes dependencies
includes external dependencies (third-party libraries) within its source, often
inside of a folder named vendor, or packages. There is
a very good
blog post on the subject that lists the main reasons
a package owner might do this (basically,
to avoid various dependency issues), and discusses alternatives.

Consensus is that in almost all cases, it is better to keep
the dependency separate, as it adds unnecessary
content (often megabytes of extra code) to the repository;
virtual environments used in combination with setup.py (preferred, especially
when your package is a library)
or a requirements.txt (which, when used, will override dependencies in
setup.py in the case of conflicts) can restrict dependencies to
a known set of working versions.

If those options are not enough, it might be helpful to contact
the owner of the dependency to maybe resolve the issue
by updating their package
(e.g., your library many depend on an upcoming release of their package,
or may need a specific new feature added),
as those changes
would likely benefit the entire community.
The caveat is, if you submit pull requests for big
changes, you may be expected to maintain those changes
when further suggestions and requests come in;
for this reason, both Tablib and Requests vendorize at least some
dependencies.
As the community moves into complete adoption of Python 3,
hopefully fewer of the most pressing issues will remain.

Testing Your Code

Testing your code is very important.
People are much more likely to use a project that actually works.

Python first included doctest and unittest in Python 2.1, released in
2001, embracing test-driven development (TDD),
where the developer first writes tests that define the main operation
and edge cases for a function, and then writes the function to pass those
tests.
Since then, TDD has become accepted and widely adopted in business
and in open source projects—it’s a good idea to practice
writing the testing code and the running code in parallel.
Used wisely, this method helps you precisely define
your code’s intent and have a more modular architecture.

Tips for testing

A test is about the most massively useful code a hitchhiker can write.
We’ve summarized some of our tips here.

Just one thing per test

A testing unit should focus on one tiny bit of functionality and prove it
correct.

Independence is imperative

Each test unit must be fully independent: able to run
alone, and also within the test suite, regardless of the order they are
called. The implication of this rule is that each test must be loaded with
a fresh dataset and may have to do some cleanup afterward. This is
usually handled by setUp() and tearDown() methods.

Precision is better than parsimony

Use long and descriptive names for testing functions. This guideline
is slightly different than for running code, where short names are
often preferred. The reason is testing functions are never called explicitly.
square() or even sqr() is OK in running code, but in testing code, you
should have names such as test_square_of_number_2() or
test_square_negative_number(). These function names are displayed when
a test fails and should be as descriptive as possible.

Speed counts

Try hard to make tests that are fast. If one test needs more than a
few milliseconds to run, development will be slowed down, or the tests will
not be run as often as is desirable. In some cases, tests can’t be fast
because they need a complex data structure to work on, and this data structure
must be loaded every time the test runs. Keep these heavier tests in a
separate test suite that is run by some scheduled task, and run all other
tests as often as needed.

RTMF (Read the manual, friend!)

Learn your tools and learn how to run a single test or a test case. Then,
when developing a function inside a module, run this function’s tests
often, ideally automatically when you save the code.

Test everything when you start—and again when you finish

Always run the full test suite before a coding session, and run it again
after. This will give you more confidence that you did not break anything
in the rest of the code.

Version control automation hooks are fantastic

It is a good idea to implement a hook that runs all tests before pushing
code to a shared repository.
You can directly add hooks to your version control system,
and some IDEs provide ways to do this more simply in their own environments.
Here are the links to the popular systems’ documentation, which will
step you through how to do this:

	
GitHub

	
Mercurial

	
Subversion

Write a breaking test if you want to take a break

If you are in the middle of a development session and have to interrupt
your work, it is a good idea to write a broken unit test about what you
want to develop next. When coming back to work, you will have a pointer
to where you were and get back on track faster.

In the face of ambiguity, debug using a test

The first step when you are debugging your code is to write a new test
pinpointing the bug. While it is not always possible to do, those bug
catching tests are among the most valuable pieces of code in your project.

If the test is hard to explain, good luck finding collaborators

When something goes wrong or has to be changed, if your code has a
good set of tests, you or other maintainers will rely largely on the
testing suite to fix the problem or modify a given behavior. Therefore,
the testing code will be read as much as—or even more than—the running
code. A unit test whose purpose is unclear is not very helpful in this
case.

If the test is easy to explain, it is almost always a good idea

Another use of the testing code is as an introduction to new developers. When
other people will have to work on the code base, running and reading the related
testing code is often the best thing they can do. They will (or should) discover the
hot spots, where most difficulties arise, and the corner cases. If they have
to add some functionality, the first step should be to add a test and, by this
means, ensure the new functionality is not already a working path that has not
been plugged into the interface.

Above all, don’t panic

It’s open source! The whole world’s got your back.

Testing Basics

This section lists the basics of testing—for an idea about
what options are available—and gives a few examples taken from the
Python projects we dive into next, in Chapter 5.
There is an entire book on TDD in Python, and
we don’t want to rewrite it. Check out Test-Driven Development with Python (O’Reilly) (obey the testing goat!).

unittest

unittest is the batteries-included test module in the Python standard
library. Its API will be familiar to anyone who has used any of the
JUnit (Java)/nUnit (.NET)/CppUnit (C/C++) series of tools.

Creating test cases is accomplished by subclassing unittest.TestCase.
In this example code, the test function is just defined as a new method
in MyTest:

test_example.py
import unittest

def fun(x):
 return x + 1

class MyTest(unittest.TestCase):
 def test_that_fun_adds_one(self):
 self.assertEqual(fun(3), 4)

class MySecondTest(unittest.TestCase):
 def test_that_fun_fails_when_not_adding_number(self):
 self.assertRaises(TypeError, fun, "multiply six by nine")

Note

Test methods must start with the string test or they will not run.
Test modules (files) are expected to match the pattern test*.py
by default but can match any pattern given to the --pattern keyword argument
on the command line.

To run all tests in that TestClass, open a terminal shell; and in the same
directory as the file, invoke Python’s unittest module
on the command line, like this:

$ python -m unittest test_example.MyTest
.
--
Ran 1 test in 0.000s

OK

Or to run all tests in a file, name the file:

$ python -m unittest test_example
.
--
Ran 2 tests in 0.000s

OK

Mock (in unittest)

As of Python 3.3,
unittest.mock is
available in the standard library.
It allows you to replace parts of your system under test with mock objects and
make assertions about how they have been used.

For example, you can monkey patch a method like in the
following example (a monkey patch is code that
modifies or replaces other existing code at runtime.) In this code, the existing method named
ProductionClass.method, for the instance we create named instance, is replaced with a
new object, MagicMock,
which will always return the value 3 when called, and which counts the number
of method calls it receives, records the signature it was called with, and contains
assertion methods for testing purposes:

from unittest.mock import MagicMock

instance = ProductionClass()
instance.method = MagicMock(return_value=3)
instance.method(3, 4, 5, key='value')

instance.method.assert_called_with(3, 4, 5, key='value')

To mock classes or objects in a module under test, use the patch decorator.
In the following example, an external search system is replaced with a mock that
always returns the same result (as used in this example, the patch is only for the duration of the test):

import unittest.mock as mock

def mock_search(self):
 class MockSearchQuerySet(SearchQuerySet):
 def __iter__(self):
 return iter(["foo", "bar", "baz"])
 return MockSearchQuerySet()

SearchForm here refers to the imported class reference
myapp.SearchForm, and modifies this instance, not the
code where the SearchForm class itself is initially
defined.
@mock.patch('myapp.SearchForm.search', mock_search)
def test_new_watchlist_activities(self):
 # get_search_results runs a search and iterates over the result
 self.assertEqual(len(myapp.get_search_results(q="fish")), 3)

Mock has many other ways you can configure it and control its behavior.
These are detailed in the Python documentation for
unittest.mock.

doctest

The doctest module searches for pieces of text that look like interactive
Python sessions in docstrings, and then executes those sessions to verify that
they work exactly as shown.

Doctests serve a different purpose than proper unit tests. They are usually
less detailed and don’t catch special cases or obscure regression bugs.
Instead, they are useful as an expressive documentation of the main use
cases of a module and its components (an example of a
happy path).
However, doctests should run automatically each time the full
test suite runs.

Here’s a simple doctest in a function:

def square(x):
 """Squares x.

 >>> square(2)
 4
 >>> square(-2)
 4
 """

 return x * x

if __name__ == '__main__':
 import doctest
 doctest.testmod()

When you run this module from the command line (i.e., python module.py), the
doctests will run and complain if anything is not behaving as described in the
docstrings.

Examples

In this section, we’ll take excerpts from our favorite packages
to highlight good testing practice using real
code. The test suites require additional libraries not included in
the packages (e.g., Requests uses Flask to mock up an
HTTP server) which are included in their projects’ requirements.txt file.

For all of these examples, the expected first steps are to open a terminal
shell, change directories to a place where you work on open source projects,
clone the source repository, and set up a virtual environment, like this:

$ git clone https://github.com/username/projectname.git
$ cd projectname
$ virtualenv -p python3 venv
$ source venv/bin/activate
(venv)$ pip install -r requirements.txt

Example: Testing in Tablib

Tablib uses the unittest module in Python’s standard library for its testing. The test suite does not come with the
package; you must clone the GitHub repository for the files. Here is
an excerpt, with important parts annotated:

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""Tests for Tablib."""

import json
import unittest
import sys
import os
import tablib
from tablib.compat import markup, unicode, is_py3
from tablib.core import Row

class TablibTestCase(unittest.TestCase): [image: 1]
 """Tablib test cases."""

 def setUp(self): [image: 2]
 """Create simple data set with headers."""

 global data, book

 data = tablib.Dataset()
 book = tablib.Databook()

 #
 # ... skip additional setup not used here ...
 #

 def tearDown(self): [image: 3]
 """Teardown."""
 pass

 def test_empty_append(self): [image: 4]
 """Verify append() correctly adds tuple with no headers."""
 new_row = (1, 2, 3)
 data.append(new_row)

 # Verify width/data
 self.assertTrue(data.width == len(new_row))
 self.assertTrue(data[0] == new_row)

 def test_empty_append_with_headers(self): [image: 5]
 """Verify append() correctly detects mismatch of number of
 headers and data.
 """
 data.headers = ['first', 'second']
 new_row = (1, 2, 3, 4)

 self.assertRaises(tablib.InvalidDimensions, data.append, new_row)

	[image: 1]

	To use unittest, subclass unittest.TestCase, and write test methods
whose names begin with test. The TestCase provides assert methods
that check for equality, truth, data type, set membership, and whether
exceptions are raised—see
the documentation for more details.

	[image: 2]

	TestCase.setUp() is run before every single test method in the TestCase.

	[image: 3]

	TestCase.tearDown() is run after every single test method in the TestCase.13

	[image: 4]

	All test methods must begin with test, or they will not be run.

	[image: 5]

	There can be multiple tests within a single TestCase, but each
one should test just one thing.

If you were contributing to Tablib, the first thing you’d do after cloning it
is run the test suite and confirm that nothing breaks. Like this:

(venv)$ ### inside the top-level directory, tablib/
(venv)$ python -m unittest test_tablib.py
..
--
Ran 62 tests in 0.289s

OK

As of Python 2.7, unittest also includes its own test discovery mechanisms,
using the discover option on the command line:

(venv)$ ### *above* the top-level directory, tablib/
(venv)$ python -m unittest discover tablib/
..
--
Ran 62 tests in 0.234s

OK

After confirming all of the tests pass, you’d (a) find the test
case related to the part you’re changing and run it often while you’re
modifying the code, or (b) write a new test case for the feature you’re adding
or the bug you’re tracking down and run that often while modifying the code.
The following snippet is an example:

(venv)$ ### inside the top-level directory, tablib/
(venv)$ python -m unittest test_tablib.TablibTestCase.test_empty_append
.
--
Ran 1 test in 0.001s

OK

Once your code works, you’d run the entire test suite again before
pushing it to the repository. Because you’re running these tests so often,
it makes sense that they should be as fast as possible.
There are a lot more details about using unittest in
the standard library unittest documentation.

Example: Testing in Requests

Requests uses py.test. To see it in action, open a terminal shell, change into a temporary
directory, clone Requests, install the dependencies, and run py.test, as shown here:

$ git clone -q https://github.com/kennethreitz/requests.git
$
$ virtualenv venv -q -p python3 # dash -q for 'quiet'
$ source venv/bin/activate
(venv)$
(venv)$ pip install -q -r requests/requirements.txt # 'quiet' again...
(venv)$ cd requests
(venv)$ py.test
========================= test session starts =================================
platform darwin -- Python 3.4.3, pytest-2.8.1, py-1.4.30, pluggy-0.3.1
rootdir: /tmp/requests, inifile:
plugins: cov-2.1.0, httpbin-0.0.7
collected 219 items

tests/test_requests.py ..
X..
tests/test_utils.py ..s..

========= 217 passed, 1 skipped, 1 xpassed in 25.75 seconds ===================

Other Popular Tools

The testing tools listed here are less frequently used, but still popular enough
to mention.

pytest

pytest is a no-boilerplate alternative
to Python’s standard unittest module,
meaning it doesn’t require the scaffolding of test classes, and maybe
not even setup and teardown methods. To install it, use pip like usual:

$ pip install pytest

Despite being a fully featured and extensible test tool, it boasts a simple
syntax. Creating a test suite is as easy as writing a module with a couple of
functions:

content of test_sample.py
def func(x):
 return x + 1

def test_answer():
 assert func(3) == 5

and then running the py.test command
is far less work than would be required for the equivalent functionality with
the unittest module:

$ py.test
=========================== test session starts ============================
platform darwin -- Python 2.7.1 -- pytest-2.2.1
collecting ... collected 1 items

test_sample.py F

================================= FAILURES =================================
_______________________________ test_answer ________________________________

 def test_answer():
> assert func(3) == 5
E assert 4 == 5
E + where 4 = func(3)

test_sample.py:5: AssertionError
========================= 1 failed in 0.02 seconds =========================

Nose

Nose
extends unittest to make testing easier:

$ pip install nose

Nose provides automatic test discovery to save you the hassle of manually
creating test suites. It also provides numerous plug-ins for features such as
xUnit-compatible test output, coverage reporting, and test selection.

tox

tox is a tool for automating test environment
management and testing against multiple interpreter configurations:

$ pip install tox

tox allows you to configure complicated multiparameter test matrices via a
simple ini-style configuration file.

Options for older versions of Python

If you aren’t in control of your Python version but still want
to use these testing tools, here are a few options.

unittest2

unittest2
is a backport of Python 2.7’s unittest module which has an improved
API and better assertions than the ones available in previous versions of Python.

If you’re using Python 2.6 or below (meaning you probably work at a
large bank or Fortune 500 company), you can install it with pip:

$ pip install unittest2

You may want to import the module under the name unittest to make to make it easier to port code to newer versions of the module in the future:

import unittest2 as unittest

class MyTest(unittest.TestCase):
 ...

This way if you ever switch to a newer Python version and no longer need the
unittest2 module, you can simply change the import in your test module without
the need to change any other code.

Mock

If you liked “Mock (in unittest)” but use a
Python version below 3.3, you can still use unittest.mock by
importing it as a separate library:

$ pip install mock

fixture

fixture can provide tools that
make it easier to set up and tear down database backends for testing.
It can load mock datasets for use with SQLAlchemy, SQLObject,
Google Datastore, Django ORM, and Storm. There are still new releases,
but it has only been tested on Python 2.4 through Python 2.6.

Lettuce and Behave

Lettuce and Behave are packages for doing behavior-driven development (BDD)
in Python.
BDD is a process that sprung out of TDD (obey the testing goat!)
in the early 2000s, wishing to substitute
the word “test” in test-driven development with “behavior” to overcome newbies’ initial trouble
grasping TDD.
The name was first coined by Dan North in 2003 and introduced to the world
along with the Java tool JBehave in a 2006
article for Better Software magazine that is reproduced in Dan North’s blog post,
“Introducing BDD.”

BDD grew very popular after the 2011 release of The Cucumber Book (Pragmatic Bookshelf),
which documents a Behave package for Ruby.
This inspired Gabriel Falco’s Lettuce,
and Peter Parente’s Behave
in our community.

Behaviors are described in plain text using a syntax named Gherkin that
is human-readable and machine-processable. The following tutorials may be of use:

	
Gherkin tutorial

	
Lettuce tutorial

	
Behave tutorial

Documentation

Readability is a primary focus for Python developers, in both project
and code documentation. The best practices described
in this section can save both you and others a lot of time.

Project Documentation

There is API documentation for project users, and then there is additional project documentation for those who want to contribute to to the project. This section is about the additional project documentation.

A README file at the root directory should give general information
to both users and maintainers of a project. It should be raw text or
written in some very easy to read markup, such as reStructured Text (recommended because right now it’s the only format that can be understood by
PyPI14)
or
Markdown.
It should contain a few lines explaining the purpose of the
project or library (without assuming the user knows anything about the
project), the URL of the main source for the software, and some basic credit
information. This file is the main entry point for readers of the code.

An INSTALL file is less necessary with Python (but may be helpful to comply with licence requirements such as the GPL). The installation
instructions are often reduced to one command, such as pip install
module or python setup.py install and added to the README
file.

A LICENSE file should always be present and specify the license
under which the software is made available to the public. (See “Choosing a License” for more information.)

A TODO file or a TODO section in README should list the
planned development for the code.

A CHANGELOG file or section in README should compile a short
overview of the changes in the code base for the latest versions.

Project Publication

Depending on the project, your documentation might include some or all
of the following components:

	
An introduction should provide a very short overview of what can be
done with the product, using one or two extremely simplified use
cases. This is the 30-second pitch for your project.

	
A tutorial should show some primary use cases in more detail. The reader
will follow a step-by-step procedure to set up a working prototype.

	
An API reference is typically generated from the code (see “Docstring Versus Block Comments”). It will list all publicly available
interfaces, parameters, and return values.

	
Developer documentation is intended for potential contributors. This can
include code conventions and the general design strategy of the project.

Sphinx

Sphinx
is far and away the most popular15 Python documentation
tool. Use it. It converts the reStructured Text markup language
into a range of output formats, including HTML, LaTeX (for printable
PDF versions), manual pages, and plain text.

There is also great, free hosting for your Sphinx documentation:
Read the Docs.
Use that, too. You can configure it with commit hooks to
your source repository so that rebuilding your documentation will
happen automatically.

Note

Sphinx is famous for its API generation, but it also works well
for general project documentation. The online
Hitchhiker’s Guide to Python
is built with
Sphinx and is hosted on Read the Docs.

reStructured Text

Sphinx uses
reStructured Text,
and nearly all Python documentation is written using it.
If the content of your long_description argument to
setuptools.setup() is written in reStructured Text, it will be rendered
as HTML on PyPI—other formats will just be presented as text.
It’s like Markdown with all the optional extensions built in.
Good resources for the syntax are:

	
The reStructuredText Primer

	
reStructuredText Quick Reference

Or just start contributing to your favorite package’s
documentation and learn by reading.

Docstring Versus Block Comments

Docstrings and block comments aren’t interchangeable.
Both can be used for a function or class. Here’s an example
using both:

This function slows down program execution for some reason. [image: 1]
def square_and_rooter(x):
 """Return the square root of self times self.""" [image: 2]
 ...

	[image: 1]

	The leading comment block is a programmer’s note.

	[image: 2]

	The docstring describes the
operation of the function or class and
will be shown in an interactive Python session
when the user types help(square_and_rooter).

Docstrings placed at the beginning of a module
or at the top of an __init__.py file will also
appear in help().
Sphinx’s autodoc feature can also automatically
generate documentation using appropriately formatted
docstrings.
Instructions for how to do this, and how
to format your docstrings for autodoc,
are in the
Sphinx tutorial.
For further details on docstrings, see
PEP 257.

Logging

The logging module has been a part of Python’s Standard Library since
version 2.3. It is succinctly described in
PEP 282.
The documentation
is notoriously hard to read, except for the
basic
logging tutorial.

Logging serves two purposes:

	Diagnostic logging

	
Diagnostic logging
records events related to the application’s
operation. If a user calls in to report an error,
for example, the logs can be searched for context.

	Audit logging

	
Audit logging records events
for business analysis. A user’s transactions (such as a clickstream) can
be extracted and combined with other user details (such as eventual purchases)
for reports or to optimize a business goal.

Logging Versus Print

The only time that print is a better option than
logging is when the goal is to display a help
statement for a command-line application.
Other reasons why logging is better than print:

	
The log record,
which is created with every logging event, contains
readily available diagnostic information such as the filename, full path,
function, and line number of the logging event.

	
Events logged in included modules are automatically accessible via the root
logger to your application’s logging stream, unless you filter them out.

	
Logging can be selectively silenced by using the method
logging.Logger.setLevel() or disabled by setting the attribute
logging.Logger.disabled to True.

Logging in a Library

Notes for configuring logging for a library
are in the
logging tutorial.
Another good resource for example uses of logging is the libraries we
mention in the next chapter.
Because the user, not the library, should
dictate what happens when a logging event occurs, one admonition bears
repeating:

It is strongly advised that you do not add any handlers other than
NullHandler to your library’s loggers.

The NullHandler does what its name says—nothing.
The user will otherwise have to expressly turn off your logging if they don’t want it.

Best practice when instantiating loggers in a library is to only create them
using the __name__ global variable: the logging module creates a
hierarchy of loggers using dot notation, so using __name__ ensures
no name collisions.

Here is an example of best practice from the
Requests source—place
this in your project’s top-level __init__.py:

Set default logging handler to avoid "No handler found" warnings.
import logging
try: # Python 2.7+
 from logging import NullHandler
except ImportError:
 class NullHandler(logging.Handler):
 def emit(self, record):
 pass

logging.getLogger(__name__).addHandler(NullHandler())

Logging in an Application

The Twelve-Factor App, an authoritative reference
for good practice in application development, contains a section on
logging best practice. It emphatically
advocates for treating log events as an event stream, and for
sending that event stream to standard output to be handled by the
application environment.

There are at least three ways to configure a logger:

	
	Pros
	Cons

	Using an INI-formatted file

	It’s possible to update configuration while running using the function logging.config.listen() to listen for changes on a socket.

	You have less control (e.g., custom subclassed filters or loggers) than possible when configuring a logger in code.

	Using a dictionary or a JSON-formatted file

	In addition to updating while running, it is also possible to load from a file using the json module, in the standard library since Python 2.6.

	You have less control than when configuring a logger in code.

	Using code

	You have complete control over the configuration.

	Any modifications require a change to source code.

Example configuration via an INI file

More details about the INI file format are in the
logging configuration section of the
logging tutorial.
A minimal configuration file would look like this:

[loggers]
keys=root

[handlers]
keys=stream_handler

[formatters]
keys=formatter

[logger_root]
level=DEBUG
handlers=stream_handler

[handler_stream_handler]
class=StreamHandler
level=DEBUG
formatter=formatter
args=(sys.stderr,)

[formatter_formatter]
format=%(asctime)s %(name)-12s %(levelname)-8s %(message)s

The asctime, name, levelname, and message are all optional
attributes available from the logging library.
The full list of options and their definitions is available in the Python documentation.
Let us say that our logging configuration file is named logging_config.ini.
Then to set up the logger using this configuration in the code,
we’d use logging.config.fileConfig():

import logging
from logging.config import fileConfig

fileConfig('logging_config.ini')
logger = logging.getLogger()
logger.debug('often makes a very good meal of %s', 'visiting tourists')

Example configuration via a dictionary

As of Python 2.7, you can use a dictionary with configuration details.
PEP 391
contains a list of the mandatory and optional elements in
the configuration dictionary. Here’s a minimal implementation:

import logging
from logging.config import dictConfig

logging_config = dict(
 version = 1,
 formatters = {
 'f': {'format':
 '%(asctime)s %(name)-12s %(levelname)-8s %(message)s'}
 },
 handlers = {
 'h': {'class': 'logging.StreamHandler',
 'formatter': 'f',
 'level': logging.DEBUG}
 },
 loggers = {
 'root': {'handlers': ['h'],
 'level': logging.DEBUG}
 }
)

dictConfig(logging_config)

logger = logging.getLogger()
logger.debug('often makes a very good meal of %s', 'visiting tourists')

Example configuration directly in code

And last, here is a minimal logging configuration directly in code:

import logging

logger = logging.getLogger()
handler = logging.StreamHandler()
formatter = logging.Formatter(
 '%(asctime)s %(name)-12s %(levelname)-8s %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)

logger.debug('often makes a very good meal of %s', 'visiting tourists')

Choosing a License

In the United States, when no license is specified with your source publication,
users have no legal right to download, modify, or distribute it.
Furthermore, people can’t contribute to your project unless you tell them what
rules to play by. You need a license.

Upstream Licenses

If you are deriving from another project, your choice may be
determined by upstream licenses. For example, the Python Software
Foundation (PSF) asks all contributors to Python source code to sign a
contributor agreement that formally licenses their code to the PSF
(retaining their own copyright) under one of two licenses.16

Because both of those licenses allow users to sublicense under
different terms, the PSF is then free to distribute Python
under its own license, the Python Software Foundation
License.
A FAQ for the PSF License
goes into detail about what users can and cannot do in plain
(not legal) language.
It is not intended for further use beyond licensing the
PSF’s distribution of Python.

Options

There are plenty of licenses available to choose from.
The PSF recommends using one of the
Open Source Institute (OSI)–approved licenses.
If you wish to eventually contribute your code to the PSF,
the process will be much easier if you start with
one of the licenses specified on the
contributions page.

Note

Remember to change the placeholder text in the template
licenses to actually reflect
your information. For example, the MIT license template
contains
Copyright (c) <year> <copyright holders>
on its second line. Apache License, Version 2.0 requires no
modification.

Open source licenses tend to fall into one of two categories:17

	Permissive licenses

	
Permissive licenses,
often also called Berkeley Software Distribution (BSD)–style licenses,
focus more on the user’s freedom to do with the software as they please.
Some examples:

	
The Apache licenses—version 2.0 is the current one, modified
so that people can include it without modification in any project,
can include the license by reference instead of listing it in every file,
and can use Apache 2.0–licensed code with the GNU General Public License
version 3.0 (GPLv3).

	
Both the BSD 2-clause and 3-clause licenses—the three-clause license is the two-clause license plus an additional restriction on
use of the issuer’s trademarks.

	
The Massachusetts Institute of Technology (MIT) licenses—both the Expat and the X11 versions are named after
popular products that use the respective licenses.

	
The Internet Software Consortium (ISC) license—it’s almost
identical to the MIT license except for a few lines
now deemed to be extraneous.

	Copyleft licenses

	
Copyleft licenses,
or less permissive licenses,
focus more on making sure that the source
code itself—including any changes made to
it—is made available. The GPL family is
the most well known of these.
The current version is
GPLv3.

Note

The GPLv2 license is not compatible with Apache 2.0;
so code licensed with GPLv2 cannot be mixed with Apache 2.0–licensed
projects. But Apache 2.0–licensed projects
can be used in GPLv3 projects (which must subsequently all be GPLv3).

Licenses meeting the OSI criteria all allow commercial use,
modification of the software, and distribution downstream—with different
restrictions and requirements. All of the ones listed in Table 4-4
also limit the issuer’s liability and require the user to retain the original
copyright and license
in any downstream distribution.

Table 4-4. Topics discussed in popular licenses

	License family
	Restrictions
	Allowances
	Requirements

	BSD

	Protects issuer’s trademark (BSD 3-clause)

	Allows a warranty (BSD 2-clause and 3-clause)

	—

	MIT (X11 or Expat), ISC

	Protects issuer’s trademark (ISC and MIT/X11)

	Allows sublicensing with a different license

	—

	Apache version 2.0

	Protects issuer’s trademark

	Allows sublicensing, use in patents

	Must state changes made to the source

	GPL

	Prohibits sublicensing with a different license

	Allows a warranty, and (GPLv3 only) use in patents

	Must state changes to the source and include source code

Licensing Resources

Van Lindberg’s book
Intellectual Property and Open Source (O’Reilly)
is a great resource on the legal aspects of open source software.
It will help you understand not only licenses, but also the legal
aspects of other intellectual property topics like trademarks, patents, and copyrights
as they relate to open source.
If you’re not that concerned about legal matters and just want to choose something quickly,
these sites can help:

	
GitHub offers a handy guide that summarizes and compares
licenses in a few sentences.

	
TLDRLegal18
lists what can, cannot, and must be done under the terms
of each license in quick bullets.

	
The OSI list of approved licenses
contains the full text of all licenses that have passed their
license review process for compliance with the Open Source Definition
(allowing software to be freely used, modified, and shared).

1 Originally stated by Ralph Waldo Emerson in Self-Reliance, it is quoted in PEP 8 to affirm that the coder’s best judgment should supercede the style guide. For example, conformity with surrounding code and existing convention is more important than consistency with PEP 8.
2 Tim Peters is a longtime Python user who eventually became one of its most prolific and tenacious core developers (creating Python’s sorting algorithm, Timsort), and a frequent Net presence. He at one point was rumored to be a long-running Python port of the Richard Stallman AI program stallman.el. The original conspiracy theory appeared on a listserv in the late 1990s.
3 diff is a shell utility that identifies and shows lines that differ between two files.
4 A max of 80 characters according to PEP 8, 100 according to many others, and for you, whatever your boss says. Ha! But honestly, anyone who’s ever had to use a terminal to debug code while standing up next to a rack will quickly come to appreciate the 80-character limit (at which code doesn’t wrap on a terminal) and in fact prefer 75–77 characters to allow for line numbering in Vi.
5 See Zen 14. Guido, our BDFL, happens to be Dutch.
6 By the way, this is why only hashable objects can be stored in sets or used as dictionary keys. To make your own Python objects hashable, define an object.__hash__(self) member function that returns an integer. Objects that compare equal must have the same hash value. The Python documentation has more information.
7 In this case, the __exit__() method just calls the I/O wrapper’s close() method, to close the file descriptor. On many systems, there’s a maximum allowable number of open file descriptors, and it’s good practice to release them when they’re done.
8 If you’d like, you could name your module my_spam.py, but even our friend the underscore should not be seen often in module names (underscores give the impression of a variable name).
9 Thanks to PEP 420, which was implemented in Python 3.3, there is now an alternative to the root package, called the namespace package. Namespace packages must not have an __init__.py and can be dispersed across multiple directories in sys.path. Python will gather all of the pieces together and present them together to the user as a single package.
10 Instructions to define your own types in C are provided in the Python extension documentation.
11 An example of a simple hashing algorithm is to convert the bytes of an item to an integer, and take its value modulo some number. This is how memcached distributes keys across multiple computers.
12 We should admit that even though, according to PEP 3101, the percent-style formatting (%s, %d, %f) has been deprecated now for over a decade, most old hats still use it, and PEP 460 just introduced this same method to format bytes or bytearray objects.
13 Note that unittest.TestCase.tearDown will not be run if the code errors out. This may be a surprise if you’ve used features in unittest.mock to alter the code’s actual behavior. In Python 3.1, the method unittest.TestCase.addCleanup() was added; it pushes a cleanup function and its arguments to a stack that will be called one by one after unittest.TestCase.tearDown() or else called anyway regardless of whether tearDown() was called. For more information, see the documentation on unittest.TestCase.addCleanup().
14 For those interested, there’s some discussion about adding Markdown support for the README files on PyPI.
15 Other tools that you might see are Pycco, Ronn, Epydoc (now discontinued), and MkDocs. Pretty much everyone uses Sphinx and we recommend you do, too.
16 As of this writing, they were the Academic Free License v. 2.1 or the Apache License, Version 2.0. The full description of how this works is on the PSF’s contributions page.
17 All of the licenses described here are OSI-approved, and you can learn more about them from the main OSI license page.
18 tl;dr means “Too long; didn’t read,” and apparently existed as editor shorthand before popularization on the Internet.

Chapter 5. Reading Great Code

Programmers read a lot of code.
One of the core tenets behind Python’s design is readability,
and one secret to becoming a great programmer is
to read, understand, and comprehend excellent code.
Such code typically follows the guidelines outlined in
“Code Style” and does its best to express a clear
and concise intent to the reader.

This chapter shows excerpts from some
very readable Python projects that illustrate topics covered in
Chapter 4.
As we describe them, we’ll also share
techniques for reading code.1

Here’s a list of projects highlighted in this chapter
in the order they will appear:

	
HowDoI
is a console application that searches the Internet
for answers to coding questions, written in Python.

	
Diamond
is a Python daemon2
that collects metrics and
publishes them to Graphite or other backends.
It is capable of collecting CPU, memory, network,
I/O, load and disk metrics. Additionally,
it features an API for implementing custom collectors
to gather metrics from almost any source.

	
Tablib
is a format-agnostic tabular dataset library.

	
Requests
is a HyperText Transfer Protocol (HTTP)
library for human beings (the 90% of us who just
want an HTTP client that automatically handles password
authentication and complies with the
half-dozen standards
to perform things like a multipart file upload with
one function call).

	
Werkzeug
started as a simple collection of various
utilities for Web Service Gateway Interface (WSGI)
applications and has become one of the most
advanced WSGI utility modules.

	
Flask
is a web microframework for Python based on
Werkzeug and Jinja2.
It’s good for getting simple web pages
up quickly.

There is a lot more to all of these projects than
what we’re mentioning, and we really, really hope that
after this chapter you’ll be motivated to
download and read at least one or two of them
in depth yourself (and maybe even present what you learn
to a local user group).

Common Features

Some features are common across all of the projects:
details from a snapshot of each one show very few (fewer than 20,
excluding whitespace and comments)
lines of code on average per function, and a lot
of blank lines.
The larger, more complex projects use docstrings and/or
comments; usually more than a fifth of the content
of the code base is some sort of documentation.
But we can see from HowDoI, which has no docstrings
because it is not for interactive use,
that comments are not necessary when the code is
straightforward.
Table 5-1
shows common practices in these projects.

Table 5-1. Common features in the example projects

	Package
	License
	Line count
	Docstrings
 (% of lines)
	Comments
 (% of lines)
	Blank lines
 (% of lines)
	Average
 function length

	HowDoI

	MIT

	262

	0%

	6%

	20%

	13 lines of code

	Diamond

	MIT

	6,021

	21%

	9%

	16%

	11 lines of code

	Tablib

	MIT

	1,802

	19%

	4%

	27%

	8 lines of code

	Requests

	Apache 2.0

	4,072

	23%

	8%

	19%

	10 lines of code

	Flask

	BSD 3-clause

	10,163

	7%

	12%

	11%

	13 lines of code

	Werkzeug

	BSD 3-clause

	25,822

	25%

	3%

	13%

	9 lines of code

In each section, we use a different code-reading technique
to figure out what the project is about. Next, we single out
code excerpts that demonstrate ideas mentioned
elsewhere in this guide. (Just because we don’t highlight
things in one project doesn’t mean they don’t exist; we just
want to provide good coverage of concepts across these examples.)
You should finish this chapter more confident about reading
code, with examples that reinforce what makes
good code, and with some ideas you’d like to incorporate in
your own code later.

HowDoI

With fewer than 300 lines of code, The HowDoI project,
by Benjamin Gleitzman, is a great choice to start our reading odyssey.

Reading a Single-File Script

A script usually has a clear starting point,
clear options, and a clear ending point.
This makes it easier to follow than libraries
that present an API or provide a framework.

Get the HowDoI module from GitHub:3

$ git clone https://github.com/gleitz/howdoi.git
$ virtualenv -p python3 venv # or use mkvirtualenv, your choice...
$ source venv/bin/activate
(venv)$ cd howdoi/
(venv)$ pip install --editable .
(venv)$ python test_howdoi.py # Run the unit tests.

You should now have the howdoi executable installed in venv/bin.
(You can look at it if you want by typing cat `which howdoi` on the
command line.)
It was auto-generated when you ran pip install.

Read HowDoI’s documentation

HowDoI’s documentation is in the README.rst file in the
HowDoI repository on GitHub:
it’s a small command-line application that allows users to
search the Internet for answers to programming questions.

From the command line in a terminal shell, we can type howdoi --help for
the usage statement:

(venv)$ howdoi --help
usage: howdoi [-h] [-p POS] [-a] [-l] [-c] [-n NUM_ANSWERS] [-C] [-v]
 [QUERY [QUERY ...]]

instant coding answers via the command line

positional arguments:
 QUERY the question to answer

optional arguments:
 -h, --help show this help message and exit
 -p POS, --pos POS select answer in specified position (default: 1)
 -a, --all display the full text of the answer
 -l, --link display only the answer link
 -c, --color enable colorized output
 -n NUM_ANSWERS, --num-answers NUM_ANSWERS
 number of answers to return
 -C, --clear-cache clear the cache
 -v, --version displays the current version of howdoi

That’s it—from the documentation we know that HowDoI gets
answers to coding questions from the Internet, and from the usage
statement we know we can choose
the answer in a specific position, can colorize the output,
get multiple answers, and that it keeps a cache that can be cleared.

Use HowDoI

We can confirm we understand what HowDoI does by actually using it.
Here’s an example:

(venv)$ howdoi --num-answers 2 python lambda function list comprehension
--- Answer 1 ---
[(lambda x: x*x)(x) for x in range(10)]

--- Answer 2 ---
[x() for x in [lambda m=m: m for m in [1,2,3]]]
[1, 2, 3]

We’ve installed HowDoI, read its documentation, and can use it.
On to reading actual code!

Read HowDoI’s code

If you look inside the howdoi/ directory, you’ll see
it contains two files: an __init__.py, which contains
a single line that defines the version number, and howdoi.py,
which we’ll open and read.

Skimming howdoi.py, we see each new function definition
is used in the next function, making it is easy
to follow. And each function does just one thing—the thing
its name says.
The main function, command_line_runner(),
is near the bottom of howdoi.py.

Rather than reprint HowDoI’s source here, we can illustrate its call
structure using the call graph in Figure 5-1.
It was created by
Python Call Graph,
which provides a visualization of the functions called when
running a Python script.
This works well with command-line applications thanks to a
single start point and the relatively few paths through their code.
(Note that we manually deleted functions not in the HowDoI project from the
rendered image to legibly fit it on the page, and slightly recolored and reformatted it.)

[image: howdoi]
Figure 5-1. Clean paths and clear function names in this howdoi call graph

The code could have been all one large, incomprehensible spaghetti function.
Instead, intentional choices structure the code into compartmentalized functions
with straightforward names.
Here’s a brief description of the execution depicted in Figure 5-1:
command_line_runner() parses the input and passes the user flags and
the query to howdoi(). Then, howdoi() wraps _get_instructions() in a
try/except statement so that it can catch connection errors
and print a reasonable error message (because application code
should not terminate on exceptions).

The primary functionality is in _get_instructions():
it calls _get_links() to do a Google search of Stack Overflow
for links that match the query, then calls _get_answer()
once for each resulting link (up to the number of links that the user
specified on the command line—the default is just one link).

The _get_answer() function follows a link to Stack Overflow,
extracts code from the answer, colorizes it, and returns it to
_get_instructions(), which will combine all of the answers
into one string, and return it.
Both _get_links() and _get_answer() call _get_result()
to actually do the HTTP request:
_get_links() for the Google query, and
_get_answer() for the resulting links from the Google query.

All _get_result() does is wrap requests.get() with a try/except
statement so that it can catch SSL errors, print an error message,
and re-raise the exception so that the top-level try/except
can catch it and exit. Catching all exceptions before exiting is best practice
for application programs.

HowDoI’s Packaging

HowDoI’s setup.py, above the howdoi/ directory,
is a good example setup module because in addition to normal
package installation, it also installs an executable
(which you can refer to when packaging your own command-line utility).
The setuptools.setup() function uses keyword arguments
to define all of the configuration options.
The part that identifies the executable is associated with the keyword
argument entry_points:

setup(
 name='howdoi',
 ##~~ ... Skip the other typical entries ...
 entry_points={
 'console_scripts': [[image: 1]
 'howdoi = howdoi.howdoi:command_line_runner', [image: 2]
]
 },
 ## ~~ ... Skip the list of dependencies ...
)

	[image: 1]

	The keyword to list console scripts is console_scripts.

	[image: 2]

	This declares the executable named howdoi will have as its
target the function howdoi.howdoi.command_line_runner().
So later when reading, we will know command_line_runner() is the
starting point for running the whole application.

Structure Examples from HowDoI

HowDoI is a small library, and we’ll be highlighting structure
much more elsewhere, so there are only a few notes here.

Let each function do just one thing

We can’t reiterate enough how beneficial it is for readers to
separate out HowDoI’s internal functions to each do just one thing.
Also, there are functions whose sole purpose is to wrap other
functions with a try/except statement.
(The only function with a try/except that doesn’t follow this
practice is _format_output(), which leverages try/except
clauses to identify the correct coding language for syntax
highlighting, not for exception handling.)

Leverage data available from the system

HowDoI checks and uses relevant system values, such as
urllib.request.getproxies(), to handle the use of proxy servers
(this can be the case in organizations like schools that have
an intermediary server filtering the connection to the Internet),
or in this snippet:

XDG_CACHE_DIR = os.environ.get(
 'XDG_CACHE_HOME',
 os.path.join(os.path.expanduser('~'), '.cache')
)

How do you know that these variables exist?
The need for urllib.request.getproxies() is evident from the
optional arguments in requests.get()—so part of this
information comes from understanding the API of libraries you call.
Environment variables are often utility-specific, so if a library
is intended for use with a particular database or other sister application,
those applications’ documentation list relevant environment variables.
For plain POSIX systems, a good place to start is
Ubuntu’s list of default environment variables,
or else the base list of environment variables in the
POSIX specification,
which links to various relevant other lists.

Style Examples from HowDoI

HowDoI mostly follows PEP 8, but not pedantically, and not
when it restricts readability. For example, import statements
are at the top of the file, but standard library and external
modules are intermixed.
And although the string constants in USER_AGENTS are much
longer than 80 characters, there is no natural place to break
the strings, so they are left intact.

These next excerpts highlight other style choices we’ve
previously advocated for in Chapter 4.

Underscore-prefixed function names (we are all responsible users)

Almost every function in HowDoI is prefixed with an underscore. This identifies them as
for internal use only. For most of them, this is because if called, there is the
possibility of an uncaught exception—anything that calls _get_result()
risks this—until the howdoi() function, which handles the possible exceptions.

The rest of the internal functions (_format_output(), _is_question(),
_enable_cache(), and _clear_cache()) are identified as such because
they’re simply not intended for use outside of the package.
The testing script, howdoi/test_howdoi.py, only calls the nonprefixed
functions, checking that the formatter works by feeding a command-line argument
for colorization to the top-level howdoi.howdoi() function, rather
than by feeding code to howdoi._format_output().

Handle compatibility in just one place (readability counts)

Differences between versions of possible dependencies
are handled before the main code body
so the reader knows there won’t be dependency issues,
and version checking doesn’t litter the code elsewhere. This is
nice because HowDoI is shipped as a command-line tool, and
the extra effort means users won’t be forced to change
their Python environment just to accommodate the tool.
Here is the snippet with the workarounds:

try:
 from urllib.parse import quote as url_quote
except ImportError:
 from urllib import quote as url_quote

try:
 from urllib import getproxies
except ImportError:
 from urllib.request import getproxies

And the following snippet resolves the
difference between Python 2 and Python 3’s
Unicode handling in seven lines, by creating the
function u(x) to either do nothing or emulate
Python 3. Plus it follows Stack Overflow’s new citation guideline, by citing the original
source:

Handle Unicode between Python 2 and 3
http://stackoverflow.com/a/6633040/305414
if sys.version < '3':
 import codecs
 def u(x):
 return codecs.unicode_escape_decode(x)[0]
else:
 def u(x):
 return x

Pythonic choices (beautiful is better than ugly)

The following snippet from howdoi.py
shows thoughtful, Pythonic choices. The function
get_link_at_pos() returns False if there are
no results, or else identifies the links that are
to Stack Overflow questions, and returns the
one at the desired position (or the last one if
there aren’t enough links):

def _is_question(link): [image: 1]
 return re.search('questions/\d+/', link)

[... skip a function ...]

def get_link_at_pos(links, position):
 links = [link for link in links if _is_question(link)] [image: 2]
 if not links:
 return False [image: 3]

 if len(links) >= position:
 link = links[position-1] [image: 4]
 else:
 link = links[-1] [image: 5]
 return link [image: 6]

	[image: 1]

	The first function, _is_question(), is defined
as a separate one liner, giving clear meaning
to an otherwise opaque regular expression search.

	[image: 2]

	The list comprehension reads like a sentence,
thanks to the separate definition of _is_question()
and meaningful variable names.

	[image: 3]

	The early return statement flattens the code.

	[image: 4]

	The additional step of assigning to the variable link here…

	[image: 5]

	…and here, rather than
two separate return statements with no named variable
at all, reinforces the purpose of get_link_at_pos()
with clear variable names. The code is self-documenting.

	[image: 6]

	The single return statement at the highest
indentation level explicitly shows that all paths
through the code exit either right away—because there
are no links—or at the end of the function, returning a link.
Our quick rule of thumb works: we can read the
first and last line of this function and understand what it does.
(Given multiple links and a position, get_link_at_pos() returns
 one single link: the one at the given position.)

Diamond

Diamond is a daemon
(an application that runs continuously as a background process)
that collects system metrics and publishes them to downstream programs like
MySQL, Graphite (a platform
open sourced by Orbitz in 2008 that stores, retrieves, and optionally
graphs numeric time-series data), and others.
We’ll get to explore good package structure, as Diamond is a multifile application, much larger than HowDoI.

Reading a Larger Application

Diamond is still a command-line application, so like with
HowDoI, there’s still a clear starting point and clear paths of execution, although the supporting code now spans multiple
files.

Get Diamond from GitHub
(the documentation says it only runs on CentOS or Ubuntu, but
code in its setup.py makes it appear to support
all platforms; however, some of the commands that
default collectors use to monitor memory, disk space, and
other system metrics are not on Windows).
As of this writing, it still uses Python 2.7:

$ git clone https://github.com/python-diamond/Diamond.git
$ virtualenv -p python2 venv # It's not Python 3 compatible yet...
$ source venv/bin/activate
(venv)$ cd Diamond/
(venv)$ pip install --editable .
(venv)$ pip install mock docker-py # These are dependencies for testing.
(venv)$ pip install mock # This is also a dependency for testing.
(venv)$ python test.py # Run the unit tests.

Like with the HowDoI library, Diamond’s setup script installs
executables in venv/bin/: diamond and diamond-setup.
This time they’re not automatically generated—they’re prewritten scripts in the project’s Diamond/bin/ directory.
The documentation says that diamond starts the server,
and diamond-setup is an optional tool to walk users through interactive
modification of the collector settings in the configuration file.

There are a lot of additional directories, and the diamond package is
underneath Diamond/src in this project directory. We are going to
look at files in Diamond/src (which contains the main code), Diamond/bin
(which contains the executable diamond), and Diamond/conf (which contains
the sample configuration file). The rest of the directories and files
may be of interest to people distributing similar applications but is
not what we want to cover right now.

Read Diamond’s documentation

First, we can get a sense of what the project is and what it does
by scanning the online documentation.
Diamond’s goal is to make it easy to gather system metrics on clusters of machines.
Originally open sourced by BrightCove, Inc., in 2011, it now has over 200 contributors.

After describing its history and purpose, the documentation
tells you how to install it, and then says how to run it: just
modify the example configuration file (in our download it’s in
conf/diamond.conf.example), put it in the default
location (/etc/diamond/diamond.conf) or a path you’ll specify
on the command line, and you’re set.
There’s also a helpful section on configuration in the
Diamond wiki page.

From the command line, we can get the usage statement via diamond --help:

(venv)$ diamond --help
Usage: diamond [options]

Options:
 -h, --help show this help message and exit
 -c CONFIGFILE, --configfile=CONFIGFILE
 config file
 -f, --foreground run in foreground
 -l, --log-stdout log to stdout
 -p PIDFILE, --pidfile=PIDFILE
 pid file
 -r COLLECTOR, --run=COLLECTOR
 run a given collector once and exit
 -v, --version display the version and exit
 --skip-pidfile Skip creating PID file
 -u USER, --user=USER Change to specified unprivileged user
 -g GROUP, --group=GROUP
 Change to specified unprivileged group
 --skip-change-user Skip changing to an unprivileged user
 --skip-fork Skip forking (damonizing) process

From this, we know it uses a configuration file; by default, it runs in the
background; it has logging; you can specifiy a PID (process ID) file;
you can test collectors; you can change the process’s user and group;
and it by default will daemonize (fork) the process.4

Use Diamond

To understand it even better, we can run Diamond.
We need a modified configuration file, which we can put
in a directory we make called Diamond/tmp.
From inside the Diamond directory, type:

(venv)$ mkdir tmp
(venv)$ cp conf/diamond.conf.example tmp/diamond.conf

Then edit tmp/diamond.conf to look like this:

Options for the server
[server]
Handlers for published metrics. [image: 1]
handlers = diamond.handler.archive.ArchiveHandler
user = [image: 2]
group =
Directory to load collector modules from [image: 3]
collectors_path = src/collectors/

Options for handlers [image: 4]
[handlers]
[[default]]

[[ArchiveHandler]]
log_file = /dev/stdout

Options for collectors
[collectors]
[[default]]
Default Poll Interval (seconds)
interval = 20

Default enabled collectors
[[CPUCollector]]
enabled = True

[[MemoryCollector]]
enabled = True

We can tell from the example configuration file that:

	[image: 1]

	There are multiple handlers, which we can select by class name.

	[image: 2]

	We have control over the user and group that the daemon runs as
(empty means to use the current user and group).

	[image: 3]

	We can specify a path to look for collector modules. This is how
Diamond will know where the custom Collector subclasses are: we
directly state it in the configuration file.

	[image: 4]

	We can also store configure handlers individually.

Next, run Diamond with options that set logging to /dev/stdout
(with default formatting configurations), that keep the application in the
foreground, that skip writing the PID file, and that use our new
configuration file:

(venv)$ diamond -l -f --skip-pidfile --configfile=tmp/diamond.conf

To end the process, type Ctrl+C until the command prompt reappears.
The log output demonstrates what collectors and handlers do:
collectors collect different metrics (such as the MemoryCollector’s
total, available, free, and swap memory sizes),
which the handlers format and send to various destinations,
such as Graphite, MySQL, or in our test case,
as log messages to /dev/stdout.

Reading Diamond’s code

IDEs can be useful when reading larger projects—they can quickly locate the original definitions of functions and
classes in the source code.
Or, given a definition, they can find all places in the project
where it is used. For this functionality, set the IDE’s Python
interpreter to the one in your virtual environment.5

Instead of following each function as we did with HowDoI,
Figure 5-2 follows the import statements;
the diagram just shows which modules in Diamond import which other modules.
Drawing sketches like these helps by providing a very high-level look
for larger projects: you hide the trees so you can see the forest.
We can start with the diamond executable file on the top left
and follow the imports through the Diamond project.
Aside from the diamond executable, every square outline denotes a
file (module) or directory (package) in the src/diamond directory.

[image: diamond]
Figure 5-2. The module import structure of Diamond

Diamond’s well-organized and appropriately named modules make it possible to
get an idea of what the code is doing solely from our diagram:
diamond gets the version from util, then sets up logging using utils.log
and starts a Server instance using server. The Server imports from
almost all of the modules in the utils package, using utils.classes
to acess both the Handlers in handler and the collectors,
config to read the configuration file and obtain settings for the
collectors (and the extra paths to the user-defined collectors),
and scheduler and signals to set the polling interval for the
collectors to calculate their metrics, and to set up and start
the handlers processing the queue of metrics to send them to
their various destinations.

The diagram doesn’t include the helper modules convertor.py and
gmetric.py, which are used by specific collectors, or the over
20 handler implementations defined in the handler subpackage, or the
over 100 collector implementations defined in the project’s
Diamond/src/collectors/ directory (which is installed elsewhere
when not installed the way we did for reading—that is, using PyPI
or Linux package distributions, instead of source).
These are imported using diamond.classes.load_dynamic_class(),
which then calls the function diamond.util.load_class_from_name() to load the classes
from the string names given in the configuration file, so the import
statements do not explicitly name them.

To understand why there is both a utils package and a util
module, you have to dig into the actual code: the util module
provides functions related more to Diamond’s packaging than to
its operation—a function to get the version number from version.__VERSION__,
and two functions that parse strings that identify either
modules or classes, and import them.

Logging in Diamond

The function diamond.utils.log.setup_logging(), found in src/diamond/utils/log.py,
is called from the main() function in the diamond executable when starting the daemon:

 # Initialize logging
 log = setup_logging(options.configfile, options.log_stdout)

If options.log_stdout is True, setup_logging() will set up a logger
with default formatting to log to standard output at the DEBUG level.
Here’s the excerpt that does that:

##~~ ... Skip everything else ...

def setup_logging(configfile, stdout=False):
 log = logging.getLogger('diamond')

 if stdout:
 log.setLevel(logging.DEBUG)
 streamHandler = logging.StreamHandler(sys.stdout)
 streamHandler.setFormatter(DebugFormatter())
 streamHandler.setLevel(logging.DEBUG)
 log.addHandler(streamHandler)
 else:
 ##~~ ... Skip this ...

Otherwise, it parses the configuration file using
logging.config.file.fileConfig() from the Python Standard Library.
Here is the function call—it’s indented because it’s inside
the preceding if/else statement, and a try/except block:

 logging.config.fileConfig(configfile,
 disable_existing_loggers=False)

The logging configuration ignores keywords in the
configuration file that aren’t related to logging. This is how
Diamond can use the same configuration file for both its own and
the logging configuration. The sample configuration file, located
in Diamond/conf/diamond.conf.example,
identifies the logging handler among the other Diamond handlers:

Options for handlers
[handlers]

daemon logging handler(s)
keys = rotated_file

It defines example loggers later in the configuration file,
under the header “Options for logging,” recommending the
logging config file documentation
for details.

Structure Examples from Diamond

Diamond is more than an executable application—it’s also a
library that provides a way for users to create and use
custom collectors.

We’ll highlight more things we like about the overall
package structure, and then dig into how exactly Diamond
makes it possible for the application to import and use
externally defined collectors.

Separate different functionality into namespaces (they are one honking great idea)

The diagram in Figure 5-2 shows the server module
interacting with three other modules in the project: diamond.handler,
diamond.collector, and diamond.utils.
The utils subpackage could realistically have contained all of its
classes and functions in a single, large util.py module, but there
was an opportunity to use namespaces to separate code into related
groups, and the development team took it. Honking great!

All of the implementations of Handlers are contained in diamond/handler (which makes sense), but the structure for the Collectors is different.
There’s not a directory, only a module diamond/collector.py
that defines the Collector and ProcessCollector base classes.
All implementations of the Collectors are defined instead in
Diamond/src/collectors/ and would be installed in the
virtual environment under venv/share/diamond/collectors
when installing from PyPI (as recommended) rather than from GitHub (like we
did to read it).
This helps the user to create new implementations of Collectors: placing all of the collectors in the same location makes it
easier for the application to find them and easier for library users to
follow their example.

Finally, each Collector implementation in Diamond/src/collectors is in its
own directory (rather than in a single file), which makes it possible to
keep each Collector implementation’s tests separate. Also honking great.

User-extensible custom classes (complex is better than complicated)

It’s easy to add new Collector implementations: just subclass the
diamond.collector.Collector abstract base class,6
implement a Collector.collect() method,
and place the implementation in its own directory in venv/src/collectors/.

Underneath, the implementation is complex, but the user
doesn’t see it. This section shows both the simple
user-facing part of Diamond’s Collector API and the complex
code that makes this user interface possible.

Complex versus complicated

We can boil down the user experience of working with complex code to be
something like experiencing a Swiss watch—it just works, but
inside there are a ton of precisely made little pieces, all interfacing
with remarkable precision, in order to create the effortless user experience.
Using complicated code, on the other hand,
is like piloting an airplane—you really
have to know what you’re doing to not crash and burn.7
We don’t want to live in a world without airplanes, but we do
want our watches to work without us having to be rocket scientists.
Wherever it’s possible, less complicated user interfaces are a good thing.

The simple user interface

To create a custom data collector, the user must subclass the abstract class,
Collector, and then provide, via the configuration file, the path to that new collector.
Here is an example of a new Collector definition from Diamond/src/collectors/cpu/cpu.py.
When Python searches for the collect() method, it will
look in the CPUCollector for a definition first, and then
if it doesn’t find the definition, it will use
diamond.collector.Collector.collect(), which raises
the NotImplementedError.

Minimal collector code would look like this:

coding=utf-8
import diamond.collector
import psutil

class CPUCollector(diamond.collector.Collector):

 def collect(self):
 # In Collector, this just contains raise(NotImplementedError)
 metric_name = "cpu.percent"
 metric_value = psutil.cpu_percent()
 self.publish(metric_name, metric_value)

The default place to store the collector definitions is in the directory
venv/share/diamond/collectors/; but you can store it wherever you
define in the collectors_path value in the configuration file.
The class name, CPUCollector, is already listed in the example
configuration file.
Except for adding a hostname or a hostname_method specification either in the overall
defaults (under the text in the configuration file) or in the
individual collector’s overrides, as shown in the
following example, there need not be any other changes (the documentation lists all of the optional
collector settings):

[[CPUCollector]]
enabled = True
hostname_method = smart

The more complex internal code

Behind the scenes, the Server will call utils.load_collectors() using
the path specified in collectors_path. Here is most of that function,
truncated for brevity:

def load_collectors(paths=None, filter=None):
 """Scan for collectors to load from path"""
 # Initialize return value
 collectors = {}
 log = logging.getLogger('diamond')

 if paths is None:
 return

 if isinstance(paths, basestring): [image: 1]
 paths = paths.split(',')
 paths = map(str.strip, paths)

 load_include_path(paths) [image: 2]

 for path in paths:
 ##~~ Skip lines that confirm 'path' exists.

 for f in os.listdir(path):

 # Are we a directory? If so, process down the tree
 fpath = os.path.join(path, f)
 if os.path.isdir(fpath):
 subcollectors = load_collectors([fpath]) [image: 3]
 for key in subcollectors: [image: 4]
 collectors[key] = subcollectors[key]

 # Ignore anything that isn't a .py file
 elif (os.path.isfile(fpath)
 ##~~ ... Skip tests confirming fpath is a Python module ...
):

 ##~~ ... Skip the part that ignores filtered paths ...
 modname = f[:-3]

 try:
 # Import the module
 mod = __import__(modname, globals(), locals(), ['*']) [image: 5]
 except (KeyboardInterrupt, SystemExit), err:
 ##~~ ... Log the exception and quit ...
 except:
 ##~~ ... Log the exception and continue ...

 # Find all classes defined in the module
 for attrname in dir(mod):
 attr = getattr(mod, attrname) [image: 6]
 # Only attempt to load classes that are subclasses
 # of Collectors but are not the base Collector class
 if (inspect.isclass(attr)
 and issubclass(attr, Collector)
 and attr != Collector):
 if attrname.startswith('parent_'):
 continue
 # Get class name
 fqcn = '.'.join([modname, attrname])
 try:
 # Load Collector class
 cls = load_dynamic_class(fqcn, Collector) [image: 7]
 # Add Collector class
 collectors[cls.__name__] = cls [image: 8]
 except Exception:
 ##~~ log the exception and continue ...

 # Return Collector classes
 return collectors

	[image: 1]

	Break up the string (first function call); otherwise, the paths are lists
of string paths to where the user-defined custom Collector subclasses
are defined.

	[image: 2]

	This recursively descends the paths given, inserting every directory
into sys.path so that later the Collectors can be imported.

	[image: 3]

	Here’s the recursion—load_collectors() is calling itself.8

	[image: 4]

	After loading the subdirectories’ collectors, update the original dictionary
of custom collectors with the new ones from those subdirectories.

	[image: 5]

	Since the introduction of Python 3.1, the importlib module in Python’s standard library
provides a preferred way to do this (via the module importlib.import_module; parts of importlib.import_module have also been backported to Python 2.7).
This demonstrates how to programmatically import a module given the
string module name.

	[image: 6]

	Here’s how to programmatically access attributes in a module given just
the string attribute name.

	[image: 7]

	Actually, load_dynamic_class may not be necessary here. It re-imports
the module, checks that the named class is actually a class, checks
that it’s actually a Collector, and if so returns the newly loaded class.
Redundancies sometimes occur in open source code written by large groups.

	[image: 8]

	Here’s how they get the class name to use later when applying
the configuration file options given only the string class name.

Style Examples from Diamond

There’s a great example use of a closure in Diamond that demonstrates
what was said in “Late binding closures” about this
behavior often being desirable.

Example use of a closure (when the gotcha isn’t a gotcha)

A closure is a function that makes use of variables available
in the local scope that would otherwise not be available when the function is called.
They can be difficult to implement and understand in other languages,
but are not hard to implement in Python, because Python treats functions just
like any other object.9
For example, functions can be passed around as arguments, or returned from other
functions.
Here’s an example excerpt from the diamond executable
that shows how to implement a closure in Python:

##~~ ... Skip the import statements ... [image: 1]

def main():
 try:
 ##~~ ... Skip code that creates the command-line parser ...

 # Parse command-line Args
 (options, args) = parser.parse_args()

 ##~~ ... Skip code that parses the configuration file ...
 ##~~ ... Skip code that sets up the logger ...

 # Pass the exit upstream rather then handle it as an general exception
 except SystemExit, e:
 raise SystemExit

 ##~~ ... Skip code that handles other exceptions related to setup ...

 try:
 # PID MANAGEMENT [image: 2]
 if not options.skip_pidfile:
 # Initialize PID file
 if not options.pidfile:
 options.pidfile = str(config['server']['pid_file'])

 ##~~ ... Skip code to open and read the PID file if it exists, ...
 ##~~ ... and then delete the file if there is no such PID ...
 ##~~ ... or exits if there is already a running process. ...

 ##~~ ... Skip the code that sets the group and user ID ...
 ##~~ ... and the code that changes the PID file permissions. ...

 ##~~ ... Skip the code that checks whether to run as a daemon, ...
 ##~~ ... and if so detaches the process. ...

 # PID MANAGEMENT [image: 3]
 if not options.skip_pidfile:
 # Finish initializing PID file
 if not options.foreground and not options.collector:
 # Write PID file
 pid = str(os.getpid())
 try:
 pf = file(options.pidfile, 'w+')
 except IOError, e:
 log.error("Failed to write child PID file: %s" % (e))
 sys.exit(1)
 pf.write("%s\n" % pid)
 pf.close()
 # Log
 log.debug("Wrote child PID file: %s" % (options.pidfile))

 # Initialize server
 server = Server(configfile=options.configfile)

 def sigint_handler(signum, frame): [image: 4]
 log.info("Signal Received: %d" % (signum))
 # Delete PID file
 if not options.skip_pidfile and os.path.exists(options.pidfile): [image: 5]
 os.remove(options.pidfile)
 # Log
 log.debug("Removed PID file: %s" % (options.pidfile))
 sys.exit(0)

 # Set the signal handlers
 signal.signal(signal.SIGINT, sigint_handler) [image: 6]
 signal.signal(signal.SIGTERM, sigint_handler)

 server.run()

 # Pass the exit upstream rather then handle it as a general exception
 except SystemExit, e:
 raise SystemExit

 ##~~ ... Skip code that handles any other exceptions ...
 ##~~ ... and all of the rest of the script.

	[image: 1]

	When we skip code, the missing parts will be summarized
by a comment preceded by two tildes (##~~ like this).

	[image: 2]

	The reason for the PID10
file is to make sure the daemon is unique (i.e., not
accidentally started twice), to communicate the associated
process ID quickly to other scripts, and to make it evident
that an abnormal termination has occurred (because in this
script, the PID file is deleted upon normal termination).

	[image: 3]

	All of this code is just to provide context leading up to the
closure. At this point, either the process is running as a daemon
(and now has a different process ID than before) or it will
skip this part because it’s already written its correct
PID to the PID file.

	[image: 4]

	This (sigint_handler()) is the closure.
It is defined inside of main(), rather than at the top level,
outside of any functions, because it needs to know whether to
look for a PID file, and if so where to look.

	[image: 5]

	It gets this information from the command-line options, which
it can’t obtain until after the call to main().
That means all of the options related to the PID file are
local variables in main’s namespace.

	[image: 6]

	The closure (the function sigint_handler()) is sent to the
signal handler and will be used to handle SIGINT and SIGTERM.

Tablib

Tablib is a Python library that converts between
different data formats, storing data in a Dataset object, or
multiple Datasets in a Databook.
Datasets stored in the JSON, YAML, DBF, and CSV file formats
can be imported, and datasets can be exported to XLSX, XLS,
ODS, JSON, YAML, DBF, CSV, TSV, and HTML.
Tablib was first released by Kenneth Reitz in 2010.
It has the intuitive API design typical of Reitz’s projects.

Reading a Small Library

Tablib is a library, not an application, so there isn’t a
single obvious entry point like there is with HowDoI and Diamond.

Get Tablib from GitHub:

$ git clone https://github.com/kennethreitz/tablib.git
$ virtualenv -p python3 venv
$ source venv/bin/activate
(venv)$ cd tablib
(venv)$ pip install --editable .
(venv)$ python test_tablib.py # Run the unit tests.

Read Tablib’s documentation

Tablib’s documentation starts
off immediately with a use case, and then goes into describing
its capabilities in more detail: it provides a Dataset object
that has rows, headers, and columns. You can do I/O from various
formats to the Dataset object. And the advanced usage section says
you can add tags to rows, and create derived columns that are
functions of other columns.

Use Tablib

Tablib is a library, not an executable like HowDoI or Diamond,
so you can open a Python interactive session and have the expectation that you can use use the help() function to explore the API. Here’s
our example of the tablib.Dataset class, the different data
formats, and how I/O works:

>>> import tablib
>>> data = tablib.Dataset()
>>> names = ('Black Knight', 'Killer Rabbit')
>>>
>>> for name in names:
... fname, lname = name.split()
... data.append((fname, lname))
...
>>> data.dict
[['Black', 'Knight'], ['Killer', 'Rabbit']]
>>>
>>> print(data.csv)
Black,Knight
Killer,Rabbit

>>> data.headers=('First name', 'Last name')
>>> print(data.yaml)
- {First name: Black, Last name: Knight}
- {First name: Killer, Last name: Rabbit}

>>> with open('tmp.csv', 'w') as outfile:
... outfile.write(data.csv)
...
64
>>> newdata = tablib.Dataset()
>>> newdata.csv = open('tmp.csv').read()
>>> print(newdata.yaml)
- {First name: Black, Last name: Knight}
- {First name: Killer, Last name: Rabbit}

Read Tablib’s code

The file structure under tablib/ looks like this:

tablib
|--- __init__.py
|--- compat.py
|--- core.py
|--- formats/
|--- packages/

The two directories, tablib/formats/ and tablib/packages/, will be discussed
in a few sections.

Python supports module-level docstrings as well as the docstrings we’ve already
described—a string literal that is the first statement in a function, class, or
class method. Stack Overflow has good advice on how to
document a module.
For us, this means another way to explore source code is by typing head *.py in
a terminal shell while in the directory at the top level of the package—to
show all of the module docstrings at once. Here’s what we get:

(venv)$ cd tablib
(venv)$ head *.py
==> __init__.py <== [image: 1]
""" Tablib. """

from tablib.core import (
 Databook, Dataset, detect, import_set, import_book,
 InvalidDatasetType, InvalidDimensions, UnsupportedFormat,
 __version__
)

==> compat.py <== [image: 2]
-*- coding: utf-8 -*-

"""
tablib.compat
~~~~~~~~~~~~~

Tablib compatiblity module.

"""


==> core.py <==  [image: 3]
# -*- coding: utf-8 -*-
"""
    tablib.core
    ~~~~~~~~~~~

 This module implements the central Tablib objects.

 :copyright: (c) 2014 by Kenneth Reitz.
 :license: MIT, see LICENSE for more details.
"""

We learn that:

	[image: 1]

	The top-level API (the contents of __init__.py are
accessible from tablib after an import tablib statement)
has just nine entry points: the Databook and Dataset classes are
mentioned in the documentation, detect could be for identifying formatting,
import_set and import_book must import data,
and the last three classes—InvalidDatasetType, InvalidDimensions, and UnsupportedFormat—look like exceptions. (When code follows PEP 8, we can tell
which objects are custom classes from their capitalization.)

	[image: 2]

	tablib/compat.py is a compatibility module. A quick look inside will show that it handles
Python 2/Python 3 compatibility issues in a similar way to HowDoI, by
resolving different locations and names to the same symbol for use in tablib/core.py.

	[image: 3]

	tablib/core.py, like it says, implements the central Tablib objects like Dataset
and Databook.

Tablib’s Sphinx Documentation

Tablib’s documentation
provides a good example use of
Sphinx
because it’s a small library, and it makes use of a lot of
Sphinx extensions.

The documenation’s current Sphinx build is at
Tablib’s documentation page.
If you want to build the documentation yourself
(Windows users will need a
make command—it’s old but works fine),
do this:

(venv)$ pip install sphinx
(venv)$ cd docs
(venv)$ make html
(venv)$ open _build/html/index.html # To view the result.

Sphinx provides a number of
theme options
with default layout templates and CSS themes.
Tablib’s templates for two of the notes on the left
sidebar are in docs/_templates/. Their names are not arbitrary;
they’re in basic/layout.html. You can find that file in the
Sphinx themes directory, which can be located by typing this on the
command line:

(venv)$ python -c 'import sphinx.themes;print(sphinx.themes.__path__)'

Advanced users can also look in in docs/_themes/kr/,
a custom theme that extends the basic layout. It is selected by
adding the _themes/ directory to the system path, setting
html_theme_path = ['_themes'] and setting html_theme = 'kr'
in docs/conf.py.

To include API documentation that’s automatically generated from the
docstrings in your code, use autoclass::. You have to copy
the docstring formatting in Tablib for this to work:

.. autoclass:: Dataset
 :inherited-members:

To get this functionality, you have to answer “yes” to the question about
including the “autodoc” Sphinx extension when you run sphinx-quickstart
to create a new Sphinx project.
The :inherited-members: directive also adds documentation for the attributes
inherited from parent classes.

Structure Examples from Tablib

The primary thing we want to highlight form Tablib is the absence of
the use of classes in the modules in tablib/formats/—it’s a perfect
example of the statement we made earlier about not overusing classes.
Next, we show excerpts of how Tablib uses the decorator syntax and the
property class to
create derived attributes like the dataset’s height and width,
and how it dynamically registers file formats to avoid duplicating
what would be boilerplate code for each of the different format types (CSV, YAML, etc.).

The last two subsections are a little obscure—we look at how
Tablib vendorizes dependencies, and then discuss the __slots__ property
of new class objects. You can skip these sections and still lead a happy,
Pythonic life.

No needless object-oriented code in formats (use namespaces for grouping functions)

The formats directory contains all of the defined file formats for I/O. The module names,
_csv.py, _tsv.py, _json.py,
_yaml.py, _xls.py,
_xlsx.py, _ods.py, and _xls.py are prefixed with an underscore—this indicates to the library user that they are not intended for direct use.
We can change directories into formats, and search for
classes and functions. Using
grep ^class formats/*.py reveals there are no class definitions, and using
grep ^def formats/*.py shows that each module contains some or all
of the following functions:

	
detect(stream) infers the file format based on the stream content.

	
dset_sheet(dataset, ws) formats the Excel spreadsheet cells.

	
export_set(dataset) exports the Dataset to the given format,
returning a formatted string with the new format. (Or, for
Excel, returning a bytes object—or a binary-formatted string in
Python 2.)

	
import_set(dset, in_stream, headers=True) replaces the contents of the
dataset with the contents of the input stream.

	
export_book(databook) exports the Datasheets in the Databook to the
given format, returning a string or bytes object.

	
import_book(dbook, in_stream, headers=True) replaces the contents of the databook
with the contents of the input stream.

This is an example of using modules as namespaces
(after all, they are one honking great idea) to separate functions,
rather than using unnecessary classes.
We know each function’s purpose from its name: for example,
formats._csv.import_set(), formats._tsv.import_set(), and formats._json.import_set()
import datasets from CSV, TSV, and JSON-formatted files, respectively.
The other functions do data exporting and file format detection, when possible,
for each of Tablib’s available formats.

Descriptors and the property decorator (engineer immutability when the API would benefit)

Tablib is our first library that uses Python’s decorator syntax,
described in “Decorators”.
The syntax uses the @ symbol in front of a function name,
placed directly above another function. It modifies (or “decorates”) the
function directly below. In the following excerpt, property changes the functions
Dataset.height and Dataset.width into descriptors—classes
with at least one of the __get__(), __set__(), or __delete__()
(“getter”, “setter”, or “delete”) methods defined.
For example, the attribute lookup Dataset.height will trigger the getter, setter, or delete
function depending on the context in which that attribute is used.
This behavior is only possible for new-style classes, discussed momentarily.
See this useful Python
tutorial on descriptors
for more information.

class Dataset(object):
 #
 # ... omit the rest of the class definition for clarity
 #

 @property [image: 1]
 def height(self):
 """The number of rows currently in the :class:`Dataset`.
 Cannot be directly modified. [image: 2]
 """
 return len(self._data)

 @property
 def width(self):
 """The number of columns currently in the :class:`Dataset`.
 Cannot be directly modified.
 """
 try:
 return len(self._data[0])
 except IndexError:
 try:
 return len(self.headers)
 except TypeError:
 return 0

	[image: 1]

	This is how to use a decorator. In this case, property
modifies Dataset.height to behave as a property rather than as a bound
method. It can only operate on class methods.

	[image: 2]

	When property is applied as a decorator, the
height attribute will return the height of the Dataset
but it is not possible to assign a height to the Dataset by
invoking Dataset.height.

Here is what the height and width attributes look
like when used:

>>> import tablib
>>> data = tablib.Dataset()
>>> data.header = ("amount", "ingredient")
>>> data.append(("2 cubes", "Arcturan Mega-gin"))
>>> data.width
2
>>> data.height
1
>>>
>>> data.height = 3
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

So, data.height can be accessed like an attribute,
but it’s not settable—it’s calculated from the
data and so is always current.
This is ergonomic API design:
data.height is easier to type than data.get_height();
it’s clear what the meaning of data.height is;
and because it is calculated from the data
(and the property is not settable—only the “getter” function is defined),
there isn’t a danger that it will be out of
sync from the correct number.

The property decorator can only be applied
to attributes of classes, and only to classes that derive from the
base object object (e.g., class MyClass(object) not class MyClass()—inheritance from object is always the case in Python 3).

This same tool is used to create Tablib’s data import and
export API in the various formats:
Tablib does not store the string value for each of
the CSV, JSON, and YAML outputs.
Rather, the Dataset attributes csv, json, and yaml are properties,
like Dataset.height and Dataset.width in the preceding example—they call a function that generates the result from the
stored data or parses the input format and then replaces the
core data. But there’s only one dataset.

When data.csv is on the left of an equals sign, the property’s
“setter” function is called, to parse the dataset from the CSV format.
And when data.yaml is on the right of an equals sign, or alone,
the “getter” is called, to create a string with the given format
from the internal dataset. Here is an example:

>>> import tablib
>>> data = tablib.Dataset()
>>>
>>> data.csv = "\n".join(([image: 1]
... "amount,ingredient",
... "1 bottle,Ol' Janx Spirit",
... "1 measure,Santraginus V seawater",
... "2 cubes,Arcturan Mega-gin",
... "4 litres,Fallian marsh gas",
... "1 measure,Qalactin Hypermint extract",
... "1 tooth,Algolian Suntiger",
... "a sprinkle,Zamphuor",
... "1 whole,olive"))
>>>
>>> data[2:4]
[('2 cubes', 'Arcturan Mega-gin'), ('4 litres', 'Fallian marsh gas')]
>>>
>>> print(data.yaml) [image: 2]
- {amount: 1 bottle, ingredient: Ol Janx Spirit}
- {amount: 1 measure, ingredient: Santraginus V seawater}
- {amount: 2 cubes, ingredient: Arcturan Mega-gin}
- {amount: 4 litres, ingredient: Fallian marsh gas}
- {amount: 1 measure, ingredient: Qalactin Hypermint extract}
- {amount: 1 tooth, ingredient: Algolian Suntiger}
- {amount: a sprinkle, ingredient: Zamphuor}
- {amount: 1 whole, ingredient: olive}

	[image: 1]

	data.csv on the lefthand side of the equals sign
(assignment operator) invokes
formats.csv.import_set(), with data as the first argument,
and the string of Gargle Blaster ingredients as its second argument.

	[image: 2]

	data.yaml alone invokes formats.yaml.export_set(), with data
as its argument, outputting the formatted YAML string for the
print() function.

The “getter”, “setter”, and also a “deleter” function can be bound to
a single attribute using property. Its
signature is property(fget=None, fset=None, fdel=None, doc=None),
in which fget identifies the “getter” function (formats.csv.import_set()),
fset identifies the “setter” function (formats.csv.export_set()),
and fdel identifies the “deleter” function, which is left as None.
We will see the code where the formatting properties are set, programmatically,
next.

Programmatically registered file formats (don’t repeat yourself)

Tablib places all of the file formatting routines in the
formats subpackage. This structure choice makes
the main core.py module cleaner and the entire
package modular; it’s easy to add new file formats.
Although it would have been possible to paste chunks of
nearly identical code and import each file format’s import and
export behaviors separately,
all of the formats are programmatically loaded into the Dataset
class to properties named after each format.

We’re printing the entire contents of formats/__init__.py in the following code example
because it’s not too large a file, and we want to show where
formats.available is defined:

-*- coding: utf-8 -*- [image: 1]

""" Tablib - formats
"""

from . import _csv as csv
from . import _json as json
from . import _xls as xls
from . import _yaml as yaml
from . import _tsv as tsv
from . import _html as html
from . import _xlsx as xlsx
from . import _ods as ods

available = (json, xls, yaml, csv, tsv, html, xlsx, ods) [image: 2]

	[image: 1]

	This line explicitly tells the Python interpreter that the
file encoding is UTF-8.11

	[image: 2]

	Here’s the definition of formats.available, right in
formats/__init__.py. It’s also available via dir(tablib.formats),
but this explicit list is easier to understand.

In core.py, rather than about 20 (ugly, hard to maintain) repeated
function definitions for each format option, the code imports each format
programmatically by calling self._register_formats()
at the end of the Dataset’s __init__() method.
We’ve excerpted just Dataset._register_formats() here:

class Dataset(object):
 #
 # ... skip documentation and some definitions ...
 #

 @classmethod [image: 1]
 def _register_formats(cls):
 """Adds format properties."""
 for fmt in formats.available: [image: 2]
 try:
 try:
 setattr(cls, fmt.title,
 property(fmt.export_set, fmt.import_set)) [image: 3]
 except AttributeError: [image: 4]
 setattr(cls, fmt.title, property(fmt.export_set)) [image: 5]

 except AttributeError:
 pass [image: 6]

 #
 # ... skip more definitions ...
 #

 @property [image: 7]
 def tsv():
 """A TSV representation of the :class:`Dataset` object. The top
 row will contain headers, if they have been set. Otherwise, the
 top row will contain the first row of the dataset.

 A dataset object can also be imported by setting
 the :class:`Dataset.tsv` attribute. ::

 data = tablib.Dataset()
 data.tsv = 'age\tfirst_name\tlast_name\n90\tJohn\tAdams' [image: 8]

 Import assumes (for now) that headers exist.
 """
 pass

	[image: 1]

	The @classmethod symbol is a decorator, described more extensively
in “Decorators”, that modifies the method _register_formats()
so that it passes the object’s class (Dataset) rather than the object
instance (self) as its first argument.

	[image: 2]

	The formats.available is defined in formats/__init__.py and
contains all of the available formatting options.

	[image: 3]

	In this line, setattr assigns a value to the attribute named fmt.title
(i.e., Dataset.csv or Dataset.xls). The value it assigns is
a special one; property(fmt.export_set, fmt.import_set) turns
Dataset.csv into a property.

	[image: 4]

	There will be an AttributeError if fmt.import_set is not defined.

	[image: 5]

	If there is no import function, try to assign just the export behavior.

	[image: 6]

	If there is neither an export nor an import function to assign, just don’t assign anything.

	[image: 7]

	Each of the file formats is defined as a property here, with a descriptive
docstring. The docstring will be retained when property()
is called at tag [image: 3] or
[image: 5] to assign the extra behaviors.

	[image: 8]

	The \t and \n are string escape sequences that represent
the Tab character and a newline, respectively. They’re all listed in Python’s
string literals documentation.

But We Are All Responsible Users

These uses of the @property decorator are not like the uses of similar
tools in Java, where the goal is to control the user’s access to data.
That goes against the Python philosophy that we are all responsible users.
Instead, the purpose of @property is to separate the data
from view functions related to the data (in this case, the height, width,
and various storage formats).
When there doesn’t need to be a preprocessing or postprocessing
“getter” or “setter” function, the more Pythonic option
is to just assign the data to a regular attribute and let the
user interact with it.

Vendorized dependencies in packages (an example of how to vendorize)

Tablib’s dependencies are currently vendorized (meaning they are
shipped bundled with the code—in this case, in the directory packages)
but may be moved to a plug-in system in the future.
The packages directory contains
third-party packages included inside Tablib to ensure compatibility,
rather than the other option, which is to specify versions in the setup.py
file that will be downloaded and installed when Tablib is installed.
This technique is discussed in “Vendorizing Dependencies”;
the choice for Tablib was made both to reduce the number of dependencies
the user would have to download, and because sometimes there are different
packages for Python 2 and Python 3, which are both included.
(The appropriate one is imported, and their functions set to a common name,
in tablib/compat.py). That way, Tablib can have one single code base
instead of two—one for each version of Python.
Because each of these dependencies has its own license,
a NOTICE document was added to the top level of the project directory
that lists each dependency’s license.

Saving memory with __slots__ (optimize judiciously)

Python prefers readability over speed.
Its entire design, its Zen aphorisms, and its early
influence from educational languages like ABC
are all about placing user-friendliness above performance
(although we’ll talk about more optimization options in
“Speed”).

The use of __slots__ in tablib is a case where optimization matters.
This is a slightly obscure reference, and it’s only available for new-style classes
(described in a few pages), but we want to show that it’s possible
to optimize Python when necessary.
This optimization is only useful when you have tons of very small objects
by reducing the footprint of each class instance by the size of one dictionary
(large objects would make this small savings irrelevant,
and fewer objects make the savings not worth it). Here is an excerpt from the
__slots__ documentation:

By default, instances of classes have a dictionary for attribute storage.
This wastes space for objects having very few instance variables.
The space consumption can become acute when creating large numbers of instances.

The default can be overridden by defining __slots__ in a class definition.
The __slots__ declaration takes a sequence of instance variables and reserves
just enough space in each instance to hold a value for each variable.
Space is saved because __dict__ is not created for each instance.

Normally, this isn’t something to care about—notice that
__slots__ doesn’t appear in the Dataset or Databook classes,
just the Row class—but because there can be
thousands of rows of data, __slots__ is a good idea.
The Row class is not exposed in tablib/__init__.py because
it is a helper class to Dataset, instantiated once for every row.
This is how its definition looks in the beginning part of the
definition of the Row class:

class Row(object):
 """Internal Row object. Mainly used for filtering."""

 __slots__ = ['_row', 'tags']

 def __init__(self, row=list(), tags=list()):
 self._row = list(row)
 self.tags = list(tags)

 #
 # ... etc. ...
 #

The problem now is that there is no longer a __dict__ attribute in the
Row instances, but the pickle.dump() function (used for object serialization)
by default uses __dict__ to serialize the object
unless the method __getstate__() is defined.
Likewise, during unpickling (the process that reads the serialized
bytes and reconstructs the object in memory),
if __setstate__() is not defined, pickle.load() will load to the
object’s __dict__ attribute.
Here is how to get around that:

class Row(object):
 #
 # ... skip the other definitions ...
 #

 def __getstate__(self):

 slots = dict()

 for slot in self.__slots__:
 attribute = getattr(self, slot)
 slots[slot] = attribute
 return slots

 def __setstate__(self, state):
 for (k, v) in list(state.items()):
 setattr(self, k, v)

For more information about __getstate__() and __setstate__() and pickling,
see the
__getstate__ documentation.

Style Examples from Tablib

We have one single style example from Tablib—operator overloading—which
gets into the details of Python’s data model. Customizing the behavior of your
classes makes it easier for those who use your API to write beautiful code.

Operator overloading (beautiful is better than ugly)

This code section uses Python’s operator overloading to enable
operations on either the Dataset’s rows or columns.
The following first sample code shows interactive use of the bracket operator ([])
for both numerical indices and column names,
and the second one shows the code that uses this behavior:

>>> data[-1] [image: 1]
('1 whole', 'olive')
>>>
>>> data[-1] = ['2 whole', 'olives'] [image: 2]
>>>
>>> data[-1]
('2 whole', 'olives') [image: 3]
>>>
>>> del data[2:7] [image: 4]
>>>
>>> print(data.csv)
amount,ingredient [image: 5]
1 bottle,Ol' Janx Spirit
1 measure,Santraginus V seawater
2 whole,olives

>>> data['ingredient'] [image: 6]
["Ol' Janx Spirit", 'Santraginus V seawater', 'olives']

	[image: 1]

	When using numbers, accessing data via the bracket operator ([])
gives the row at the specified location.

	[image: 2]

	This is assignment using the bracket operator …

	[image: 3]

	… it becomes 2 olives instead of the original one.

	[image: 4]

	This is deletion using a slice—2:7 denotes all of the
numbers 2,3,4,5,6 but not 7.

	[image: 5]

	See how the recipe afterward is much smaller.

	[image: 6]

	It is also possible to access columns by name.

The part of the Dataset code that defines the behavior of the bracket
operator shows how to handle access both by column name and by row number:

class Dataset(object):
 #
 # ... skip the rest of the definitions for brevity ...
 #

 def __getitem__(self, key):
 if isinstance(key, str) or isinstance(key, unicode): [image: 1]
 if key in self.headers: [image: 2]
 pos = self.headers.index(key) # get 'key' index from each data
 return [row[pos] for row in self._data]
 else: [image: 3]
 raise KeyError
 else:
 _results = self._data[key]
 if isinstance(_results, Row): [image: 4]
 return _results.tuple
 else:
 return [result.tuple for result in _results] [image: 5]

 def __setitem__(self, key, value): [image: 6]
 self._validate(value)
 self._data[key] = Row(value)

 def __delitem__(self, key):
 if isinstance(key, str) or isinstance(key, unicode): [image: 7]
 if key in self.headers:
 pos = self.headers.index(key)
 del self.headers[pos]

 for row in self._data:
 del row[pos]
 else:
 raise KeyError
 else:
 del self._data[key]

	[image: 1]

	First, check whether we are seeking a column (True if key is a string)
or a row (True if the key is an integer or slice).

	[image: 2]

	Here the code checks for the key to be in self.headers, and then…

	[image: 3]

	…explicitly raises a KeyError so that access
by column name behaves as one would expect a dictionary to.
The whole if/else pair is not necessary for the operation
of the function—if it were omitted, a ValueError would still
be raised by self.headers.index(key) if key were
not in self.headers. The only purpose for this check is to
provide a more informative error for the library user.

	[image: 4]

	This is how the code determines whether key was a number
or a slice (like 2:7). If a slice, the _results would be a list,
not a Row.

	[image: 5]

	Here is where the slice is processed. Because the rows are returned
as tuples, the values are an immutable copy of the acual data, and
the dataset’s values (actually stored as lists) won’t accidentally
be corrupted by an assignment.

	[image: 6]

	The __setitem__() method can change a single row but not a column. This
is intentional; there is no way provided to change the content of an
entire column; and for data integrity, this is probably not a bad choice.
The user can always transform the column and insert it at any position
using one of the methods insert_col(), lpush_col(), or rpush_col().

	[image: 7]

	The __delitem__() method can either delete a column or a row, using the
same logic as __getitem__().

For more information about additional operator overloading and other special
methods, see the Python documentation on
Special method names.

Requests

On Valentine’s day in 2011, Kenneth Reitz released a love letter
to the Python community: the Requests library.
Its enthusiastic adoption emphatically makes the case for intuitive API design
(meaning the API is so straightforward you almost don’t need documentation).

Reading a Larger Library

Requests is a larger library than Tablib, with many more modules,
but we’ll still approach reading it the same way—by looking
at the documentation and following the API through the code.

Get Requests from GitHub:

$ git clone https://github.com/kennethreitz/requests.git
$ virtualenv -p python3 venv
$ source venv/bin/activate
(venv)$ cd requests
(venv)$ pip install --editable .
(venv)$ pip install -r requirements.txt # Required for unit tests
(venv)$ py.test tests # Run the unit tests.

Some tests may fail—for example, if your service provider intercepts
404 errors to give some advertising page, you won’t get the ConnectionError.

Read Requests’s documentation

Requests is a bigger package, so first just scan the section
titles from the
Requests documentation.
Requests extends urrlib and httplib from Python’s standard library
to provide methods that perform HTTP requests. The library includes
support for international
domains and URLs, automatic decompression, automatic content decoding,
browser style SSL verification, HTTP(S) proxy support, and
other features, which are all defined by
the Internet Engineering Task Force (IETF) standards for HTTP
in their requests for comment (RFCs) 7230 through 7235.12

Requests strives to cover all of the IETF’s HTTP specifications, using only a handful of
functions, a bunch of keyword arguments, and a few featureful classes.

Use Requests

Like with Tablib, there is enough information in the docstrings
to use Requests without actually reading the online documentation.
Here’s a brief interaction:

>>> import requests
>>> help(requests) # Shows a usage statement and says to see `requests.api`
>>> help(requests.api) # Shows a detailed API description
>>>
>>> result = requests.get('https://pypi.python.org/pypi/requests/json')
>>> result.status_code
200
>>> result.ok
True
>>> result.text[:42]
'{\n "info": {\n "maintainer": null'
>>>
>>> result.json().keys()
dict_keys(['info', 'releases', 'urls'])
>>>
>>> result.json()['info']['summary']
'Python HTTP for Humans.'

Read Requests’s code

Here are the contents of the Requests package:

$ ls
__init__.py cacert.pem [image: 1] exceptions.py sessions.py
adapters.py certs.py hooks.py status_codes.py
api.py compat.py models.py structures.py
auth.py cookies.py packages/ [image: 2] utils.py

	[image: 1]

	cacert.pem is a default certificate bundle to use when checking SSL certificates.

	[image: 2]

	Requests has a flat structure, except for a packages directory that
 vendorizes (contains the external libraries) chardet and urllib3.
 These dependencies are imported as
 requests.packages.chardet and requests.packages.urllib3, so
 programmers can still access chardet and urllib3 from the standard library.

We can mostly figure out what’s happening thanks to well-chosen
module names, but if we want a little more imformation, we can again peek at the
module docstrings by typing head *.py
in the top-level directory. The following lists displays these module
docstrings, slightly truncated. (It doesn’t show compat.py. We can tell from its name,
especially because it’s named the same as in Reitz’s Tablib library,
that it takes care of Python 2 to Python 3 compatibility.)

	api.py

	
Implements the Requests API

	hooks.py

	
Provides the capabilities for the Requests hooks system

	models.py

	
Contains the primary objects that power Requests

	sessions.py

	
Provides a Session object to manage and persist settings across requests (cookies, auth, proxies)

	auth.py

	
Contains the authentication handlers for Requests

	status_codes.py

	
A lookup table mapping status titles to status codes

	cookies.py

	
Compatibility code to be able to use cookielib.CookieJar with requests

	adapters.py

	
Contains the transport adapters Requests uses to define
and maintain connections

	exceptions.py

	
All of Requests’ exceptions

	structures.py

	
Data structures that power Requests

	certs.py

	
Returns the preferred default CA certificate bundle listing trusted SSL certificates

	utils.py

	
Provides utility functions that are used within Requests that are also useful for external consumption

Insights from reading all of the headers:

	
There is a hook system (hooks.py), implying the user can modify how Requests works.
We won’t discuss it in depth because it will take us too far off topic.

	
The main module is models.py, as it contains “the primary objects that
power Requests.”

	
The reason sessions.Session exists is to persist cookies across multiple requests
(that might occur during authentication, for example).

	
The actual HTTP connection is made by objects from adapters.py.

	
The rest is kind of obvious: auth.py is for authentication, status_codes.py has
the status codes, cookies.py is for adding and removing cookies, exceptions.py
is for exceptions, structures.py contains data structures (e.g., a case-insensitive
dictionary), and utils.py contains utility functions.

The idea to put communication separately in adapters.py is innovative
(at least to this writer).
It means models.Request, models.PreparedRequest, and models.Response
don’t actually do anything—they just store data, possibly
manipulating it a bit for presentation, pickling, or encoding purposes.
Actions are handled by separate classes that exist specifically to perform an action,
like authentication or communication.
Every class does just one thing, and each module
contains classes that do similar things—a Pythonic approach most of us already adhere to with our function definitions.

Requests’s Sphinx-Compatible Docstrings

If you are starting a new project and using Sphinx and its autodoc extension,
you will need to format your docstrings so that Sphinx can parse them.

The Sphinx documentation is not always easy to search for what keywords
to place where. Many people actually recommend copying the docstrings in Requests
if you want to get the format right, rather than find the instructions
in the Sphinx docs. For example, here is the definition of delete()
in requests/api.py:

def delete(url, **kwargs):
 """Sends a DELETE request.

 :param url: URL for the new :class:`Request` object.
 :param **kwargs: Optional arguments that ``request`` takes.
 :return: :class:`Response <Response>` object
 :rtype: requests.Response
 """

 return request('delete', url, **kwargs)

The Sphinx autodoc rendering of this definition is in the
online API documentation.

Structure Examples from Requests

Everyone loves the Requests API—it is easy to remember and helps
its users to write simple, beautiful code.
This section first discusses the design preference for more comprehensible
error messages and an easy-to-memorize API that we think went into
creation of the requests.api module, and then explores the differences
between the requests.Request and urllib.request.Request object,
offering an opinion on why requests.Request exists.

Top-level API (preferably only one obvious way to do it)

The functions defined in api.py (except request()) are named after HTTP
request methods.13
Each request method is the same except for its method name and the choice of
exposed keyword parameters, so we’re truncating this exerpt from requests/api.py
after the get() function:

-*- coding: utf-8 -*-

"""
requests.api
~~~~~~~~~~~~

This module implements the Requests API.

:copyright: (c) 2012 by Kenneth Reitz.
:license: Apache2, see LICENSE for more details.

"""

from . import sessions


def request(method, url, **kwargs):  [image: 1]
    """Constructs and sends a :class:`Request <Request>`.

    :param method: method for the new :class:`Request` object.
    :param url: URL for the new :class:`Request` object.
    :param params: (optional) Dictionary or bytes to be sent in the query string
                   for the :class:`Request`.

    ... skip the documentation for the remaining keyword arguments ...  [image: 2]

    :return: :class:`Response <Response>` object
    :rtype: requests.Response

    Usage::

      >>> import requests
      >>> req = requests.request('GET', 'http://httpbin.org/get')
      <Response [200]>
    """

    # By using the 'with' statement, we are sure the session is closed, thus we
    # avoid leaving sockets open which can trigger a ResourceWarning in some
    # cases, and look like a memory leak in others.
    with sessions.Session() as session:  [image: 3]
        return session.request(method=method, url=url, **kwargs)


def get(url, params=None, **kwargs):  [image: 4]
    """Sends a GET request.

    :param url: URL for the new :class:`Request` object.
    :param params: (optional) Dictionary or bytes to be sent in the query string
                   for the :class:`Request`.
    :param \*\*kwargs: Optional arguments that ``request`` takes.
    :return: :class:`Response <Response>` object
    :rtype: requests.Response
    """

    kwargs.setdefault('allow_redirects', True) [image: 5]
    return request('get', url, params=params, **kwargs) [image: 6]


	[image: 1]

	The request() function contains a **kwargs in its signature.
This means extraneous keyword arguments will not cause an exception,
and it hides options from the user.


	[image: 2]

	The documentation omitted here for brevity describes every keyword
argument that has an associated action. If you use **kwargs in
your function signature, this is the only way the user can tell
what the contents of **kwargs should be, short of looking at
the code themselves.


	[image: 3]

	The with statement is how Python supports a runtime context. It
can be used with any object
that has an __enter__() and an __exit__() method
defined. __enter()__
will be called upon entering the with statement, and __exit__()
will be called upon exit, regardless of whether that exit is
normal or due to an exception.


	[image: 4]

	The get() function specifically pulls out the params=None keyword,
applying a default value of None.  The params keyword argument
relevant for get because it’s for terms to be used in an HTTP query string.
Exposing selected keyword arguments gives flexibility to
the advanced user (via the remaining **kwargs) while making usage obvious
for the 99% of people who don’t need advanced options.


	[image: 5]

	The default for the request() function is to not allow redirects, so
this step sets it to True unless the user set it already.


	[image: 6]

	The get() function then simply calls request() with its first
parameter set to "get".
Making get a function has two advantages over just using a
string argument like  request("get", ...).
First, it becomes obvious, even without documentation, which HTTP methods
are available with this API. Second, if the user makes a typographical
error in the method name, a NameError will be raised earlier, and
probably with a less confusing traceback, than would happen with
error checking deeper in the code.





No new functionality is added in requests/api.py;
it exists to present a simple API for the user.
Plus, putting the string HTTP methods directly into the API
as function names means any typographical error with the
method name will be caught and identified early, for example:


>>> requests.foo('http://www.python.org')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'module' object has no attribute 'foo'
>>>
>>> requests.request('foo', 'http://www.python.org')
<Response [403]>

















The Request and PreparedRequest objects (we’re all responsible users)


__init__.py exposes Request, PreparedRequest, and Response from
models.py as part of the main API.
Why does models.Request even exist?
There’s already a urllib.requests.Request in the standard library,
and in cookies.py there is specifically a MockRequest object that
wraps models.Request so that it works like urllib.requests.Request for
http.cookiejar.14
That means whatever methods are needed for the Request object to
interface with the cookies library are intentionally
excluded from requests.Request.
What is the point of all this extra work?


The extra methods in MockRequest (which exists to emulate urllib.request.Request
for the cookie library) are used by the cookie
library to manage cookies. Except for the get_type()
function (which usually returns “http” or “https” when using Requests)
and the unverifiable property (True for our case),
they’re all related to the URL or the request headers:


	Related to the header

	add_unredirected_header()

	
Add a new key, value pair to the header.



	get_header()

	
Get a specific name in the header dictionary.



	get_new_headers()

	
Get the dictionary containing new headers (added by cookielib).



	has_header()

	
Check whether a name exists in the header dictionary.



	Related to the URL

	get_full_url()

	
Does just what it says.



	host and origin_req_host

	
Properties that are set by calling the methods get_host() and get_origin_req_host(), respectively.



	get_host()

	
Extract the host from the URL (e.g., www.python.org from https://www.python.org/dev/peps/pep-0008/).



	get_origin_req_host()

	
Call get_host().15






They’re all access functions, except for MockRequest.add_unredirected_header().
The MockRequest docstring notes that “the original request object
is read-only.”


In requests.Request, data attributes are instead directly exposed.
This makes all of the accessor functions unnecessary: to
get or set the headers, access request-instance.headers.
It’s just a dictionary.
Likewise, the user can just get or change the string URL: request-instance.url.


The PreparedRequest object is initialized empty,
and is populated with a call to prepared-request-instance.prepare(),
filled with the relevant data (usually from the calling the Request object).
It’s at this point that things like correct capitalization and encoding are
applied. The object’s contents will, once prepared, be ready to send
to the server, but every attribute is still directly exposed.
Even PreparedRequest._cookies is exposed, although its
prepended underscore is a gentle reminder that the attribute
is not intended for use outside of the class,
without forbidding such access (we are all responsible users).


This choice exposes the objects to user modification,
but they are much more readable, and a little bit of extra
work inside of PreparedRequest corrects capitalization
issues and allows use of a dictionary in place of a CookieJar
(look for the if isinstance()/else statement):


#
#  ... from models.py ...
#

class PreparedRequest():
    #
    #  ... skip everything else ...
    #

    def prepare_cookies(self, cookies):
        """Prepares the given HTTP cookie data.

        This function eventually generates a ``Cookie`` header from the
        given cookies using cookielib. Due to cookielib's design, the header
        will not be regenerated if it already exists, meaning this function
        can only be called once for the life of the
        :class:`PreparedRequest <PreparedRequest>` object. Any subsequent calls
        to ``prepare_cookies`` will have no actual effect, unless the "Cookie"
        header is removed beforehand."""

        if isinstance(cookies, cookielib.CookieJar):
            self._cookies = cookies
        else:
            self._cookies = cookiejar_from_dict(cookies)

        cookie_header = get_cookie_header(self._cookies, self)
        if cookie_header is not None:
            self.headers['Cookie'] = cookie_header


These things may not seem like a big deal, but it’s small
choices like these that make an API intuitive to use.






















Style Examples from Requests


The style examples from Requests are a good example use for sets
(which we think aren’t used often enough!) and a look at
the requests.status_codes module, which exists to make the style
of the rest of the code simpler by avoiding hardcoded HTTP status
codes everywhere else in the code.












Sets and set arithmetic (a nice, Pythonic idiom)


We haven’t yet shown an example use of Python sets in action.
Python sets behave like sets in math—you can do subtraction,
unions (the or operator), and intersections (the and operator):


>>> s1 = set((7,6))
>>> s2 = set((8,7))
>>> s1
{6, 7}
>>> s2
{8, 7}
>>> s1 - s2  # set subtraction
{6}
>>> s1 | s2  # set union
{8, 6, 7}
>>> s1 & s2  # set intersection
{7}


Here’s one, down toward the end of this function from cookies.py
(with the label [image: 2]):


#
# ... from cookies.py ...
#

def create_cookie(name, value, **kwargs):  [image: 1]
    """Make a cookie from underspecified parameters.

    By default, the pair of `name` and `value` will be set for the domain ''
    and sent on every request (this is sometimes called a "supercookie").
    """
    result = dict(
        version=0,
        name=name,
        value=value,
        port=None,
        domain='',
        path='/',
        secure=False,
        expires=None,
        discard=True,
        comment=None,
        comment_url=None,
        rest={'HttpOnly': None},
        rfc2109=False,)

    badargs = set(kwargs) - set(result)  [image: 2]
    if badargs:
        err = 'create_cookie() got unexpected keyword arguments: %s'  [image: 3]
        raise TypeError(err % list(badargs))  [image: 3]

    result.update(kwargs)  [image: 4]
    result['port_specified'] = bool(result['port']) [image: 5]
    result['domain_specified'] = bool(result['domain'])
    result['domain_initial_dot'] = result['domain'].startswith('.')
    result['path_specified'] = bool(result['path'])

    return cookielib.Cookie(**result) [image: 6]


	[image: 1]

	The **kwargs specification allows the user to
provide any or none of the keyword options for a cookie.


	[image: 2]

	Set arithmetic! Pythonic. Simple. And in the standard library.
On a dictionary, set() forms a set of the keys.


	[image: 3]

	This is a great example of spliting a long line into two
shorter lines that make much better sense. No harm done
from the extra err variable.


	[image: 4]

	The result.update(kwargs) updates the result dictionary with
the key/value pairs in the kwargs dictionary, replacing
existing pairs or creating ones that didn’t exist.


	[image: 5]

	Here the call to bool() coerces the value to True if the
object is truthy (meaning it evaluates to True—in this case, bool(result['port']) evaluates to True if it’s not None and it’s not an empty container).


	[image: 6]

	The signature to initialize cookielib.Cookie is actually
18 positional arguments and one keyword argument
(rfc2109 defaults to False). It’s impossible for
us average humans to memorize which position has which
value, so here Requests takes advantage of being able
to assign positional arguments by name as keyword arguments,
sending the whole dictionary.




















Status codes (readability counts)


The entire status_codes.py exists to create an object that
can look up status codes by attribute. We’re showing the
definition of the lookup dictionary in status_codes.py
first, and then an excerpt of code that uses it from sessions.py:


#
#  ... excerpted from requests/status_codes.py ...
#

_codes = {

    # Informational.
    100: ('continue',),
    101: ('switching_protocols',),
    102: ('processing',),
    103: ('checkpoint',),
    122: ('uri_too_long', 'request_uri_too_long'),
    200: ('ok', 'okay', 'all_ok', 'all_okay', 'all_good', '\\o/', '✔'),  [image: 1]
    201: ('created',),
    202: ('accepted',),
    #
    #  ... skipping ...
    #

    # Redirection.
    300: ('multiple_choices',),
    301: ('moved_permanently', 'moved', '\\o-'),
    302: ('found',),
    303: ('see_other', 'other'),
    304: ('not_modified',),
    305: ('use_proxy',),
    306: ('switch_proxy',),
    307: ('temporary_redirect', 'temporary_moved', 'temporary'),
    308: ('permanent_redirect',
          'resume_incomplete', 'resume',), # These 2 to be removed in 3.0  [image: 2]

    #
    #  ... skipping the rest ...
    #
}

codes = LookupDict(name='status_codes')  [image: 3]

for code, titles in _codes.items():
    for title in titles:
        setattr(codes, title, code)  [image: 4]
        if not title.startswith('\\'):
            setattr(codes, title.upper(), code)  [image: 5]



	[image: 1]

	All of these options for an OK status will become keys
    in the lookup dictionary. Except for the happy person (\\o/) and the check mark (✔).


	[image: 2]

	The deprecated values are on a separate line so that the future
    delete will be clean and obvious in version control.


	[image: 3]

	The LookupDict allows dot-access of its elements like in the next line.


	[image: 4]

	codes.ok == 200 and codes.okay  == 200.


	[image: 5]

	And also codes.OK == 200 and codes.OKAY == 200.





All of this work for the status codes
was to make the lookup dictionary codes.
Why? Instead of very typo-prone hardcoded integers all over the
code, this is easy to read, with all of the code numbers
localized in a single file.
Because it starts as a dictionary keyed on the status codes,
each status code integer only exists once.
The possibility
of typos is much, much lower than if this were just
a bunch of global variables manually embedded into a namespace.


And converting the keys into attributes instead of using
them as strings in a dictionary again reduces the risk of
typographical errors.
Here’s the example in sessions.py that’s so much easier to read
with words than numbers:


#
#  ... from sessions.py ...
#      Truncated to only show relevant content.
#
from .status_codes import codes  [image: 1]


class SessionRedirectMixin(object):  [image: 2]
    def resolve_redirects(self, resp, req, stream=False, timeout=None,
                          verify=True, cert=None, proxies=None,
                          **adapter_kwargs):
        """Receives a Response. Returns a generator of Responses."""

        i = 0
        hist = [] # keep track of history

        while resp.is_redirect:  [image: 3]
            prepared_request = req.copy()

            if i > 0:
                # Update history and keep track of redirects.
                hist.append(resp)
                new_hist = list(hist)
                resp.history = new_hist

            try:
                resp.content  # Consume socket so it can be released
            except (ChunkedEncodingError, ContentDecodingError, RuntimeError):
                resp.raw.read(decode_content=False)

            if i >= self.max_redirects:
                raise TooManyRedirects(
                        'Exceeded %s redirects.' % self.max_redirects
                )

            # Release the connection back into the pool.
            resp.close()

            #
            #  ... skipping content ...
            #

            # http://tools.ietf.org/html/rfc7231#section-6.4.4
            if (resp.status_code == codes.see_other and  [image: 4]
                    method != 'HEAD'):
                method = 'GET'

            # Do what the browsers do, despite standards...
            # First, turn 302s into GETs.
            if resp.status_code == codes.found and method != 'HEAD':  [image: 5]
                method = 'GET'

            # Second, if a POST is responded to with a 301, turn it into a GET.
            # This bizarre behavior is explained in Issue 1704.
            if resp.status_code == codes.moved and method == 'POST':  [image: 5]
                method = 'GET'

            #
            #  ... etc. ...
            #


	[image: 1]

	Here’s where the status code lookup codes is imported.


	[image: 2]

	We describe mixin classes later in “Mixins (also one honking great idea)”.
This mixin provides redirect methods for the main Session class,
which is defined in this same file but not shown in our excerpt.


	[image: 3]

	We’re entering a loop that’s following the redirects for us
to get at the content we want. The entire loop logic is deleted from this
excerpt for brevity.


	[image: 4]

	Status codes as text are so much more readable than unmemorizable integers:
codes.see_other would otherwise be 303 here.


	[image: 5]

	And codes.found would be 302, and codes.moved would be 301.
So the code is self-documenting; we can tell meaning from the variable
names; and we’ve avoided the possibility of littering the code
with typographical errors by using dot-notation instead of
a dictionary to look up strings (e.g., codes.found instead
of  codes["found"]).
































Werkzeug


To read Werkzeug, we need to know a little about how web servers
communicate with applications.
The next paragraphs try to give as short an overview as possible.


Python’s interface for web application-to-server interaction, WSGI, is defined in
PEP 333, which was written by Phillip J. Eby in 2003.16
It specifies how a web server (like Apache) communicates
with a Python  application or framework:


	
The server will call the application once per HTTP request
(e.g., “GET” or “POST”) it receives.



	
That application will return an iterable of bytestrings
that the server will use to respond to the HTTP request.



	
The specification also says the application will
take two parameters—for example,
webapp(environ, start_response).
The environ parameter will contain all of the data associated
with the request, and the start_response parameter will
be a function or other callable object that will be used to
send back header (e.g., ('Content-type', 'text/plain')) and
status (e.g., 200 OK) information to the server.







That summary glosses over about a half-dozen pages of additional detail.
In the middle of PEP 333 is this aspirational statement about the
new standard making modular web frameworks possible:


If middleware can be both simple and robust, and WSGI is widely available in servers and frameworks, it allows for the possibility of an entirely new kind of Python web application framework: one consisting of loosely-coupled WSGI middleware components. Indeed, existing framework authors may even choose to refactor their frameworks’ existing services to be provided in this way, becoming more like libraries used with WSGI, and less like monolithic frameworks. This would then allow application developers to choose “best-of-breed” components for specific functionality, rather than having to commit to all the pros and cons of a single framework.


Of course, as of this writing, that day is doubtless quite far off. In the meantime, it is a sufficient short-term goal for WSGI to enable the use of any framework with any server.



About four years after, in 2007, Armin Ronacher released Werkzeug, with the intent of filling that hopeful need for a WSGI library that
can be used to make WSGI applications and middleware components.


Werkzeug is the largest package we are reading,
so we’ll highlight just a few of its design choices.










Reading Code in a Toolkit


A software toolkit is a collection of compatible utilities.
In Werkzeug’s case, they’re all related to WSGI applications.
A good way to understand the distinct utilities and what they’re
for is to look at the unit tests, and that’s how we’ll approach
reading Werkzeug’s code.


Get Werkzeug from GitHub:


$ git clone https://github.com/pallets/werkzeug.git
$ virtualenv -p python3 venv
$ source venv/bin/activate
(venv)$ cd werkzeug
(venv)$ pip install --editable .
(venv)$ py.test tests  # Run the unit tests












Read Werkzeug’s documentation


Werkzeug’s documentation lists the
main things it provides—an implementation of the WSGI 1.0
(PEP 333)
specification, a URL routing system, the capability
to parse and dump HTTP headers, objects that represent
HTTP requests and HTTP responses, session and cookie support,
file uploads, and other utilities and community add-ons.
Plus, a full-featured debugger.


The tutorials are good, but we’re using the API documentation instead
to see more of the library’s components. The next section takes from Werkzeug’s
wrappers and
routing documentation.

















Use Werkzeug


Werkzeug provides utilities for WSGI applications, so to learn what Werkzeug provides,
we can start with a WSGI application, and then use a few of Werkzeug’s utilities.
This first application is a slightly changed version of what’s in PEP 333,
and doesn’t use Werkzeug yet. The second one does the same thing as the first,
but using Werkzeug:


def wsgi_app(environ, start_response):
    headers = [('Content-type', 'text/plain'), ('charset', 'utf-8')]
    start_response('200 OK', headers)
    yield 'Hello world.'

# This app does the same thing as the one above:
response_app = werkzeug.Response('Hello world!')


Werkzeug implements a werkzeug.Client class to stand in for a real web
sever when doing one-off testing like this. The client response
will have the type of the response_wrapper argument.
In this code, we create clients and use them to call the WSGI
applications we made earlier. First, the plain WSGI app
(but with the response parsed into a werkzeug.Response):


>>> import werkzeug
>>> client = werkzeug.Client(wsgi_app, response_wrapper=werkzeug.Response)
>>> resp=client.get("?answer=42")
>>> type(resp)
<class 'werkzeug.wrappers.Response'>
>>> resp.status
'200 OK'
>>> resp.content_type
'text/plain'
>>> print(resp.data.decode())
Hello world.


Next, using the werkzeug.Response WSGI app:


>>> client = werkzeug.Client(response_app, response_wrapper=werkzeug.Response)
>>> resp=client.get("?answer=42")
>>> print(resp.data.decode())
Hello world!


The werkzeug.Request class provides the contents of the environment
dictionary (the environ argument above to wsgi_app()) in a form that’s
easier to use. It also provides a decorator to convert a function that takes a
a werkzeug.Request and returns a werkzeug.Response into a WSGI app:


>>> @werkzeug.Request.application
... def wsgi_app_using_request(request):
...     msg = "A WSGI app with:\n   method: {}\n   path: {}\n   query: {}\n"
...     return werkzeug.Response(
...         msg.format(request.method, request.path, request.query_string))
...


which, when used, gives:


>>> client = werkzeug.Client(
...     wsgi_app_using_request, response_wrapper=werkzeug.Response)
>>> resp=client.get("?answer=42")
>>> print(resp.data.decode())
A WSGI app with:
   method: GET
   path: /
   query: b'answer=42'


So, we know how to use the werkzeug.Request and werkzeug.Response objects.
The other thing that was featured in the documentation was the routing.
Here’s an excerpt that uses it—callout numbers identify both the pattern
and its match:


>>> import werkzeug
>>> from werkzeug.routing import Map, Rule
>>>
>>> url_map = Map([  [image: 1]
...     Rule('/', endpoint='index'),  [image: 2]
...     Rule('/<any("Robin","Galahad","Arthur"):person>', endpoint='ask'),  [image: 3]
...     Rule('/<other>', endpoint='other')  [image: 4]
... ])

>>> env = werkzeug.create_environ(path='/shouldnt/match')  [image: 5]
>>> urls = url_map.bind_to_environ(env)
>>> urls.match()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "[...path...]/werkzeug/werkzeug/routing.py", line 1569, in match
    raise NotFound()
werkzeug.exceptions.NotFound: 404: Not Found


	[image: 1]

	The werkzeug.Routing.Map provides the main routing functions. The rule matching is done in order; the first rule to match is the one selected.


	[image: 2]

	When there are no angle-bracket terms in the rule’s placeholder string, it only matches on an exact match, and the second result from urls.match() is an empty dictionary:


>>> env = werkzeug.create_environ(path='/')
>>> urls = url_map.bind_to_environ(env)
>>> urls.match()
('index', {})


	[image: 3]

	Otherwise, the second entry is a dictionary mapping the named terms in the rule to their value—for example, mapping 'person' to the value 'Galahad':


>>> env = werkzeug.create_environ(path='/Galahad?favorite+color')
>>> urls = url_map.bind_to_environ(env)
>>> urls.match()
('ask', {'person': 'Galahad'})


	[image: 4]

	Note that 'Galahad' could have mached the route named 'other', but it did not—but 'Lancelot' did—because the first rule to match the pattern is chosen:


>>> env = werkzeug.create_environ(path='/Lancelot')
>>> urls = url_map.bind_to_environ(env)
>>> urls.match()
('other', {'other': 'Lancelot'})


	[image: 5]

	And an exception is raised if there are no matches at all in the list of rules:


>>> env = werkzeug.test.create_environ(path='/shouldnt/match')
>>> urls = url_map.bind_to_environ(env)
>>> urls.match()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "[...path...]/werkzeug/werkzeug/routing.py", line 1569, in match
raise NotFound()
werkzeug.exceptions.NotFound: 404: Not Found





You’d use the map to route a request to an appropriate endpoint. The following
code continues on from the predceding example to do this:


@werkzeug.Request.application
def send_to_endpoint(request):
    urls = url_map.bind_to_environ(request)
    try:
        endpoint, kwargs = urls.match()
        if endpoint == 'index':
            response = werkzeug.Response("You got the index.")
        elif endpoint == 'ask':
            questions = dict(
                Galahad='What is your favorite color?',
                Robin='What is the capital of Assyria?',
                Arthur='What is the air-speed velocity of an unladen swallow?')
            response = werkzeug.Response(questions[kwargs['person']])
        else:
            response = werkzeug.Response("Other: {other}".format(**kwargs))
    except (KeyboardInterrupt, SystemExit):
        raise
    except:
        response = werkzeug.Response(
            'You may not have gone where you intended to go,\n'
            'but I think you have ended up where you needed to be.',
            status=404
        )
    return response


To test it, use the werkzeug.Client again:


>>> client = werkzeug.Client(send_to_endpoint, response_wrapper=werkzeug.Response)
>>> print(client.get("/").data.decode())
You got the index.
>>>
>>> print(client.get("Arthur").data.decode())
What is the air-speed velocity of an unladen swallow?
>>>
>>> print(client.get("42").data.decode())
Other: 42
>>>
>>> print(client.get("time/lunchtime").data.decode())  # no match
You may not have gone where you intended to go,
but I think you have ended up where you needed to be.

















Read Werkzeug’s code


When test coverage is good, you can learn what a library does
by looking at the unit tests. The caveat is that with unit tests,
you’re intentionally looking at the “trees” and not the “forest”—exploring obscure use cases intended to ensure the code doesn’t break,
rather than looking for interconnections between modules.
This should be OK for a toolkit like Werkzeug, which we expect to
have modular, loosely coupled components.


Because we familiarized ourselves with how the routing and the request
and response wrappers work, werkzeug/test_routing.py and
werkzeug/test_wrappers.py are good choices to read for now.


When we first open werkzeug/test_routing.py, we can quickly look for
interconnection between the modules by searching through the entire
file for the imported objects.  Here are all of the import statements:


import pytest  [image: 1]

import uuid  [image: 2]

from tests import strict_eq  [image: 3]

from werkzeug import routing as r  [image: 4]
from werkzeug.wrappers import Response  [image: 5]
from werkzeug.datastructures import ImmutableDict, MultiDict  [image: 6]
from werkzeug.test import create_environ  [image: 7]


	[image: 1]

	Of course, pytest is used here for testing.


	[image: 2]

	The uuid module is used in just one function, test_uuid_converter(),
to confirm that the conversion from string to a uuid.UUID object
(the Universal Unique Identifier string uniquely identifying objects on
 the Internet) works.


	[image: 3]

	The strict_eq() function is used often, and defined in
werkzeug/tests/__init__.py. It’s for testing, and is only necessary
because in Python 2 there used to be implicit type conversion
between Unicode and byte strings, but relying on this breaks things in Python 3.


	[image: 4]

	The werkzeug.routing module is the one that’s being tested.


	[image: 5]

	The Reponse object is used in just one function, test_dispatch(),
to confirm that werkzeug.routing.MapAdapter.dispatch() passes the correct
information through to the dispatched WSGI application.


	[image: 6]

	These dictionary objects are used only once each, ImmutableDict to confirm that
an immutable dictionary in werkzeug.routing.Map is indeed immutable,
and MultiDict to provide multiple keyed values to the URL builder and
confirm that it still builds the correct URL.


	[image: 7]

	The create_environ() function is for testing—it creates a
WSGI environment without having to use an actual HTTP request.





The point of doing the quick searching was to quickly see the interconnection between
modules. What we found out was that werkzeug.routing imports some special data structures,
and that’s all. The rest of the unit tests show the scope of the routing module.
For example, non-ASCII characters can be used:


def test_environ_nonascii_pathinfo():
    environ = create_environ(u'/лошадь')
    m = r.Map([
        r.Rule(u'/', endpoint='index'),
        r.Rule(u'/лошадь', endpoint='horse')
    ])
    a = m.bind_to_environ(environ)
    strict_eq(a.match(u'/'), ('index', {}))
    strict_eq(a.match(u'/лошадь'), ('horse', {}))
    pytest.raises(r.NotFound, a.match, u'/барсук')


There are tests to build and parse URLs, and even utilities to find
the closest available match, when there wasn’t an actual match.
You can even do all kinds of crazy custom processing when handling the
type conversions/parsing from the path and the URL string:


def test_converter_with_tuples():
    '''
    Regression test for https://github.com/pallets/werkzeug/issues/709
    '''
    class TwoValueConverter(r.BaseConverter):

        def __init__(self, *args, **kwargs):
            super(TwoValueConverter, self).__init__(*args, **kwargs)
            self.regex = r'(\w\w+)/(\w\w+)'

        def to_python(self, two_values):
            one, two = two_values.split('/')
            return one, two

        def to_url(self, values):
            return "%s/%s" % (values[0], values[1])

    map = r.Map([
        r.Rule('/<two:foo>/', endpoint='handler')
    ], converters={'two': TwoValueConverter})
    a = map.bind('example.org', '/')
    route, kwargs = a.match('/qwert/yuiop/')
    assert kwargs['foo'] == ('qwert', 'yuiop')


Similarly, werkzeug/test_wrappers.py does not import
much. Reading through the tests gives an example of the scope
of available functionality for the Request object—cookies, encoding, authentication, security, cache timeouts,
and even multilanguage encoding:


def test_modified_url_encoding():
    class ModifiedRequest(wrappers.Request):
        url_charset = 'euc-kr'

    req = ModifiedRequest.from_values(u'/?foo=정상처리'.encode('euc-kr'))
    strict_eq(req.args['foo'], u'정상처리')


In general, reading the tests provides a way to see the details
of what the library provides. Once satisfied that we have an idea
of what Werkzeug is, we can move on.


Tox in Werkzeug

Tox
is a Python command-line tool that uses virtual environments to run tests.
You can run it on your own computer (tox on the command line), so
long as the Python interpreters you’re using are already installed.
It’s integrated with GitHub, so if you have a tox.ini file in the top
level of your repository, like Werkzeug does, it will automatically
run tests on every commit.


Here is Werkzeug’s entire tox.ini configuration file:


[tox]
envlist = py{26,27,py,33,34,35}-normal, py{26,27,33,34,35}-uwsgi

[testenv]
passenv = LANG
deps=
# General
    pyopenssl
    greenlet
    pytest
    pytest-xprocess
    redis
    requests
    watchdog
    uwsgi: uwsgi

# Python 2
    py26: python-memcached
    py27: python-memcached
    pypy: python-memcached

# Python 3
    py33: python3-memcached
    py34: python3-memcached
    py35: python3-memcached

whitelist_externals=
    redis-server
    memcached
    uwsgi

commands=
    normal: py.test []
    uwsgi: uwsgi
           --pyrun {envbindir}/py.test
           --pyargv -kUWSGI --cache2=name=werkzeugtest,items=20 --master
























Style Examples from Werkzeug


Most of the major style points we made in Chapter 4
have already been covered. The first style example we chose
shows an elegant way to guess types from a string, and
the second one makes a case for using the VERBOSE option when
defining long regular expressions—so that other people
can tell what the expression does without having to spend
time thinking through it.












Elegant way to guess type (if the implementation is easy to explain, it may be a good idea)


If you’re like most of us, you’ve had to parse text files and convert
content to various types. This solution is particularly Pythonic, so
we wanted to include it:


_PYTHON_CONSTANTS = {
    'None':     None,
    'True':     True,
    'False':    False
}


def _pythonize(value):
    if value in _PYTHON_CONSTANTS: [image: 1]
        return _PYTHON_CONSTANTS[value]
    for convert in int, float:  [image: 2]
        try:  [image: 3]
            return convert(value)
        except ValueError:
            pass
    if value[:1] == value[-1:] and value[0] in '"\'':  [image: 4]
        value = value[1:-1]
    return text_type(value)  [image: 5]


	[image: 1]

	Key lookup for Python dictionaries uses hash mapping, just like set lookup.
Python doesn’t have switch case statements. (They were proposed
and rejected for lack of popularity in
PEP 3103.)
Instead, Python users use if/elif/else, or as shown here,
the very Pythonic option of a dictionary lookup.


	[image: 2]

	Note that the first conversion attempt is to the more restrictive type,
int, before attempting the conversion to float.


	[image: 3]

	It is also Pythonic to use try/except statements to infer type.


	[image: 4]

	This part is necessary because the code is in werkzeug/routing.py, and the string
being parsed is part of a URL. It’s checking for quotes and unquoting the value.


	[image: 5]

	text_type converts strings to Unicode in a way that’s both Python 2
and Python 3 compatible. It’s basically the same thing as the u()
function highlighted in “HowDoI”.




















Regular expressions (readability counts)


If you use lengthy regular expressions in your code, please
use the re.VERBOSE17
option and make it comprehensible to the rest of us
humans, like this snippet from werkzeug/routing.py:


import re

_rule_re = re.compile(r'''
    (?P<static>[^<]*)                           # static rule data
    <
    (?:
        (?P<converter>[a-zA-Z_][a-zA-Z0-9_]*)   # converter name
        (?:\((?P<args>.*?)\))?                  # converter arguments
        \:                                      # variable delimiter
    )?
    (?P<variable>[a-zA-Z_][a-zA-Z0-9_]*)        # variable name
    >
''', re.VERBOSE)






















Structure Examples from Werkzeug


The first two examples related to structure demonstrate
Pythonic ways to leverage dynamic typing. We cautioned against
reassigning a variable to different values in “Dynamic Typing”
but didn’t mention any benefits. One of them is the ability to use
any type of object that behaves in the expected way—duck typing.
Duck typing approaches types with the philosophy:
“If it looks like a duck18
and quacks like a duck, then it’s a duck”.


They both play in different ways on ways that objects can be callable
without being functions: cached_property.__init__() allows
initialization of a class instance to be used like an ordinary function call,
and Response.__call__() allows a Response instance to itself
be called like a function.


The last excerpt uses Werkzeug’s implementation of some
mixin classes (that each define a subset of the functionality
in Werkzeug’s Request object) to discuss why they’re a honking
great idea.












Class-based decorators (a Pythonic use of dynamic typing)


Werkzeug makes use of duck typing to make the @cached_property decorator.
When we talked about property when describing the Tablib project, we talked
about it like it’s a function.
Usually decorators are functions, but because there is no enforcement
of type, they can be any callable: property is actually a class.
(You can tell it’s intended to be used like a function because it
is not capitalized, like PEP 8 says class names should be.)
When written like a function call (property()),
property.__init__() will be called to initialize and return a property instance—a class, with an appropriately defined __init__() method, works as a callable.
Quack.


The following excerpt contains the entire definition of cached_property,
which subclasses the property class.
The documentation within cached_property speaks for itself.
When it is used to decorate BaseRequest.form in the code we just saw,
the instance.form will have the type
cached_property and will behave like a dictionary as far as the
user is concerned, because both the __get__() and __set__() methods
are defined. The first time BaseRequest.form is accessed,
it will read its form data (if it exists) once, and then store the
data in instance.form.__dict__ to be accessed in the future:


class cached_property(property):

    """A decorator that converts a function into a lazy property.  The
    function wrapped is called the first time to retrieve the result,
    and then that calculated result is used the next time you access
    the value::

        class Foo(object):

            @cached_property
            def foo(self):
                # calculate something important here
                return 42

    The class has to have a `__dict__` in order for this property to
    work.
    """

    # implementation detail: A subclass of Python's built-in property
    # decorator, we override __get__ to check for a cached value. If one
    # choses to invoke __get__ by hand, the property will still work as
    # expected because the lookup logic is replicated in __get__ for
    # manual invocation.

    def __init__(self, func, name=None, doc=None):
        self.__name__ = name or func.__name__
        self.__module__ = func.__module__
        self.__doc__ = doc or func.__doc__
        self.func = func

    def __set__(self, obj, value):
        obj.__dict__[self.__name__] = value

    def __get__(self, obj, type=None):
        if obj is None:
            return self
        value = obj.__dict__.get(self.__name__, _missing)
        if value is _missing:
            value = self.func(obj)
            obj.__dict__[self.__name__] = value
        return value


Here it is in action:


>>> from werkzeug.utils import cached_property
>>>
>>> class Foo(object):
...     @cached_property
...     def foo(self):
...         print("You have just called Foo.foo()!")
...         return 42
...
>>> bar = Foo()
>>>
>>> bar.foo
You have just called Foo.foo()!
42
>>> bar.foo
42
>>> bar.foo  # Notice it doesn't print again...
42

















Response.__call__


The Response class is built using features mixed into the BaseResponse class,
just like Request. We will highlight its user interface and won’t show
the actual code, just the docstring for BaseResponse, to show the usage details:


class BaseResponse(object):

    """Base response class.  The most important fact about a response object
    is that it's a regular WSGI application.  It's initialized with a couple
    of response parameters (headers, body, status code, etc.) and will start a
    valid WSGI response when called with the environ and start response
    callable.

    Because it's a WSGI application itself, processing usually ends before the
    actual response is sent to the server.  This helps debugging systems
    because they can catch all the exceptions before responses are started.

    Here is a small example WSGI application that takes advantage of the
    response objects::

        from werkzeug.wrappers import BaseResponse as Response

        def index():  [image: 1]
            return Response('Index page')

        def application(environ, start_response):  [image: 2]
            path = environ.get('PATH_INFO') or '/'
            if path == '/':
                response = index()  [image: 3]
            else:
                response = Response('Not Found', status=404)  [image: 4]
            return response(environ, start_response)  [image: 5]
    """"
    # ... etc. ...


	[image: 1]

	In the example from the docstring, index() is the function that will be called in response
to the HTTP request. The response will be the string “Index page”.


	[image: 2]

	This is the signature required for a WSGI application, as specified
in PEP 333/PEP 3333.


	[image: 3]

	Response subclasses BaseResponse, so response is an instance of BaseResponse.


	[image: 4]

	See how the 404 response just requires the status keyword to be set.


	[image: 5]

	And, voilà, the response instance is itself callable, with all of the
accompanying headers and details set to sensible default values
(or overrides in the case where the path is not “/”).





So, how is an instance of a class callable? Because the BaseRequest.__call__ method
has been defined. We show just that method in the following code example.


class BaseResponse(object):
    #
    # ... skip everything else ...
    #

    def __call__(self, environ, start_response):  [image: 1]
        """Process this response as WSGI application.

        :param environ: the WSGI environment.
        :param start_response: the response callable provided by the WSGI
                               server.
        :return: an application iterator
        """
        app_iter, status, headers = self.get_wsgi_response(environ)
        start_response(status, headers)  [image: 2]
        return app_iter  [image: 3]


	[image: 1]

	Here’s the signature to make BaseResponse instances callable.


	[image: 2]

	Here’s where the start_response function call requirement of
WSGI apps is satisfied.


	[image: 3]

	And here’s where the iterable of bytes is returned.





The lesson here is this:
if it’s possible in the language, why not do it? We promise after realizing we could
add a __call__() method to any object and make it callable,
we were inspired to go back to the original documentation for a good re-read of
Python’s data model.

















Mixins (also one honking great idea)


Mixins in Python are classes that are intended to
add a specific functionality—a handful of related attributes—to a class.
Python, unlike Java, allows for multiple inheritance. This means that the
following paradigm, where a half-dozen different classes are
subclassed simultaneously, is a possible way to modularize different
functionality into separate classes. “Namespaces,” sort of.


Modularization like this is useful in a utility library like Werkzeug
because it communicates to the user which functions are related and not
related: the developer can be confident that attributes in one
mixin are not going to be modified by any functions in another mixin.

Note

In Python, there isn’t anything special to identify a
mixin, other than the convention of appending Mixin to the end
of the class name. This means if you don’t want to pay attention
to the order of method resolution, all of the mixins’ methods
should have distinct names.




In Werkzeug, sometimes methods in a mixin may require certain
attributes to be present. These requirements are usually
documented in the mixin’s docstring:


# ... in werkzeug/wrappers.py


class UserAgentMixin(object): [image: 1]

    """Adds a `user_agent` attribute to the request object which contains
    the parsed user agent of the browser that triggered the request as a
    :class:`~werkzeug.useragents.UserAgent` object.
    """

    @cached_property
    def user_agent(self):
        """The current user agent."""
        from werkzeug.useragents import UserAgent
        return UserAgent(self.environ)  [image: 2]


class Request(BaseRequest, AcceptMixin, ETagRequestMixin,
              UserAgentMixin, AuthorizationMixin,  [image: 3]
              CommonRequestDescriptorsMixin):

    """Full featured request object implementing the following mixins:

    - :class:`AcceptMixin` for accept header parsing
    - :class:`ETagRequestMixin` for etag and cache control handling
    - :class:`UserAgentMixin` for user agent introspection
    - :class:`AuthorizationMixin` for http auth handling
    - :class:`CommonRequestDescriptorsMixin` for common headers
    """
    [image: 4]


	[image: 1]

	There is nothing special about the UserAgentMixin; it subclasses
object, though, which is the default in Python 3, highly recommended
for compatibility in Python 2, and which should be done
explicitly because, well, “explicit is better than implicit.”


	[image: 2]

	UserAgentMixin.user_agent assumes there is a self.environ attribute.


	[image: 3]

	When included in the list of base classes for Request, the attribute
it provides becomes accessible via Request(environ).user_agent.


	[image: 4]

	Nothing else—this is the entire body of the definition of Request.
All functionality is provided by the base class or the mixins.
Modular, pluggable, and as froody as Ford Prefect.





New-Style Classes and object

The base class object adds default attributes that other built-in
options rely on. Classes that don’t inherit from object are called
“old-style classes” or “classic classes” and are removed in Python 3.
It’s the default to inherit from object in Python 3,
meaning all Python 3 classes are “new-style classes.”
New-style classes are available in Python 2.7
(actually with their current behavior since Python 2.3), but
the inheritance must be written explicitly, and (we think) should always
be written.


There are more details in the Python documentation on
new-style classes,
a tutorial
here,
and a technical history of their creation in
this post.
Here are some of the differences (in Python 2.7;
all classes are new-style in Python 3):


>>> class A(object):
...     """New-style class, subclassing object."""
...
>>> class B:
...     """Old-style class."""
...
>>> dir(A)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__',
 '__getattribute__', '__hash__', '__init__', '__module__', '__new__',
 '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',
 '__str__', '__subclasshook__', '__weakref__']
>>>
>>> dir(B)
['__doc__', '__module__']
>>>
>>> type(A)
<type 'type'>
>>> type(B)
<type 'classobj'>
>>>
>>> import sys
>>> sys.getsizeof(A())  # The size is in bytes.
64
>>> sys.getsizeof(B())
72































Flask


Flask is a web microframework that combines Werkzeug and Jinja2,
both by Armin Ronacher.
It was created as a joke and released on April Fool’s Day, 2010, but quickly
became one of Python’s most popular web frameworks.
He had released Werkzeug a few years earlier
in 2007 as a “Swiss Army knife of Python web development,” and
(we presume) was probably a little frustrated at its slow adoption.
The idea for Werkzeug was to decouple the WSGI from everything else
so that developers
could plug in their own choice of utilities. Little did he know
how much we’d appreciate a few more “rails.”19










Reading Code in a Framework


A software framework is just like a physical framework—it provides
the underlying structure to build a WSGI20 application:
the library user provides components that the main Flask
application will run.
Our goal in reading will be to understand the framework
structure and what precisely it provides.


Get Flask from  GitHub:


$ git clone https://github.com/pallets/flask.git
$ virtualenv venv  # Python 3 is usable but discouraged for now
$ source venv/bin/activate
(venv)$ cd flask
(venv)$ pip install --editable .
(venv)$ pip install -r test-requirements.txt  # Required for unit tests
(venv)$ py.test tests  # Run the unit tests












Read Flask’s documentation


Flask’s online documentation
starts out with a seven-line implementation of a web app,
and then summarizes Flask: it’s a Unicode-based WSGI-compliant
framework that uses Jinja2 for HTML templating and Werkzeug for
WSGI utilities like URL routing. It also has built-in tools for
development and testing.
There are also tutorials, so the next step is easy.

















Use Flask


We can run the flaskr example that we downloaded with the
GitHub repository. The documents say it’s a small blog site.
From within the top flask directory:


(venv)$ cd examples/flaskr/
(venv)$ py.test test_flaskr.py  # Tests should pass
(venv)$ export FLASK_APP=flaskr
(venv)$ flask initdb
(venv)$ flask run

















Read Flask’s code


The ultimate goal of Flask is to create a web application, so really it isn’t
so different from the command-line applications Diamond and HowDoI.
Rather than another diagram tracing the flow of function calls through the code,
this time we’ll step through Flask by running the flaskr example app with
a debugger; we’ll use pdb—the Python debugger—in the standard library.


First, add a breakpoint to flaskr.py, which will be activated
when that point in the code is reached, causing the
interactive session to enter the debugger:


@app.route('/')
def show_entries():
    import pdb; pdb.set_trace()  ## This line is the breakpoint.
    db = get_db()
    cur = db.execute('select title, text from entries order by id desc')
    entries = cur.fetchall()
    return render_template('show_entries.html', entries=entries)


Next, close the file and type python on the command line to enter
an interactive session. Rather than starting a server, use Flask’s internal
testing utilities to simulate an HTTP GET request to the / location
where we just placed the debugger:


>>> import flaskr
>>> client = flaskr.app.test_client()
>>> client.get('/')
> /[... truncated path ...]/flask/examples/flaskr/flaskr.py(74)show_entries()
-> db = get_db()
(Pdb)


The last three lines are from pdb: we see the path
(to flaskr.py), the line number (74), and the method name (show_entries())
where we stopped. The line (-> db = get_db()) shows the statement that
will be executed next if we were to step forward in the debugger.
And the (Pdb) prompt reminds us that we are using the pdb debugger.


We can navigate up or down the stack21
by typing u or d, respectively, at the command prompt.
See the pdb documentation under the header
“Debugger Commands” for a complete list of the commands you can type.
We can also type variable names to see them, and any other Python command; we can
even set the variables to different values before we continue on in the code.


If we go up the stack one step, we see what called the
show_entries() function (with the breakpoint we just installed):
it’s a flask.app.Flask object with a lookup dictionary named
view_functions that maps string names (like 'show_entries')
to functions. We also see the show_entries() function was called with
**req.view_args. We can check what req.view_args is from the interactive debugger command line by just typing its name (it’s the empty dictionary — {}, meaning no arguments):


(Pdb) u
> /[ ... truncated path ...]/flask/flask/app.py(1610)dispatch_request()
-> return self.view_functions[rule.endpoint](**req.view_args)
(Pdb) type(self)
<class 'flask.app.Flask'>
(Pdb) type(self.view_functions)
<type 'dict'>
(Pdb) self.view_functions
{'add_entry': <function add_entry at 0x108198230>,
'show_entries': <function show_entries at 0x1081981b8>, [... truncated ...]
'login': <function login at 0x1081982a8>}
(Pdb) rule.endpoint
'show_entries'
(Pdb) req.view_args
{}


We can simultaneously follow along through the source code, if
we want to, by opening the appropriate file and going to the stated line.
If we keep going up the stack, we can see where the WSGI application is
called:


(Pdb) u
> /[ ... truncated path ...]/flask/flask/app.py(1624)full_dispatch_request()
-> rv = self.dispatch_request()
(Pdb) u
> /[ ... truncated path ...]/flask/flask/app.py(1973)wsgi_app()
-> response = self.full_dispatch_request()
(Pdb) u
> /[ ... truncated path ...]/flask/flask/app.py(1985)__call__()
-> return self.wsgi_app(environ, start_response)


If we type u any more, we end up in the testing module, which was used to
create the fake client without having to start a server—we’ve gone as far
up the stack as we want to go.
We learned that the application flaskr is dispatched
from within an instance of the flask.app.Flask class,
on line 1985 of flask/flask/app.py. Here is the function:


class Flask:
    ## ~~ ... skip lots of definitions ...

    def wsgi_app(self, environ, start_response):
        """The actual WSGI application.   ... skip other documentation ...
        """
        ctx = self.request_context(environ)
        ctx.push()
        error = None
        try:
            try:
                response = self.full_dispatch_request()  [image: 1]
            except Exception as e:
                error = e
                response = self.make_response(self.handle_exception(e))
            return response(environ, start_response)
        finally:
            if self.should_ignore_error(error):
                error = None
            ctx.auto_pop(error)

    def __call__(self, environ, start_response):
        """Shortcut for :attr:`wsgi_app`."""
        return self.wsgi_app(environ, start_response)  [image: 2]


	[image: 1]

	This is line number 1973, identified in the debugger.


	[image: 2]

	This is line number 1985, also identified in the debugger.
The WSGI server would receive the Flask instance as an
application, and call it once for every request—by using the debugger, we’ve found the entry point for the code.





We’re using the debugger in the same way as we used the
call graph with HowDoI—by following function calls—which
is also the same thing as reading through code directly.
The value of using the debugger is that we avoid looking
at all of the additional code that may distract or confuse us.
Use the approach that is most effective for you.


After going up the stack using u, we can go back down the stack using d
and will end up back at the breakpoint, labeled with the *** Newest frame:


> /[ ... truncated path ...]/flask/examples/flaskr/flaskr.py(74)show_entries()
-> db = get_db()
(Pdb) d
*** Newest frame


From there, we can advance through a function call with the n (next) command,
or advance in as short a step as possible with the s (step) command:


(Pdb) s
--Call--
> /[ ... truncated path ... ]/flask/examples/flaskr/flaskr.py(55)get_db()
-> def get_db():
(Pdb) s
> /[ ... truncated path ... ]/flask/examples/flaskr/flaskr.py(59)get_db()
-> if not hasattr(g, 'sqlite_db'):  [image: 1]
##~~
##~~ ... do a dozen steps to create and return the database connection...
##~~
-> return g.sqlite_db
(Pdb) n
> /[ ... truncated path ... ]/flask/examples/flaskr/flaskr.py(75)show_entries()
-> cur = db.execute('select title, text from entries order by id desc')
(Pdb) n
> /[ ... truncated path ... ]/flask/examples/flaskr/flaskr.py(76)show_entries()
-> entries = cur.fetchall()
(Pdb) n
> /[ ... truncated path ... ]/flask/examples/flaskr/flaskr.py(77)show_entries()
-> return render_template('show_entries.html', entries=entries)  [image: 2]
(Pdb) n
--Return--



There’s a lot more, but it’s tedious to show.  What we get out of it is:



	[image: 1]

	Awareness of the Flask.g object. A little more digging reveals it
is the global (actually local to the Flask instance) context.
It exists to contain database connections and other persistent
things like cookies that need to survive outside of the life of the
methods in the Flask class. Using a dictionary like this keeps
variables out of the Flask app’s namespace, avoiding possible
name collisions.


	[image: 2]

	The render_template() function isn’t much of a surprise, but
it’s at the end of the function definition in the flaskr.py module,
meaning we’re essentially done—the return value goes back
to the calling function from the Flask instance that we saw
when traversing up the stack. So we’re skipping the rest.





The debugger is useful local to the place that you’re inspecting, to
find out precisely what’s happening before and after an instant, the user-selected breakpoint, in the code. One of the big features is the ability to change variables on
the fly (any Python code works in the debugger) and then continue on
stepping through the code.


Logging in Flask

Diamond has an example of logging in an application,
and Flask provides one of logging in a library.
If all you want to do is avoid “no handler found” warnings,
search for “logging” in the Requests library (requests/requests/__init__.py).
But if you want to provide some logging support within
your library or framework, Flask’s logging provides a good example
to follow.


Flask-specific logging is implemented in flask/flask/logging.py.
It defines the logging format strings for production (with
logging level ERROR) and for debugging (with logging level
DEBUG), and follows the advice from the
Twelve-Factor App
to log to streams (which direct to one of wsgi.errors
or sys.stderr, depending on the context).


The logger is added to the main Flask application in
flask/flask/app.py (the code snippet skips over
anything that’s not relevant in the file):


# a lock used for logger initialization
_logger_lock = Lock()  [image: 1]


class Flask(_PackageBoundObject):

    ##~~ ... skip other definitions

    #: The name of the logger to use.  By default the logger name is the
    #: package name passed to the constructor.
    #:
    #: .. versionadded:: 0.4
    logger_name = ConfigAttribute('LOGGER_NAME')  [image: 2]


    def __init__(self, import_name, static_path=None, static_url_path=None,
                 ##~~ ... skip the other arguments ...
                 root_path=None):
        ##~~ ... skip the rest of the initialization
        # Prepare the deferred setup of the logger.
        self._logger = None  [image: 3]
        self.logger_name = self.import_name


    @property
    def logger(self):
        """A :class:`logging.Logger` object for this application.  The
        default configuration is to log to stderr if the application is
        in debug mode.  This logger can be used to (surprise) log messages.
        Here some examples::

            app.logger.debug('A value for debugging')
            app.logger.warning('A warning occurred (%d apples)', 42)
            app.logger.error('An error occurred')

        .. versionadded:: 0.3
        """
        if self._logger and self._logger.name == self.logger_name:
            return self._logger  [image: 4]
        with _logger_lock:  [image: 5]
            if self._logger and self._logger.name == self.logger_name:
                return self._logger
            from flask.logging import create_logger
            self._logger = rv = create_logger(self)
            return rv


	[image: 1]

	This lock is used toward the end of the code. Locks are objects
that can only be posessed by one thread at a time. When it is
being used, any other threads that want it must block.


	[image: 2]

	Like Diamond, Flask uses the configuration file (with sane defaults,
that aren’t shown here, so the user can simply do nothing and get a
reasonable answer) to set the logger name.


	[image: 3]

	The Flask application’s logger is initially set to none so that
it can be created later (in step [image: 5]).


	[image: 4]

	If the logger exists already, return it. The property decoration,
like earlier in this chapter, exists to prevent the user from
inadvertently modifying the logger.


	[image: 5]

	If the logger doesn’t exist yet (it was initialized to None),
then use the lock created in step [image: 1]
and create it.



























Style Examples from Flask


Most of the style examples from Chapter 4 have already been covered, so we’ll only discuss one style example for Flask—the implementation of Flask’s elegant and simple routing decorators.












Flask’s routing decorators (beautiful is better than ugly)


The routing decorators in Flask add URL routing to target functions,
like this:


@app.route('/')
def index():
    pass


The Flask application will, when dispatching a request, use
URL routing to identify the correct function to generate the response.
The decorator syntax keeps the routing code logic out of the target
function, keeps the function flat, and is intuitive to use.


It’s also not necessary—it exists only to provide this
API feature to the user. Here is the source code, a method in the
main Flask class defined in flask/flask/app.py:


class Flask(_PackageBoundObject):  [image: 1]
    """The flask object implements a WSGI application ...
      ... skip everything else in the docstring ...
    """
    ##~~ ... skip all but the routing() method.

    def route(self, rule, **options):
        """A decorator that is used to register a view function for a
        given URL rule.  This does the same thing as :meth:`add_url_rule`
        but is intended for decorator usage::

            @app.route('/')
            def index():
                return 'Hello World'

         ... skip the rest of the docstring ...
        """
        def decorator(f):  [image: 2]
            endpoint = options.pop('endpoint', None)
            self.add_url_rule(rule, endpoint, f, **options)  [image: 3]
            return f
        return decorator


	[image: 1]

	The _PackageBoundObject sets up the file structure
to import the HTML templates, static files, and other content
based on configuration values specifying their location relative
to the location of the application module (e.g., app.py).


	[image: 2]

	Why not name it decorator? That’s what it does.


	[image: 3]

	This is the actual function that adds the URL to the map containing
all of the rules. The only purpose of Flask.route is to provide
a convenient decorator for library users.

























Structure Examples from Flask


The theme for both of the structure examples from Flask is modularity.
Flask is intentionally structured to make it easy to extend and modify
almost everything—from the way that JSON strings are encoded and decoded
(Flask supplements the standard library’s JSON capability with encodings
for datetime and UUID objects) to the classes used when routing URLs.












Application specific defaults (simple is better than complex)


Flask and Werkzeug both have a wrappers.py module. The reason is
to add appropriate defaults for Flask, a framework for web applications,
on top of Werkzeug’s more general utility library for WSGI applications.
Flask subclasses Werkzeug’s Request and Response objects to add
specific features related to web applications.
For example, the Response object in flask/flask/wrappers.py looks like this:


from werkzeug.wrappers import Request as RequestBase, Response as ResponseBase
##~~ ... skip everything else ...

class Response(ResponseBase):  [image: 1]
    """The response object that is used by default in Flask.  Works like the
    response object from Werkzeug but is set to have an HTML mimetype by
    default.  Quite often you don't have to create this object yourself because
    :meth:`~flask.Flask.make_response` will take care of that for you.

    If you want to replace the response object used you can subclass this and
    set :attr:`~flask.Flask.response_class` to your subclass.  [image: 2]
    """
    default_mimetype = 'text/html'  [image: 3]


	[image: 1]

	Werkzeug’s Response class is imported as ResponseBase, a nice style
detail that makes its role obvious and allows the new Response
subclass to take its name.


	[image: 2]

	The ability to subclass flask.wrappers.Response, and how to do it,
is documented prominently in the docstring. When features like this
are implemented, it’s important to remember the documentation, or users
won’t know the possibility exists.


	[image: 3]

	This is it—the only change in the Response class. The Request
class has more changes, which we’re not showing to keep the length of
this chapter down.





This small interactive session shows what changed between Flask’s and
Werkzeug’s Response classes:


>>> import werkzeug
>>> import flask
>>>
>>> werkzeug.wrappers.Response.default_mimetype
'text/plain'
>>> flask.wrappers.Response.default_mimetype
'text/html'
>>> r1 = werkzeug.wrappers.Response('hello', mimetype='text/html')
>>> r1.mimetype
u'text/html'
>>> r1.default_mimetype
'text/plain'
>>> r1 = werkzeug.wrappers.Response('hello')
>>> r1.mimetype
'text/plain'


The point of changing the default mimetype was just to make a little
less typing for Flask users when building response objects that
contain HTML (the expected use with Flask).
Sane defaults make your code much, much easier for the average
user.


Sane Defaults Can Be Important

Sometimes defaults matter a lot more than just for ease of use.
For example, Flask sets the key for sessionization and secure communication to Null by default. When the key is null, an error will be raised if the app attempts to start a secure session. Forcing this error means users will
make their own secret keys—the other (bad) options would
be to either silently allow a null session key and insecure
sessionization, or to provide a default key like mysecretkey
that would invariably not be updated (and thus be used in deployment)
by many.



















Modularity (also one honking great idea)


The docstring for flask.wrappers.Response let users know that
they could subclass the Response object and use their
newly defined class in the main Flask object.


In this excerpt from flask/flask/app.py, we highlight some of the other
modularity built into Flask:


class Flask(_PackageBoundObject):
    """ ... skip the docstring ...
    """
    #: The class that is used for request objects.  See :class:`~flask.Request`
    #: for more information.
    request_class = Request  [image: 1]

    #: The class that is used for response objects.  See
    #: :class:`~flask.Response` for more information.
    response_class = Response  [image: 2]

    #: The class that is used for the Jinja environment.
    #:
    #: .. versionadded:: 0.11
    jinja_environment = Environment  [image: 3]

    ##~~ ... skip some other definitions ...

    url_rule_class = Rule
    test_client_class = None
    session_interface = SecureCookieSessionInterface()

    ##~~ .. etc. ..  [image: 4]


	[image: 1]

	Here’s where the custom Request class can be substituted.


	[image: 2]

	And here is the place to identify the custom Response class.
These are class attributes (rather than instance attributes) of the Flask class,
and are named in a clear way that makes it obvious what their
purpose is.


	[image: 3]

	The Environment class is a subclass of Jinja2’s Environment
that has the ability to understand Flask Blueprints, which
make it possible to build larger, multifile Flask applications.


	[image: 4]

	There are other modular options that are not shown because
it was getting repetitive.





If you search through the Flask class definition, you can
find where these classes are instantiated and used. The point
of showing it to you is that these class definitions didn’t
have to be exposed to the user—this was an explicit structural
choice done to give the library user more control over how Flask behaves.


When people talk about Flask’s modularity, they’re not just
talking about how you can use any database backend you want, they’re
also talking about this capability to plug in and use different classes.


You’ve now seen some examples of well-written, very Zen Python code.


We highly recommend you take a look
at the full code of each of the programs discussed here:
the best way to become a good coder is to read great code.
And remember, whenever coding gets tough, use the source, Luke!






















1 For a book that contains decades of experience about reading and refactoring code, we recommend Object-Oriented Reengineering Patterns (Square Bracket Associates) by Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz.
2 A daemon is a computer program that runs as a background process.
3 If you run into trouble with lxml requiring a more recent libxml2 shared library, just install an earlier version of lxml by typing: pip uninstall lxml;pip install lxml==3.5.0. It will work fine.
4 When you daemonize a process, you fork it, detach its session ID, and fork it again, so that the process is totally disconnected from the terminal you’re running it in. (Nondaemonized programs exit when the terminal is closed—you may have seen the warning message “Are you sure you want to close this terminal? Closing it will kill the following processes:” before listing all of the currently running processes.) A daemonized process will run even after the terminal window closes. It’s named daemon after Maxwell’s daemon (a clever daemon, not a nefarious one).
5 In PyCharm, do this by navigating in the menu bar to PyCharm → Preferences → Project:Diamond → Project Interpreter, and then selecting the path to the Python interpreter in the current virtual environment.
6 In Python, an abstract base class is a class that has left certain methods undefined, with the expectation that the developer will define them in the subclass. In the abstract base class, this function raises a NotImplementedError. A more modern alternative is to use Python’s module for abstract base classes, abc, first implemented in Python 2.6, which will error when constructing an incomplete class rather than when trying to access that class’s unimplemented method. The full specification is defined in PEP 3119.
7 This is a paraphrase of a great blog post on the subject by Larry Cuban, a professor emeritus of education at Stanford, titled “The Difference Between Complicated and Complex Matters.”
8 Python has a recursion limit (a maximum number of times a function is allowed to call itself) that’s relatively restrictive by default, to discourage excessive use of recursion. Get your recursion limit by typing import sys; sys.getrecursionlimit().
9 Programming languages that can do this are said to have first-class functions—functions are treated as first-class citizens, like any other object.
10 PID stands for “process identifier.” Every process has a unique identifier that is available in Python using the os module in the standard library: os.getpid().
11 ASCII is default in Python 2, and UTF-8 is default in Python 3. There are multiple allowed ways to communicate encoding, all listed in PEP 263. You can use the one that works best with your favorite text editor.
12 If you need a vocabulary refresh, RFC 7231 is the HTTP semantics document. If you scan the table of contents and read the introduction, you’ll know enough about the scope to tell whether the definition you want is covered, and where to find it.
13 These are defined in section 4.3 of the current Hypertext Transfer Protocol request for comments.
14 The module http.cookiejar was previously cookielib in Python 2, and urllib.requests.Request was previously urllib2.Request in Python 2.
15 This method makes it possible to handle cross-origin      requests (like getting a JavaScript library hosted on      a third-party site).      It is supposed to return the origin host of the request,      defined in      IETF RFC 2965.
16 Since then, PEP 333 has been superseded by a specification updated to include some Python 3–specific details, PEP 3333. For a digestible but very thorough introduction, we recommend Ian Bicking’s WSGI tutorial.
17 re.VERBOSE allows you to write more readable regular expressions by changing the way whitespace is treated, and by allowing comments. Read more in the re documentation.
18 That is, if it’s callable, or iterable, or has the correct method defined …
19 A reference to Ruby on Rails, which popularized web frameworks, and which is much more similar to Django’s style of “everything included,” rather than Flask’s style of “nearly nothing included” (until you add plug-ins). Django is a great choice when the things you want included are the things Django provides—it was made, and is fantastic for, hosting an online newspaper.
20 WSGI is a Python standard, defined in PEP 333 and PEP 3333 for how an application can communicate with a web server.
21 The Python call stack contains the instructions that are in progress, being run by the Python interpreter.  So if function f() calls function g(), then function f() will go on the stack first, and g() will be pushed on top of f() when it’s called. When g() returns, it is popped off of (removed from) the stack, and then f() will continue where it left off. It is called a stack, because conceptually it works the same way a dish washer will approach a stack of plates—new ones go on the top, and you always deal with the top ones first.



Chapter 6. Shipping Great Code



This chapter focuses on best practices
for packaging and distributing Python code.
You’ll either want to
create a Python library to be imported and used by other developers,
or create a standalone application for others to use,
like pytest.


The ecosystem around Python packaging has become
a lot more straightforward in the past few years, thanks to the
work of the
Python Packaging Authority (PyPA)1—the people who maintain pip, the Python Package Index (PyPI), and much of the infrastructure
relevant to Python packaging.
Their
packaging documentation is stellar,
so we won’t reinvent the wheel
in “Packaging Your Code”, but we will briefly show two ways
to host packages from a private site, and talk about
how to upload code to Anaconda.org, the commercial analogue to
PyPI run by Continuum Analytics.


The downside of distributing code through PyPI or other
package repositories is that the recipient
must understand how to install the required version of Python
and be able and willing to use tools such as pip to install your code’s
other dependencies. This is fine when distributing to other developers but
makes the method unsuitable for distributing applications to end users
who aren’t coders. For that, use one of the tools in “Freezing Your Code”.


Those making Python packages for Linux may also consider a Linux distro
package (e.g., a .deb file on Debian/Ubuntu; called “build distributions”
in Python documentation). That route is a lot of work to maintain, but we
give you some options in “Packaging for Linux-Built Distributions”.
This is like freezing, but with the Python interpreter removed from the bundle.


Finally, we’ll share a pro tip in “Executable ZIP Files”:
if your code is in a ZIP archive (.zip)
with a specific header, you can just execute the ZIP file.
When you know your target audience has Python installed already,
and your project is purely Python code, this is a fine option.








Useful Vocabulary and Concepts


Until the PyPA’s formation, there wasn’t actually a single, obvious
way to do packaging (as can be seen from this historical discussion on Stack Overflow).
Here are the most important vocabulary words discussed in this chapter
(there are more definitions in the
PyPA glossary):


	Dependencies

	
Python packages list their Python library depenencies either in a requirements.txt file (for testing or application deployment), or in the install_requires argument to setuptools.setup() when it is called in a setup.py file.


In some projects there can be other dependencies, such as a Postgres database, a C compiler, or a C library shared object. These may not be explicitly stated, but if absent will break the build. If you build libraries like these, Paul Kehrer’s seminar on distributing compiled modules may help.



	Built distribution

	
A format of distribution for a Python package (and optionally other resources and metadata)
that is in a form that can be installed and then run without further compilation.



	Egg

	
Eggs are a built distribution format—basically, they’re ZIP files with a specific structure,
containing metadata for installation.  They were introduced by the Setuptools library,
and were the de facto standard for years, but were never an official Python
packaging format.
They have been replaced by wheels as of PEP 427.
You can read all about the differences between the formats in “Wheel vs Egg” in the Python Packaging User Guide.



	Wheel

	
Wheels are a built distribution format that is now the standard for distribution
of built Python libraries. They are a packaged as ZIP files with metadata that pip will use
to install and uninstall the package. The file has a .whl extension, by convention,
and follows a specific naming convention that communicates specifically what platform,
build, and interpreter it is for.






Aside from having Python installed, regular Python packages, written only in Python, don’t need anything but other Python
libraries that can be downloaded from PyPI
(or eventually Warehouse—the upcoming newer location for PyPI) to run.
The difficulty (which we tried to get ahead of with the extra installation steps in Chapter 2)
comes when the Python library has dependencies outside of Python—on C libraries or
system executables, for example. Tools like Buildout and Conda are meant to help,
when the distribution gets more complicated than even the Wheel format can handle.

















Packaging Your Code


To package code for distribution
means to create the necessary file structure,
add the required files, and define the appropriate variables
to comform to relevant PEPs and the current best practice
described in “Packaging and Distributing Projects”
in the
Python Packaging Guide,2
or the packaging requirements of other repositories, like http://anaconda.org/.


“Package” Versus “Distribution Package” Versus “Installation Package”

It may be confusing that we’re using package to mean so many
different things. Right now, we are talking about distribution packages,
which include the (regular Python) packages, modules, and additional files needed
to define a release.
We also sometimes refer to libraries as installation packages;
these are the top-level package directories that contain an entire library.
Finally, the humble package is, as always, any directory containing
an __init__.py and other modules (*.py files).
The PyPA keeps a glossary of packaging-related terms.












Conda


If you have Anaconda’s redistribution of Python installed,
you can still use pip and PyPI,
but your default package manager is conda, and your default
package repository is http://anaconda.org/.
We recommend following this
tutorial for building packages,
which ends with instructions on uploading to Anaconda.org.


If you are making a library for scientific or statistical applications—even if you don’t use Anaconda yourself—you will want to make an
Anaconda distribution in order to easily reach the wide academic,
commercial, and Windows-using audiences that choose Anaconda
to get binaries that work without effort.

















PyPI


The well-established ecosystem of tools such as PyPI and pip
make it easy for other developers to download and install
your package either for casual experiments, or as part of
large professional systems.


If you’re writing an open source Python module, PyPI,
more properly known as The Cheeseshop, is the place to host it.3
If your code isn’t packaged on PyPI, it will be harder
for other developers to find it and to use it as part of their existing
process. They will regard such projects with substantial suspicion of being
either badly managed, not yet ready for release, or abandoned.


The definitive souce for correct, up-to-date information about Python packaging
is the PyPA-maintained
Python Packaging Guide.

Use testPyPI for Testing and PyPI for Real

If you are just testing your packaging settings, or teaching someone
how to use PyPI, you can use
testPyPI
and run your unit tests before pushing a real version to PyPI.
Like with PyPI, you must change the version number every time
you push a new file.














Sample project


The PyPA’s sample project
demonstrates the current best practice for packaging a Python project.
Comments in the
setup.py module
give advice, and identify relevant PEPs governing options.
The overall file structure is organized as required, with helpful comments
about each file’s purpose and what it should contain.


The project’s README file links back to the packaging guide
and to a
tutorial about packaging and distribution.

















Use pip, not easy_install


Since 2011, the PyPA has worked to clear up
considerable confusion
and considerable discussion
about the canonical way to distribute, package, and install Python libraries.
pip was chosen as Python’s default package installer in
PEP 453,
and it is installed by default with Python 3.4 (first released in 2014)
and later releases.4


The tools have a number of nonoverlapping uses, and older
systems may still need easy_install.
This chart from the
PyPA compares pip and easy_install,
identifying what each tool does and does not offer.


When developing your own code, you’ll want to install using
pip install --editable . so that you can continue to edit the code without reinstalling.

















Personal PyPI


If you want to install packages from a source other than PyPI, (e.g.,
an internal work server for proprietary company packages,
or packages checked and blessed by your security and legal teams),
you can do it by hosting a simple HTTP
server, running from the directory containing the packages to be
installed.


For example, say you want to install a package called MyPackage.tar.gz,
with the following directory structure:


.
|--- archive/
     |--- MyPackage/
          |--- MyPackage.tar.gz


You can run an HTTP server from the archive directory by typing
the following in a shell:


$ cd archive
$ python3 -m SimpleHTTPServer 9000


This runs a simple HTTP server running on port 9000 and will list all packages
(in this case, MyPackage). Now you can install MyPackage using any Python
package installer. Using pip on the command line, you would do it like this:


$ pip install --extra-index-url=http://127.0.0.1:9000/ MyPackage

Warning

Having a folder with the same name as the package name is crucial here. But if you feel that the structure MyPackage/MyPackage.tar.gz is redundant, you can always pull the package out of the directory and install with a direct path:


$ pip install http://127.0.0.1:9000/MyPackage.tar.gz



















Pypiserver


Pypiserver is a minimal PyPI-compatible server.  It can be used to serve a set of packages to easy_install
or pip.  It includes helpful features like an administrative command
(-U) which will update all its packages to their latest versions
found on PyPI.

















S3-hosted PyPI


Another option for a personal PyPI server is to host on Amazon’s
Simple Storage Service, Amazon S3.
You must first have an Amazon Web Service (AWS) account with an S3 bucket.
Be sure to follow the
bucket naming rules—you’ll be allowed to create a bucket that breaks the naming rules, but you won’t be able to access it.
To use your bucket, first create a virtual environment on your own machine and
install all of your requirements from PyPI or another source.
Then install pip2pi:


$ pip install git+https://github.com/wolever/pip2pi.git


And follow the pip2pi README file for the pip2tgz and dir2pi commands.
Either you’ll do:


$ pip2tgz packages/ YourPackage+


or these two commands:


$ pip2tgz packages/ -r requirements.txt
$ dir2pi packages/


Now, upload your files. Use a client like Cyberduck
to sync the entire packages folder to your S3 bucket.
Make sure you upload packages/simple/index.html as well as all
new files and directories.


By default, when you upload new files to the S3 bucket, they will have
user-only permissions.
If you get HTTP 403 when trying to install a package, make sure you’ve
set the permissions correctly:
use the Amazon web console to set the READ permission of the files to EVERYONE.
Your team will now be able to install your package with:


$ pip install \
  --index-url=http://your-s3-bucket/packages/simple/ \
  YourPackage+

















VCS support for pip


It is possible to pull code directly from a version control system
using pip; to do so, follow these instructions.
This is another alternative to hosting a personal PyPI.
An example command using pip with a GitHub project is:


$ pip install git+git://git.myproject.org/MyProject#egg=MyProject


In which the egg does not have to be an egg—it is the name of the directory
in your project that you want to install.





























Freezing Your Code


To freeze your code means to
create a standalone executable bundle you can distribute to end users
who do not have Python installed on their computer—the
distributed file or bundle contains both the application code and
the Python interpreter.


Applications such as
Dropbox,
Eve Online,
Civilization IV, and
BitTorrent client—all primarily written in Python—do this.


The advantage of distributing this way is that your application will just work,
even if the user doesn’t already have the required (or any) version of Python
installed. On Windows, and even on many Linux distributions and OS X, the right
version of Python will not already be installed.
Besides, end user software should always be in an executable format. Files
ending in .py are for software engineers and system administrators.


A disadvantage of freezing is that it increases the size of your
distribution by about 2–12 MB. Also, you will be responsible for shipping
updated versions of your application when security vulnerabilities to
Python are patched.


Check the License When Using C Libraries

You should check the licensing for every package you use all the way
up your tree of dependencies, for all operating systems. But
we want to particularly call out Windows because
all Windows solutions need MS Visual C++ dynamically linked libraries (DLLs)
to be installed on the target machine.
You may or may not have permission to redistribute specific libraries and
must check your license permissions before distributing your app (see Microsoft’s
legal message about Visual C++ files for more information).
You can also optionally use the MinGW compiler
(Minimalist GNU for Windows), but because it’s a GNU project, the licensing may be
restrictive in the opposite (must always
be open and free) way.



Also, MinGW and the Visual C++ compilers aren’t completely the same,
so you should check whether your unit tests still run as you expected after using
a different compiler.
This is getting into the weeds, so ignore all of this if you don’t frequently
compile C code on Windows—but, for example, there are still a few
problems with MinGW and NumPy.
There is a post recommending a
MinGW build with static toolchains
on the NumPy wiki.




We compare the popular freezing tools in
Table 6-1.
They all interface with distuils in
Python’s Standard Library. They cannot
do cross-platform freezes,5 so you must perform each build
on the target platform.


The tools are listed in the order they will appear
in this section.
Both PyInstaller and cx_Freeze can be used on all platforms,
py2app only works on OS X,
py2exe only works on Windows,
and bbFreeze can work on both UNIX-like and Windows
systems, but not OS X, and it has not yet been
ported to Python 3. It can generate eggs, though,
in case you need this ability for your legacy system.


Table 6-1. Freezing tools


	
	pyInstaller
	cx_Freeze
	py2app
	py2exe
	bbFreeze





	Python 3

	Yes

	Yes

	Yes

	Yes

	 — 




	License

	Modified GPL

	Modified PSF

	MIT

	MIT

	Zlib




	Windows

	Yes

	Yes

	 — 

	Yes

	Yes




	Linux

	Yes

	Yes

	 — 

	 — 

	Yes




	OS X

	Yes

	Yes

	Yes

	 — 

	 — 




	Eggs

	Yes

	Yes

	Yes

	 — 

	Yes




	Support for 

pkg_resourcesa

	 — 

	 — 

	Yes

	 — 

	Yes




	One-file modeb

	Yes

	 — 

	 — 

	Yes

	 — 




	a pkg_resources is a separate module bundled with Setuptools that can be used  to dynamically find dependencies. This is a challenge when freezing code because it’s hard to discover dynamically loaded dependencies from the static code.  PyInstaller, for example, only says they will get it right when the introspection is on an egg file.
b One-file mode is the option to bundle an application and all its dependencies into a single executable file on Windows. InnoSetup and the Nullsoft Scriptable Install System (NSIS) are both popular tools that create installers and can bundle code into a single .exe file.












PyInstaller


PyInstaller can be used to make applications
on OS X, Windows, and Linux.
Its primary goal is to be compatible with third-party packages out of the
box—so the freeze just works.6
They have a list of
PyInstaller supported packages.
Supported graphical libraries include Pillow, pygame,
PyOpenGL, PyGTK, PyQT4,
PyQT5, PySide (except for Qt plug-ins), and wxPython.
Supported scientific tools include NumPy, Matplotlib, Pandas, and SciPy.


PyInstaller has a
modified GPL license
“with a special exception which allows [anyone] to use PyInstaller to build and
distribute non-free programs (including commercial ones)”—so the license(s) you must comply with will depend on the libraries you used to develop
your code.
Their team even provides instructions for
hiding the source code
for those making commercial applications or wanting to
prevent others from altering the code.
But do read the license (consult a lawyer if it’s important or https://tldrlegal.com/ if it’s not that important)
if you need to modify their source code to build your app, because you may be required to share that change.


The PyInstaller Manual is
well organized and detailed. Check the PyInstaller
requirements page to confirm that your system is compatible—for Windows,
you need XP or later; for Linux systems, you’ll need several terminal applications
(the documentation lists where you can find them); and for
OS X, you need version 10.7 (Lion) or later.
You can use Wine (a Windows emulator) to cross-compile for Windows while running under Linux or OS X.


To install PyInstaller, use pip from within the same virtual
environment where you are building your app:


$ pip install pyinstaller


To create a standard executable from a module named script.py, use:


$ pyinstaller script.py


To create a  windowed OS X or Windows application, use the --windowed option
on the command line like this:


$ pyinstaller --windowed script.spec


This creates two new directories and a file in the same folder where you executed
the pyinstaller command:



	
A .spec file, which can be rerun by PyInstaller to re-create the build.



	
A build folder that holds some log files.



	
A dist folder, that holds the main executable and some dependent Python libraries.






PyInstaller puts all the Python libraries used by your application
into the dist folder,
so when distributing the executable, distribute the whole dist folder.


The script.spec file can be edited to
customize the build,
with options to:



	
Bundle data files with the executable.



	
Include runtime libraries (.dll or .so files) that PyInstaller can’t infer automatically.



	
Add Python runtime options to the executable.






This is useful, because now the file can be stored with version control,
making future builds easier.
The PyInstaller wiki page contains
build recipes
for some common applications, including Django, PyQt4, and code signing
for Windows and OS X. This is the most current set of quick tutorials for
PyInstaller.
Now, the edited script.spec can be run as an argument to
pyinstaller (instead of using script.py again):


$ pyinstaller script.spec

Note

When PyInstaller is given a .spec file, it takes all of its options from
the contents of that file and ignores command-line options, except for:
--upx-dir=, --distpath=, --workpath=, --noconfirm, and --ascii.



















cx_Freeze


Like PyInstaller,
cx_Freeze
can freeze Python projects on Linux,
OS X, and Windows systems. However,
the cx_Freeze team does not recommend compiling for Windows
using Wine because they’ve had to manually copy some
files around to get the app to work.
To install it, use pip:


$ pip install cx_Freeze


The easiest way to make the executable is to run cxfreeze
from the command line, but you have more options (and can use version control)
if you write a setup.py script.
This is the same setup.py as is used by distutils in Python’s Standard Library—cx_Freeze extends distutils to provide extra commands (and modify some others).
These options can be provided at the command line or
in the setup script, or in a setup.cfg
configuration file.


The script cxfreeze-quickstart creates a
basic setup.py file that can be modified and version controlled
for future builds. Here is an example session for a script named hello.py:


$ cxfreeze-quickstart
Project name: hello_world
Version [1.0]:
Description: "This application says hello."
Python file to make executable from: hello.py
Executable file name [hello]:
(C)onsole application, (G)UI application, or (S)ervice [C]:
Save setup script to [setup.py]:

Setup script written to setup.py; run it as:
    python setup.py build
Run this now [n]?


Now we have a setup script, and can modify it to match
what our app needs. The options are in the cx_Freeze documentation under
“distutils setup scripts.”
There are also example setup.py scripts and minimal working
applications that demonstrate how to freeze applications that
use PyQT4, Tkinter, wxPython, Matplotlib, Zope, and other libraries
in the samples/ directory of the
cx_Freeze source code:
navigate from the top directory to cx_Freeze/cx_Freeze/samples/.
The code is also bundled with the installed library.
You can get the path by typing:


$ python -c 'import cx_Freeze; print(cx_Freeze.__path__[0])'


Once you are done editing setup.py, you can use it to build
your executable using one of these commands:


$ python setup.py build_exe  [image: 1]
$ python setup.py bdist_msi  [image: 2]
$ python setup.py bdist_rpm  [image: 3]
$ python setup.py bdist_mac  [image: 4]
$ python setup.py bdist_dmg  [image: 5]


	[image: 1]

	This is the option to build the command-line executable.


	[image: 2]

	This is modified by cx_Freeze from the original distutils command to
also handle Windows executables and their dependencies.


	[image: 3]

	This is modified from the original distutils command to ensure Linux packages are
created with the proper architecture for the current platform.


	[image: 4]

	This creates a standalone windowed OS X application bundle (.app)
containing the dependencies and the executable.


	[image: 5]

	This one creates the .app bundle and also creates
an application bundle, then packages it into a DMG disk image.




















py2app


py2app builds executables
for OS X. Like cx_Freeze, it extends distutils, adding the
new command py2app.
To install it, use pip:


$ pip install py2app


Next, autogenerate a setup.py script using the command
py2applet, like this:


$ py2applet --make-setup hello.py
Wrote setup.py


This makes a basic setup.py, which you can
modify for your needs. There are examples
with minimal working code and the appropriate
setup.py scripts that use libraries including
PyObjC, PyOpenGL, pygame, PySide, PyQT, Tkinter, and wxPython
in
py2app’s source code.
To find them, navigate from the top directory to
py2app/examples/.


Then, run setup.py with the py2app command to make two directores, build and dist.
Be sure to clean the directories when you rebuild;
the command looks like this:


$ rm -rf build dist
$ python setup.py py2app


For additional documentation, check out the py2app tutorial.
The build may exit on an AttributeError. If so, read this tutorial about
using py2app—the variables scan_code and load_module may need to be preceded
with underscores: _scan_code and _load_module.

















py2exe


py2exe builds executables for Windows.
It is very popular, and the Windows version of BitTorrent
was made using py2exe.
Like cx_Freeze and py2exe, it extends distutils, this time adding the
command py2exe.
If you need to use it with Python 2, download the older version of
py2exe from sourceforge. Otherwise, for Python 3.3+, use pip:


$ pip install py2exe


The py2exe tutorial is excellent (apparently
what happens when documentation is hosted wiki-style rather than in source control).
The most basic setup.py looks like this:


from distutils.core import setup
import py2exe

setup(
      windows=[{'script': 'hello.py'}],
)


The documentation lists all of the
configuration options for py2exe
and has detailed notes about how to (optionally)
include icons
or create a single file executable.
Depending on your own license for Microsoft Visual C++, you may or may
not be able to distribute the Microsoft Visual C++ runtime DLL with your code.
If you can, here are the instructions to
 distribute the Visual C++ DLL alongside the .exe file;
otherwise, you can provide your application’s users with a way to download and install the
Microsoft Visual C++ 2008 redistributable packge
or the Visual C++ 2010 redistributable packge
if you’re using Python 3.3 or later.


Once you have modified your setup file, you can generate the .exe into dist
directory by typing:


$ python setup.py py2exe

















bbFreeze


The bbFreeze library
currently has no maintainer and has not been ported to Python 3,
but it is still frequently downloaded.
Like cx_Freeze, py2app, and py2exe, it extends distutils,
adding the command bbfreeze. In fact, older versions of bbFreeze
were based on cx_Freeze.
The appeal here may be for those who maintain legacy systems
and would like to packge built distributions into eggs to be used
across their infrastructure.
To install it, use pip:


$ pip install bbfreeze  # bbFreeze can't work with Python3


It is light on documentation, but has
build recipes
for Flup,
Django, Twisted, Matplotlib, GTK, and Tkinter,
among others. To make executable binaries, use the command
bdist_bbfreeze like this:


$ bdist_bbfreeze hello.py


It will create a directory dist in the location
where bbfreeze was run that contains a Python interpreter
and an executable with
the same name as the script (hello.py in this case).


To generate eggs, use the new distutils command:


$ python setup.py bdist_bbfreeze


There are other options, like tagging builds as snapshots
or daily builds. Get more usage information using the standard --help
option:


$ python setup.py bdist_bbfreeze --help


For fine-tuning, you can use the bbfreeze.Freezer class, which is the
preferred way to use bbfreeze. It has flags for whether to use compression
in the created ZIP file, whether to include a Python interpreter, and which
scripts to include.
























Packaging for Linux-Built Distributions


Creating a Linux built distribution is arguably the “right way”
to distribute code on Linux:
a built distribution is like a frozen package, but it
doesn’t include the Python interpreter, so
the download and install are about 2 MB smaller than when using freezing.7
Also, if a distribution releases a new security update for Python, your
application will automatically start using that new version of Python.


The bdist_rpm command from the distutils module in Python’s Standard Library makes
it trivially easy to
produce an RPM file
for use by Linux distributions like Red Hat or SuSE.


Caveats to Linux Distribution Packages

Creating and maintaining the different configurations required for
each distribution’s format (e.g., *.deb for Debian/Ubuntu, *.rpm for Red
Hat/Fedora, etc.) is a fair amount of work. If your code is an application that
you plan to distribute on other platforms, then you’ll also have to create and
maintain the separate config required to freeze your application for Windows
and OS X. It would be much less work to simply create and maintain a single
config for one of the cross-platform freezing tools described in “Freezing Your Code”,
which produce standalone executables for all
distributions of Linux, as well as Windows and OS X.


Creating a distribution package is also problematic if your code is for a
version of Python that isn’t currently supported by a distribution.
Having to tell end users of some Ubuntu versions that they need to add the
“dead-snakes” PPA
using sudo apt-repository commands before they can install your .deb file
makes for an unpleasant user experience. Not only that, but you’d have
to maintain a custom equivalent of these instructions for every distribution,
and worse, have your users read, understand, and act on them.




Having said all that, here are links to the Python packaging instructions
for some popular Linux distributions:



	
Fedora



	
Debian and Ubuntu



	
Arch






If you want a faster way to package code for all of the flavors of Linux
out there, you may want to try the
effing package manager (fpm).
It’s written
in Ruby and shell, but we like it because it packages code from multiple source types
(including Python) into targets including Debian (.deb), RedHat (.rpm), OS X (.pkg),
Solaris, and others. It’s a great fast hack but does not provide a tree of dependencies,
so package maintainers may frown upon it.
Or Debian users can try Alien, a Perl program
that converts between Debian, RedHat, Stampede (.slp), and Slackware (.tgz)
file formats, but the code hasn’t been updated since 2014, and the maintainer
has stepped down.


For those interested, Rob McQueen posted some insights about
deploying server apps at work,
on Debian.

















Executable ZIP Files


It’s a little-known secret that Python has been able to execute ZIP files
containing a __main__.py since version 2.6. This is a great way to
package pure Python apps (applications
that don’t require platform-specific binaries).
So, if you have a single file __main__.py like this:


if __name__ == '__main__':
    try:
        print 'ping!'
    except SyntaxError:  # Python 3
        print('ping!')


And you create a ZIP file containing it by typing this on the command line:


$ zip machine.zip __main__.py


You can then send that ZIP file to other people, and so long as they have Python,
they can execute it on the command line like this:


$ python machine.zip
ping!


Or if you want to make it an executable, you can prepend a POSIX “shebang” (#!)
to the ZIP file—the ZIP file format allows this—and you now have
a self-contained app (provided Python is reachable via the path in the shebang).
Here is an example that continues on from the previous code:


$ echo '#!/usr/bin/env python' > machine
$ cat machine.zip >> machine
$ chmod u+x machine


And now it’s an executable:


$ ./machine
ping!

Note

Since Python 3.5, there is also a module zipapp
in the Standard Library that makes it more convenient to create these ZIP files.
It also adds flexibility so that the main file need no longer be called __main__.py.




If you vendorize your dependencies by placing them
inside your current directory, and change your import statements,
you can make an executable ZIP file with all dependencies included.
So, if your directory structure looks like this:


.
|--- archive/
     |--- __main__.py


and you are running inside a virtual environment that
has only your dependencies installed, you can type the
following in the shell to include your dependencies:


$ cd archive
$ pip freeze | xargs pip install --target=packages
$ touch packages/__init__.py


The xargs commands takes standard input from pip freeze
and turns it into the argument list for the pip command,
and the --target=packages option sends the installation to
a new directory, packages.
The touch command creates an empty file if none exists;
otherwise, it updates the file’s timestamp to the current time.
The directory structure will now look something like this:


.
|--- archive/
     |--- __main__.py
     |--- packages/
          |--- __init__.py
          |--- dependency_one/
          |--- dependency_two/


If you do this, make sure to also change your import statements to
use the packages directory you just created:


#import dependency_one  # not this
import packages.dependency_one as dependency_one


And then just recursively include all of the directories
in the new ZIP file using zip -r, like this:


$ cd archive
$ zip machine.zip -r *
$ echo '#!/usr/bin/env python' > machine
$ cat machine.zip >> machine
$ chmod ug+x machine










1 Rumor has it they prefer to be called the “Ministry of Installation.” Nick Coghlan, the BDFL-delegate for packaging related PEPs, wrote a thoughtful essay on the whole system, its history, and where it should go on his blog a few years ago.
2 There appear to be two URLs mirroring the same content at the moment: https://python-packaging-user-guide.readthedocs.org/ and https://packaging.python.org.
3 PyPI is in the process of being switched to the Warehouse, which is now in an evaluation phase. From what we can tell, they are changing the UI, but not the API. Nicole Harris, one of the PyPA developers, wrote a brief introduction to Warehouse, for the curious.
4 If you have Python 3.4 or higher without pip, you can install it on the command line with python -m ensurepip.
5 Freezing Python code on Linux into a Windows executable was attempted in PyInstaller 1.4, but dropped in 1.5 because it didn’t work well except for pure Python programs (so, no GUI applications).
6 As we’ll see when looking at other installers, the challenge is not just in finding and  bundling the compatible C libraries for the specific version of a Python library, but also in discovering peripheral configuration files, sprites or special graphics, and other files that aren’t discoverable to the freezing tool by inspecting your source code.
7 Some people may have heard these called “binary packages” or “installers”; the official Python name for them is “built distributions”—meaning RPMs, or Debian packages, or executable installers for Windows. The wheel format is also a type of built distribution, but for various reasons touched on in a micro-rant about wheels it is often better to make platform-specific Linux distributions like described in this section.



Part III. Scenario Guide



At this point, you have Python installed, you’ve selected an editor, you
know what it means to be Pythonic, you’ve read
a few lines of great Python code, and you can share your own
code with the rest of the world.
This part of the guide will help you
choose libraries to use in your project,
whatever you decide to do, by sharing our community’s
most common approaches to specific coding scenarios,
grouped by similar use:


	Chapter 7, User Interaction

	
We cover libraries for
  all types of user interaction, from console
  applications to GUIs, and web applications.



	Chapter 8, Code Management and Improvement

	
We describe tools for systems administration,
  tools to interface with C and C++ libraries,
  and ways to improve Python’s speed.



	Chapter 9, Software Interfaces

	
We summarize libraries used for for networking,
  including asynchronous libraries and libraries for
  serialization and cryptography.



	Chapter 10, Data Manipulation

	
We survey the libraries that provide
  symbolic and numerical algorithms, plots, and tools for
  image and audio processing.



	Chapter 11, Data Persistence

	
Last, we highlight some of the differences between
  the popular ORM libraries that interact with databases.









Chapter 7. User Interaction



Libraries in this chapter help developers
write code that interacts with end users.
We describe the Jupyter project—it’s unique—then cover the more typical command-line and graphical
user interfaces (GUIs), and finish with
a discussion of tools for web applications.








Jupyter Notebooks


Jupyter is a web application that
allows you to display and execute Python interactively.
It’s listed here because it’s a user-to-user interface.


Users view Jupyter’s client interface—written in CSS, HTML, and
JavaScript—in a web browser on the client machine.
The client communicates with a
a kernel written in Python (or a number of other languages)
that executes blocks of code and responds with the result.
Content is stored on the server machine
in “notebook” (*.nb) format—text-only JSON divided into
a series of “cells”
that can contain HTML, Markdown (a human-readable markup language like
what’s used on wiki pages), raw notes,
or executable code. The server can be local (on the user’s own
laptop), or remote like the
sample notebooks at https://try.jupyter.org/.


The Jupyter server requires at least Python 3.3 and has been made compatible
with Python 2.7.
It comes bundled with the most recent versions of commercial Python redistributions
(described in “Commercial Python Redistributions”) such as
Canopy and Anaconda, so no further installation is required with these tools,
provided you can compile and build C code
on your system, as we discussed in Chapter 2.
After the proper setup, you can install Jupyter from the command line with pip:


$ pip install jupyter


A recent study using Jupyter in the classroom
found it to be an effective and popular way to create interactive lectures for students new to coding.

















Command-Line Applications


Command-line (also called console) applications
are computer programs designed to be used from a text interface, such as a
shell.
They can be simple commands—such as pep8 or virtualenv—or interactive, like the python interpreter or
ipython. Some have subcommands,
such as pip install, pip uninstall, or pip freeze—all of which have their own options in addition
to pip’s general options.
All of them are likely started in a main() function; our BDFL has
shared his opinion
about what makes a good one.


We’ll use an example pip call to name the components
that can be present when invoking a command-line application:


   [image: 1]    [image: 2]       [image: 3]
$ pip install --user -r requirements.txt



	[image: 1]

	The command is the name of the executable being invoked.


	[image: 2]

	Arguments come after the command and do not begin with a dash. They may also be referred to as parameters or subcommands.


	[image: 3]

	Options begin with either one dash (for single characters, such as -h) or else with two dashes (for words, such as --help). They may also be referred to as flags or switches.





The libraries in Table 7-1
all provide different options for parsing arguments
or provide other useful tools for command-line applications.


Table 7-1. Command-line tools


	Library
	License
	Reasons to use





	argparse

	PSF license

	

	
In the Standard Library.



	
Gives you standard argument and option parsing.









	docopt

	MIT license

	

	
Gives you control over the layout of your help message.



	
Parses the command line
according to the
utility conventions defined in the POSIX standard.









	plac

	BSD 3-clause license

	

	
Autogenerates the help message from
an existing function signature.



	
Parses the command-line arguments
behind the scenes, passing them  directly to your function.









	click

	BSD 3-clause license

	

	
Provides decorators to make the help
message and parser (a lot like plac)



	
Lets you compose multiple subcommands together



	
Interfaces with other Flask plug-ins (Click is independent
from Flask, but originally written to help users compose
together command-line tools from
different Flask plug-ins without breaking things,
so it is already used in the Flask ecosystem)









	clint

	Internet Software Consortium (ISC) license

	

	
Provides formatting features like colors,
indentation, and columnar displays for your text output



	
Also provides type checking (e.g., check against a
regex, for an integer, or a path) in your interactive input



	
Gives you direct access to the argument list,
with some simple filtering and grouping tools









	cliff

	Apache 2.0 license

	

	
Provides a structured framework for a large
Python project with multiple subcommands



	
Builds an interactive environment to use the subcommands,
with no additional coding












In general, you should try and use tools provided in Python’s
Standard Library first, and only add other libraries to your project
when they offer something you want that the Standard Library doesn’t have.


The following sections provide more details about each of the command-line tools listed in
Table 7-1.












argparse


The module argparse (which replaces the now deprecated optparse)
exists in Python’s Standard Library to help with parsing command-line
options. The command-line interface provided by the HowDoI project
uses argparse—you can refer to it when building your own
command-line interface.


Here is the code to generate the parser:


import argparse
#
# ... skip a lot of code ...
#

def get_parser():
    parser = argparse.ArgumentParser(description='...truncated for brevity...')
    parser.add_argument('query', metavar='QUERY', type=str, nargs='*',
                        help='the question to answer')
    parser.add_argument('-p','--pos',
                        help='select answer in specified position (default: 1)',
                        default=1, type=int)
    parser.add_argument('-a','--all', help='display the full text of the answer',
                        action='store_true')
    parser.add_argument('-l','--link', help='display only the answer link',
                        action='store_true')
    parser.add_argument('-c', '--color', help='enable colorized output',
                        action='store_true')
    parser.add_argument('-n','--num-answers', help='number of answers to return',
                        default=1, type=int)
    parser.add_argument('-C','--clear-cache', help='clear the cache',
                        action='store_true')
    parser.add_argument('-v','--version',
                        help='displays the current version of howdoi',
                        action='store_true')
    return parser


The parser will parse the command line and create a dictionary
that maps each argument to a value. The action='store_true' indicates
the option is intended as a flag that, if present on the command line,
will be stored as True in the parser’s dictionary.

















docopt


docopt’s core philosophy is
that documentation should be beautiful and understandable.
It provides one main command, docopt.docopt(),
plus a few convenience functions and classes for power users.
The function docopt.docopt() takes developer-written POSIX-style
usage instructions, uses them to interpret
the user’s command-line arguments,
and returns a dictionary with
all of the arguments and options parsed from the command line.
It also appropriately handles the --help and --version options.


In the following example, the value of the variable
arguments is a dictionary with keys
name, --capitalize, and --num_repetitions:


#!/usr/bin env python3
"""Says hello to you.

  Usage:
    hello <name>... [options]
    hello -h | --help | --version

    -c, --capitalize  whether to capitalize the name
    -n REPS, --num_repetitions=REPS number of repetitions [default: 1]
"""

__version__ = "1.0.0"  # Needed for --version

def hello(name, repetitions=1):
    for rep in range(repetitions):
        print('Hello {}'.format(name))

if __name__ == "__main__":
    from docopt import docopt
    arguments = docopt(__doc__, version=__version__)
    name = ' '.join(arguments['<name>'])
    repetitions = arguments['--num_repetitions']
    if arguments['--capitalize']:
        name = name.upper()
    hello(name, repetitions=repetitions)


Since version 0.6.0, docopt can be used to create complex programs with subcommands that behave like the git command or Subversion’s svn command.
It can even be used when a subcommand is
written in different languages. There is a complete
example application
that mocks up a reimplementation of the git command
that explains how.

















Plac


Plac’s philosophy is
that all of the information necessary to parse a command
invocation is in the target function’s signature.
It is a lightweight (around 200 lines) wrapper around
the Python Standard Library’s argparse
and provides one main command, plac.plac(), which
infers the argument parser from the function signature,
parses the command line, and then invokes the function.


The library was supposed to be named Command-Line Argument Parser
(clap) but that ended up becoming taken a few days after its author chose
the name, so it’s
Plac—clap in reverse.
The usage statements aren’t informative, but look how few lines this example takes:


# hello.py

def hello(name, capitalize=False, repetitions=1):
  """Says hello to you."""
    if capitalize:
        name = name.upper()
    for rep in range(repetitions):
        print('Hello {}'.format(name))


if __name__ == "__main__":
    import plac
    plac.call(hello)


The usage statement looks like this:


$ python hello.py --help
usage: hello.py [-h] name [capitalize] [repetitions]

Says hello to you.

positional arguments:
  name
  capitalize   [False]
  repetitions  [1]

optional arguments:
  -h, --help   show this help message and exit


If you want to typecast (convert to the correct type) any of the
arguments before you pass them to the function, use
the annotations decorator:


import plac

@plac.annotations(
    name = plac.Annotation("the name to greet", type=str),
    capitalize = plac.Annotation("use allcaps", kind="flag", type=bool),
    repetitions = plac.Annotation("total repetitions", kind="option", type=int)
def hello(name, capitalize=False, repetitions=1):
  """Says hello to you."""
    if capitalize:
        name = name.upper()
    for rep in range(repetitions):
        print('Hello {}'.format(name))


Also, plac.Interpreter provides a
lightweight way to make a very quick interactive command-line application.
Examples are with plac’s
interactive mode documentation.

















Click


The main purpose of Click (the “Command Line-Interface Creation Kit”)
is to help developers create composable command-line interfaces with as little
code as possible. The Click documentation clarifies its relation to docopt:


The aim of Click is to make composable systems, whereas the aim of docopt is to build the most beautiful and hand-crafted command-line interfaces. These two goals conflict with one another in subtle ways. Click actively prevents people from implementing certain patterns in order to achieve unified command-line interfaces. You have very little input on reformatting your help pages for instance.



Its defaults will satisfy most developers’ needs,
but it’s highly configurable for power users.
Like Plac, it uses decorators to tie the parser definitions to
the functions that will use them, keeping command-line argument
management out of the functions themselves.


The hello.py application with Click looks like this:


import click

@click.command()
@click.argument('name', type=str)
@click.option('--capitalize', is_flag=True)
@click.option('--repetitions', default=1,
              help="Times to repeat the greeting.")
def hello(name, capitalize, repetitions):
    """Say hello, with capitalization and a name."""
    if capitalize:
        name = name.upper()
    for rep in range(repetitions):
        print('Hello {}'.format(name))

if __name__ == '__main__':
    hello()


Click parses the description from the command’s docstring
and creates its help message using a custom parser derived
from the Python Standard Library’s now deprecated optparse,
which was more compliant with the POSIX standard than argparse.1
The help message looks like this:


$ python hello.py --help
Usage: hello.py [OPTIONS] NAME

  Say hello, with capitalization and a name.

Options:
  --capitalize
  --repetitions INTEGER  Times to repeat the greeting.
  --help                 Show this message and exit.


But the real value of Click is
its modular composability—you can
add an outer grouping function, and then
any other click-decorated functions in your
project will become subcommands to that top-level command:


import click

@click.group()  [image: 1]
@click.option('--verbose', is_flag=True)
@click.pass_context  [image: 2]
def cli(ctx, verbose):
    ctx.obj = dict(verbose = verbose)  [image: 3]
    if ctx.obj['verbose']:
        click.echo("Now I am verbose.")

#  The 'hello' function is the same as before...

if __name__ == '__main__':
    cli()  [image: 4]


	[image: 1]

	The group() decorator makes a top-level command that
runs first, before executing the invoked subcommand.


	[image: 2]

	The pass_context decorator is how to (optionally) pass objects
from the grouped command to a subcommand, by making the first
argument a click.core.Context object.


	[image: 3]

	That object has a special attribute ctx.obj that can be passed
to subcommands that use an @click.pass_context decorator.


	[image: 4]

	Now instead of calling the function hello(),
call the function that was decorated with @click.group()—in our case, cli().




















Clint


The Clint library
is, like its name says, a collection of “Command-Line INterface Tools.”
It supports features such as CLI colors and indentation, a simple and powerful
column printer, iterator-based progress bars, and implicit argument handling.
This example shows the colorization and indentation tools:


"""Usage string."""
from clint.arguments import Args
from clint.textui import colored, columns, indent, puts

def hello(name, capitalize, repetitions):
    if capitalize:
        name = name.upper()
    with indent(5, quote=colored.magenta(' ~*~', bold=True)):  [image: 1]
        for i in range(repetitions):
            greeting = 'Hello {}'.format(colored.green(name))  [image: 2]
            puts(greeting)  [image: 3]


if __name__ == '__main__':
    args = Args()  [image: 4]
    # First check and display the help message
    if len(args.not_flags) == 0 or args.any_contain('-h'):
        puts(colored.red(__doc__))
        import sys
        sys.exit(0)

    name = " ".join(args.grouped['_'].all)  [image: 5]
    capitalize = args.any_contain('-c')
    repetitions = int(args.value_after('--reps') or 1)
    hello(name, capitalize=capitalize, repetitions=repetitions)


	[image: 1]

	Clint’s indent is a context manager—intuitive to use in the
with statement.  The quote option prefixes each line with a
bold magenta ~*~.


	[image: 2]

	The colored module has eight color functions and an option to
turn coloring off.


	[image: 3]

	The puts() function is like print() but also handles the
indentation and quoting.


	[image: 4]

	Args provides some simple filtering tools for
the argument list. It returns another Args object, to
make it possible to chain the filters.


	[image: 5]

	Here’s how to use the args made by Args().




















cliff


cliff
(the Command-Line Interface Formulation Framework)
is a framework for building command-line programs.
The framework is meant
to be used to create multilevel commands that behave like svn (Subversion) or git,
and interactive programs like a Cassandra shell or a SQL shell.


cliff’s functionality is grouped into abstract base classes. You
have to implement cliff.command.Command once for every
subcommand, and then
cliff.commandmanager.CommandManager will delegate to
the correct command.
Here is a minimal hello.py:


import sys

from argparse import ArgumentParser  [image: 1]
from pkg_resources import get_distribution

from cliff.app import App
from cliff.command import Command
from cliff.commandmanager import CommandManager

__version__ = get_distribution('HelloCliff').version  [image: 2]


class Hello(Command):
    """Say hello to someone."""

    def get_parser(self, prog_name):  [image: 3]
        parser = ArgumentParser(description="Hello command", prog=prog_name)
        parser.add_argument('--num', type=int, default=1, help='repetitions')
        parser.add_argument('--capitalize', action='store_true')
        parser.add_argument('name', help='person\'s name')
        return parser

    def take_action(self, parsed_args):  [image: 4]
        if parsed_args.capitalize:
            name = parsed_args.name.upper()
        else:
            name = parsed_args.name
        for i in range(parsed_args.num):
            self.app.stdout.write("Hello from cliff, {}.\n".format(name))


class MyApp(cliff.app.App):  [image: 5]
    def __init__(self):
        super(MyApp, self).__init__(
            description='Minimal app in Cliff',
            version=__version__,
            command_manager=CommandManager('named_in_setup_py'),  [image: 6]
        )


def main(argv=sys.argv[1:]):
    myapp = MyApp()
    return myapp.run(argv)


	[image: 1]

	cliff uses argparse.ArgumentParser directly for its command-line interface.


	[image: 2]

	Get the version from setup.py (the last time pip install was run).


	[image: 3]

	get_parser() is required by the abstract base class—it should return
an argparse.ArgumentParser.


	[image: 4]

	take_action() is required by the abstract base class—it runs when
the Hello command is invoked.


	[image: 5]

	The main application subclasses cliff.app.App, and is responsible for
setting up logging, I/O streams, and anything else that globally applies
to all subcommands.


	[image: 6]

	The CommandManager manages all of the Command classes. It uses the
entry_points content from setup.py to find the command names.

























GUI Applications


In this section, we first list widget libraries—toolkits and frameworks that provide buttons, scroll bars,
progress bars, and other prebuilt components.
We also quickly list game libraries at the end.










Widget Libraries


In the context of GUI development, widgets
are buttons, sliders, scroll bars, and other commonly used
UI control and display elements. With them, you don’t have to deal
with low-level coding like identifying which button (if any) was
underneath the mouse when it was clicked, or even lower-level
tasks, like the different windowing APIs used by each operating
system.


When you’re new to GUI development,
the first thing you want is something that’s easy to use—so that
you can learn how to make GUIs. For that we recommend
Tkinter, already in Python’s Standard Library.
After that, you probably care about the structure and function
of the toolkit underlying the library, so we group libraries
by toolkits, listing the more popular ones first.


Table 7-2. GUI widget libraries


	Underlying library (language)
	Python library
	License
	Reasons to use





	Tk (Tcl)

	tkinter

	Python Software Foundation license

	

	
All of the dependencies are already bundled with Python.



	
It provides standard UI widgets like buttons, scroll bars, text boxes, and a drawing canvas.









	SDL2 (C)

	Kivy

	MIT, or 

  LGPL3 (before 1.7.2)

	

	
It can be used to make an Android app.



	
It has multitouch features.



	
It is optimized to C when possible, and uses the GPU.









	Qt (C++)

	PyQt

	GNU General Public License (GPL) or 

Commercial

	

	
It provides a consistent look and feel across platforms.



	
Many applications and libraries already rely on Qt, (e.g., the Eric IDE, Spyder, and/or Matplotlib),
so it may already be installed.



	
Qt5 (which can’t be used alongside Qt4) provides utilities to make an Android app.









	Qt (C++)

	PySide

	GNU Lesser General Public License (LGPL)

	

	
It’s a drop-in replacement for PyQt with a more permissive license.









	GTK (C)

(GIMP Toolkit)

	PyGObject (PyGi)

	GNU Lesser General Public License (LGPL)

	

	
It provides Python bindings for GTK+ 3.



	
It should be familiar to those who already develop for the
GNOME desktop system.









	GTK (C)

	PyGTK


	GNU Lesser General Public license (LGPL)

	

	
Only use this if your project already uses PyGTK; you should be porting old PyGTK code to PyGObject.









	wxWindows

(C++)

	wxPython

	wxWindows license

  (a modified LGPL)

	

	
Provides a native look and feel by directly exposing the
various windowing libraries for each platform.



	
This means parts of your code will be different for each
platform.









	Objective C

	PyObjC

	MIT license

	

	
Provides an interface to (and from) Objective C.



	
Will give a native feel for your OS X project.



	
It cannot be used on other platforms.












The following sections provide more detail on the different GUI options for Python,
grouped by each one’s underlying toolkit.












Tk


The module Tkinter in Python’s Standard Library
is a thin object-oriented layer on top of Tk, the widget library
written in the language Tcl. (Both are usually written together as Tcl/Tk.2)
Because it’s in the Standard Library, it’s the most
convenient and compatible GUI toolkit in this list.
Both Tk and Tkinter are available on most Unix platforms, as well as on Windows
and OS X.


There’s a good multilanguage Tk tutorial with Python examples at
TkDocs, and more information
available on the Python wiki.


Also, if you have a standard distribution of Python, you shoud
have IDLE, a GUI interactive coding environment written entirely in Python
that is part of Python’s Standard Library—you can
launch it from the command line by typing idle,
or view all of its source code. You can find the path where it’s installed
by typing this in a shell:


$ python -c"import idlelib; print(idlelib.__path__[0])"


There are many files in the directory; the main IDLE application is launched from
the module PyShell.py.


Likewise, for an example use of the drawing interface, tkinter.Canvas, see
the code for the turtle module.
You can find it by typing this in a shell:


$ python -c"import turtle; print(turtle.__file__)"

















Kivy


Kivy is a Python library for development of multitouch
enabled media rich applications.
Kivy is actively being developed by a community, has a permissive BSD-like license,
and operates on all major platforms (Linux, OS X, Windows, and Android).
It’s written in Python and does not use any underlying windowing toolkit—it interfaces directly with
SDL2 (Simple DirectMedia Layer),
a C library that provides low-level access to user input devices,3 and audio, plus access to
3D rendering using OpenGL (or Direct3D for Windows).
It has some widgets (they’re in the module kivy.uix),
but not nearly as many as the most popular alternatives, Qt and GTK.
If you’re developing a traditional desktop business application, Qt or GTK are probably better.


To install it, go to the Kivy downloads page,
find your operating system, download the correct ZIP file for your
version of Python, and follow the instructions linked for your operating system.
The code comes with a directory of over a dozen examples that demonstrate
different parts of the API.

















Qt


Qt (pronounced “cute”)
is a cross-platform application framework that
is widely used for developing software with a GUI, but can also be used for
non-GUI applications. Plus, there is a
Qt5 version for Android.
If you already
have Qt installed (because you’re using Spyder, Eric IDE, Matplotlib, or other
tools using Qt), you can check your version of Qt from the command line by using:


$ qmake -v


Qt is released under the LGPL license, allowing you to distribute binaries
that work with Qt so long as you don’t change Qt. A commercial license
will get you add-on tools like data visualization and in-application purchasing.
Qt is a framework—it provides some prebuilt scaffolding for different
types of applications. Both Python interfaces to Qt, PyQt and PySide,
don’t do well with documentation, so
your best option
is Qt’s actual C++ documentation.
Here are brief descriptions of each:


	PyQt

	
Riverbank Computing’s PyQt is more up to date than PySide (which doesn’t yet
have a Qt5 version).
To install, follow the documentation for
PyQt4 installation
or
PyQt5 installation.
PyQt4 only works with Qt4, and PyQt5 only works with Qt5. (We suggest Docker,
a user-space isolation tool discussed in “Docker”, if you
really have to develop using both—just to not have to deal with changing your library
paths.)


Riverbank Computing also publishes
pyqtdeploy,
a PyQt5-only GUI tool that generates platform-specific C++ code you can use to
build binaries for distribution.
For more information, check out these PyQt4 tutorials and PyQt5 examples.



	PySide

	
PySide
was released while Nokia owned Qt, because they couldn’t get Riverside Computing,
the makers of PyQt, to change PyQt’s license from GPL to LGPL.
It is intended to be a drop-in replacement for PyQt, but tends to lag
PyQt in development.
This wiki page describes the
differences between PySide and PyQt.


To install PySide, follow the instructions in the Qt documentation; there is also a page to help you write your first PySide application.





















GTK+


The GTK+ toolkit
(which stands for the GIMP4 Toolkit)
provides an API to the backbone of the GNOME desktop environment.
Programmers might choose GTK+ over Qt either because they prefer C and are more comfortable
looking in GTK+’s source code when they have to, or because they have programmed
GNOME applications before and are comfortable with the API.
The two libraries with Python bindings to GTK+ are:


	pyGTK

	
PyGTK provides Python bindings for GTK+ but only currently supports
the GTK+ 2.x API (not GTK+ 3+).
It is no longer being developed, and its team recommends
PyGTK not be used for new projects and that existing
applications be ported from PyGTK to PyGObject.



	PyGObject (aka PyGI)

	
PyGObject provides Python bindings that give access to the entire GNOME software platform. It is also known as PyGI because it makes use of, and provides a Python API for, GObject Introspection, which is an API bridge between other languages and GNOME’s core C libraries, GLib, provided they follow the convention used to define a GObject. It is fully compatible with GTK+ 3. The Python GTK+ 3 Tutorial is a good place to start.


To install, get the binaries from the PyGObject download site, or on OS X, install it with homebrew using brew install pygobject.





















wxWidgets


The design philosophy behind wxWidgets is
that the best way for an app to get a native look and feel is to use
the API native to each operating system. Both Qt and GTK+ now also can
use other windowing libraries than X11 under the hood, but Qt abstracts them,
and GTK makes them look like you’re programming GNOME. The benefit of
using wXWidgets is that you are directly interfacing with each platform,
and the license is much more permissive.
The problem, though, is that you now have to handle each platform slightly differently.


The Python extension module that wraps wxWidgets for Python users is called
wxPython.
It at one point was the most popular windowing library in
Python, possibly because of its philosophy of using native interface tools, but now
the workarounds in Qt and GTK+ seem to have become good enough.
Still, to install it,
go to http://www.wxpython.org/download.php#stable and download the appropriate
package for your OS, and get started with their
wxPython tutorial.

















Objective-C


Objective-C is the proprietary language used by Apple for the
OS X and iOS operating systems, and providing access to
the Cocoa framework for application development on OS X.
Unlike the other options, Objective-C is not cross-platform;
it is only for Apple products.


PyObjC is a bidirectional bridge between the OS X Objective-C languages
and Python, meaning it not only allows Python access to the Cocoa framework
for application development on OS X,
but allows Objective-C programmers to access Python.5

Note

The Cocoa framework is only available on OS X, so
don’t choose Objective-C (via PyObjC) if you’re writing a cross-platform application.




You will need to have Xcode installed, as described in “Installing Python on Mac OS X”,
because PyObjC needs a compiler. Also,
PyObjC works only with the standard CPython distribution—not with
other distributions like PyPy or Jython—and
we recommend using the Python executable provided by
OS X, because that Python was modified by Apple and
configured specifically to work with OS X.


To make your virtual environment using your system’s Python interpreter,
use the whole path when invoking it. If you do not want to install as
the super user, install using the --user switch,
which will save the library under
$HOME/Library/Python/2.7/lib/python/site-packages/:


$ /usr/bin/python -m pip install --upgrade --user virtualenv


Activate the environment, enter it,
and install PyObjC:


$ /usr/bin/python -m virtualenv venv
$ source venv/bin/activate
(venv)$ pip install pyobjc


This takes a while.
PyObjC comes bundled with py2app (discussed in “py2app”),
which is the OS X–specific tool to create
distributable standalone application binaries.
There are sample applications on the
PyObjC examples page.






















Game Development


Kivy has become really popular really quickly,
but has a much larger footprint than the libraries listed in this
section. It was categorized as a toolkit because
it provides widgets and buttons but is frequently
used to build games.
The Pygame community hosts a
Python game developer website
that welcomes all game developers, whether or not they’re
using Pygame.
The most popular game development libraries are:


	cocos2d

	
cocos2d is released under the
BSD license. It builds on top of
pyglet, providing a framework to structure your game
as a set of scenes connected via custom workflows, all managed by a director.
Use it if you like the scene-director-workflow style they use as described in
the documentation,
or want pyglet for drawing, plus SDL2 for joystick and audio.
You can install cocos2D using pip. For SDL2,
check your package manager first, then download from the
SDL2 site.
The best way to get started is with their
example cocos2d applications.



	pyglet

	
pyglet is released under the BSD license.
It’s a set of lightweight wrappers
around OpenGL, plus tools for presenting and moving sprites around a window.
Just install it—pip should be all you need because most every computer has OpenGL—and run some of the
example applications,
including a complete
Asteroids clone
in fewer than 800 lines of code.



	Pygame

	
Pygame is released under the Zlib license, plus the GNU LGPLv2.1 for SDL2.
It has a large, active community, with tons of
Pygame tutorials, but it has been
using SDL1, a prior version of the library.
It isn’t available on PyPI, so check your package manager first, and
if they don’t have it,
download Pygame.



	Pygame-SDL2

	
Pygame-SDL2 was recently announced
as an effort to reimplement Pygame with an SDL2 backend. It is released under the
same licenses as Pygame.



	PySDL2

	
PySDL2 runs on CPython, IronPython, and PyPy,
and is a thin Python interface to the SDL2 library. If you want the lightest-weight
interface to SDL2 in Python, this is your library. For more information, see the
PySDL2 tutorial.




























Web Applications


As a powerful scripting language adapted to both fast prototyping
and bigger projects, Python is widely used in web application
development (YouTube, Pinterest, Dropbox, and The Onion all use it).


Two of the libraries we profiled in Chapter 5—“Werkzeug”, and “Flask” were related to building web applications.
With them, we briefly described the Web Server Gateway Interface (WSGI),
a Python standard defined in
PEP 3333
that specifies how web servers and Python web applications
communicate.
This section will look at
Python web frameworks, their templating systems,
the servers they interface with,
and the platforms they run on.










Web Frameworks/Microframeworks


Broadly speaking, a web framework consists of a set of libraries and a main
handler within which you can build custom code to implement a web application
(i.e., an interactive website providing a client interface to code running on a server). Most web frameworks include patterns and
utilities to accomplish at least the following:


	URL routing

	
Match an incoming HTTP request to a particular Python function (or callable).



	Handling Request and Response objects

	
Encapsulate the information received from or sent to a user’s browser.



	Templating

	
Inject Python variables into HTML templates or other output,
allowing programmers to separate an application’s logic (in Python)
from the layout (in the template).



	Development web service for debugging

	
Run a miniature HTTP server on development machines to enable rapid development;
often automatically reloading server-side code when files are updated.






You shouldn’t have to code around your framework. It should
already provide the things you need—tested
and used by thousands of other developers—so if you still don’t find what you need, keep exploring the many other available
frameworks (e.g., Bottle, Web2Py, CherryPy).
A technical reviewer also noted we should mention Falcon,
which is a framework specifically for building RESTful APIs (i.e., not for serving HTML).


All of the libraries in Table 7-3 can be installed
using pip:


$ pip install Django
$ pip install Flask
$ pip install tornado
$ pip install pyramid


Table 7-3. Web frameworks


	Python library
	License
	Reasons to use





	Django

	BSD license

	

	
It provides structure—a mostly prebuilt site where you design
the layout and the underlying data and logic.



	
It also autogenerates an administrative web interface,
where nonprogrammers can add or delete data (like news articles).



	
It is integrated with Django’s object-relational mapping (ORM) tool.









	Flask

	BSD license

	

	
It allows you total control over what is in your stack.



	
It provides elegant decorators that add URL routing to any function you choose.



	
It frees you from the structure provided by either Django or Pyramid.









	Tornado

	Apache 2.0 license

	

	
It provides excellent asynchronous event handling—Tornado uses its own HTTP server.



	
It also gives you a way to handle many WebSockets (full duplex, persistent communication over TCPa)
or other long-duration connection out of the box.









	Pyramid

	Modified BSD license

	

	
It provides some prebuilt structure—called a scaffolding—but less than Django, allowing you to use any database interface
or templating library you wish (if any).



	
It is based on the popular the Zope framework,
and on Pylons, both predecessors of Pyramid.









	a Transmission Control Protocol (TCP) is a standard protocol that defines a way   for two computers to establish a connection and communicate with each other.




The following sections provide a more detailed look at the web frameworks in
Table 7-3.












Django


Django  is a “batteries included” web
application framework and is an excellent choice for creating content-oriented
websites. By providing many utilities and patterns out of the box, Django aims
to make it possible to build complex, database-backed web applications quickly
while encouraging best practices in code that uses it.


Django has a large and active community, and many
reusable modules
that can be directly incorporated into a new project
or customized to fit your needs.


There are annual Django conferences
in the United States
and in Europe—the majority of new Python web applications today are built with Django.

















Flask


Flask is a microframework for Python, and is
an excellent choice for building smaller applications, APIs, and web services.
Rather than aiming to provide everything you could possibly need, Flask
implements the most commonly used core components of a web application
framework, like URL routing, HTTP request and response objects, and templates.
Building an app with Flask is a lot like writing standard Python modules,
except some functions have routes attached to them (via a decorator, like
in the code sample shown here). It’s really beautiful:


@app.route('/deep-thought')
def answer_the_question():
    return 'The answer is 42.'


If you use Flask, it is up to you to choose other components for your
application, if any. For example, database access or form generation/validation
are not built into Flask.
This is great, because many web applications don’t need those features.
If yours do, there are many available
extensions, such as
SQLAlchemy for a database,
or pyMongo for MongoDB
and WTForms for forms.


Flask is the default choice for any Python web application that isn’t a good
fit for Django’s prebuilt scaffolding.
Try these example Flask applications
for a good introduction.
If you want to run multiple applications (the default for Django), use
application dispatching.
If instead you want to duplicate behaviors for sets of subpages within
an app, try Flask’s Blueprints.

















Tornado


Tornado is an asynchronous
(event-driven and nonblocking, like Node.js)
web framework for Python that has its own event loop.6
This allows it to natively support
the WebSockets communication protocol,
for example. Unlike the other frameworks in this section,
Tornado is not a WSGI application. It can be made to run either as
a WSGI application or as a WSGI server through their module
tornado.wsgi, but
even the authors ask “what’s the point?”7
seeing as WSGI is a synchronous
interface and the purpose of Tornado is to provide an asynchronous
framework.


Tornado is a more difficult and less frequently used web framework than Django or Flask—use it
only if you know the performance gain of using an asynchronous framework is worth the additional
time you will spend programming.
If you do, a good place to start is with their
demo applications.
Well-written Tornado applications are known to
have excellent performance.

















Pyramid


Pyramid is a lot like Django, except
with a heavier focus on modularity. It comes with a smaller number of
built-in libraries (fewer “batteries” included), and encourages users to extend its
base functionality through shareable templates they call
scaffolds.
You register the scaffold, and then invoke it when creating a new
project using their command pcreate to build your project’s scaffolding—like Django’s django-admin startproject project-name command,
but with options for different structures, different database
backends, and URL routing options.


Pyramid does not have a large user base, unlike Django and Flask, but those
who use it are passionate about it.
It’s a very capable framework, but not as popular a choice for new Python web
applications right now.


Here are a few Pyramid tutorials
to start with.  Or, for a page you can use to sell Pyramid to your boss, try this
portal to all things Pyramid.






















Web Template Engines


Most WSGI applications exist to respond to HTTP requests and serve content in HTML
or other markup languages. Template engines are in charge of rendering
this content: they manage a suite of templating files, with a system of hierarchy
and inclusion to avoid unnecessary repetition, and fill
the static content of the templates
with the dynamic content generated by the application.
This helps us adhere to the concept of separation of concerns8—keeping only the application logic in the code, and delegating presentation
to the templates.


Template files are sometimes written by designers or frontend developers,
and complexity in the pages can make coordination difficult.
Here are some good practices both for the application passing
dynamic content to the template engine, and for the templates themselves:


	Never is often better than right now

	
Template files should be passed only the dynamic
content that is needed for rendering the template. Avoid
the temptation to pass additional content “just in case”:
it is easier to add some missing variable when needed than to remove
a likely unused variable later.



	Try to keep logic out of the template

	
Many template engines allow for complex statements or assignments
in the template itself, and many allow some Python code to be
evaluated in the templates. This convenience can lead to uncontrolled growth in complexity and often makes it harder to find bugs.
We’re not 100% against it—practicality beats purity—just
contain yourself.



	Keep the JavaScript separate from the HTML

	
It is often necessary to mix JavaScript templates with
HTML templates. Preserve your sanity, and isolate
the parts where the HTML template passes variables
to the JavaScript code.






All of the template engines listed in Table 7-4 are second-generation,
with good rendering speed9
and features added thanks to experience
with older template languages.


Table 7-4. Template engines


	Python library
	License
	Reasons to use





	Jinja2

	BSD license

	

	
It’s Flask’s default and bundled with Django.



	
It is based on the Django Template Language, with just
a little more logic allowed in the templates.



	
Jinja2 is the default engine for Sphinx, Ansible, and Salt—if you’ve used them, you know Jinja2.









	Chameleon

	Modified BSD license

	

	
The templates are themselves valid XML/HTML.



	
It is similar to the Template Attribute Language (TAL)
and its derivatives.









	Mako

	MIT license

	

	
It’s Pyramid’s default.



	
It’s designed for speed—for when your template rendering is actually a bottleneck.



	
It allows you to put a lot of code in your templates—Mako is
kind of like a Python version of PHP.












The following sections describe the libraries in Table 7-4 in more detail.












Jinja2


Jinja2 is our recommended
templating library for new Python web applications.
It is Flask’s default engine, the default engine for the Python
documentation generator Sphinx
and can be used in Django, Pyramid, and Tornado.
It uses a text-based template language and can thus be used to generate any
type of markup, not just HTML. It allows customization of filters, tags, tests,
and globals.
Inspired by the Django template language, it adds features
like a little bit of in-template logic, which saves tons of code.


Here are some important Jinja2 tags:


{# This is a comment -- because of the hash + curly braces. #}

{# This is how to insert a variable: #}
{{title}}

{# This defines a named block, replaceable by a child template. #}
{% block head %}
<h1>This is the default heading.</h1>
{% endblock %}

{# This is how to do iteration: #}
{% for item in list %}
<li>{{ item }}</li>
{% endfor %}


Here’s an example of a website in combination with the Tornado
web server, described in “Tornado”:


# import Jinja2
from jinja2 import Environment, FileSystemLoader

# import Tornado
import tornado.ioloop
import tornado.web

# Load template file templates/site.html
TEMPLATE_FILE = "site.html"
templateLoader = FileSystemLoader( searchpath="templates/" )
templateEnv = Environment( loader=templateLoader )
template = templateEnv.get_template(TEMPLATE_FILE)

# List for famous movie rendering
movie_list = [
    [1,"The Hitchhiker's Guide to the Galaxy"],
    [2,"Back to the Future"],
    [3,"The Matrix"]
]

# template.render() returns a string containing the rendered HTML
html_output = template.render(list=movie_list, title="My favorite movies")

# Handler for main page
class MainHandler(tornado.web.RequestHandler):
    def get(self):
        # Returns rendered template string to the browser request
        self.write(html_output)

# Assign handler to the server root  (127.0.0.1:PORT/)
application = tornado.web.Application([
    (r"/", MainHandler),
])
PORT=8884
if __name__ == "__main__":
    # Set up the server
    application.listen(PORT)
    tornado.ioloop.IOLoop.instance().start()


A base.html file can be used as base for all site pages.
In this example, they would be implemented in the (currently empty)
content block:


<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html lang="en">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
    <link rel="stylesheet" href="style.css" />
    <title>{{title}} - My Web Page</title>
</head>
<body>
<div id="content">
    {# In the next line, the content from the site.html template will be added #}
    {% block content %}{% endblock %}
</div>
<div id="footer">
    {% block footer %}
    &copy; Copyright 2013 by <a href="http://domain.invalid/">you</a>.
    {% endblock %}
</div>
</body>


The next code example is our site page (site.html), which
extends base.html. The content block here will be
automatically inserted into the corresponding block in base.html:


<!{% extends "base.html" %}
{% block content %}
    <p class="important">
    <div id="content">
        <h2>{{title}}</h2>
        <p>{{ list_title }}</p>
        <ul>
             {% for item in list %}
             <li>{{ item[0]}} :  {{ item[1]}}</li>
             {% endfor %}
        </ul>
    </div>
    </p>
{% endblock %}

















Chameleon


Chameleon Page Templates (with file extension *.pt)
are an HTML/XML template engine implementation of the
Template Attribute Language (TAL),
TAL Expression Syntax (TALES),
and
Macro Expansion TAL (Metal)
syntaxes.
Chameleon parses the Page Templates and “compiles” them into Python bytecode to increase
loading speed.
It is available for Python 2.5 and up (including 3.x and PyPy)
and is one of the two default rendering engines used by “Pyramid”.
(The other is Mako, described in the next section.)


Page Templates add special element attributes and text markup to your XML document:
a set of simple language constructs let you control the
document flow, element repetition, text replacement, and translation. Because
of the attribute-based syntax, unrendered page templates are valid HTML and can
be viewed in a browser and even edited in WYSIWYG (what you see is what you get)
editors. This can make
round-trip collaboration with designers and prototyping with static files in a
browser easier.
The basic TAL language is simple enough to grasp from an example:


<html>
  <body>
  <h1>Hello, <span tal:replace="context.name">World</span>!</h1>
    <table>
      <tr tal:repeat="row 'apple', 'banana', 'pineapple'">
        <td tal:repeat="col 'juice', 'muffin', 'pie'">
           <span tal:replace="row.capitalize()" /> <span tal:replace="col" />
        </td>
      </tr>
    </table>
  </body>
</html>


The <span tal:replace="expression" /> pattern for text insertion is common
enough that if you do not require strict validity in your unrendered templates,
you can replace it with a more terse and readable syntax using the pattern
${expression}, as follows:


<html>
  <body>
    <h1>Hello, ${world}!</h1>
    <table>
      <tr tal:repeat="row 'apple', 'banana', 'pineapple'">
        <td tal:repeat="col 'juice', 'muffin', 'pie'">
           ${row.capitalize()} ${col}
        </td>
      </tr>
    </table>
  </body>
</html>


But remember the full <span tal:replace="expression">Default Text</span>
syntax also allows for default content in the unrendered template.


Being from the Pyramid world, Chameleon is not widely used.

















Mako


Mako is a template language that compiles to Python
for maximum performance. Its syntax and API are borrowed from the best parts of other
templating languages like Django and Jinja2 templates. It is the default template
language included with the Pyramid web framework (discussed in “Pyramid”) web framework.
An example template in Mako looks like this:


<%inherit file="base.html"/>
<%
    rows = [[v for v in range(0,10)] for row in range(0,10)]
%>
<table>
    % for row in rows:
        ${makerow(row)}
    % endfor
</table>

<%def name="makerow(row)">
    <tr>
    % for name in row:
        <td>${name}</td>\
    % endfor
    </tr>
</%def>


It is a text markup language, like Jinja2, so it can be
used for anything, not just XML/HTML documents.
To render a very basic template, you can do the following:


from mako.template import Template
print(Template("hello ${data}!").render(data="world"))


Mako is well respected within the Python web community.
It is fast and  allows developers to embed a lot of Python
logic into the page, which we know we cautioned against—but
in times when you think it’s necessary, this is the tool
that allows it.






















Web Deployment


The two options we’ll cover for web deployment are either to use web hosting (i.e., pay
a vendor like Heroku, Gondor, or PythonAnywhere to manage your server and your database for you),
or to set up your own infrastructure on a machine provided by a virtual private server (VPS) host like Amazon Web Services
or Rackspace. We’ll quickly cover both.












Hosting


Platform as a Service (PaaS) is a type of
cloud computing infrastructure
which abstracts and manages infrastructure (e.g., setting up the database and
web server, and keeping up with security patches), routing, and scaling of web
applications. When using a PaaS, application developers can focus on writing
application code rather than concerning themselves with deployment
details.


There are dozens of competing PaaS providers, but the ones in this list
specifically focus on the Python community. Most offer some sort of free
tier or trial to start:


	Heroku

	
Heroku
is our recommended PaaS for deploying Python web applications.
It supports Python 2.7–3.5 applications of all types: web applications, servers, and frameworks.
A set of command-line tools is provided for interfacing
with both your Heroku account and the actual database and web servers that support
your application, so you can make changes without using a web interface.
Heroku maintains
detailed articles
on using Python with Heroku, as well as
step-by-step instructions
on how to set up your first application.



	Gondor

	
Gondor is run by a small company and
focuses on helping businesses find success with Python and Django.
Its platform is specialized for deploying Django and Pinax10 applications and uses. Gondor’s platform is
Ubuntu 12.04 with Django 1.4, 1.6, and 1.7 and a subset of Python 2 and 3
implementation listed here.
It can automatically configure your
Django site if you use local_settings.py for site-specific configuration
information. For more information, see Gondor’s
guide to deploying Django projects; a command-line interface tool is also available.



	PythonAnywhere

	
PythonAnywhere supports
Django, Flask, Tornado, Pyramid, and many of the other
web application frameworks we didn’t describe, like
Bottle (no framework, like Flask, but with a much smaller community)
and web2py (great for teaching).
Its pricing model is related to compute time—rather than charging more, computations are throttled once they go over a daily maximum—which is good for cost-conscious developers.





















Web servers


With the exception of Tornado (which comes with its own HTTP server), all of the web application frameworks we discussed are WSGI applications. This means they must interact with a WSGI server
as defined in PEP 3333
in order to receive an HTTP request and send back an HTTP response.


The majority of self-hosted Python applications today are hosted with a WSGI
server such as Gunicorn, either by itself—WSGI servers can often be used
as standalone HTTP servers—or behind a
lightweight web server such as Nginx.
When both are used, the WSGI servers interact with the Python applications
while the web server handles tasks better suited for it—static file serving, request routing,
distributed denial-of-service (DDoS) protection, and basic authentication.
The two most popular web servers are Nginx and Apache, described here:


	Nginx

	
Nginx (pronounced “engine-x”) is a web server and
reverse proxy11 for HTTP, SMTP, and other protocols. It is known for its
high performance, relative simplicity, and compatibility with many
application servers (like WSGI servers). It also includes handy features
like load balancing,12 basic authentication, streaming, and others. Designed
to serve high-load websites, Nginx is gradually becoming quite popular.



	Apache HTTP server

	
Apache is the most popular HTTP server
in the world, but we prefer Nginx. Still, those new to deployment may
want to start with Apache and mod_wsgi,
which is regarded as the easiest WSGI interface out there. There are tutorials in
each framework’s documentation for
mod_wsgi with Pyramid,
mod_wsgi with Django, and
mod_wsgi with Flask.





















WSGI servers


Standalone WSGI servers typically use less resources than traditional web
servers and provide top performance
benchmarks for Python WSGI Servers.
They can also be used in conjunction with Nginx or Apache, which would serve as reverse proxies.
The most popular WSGI servers are:


	Gunicorn (Green Unicorn)

	
Gunicorn is
the recommended choice for new Python web applications—a pure-Python WSGI
server used to serve Python applications. Unlike other Python web servers,
it has a thoughtful user interface and is extremely easy to use and
configure.
Gunicorn has sane and reasonable defaults for configurations. However, some
other servers, like uWSGI, are tremendously more customizable (but therefore
are much more difficult to effectively use).



	Waitress

	
Waitress is a pure-Python WSGI server
that claims “very acceptable performance.” Its documentation is not very
detailed, but it does offer some nice functionality that Gunicorn doesn’t have
(e.g., HTTP request buffering); it doesn’t block when a slow
client takes time to respond—hence the name “Wait”-ress.
Waitress is gaining popularity within the Python web development community.



	uWSGI

	
uWSGI is a full stack for building
hosting services. We don’t recommend using it as a standalone web router unless you know why you need it.


But uWSGI can also run behind a full web server (such as Nginx or Apache)—a web server can configure uWSGI and an application’s operation over the uwsgi protocol. uWSGI’s web server support allows for dynamically configuring Python, passing environment variables and further tuning.  For full details, see uWSGI magic variables.


























1 docopt uses neither optparse nor argparse and relies on regular expressions to parse the docstring.
2 Tcl, originally Tool Command Language, is a lightweight language created by John Ousterhout in the early 1990s for integrated circuit design.
3 In addition to supporting the usual mouse, it can handle touch: TUIO (an open source touch and gesture protocol and API), Nintendo’s Wii remote, WM_TOUCH (the Windows touch API), USB touchscreens using HidTouch Apple’s products, and others.
4 GIMP stands for GNU Image Manipulation Program. GTK+ was built to support drawing in GIMP, but became popular enough that people wanted to make a whole desktop windowing environment with it—hence GNOME.
5 But the creation of Swift may have reduced that demand—it’s almost as easy as Python, so if you’re just writing for OS X, why not just use Swift and do everything native (except for calculations, which still would benefit from scientific libraries like NumPy and Pandas)?
6 It was inspired by the Twisted project’s Twisted Web server, which is a part of the Tornado networking toolkit. If you wish things existed in Tornado that don’t, look into Twisted, because it’s probably implemented them. But be warned that Twisted is notoriously hard for beginners.
7 Actually, their WSGI documentation says “Use WSGIContainer only when there are benefits to combining Tornado and WSGI in the same process that outweigh the reduced scalability.”
8 Separation of concerns is a design principle that means good code is modular—each component should do just one thing.
9 Rendering is rarely the bottleneck in a web app, though—it’s usually the data access.
10 Pinax bundles popular Django templates, apps, and infrastructure to make starting a Django project faster.
11 A reverse proxy fetches information from another server on behalf of a client and returns it to the client as if it come from the reverse proxy.
12 Load balancing optimizes performance by delegating work across multiple computing resources.



Chapter 8. Code Management and Improvement



This chapter covers libraries used to manage or simplify the development
and build process, system integration, server management, and  performance optimization.








Continuous Integration


Nobody describes continuous integration
better than Martin Fowler:1


Continuous Integration
is a software development practice where members of
a team integrate their work frequently, usually each person integrates at
least daily—leading to multiple integrations per day. Each integration is
verified by an automated build (including test) to detect integration errors
as quickly as possible. Many teams find that this approach leads to
significantly reduced integration problems and allows a team to develop
cohesive software more rapidly.



The three most popular tools for CI right now are Travis-CI, Jenkins, and Buildbot—which
are all listed in the following sections.  They are frequently used with Tox, a Python
tool to manage virtualenv and tests from the command line.  Travis is for
multiple Python interpreters on a single platform, and Jenkins (most popular) and
Buildbot (written in Python) can manage builds on multiple machines.
Many also use Buildout (discussed in “Buildout”) and Docker (discussed in “Docker”) to rapidly and
repeatably build complex environments for their test battery.












Tox


Tox is an automation tool providing
packaging, testing, and deployment of Python software right from the console or
CI server. It is a generic virtualenv management and test command-line tool
that provides the following features:



	
Checks that packages install correctly with different Python versions and
interpreters



	
Runs tests in each of the environments, configuring your test tool of
choice



	
Acts as a frontend to continuous integration servers, reducing boilerplate
and merging CI and shell-based testing






Install it using pip:


$ pip install tox






















System Administration


The tools in this section are for managing and monitoring
systems—server automation, system monitoring, and workflow
management.












Travis-CI


Travis-CI is a distributed CI server which builds
tests for open source projects for free. It provides multiple workers that run
Python tests and seamlessly integrates with GitHub. You can even have it
comment on your pull requests2 whether this particular set of changes breaks the
build or not. So if you are hosting your code on GitHub, Travis-CI is a great
and easy way to get started with continuous integration.
Travis-CI can build your code on a virtual machine that is running
Linux, OS X, or iOS.


To get started, add a .travis.yml file to your repository with
this example content:


language: python
python:
  - "2.6"
  - "2.7"
  - "3.3"
  - "3.4"
script: python tests/test_all_of_the_units.py
branches:
  only:
    - master


This will get your project tested on all the listed Python versions by
running the given script and will only build the master branch. There are a
lot more options you can enable, like notifications, before and after steps,
and much more. The Travis-CI docs
explain all of these options and are very thorough.
To use Tox with Travis-CI, add a Tox script to your repository,
and change the line with script: in it to become:


install:
  - pip install tox
script:
  - tox


In order to activate testing for your project, go to the
Travis-CI site
and log in with your GitHub account. Then activate your project in your
profile settings and you’re ready to go. From now on, your project’s tests
will be run on every push to GitHub.

















Jenkins


Jenkins CI is an extensible continuous integration engine
and currently the most popular CI engine.  It works on Windows,
Linux, and OS X and plugs in to “every Source Code Management (SCM) tool that exists.”
Jenkins is a Java servlet (the Java equivalent
of a Python WSGI application) that ships with its own servlet container, so you can run it directly
using java --jar jenkins.war.
For more information, refer to the
Jenkins installation instructions; the Ubuntu page has instructions for how to place Jenkins behind an Apache or Nginx reverse proxy.


You interact with Jenkins via a web-based dashboard, or its
HTTP-based RESTful API3 (e.g., at http://myServer:8080/api), meaning we can use HTTP to communicate
with the Jenkins server from remote machines. For examples, look at
Apache’s Jenkins Dashboard or the
Pylons project’s Jenkins Dashboard.


The most frequently used Python tool to interact with the Jenkins API is
python-jenkins, created by the
OpenStack4 infrastructure team.
Most Python users configure Jenkins to run a Tox script as part of the build
process. For more information, see the documentation for
using Tox with Jenkins
and this guide to
set up Jenkins with multiple build machines.

















Buildbot


Buildbot is a Python system to
automate the compile/test cycle to validate code changes.
It works like Jenkins in that it polls your source control manager for
changes, builds and test your code on multiple computers according to your instructions
(with built-in support for Tox), and
then tells you what happened.  It runs behind a Twisted web server.
For an example of what the web interface looks like, here is
Chromium’s public buildbot dashboard
(Chromium powers the Chrome browser).


Because Buildbot is pure Python, it’s installed via pip:


$ pip install buildbot


The 0.9 version has a  REST API,
but it is still in beta, so you won’t be able to use it unless you expressly specify
the version number (e.g., pip install buildbot==0.9.00.9.0rc1).
Buildbot has a reputation for being the most powerful, but also the
most complex of the continuous integration tools. To get started,
follow their excellent tutorial.















Server Automation


Salt, Ansible, Puppet, Chef, and CFEngine are server
automation tools that
provide an elegant way for system administrators to
manage their fleet of physical and virtual machines.
They all can manage Linux, Unix-like systems, and Windows
machines.
We’re of course partial to Salt and Ansible, as they’re
written in Python. But they’re still new, and the other
options are more widely used.
The following sections provide a quick summary of these options.

Note

For the record, folks at Docker
say that they expect system automation tools like Salt, Ansible, and the rest to be complemented by,
and not replaced by Docker—see this post about
how Docker fits into the rest of DevOps.














Salt


Salt calls its master node the master and its agent nodes
minions, or minion hosts.
Its main design goal is speed—networking
by default is done using ZeroMQ, with TCP connections between
the master and its “minions,” and members of the Salt team have even written their
own (optional) transmission protocol, RAET,
which is faster than TCP and not as lossy as UDP.


Salt supports Python versions 2.6 and 2.7 and can be installed via pip:


$ pip install salt  # No Python 3 yet ...


After configuring a master server and any number of minion hosts, we can run
arbitrary shell commands or use prebuilt modules of complex commands on our
minions.
The following command lists all available minion hosts, using ping in salt’s test module:


$ salt '*' test.ping


You can filter minion hosts by either matching the minion ID, or by using the
grains system, which uses static host information like the operating system version or the
CPU architecture to provide a host taxonomy for the Salt modules.
For example, the following command uses the grains system to list
only the available minions running CentOS:


$ salt -G 'os:CentOS' test.ping


Salt also provides a state system. States can be used to configure the minion
hosts.
For example, when a minion host is ordered to read the following state file,
it will install and start the Apache server:


apache:
  pkg:
    - installed
  service:
    - running
    - enable: True
    - require:
      - pkg: apache


State files can be written using YAML, augmented by the Jinja2 template system,
or can be pure Python modules. For more information, see the
Salt documentation.

















Ansible


The biggest advantage of Ansible over the other system automation tools
is that it does not require anything (except Python) to be permanently installed on client
machines.
All of the other options5
keep daemons running on the clients to poll the master.
Their configuration files are in the YAML format.
Playbooks are Ansible’s configuration, deployment, and
orchestration documents, and are written in YAML with Jinja2 for templating.
Ansible supports Python versions 2.6 and 2.7 and can be installed via pip:


$ pip install ansible  # No Python 3 yet...


Ansible requires an inventory file that describes the hosts to which it has
access. The following code is an example of a host and playbook that will ping all the
hosts in the inventory file.
Here is an example inventory file (hosts.yml):


[server_name]
127.0.0.1


Here is an example playbook (ping.yml):


---
- hosts: all

  tasks:
    - name: ping
      action: ping


To run the playbook:


$ ansible-playbook ping.yml -i hosts.yml --ask-pass


The Ansible playbook will ping all of the servers in the hosts.yml file.
You can also select groups of servers using Ansible. For more information
about Ansible, read the Ansible documentation.
The Servers for Hackers Ansible tutorial is also a
great and detailed introduction.

















Puppet


Puppet  is written in Ruby and provides its own
language—PuppetScript—for configuration. It has a designated server,
the Puppet Master, that’s responsible for orchestrating its Agent nodes.
Modules
are small, shareable units of code written to automate or define the state of a
system.  Puppet Forge is a repository for
modules written by the community for Open Source Puppet and Puppet Enterprise.


Agent nodes send basic facts about the system (e.g., the operating system,
kernel, architecture, IP address, and hostname) to the Puppet Master.
The Puppet Master then compiles a catalog with information provided by the
agents on how each node should be configured and sends it to the agent. The
agent enforces the change as prescribed in the catalog and sends a report back
to the Puppet Master.


Facter (yes, spelled with an “-er”) is an interesting tool that
ships with Puppet and pulls basic facts
about the system. These facts can be referenced as a variable while writing
your Puppet modules:


$ facter kernel
Linux
$
$ facter operatingsystem
Ubuntu


Writing Modules in Puppet is pretty straightforward: Puppet Manifests
(files with the extension *.pp) together form Puppet Modules.
Here is an example of Hello World in Puppet:


notify { 'Hello World, this message is getting logged into the agent node':

    #As nothing is specified in the body, the resource title
    #is the notification message by default.
}


Here is another example, with system-based logic. To reference other facts,
prepend a $ sign to the variable name—for instance, $hostname, or in this
case, $operatingsystem:


notify{ 'Mac Warning':
    message => $operatingsystem ? {
        'Darwin' => 'This seems to be a Mac.',
        default  => 'I am a PC.',
    },
}


There are several resource types for Puppet, but the package-file-service
paradigm is all you need for for the majority of the configuration
management. The following Puppet code makes sure that the OpenSSH-Server
package is installed in a system and the sshd service (the SSH server daemon)
is notified to restart every time the sshd configuration file is changed:


package { 'openssh-server':
    ensure => installed,
}

file { '/etc/ssh/sshd_config':
    source   => 'puppet:///modules/sshd/sshd_config',
    owner    => 'root',
    group    => 'root',
    mode     => '640',
    notify   =>  Service['sshd'], # sshd will restart
                                  # whenever you edit this
                                  # file
    require  => Package['openssh-server'],

}

service { 'sshd':
    ensure    => running,
    enable    => true,
    hasstatus => true,
    hasrestart=> true,
}


For more information, refer to the Puppet Labs documentation.

















Chef


If Chef is your choice for configuration management,
you will primarily use Ruby to write your infrastructure code. Chef is
similar to Puppet, but designed with the opposite philosophy:
Puppet provides a framework that simplifies
things at the expense of flexibility, while Chef provides nearly no
framework—its goal is to be very extensible, and so it is more difficult to use.


Chef clients run on every node in your infrastructure and regularly
check with your Chef server to ensure your system is always aligned and represents the
desired state. Each individual Chef client
configures itself. This distributed approach makes Chef a scalable automation platform.


Chef works by using custom recipes (configuration elements), implemented in cookbooks.
Cookbooks, which are basically
packages for infrastructure choices, are usually stored in your Chef server.
Read DigitalOcean’s
tutorial series on Chef
to learn how to create a simple Chef server.


Use the knife command to create a simple cookbook:


$ knife cookbook create cookbook_name


Andy Gale’s “Getting started with Chef”
is a good starting point for Chef beginners.
Many community cookbooks
can be found on the Chef Supermarket—they’re
a good starting point for your own cookbooks.
For more information, check out the full Chef documentation.

















CFEngine


CFEngine has a tiny footprint because it’s written in C.
Its main design goal is robustness to failure, accomplished via
autonomous agents operating in a distributed network
(as opposed to a master/client architecture) that
communicate using
Promise Theory.
If you want a headless architecture, try this system.






















System and Task Monitoring


The following libraries all help system administrators monitor running jobs but
have very different applications: Psutil provides information in Python that can
be obtained by Unix utility functions, Fabric makes it easy to define and
execute commands on a list of remote hosts via SSH, and Luigi makes it possible
to schedule and monitor long-running batch processes like chained Hadoop
commands.












Psutil


Psutil is a cross-platform (including Windows)
interface to different
system information (e.g., CPU, memory, disks, network, users, and processes)—it makes accessible within Python information that many of us are accustomed to
obtaining via Unix commands
such as top, ps, df, and netstat.
Get it using pip:


$ pip install psutil


Here is an example that monitors for server overload (if any of the
tests—net, CPU—fail, it will send an email):


# Functions to get system values:
from psutil import cpu_percent, net_io_counters
# Functions to take a break:
from time import sleep
# Package for email services:
import smtplib
import string

MAX_NET_USAGE = 400000
MAX_ATTACKS = 4
attack = 0
counter = 0
while attack <= MAX_ATTACKS:
    sleep(4)
    counter = counter + 1
    # Check the CPU usage
    if cpu_percent(interval = 1) > 70:
        attack = attack + 1
    # Check the net usage
    neti1 = net_io_counters()[1]
    neto1 = net_io_counters()[0]
    sleep(1)
    neti2 = net_io_counters()[1]
    neto2 = net_io_counters()[0]
    # Calculate the bytes per second
    net = ((neti2+neto2) - (neti1+neto1))/2
    if net > MAX_NET_USAGE:
        attack = attack + 1
    if counter > 25:
        attack = 0
        counter = 0

# Write a very important email if attack is higher than 4
TO = "you@your_email.com"
FROM = "webmaster@your_domain.com"
SUBJECT = "Your domain is out of system resources!"
text = "Go and fix your server!"
BODY = string.join(
        ("From: %s" %FROM,"To: %s" %TO,"Subject: %s" %SUBJECT, "",text), "\r\n")
server = smtplib.SMTP('127.0.0.1')
server.sendmail(FROM, [TO], BODY)
server.quit()


For a good example use of Psutil, see glances,
a full terminal application that behaves like a widely extended top (which lists
running process by CPU use or a user-specified sort order),
with the ability of a client-server monitoring tool.

















Fabric


Fabric is a library for simplifying system
administration tasks. It allows you to SSH to multiple hosts and execute
tasks on each one. This is convenient for system administration or
application deployment. Use pip to install Fabric:


$ pip install fabric


Here is a complete Python module defining two
Fabric tasks—memory_usage and deploy:


# fabfile.py
from fabric.api import cd, env, prefix, run, task

env.hosts = ['my_server1', 'my_server2']   # Where to SSH

@task
def memory_usage():
    run('free -m')

@task
def deploy():
    with cd('/var/www/project-env/project'):
        with prefix('. ../bin/activate'):
            run('git pull')
            run('touch app.wsgi')


The with statement just nests the commands in so that
in the end deploy() becomes this for each host:


$ ssh hostname cd /var/ww/project-env/project && ../bin/activate && git pull
$ ssh hostname cd /var/ww/project-env/project && ../bin/activate && \
> touch app.wsgi



With the previous code saved in a file named fabfile.py (the default module
name fab looks for), we can check memory usage with our new memory_usage task:


$ fab memory_usage
[my_server1] Executing task 'memory'
[my_server1] run: free -m
[my_server1] out:              total     used     free   shared  buffers   cached
[my_server1] out: Mem:          6964     1897     5067        0      166      222
[my_server1] out: -/+ buffers/cache:     1509     5455
[my_server1] out: Swap:            0        0        0

[my_server2] Executing task 'memory'
[my_server2] run: free -m
[my_server2] out:              total     used     free   shared  buffers   cached
[my_server2] out: Mem:          1666      902      764        0      180      572
[my_server2] out: -/+ buffers/cache:      148     1517
[my_server2] out: Swap:          895        1      894


and we can deploy with:


$ fab deploy


Additional features include parallel execution, interaction with remote
programs, and host grouping. The examples in the
Fabric documentation are easy to follow.

















Luigi


Luigi is a pipeline management tool
developed and released by Spotify. It helps developers manage the entire
pipeline of large, long-running batch jobs, stitching together things
such as Hive queries, database queries, Hadoop Java jobs, pySpark jobs, and
any tasks you want to write yourself. They don’t all have to be big
data applications—the API allows you to schedule anything. But Spotify made
it to run their jobs over Hadoop, so they provide all of these utilities
already in luigi.contrib.
Install it with pip:


$ pip install luigi


It includes a web interface, so users can filter for their tasks
and view dependency graphs of the pipeline workflow and its progress.
There are example Luigi tasks
in their GitHub repository, or see the Luigi documentation.





























Speed


This chapter lists the Python community’s most common approaches
to speed optimization.
Table 8-1 shows your optimization options, after you’ve done the
simple things like profiling your code
and comparing options for code snippets
to first get all of the performance you can directly from Python.


You may have already heard of the global interpreter lock
(GIL)—it is how the C implementation of Python allows multiple threads to
operate at the same time. Python’s memory management isn’t entirely thread-safe,
so the GIL is required to prevent multiple threads from running the same
Python code at once.


The GIL is often cited as a limitation of Python, but it’s not really as
big of a deal as it’s made out to be—it’s only a hindrance
when processes are CPU bound (in which case, like with NumPy or the cryptography
libraries discussed soon, the code is rewritten in C
and exposed with Python bindings).
For anything else (like network I/O or file I/O), the bottleneck is the
code blocking in a single thread while waiting for the I/O. You can solve blocking problems
using threads or event-driven programming.


We should also note that in Python 2, there were slower and faster versions of
libraries—StringIO and cStringIO, ElementTree and cElementTree. The C implementations
are faster, but had to be imported explicitly. Since Python 3.3, the regular versions
import from the faster implementation whenever possible, and the C-prefixed libraries are
deprecated.


Table 8-1. Speed options


	Option
	License
	Reasons to use





	Threading

	PSFL

	

	
Allows you to create multiple execution threads.



	
Threading (when using CPython, because of the GIL) does not
use multiple processes; the different threads switch when one is blocking, which is useful when your bottleneck is some blocking task, like wating on I/O.



	
There is no GIL in some other implementations of Python, like Jython and IronPython.









	Multiprocessing/subprocess

	PSFL

	

	
Tools in the multiprocessing library allow you to actually spawn other Python processes, bypassing the GIL.



	
And subprocess allows you to launch multiple command-line processes.









	PyPy

	MIT license

	

	
It’s a Python interpreter (Python 2.7.10 or 3.2.5 right now) that provides
just-in-time compilation to C when possible.



	
Effortless: no coding necessary, and it usually gives a good boost.



	
It’s a drop-in replacement for CPython that usually works—any C libraries should use the CFFI, or be on the
PyPy compatibility list.









	Cython

	Apache license

	

	
It provides two ways to statically compile Python code: the first choice is to use an annotation language, Cython (*.pxd).



	
The second choice is to statically compile pure Python and use Cython’s provided decorators to specify object type.









	Numba

	BSD license

	

	
It provides both a static (via its pycc tool) or a just-in-time runtime
compiler to machine code that uses NumPy arrays.



	
It requires Python 2.7 or 3.4+, the llvmlite
library, and its dependency, the LLVM (Low-Level Virtual Machine) compiler infrastructure.









	Weave

	BSD license

	

	
It provides a way to “weave” a few lines of C into Python, but only use it if
you’re already using Weave.



	
Otherwise, use Cython—Weave is now deprecated.









	PyCUDA/gnumpy/TensorFlow/Theano/PyOpenCL

	MIT/modified BSD/BSD/BSD/MIT

	

	
These libraries provide different ways to use a NVIDIA GPU, provided you have one installed,
and can install NVIDIA’s CUDA toolchain.



	
PyOpenCL can use processors other than NVIDIA’s use other processors



	
They each have a different application—for example, gnumpy is intended to be
a drop-in replacement for NumPy.









	Direct use of C/C++ libraries

	 — 

	

	
The speed improvement is worth the extra time you’ll need to spend coding in C/C++.












Jeff Knupp, author of Writing Idiomatic Python,
wrote a blog post about
getting around the GIL,
citing David Beazley’s deep look6 into the subject.


Threading and the other optimization options in
Table 8-1 are discussed in more detail in the following sections.












Threading


Python’s threading library allows you to create multiple threads. Because of the GIL (at least in CPython), there will only be one Python process running per Python interpreter, meaning there will only be a performance gain when at least one thread is blocking (e.g., on I/O). The other option for I/O is to use event handling. For that, see the paragraphs on asyncio in “Performance networking tools in Python’s Standard Library”.


What happens in Python when you have multiple threads is the kernel
notices that one thread is blocking on I/O, and it switches to allow the next
thread to use the processor until it blocks or is finished. All of this
happens automatically when you start your threads. There’s a good
example use of threading on Stack Overflow,
and the Python Module of the Week series has a
great threading introduction.
Or see the
threading documentation in the Standard Library.

















Multiprocessing


The multiprocessing module
in Python’s Standard Library provides a way to bypass the GIL—by launching additional
Python interpreters. The separate processes can communicate
using a multiprocessing.Pipe, or by a multiprocessing.Queue,
or share memory via a multiprocessing.Array and multiprocessing.Value,
which implement locking automatically. Share data sparingly; these objects
implement locking to prevent simultaneous access by different processes.


Here’s an example to show that the speed gain from using a pool of worker
processes isn’t always proportional to the number of workers used.
There’s a trade-off between the computational time saved
and the time it takes to launch another interpeter.
The example uses the Monte Carlo method (of drawing random numbers)
to estimate the value of Pi:7


>>> import multiprocessing
>>> import random
>>> import timeit
>>>
>>> def calculate_pi(iterations):
...     x = (random.random() for i in range(iterations))
...     y = (random.random() for i in range(iterations))
...     r_squared = [xi**2 + yi**2 for xi, yi in zip(x, y)]
...     percent_coverage = sum([r <= 1 for r in r_squared]) / len(r_squared)
...     return 4 * percent_coverage
...
>>>
>>> def run_pool(processes, total_iterations):
...     with multiprocessing.Pool(processes) as pool:  [image: 1]
...         # Divide the total iterations among the processes.
...         iterations = [total_iterations // processes] * processes  [image: 2]
...         result = pool.map(calculate_pi, iterations)  [image: 3]
...     print( "%0.4f" % (sum(result) / processes), end=',  ')
...
>>>
>>> ten_million = 10000000        [image: 4]
>>> timeit.timeit(lambda: run_pool(1, ten_million), number=10)
3.141,  3.142,  3.142,  3.141,  3.141,  3.142,  3.141,  3.141,  3.142,  3.142,
134.48382110201055 [image: 5]
>>>                                [image: 6]
>>> timeit.timeit(lambda: run_pool(10, ten_million), number=10)
3.142,  3.142,  3.142,  3.142,  3.142,  3.142,  3.141,  3.142,  3.142,  3.141,
74.38514468498761  [image: 7]


	[image: 1]

	Using the multiprocessing.Pool within a context manager reinforces
that the pool should only be used by the process that creates it.


	[image: 2]

	The total iterations will always be the same; they’ll just be divided between a different number of processes.


	[image: 3]

	pool.map() creates the multiple processes—one per item in the iterations list, up to the
maximum number stated when the pool was initialized (in multiprocessing.Pool(processes)).


	[image: 4]

	There is only one process for the first timeit trial.


	[image: 5]

	10 repetitions of one single process running with 10 million iterations took 134 seconds.


	[image: 6]

	There are 10 processes for the second timeit trial.


	[image: 7]

	10 repetitions of 10 processes each running with one million iterations took 74 seconds.





The point of all this was that there is overhead in making the multiple processes,
but the tools for runing multiple processes in Python are robust and mature.
See the multiprocessing documentation in the Standard Library
for more information, and check out Jeff Knupp’s
blog post about getting around the GIL,
because it has a few paragraphs about multiprocessing.

















Subprocess


The subprocess library was introduced into the
Standard Library in Python 2.4 and defined in
PEP 324.
It launches a system call (like unzip or curl) as if called from the command line (by default,
without calling the system shell),
with the developer selecting what to do with the subprocess’s input and output pipes.
We recommend Python 2 users get an updated version with some bugfixes from the
subprocess32 package. Install it using pip:


$ pip install subprocess32


There is a great subprocess tutorial on the
Python Module of the Week blog.

















PyPy


PyPy is a pure-Python implementation of Python. It’s
fast, and when it works, you don’t have to do anything
to your code, and it just runs faster for free.
You should try this option before anything else.


You can’t get it using pip, because it’s actually another implementation of
Python. Scroll through the PyPy downloads page
for your correct version of Python and your operating system.


Here is a slightly modified version of
David Beazley’s
CPU bound test code, with an added loop for multiple tests.
You can see the difference between PyPy and
CPython. First it’s run using the
CPython:


$ # CPython
$ ./python -V
Python 2.7.1
$
$ ./python measure2.py
1.06774401665
1.45412397385
1.51485204697
1.54693889618
1.60109114647


And here is the same script, and the only thing
different is the Python interpreter—it’s running with
PyPy:


$ # PyPy
$ ./pypy -V
Python 2.7.1 (7773f8fc4223, Nov 18 2011, 18:47:10)
[PyPy 1.7.0 with GCC 4.4.3]
$
$ ./pypy measure2.py
0.0683999061584
0.0483210086823
0.0388588905334
0.0440690517426
0.0695300102234


So, just by downloading PyPy, it went from
an average of about 1.4 seconds to around 0.05 seconds—more than 20 times faster. Sometimes your code won’t even double in speed, but other times
you really do get a big boost.
And with no effort outside of downloading the PyPy interpreter.
If you want your C library to be compatible with PyPy,
follow PyPy’s advice and use the
CFFI instead of ctypes in the Standard Library.

















Cython


Unfortunately, PyPy doesn’t work with all libraries that use C extensions.
For those cases,
Cython (pronounced “PSI-thon”—not the same as CPython,
the standard C implementation of Python)
implements a superset of the Python language
that lets you write C and C++ modules for Python. Cython also
allows you to call functions from compiled C libraries, and provides a
context, nogil, that allows you to
release the GIL
around a section of code, provided it does not manipulate Python objects in any way.
Using Cython allows you to take advantage of Python’s strong typing8 of variables and operations.


Here’s an example of strong typing with Cython:


def primes(int kmax):
"""Calculation of prime numbers with additional Cython keywords"""

    cdef int n, k, i
    cdef int p[1000]
    result = []
    if kmax > 1000:
        kmax = 1000
    k = 0
    n = 2
    while k < kmax:
        i = 0
        while i < k and n % p[i] != 0:
            i = i + 1
        if i == k:
            p[k] = n
            k = k + 1
            result.append(n)
        n = n + 1
    return result


This implementation of an algorithm to find prime numbers has some additional
keywords compared to the next one, which is implemented in pure Python:


def primes(kmax):
"""Calculation of prime numbers in standard Python syntax"""

    p= range(1000)
    result = []
    if kmax > 1000:
        kmax = 1000
    k = 0
    n = 2
    while k < kmax:
        i = 0
        while i < k and n % p[i] != 0:
            i = i + 1
        if i == k:
            p[k] = n
            k = k + 1
            result.append(n)
        n = n + 1
    return result


Notice that in the Cython version you declare integers and integer arrays
to be compiled into C types while also creating a Python list:


# Cython version

def primes(int kmax):  [image: 1]
    """Calculation of prime numbers with additional Cython keywords"""
    cdef int n, k, i  [image: 2]
    cdef int p[1000]  [image: 3]
    result = []


	[image: 1]

	The type is declared to be an integer.


	[image: 2]

	The upcoming variables n, k, and i are declared as integers.


	[image: 3]

	And we then have preallocated a 1000-long array of integers for p.





What is the difference? In the Cython version, you can see the
declaration of the variable types and the integer array in a similar way as
in standard C. For example, the addtional type declaration
(of integer) in the cdef int n,k,i
allows the Cython compiler to generate more
efficient C code than it could without type hints.
Because the syntax is incompatible with standard Python,
it is not saved in *.py files—instead,
Cython code is saved in *.pyx files.


What’s the difference in speed? Let’s try it!


import time
# activate pyx compiler
import pyximport  [image: 1]
pyximport.install()  [image: 2]
# primes implemented with Cython
import primesCy
# primes implemented with Python
import primes

print("Cython:")
t1 = time.time()
print primesCy.primes(500)
t2 = time.time()
print("Cython time: %s" %(t2-t1))
print("")
print("Python")
t1 = time.time()  [image: 3]
print(primes.primes(500))
t2 = time.time()
print("Python time: {}".format(t2-t1))


	[image: 1]

	The pyximport module allows you to import *.pyx files (e.g.,
primesCy.pyx) with the Cython-compiled version of the primes
function.


	[image: 2]

	The pyximport.install() command allows the Python interpreter to
start the Cython compiler directly to generate C-code, which is automatically
compiled to a *.so C-library. Cython is then able to import this
library for you in your Python code, easily and efficiently.


	[image: 3]

	With the time.time() function, you are able to compare the time between these two
different calls to find 500 prime numbers. On a standard notebook (dual-core
AMD E-450 1.6 GHz), the measured values are:





Cython time: 0.0054 seconds

Python time: 0.0566 seconds


And here the output of an embedded
ARM BeagleBone
machine:


Cython time: 0.0196 seconds

Python time: 0.3302 seconds

















Numba


Numba is a NumPy-aware Python compiler
(just-in-time [JIT] specializing compiler) that compiles annotated Python (and
NumPy) code to LLVM (Low-Level Virtual Machine) through special decorators.
Briefly, Numba uses LLVM to compile Python down to machine code that
can be natively executed at runtime.


If you use Anaconda,
install Numba with conda install numba; if not, install it by hand.
You must already have NumPy and LLVM installed before installing Numba.
Check the LLVM version you need (it’s on the
PyPI page for llvmlite), and download that
version from whichever place matches your OS:



	
LLVM builds for Windows.



	
LLVM builds for Debian/Ubuntu.



	
LLVM builds for Fedora.



	
For a discussion of how to build from source for other Unix systems, see “Building the Clang + LLVM compilers”.



	
On OS X, use brew install homebrew/versions/llvm37 (or whatever version number is now current).






Once you have LLVM and NumPy, install Numba using pip.
You may need to help the installer find the llvm-config file by
providing an environment variable LLVM_CONFIG with the appropriate
path, like this:


$ LLVM_CONFIG=/path/to/llvm-config-3.7 pip install numba


Then, to use it in your code, just decorate your functions:


from numba import jit, int32

@jit  [image: 1]
def f(x):
    return x + 3

@jit(int32(int32, int32))  [image: 2]
def g(x, y):
    return x + y


	[image: 1]

	With no arguments, the @jit decorator does lazy compilation—deciding
itself whether to optimize the function, and how.


	[image: 2]

	For eager compilation, specify types. The function will be compiled
with the given specialization, and no other will be allowed—the return
value and the two arguments will all have type numba.int32.





There is a nogil flag that can allow code to ignore the Global Interpreter Lock,
and a module numba.pycc that can be used to compile the code ahead of time.
For more information, see Numba’s user manual.

















GPU libraries


Numba can optionally be built with capacity to run on the computer’s
graphics processing unit (GPU),
a chip optimized for the fast, parallel computation used in modern video games.
You’ll need to have a NVIDIA GPU, with
NVIDIA’s CUDA Toolkit installed.
Then follow the documentation for
using Numba’s CUDA JIT
with the GPU.


Outside of Numba,
the other popular library with GPU capability is TensorFlow,
released by Google under the Apache v2.0 license. It provides tensors (mutidimensional matrices)
and a way to chain tensor operations together, for fast matrix math.
 Currently it can only use the
GPU on Linux operating systems. For installation
instructions, see the following pages:



	
Installing TensorFlow with GPU support



	
TensorFlow installation without GPU support






For those not on Linux, Theano, from the University
of Montréal, was the de facto matrix-math-over-GPU libary in Python until Google posted TensorFlow.
Theano is still under active development.
It has a page dedicated to using the GPU.
Theano supports Windows, OS X, and Linux operating systems, and is available via pip:


$ pip install Theano


For lower-level interaction with the GPU, you can try PyCUDA.


Finally, people without a NVIDIA GPU can use PyOpenCL,
a wrapper for Intel’s OpenCL library, which
is compatible with a number of
different hardware sets.















Interfacing with C/C++/FORTRAN Libraries


Each of the libraries described in the following sections are very different:
both CFFI and ctypes are Python libraries,
F2PY is for FORTRAN, SWIG can make C objects available
in multiple languages (not just Python), and Boost.Python
is a C++ library that can expose C++ objects to Python
and vice versa. Table 8-2 goes into
a little more detail.


Table 8-2. C and C++ interfaces


	Library
	License
	Reasons to use





	CFFI

	MIT license

	

	
It provides the best compatibility with PyPy.



	
It allows you to write C code from within Python
that can be compiled to build a shared C library
with Python bindings.









	ctypes

	Python Software Foundation license

	

	
It’s in the Python Standard Library.



	
It allows you to wrap existing DLLs or shared objects that
you didn’t write or don’t have control over.



	
It provides the second-best compatibility with PyPy.









	F2PY

	BSD license

	

	
This lets you use a FORTRAN library.



	
F2PY is a part of NumPy, so you should be using NumPy.









	SWIG

	GPL

(output is not restricted)

	

	
It provides a way to autogenerate libraries in
multiple languages, using a special file format
that is neither C nor Python.









	Boost.Python

	Boost Software license

	

	
It’s not a command-line tool; it’s a C++ library
that can be included in the C++ code and used to identify which
objects to expose to Python.






















C Foreign Function Interface


The CFFI package provides a simple
mechanism to interface with C from both CPython and PyPy. CFFI is
recommended by PyPy
for the best compatibility between CPython and PyPy. It supports two
modes: the inline application binary interface (ABI) compatibility mode
(see the following code example)  allows
you to dynamically load and run functions from executable modules (essentially
exposing the same functionality as LoadLibrary or dlopen), and an API mode,
which allows you to build C extension modules.9


Install it using pip:


$ pip install cffi


Here is an example with ABI interaction:


from cffi import FFI
ffi = FFI()
ffi.cdef("size_t strlen(const char*);")  [image: 1]
clib = ffi.dlopen(None)  [image: 2]
length = clib.strlen("String to be evaluated.")  [image: 3]
# prints: 23
print("{}".format(length))


	[image: 1]

	The string here could be lifted from a function declaration
from a C header file.


	[image: 2]

	Open the shared library (*.DLL or *.so).


	[image: 3]

	Now we can treat clib as if it were a Python module
and just call functions we defined with dot notation.




















ctypes


ctypes is the de facto
library for interfacing with C/C++ from CPython, and it’s in
the Standard Library. It provides
full access to the native C interface of most major operating systems (e.g.,
kernel32 on Windows, or libc on *nix), plus support for loading
and interfacing with dynamic libraries—shared objects (*.so) or DLLs—at
runtime. It brings along with it a whole host of types for interacting
with system APIs and allows you to easily define your own complex
types, such as structs and unions, and allows you to modify things like
padding and alignment if needed. It can be a bit crufty to use (because you have to
type so many extra characters), but in
conjunction with the Standard Library’s struct module,
you are essentially provided full control over how your data types get
translated into something usable by a pure C/C++ method.


For example, a C struct defined like this in a file named my_struct.h:


struct my_struct {
    int a;
    int b;
};


could be implemented as shown in a file named my_struct.py:


import ctypes
class my_struct(ctypes.Structure):
    _fields_ = [("a", c_int),
                ("b", c_int)]

















F2PY


The Fortran-to-Python interface generator (F2PY)
is a part of NumPy, so to get it, install NumPy using pip:


$ pip install numpy


It provides a versatile command-line function, f2py, that can be used
three different ways, all documented in
the F2PY quickstart guide.
If you have control over the source code, you can add special
comments with instructions for F2PY that clarify the intent of each argument
(which items are return values and which are inputs), and then just
run F2PY like this:


$ f2py -c fortran_code.f -m python_module_name


When you can’t do that, F2PY can generate an intermediate
file with extension *.pyf that you can modify, to
then produce the same results. This would be three steps:


$ f2py fortran_code.f -m python_module_name -h interface_file.pyf  [image: 1]
$ vim interface_file.pyf  [image: 2]
$ f2py -c interface_file.pyf fortran_code.f  [image: 3]


	[image: 1]

	Autogenerate an intermediate file that defines the interface between
the FORTRAN function signatures and the Python signatures.


	[image: 2]

	Edit the file so that it correctly labels input and output variables.


	[image: 3]

	Now compile the code and build the extension modules.




















SWIG


The Simplified Wrapper Interface Generator (SWIG)
supports a large number of scripting languages, including Python.
It’s a popular, widely used command-line tool that generates bindings for
interpreted languages from annotated C/C++ header files. To use it,
first use SWIG to autogenerate an intermediate file from the header—with *.i suffix. Next, modify that file to reflect the actual
interface you want, and then run the build tool to compile
the code into a shared library.
All of this is done step by step in the
SWIG tutorial.


While it does have some limits (it currently
seems to have issues with a small subset of newer C++ features, and getting
template-heavy code to work can be a bit verbose), SWIG provides a great deal
of power and exposes lots of features to Python with little effort.
Additionally, you can easily extend the bindings SWIG creates (in the
interface file) to overload operators and built-in methods, and effectively re-cast
C++ exceptions to be catchable by Python.


Here is an example that shows how to overload __repr__. This
excerpt would be from a file named MyClass.h:


#include <string>
class MyClass {
private:
    std::string name;
public:
    std::string getName();
};


And here is myclass.i :


%include "string.i"

%module myclass
%{
#include <string>
#include "MyClass.h"
%}

%extend MyClass {
    std::string __repr__()
    {
        return $self->getName();
    }
}

%include "MyClass.h"


There are more Python examples in the
SWIG GitHub repository.
Install SWIG using your package manager, if it’s there (apt-get install swig, yum install swig.i386, or
brew install swig), or else
use this link to download SWIG,
then follow the
installation instructions
for your operating system. If you’re missing the Perl Compatible Regular Expressions (PCRE)
library in OS X, use Homebrew to install it:


$ brew install pcre

















Boost.Python


Boost.Python
requires a bit more manual work to expose C++ object functionality, but
it is capable of providing all the same features SWIG does and then some—for example, wrappers to access Python objects as PyObjects in C++,
as well as the tools to expose C++ objects to Python.
Unlike SWIG, Boost.Python
is a library, not a command-line tool, and there is no need to create an intermediate
file with different formatting—it’s all written directly in C++.
Boost.Python has an extensive, detailed
tutorial
if you wish to go this route.






















1 Fowler is an advocate for best practices in software design and development, and one of continuous integration’s most vocal proponents. The quote is excerpted from his blog post on continuous integration. He hosted a series of discussions about test-driven development (TDD) and its relationship to extreme development with David Heinemeier Hansson (creater of Ruby on Rails) and Kent Beck (instigator of the extreme programming (XP) movement, with CI as one of its cornerstones).
2 On GitHub, other users submit pull requests to notify owners of another repository that they have changes they’d like to merge.
3 REST stands for “representational state transfer.” It’s not a standard or a protocol, just a set of design principles developed during the creation of the HTTP 1.1 standard. A list of relevant architectural constraints for REST is available on Wikipedia.
4 OpenStack provides free software for cloud networking, storage, and computation so that organizations can host private clouds for themselves or public clouds that third parties can pay to use.
5 Except for Salt-SSH, which is an alternative Salt architecture, probably created in response to users wanting an Ansible-like option from Salt.
6 David Beazley has a great guide (PDF) that describes how the GIL operates. He also covers the new GIL (PDF) in Python 3.2. His results show that maximizing performance in a Python application requires a strong understanding of the GIL, how it affects your specific application, how many cores you have, and where your application bottlenecks are.
7 Here is a full derivation of the method. Basically you’re throwing darts at a 2 x 2 square, with a circle that has radius = 1 inside. If the darts land with equal likelihood anywhere on the board, the percent that are in the circle is equal to Pi / 4. Which means 4 times the percent in the circle is equal to Pi.
8 It is possible for a language to both be strongly and dynamically typed, as described in this Stack Overflow discussion.
9 Special care must be taken when writing C extensions to make sure you register your threads with the interpreter.



Chapter 9. Software Interfaces



This chapter will first show you how
to use Python to get information from APIs that are used now to
share data between organizations, and then highlight the tools that
most Python-powered
organizations would use to support communication within their own infrastructure.


We already discussed Python’s support for pipes and queues across
processes in “Multiprocessing”. Communicating between computers
requires the computers at both ends of the conversation use
a defined set of protocols—the Internet adheres to the
TCP/IP suite.1
You can
implement UDP yourself
over sockets, Python provides a library called ssl for TLS/SSL wrappers over sockets,
and asyncio to implement
asynchronous transports
for TCP, UDP, TLS/SSL, and subprocess pipes.


But most of us will be using the higher-level libraries that provide
clients implementing various application-level protocols:
ftplib, poplib, imaplib, nntplib, smtplib, telnetlib, and xmlrpc.
All of them provide classes for both regular and TLS/SSL wrapped clients
(and urllib exists for HTTP requests, but recommends the Requests library for most uses).


The first section in this chapter covers HTTP requests—how to get data
from public APIs on the Web. Next is a brief aside about serialization
in Python, and the third section describes popular
tools used in enterprise-level networking.
We’ll try to explicitly say when something is only available in Python 3.
If you’re using Python 2 and can’t find a module or class we’re talking
about, we recommend checking this list of changes between the Python 2 and Python 3 Standard Libraries.








Web Clients


The Hypertext Transfer Protocol (HTTP) is an application protocol for
distributed, collaborative, hypermedia information systems and is the
foundation of data communication for the World Wide Web.
We’re focusing this entire section on how to get data from the Web
using the Requests library.


Python’s standard urllib module provides most of the HTTP capabilities you
need, but at a low level, that requires quite a bit of work to perform
seemingly simple tasks (like getting data from an HTTPS server that requires
authentication). The documentation for the urllib.request module
actually says to use the Requests library instead.


Requests takes all of the work out of
Python HTTP requests—making your integration
with web services seamless. There’s no need to manually add query strings to
your URLs, or to form-encode your POST data. Keep-alive (persistent HTTP connections)
and HTTP connection pooling are available through the request.sessions.Session class,
powered by urllib3,
which is embedded within Requests (meaning you don’t need to install it separately).
Get it using pip:


$ pip install requests


The Requests documentation
goes into more detail than what we’ll cover next.










Web APIs


Nearly everybody, from the US Census to
the Dutch National Library,
has an API that you can use to get the data they want to share;
and some, like Twitter and Facebook, allow you (or the apps you use) to
also modify that data.
You may hear the term RESTful API. REST stands for representational state transfer—it
is a paradigm that informed how HTTP 1.1 was designed, but is not a standard, protocol, or requirement. Still, most web service API providers follow the RESTful
design principles. We’ll use some code to illustrate common terms:


import requests
             [image: 1]                    [image: 2]           [image: 3]         [image: 4]
result = requests.get('http://pypi.python.org/pypi/requests/json')



	[image: 1]

	The method is part of the HTTP protocol. In a RESTful API, the API designer chooses what action the server will take, and tells you in their API documentation. Here is a list of all of the methods, but the ones commonly available in RESTful APIs are GET, POST, PUT, and DELETE.
Usually, these “HTTP verbs” do what their meaning implies, getting data, changing data, or deleting it.



	[image: 2]

	The base URI is the root of the API.


	[image: 3]

	Clients would specify a specific element they want data on.


	[image: 4]

	And there may be an option for different media types.





That code actually performed an HTTP request to http://pypi.python.org/pypi/requests/json,
which is the JSON backend for PyPI. If you look at it in your browser, you will see a
large JSON string. In Requests, the return value of an HTTP request is a Response object:


>>> import requests
>>> response = requests.get('http://pypi.python.org/pypi/requests/json')
>>> type(response)
<class 'requests.models.Response'>
>>> response.ok
True
>>> response.text    # This gives all of the text of the response
>>> response.json()  # This converts the text response into a dictionary


PyPI gave us the text in JSON format.
There isn’t a rule about the format to send data in, but many
APIs use JSON or XML.












JSON parsing


Javascript Object Notation (JSON) is exactly what it
says—the notation used to define objects in JavaScript.
The Requests library has built a JSON parser into its Response object.


The json library can parse
JSON from strings or files into a Python dictionary
(or list, as appropriate).
It can also convert Python dictionaries or lists into JSON strings.
For example, the following string contains JSON data:


json_string = '{"first_name": "Guido", "last_name":"van Rossum"}'


It can be parsed like this:


import json
parsed_json = json.loads(json_string)


and can now be used as a normal dictionary:


print(parsed_json['first_name'])
"Guido"


You can also convert the following to JSON:


d = {
    'first_name': 'Guido',
    'last_name': 'van Rossum',
    'titles': ['BDFL', 'Developer'],
}

print(json.dumps(d))
'{"first_name": "Guido", "last_name": "van Rossum",
  "titles": ["BDFL", "Developer"]}'


simplejson for Earlier Versions of Python

The json library was added to Python 2.6.
If you’re using an earlier version of Python, the
simplejson library is
available via PyPI.


simplejson provides the same API as the json module in Python’s Standard Library but is updated more frequently than Python is. Also, developers who use older versions of Python can still use the features available in the json library by importing simplejson. You can use simplejson as a drop-in replacement for json like this:


import simplejson as json


After importing simplejson as json, the preceding examples will all work as if you
were using the standard json library.



















XML parsing


There is an XML parser in the Standard Library (xml.etree.ElementTree’s parse() and fromstring() methods),
but this uses the Expat library and
creates an ElementTree object that preserves the structure of the XML, meaning
we have to iterate down it and look into its children to get content.
When all you want is to get the data, try
either untangle or xmltodict. You can get both using pip:


$ pip install untangle
$ pip install xmltodict


	untangle

	
untangle
takes an XML document and returns a Python object whose structure
mirrors the nodes and attributes.
For example, an XML file like this:






<?xml version="1.0" encoding="UTF-8"?>
<root>
    <child name="child1" />
</root>


	

	
can be loaded like this:






import untangle
obj = untangle.parse('path/to/file.xml')


	

	
and then you can get the child element’s name like this:






obj.root.child['name']  # is 'child1'


	xmltodict

	
xmltodict
converts the XML to a dictionary.
For example, an  XML file like this:






<mydocument has="an attribute">
  <and>
    <many>elements</many>
    <many>more elements</many>
  </and>
  <plus a="complex">
    element as well
  </plus>
</mydocument>


	

	
can be loaded into an OrderedDict instance (from the collections module in Python’s Standard Library) like this:






import xmltodict

with open('path/to/file.xml') as fd:
    doc = xmltodict.parse(fd.read())


	

	
and then you can access elements, attributes, and values like this:






doc['mydocument']['@has']  # is u'an attribute'
doc['mydocument']['and']['many']  # is [u'elements', u'more elements']
doc['mydocument']['plus']['@a']  # is u'complex'
doc['mydocument']['plus']['#text']  # is u'element as well'


	

	
With xmltodict, you can also roundtrip the dictionary back to XML with the
unparse() function. It has a streaming mode suitable for handling
files that don’t fit in memory, and it supports namespaces.





















Web scraping


Websites don’t always provide their data in comfortable
formats such as CSV or JSON, but HTML is also structured data—this is where web scraping comes in.


Web scraping is the practice of using a
computer program to sift through a web page and gather the data that you need
in a format most useful to you while at the same time preserving the structure
of the data.

Tip

More and more now, as sites offer APIs, they explicitly request
you to not scrape their data—the API presents the data they are willing
to share, and that’s it. Before getting started, check around the website
you’re looking at for a Terms of Use statement, and be a good citizen
of the Web.



















lxml


lxml is a pretty extensive library written for parsing
XML and HTML documents very quickly, even handling some amount of incorrectly formatted markup in the process. Get it using pip:


$ pip install lxml


Use requests.get to retrieve the web page with our data,
parse it using the html module, and save the results in tree:


from lxml import html
import requests

page = requests.get('http://econpy.pythonanywhere.com/ex/001.html')  [image: 1]
tree = html.fromstring(page.content)  [image: 2]


	[image: 1]

	This is a real web page, and the data we show are real—you
can visit the page in your browser.


	[image: 2]

	We use page.content rather than page.text because
html.fromstring() implicitly expects bytes as input.





Now, tree contains the whole HTML file in a nice tree structure that
we can go over in two different ways: XPath
or CSSSelect. They are both standard
ways to specify a path through an HTML tree, defined and maintained
by the World Wide Web Consortium (W3C), and implemented as modules in lxml.
In this example, we will use XPath.
A good introduction is
W3Schools XPath tutorial.


There are also various tools for obtaining the XPath of elements from inside
your web browser, such as
Firebug for Firefox or the Chrome Inspector. If you’re using Chrome, you
can right-click an element, choose “Inspect element”, highlight the code,
right-click again and choose “Copy XPath”.


After a quick analysis, we see that in our page the data is contained in
two elements—one is a div with title buyer-name, and the other is a
span with the class item-price:


<div title="buyer-name">Carson Busses</div>
<span class="item-price">$29.95</span>


Knowing this, we can create the correct XPath query and use lxml’s
xpath function like this:


# This will create a list of buyers:
buyers = tree.xpath('//div[@title="buyer-name"]/text()')
# This will create a list of prices
prices = tree.xpath('//span[@class="item-price"]/text()')


Let’s see what we got exactly:


>>> print('Buyers: ', buyers)
Buyers:  ['Carson Busses', 'Earl E. Byrd', 'Patty Cakes',
'Derri Anne Connecticut', 'Moe Dess', 'Leda Doggslife', 'Dan Druff',
'Al Fresco', 'Ido Hoe', 'Howie Kisses', 'Len Lease', 'Phil Meup',
'Ira Pent', 'Ben D. Rules', 'Ave Sectomy', 'Gary Shattire',
'Bobbi Soks', 'Sheila Takya', 'Rose Tattoo', 'Moe Tell']
>>>
>>> print('Prices: ', prices)
Prices:  ['$29.95', '$8.37', '$15.26', '$19.25', '$19.25',
'$13.99', '$31.57', '$8.49', '$14.47', '$15.86', '$11.11',
'$15.98', '$16.27', '$7.50', '$50.85', '$14.26', '$5.68',
'$15.00', '$114.07', '$10.09']





























Data Serialization


Data serialization is the concept of converting structured data into a format
that allows it to be shared or stored—retaining the information necessary to reconstruct the object in memory at the receiving end of the transmission (or upon read from storage). In some cases, the secondary intent of data
serialization is to minimize the size of the serialized data, which then
minimizes disk space or bandwidth requirements.


The sections that follow cover the Pickle format, which is specific to Python,
some cross-language serialization tools, compression options in Python’s Standard
Library, and Python’s buffer protocol, which can reduce the number of
times an object is copied before transmission.












Pickle


The native data serialization module for Python is called
Pickle.
Here’s an example:


import pickle

# Here's an example dict
grades = { 'Alice': 89, 'Bob': 72, 'Charles': 87 }

# Use dumps to convert the object to a serialized string
serial_grades = pickle.dumps( grades )

# Use loads to de-serialize an object
received_grades = pickle.loads( serial_grades )


Some things cannot be pickled—functions, methods, classes,
and ephemeral things like pipes.

Warning

According to Python’s Pickle documentation, “The pickle module is not secure against erroneous or maliciously constructed data. Never unpickle data received from an untrusted or unauthenticated source.”



















Cross-language serialization


If you’re looking for a serialization module that has support in multiple
languages, two popular options are
Google’s Protobuf and
Apache’s Avro.


Also, Python’s Standard Library includes
xdrlib to pack and unpack Sun’s
External Data Representation (XDR)
format, which is independent of operating system and transport protocol.
It’s much lower level than the preceding options and just concatenates packed
bytes together, so both the client and server
must know the type and order of packing.
Here’s an example of what a server receiving data in XDR format could look like:


import socketserver
import xdrlib

class XdrHandler(socketserver.BaseRequestHandler):
    def handle(self):
        data = self.request.recv(4)  [image: 1]
        unpacker = xdrlib.Unpacker(data)
        message_size = self.unpacker.unpack_uint()  [image: 2]
        data = self.request.recv(message_size)  [image: 3]
        unpacker.reset(data)  [image: 4]
        print(unpacker.unpack_string())  [image: 5]
        print(unpacker.unpack_float())
        self.request.sendall(b'ok')

server = socketserver.TCPServer(('localhost', 12345), XdrHandler)
server.serve_forever()


	[image: 1]

	The data could be of variable length, so we added a
packed unsigned integer (4 bytes) with the message size first.


	[image: 2]

	We had to already know we were receiving an unsigned int.


	[image: 3]

	Read the rest of the message on this line first,…


	[image: 4]

	…and on the next line, reset the unpacker with the new data.


	[image: 5]

	We must know a priori that we’ll receive one
string and then one float.





Of course, if both sides were actually Python programs, you’d be
using Pickles. But if the server was from something totally different,
this would be the corresponding code for a client sending the data:


import socket
import xdrlib

p = xdrlib.Packer()
p.pack_string('Thanks for all the fish!')  [image: 1]
p.pack_float(42.00)
xdr_data = p.get_buffer()
message_length = len(xdr_data)

p.reset()  [image: 2]
p.pack_uint(message_length)
len_plus_data = p.get_buffer() + xdr_data  [image: 3]

with socket.socket() as s:
    s.connect(('localhost', 12345))
    s.sendall(len_plus_data)
    if s.recv(1024):
      print('success')


	[image: 1]

	Pack all of the data to be sent first.


	[image: 2]

	Next, pack the message length separately…


	[image: 3]

	…and prepend it to the whole message.




















Compression


Python’s Standard Library also contain support for data compression
and decompression using the zlib, gzip, bzip2, and lzma algorithms,
and the creation of ZIP- and tar-format archives.  To zip a Pickle,
for example:


import pickle
import gzip

data = "my very big object"

# To zip and pickle:
with gzip.open('spam.zip', 'wb') as my_zip:
    pickle.dump(data, my_zip)

# And to unzip and unpickle:
with gzip.open('spam.zip', 'rb') as my_zip:
    unpickled_data = pickle.load(my_zip)

















The buffer protocol


Eli Bendersky, one of Python’s core developers, wrote a blog post
about reducing the number of in-memory copies Python makes of the
same data by using memory buffers.
With his technique, you can even read from a file or socket into
an existing buffer.
For more information, see Python’s buffer protocol documentation
and PEP 3118, which suggested enhancements
that were implemented in Python 3 and backported to Python 2.6 and above.






















Distributed Systems


Distributed computer systems collectively accomplish a task
(like game play, or an Internet chat room, or a Hadoop calculation)
by passing information to each other.
This section
first lists our most popular libraries for common networking tasks,
and then discusses cryptography, which comes hand in hand
with this kind of communication.










Networking


In Python, communication for connected networks is usually
handled with asynchronous tools or threads, to get around the single-thread limitation
of the Global Interpreter Lock.
All of the libraries in Table 9-1 solve the same problem—getting around
the GIL—with different numbers and with varying amounts of additional features.


Table 9-1. Networking


	Library
	License
	Reasons to use





	asyncio

	PSF license

	

	
Provides an asynchronous event loop to manage communication
with nonblocking sockets and queues, as well as
any user-defined coroutines.



	
Also includes asynchronous sockets and queues.









	gevent

	MIT license

	

	
Is tightly coupled with libev, the C library for asynchronous I/O.



	
Provides a fast WSGI server built on libev’s HTTP server.



	
It also has this great gevent.monkey module that has patching functions for the standard library, so third-party modules written with blocking sockets can still be used with gevent.









	Twisted

	MIT license

	

	
Provides asynchronous implementations of newer protocols—for example, GPS, Internet of Connected Products (IoCP), and a Memcached protocol.



	
It has integrated its event loop with various other
event-driven frameworks, like wxPython or GTK.



	
It also has a built in SSH server and client tools.









	PyZMQ

	LGPL (ZMQ) and

BSD (Python part) license

	

	
Lets you set up and interface with nonblocking message queues using a socket-style API.



	
It provides socket behaviors (request/response, publish/subscribe, and push/pull)
that support distributed computing.



	
Use this when you want to build your own communication infrastructure; it
has “Q” in its name, but is not like RabbitMQ—it could be used to build
something like RabbitMQ, or something with a totally different behavior
(depending on the socket patterns chosen).









	pika

	BSD license

	

	
Provides a lightweight AMQP (communication protocol) client to connect with RabbitMQ or other message brokers.



	
Also includes adapters for use in Tornado or Twisted event loops.



	
Use this with a message broker like RabbitMQ when you want a lighter weight library
(no web dashboard or other bells and whistles) that lets you push content to an
external message broker like RabbitMQ.









	Celery

	BSD license

	

	
Provides an AMQP client to connect with RabbitMQ or other message brokers.



	
Also has an option to store task states in a backend that can use
different popular options like a database connection via
SQLAlchemy, Memcached, or others.



	
Also has an optional web administration and monitoring tool called Flower.



	
Can be used with a message broker like RabbitMQ for an out-of-the-box message broker system.






















Performance networking tools in Python’s Standard Library


asyncio was introduced in Python 3.4 and
includes ideas learned from the developer communities, like those maintaining Twisted
and gevent. It’s a concurrency tool, and
a frequent application of concurrency is for network servers.
Python’s own documentation for asyncore (a predecessor to asyncio), states:


There are only two ways to have a program on a single processor do “more than one thing at a time.” Multi-threaded programming is the simplest and most popular way to do it, but there is another very different technique, that lets you have nearly all the advantages of multi-threading, without actually using multiple threads. It’s really only practical if your program is largely I/O bound. If your program is processor bound, then pre-emptive scheduled threads are probably what you really need. Network servers are rarely processor bound, however.



asyncio is still only in the Python Standard Library on a provisional basis—the API may change in backward-incompatible ways—so don’t get too attached.


Not all of it is new—asyncore (deprecated in Python 3.4) has an event loop,
asynchronous sockets2 and asynchronous file I/O, and asynchat (also
deprecated in Python 3.4) had asynchronous queues.3
The big thing asyncio adds is a formalized implementation of coroutines.
In Python, this is formally defined as both a coroutine function—a function definition beginning
with async def rather
than just def (or uses the older syntax, and is decorated with @asyncio.coroutine)—and also the object obtained by calling a coroutine function (which is usually
some sort of computation or I/O operation).
The coroutine can yield the processor and thus
be able to participate in an asynchronous event loop, taking turns with
other coroutines.


The documentation has pages and pages of detailed examples to help the community,
as it’s a new concept for the language. It’s clear, thorough, and very much worth checking out. In this
interactive session, we just want to show the functions for the
event loop and some of the classes available:


>>> import asyncio
>>>
>>> [l for l in asyncio.__all__ if 'loop' in l]
['get_event_loop_policy', 'set_event_loop_policy',
'get_event_loop', 'set_event_loop', 'new_event_loop']
>>>
>>> [t for t in asyncio.__all__ if t.endswith('Transport')]
['BaseTransport', 'ReadTransport', 'WriteTransport', 'Transport',
'DatagramTransport', 'SubprocessTransport']
>>>
>>> [p for p in asyncio.__all__ if p.endswith('Protocol')]
['BaseProtocol', 'Protocol', 'DatagramProtocol',
'SubprocessProtocol', 'StreamReaderProtocol']
>>>
>>> [q for q in asyncio.__all__ if 'Queue' in q]
['Queue', 'PriorityQueue', 'LifoQueue', 'JoinableQueue',
'QueueFull', 'QueueEmpty']

















gevent


gevent is a coroutine-based Python networking
library that uses greenlets to provide a high-level synchronous API on top of
the C library libev event loop.
Greenlets are based on the greenlet
library—miniature green threads
(or user-level threads, as opposed to threads controlled by the kernel)
that the developer has the freedom to explicitly suspend, jumping between greenlets.
For a great deep dive into gevent, check out Kavya Joshi’s seminar “A Tale of Concurrency Through Creativity in Python.”


People use gevent because it is lightweight and tightly coupled to its underlying
C library, libev, for high performance. If you like the idea of integrating
asynchronous I/O and greenlets, this is the library to use.
Get it using pip:


$ pip install gevent


Here’s an example from the greenlet documentation:


>>> import gevent
>>>
>>> from gevent import socket
>>> urls = ['www.google.com', 'www.example.com', 'www.python.org']
>>> jobs = [gevent.spawn(socket.gethostbyname, url) for url in urls]
>>> gevent.joinall(jobs, timeout=2)
>>> [job.value for job in jobs]
['74.125.79.106', '208.77.188.166', '82.94.164.162']


The documentation offers many more examples.

















Twisted


Twisted is an event-driven networking
engine. It can be used to build applications around many different networking
protocols, including HTTP servers and clients, applications using SMTP, POP3,
IMAP or SSH protocols, instant messaging
and much more.
Install it using pip:


$ pip install twisted


Twisted has been around since 2002 and has a loyal community.
It’s like the Emacs of coroutine libraries—with everything
built in—because all of these things have to be asynchronous to work
together.
Probably the most useful tools are an asynchronous
wrapper for database connections (in twisted.enterprise.adbapi),
a DNS server (in twisted.names), direct access to packets (in twisted.pair),
and additional protocols like AMP, GPS, and SOCKSv4 (in twisted.protocols).
Most of Twisted now works with Python 3—when you pip install in a Python 3 environment, you’ll get
get everything that’s currently been ported.
If you find something you wanted in the
API
that’s not in your Twisted, you should still use Python 2.7.


For more information, consult Jessica McKellar and Abe Fettig’s
Twisted (O’Reilly).
In addition, this webpage shows over 42
Twisted examples,
and this one shows their
latest speed performance.

















PyZMQ


PyZMQ is the Python binding for
ZeroMQ. You can get it using pip:


$ pip install pyzmq


ØMQ (also spelled ZeroMQ, 0MQ, or ZMQ) describes itself as a
messaging library designed to have a familiar socket-style API,
and aimed at use in scalable distributed or concurrent
applications.
Basically, it implements asynchronous sockets with queues
attached and provides a
custom list of socket “types” that determine
how the I/O on each socket behaves. Here’s an example:


import zmq
context = zmq.Context()
server = context.socket(zmq.REP)  [image: 1]
server.bind('tcp://127.0.0.1:5000')  [image: 2]

while True:
    message = server.recv().decode('utf-8')
    print('Client said: {}'.format(message))
    server.send(bytes('I don't know.', 'utf-8'))

# ~~~~~ and in another file ~~~~~

import zmq
context = zmq.Context()
client = context.socket(zmq.REQ)  [image: 3]
client.connect('tcp://127.0.0.1:5000')  [image: 4]

client.send(bytes("What's for lunch?", 'utf-8'))
response = client.recv().decode('utf-8')
print('Server replied: {}'.format(response))


	[image: 1]

	The socket type zmq.REP corresponds to their “request-response” paradigm.


	[image: 2]

	Like with normal sockets, you bind the server to an IP and port.


	[image: 3]

	The client type is zmq.REQ—that’s all, ZMQ defines a number of these
as constants: zmq.REQ, zmq.REP, zmq.PUB, zmq.SUB, zmq.PUSH, zmq.PULL, zmq.PAIR.
They determine how the socket’s sending and receiving behaves.


	[image: 4]

	As usual, the client connects to the server’s bound IP and port.





So, these look and quack like sockets, enhanced with
queues and
various I/O patterns. The point of the patterns is to
provide the building blocks for a distributed network.
The basic patterns for the socket types are:


	request-reply

	
zmq.REQ and zmq.REP
connect a set of clients to a set of services. This can be for a
remote procedure call pattern or a task distribution pattern.



	publish-subscribe

	
zmq.PUB and zmq.SUB
connect a set of publishers to a set of subscribers.
This is a data distribution pattern—one node
is distributing data to other nodes, or this can
be chained to fan out into a distribution tree.



	push-pull (or pipeline)

	
zmq.PUSH and zmq.PULL
connect nodes in a fan-out/fan-in pattern that
can have multiple steps, and loops. This is a parallel
task distribution and collection pattern.






One great advantage of ZeroMQ over message-oriented
middleware is that it can be used for
message queuing without a dedicated message broker.
PyZMQ’s documentation
notes some enhancements they added, like tunneling via SSH.
The rest of the documentation for the ZeroMQ API is better on
the main ZeroMQ guide.

















RabbitMQ


RabbitMQ is an open source message broker
software that implements the Advanced
Message Queuing Protocol (AMQP). A message broker is an intermediary
program that receives messages from senders and sends them to receivers
according to a protocol. Any client that also implements AMQP can
communicate with RabbitMQ.
To get RabbitMQ, go to the RabbitMQ download page,
and follow the instructions for your operating system.


Client libraries that interface with the broker are
available for all major programming languages.
The top two for Python are pika and Celery—either can  be installed with pip:


$ pip install pika
$ pip install celery


	pika

	
pika
is a lightweight, pure-Python AMQP 0-9-1 client,
preferred by RabbitMQ. RabbitMQ’s introductory
tutorials
for Python use pika.
There’s also an entire page of
examples
to learn from.
We recommend playing with pika when you first set up
RabbitMQ, regardless of your final library choice,
because it is straightforward without the
extra features and so crystallizes the concepts.



	Celery

	
Celery is a much more featureful
AMQP client—it can use either RabbitMQ or Redis (a distributed
in-memory data store) as a message broker,
can track the tasks and results (and optionally store them
in a user-selected backend), and
has a web administration tool/task monitor,
Flower.
It is popular in the web development community, and there
are integration packages for Django, Pyramid, Pylons, web2py,
and Tornado (Flask doesn’t need one).
Start with the
Celery tutorial.

































Cryptography


In 2013, the
Python Cryptographic Authority (PyCA)
was formed. They are
a group of developers all interested in providing high-quality
cryptography libraries to the Python community.4
They provide tools to
encrypt and decrypt messages given the appropriate keys, and
cryptographic hash functions to irreversibly but repeatably obfuscate passwords or
other secret data.


Except for pyCrypto, all of the
libraries in Table 9-2 are maintained
by the PyCA.
Almost all are built on the C library
OpenSSL, except when noted.


Table 9-2. Cryptography options


	Option
	License
	Reason to use





	ssl and hashlib 
 (and in Python 3.6, secrets)

	Python Software Foundation

  license

	

	
Hashlib provides a decent password hashing algorithm, updated at the schedule of Python versions, and ssl provides an SSL/TLS client (and server, but it may not have the latest updates).



	
Secrets is a random number generator suitable for cryptographic uses.









	pyOpenSSL

	Apache v2.0 license

	

	
It uses the most up-to-date version of OpenSSL in Python and provides functions in OpenSSL that aren’t exposed by the Standard Library’s ssl module.









	PyNaCl

	Apache v2.0 license

	

	
It contains Python bindings for libsodium.a









	libnacl

	Apache license

	

	
It’s the Python interface to libsodium for people who are using the Salt Stack.









	cryptography

	Apache v2.0 license 

  or BSD license

	

	
It provides direct access to cryptographic primitives built on OpenSSL. The higher-level pyOpenSSL is what most of us would use.









	pyCrypto

	Public Domain

	

	
This library is older, and built using its own C library, but was in the past the most popular cryptography library in Python.









	bcrypt

	Apache v2.0 license

	

	
It provides the bcrypt hash function,b and is useful for people who want that or have previously used py-bcrypt.









	a libsodium is a fork of the Networking and Cryptography library (NaCl, pronounced “salt”); its philosophy is to curate specific algorithms that are performant and easy to use.
b The library actually contains the C source code and builds it on installation using the C Fast Function Interface we described earlier. Bcrypt is based on the Blowfish encryption algorithm.




The following sections provide additional details about the
libraries listed in Table 9-2.












ssl, hashlib, and secrets


The ssl module
in Python’s Standard Library provides a socket API (ssl.socket)
that behaves like a standard socket, but is wrapped by the SSL protocol,
plus ssl.SSLContext, which contains an SSL connection’s
configurations. And http (or httplib in Python 2) also uses
it for HTTPS support.
If you’re using Python 3.5, you also have
memory BIO support—so the socket writes I/O to a buffer instead of its destination, enabling
things like hooks for hex encoding/decoding before write/upon read.


Major security enhancements happened in Python 3.4—detailed in the
release notes—to support newer transport protocols and hash
algorithms. These issues were so important that
they were backported to Python 2.7 as described in
PEP 466 and
PEP 476.
You can learn all about them in Benjamin Peterson’s talk about
the state of ssl in Python.

Note

If you’re using Python 2.7, be sure you have at least 2.7.9, or
that your version at least has incorporated
PEP 476—so that by default HTTP clients will perform certificate
verification when connecting using the https protocol.
Or, just always use Requests
because that has always been its default.




The Python team recommends using the SSL defaults if you
have no special requirements for your security policy
for client use. This example showing a secure mail client
is from the section within the documentation for the ssl library,
“Security considerations,”
which you should read if you’re going to use the library:


>>> import ssl, smtplib
>>> smtp = smtplib.SMTP("mail.python.org", port=587)
>>> context = ssl.create_default_context()
>>> smtp.starttls(context=context)
(220, b'2.0.0 Ready to start TLS')


To confirm that a message didn’t get corrupted during transmission,
use the hmac module, which implements the Keyed-Hashing for Message Authentication (HMAC)
algorithm described in
RFC 2104.
It works with a message hashed with any of the algorithms in the set
hashlib.algorithms_available.
For more, see the Python
Module of the Week’s hmac example.
And if it’s installed, hmac.compare_digest()
provides a constant-time comparison between digests to help
protect against timing attacks—where the attacker attempts to
infer your algorithm from the time it takes to run the digest comparison.


Python’s hashlib module can be used to generate hashed passwords
for secure storage or checksums to confirm data integrity during
transmission. The Password-Based Key Derivation Function 2
(PBKDF2), recommended
in
NIST Special Publication 800-132,
is currently considered one of the best options for password hashing.
Here’s an example use of the function using a salt5
and 10,000 iterations of the
Secure Hash Algorithm 256-bit hash (SHA-256)
to generate a hashed password
(the choices for different hash algorithms or iterations let the programmer balance robustness with a desired response speed):


import os
import hashlib

def hash_password(password, salt_len=16, iterations=10000, encoding='utf-8'):
    salt = os.urandom(salt_len)
    hashed_password = hashlib.pbkdf2_hmac(
        hash_name='sha256',
        password=bytes(password, encoding),
        salt=salt,
        iterations=iterations
    )
    return salt, iterations, hashed_password


The secrets library
was proposed in PEP 506 and
will be available starting with Python 3.6. It provides functions for
generating secure tokens, suitable for applications such as password resets
and hard-to-guess URLs. Its documentation contains examples and best-practice
recommendations to manage a basic level of security.

















pyOpenSSL


When Cryptography came out,
pyOpenSSL updated its bindings
to use Cryptography’s CFFI-based bindings for the OpenSSL library
and joined the PyCA umbrella.
pyOpenSSL is separate from the Python Standard Library
on purpose so that it can release updates at the speed
of the security community6—it’s built on the newest OpenSSL,
and not, like Python is, built on the OpenSSL that comes with your
operating system (unless you build it yourself against a newer version).
Generally if you’re building a server, you’d want to use pyOpenSSL—see
Twisted’s SSL documentation
for an example of how they use pyOpenSSL.


Install it using pip:


$ pip install pyOpenSSL


and import it with the name
OpenSSL. This example
shows a couple of the functions available:


>>> import OpenSSL
>>>
>>> OpenSSL.crypto.get_elliptic_curve('Oakley-EC2N-3')
<Curve 'Oakley-EC2N-3'>
>>>
>>> OpenSSL.SSL.Context(OpenSSL.SSL.TLSv1_2_METHOD)
<OpenSSL.SSL.Context object at 0x10d778ef0>


The pyOpenSSL team maintains
example code
that includes certificate generation, a way to start using SSL over
an already-connected socket, and a secure XMLRPC server.

















PyNaCl and libnacl


The idea behind
libsodium,
the C library backend for both PyNaCl and libnacl, is to intentionally
not provide users with many choices—just the best one for their situation.
It does not support all of the TLS protocol; if you want that, use pyOpenSSL.
If all you want is an encrypted connection with some other computer you’re in control of,
with your own protocols of your choosing, and you don’t want to deal with OpenSSL, then
use this.7

Tip

Pronounce PyNaCl  as “py-salt” and libnacl as “lib-salt”—they’re both derived from the NaCl (salt) library.




We recommend PyNaCl over
libnacl because it’s
under the PyCA umbrella, and you don’t have to install libsodium separately.
The libraries are virtually the same—PyNaCl uses CFFI bindings
for the C libraries, and libnacl uses ctypes—so it really doesn’t matter that much.
Install PyNaCl using pip:


$ pip install PyNaCl


And follow the PyNaCl examples
in its documentation.

















Cryptography


Cryptography
provides cryptographic recipes and primitives. It supports
Python 2.6–2.7, Python 3.3+, and PyPy. The PyCA recommends
the higher-level interface in pyOpenSSL for most uses.


Cryptography is divided into two layers: recipes and hazardous materials
(hazmat).  The recipes layer provides a simple API for proper symmetric
encryption, and the hazmat layer provides low-level cryptographic primitives.
Install it using pip:


$ pip install cryptography


This example uses a high-level symmetric encryption recipe—the only
high-level function in this library:


  from cryptography.fernet import Fernet
  key = Fernet.generate_key()
  cipher_suite = Fernet(key)
  cipher_text = cipher_suite.encrypt(b"A really secret message.")
  plain_text = cipher_suite.decrypt(cipher_text)

















PyCrypto


PyCrypto
provides secure hash functions and various encryption algorithms. It
supports Python version 2.1+ and Python 3+. Because the
C code is custom, the PyCA was wary of adopting it, but
it was also the de facto cryptography library for Python for years,
so you’ll see it in older code.
Install it using pip:


$ pip install pycrypto


And use it like this:


from Crypto.Cipher import AES
# Encryption
encryption_suite = AES.new('This is a key123', AES.MODE_CBC, 'This is an IV456')
cipher_text = encryption_suite.encrypt("A really secret message.")

# Decryption
decryption_suite = AES.new('This is a key123', AES.MODE_CBC, 'This is an IV456')
plain_text = decryption_suite.decrypt(cipher_text)

















bcrypt


If you want to use the bcrypt algorithm for your
passwords, use this library. Previous users of
py-bcrypt should find it easy to transition, because it is compatible.
Install it using pip:


pip install bcrypt


It only has two functions: bcrypt.hashpw() and bcrypt.gensalt().
The latter lets you choose how many iterations to use—more iterations will make the algorithm slower
(it defaults to a reasonable number).
Here’s an example:


>>> import bcrypt
>>>>
>>> password = bytes('password', 'utf-8')
>>> hashed_pw = bcrypt.hashpw(password, bcrypt.gensalt(14))
>>> hashed_pw
b'$2b$14$qAmVOCfEmHeC8Wd5BoF1W.7ny9M7CSZpOR5WPvdKFXDbkkX8rGJ.e'


We store the hashed password somewhere:


>>> import binascii
>>> hexed_hashed_pw = binascii.hexlify(hashed_pw)
>>> store_password(user_id=42, password=hexed_hashed_pw)


and when it’s time to check the password, use the hashed password
as the second argument to bcrypt.hashpw() like this:


>>> hexed_hashed_pw = retieve_password(user_id=42)
>>> hashed_pw = binascii.unhexlify(hexed_hashed_pw)
>>>
>>> bcrypt.hashpw(password, hashed_pw)
b'$2b$14$qAmVOCfEmHeC8Wd5BoF1W.7ny9M7CSZpOR5WPvdKFXDbkkX8rGJ.e'
>>>
>>> bcrypt.hashpw(password, hashed_pw) == hashed_pw
True















1 The TCP/IP (or Internet Protocol) suite has four conceptual parts: Link layer protocols specify how to get information between a computer and the Internet. Within the computer, they’re the responsibility of network cards and the operating system, not of the Python program. Internet layer protocols (IPv4, IPv6, etc.) govern the delivery of packages of bits from a source to a destination—the standard options are in Python’s socket library. Transport layer protocols (TCP, UDP, etc.) specify how the two endpoints will communicate. The options are also in the socket library. Finally, application layer protocols (FTP, HTTP, etc.) specify what the data should look like to be used by an intended application (e.g., FTP is used for file transfer, and HTTP is used for hypertext transfer)—Python’s Standard Library provides separate modules implementing the most common protocols.
2 A socket is three things: an IP address including port, a transport protocol (like TCP / UDP), and an I/O channel (some sort of file-like object). The Python documentation includes a great intro to sockets.
3 The queue doesn’t require an IP address or protocol, as it’s on the same computer—you just write some data to it and another process can read it. It’s like the multiprocessing.Queue, but here the I/O is done asynchronously.
4 The birth of the cryptography library, and some of the backstory for the motivation behind this new effort, is described in Jake Edge’s blog post  “The state of crypto in Python.” The cryptography library it describes is a lower-level library, intended to be imported by higher-level libraries like pyOpenSSL that most of us would use. Edge quotes Jarret Raim and Paul Kehrer’s talk about the State of Crypto in Python, saying their test suite has over 66,000 tests, run 77 times per build.
5 A salt is a random string that further obfuscates the hash; if everyone used the same algorithm, a nefarious actor could generate a lookup table of common passwords and their hashes, and use them to “decode” stolen password files. So, to thwart this, people append a random string (a “salt”) to the password—they just also have to store that random string for future use.
6 Anybody can join the PyCA’s cryptography-dev listserv to keep up with development and other news…and the OpenSSL listserv for OpenSSL news.
7 If you’re paranoid, want to be able to audit 100% of your crypto code, don’t care that it’s a tad slow, and aren’t so interested in having the most current algorithms and defaults, try TweetNaCl, which is a single file crypto library that fits in 100 tweets. Because PyNaCl bundles libsodium in its release, you can probably just drop in TweetNaCl and still run most everything (however, we didn’t try this option).



Chapter 10. Data Manipulation



This chapter summarizes the popular Python libraries
related to data manipulation: numeric, text, images, and audio.
Almost all of the libraries described here serve a unique purpose, so this chapter’s goal is to describe these libraries, not compare them.
Unless noted, all of them can be installed directly
from PyPI using pip:


$ pip install library



Table 10-1 briefly describes these libraries.


Table 10-1. Data tools


	Python library
	License
	Reason to use





	IPython

	Apache 2.0 license

	

	
Provides enhanced Python interpreter, with
input history, integrated debugger, and
graphics and plots in-terminal
(with the Qt-enabled version).









	Numpy

	BSD 3-clause license

	

	
Provides multidimensional arrays and linear
algebra tools, optimized for speed.









	SciPy

	BSD license

	

	
Provides functions and utilities related to engineering and
science, from linear algebra to signal processing,
integration, root finding, statistical distributions,
and other topics.









	Matplotlib

	BSD license

	

	
Provides scientific plotting.









	Pandas

	BSD license

	

	
Provides series and DataFrame objects that can be sorted,
merged, grouped, aggregated, indexed, windowed, and subset—a lot like an R Data Frame or the contents of a SQL query.









	Scikit-Learn

	BSD 3-clause license

	

	
Provides machine learning algorithms, including dimensionality reduction
classification, regression, clustering, model selection,
imputing missing data, and preprocessing.









	Rpy2

	GPLv2 license

	

	
Provides an interface to R that allows execution of R functions from within
Python, and passing data between the two environments.









	SymPy

	BSD license

	

	
Provides symbolic mathematics, including series expansions, limits,
and calculus, aiming to be a full computer algebra system.









	nltk

	Apache license

	

	
Provides comprehensive natural language toolkit,
with models and training data in multiple languages.









	pillow / PIL

	Standard PIL license

(like MIT)

	

	
Provides huge number of file formats, plus some simple
image filtering and other processing.









	cv2

	Apache 2.0 license

	

	
Provides computer vision routines suitable for real-time
analysis in videos, including already-trained
face and person detection algorithms.









	Scikit-Image

	BSD license

	

	
Provides image processing routines—filtering, adjustment,
color separation, edge, blob, and corner detection,
segmentaton, and more.












Nearly all of the libraries described in
Table 10-1 and detailed in the rest of this chapter
 depend on C libraries,
and specifically on SciPy,
or one of its dependencies, NumPy.
This means you may have trouble installing these
if you’re on a Windows system. If you primarily use Python for analyzing scientific data, and you’re not familiar with compiling
C and FORTRAN code on Windows already, we recommend
using Anaconda or one of the other options discussed in
“Commercial Python Redistributions”.
Otherwise, always try pip install first
and if that fails, look at the
SciPy installation guide.








Scientific Applications


Python is frequently used for high-performance scientific applications. It
is widely used in academia and scientific projects because it is easy to write
and performs well.


Due to its high performance nature, scientific computing in Python often
utilizes external libraries, typically written in faster languages (like C, or
FORTRAN for matrix operations). The main libraries used are all part of
the “SciPy Stack:”
NumPy,
SciPy,
SymPy,
Pandas,
Matplotlib,
and
IPython.
Going into detail about these libraries is beyond the scope
of this book. However, a comprehensive introduction to the scientific
Python ecosystem can be found in the
Python Scientific Lecture Notes.












IPython


IPython is an enhanced version of Python interpreter,
with color interface, more detailed error messages, and an inline mode
that allows graphics and plots to be displayed in the terminal (Qt-based version).
It is the default kernel for Jupyter notebooks (discussed in “Jupyter Notebooks”),  and the default interpreter in the Spyder IDE (discussed in “Spyder”).
IPython comes installed with Anaconda,
which we described in
“Commercial Python Redistributions”.

















NumPy


NumPy is part of the SciPy project but is released
as a separate library so people who only need the basic requirements can
use it without installing the rest of SciPy.  NumPy cleverly overcomes the
problem of running slower algorithms on Python by using multidimensional arrays
and functions that operate on arrays. Any algorithm can then be expressed as a
function on arrays, allowing the algorithms to be run quickly.
The backend is the Automatically Tuned Linear Algebra Software (ATLAS) library,1 and other low-level libraries written in C and FORTRAN.
NumPy is compatible with Python versions 2.6+ and 3.2+.


Here is an example of a matrix multiplication, using array.dot(),
and “broadcasting,” which is element-wise multiplication where the
row or column is repeated across the missing dimension:


>>> import numpy as np
>>>
>>> x = np.array([[1,2,3],[4,5,6]])
>>> x
array([[1, 2, 3],
       [4, 5, 6]])
>>>
>>> x.dot([2,2,1])
array([ 9, 24])
>>>
>>> x  * [[1],[0]]
array([[1, 2, 3],
       [0, 0, 0]])

















SciPy


SciPy uses NumPy for more mathematical
functions. SciPy uses NumPy arrays as the basic data structure, and comes
with modules for various commonly used tasks in scientific programming,
including linear algebra, calculus, special functions and constants,
and signal processing.


Here’s an example from SciPy’s set of physical constants:


>>> import scipy.constants
>>> fahrenheit = 212
>>> scipy.constants.F2C(fahrenheit)
100.0
>>> scipy.constants.physical_constants['electron mass']
(9.10938356e-31, 'kg', 1.1e-38)

















Matplotlib


Matplotlib is a flexible plotting
library for creating interactive 2D and 3D plots that can also be saved as
manuscript-quality figures. The API in many ways reflects that of
MATLAB, easing transition of MATLAB
users to Python. Many examples, along with the source code to re-create them,
are available in the
Matplotlib gallery.


Those who work with statistics should also look at
Seaborn,
a newer graphics library specifically for statistics visualization
that is growing in popularity. It is featured in this
blog post about
getting started in data science.


For web-capable plots, try Bokeh, which uses its own
visualization libraries, or Plotly, which is based on the
JavaScript library D3.js, although the free version of Plotly
may require storing your plots on their server.

















Pandas


Pandas (the name is derived from Panel Data)
is a data manipulation library
based on NumPy which provides many useful functions for accessing,
indexing, merging and grouping data easily. The main data structure (DataFrame)
is close to what could be found in the R statistical software environment (i.e.,
heterogeneous data tables—with strings in some columns and numbers in others—with name indexing, time series operations and
auto-alignment of data). But it also can be operated on like a
SQL table or Excel Pivot Table—using methods like groupby()
or functions like pandas.rolling_mean().

















Scikit-Learn


Scikit-Learn is a machine learning
library that provides dimension reduction, missing data imputation,
regression and classification models, tree models, clustering, automatic
model parameter tuning, plotting (via matplotlib), and more. It is well documented and comes
with tons of examples.
Scikit-Learn operates on NumPy arrays but can usually interface
with Pandas data frames without much trouble.

















Rpy2


Rpy2 is a Python binding for the R
statistical package allowing the execution of R functions from Python and
passing data back and forth between the two environments. Rpy2 is the object-oriented implementation of the Rpy
bindings.

















decimal, fractions, and numbers


Python has defined a framework of abstract base classes to develop numeric types
from Number, the root of all numeric types, to Integral, Rational, Real, and
Complex. Developers can subclass these to develop other numeric types according
to the instructions in
the numbers library.2
There is also a decimal.Decimal class that is aware of numerical precision,
for accounting and other precision-critical tasks.
The type hierarchy works as expected:


>>> import decimal
>>> import fractions
>>> from numbers import Complex, Real, Rational, Integral
>>>
>>> d = decimal.Decimal(1.11, decimal.Context(prec=5))  # precision
>>>
>>> for x in (3, fractions.Fraction(2,3), 2.7, complex(1,2), d):
...     print('{:>10}'.format(str(x)[:8]),
...           [isinstance(x, y) for y in (Complex, Real, Rational, Integral)])
...
         3 [True, True, True, True]
       2/3 [True, True, True, False]
       2.7 [True, True, False, False]
    (1+2j) [True, False, False, False]
  1.110000 [False, False, False, False]


The exponential, trigonometric, and other common functions
are in the math library, and corresponding functions for complex
numbers are in cmath.  The random library provides
pseudorandom numbers using the
Mersenne Twister
as its core generator.
As of Python 3.4, the statistics module in the Standard Library provides
the mean and median, as well as the sample and population standard deviation
and variance.

















SymPy


SymPy is the library to use
when doing symbolic mathematics in Python.
It is written entirely in Python, with optional extensions for
speed, plotting, and interactive sessions.


SymPy’s symbolic functions operate on SymPy objects such as symbols, functions,
and expressions to make other symbolic expressions, like this:


>>> import sympy as sym
>>>
>>> x = sym.Symbol('x')
>>> f = sym.exp(-x**2/2) / sym.sqrt(2 * sym.pi)
>>> f
sqrt(2)*exp(-x**2/2)/(2*sqrt(pi))


These can be symbolically or numerically integrated:


>>> sym.integrate(f, x)
erf(sqrt(2)*x/2)/2
>>>
>>> sym.N(sym.integrate(f, (x, -1, 1)))
0.682689492137086


The library can also differentiate, expand expressions into series, restrict
symbols to be real, commutative, or a dozen or so other categories,
locate the nearest rational number (given an accuracy) to a float,
and much more.






















Text Manipulation and Text Mining


Python’s string manipulation tools are often
why people start using the language to begin with.
We’ll cover some highlights from Python’s Standard Library quickly,
and then move to the
library nearly everyone in the community uses for text mining:
the Natural Language ToolKit (nltk).










String Tools in Python’s Standard Library


For languages with special behavior of lowercase characters,
str.casefold() helps with lowercase letters:


>>> 'Grünwalder Straße'.upper()
'GRÜNWALDER STRASSE'
>>> 'Grünwalder Straße'.lower()
'grünwalder straße'
>>> 'Grünwalder Straße'.casefold()
'grünwalder strasse'


Python’s regular expression library re is comprehensive
and powerful—we saw it in action in
“Regular expressions (readability counts)”, so we won’t add more here, except
that the help(re) documentation
is so complete that you won’t need to open a browser
while coding.


Finally, the difflib module in the Standard
Library identifies differences between strings, and has
a function get_close_matches() that can help with misspellings
when there are a known set of correct answers (e.g., for error prompts
on a travel website):


>>> import difflib
>>> capitals = ('Montgomery', 'Juneau', 'Phoenix', 'Little Rock')
>>> difflib.get_close_matches('Fenix', capitals)
['Phoenix']












nltk


The Natural Language ToolKit (nltk)
is the Python tool for text analysis:
originally released by Steven Bird and Edward Loper
to aid students in Bird’s
course on Natural Language Processing
(NLP) at the University of Pennsylvania in 2001,
it has grown to an expansive library covering
multiple languages and containing algorithms for
recent research in the field.
It is available under the Apache 2.0 license
and is downloaded from PyPI over 100,000 times per month.
Its creators have an accompanying book,
Natural Language Processing with Python (O’Reilly),
that is accessible as a course text introducing both Python and NLP.


You can install nltk from the command line using pip.3 It also relies on NumPy,
so install that first:


$ pip install numpy
$ pip install nltk


If you’re using Windows, and can’t get the NumPy installed using pip to
work, you can try following the instructions in this Stack Overflow post.
The size and scope of the library may unnecessarily scare some people
away, so here’s a tiny example to demonstrate how easy simple
uses can be. First, we need to get a dataset from the
separately downloadable
collection of
corpora,
including tagging tools for multiple languages
and datasets to test algorithms against.
These are licensed separate from nltk, so be sure to
check your selection’s individual license.
If you know the name of the corpus you want to download
(in our case, the Punkt tokenizer,4 which we can use to split up text files into sentences
or words),
you can do it on the command line:


$ python3 -m nltk.downloader punkt --dir=/usr/local/share/nltk_data


Or you can download it in an interactive session—“stopwords” contains
a list of common words that tend to overpower word counts, such as “the”, “in”,
or “and” in many languages:


>>> import nltk
>>> nltk.download('stopwords', download_dir='/usr/local/share/nltk_data')
[nltk_data] Downloading package stopwords to /usr/local/share/nltk_data...
[nltk_data]   Unzipping corpora/stopwords.zip.
True


And if you don’t know the name of the corpus you want,
you can launch an interactive downloader from the Python
interpreter by invoking nltk.download() without its
first argument:


>>> import nltk
>>> nltk.download(download_dir='/usr/local/share/nltk_data')


Then we can load the dataset we care about, and process and analyze it.
In this code sample, we are loading a saved copy of the Zen of Python:


>>> import nltk
>>> from nltk.corpus import stopwords
>>> import string
>>>
>>> stopwords.ensure_loaded()  [image: 1]
>>> text = open('zen.txt').read()
>>> tokens = [
...     t.casefold() for t in nltk.tokenize.word_tokenize(text)  [image: 2]
...     if t not in string.punctuation
... ]
>>>
>>> counter = {}
>>> for bigram in nltk.bigrams(tokens):  [image: 3]
...     counter[bigram] = 1 if bigram not in counter else counter[bigram] + 1
...
>>> def print_counts(counter):  # We'll reuse this
...     for ngram, count in sorted(
...             counter.items(), key=lambda kv: kv[1], reverse=True):  [image: 4]
...         if count > 1:
...             print ('{:>25}: {}'.format(str(ngram), '*' * count))  [image: 5]
...
>>> print_counts(counter)
       ('better', 'than'): ********  [image: 6]
         ('is', 'better'): *******
        ('explain', 'it'): **
            ('one', '--'): **
        ('to', 'explain'): **
            ('if', 'the'): **
('the', 'implementation'): **
 ('implementation', 'is'): **
>>>
>>> kept_tokens = [t for t in tokens if t not in stopwords.words()]  [image: 7]
>>>
>>> from collections import Counter  [image: 8]
>>> c = Counter(kept_tokens)
>>> c.most_common(5)
[('better', 8), ('one', 3), ('--', 3), ('although', 3), ('never', 3)]


	[image: 1]

	The corpora are loaded lazily, so we need to do this to actually load
the stopwords corpus.


	[image: 2]

	The tokenizer requires a trained model—the Punkt
tokenizer (default) comes with a model trained on English (also default).


	[image: 3]

	A bigram is a pair of adjacent words. We are iterating over the
bigrams and counting how many times they occur.


	[image: 4]

	The sorted() function here is being keyed on the count, and sorted
in reverse order.


	[image: 5]

	The '{:>25}' right-justifies the string with a total width of 25 characters.


	[image: 6]

	The most frequently occurring bigram in the Zen of Python is “better than.”


	[image: 7]

	This time, to avoid high counts of “the” and “is”, we remove the stopwords.


	[image: 8]

	In Python 3.1 and later, you can use collections.Counter for
the counting.





There’s a lot more in this library—take a weekend and go for it!

















SyntaxNet


Google’s SyntaxNet,
built on top of TensorFlow, provides a trained English parser (named Parsey McParseface)
and the framework to build other models, even in other languages, provided you
have labeled data.
It is currently only available for Python 2.7; detailed instructions for downloading and using it are on
SyntaxNet’s main GitHub page.






















Image Manipulation


The three most popular image processing and manipulation libraries
in Python are
Pillow (a friendly fork of the Python Imaging Library [PIL]—which is good for format conversions and simple image processing),
cv2 (the Python bindings for OpenSource Computer Vision [OpenCV]
that can be used for real-time face detection and other advanced algorithms),
and the newer Scikit-Image, which provides simple image processing,
plus primitives like blob, shape, and edge detection.
The following sections provide some more information about each of these libraries.












Pillow


The
Python Imaging Library,
or PIL for short, is one of the core libraries for image
manipulation in Python. Its was last released in 2009
and was never ported to Python 3.
Luckily, there’s an actively developed fork of PIL called
Pillow—it’s easier to install, runs on
all operating systems, and supports Python 3.


Before installing Pillow, you’ll have to install Pillow’s prerequisites. Find
the instructions for your platform in the
Pillow installation instructions.
After that, it’s straightforward:


$ pip install Pillow


Here is a brief example use of Pillow (yes, the module
name to import from is PIL not Pillow):


from PIL import Image, ImageFilter
# Read image
im = Image.open( 'image.jpg' )
# Display image
im.show()

# Applying a filter to the image
im_sharp = im.filter( ImageFilter.SHARPEN )
#Saving the filtered image to a new file
im_sharp.save( 'image_sharpened.jpg', 'JPEG' )

# Splitting the image into its respective bands (i.e., Red, Green,
# and Blue for RGB)
r,g,b = im_sharp.split()

# Viewing EXIF data embedded in image
exif_data = im._getexif()
exif_data


There are more examples of the Pillow library in the
Pillow tutorial.

















cv2


OpenSource Computer Vision,
more commonly known as OpenCV, is a more advanced
image manipulation and processing software than PIL.
It is written in C and C++, and focuses on real-time computer vision.
For example, it has the first model used in real-time face detection (already trained on thousands of faces; this example shows it being used in Python code), a face recognition model, and a person detection model, among
others.
It has been implemented in several languages and is widely used.


In Python, image processing using OpenCV is implemented using the cv2 and
NumPy libraries. OpenCV version 3 has bindings for Python 3.4 and above, but
the cv2 library is still linked to OpenCV2, which does not.
The installation instructions in the OpenCV tutorial page
have explicit details for Windows and Fedora, using Python 2.7.
On OS X, you’re on your own.5 Finally,
here’s an option using
Python 3 on Ubuntu.
If the installation becomes difficult, you can downlad
Anaconda and use that instead;
they have cv2 binaries for all platforms, and you consult the blog post
“Up & Running: OpenCV3, Python 3, & Anaconda”
 to use cv2 and Python 3 on Anaconda.


Here’s an example use of cv2:


from cv2 import *
import numpy as np
#Read Image
img = cv2.imread('testimg.jpg')
#Display Image
cv2.imshow('image',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

#Applying Grayscale filter to image
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#Saving filtered image to new file
cv2.imwrite('graytest.jpg',gray)


There are more Python-implemented examples of OpenCV in this
collection of tutorials.

















Scikit-Image


A newer library, Scikit-Image, is growing in
popularity, thanks partly to having more of its source in Python
and also its great documentation.  It doesn’t have the full-fledged algorithms
like cv2, which you’d still use for algorithms that work on real-time video,
but it’s got enough to be useful for scientists—like blob
detection and feature detection, plus it has the standard image processing
tools like filtering and contrast adjustment.
For example, Scikit-image was used to make the
image composites of Pluto’s smaller moons.
There are many more
examples on the main Scikit-Image page.






















1 ATLAS is an ongoing software project that provides tested, performant linear algebra libraries. It provides C and FORTRAN 77 interfaces to routines from the well-known Basic Linear Algebra Subset (BLAS) and Linear Algebra PACKage (LAPACK).
2 One popular tool that makes use of Python numbers is SageMath—a large, comprehensive tool that defines classes to represents fields, rings, algebras and domains, plus provides symbolic tools derived from SymPy and numerical tools derived from NumPy, SciPy, and many other Python and non-Python libraries.
3 On Windows, it currently appears that nltk is only available for Python 2.7. Try it on Python 3, though; the labels that say Python 2.7  may just be out of date.
4 The Punkt tokenizer algorithm was introduced by Tibor Kiss and Jan Strunk in 2006, and is a language-independent way to identify sentence boundaries—for example, “Mrs. Smith and Johann S. Bach listened to Vivaldi” would correctly be identified as a single sentence. It has to be trained on a large dataset, but the default tokenizer, in English, has already been trained for us.
5 These steps worked for us: first, use brew install opencv or brew install opencv3 --with-python3. Next, follow any additional instructions (like linking NumPy). Last, add the directory containing the OpenCV shared object file (e.g., /usr/local/Cellar/opencv3/3.1.0_3/lib/python3.4/site-packages/) to your path; or to only use it in a virtual environment, use the add2virtualenvironment command installed with the virtualenvwrapper library.



Chapter 11. Data Persistence



We mentioned ZIP compression and pickling already
in “Data Serialization”, so there
isn’t much left to cover besides databases
in this chapter.


This chapter is mostly about Python libraries that
interface with relational databases.
These are the kinds of database we normally think about—they contain structured data stored in tables and are accessed using SQL.1








Structured Files


We already mentioned tools for JSON, XML, and ZIP files in
Chapter 9, and pickling and XDR when talking about serialization.
We recommend PyYAML (get it via pip install pyyaml) to parse YAML.
Python also has tools in its Standard Library for CSV,
*.netrc used by some FTP clients, *.plist files used in OS X,
and a dialect of the Windows INI format via configparser.2


Also, there’s a persistent key-value store
available via the shelve module
in Python’s Standard Library.
Its backend is the best available
variant of the database manager (dbm—a key-value database)
on your computer:3


>>> import shelve
>>>
>>> with shelve.open('my_shelf') as s:
...     s['d'] = {'key': 'value'}
...
>>> s = shelve.open('my_shelf', 'r')
>>> s['d']
{'key': 'value'}


You can check which database backend you’re using like this:


>>> import dbm
>>> dbm.whichdb('my_shelf')
'dbm.gnu'


And you can get the GNU implementation of
dbm here for Windows,
or check your package manager (brew, apt, yum) first, then try the dbm source code.

















Database Libraries


The Python Database API (DB-API2) defines a standard interface for
database access in Python. It’s documented in
PEP 249
and in a more detailed
introduction to Python’s DB-API.
Nearly all Python database drivers conform to this interface,
so when you just want to query a database in Python,
choose any one that connects to the database that
you are using: sqlite3 for the SQLite database,
psycopg2 for Postgres, and MySQL-python for
MySQL, for example.4


Code with lots of SQL strings and hardcoded columns and tables
can quickly become messy, error-prone, and hard to debug.
The libraries in Table 11-1
(except for sqlite3, the SQLite driver)
provide a database abstraction layer (DAL)
that abstracts away the structure, grammar, and data types
of SQL to present an API.


Because Python is an object-oriented language, the
database abstraction can also
implement object-relational mapping (ORM)
to provide a mapping between the Python
objects and the underlying database,
plus operators on attributes in those classes
that represent an abstracted version of SQL in Python.


All of the libraries in Table 11-1 (with the exception of sqlite3 and Records)
provide an ORM, and their implementations use
one of two patterns:5
the Active Record pattern, where records simultaneously
represent the abstracted data and interact with the database; and the
Data Mapper pattern, where one layer
interfaces with the database, another layer presents the data,
and in between is a mapper function that performs the necessary
logic to convert between the two (essentially performing the
logic of a SQL view outside of the database).


When performing queries, both the Active Record and Data Mapper
patterns behave about the same, but in the Data Mapper pattern,
the user must explicitly state table names, add primary keys,
and create helper tables to support many-to-many relationships (like on a
receipt, where one transaction ID would be associated with multiple purchases) — all of that is done behind the
scenes when using the Active Record pattern.


The most popular libraries are sqlite3, SqlAlchemy, and the Django ORM.
Records is in a category of its own—as more of a SQL client that provides
many options for output formatting—and the remaining libraries can be
thought of as standalone, lighter weight versions of the Django ORM underneath
(because they all use the ActiveRecord pattern),
but with different implementations, and very different and unique APIs.


Table 11-1. Database libraries


	Library
	License
	Reasons to use





	sqlite3 (driver, not ORM)

	PSFL

	

	
It’s in the Standard Library.



	
It’s good for sites with low or moderate traffic that only need the
simpler data types and a few queries—it’s got low latency
because there’s no network communication.



	
It’s good for learning SQL or Python’s DB-API, or prototyping a database
application.









	SQLAlchemy

	MIT license

	

	
It provides a Data Mapper pattern with a two-layer API that has an ORM top
layer resembling the API in other libraries,
plus a low-level layer of tables directly attached to the database.



	
It gives you explicit control (via the lower level Classical Mappings API)
over the structure and schemas in your database; this is useful, for example, if your database administrators are not the same people
as your web developers.



	
Dialects: SQLite, PostgreSQL, MySQL,
Oracle, MS-SQL Server, Firebird, or Sybase (or register your own).









	Django ORM

	BSD license

	

	
It provides the Active Record pattern that can generate the database
infrastructure implicitly from the user-defined models in the application.



	
It’s tightly coupled with Django.



	
Dialects: SQLite, PostgreSQL, MySQL, or
Oracle; alternatively, use a third-party library: SAP SQL Anywhere, IBM DB2,
MS-SQL Server, Firebird, or ODBC.









	peewee

	MIT license

	

	
It provides an Active Record pattern, but that’s because the tables
you define in the ORM are the tables you see in the database (plus an index column).



	
Dialects: SQLite, MySQL, and Postgres (or add your own).









	PonyORM

	AGPLv3

	

	
It provides an Active Record pattern with an intuitive generator-based syntax.



	
There is also an online GUI Entity-Relationship diagram editor (to draw the data model
that defines the tables in a database and their relationship to each other)
that can be translated to SQL code that will create the tables.



	
Dialects: SQLite, MySQL, Postgres, and Oracle (or add your own).









	SQLObject

	LGPL

	

	
It was one of the first to use the ActiveRecord pattern in Python.



	
Dialects: SQLite, MySQL, Postgres, Firebird, Sybase, MAX DB, MS-SQL Server (or add your own).









	Records (query interface, not ORM)

	ISC license

	

	
It provides a simple way to query a database and generate a report
document: SQL in, XLS (or JSON or YAML or CSV or LaTex) out.



	
Plus a command-line interface that can be used for interactive querying or one-line report generation.



	
It uses the powerful SQLAlchemy as its backend.












The following sections provide additional details about the libraries listed in
Table 11-1.












sqlite3


SQLite is a C library that provides the database behind sqlite3.
The database is stored as a single file, by convention with the extension *.db.
The “when to use SQLite” page
says it’s been demonstrated to work as a database backend for
websites with hundreds of thousands of hits per day.
Their page also has a
list of SQL commands that SQLite understands,
and you can consult the
W3Schools’ quick SQL reference
for instructions on how to use them.
Here’s an example:


import sqlite3
db = sqlite3.connect('cheese_emporium.db')

db.execute('CREATE TABLE cheese(id INTEGER, name TEXT)')
db.executemany(
    'INSERT INTO cheese VALUES (?, ?)',
    [(1, 'red leicester'),
     (2, 'wensleydale'),
     (3, 'cheddar'),
    ]
)
db.commit()
db.close()


The allowable SQLite types are NULL, INTEGER, REAL, TEXT, and BLOB (bytes),
or you can do other stuff that’s in the sqlite3 documentation to register new data types
(e.g., they implement a datetime.datetime type that is stored as TEXT).

















SQLAlchemy


SQLAlchemy is a very popular database toolkit—Django
comes with an option to switch from its own ORM to SQLAchemy, it’s the
backend for the Flask mega-tutorial
to build your own blog, and
Pandas uses it as its SQL backend.


SQLAlchemy is the only library listed here to follow Martin Fowler’s Data Mapper pattern instead of the more frequently implemented Active Record pattern. Unlike the other libraries, SQLAlchemy not only provides an ORM layer but also a
generalized API (called the Core layer) for writing database-agnostic code without SQL.
The ORM layer is stacked on top of the Core layer, which uses Table objects that directly
map to the underlying database. The mapping between these objects and the ORM must
be done explicitly by the user, so it takes more code to get started,
and can be frustrating for those who are new to relational databases.
The benefit is a far greater control over the database—nothing
is created unless you explicitly put it there.


SQLAlchemy can run on Jython and PyPy, and
supports Python 2.5 through the latest 3.x versions.
The next few code snippets will show the work required to create a
many-to-many object mapping. We’ll create three objects in
the ORM layer: Customer, Cheese, and Purchase. There
can be many purchases for one customer (a many-to-one relation),
and the purchase can be for many types of cheese (a many-to-many relation).
The reason we’re doing this in such detail is to show the unmapped table
purchases_cheeses—it does not need to be present in the ORM
because its only purpose is to provide a linkage between the types
of cheese and the purchases. Other ORMs would create this table
silently in the background—so this shows one of the big
differences between SQLAlchemy and the other libraries:


from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Date, Integer, String, Table, ForeignKey
from sqlalchemy.orm import relationship

Base = declarative_base()  [image: 1]

class Customer(Base):  [image: 2]
    __tablename__ = 'customers'
    id = Column(Integer, primary_key=True)
    name = Column(String, nullable=False)
    def __repr__(self):
       return "<Customer(name='%s')>" % (self.name)

purchases_cheeses = Table(  [image: 3]
    'purchases_cheeses', Base.metadata,
    Column('purch_id', Integer, ForeignKey('purchases.id', primary_key=True)),
    Column('cheese_id', Integer, ForeignKey('cheeses.id', primary_key=True))
)

class Cheese(Base):  [image: 4]
    __tablename__ = 'cheeses'
    id = Column(Integer, primary_key=True)
    kind = Column(String, nullable=False)
    purchases = relationship(  [image: 5]
        'Purchase', secondary='purchases_cheeses', back_populates='cheeses'  [image: 6]
    )
    def __repr__(self):
       return "<Cheese(kind='%s')>" % (self.kind)

class Purchase(Base):
    __tablename__ = 'purchases'
    id = Column(Integer, primary_key=True)
    customer_id = Column(Integer, ForeignKey('customers.id', primary_key=True))
    purchase_date = Column(Date, nullable=False)
    customer = relationship('Customer')
    cheeses = relationship(  [image: 7]
        'Cheese', secondary='purchases_cheeses', back_populates='purchases'
    )
    def __repr__(self):
       return ("<Purchase(customer='%s', dt='%s')>" %
                (self.customer.name, self.purchase_date))


	[image: 1]

	The declarative base object is a metaclass6 that intercepts the creation of each mapped table in the ORM and defines a corresponding table
in the Core layer.


	[image: 2]

	Objects in the ORM layer inherit from the declarative base.


	[image: 3]

	This is an unmapped table in the core layer—it’s not a class and not derived
from the declarative base. It will correspond the table purchases_cheeses in the
database and exists to provide the many-to-many mapping between
cheeses and purchase IDs.


	[image: 4]

	Compare that with Cheese—a mapped table in the ORM layer. Under the hood,
Cheese.__table__ is created in the core layer. It will correspond to a table
named cheeses in the database.


	[image: 5]

	This relationship explicitly defines the relationship between the mapped classes
Cheese and Purchase: they are related indirectly through the secondary
table purchases_cheeses (as opposed to directly via a ForeignKey).


	[image: 6]

	back_populates adds an event listener so that when a new
Purchase object is added to Cheese.purchases, the Cheese object will
also appear in Purchase.cheeses.


	[image: 7]

	This is the other half of the plumbing for the many-to-many relationship.





Tables are explicitly created by the declarative base:


from sqlalchemy import create_engine
engine = create_engine('sqlite://')
Base.metadata.create_all(engine)


And now the interaction, using objects in the ORM layer, looks
the same as in the other libraries with ORMs:


from sqlalchemy.orm import sessionmaker
Session = sessionmaker(bind=engine)
sess = Session()

leicester = Cheese(kind='Red Leicester')
camembert = Cheese(kind='Camembert')
sess.add_all((camembert, leicester))
cat = Customer(name='Cat')
sess.add(cat)
sess.commit()  [image: 1]

import datetime
d = datetime.date(1971, 12, 18)
p = Purchase(purchase_date=d, customer=cat)
p.cheeses.append(camembert)  [image: 2]
sess.add(p)
sess.commit()


	[image: 1]

	You must explicitly commit() to push changes to the database.


	[image: 2]

	Objects in the many-to-many relationship aren’t added
during instantiation—they have to be appended after the fact.





Here are a few sample queries:


>>> for row in sess.query(Purchase,Cheese).filter(Purchase.cheeses):  [image: 1]
...     print(row)
...
(<Purchase(customer='Douglas', dt='1971-12-17')>, <Cheese(kind='Camembert')>)
(<Purchase(customer='Douglas', dt='1971-12-17')>, <Cheese(kind='Red Leicester')>)
(<Purchase(customer='Cat', dt='1971-12-18')>, <Cheese(kind='Camembert')>)
>>>
>>> from sqlalchemy import func
>>> (sess.query(Purchase,Cheese)  [image: 2]
...     .filter(Purchase.cheeses)
...     .from_self(Cheese.kind, func.count(Purchase.id))
...     .group_by(Cheese.kind)
... ).all()
[('Camembert', 2), ('Red Leicester', 1)]


	[image: 1]

	This is how to do the many-to-many join across the purchases_cheeses table, which is not mapped to a top-level ORM object.


	[image: 2]

	This query counts the number of purchases of each kind of cheese.





To learn more, see the SQLAlchemy documentation.

















Django ORM


The Django ORM is the interface used
by Django to provide database access.
Their implementation of the Active Record pattern is probably the closest one
in our list to the Ruby on Rails ActiveRecord library.


It is tightly integrated with Django,
so usually you only use it because you’re making a Django web application.
Try the Django ORM tutorial from Django Girls
if you want to follow along while building a web application.7


If you want to try out Django’s ORM without making a whole web app,
copy this skeleton GitHub project
to use only Django’s ORM,
and follow its instructions. There may be some differences across versions
of Django. Ours settings.py looks like this:


# settings.py
DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.sqlite3',
        'NAME': 'tmp.db',
    }
}
INSTALLED_APPS = ("orm_only",)
SECRET_KEY = "A secret key may also be required."


Every abstracted table in the Django ORM subclasses the Django Model object,
like this:


from django.db import models

class Cheese(models.Model):
    type = models.CharField(max_length=30)

class Customer(models.Model):
    name = models.CharField(max_length=50)

class Purchase(models.Model):
    purchase_date = models.DateField()
    customer = models.ForeignKey(Customer)  [image: 1]
    cheeses = models.ManyToManyField(Cheese)  [image: 2]


	[image: 1]

	The ForeignKey relationship denotes a many-to-one relationship—the customer can make many purchases, but a purchase is associated
with a single customer. Use OneToOneField for a one-to-one relation.


	[image: 2]

	And use ManyToManyField to denote a many-to-many relationship.





Next, we have to execute a command to build the tables. On the command
line, with the virtual environment activated, and in the same directory as
manage.py, type:


(venv)$ python manage.py migrate


With the tables created, here’s how to add
data to the database. Without the instance.save() method,
the data in the new row will not make it to the database:


leicester = Cheese.objects.create(type='Red Leicester')
camembert = Cheese.objects.create(type='Camembert')
leicester.save()  [image: 1]
camembert.save()

doug = Customer.objects.create(name='Douglas')
doug.save()

# Add a time of purchase
import datetime
now = datetime.datetime(1971, 12, 18, 20)
day = datetime.timedelta(1)

p = Purchase(purchase_date=now - 1 * day, customer=doug)
p.save()
p.cheeses.add(camembert, leicester)  [image: 2]


	[image: 1]

	Objects must be saved to be added to the database
and must be saved to be added in inserts that cross-reference
other objects.


	[image: 2]

	You must add objects in a many-to-many mapping separately.





Querying via the ORM looks like this in Django:


# Filter for all purchases that happened in the past 7 days:
queryset = Purchase.objects.filter(purchase_date__gt=now - 7 * day)  [image: 1]

# Show who bought what cheeses in the query set:
for v in queryset.values('customer__name', 'cheeses__type'):  [image: 2]
    print(v)

# Aggregate purchases by cheese type:
from django.db.models import Count
sales_counts = (  [image: 3]
    queryset.values('cheeses__type')
    .annotate(total=Count('cheeses'))  [image: 4]
    .order_by('cheeses__type')
)
for sc in sales_counts:
    print(sc)


	[image: 1]

	In Django, the filtering operator (gt, greater than) is appended after a double
underscore to the table’s attribute purchase_date—Django parses this under the hood.


	[image: 2]

	Double underscores after a foreign key identifier will access the attribute in the
corresponding table.


	[image: 3]

	In case you haven’t seen the notation, you can put parentheses around a long statement
and break it across lines for legibility.


	[image: 4]

	The query set’s annotate clause adds extra fields to each result.




















peewee


The primary goal of peewee is to be a lightweight
way for people who know SQL to interact with a database. What you see is what you get (you neither manually build a top layer that abstracts
the table structure behind the scenes, like SQLAlchemy, nor does the library magically
build a bottom layer underneath your tables, like Django ORM).
Its goal is to fill a different niche than SQLAlchemy—doing a few things,
but doing them quickly, simply, and Pythonically.


There is very little “magic,” except to create primary keys for the
tables if the user didn’t.  You’d create a table like this:


import peewee
database = peewee.SqliteDatabase('peewee.db')

class BaseModel(peewee.Model):
    class Meta:  [image: 1]
        database = database  [image: 2]

class Customer(BaseModel):
    name = peewee.TextField()  [image: 3]

class Purchase(BaseModel):
    purchase_date = peewee.DateField()
    customer = peewee.ForeignKeyField(Customer, related_name='purchases')  [image: 4]

class Cheese(BaseModel):
    kind = peewee.TextField()

class PurchaseCheese(BaseModel):
    """For the many-to-many relationship."""
    purchase = peewee.ForeignKeyField(Purchase)
    cheese = peewee.ForeignKeyField(Cheese)

database.create_tables((Customer, Purchase, Cheese, PurchaseCheese))


	[image: 1]

	peewee keeps model configuration details in a namespace called Meta,
an idea borrowed from Django.


	[image: 2]

	Associate every Model with a database.


	[image: 3]

	A primary key is added implicitly if you don’t explicitly add it.


	[image: 4]

	This adds the attribute purchases to
Customer records for easy access
but doesn’t do anything to the tables.





Initialize data and add it to the database in one step
with the create() method, or initialize it first,
and add it later—there are configuration options to control
autocommitting and utilities to do transactions.
Here it’s done in one step:


leicester = Cheese.create(kind='Red Leicester')
camembert = Cheese.create(kind='Camembert')
cat = Customer.create(name='Cat')

import datetime
d = datetime.date(1971, 12, 18)

p = Purchase.create(purchase_date=d, customer=cat)  [image: 1]
PurchaseCheese.create(purchase=p, cheese=camembert)  [image: 2]
PurchaseCheese.create(purchase=p, cheese=leicester)


	[image: 1]

	Directly add an object (like cat), and peewee will use its primary key.


	[image: 2]

	There’s no magic for the many-to-many mapping—just add new
entries manually.





And query like this:


>>> for p in Purchase.select().where(Purchase.purchase_date > d - 1 * day):
...     print(p.customer.name, p.purchase_date)
...
Douglas 1971-12-18
Cat 1971-12-19
>>>
>>> from peewee import fn
>>> q = (Cheese
...     .select(Cheese.kind, fn.COUNT(Purchase.id).alias('num_purchased'))
...     .join(PurchaseCheese)
...     .join(Purchase)
...     .group_by(Cheese.kind)
...  )
>>> for chz in q:
...     print(chz.kind, chz.num_purchased)
...
Camembert 2
Red Leicester 1


There is a
collection of add-ons
available, that include advanced transaction support8
and support for custom functions
that can hook data and execute prior to storage—for example, compression or hashing.

















PonyORM


PonyORM takes a different approach to
the query grammar: instead of writing an SQL-like language or boolean
expressions, it uses Python’s generator syntax. There’s also a graphical
schema editor that can generate PonyORM entities for you. It supports
Python 2.6+ and Python 3.3+.


To accomplish its intuitive syntax, Pony requires that
all relationships between tables be bidirectional—all related
tables must explicitly refer to each other, like this:


import datetime
from pony import orm

db = orm.Database()
db.bind('sqlite', ':memory:')

class Cheese(db.Entity):  [image: 1]
    type = orm.Required(str)  [image: 2]
    purchases = orm.Set(lambda: Purchase)  [image: 3]

class Customer(db.Entity):
    name = orm.Required(str)
    purchases = orm.Set(lambda: Purchase)  [image: 4]

class Purchase(db.Entity):
    date = orm.Required(datetime.date)
    customer = orm.Required(Customer)  [image: 5]
    cheeses = orm.Set(Cheese) [image: 6]

db.generate_mapping(create_tables=True)


	[image: 1]

	A Pony database Entity stores an object’s state in
the database, connecting the database to the
object through its existence.


	[image: 2]

	Pony uses standard Python types to identify
the type of the column—from str to datetime.datetime,
in addition to the user-defined Entities like Purchase, Customer,
and Cheese.


	[image: 3]

	lambda: Purchase is used here because Purchase is not yet defined.


	[image: 4]

	The orm.Set(lambda: Purchase) is the first half of the definition of the one-to-many Customer to Purchase relation.


	[image: 5]

	The orm.Required(Customer) is the second half of the one-to-many Customer to Purchase relationship.


	[image: 6]

	The orm.Set(Cheese) relationship, combined with
the orm.Set(lambda: Purchase) in [image: 3]
define a many-to-many relationship.





With the data entities defined, object instantiation
looks like it does in the other libraries.
Entities are created on the fly and committed with the
call to orm.commit():


camembert = Cheese(type='Camembert')
leicester = Cheese(type='Red Leicester')
cat = Customer(name='Cat')
doug = Customer(name='Douglas')


d = datetime.date(1971, 12, 18)
day = datetime.timedelta(1)
Purchase(date=(d - 1 * day), customer=doug, cheeses={camembert, leicester})
Purchase(date=d, customer=cat, cheeses={camembert})
orm.commit()


And querying—Pony’s tour de force—really
does look like it’s pure Python:


yesterday = d - 1.1 * day
for cheese in (
        orm.select(p.cheeses for p in Purchase if p.date > yesterday)  [image: 1]
    ):
    print(cheese.type)

for cheese, purchase_count in (
        orm.left_join((c, orm.count(p))  [image: 2]
        for c in Cheese
        for p in c.purchases)
    ):
    print(cheese.type, purchase_count)


	[image: 1]

	This is what a query looks like using Python’s generator syntax.


	[image: 2]

	The orm.count() function aggregates by counting.




















SQLObject


SQLObject, first released in October 2002, is the oldest ORM in this list. Its implementation of the Active Record pattern—as well as its novel idea to overload the standard
operators (like ==, <, <=, etc.) as a way of abstracting some of the SQL
logic into Python, which is now implemented by almost all of the ORM libraries—made it extremely popular.


It supports a wide
variety of databases (common database systems MySQL, Postgres, and SQLite, and
more exotic systems like SAP DB, SyBase, and MSSQL) but currently only supports
Python 2.6 and Python 2.7.
It’s still actively maintained,
but has become less prevalent with the adoption of SQLAlchemy.

















Records


Records is a minimalist SQL library,
designed for sending raw SQL queries to various databases. It’s basically
Tablib and SQLAlchemy bundled together with a nice API and a command-line
application that acts like a SQL client that can output YAML, XLS, and the other Tablib
formats.  Records isn’t by any means a replacement
for ORM libraries; a typical use case would be to query a database and create a report (e.g., a monthly report saving the recent sales figures to a spreadsheet).
Data can be used programatically, or exported to a number of useful data formats:


>>> import records
>>> db = records.Database('sqlite:///mydb.db')
>>>
>>> rows = db.query('SELECT * FROM cheese')
>>> print(rows.dataset)
name         |price
-------------|-----
red leicester|1.0
wensleydale  |2.2
>>>
>>> print(rows.export('json'))
[{"name": "red leicester", "price": 1.0}, {"name": "wensleydale", "price": 2.2}]


Records also includes a command-line tool that exports data using SQL, like this:


$ records 'SELECT * FROM cheese' yaml --url=sqlite:///mydb.db
- {name: red leicester, price: 1.0}
- {name: wensleydale, price: 2.2}

$ records 'SELECT * FROM cheese' xlsx --url=sqlite:///mydb.db  > cheeses.xlsx

















NoSQL database libraries


There is also an entire universe of not only SQL
databases—a catchall for any database that people are using that’s
not a traditional relational database. If you look on PyPI, things
can get confusing, with a few dozen similarly named Python packages.
We recommend
searching specifically on the main project’s site for Python to
get an opinion on the best library for a product
(i.e., run a Google search for “Python site:vendorname.com”). Most of these provide a Python API and quickstart tutorials for how to use it.
Some examples:


	MongoDB

	
MongoDB is a distributed document store. You can think of it like a giant Python dictionary
that can live on a cluster, with its own filter and query language.
For the Python API, see
MongoDB’s getting started with Python page.



	Cassandra

	
Cassandra is a distributed table store. It provides fast lookup and can tolerate
wide tables but is not inteded for joins—rather, the paradigm is to have multiple duplicate
views of the data that are keyed on different columns. For more on the Python APIs, see
the planet Cassandra page.



	HBase

	
HBase is a distributed column store (in this context, column store means data are stored
like (row id, column name, value), allowing for very sparse arrays such as
a dataset of “from” and “to” links for websites that make up the Web).
It is built on top of Hadoop’s Distributed File System.
For more information about Python APIs, see
HBase’s “supporting projects” page.



	Druid

	
Druid is a distributed column store intended to collect (and optionally
aggregate before it stores) event data (in this context, column store means the columns
can be ordered and sorted, and then
storage may be compressed for faster I/O and smaller footprint).
Here is a link to Druid’s Python API on GitHub.



	Redis

	
Redis is a distributed in-memory key value store—the point is to reduce latency
by not having to do disk I/O. You could store frequent query results for faster
web lookup, for example. Here is a
list of Python clients for Redis that highlights
redis-py as their preferred interface, and here is the redis-py page.



	Couchbase

	
Couchbase is another distributed document store, with a more SQL-like API
(as compared to MongoDB’s JavaScript-like API)—here is a link to
Couchbase’s Python SDK.



	Neo4j

	
Neo4j is a graph database, intended to store objects with graph-like relationships.
Here is a link to Neo4j’s Python guide.



	LMDB

	
LMDB, the Symas Lightning Memory-mapped Database
is a key-value store database with a memory-mapped file, meaning the file doesn’t have to be read
from the beginning to get to the part where the data is—so the performance is near the speed
of an in-memory store. Python bindings are in the lmdb library.



















1 Relational databases were introduced by in 1970 by Edgar F. Codd, who, while working at IBM, wrote “A Relational Model of Data for Large Share Data Banks.” It was ignored until 1977, when Larry Ellison started a company—which would eventually become Oracle—based on its technology. Other competing ideas, like key-value stores and hierarchical database models, were largely ignored after the success of relational databases, until the recent not only SQL (NoSQL) movement revived nonrelational storage options in a cluster computing setting.
2 It’s ConfigParser in Python 2—see the configparser documentation for the precise dialect understood by the parser.
3 The dbm library stores key-value pairs in an on-disk hash table. The precise way that this happens depends on whether it’s using the gdbm, ndbm, or “dumb” backend. The “dumb” one is implemented in Python and described in the documentation. The other two are in the gdbm manual. With ndbm there’s an upper bound on the value sizes stored. The file is locked when opened for writing unless (with gdbm only)  you open the database file with an ru or wu, and even then, updates in write mode may not be visible on the other connections.
4 Although the Structured Query Language (SQL) is an ISO standard, database vendors choose how much of the standard to implement, and can add their own features. This means a Python library that serves as a database driver must understand the dialect of SQL that is spoken by the database it interfaces with.
5 Defined in Martin Fowler’s Patterns of Enterprise Application Architecture. For more information on what goes into Python’s ORM designs, we recommend the SQLAlchemy entry in the “Architecture of Open Source Applications,” and this comprehensive list of links related to Python ORMs from FullStack Python.
6 There’s a great explanation of Python metaclasses on Stack Overflow.
7 Django Girls is a phenomenal charity organization of brilliant programmers dedicated to providing free Django training in a celebratory environment to women around the world.
8 Transaction contexts allow you to roll back executions if an error occurs in an intermediate step.



Appendix A. Additional Notes









Python’s Community


Python has a rich, inclusive, global community dedicated to diversity.










BDFL


Guido van Rossum,
the creator of Python, is often referred to as the BDFL—the Benevolent Dictator for Life.

















Python Software Foundation


The mission of the Python Software Foundation
(PSF) is to promote, protect, and advance the Python programming language,
and to support and facilitate the growth of a diverse and international community of
Python programmers. To learn more, see the
PSF’s main page.

















PEPs


PEPs are Python Enhancement Proposals.
They describe changes to Python itself, or the standards around it.
People interested in Python’s history, or in language design in general,
would find them all really interesting—even the ones that eventually get rejected.
There are three different types of PEPs, defined in
PEP 1:


	Standards

	
Standards PEPs describe a new feature or implementation.



	Informational

	
Informational PEPs describe a design issue, general guidelines, or information to the community.



	Process

	
Process PEPs describe a process related to Python.
















Notable PEPs


There are a few PEPs that could be considered required reading:


	PEP 8—Style Guide for Python Code

	
Read this. All of it. Follow it. The pep8 tool will help.



	PEP 20—The Zen of Python

	
PEP 20 is a list of 19 statements that briefly explain the philosophy behind Python.



	PEP 257—Docstring conventions

	
PEP 257 contains the guidelines for semantics and conventions associated with Python docstrings.






You can read more at the PEP index.

















Submitting a PEP


PEPs are peer reviewed and accepted/rejected after much discussion.
Anyone can write and submit a PEP for review. The diagram in Figure A-1 illustrates what happens after a draft PEP is submitted.



[image: PEP acceptance workflow]
Figure A-1. Overview of the PEP review process



















Python conferences


The major events for the Python community are developer conferences.
The two most notable conferences are PyCon, which is held in the United States, and its
European sibling, EuroPython.
A comprehensive list of conferences is maintained at http://www.pycon.org/.

















Python user groups


User groups are where Python developers meet in person to
present or talk about Python topics of interest.
A list of local user groups is maintained at the
Python Software Foundation wiki.





























Learning Python


These are some of our favorite references, grouped by level
and application.










Beginners


	The Python Tutorial

	
This
is Python’s official tutorial. It covers all the basics
and offers a tour of the language and the Standard Library.
Recommended for those who need a quick-start guide to the language.



	Python for Beginners

	
This tutorial focuses on beginner programmers.
It covers many Python concepts in depth.
It also teaches you some advanced constructs in Python like lambda expressions and regular expressions. It concludes with the tutorial
“How to access a MySQL db using Python.”



	Learn Python

	
This interactive tutorial is an easy, nonintimidating way to get introduced
to Python. It takes the same approach used on the popular website
Try Ruby—there is an interactive Python interpreter
built into the site that allows you to go through the lessons without
having to install Python locally.



	Python for You and Me

	
This book
is an excellent resource for learning all aspects of the language and is good for those
who prefer learning from a traditional book rather than a tutorial.



	Online Python Tutor

	
This site gives you a visual step-by-step
representation of how your program runs. Python Tutor helps people
overcome a fundamental barrier to learning programming by understanding
what happens as the computer executes each line of a program’s source code.



	Invent Your Own Computer Games with Python

	
This book is
for those with no programming experience at all.
Each chapter has the source code for a game, and these example programs are used to demonstrate programming concepts to give the reader an idea of
what programs “look like.”



	Hacking Secret Ciphers with Python

	
This book
teaches Python programming and basic cryptography for absolute beginners.
The chapters provide the source code for various ciphers,
as well as programs that can break them.



	Learn Python the Hard Way

	
This
is an excellent beginner programmer’s guide to Python.
It covers “hello world” from the console to the Web.



	Crash into Python

	
This site,
also known as Python for Programmers with 3 Hours,
gives developers who have experience with other languages
a crash course on Python.



	Dive Into Python 3

	
This book
is good for those ready to jump into Python 3.
It’s a good read if you are moving from Python 2 to 3
or if you already have some experience programming in another language.



	Think Python: How to Think Like a Computer Scientist

	
This book attempts
to give an introduction to basic concepts in computer science through the
use of the Python language. The focus was to create a book with plenty
of exercises, minimal jargon, and a section in each chapter devoted
to debugging.
It explores the various features available in the Python language
and weaves in various design patterns and best practices.


The book also includes several case studies which have the reader
explore the topics discussed in the book in greater detail by applying
those topics to real-world examples.
Case studies include designing a GUI and Markov Analysis.



	Python Koans

	
This online tutorial is a
Python version of Edgecase’s popular Ruby Koans.
It’s an interactive command-line tutorial teaching basic Python concepts
using a test-driven approach:
by fixing assertion statements that fail in a test script,
the student progresses in sequential steps to learning Python.


For those accustomed to languages and figuring out puzzles on their own,
this can be a fun, attractive option. For those new to Python and
programming, having an additional resource or reference will be helpful.



	A Byte of Python

	
This is a free introductory book that teaches Python at the beginner level—it assumes no previous programming experience. There is an
a version for Python 2.x
and a version for Python 3.x



	Learn to Program in Python with Codecademy

	
This Codecademy course
is for the absolute Python beginner.
This free and interactive course provides and teaches the basics (and beyond)
of Python programming while testing the student’s knowledge as she progresses through the tutorials.
It also also features a built-in interpreter for receiving instant feedback on your coursework.





















Intermediate


	Effective Python

	
This book
contains 59 specific ways to improve writing Pythonic code.
At 227 pages, it is a very brief overview of some of the most common
adapations programmers need to make to become efficient intermediate-level Python programmers.





















Advanced


	Pro Python

	
This book is for intermediate to advanced
Python programmers who are looking to understand how and why Python
works the way it does and how they can take their code to the next level.



	Expert Python Programming

	
This book
deals with best practices in programming Python, and is focused on the more advanced crowd.
It starts with topics like decorators (with caching, proxy, and context manager case studies),
method resolution order, using super() and meta-programming, and general PEP 8
best practices.


It has a detailed, multichapter case study on writing and releasing a package and
eventually an application, including a chapter on using zc.buildout. Later chapters detail
best practices such as writing documentation, test-driven development, version control,
optimization, and profiling.



	A Guide to Python’s Magic Methods

	
This handy resource
is a collection of blog posts by Rafe Kettler that explain “magic methods” in Python.
Magic methods are surrounded by double underscores (e.g., __init__)
and can make classes and objects behave in different and magical ways.





















For Engineers and Scientists


	Effective Computation in Physics

	
This field guide, by
Anthony Scopatz and Kathryn D. Huff, is intended for early graduate
students who are starting to use Python in any scientific or engineering field.
It includes snippets for searching through files using SED and AWK, and provides tips
on how to accomplish every step in the research chain, from data collection
and analysis to publication.



	A Primer on Scientific Programming with Python

	
This book, by
Hans Petter Langtangen, mainly covers Python’s usage in the scientific field.
In the book, examples are chosen from mathematics and the natural sciences.



	Numerical Methods in Engineering with Python

	
This book
by Jaan Kiusalaas puts the emphasis on modern numerical methods and how to implement them in Python.



	Annotated Algorithms in Python: with Applications in Physics, Biology, and Finance

	
This tome, by Massimo Di Pierro, is a teaching tool intended to demonstrate the algorithms used by implementing them in straightforward ways.





















Miscellaneous Topics


	Problem Solving with Algorithms and Data Structures

	
This book
covers a range of data structures and algorithms. All concepts are illustrated with Python code along with interactive samples that can be run directly in your browser.



	Programming Collective Intelligence

	
This book  introduces a wide array of basic machine learning and data mining methods. The exposition is not very mathematically formal, but rather focuses on explaining the underlying intuition and shows how to implement the algorithms in Python.



	Transforming Code into Beautiful, Idiomatic Python

	
This video,
by Raymond Hettinger, will show you how to take better advantage of Python’s best features and improve existing code through a series of code transformations: “When you see this, do that instead.”



	Fullstack Python

	
This site
offers a complete top-to-bottom resource for web development using Python
from setting up the web server, to designing the frontend, choosing a database, optimizing/scaling, and
more.
As the name suggests, it covers everything you need to build and run a complete web app from scratch.





















References


	Python in a Nutshell

	
This book covers most cross-platform Python usage, from its syntax, to built-in libraries, to advanced topics such as writing C extensions.



	The Python Language Reference

	
This is Python’s online reference manual.
It covers the syntax and the core semantics of the language.



	Python Essential Reference

	
This book, written by David Beazley, is the definitive reference guide to Python. It concisely explains both the core language and the most essential parts of the Standard Library. It covers Python 3 and Python 2.6.



	Python Pocket Reference

	
This book, written by Mark Lutz, is an easy-to-use reference to the core language, with descriptions of commonly used modules and toolkits. It covers Python 3 and Python 2.6.



	Python Cookbook

	
This book, written by David Beazley and Brian K. Jones, is packed with practical recipes. It covers the core Python language as well as tasks common to a wide variety of application domains.



	Writing Idiomatic Python

	
This book, by Jeff Knupp, contains the most common and important Python idioms in a format that maximizes identification and understanding. Each idiom is presented as a recommendation of a way to write some commonly used piece of code, followed by an explanation of why the idiom is important. It also contains two code samples for each idiom: the “harmful” way to write it and the “idiomatic” way.
There are different editions for Python 2.7.3+ and for
Python 3.3+.




























Documentation


	Official documentation

	
The official Python Language and Library documentation can be found
here for Python 2.x, and
here for Python 3.x.



	Official packaging documentation

	
The most current instructions for packaging your Python code will always
be in Python’s official packaging guide.
And remember that testPyPI
exists so you can confirm that your packaging works.



	Read the Docs

	
Read the Docs
is a popular community project that hosts documentation for open source software. It holds documentation for many Python modules, both popular and exotic.



	pydoc

	
pydoc is a utility that is installed when you install Python. It allows you to quickly retrieve and search for documentation from your shell. For example, if you needed a quick refresher on the time module, pulling up documentation would be as simple as typing this into a command shell:






$ pydoc time


	

	
which is essentially equivalent to opening the Python REPL and running:






>>> help(time)*

















News


Our favorite places to get Python news are listed here in alphabetical order:





	Name
	Description





	/r/python

	The Reddit Python community where users contribute and vote on Python-related news.




	Import Python Weekly



	A weekly newsletter containing Python articles, projects, videos, and tweets.




	Planet Python



	An aggregate of Python news from a growing number of developers.




	Podcast.__init__

	A weekly podcast about Python and the people who make it great.




	Pycoder’s Weekly



	A free weekly Python newsletter for Python developers by Python developers (it highlights interesting projects and includes articles, news, and a jobs board).




	Python News



	The news section in the official Python website. It briefly highlights the news from the Python community.




	Python Weekly



	A free weekly newsletter featuring curated news, articles, new releases, and jobs related to Python.




	Talk Python to Me



	A podcast on Python and related technologies.
















Index
A
	abstraction layers, Modules-Importing modules
	ActivePython, Commercial Python Redistributions
	ActiveState, Commercial Python Redistributions
	Advanced Message Queuing Protocol (AMQP), RabbitMQ
	Amazon S3, S3-hosted PyPI
	Anaconda, Commercial Python Redistributions, Conda
	Ansible, Ansible
	Apache HTTP server, Web servers
	Apache licenses, Options
	applications, using logging in, Logging in an Application
	Aptana Studio 3, Aptana Studio 3/Eclipse + LiClipse + PyDev
	arbitrary argument list, Function arguments should be intuitive to use
	arbitrary keyword argument dictionary, Function arguments should be intuitive to use
	argparse module, argparse
	argument passing, code style for, Function arguments should be intuitive to use-Return values from one place
	Atom, Atom
	Autoenv, Autoenv


B
	bbFreeze, bbFreeze
	bcrypt, bcrypt
	Beazley, David, Speed, PyPy
	Beck, Kent, Continuous Integration
	Behave, Lettuce and Behave
	Bendersky, Eli, The buffer protocol
	Berkeley Software Distribution (BSD)-style licenses, Options
	Blanks, Hunter, PEP 20 (a.k.a. The Zen of Python)
	block comments, docstrings vs., Docstring Versus Block Comments
	Bokeh, Matplotlib
	Boost.Python, Boost.Python
	bpython, bpython
	breaking tests, Write a breaking test if you want to take a break
	BSD (Berkeley Software Distribution)-style licenses, Options
	buffer protocol, The buffer protocol
	Buildbot, Buildbot
	Buildout, Buildout
	built distribution	defined, Useful Vocabulary and Concepts
	packaging for Linux, Packaging for Linux-Built Distributions




C
	C Foreign Function Interface (CFFI), C Foreign Function Interface
	C/C++	Boost.Python, Boost.Python
	CFFI (C Foreign Function Interface), C Foreign Function Interface
	ctypes and, ctypes
	licensing issues, Freezing Your Code
	SWIG and, SWIG


	__call__() method, Response.__call__
	Canopy, Commercial Python Redistributions
	Cassandra, NoSQL database libraries
	Celery, RabbitMQ
	CFFI (C Foreign Function Interface), C Foreign Function Interface
	Chameleon Page Templates, Chameleon
	Chef, Chef
	CI (see continuous integration)
	circular dependencies, Importing modules
	class-based decorators, Class-based decorators (a Pythonic use of dynamic typing)
	classes	custom, user-extensible, User-extensible custom classes (complex is better than complicated)
	mixins, Mixins (also one honking great idea)
	new-style vs. old-style, Mixins (also one honking great idea)


	Click, Click-Click
	cliff (Command-Line Interface Formulation Framework), cliff
	closures	Diamond project example, Example use of a closure (when the gotcha isn’t a gotcha)
	late binding, Late binding closures


	cmath library, decimal, fractions, and numbers
	cocos2d, Game Development
	Codd, Edgar F., Data Persistence
	code	complex vs. complicated, Complex versus complicated
	continuing a long line of, Continuing a long line of code
	reading (see reading great code)
	shipping (see shipping great code)
	testing (see testing your code)
	writing great (see writing great code)


	Code (text editor), Code
	code management/improvement, Code Management and Improvement-Boost.Python	continuous integration, Continuous Integration
	speed optimization, Speed-Boost.Python
	system administration, System Administration-Luigi


	code style, Code Style-Late binding closures	common gotchas, Common Gotchas-Late binding closures
	conventions, Conventions-Continuing a long line of code
	Diamond examples, Style Examples from Diamond-Example use of a closure (when the gotcha isn’t a gotcha)
	error handling, Errors should never pass silently / Unless explicitly silenced
	explanations of implementations, If the implementation is hard to explain, it’s a bad idea
	explicit vs. implicit, Explicit is better than implicit
	Flask examples, Style Examples from Flask
	function arguments, Function arguments should be intuitive to use-Return values from one place
	general advice, General Advice-Return values from one place
	HowDoI examples, Style Examples from HowDoI-Pythonic choices (beautiful is better than ugly)
	idioms, Idioms-Exception-safe contexts
	PEP 20, PEP 20 (a.k.a. The Zen of Python)
	PEP 8, PEP 8
	Requests examples, Style Examples from Requests-Status codes (readability counts)
	return values and, Return values from one place
	sparsity vs. density, Sparse is better than dense
	Tablib examples, Style Examples from Tablib-Operator overloading (beautiful is better than ugly)
	"we are all responsible users" philosophy, We are all responsible users
	Werkzeug examples, Style Examples from Werkzeug


	command-line applications, Command-Line Applications-cliff	argparse, argparse
	Click, Click-Click
	cliff, cliff
	Clint, Clint
	docopt, docopt
	plac, Plac


	commercial Python distributions, Commercial Python Redistributions-Commercial Python Redistributions
	community, Python, Python’s Community-Python user groups
	complex code, complicated code vs., Complex versus complicated
	Conda, Conda, Conda
	context, global, Importing modules
	continuous integration (CI), Continuous Integration	Buildbot, Buildbot
	Jenkins, Jenkins
	tox, Tox


	Continuum Analytics, Commercial Python Redistributions
	conventions	accessing dictionary elements, Accessing dictionary elements
	alternatives to checking for equality, Alternatives to checking for equality
	code style and, Conventions-Continuing a long line of code
	continuing a long line of code, Continuing a long line of code
	manipulating lists, Manipulating lists


	copyleft licenses, Options
	Córdoba, Carlos, Spyder
	coroutines, Performance networking tools in Python’s Standard Library
	Couchbase, NoSQL database libraries
	coupling, hidden, Importing modules
	CPython, CPython	Stackless Python and, Stackless
	Windows installation, Installing Python on Windows-Installing Python on Windows


	cross-language data serialization, Cross-language serialization
	Cryptography (Python package), pyOpenSSL, Cryptography
	cryptography libraries	bcrypt, bcrypt
	Cryptography, Cryptography
	hashlib, ssl, hashlib, and secrets
	libnacl, PyNaCl and libnacl
	libraries, Cryptography-bcrypt
	PyCrypto, PyCrypto
	PyNaCl, PyNaCl and libnacl
	pyOpenSSL, pyOpenSSL
	secrets, ssl, hashlib, and secrets
	ssl, ssl, hashlib, and secrets


	ctypes, ctypes
	custom classes, user-extensible, User-extensible custom classes (complex is better than complicated)
	cv2, cv2
	cx_Freeze, cx_Freeze
	Cython, Cython-Cython


D
	data compression, Compression
	data manipulation libraries, Data Manipulation-Scikit-Image	comparison of libraries, Data Manipulation
	cv2, cv2
	decimal, fractions, and numbers, decimal, fractions, and numbers
	image manipulation, Image Manipulation-Scikit-Image
	IPython, IPython
	matplotlib, Matplotlib
	nltk, nltk-nltk
	NumPy, NumPy
	Pandas, Pandas
	Pillow, Pillow
	Rpy2, Rpy2
	scientific applications, Scientific Applications-SymPy
	Scikit-Image, Scikit-Image
	Scikit-Learn, Scikit-Learn
	SciPy, SciPy
	string tools in Python’s standard library, String Tools in Python’s Standard Library-SyntaxNet
	SymPy, SymPy
	SyntaxNet, SyntaxNet
	text manipulation/mining, Text Manipulation and Text Mining-SyntaxNet


	data persistence, Data Persistence-NoSQL database libraries	database libraries, Database Libraries-NoSQL database libraries	(see also database libraries)


	structured files and, Structured Files


	data serialization, Data Serialization-The buffer protocol	buffer protocol, The buffer protocol
	compression, Compression
	cross-language serialization, Cross-language serialization
	Pickle, Pickle


	database libraries, Database Libraries-NoSQL database libraries	Django ORM, Django ORM-Django ORM
	NoSQL libraries, NoSQL database libraries-NoSQL database libraries
	peewee, peewee-peewee
	PonyORM, PonyORM
	Records, Records
	SQLAlchemy, SQLAlchemy-SQLAlchemy
	sqlite3, sqlite3
	SQLObject, SQLObject


	decimal.Decimal class, decimal, fractions, and numbers
	decorators	class-based (in Werkzeug project), Class-based decorators (a Pythonic use of dynamic typing)
	project structure and, Decorators
	@property decorator, Programmatically registered file formats (don’t repeat yourself)
	routing (Flask project example), Flask’s routing decorators (beautiful is better than ugly)
	Tablib examples, Descriptors and the property decorator (engineer immutability when the API would benefit)-Descriptors and the property decorator (engineer immutability when the API would benefit)


	default arguments, mutable, Mutable default arguments
	defaults	application-specific (Flask project), Application specific defaults (simple is better than complex)
	sane, Application specific defaults (simple is better than complex)


	dependencies	circular, Importing modules
	packaging and, Useful Vocabulary and Concepts
	vendorizing, Vendorizing Dependencies, Vendorized dependencies in packages (an example of how to vendorize)


	development environment, Your Development Environment-Docker	enhanced interactive tools, Enhanced Interactive Tools
	IDEs, IDEs-Visual Studio
	isolation tools, Isolation Tools-Docker
	text editors, Text Editors-Code
	virtual environments, Virtual Environments-Deactivate the virtual environment


	development tools, Development Tools-Development Tools
	Diamond, Diamond-Example use of a closure (when the gotcha isn’t a gotcha)	closure example, Example use of a closure (when the gotcha isn’t a gotcha)
	complex vs. complicated code, Complex versus complicated
	internal code complexity, The more complex internal code-The more complex internal code
	logging, Reading Diamond’s code
	reading code, Reading Diamond’s code-Reading Diamond’s code
	reading documentation, Read Diamond’s documentation
	running, Use Diamond
	separating functionality into namespaces, Separate different functionality into namespaces (they are one honking great idea)
	structure examples from, Structure Examples from Diamond-The more complex internal code
	style examples from, Style Examples from Diamond-Example use of a closure (when the gotcha isn’t a gotcha)
	user interface, The simple user interface
	user-extensible custom classes, User-extensible custom classes (complex is better than complicated)


	dictionary elements, accessing, Accessing dictionary elements
	dictionary, logging via, Example configuration via a dictionary
	difflib module, String Tools in Python’s Standard Library
	distributed systems	gevent, gevent
	networking, Networking-RabbitMQ
	performance networking tools in Python’s standard library, Performance networking tools in Python’s Standard Library
	PyZMQ, PyZMQ
	RabbitMQ, RabbitMQ
	software interfaces for, Distributed Systems-RabbitMQ
	Twisted, Twisted


	distributing code (see shipping great code)
	distribution packages, Packaging Your Code
	Django, Django
	Django Girls, Preface
	Django ORM, Django ORM-Django ORM
	Docker, Docker
	docopt, docopt
	docstrings	block comments vs., Docstring Versus Block Comments
	Sphinx-compatible, in Requests project, Read Requests’s code


	documentation, Documentation	docstrings vs. block comments, Docstring Versus Block Comments
	project documentation, Project Documentation
	project publication, Project Publication
	Sphinx tool for, Sphinx


	double underscore (__), Ignoring a value
	Druid, NoSQL database libraries
	duck typing, Structure Examples from Werkzeug
	dynamic typing, Dynamic Typing


E
	easy_install, Use pip, not easy_install
	Eby, Phillip J., Werkzeug
	Eclipse, Aptana Studio 3/Eclipse + LiClipse + PyDev
	eggs, Useful Vocabulary and Concepts
	Ellison, Larry, Data Persistence
	Elpy, Emacs
	Emacs, Emacs
	enhanced interactive tools, Enhanced Interactive Tools	bpython, bpython
	IDLE, IDLE
	IPython, IPython


	Enthought, Commercial Python Redistributions
	equality, alternatives to checking for, Alternatives to checking for equality
	Eric (the Eric Python IDE), Eric (the Eric Python IDE)
	error handling, code style for, Errors should never pass silently / Unless explicitly silenced


F
	F2PY (Fortran-to-Python) interface generator, F2PY
	Fabric, Fabric
	Falco, Gabriel, Lettuce and Behave
	Fettig, Abe, Twisted
	file formats, programmatically registered, Programmatically registered file formats (don’t repeat yourself)-Programmatically registered file formats (don’t repeat yourself)
	fixture (testing tool), fixture
	Flask, Flask-Modularity (also one honking great idea), Flask	application-specific defaults, Application specific defaults (simple is better than complex)
	logging, Read Flask’s code-Read Flask’s code
	modularity, Modularity (also one honking great idea)
	reading code, Read Flask’s code-Read Flask’s code
	reading documentation, Read Flask’s documentation
	routing decorators, Flask’s routing decorators (beautiful is better than ugly)
	structure examples, Structure Examples from Flask-Modularity (also one honking great idea)
	style examples, Style Examples from Flask
	using, Use Flask


	Fortran-to-Python (F2PY) interface generator, F2PY
	Fowler, Martin, Continuous Integration, Database Libraries, SQLAlchemy
	framework (see software framework)
	framework, reading code in, Reading Code in a Framework-Read Flask’s code
	freezing code, Freezing Your Code-bbFreeze	bbFreeze, bbFreeze
	comparison of popular tools for, Freezing Your Code
	cx_Freeze, cx_Freeze
	defined, Freezing Your Code
	py2app, py2app
	py2exe, py2app
	PyInstaller and, PyInstaller


	function arguments, Function arguments should be intuitive to use-Return values from one place
	function definitions, Mutable default arguments
	function names, underscore-prefixed, Underscore-prefixed function names (we are all responsible users)
	functional programming, Object-Oriented Programming
	functionality, separating into namespaces, Separate different functionality into namespaces (they are one honking great idea)
	functions, decorators and, Decorators


G
	Gale, Andy, Chef
	Gallina, Fabián Ezequiel, Emacs
	game development, GUI applications for, Game Development
	gevent, gevent
	Gleitzman, Benjamin, Errors should never pass silently / Unless explicitly silenced, HowDoI
	Global Interpreter Lock (GIL), Speed, Numba, Networking
	global state/context, Importing modules
	Gondor, Hosting
	GPU libraries, for speed optimization, GPU libraries
	GTK+, GTK+
	GUI applications, GUI Applications-Game Development	game development, Game Development
	GTK+, GTK+
	Kivy, Kivy
	Objective-C, Objective-C
	Qt, Qt
	Tk, Tk
	wxWidgets, wxWidgets


	Gunicorn (Green Unicorn), WSGI servers


H
	Hansson, David Heinemeier, Continuous Integration
	hashlib module, ssl, hashlib, and secrets
	HBase, NoSQL database libraries
	Heroku, Hosting
	Hettinger, Raymond, PEP 20 (a.k.a. The Zen of Python)
	hidden coupling, Importing modules
	Homebrew, Installing Python on Mac OS X
	hooks, version control automation, Version control automation hooks are fantastic
	hosting, Hosting
	HowDoI, HowDoI-Pythonic choices (beautiful is better than ugly)	compatibility handling, Handle compatibility in just one place (readability counts)
	leveraging data from system, Leverage data available from the system
	limiting functions to doing just one thing, Let each function do just one thing
	packaging, Read HowDoI’s code
	Pythonic coding choices, Pythonic choices (beautiful is better than ugly)
	reading a single-file script, Reading a Single-File Script-Read HowDoI’s code
	structure examples from, Structure Examples from HowDoI
	style examples from, Style Examples from HowDoI-Pythonic choices (beautiful is better than ugly)
	underscore-prefixed function names, Underscore-prefixed function names (we are all responsible users)


	HTTP (Hypertext Transfer Protocol), Web Clients


I
	IDEs (integrated development environments), IDEs-Visual Studio	Aptana Studio 3, Aptana Studio 3/Eclipse + LiClipse + PyDev
	Eclipse, Aptana Studio 3/Eclipse + LiClipse + PyDev
	Eric, Eric (the Eric Python IDE)
	IntelliJ IDEA, PyCharm/IntelliJ IDEA
	Komodo IDE, Komodo IDE
	LiClipse, Aptana Studio 3/Eclipse + LiClipse + PyDev
	NINJA-IDE, NINJA-IDE
	PyCharm, PyCharm/IntelliJ IDEA
	PyDev, Aptana Studio 3/Eclipse + LiClipse + PyDev
	Spyder, Spyder
	Visual Studio, Visual Studio
	WingIDE, WingIDE


	idioms (idiomatic Python)	code style, Idioms-Exception-safe contexts
	creating a length-N list of the same thing, Creating a length-N list of the same thing
	exception-safe contexts, Exception-safe contexts
	ignoring a value, Ignoring a value
	unpacking, Unpacking


	IDLE (Integrated Development and Learning Environment), IDLE
	image manipulation, Image Manipulation-Scikit-Image	cv2, cv2
	Pillow, Pillow
	Scikit-Image, Scikit-Image


	immutable types, Mutable and Immutable Types-Mutable and Immutable Types
	implementations, Python, Implementations-MicroPython	clarity of explanations of, If the implementation is hard to explain, it’s a bad idea
	CPython, CPython
	IronPython, IronPython
	Jython, Jython
	MicroPython, MicroPython
	PyPy, PyPy
	PythonNet, PythonNet
	Skulpt, Skulpt
	Stackless, Stackless


	independence, in code testing, Independence is imperative
	INI file, logging via, Example configuration via an INI file
	installation packages, Packaging Your Code
	installation, Python, Properly Installing Python-Commercial Python Redistributions	commercial Python redistributions, Commercial Python Redistributions-Commercial Python Redistributions
	Linux, Installing Python on Linux-virtualenv
	Mac OS X, Installing Python on Mac OS X-virtualenv
	Windows, Installing Python on Windows-virtualenv


	Integrated Development and Learning Environment (IDLE), IDLE
	integrated development environments (see IDEs)
	Intel Distribution for Python, Commercial Python Redistributions
	IntelliJ IDEA, PyCharm/IntelliJ IDEA
	interfaces, software (see software interfaces)
	Internet Software Consortium (ISC) licenses, Options
	IPython, IPython, IPython
	IronPython, IronPython
	ISC (Internet Software Consortium) licenses, Options
	isolation tools, Isolation Tools-Docker	Autoenv, Autoenv
	Buildout, Buildout
	Conda, Conda
	Docker, Docker
	pyenv, pyenv
	virtual environments, Virtual Environments-Deactivate the virtual environment
	virtualenvwrapper, virtualenvwrapper




J
	Jenkins CI, Jenkins
	Jinja2, Flask, Jinja2-Jinja2
	Joshi, Kavya, gevent
	Joy, Bill, Vim
	JSON, parsing for web APIs, JSON parsing
	Jupyter notebooks, Jupyter Notebooks
	Jython, Jython


K
	keyword arguments, Function arguments should be intuitive to use
	Kiss, Tibor, nltk
	Kivy, Kivy
	Knupp, Jeff, Speed
	Komodo IDE, Komodo IDE


L
	late binding closures, Late binding closures
	Lettuce, Lettuce and Behave
	libnacl, PyNaCl and libnacl
	library, using logging in a, Logging in a Library
	libsodium, PyNaCl and libnacl
	licenses	C libraries and, Freezing Your Code
	options, Options
	resources on legal aspects of, Licensing Resources
	selection process, Choosing a License-Licensing Resources
	upstream, Upstream Licenses


	LiClipse, Aptana Studio 3/Eclipse + LiClipse + PyDev
	Lindberg, Van, Licensing Resources
	Linux	built distribution packaging, Packaging for Linux-Built Distributions
	caveats to distribution packages on, Packaging for Linux-Built Distributions
	Python installation on, Installing Python on Linux-virtualenv
	virtual environment creation/activation on, Create and activate the virtual environment


	list (*) operator, Creating a length-N list of the same thing
	list comprehension, Mutable and Immutable Types
	lists, manipulating, Manipulating lists
	LMDB, NoSQL database libraries
	logging, Logging-Example configuration directly in code	Diamond project, Reading Diamond’s code
	directly in code, Example configuration directly in code
	Flask project, Read Flask’s code-Read Flask’s code
	in a library, Logging in a Library
	in an application, Logging in an Application
	print vs., Logging
	via a dictionary, Example configuration via a dictionary
	via INI file, Example configuration via an INI file


	Luigi, Luigi
	lxml, lxml


M
	Mac OS X	Python installation on, Installing Python on Mac OS X-virtualenv
	virtual environment creation/activation on, Create and activate the virtual environment


	Mako, Mako
	Massachusetts Institute of Technology (MIT) licenses, Options
	math library, decimal, fractions, and numbers
	matplotlib, Matplotlib
	McKellar, Jessica, Twisted
	McQueen, Rob, Packaging for Linux-Built Distributions
	memory, saving with __slots__, Saving memory with __slots__ (optimize judiciously)
	methods, decorators and, Decorators
	MicroPython, MicroPython
	Microsoft Code text editor, Code
	MIT (Massachusetts Institute of Technology) licenses, Options
	mixins, Mixins (also one honking great idea)
	Mock, Mock (in unittest), Mock
	modularity, Flask, Modularity (also one honking great idea)
	modules, Modules-Importing modules, Importing modules
	MongoDB, NoSQL database libraries
	monkey patch, Mock (in unittest)
	Moolenaar, Bram, Vim
	multiprocessing, Multiprocessing-Multiprocessing
	mutable default arguments, Mutable default arguments
	mutable types, Mutable and Immutable Types-Mutable and Immutable Types


N
	namespace tools, Importing modules
	namespaces	for grouping functions in Tablib project, No needless object-oriented code in formats (use namespaces for grouping functions)
	separating functionality into, Separate different functionality into namespaces (they are one honking great idea)


	Neo4j, NoSQL database libraries
	networking, Networking-RabbitMQ	gevent, gevent
	performance tools in Python’s standard library, Performance networking tools in Python’s Standard Library
	PyZMQ, PyZMQ
	RabbitMQ, RabbitMQ
	Twisted, Twisted


	new-style classes, Mixins (also one honking great idea)
	Nginx, Web servers
	NINJA-IDE, NINJA-IDE
	nltk (Natural Language ToolKit), nltk-nltk
	North, Dan, Lettuce and Behave
	Nose, Nose
	NoSQL database libraries, NoSQL database libraries-NoSQL database libraries
	Numba, Numba, GPU libraries
	numbers library, decimal, fractions, and numbers
	NumPy, F2PY, NumPy


O
	object class, new-style classes and, Mixins (also one honking great idea)
	object-oriented programming, Python-specific approach to, Object-Oriented Programming-Object-Oriented Programming
	object-relational mapping (ORM), Database Libraries
	Objective-C, Objective-C
	Oddgard, Allan, TextMate
	old-style classes, Mixins (also one honking great idea)
	open-source licenses, Options
	OpenCV (OpenSource Computer Vision), cv2
	operator overloading, Operator overloading (beautiful is better than ugly)-Operator overloading (beautiful is better than ugly)
	optional arguments, Function arguments should be intuitive to use
	ORM (object-relational mapping), Database Libraries


P
	packages, Packages	project structure and, Packages
	various definitions of, Packaging Your Code


	packaging, Packaging Your Code-VCS support for pip	(see also shipping great code)
	conda package manager, Conda
	HowDoI project, Read HowDoI’s code
	PyPI for, PyPI-VCS support for pip


	Pandas, Pandas
	Parente, Peter, Lettuce and Behave
	peewee, peewee-peewee
	PEP 20 (the Zen of Python), PEP 20 (a.k.a. The Zen of Python)
	PEP 8, PEP 8
	PEPs (Python Enhancement Proposals), PEPs-Python user groups
	permissive licenses, Options
	Peters, Tim, PEP 20 (a.k.a. The Zen of Python)
	Pickle, Pickle
	pika, RabbitMQ
	Pillow, Pillow
	pip	easy_install vs., Use pip, not easy_install
	Python installation on Linux, Setuptools and pip
	Python installation on Mac OS X, Setuptools and pip
	Python installation on Windows, Setuptools and pip
	VCS support for, VCS support for pip


	plac, Plac
	platform as a service (PaaS), Hosting
	Plotly, Matplotlib
	PonyORM, PonyORM
	positional arguments, Function arguments should be intuitive to use
	precision, in code testing, Precision is better than parsimony
	print, logging vs., Logging
	programmatically registered file formats, Programmatically registered file formats (don’t repeat yourself)-Programmatically registered file formats (don’t repeat yourself)
	project	documentation, Project Documentation
	publication, Project Publication
	structuring (see structuring your project)


	@property decorator, Programmatically registered file formats (don’t repeat yourself)
	Psutil, Psutil
	publication, Project Publication
	Punkt tokenizer, nltk
	Puppet, Puppet-Puppet
	pure functions, Object-Oriented Programming
	py.test, pytest
	py2app, py2app
	py2exe, py2app
	PyCA (Python Cryptographic Authority), Cryptography
	PyCharm, PyCharm/IntelliJ IDEA
	PyCrypto, PyCrypto
	PyDev, Aptana Studio 3/Eclipse + LiClipse + PyDev
	pyenv, pyenv
	Pygame, Game Development
	Pygame-SDL2, Game Development
	pyglet, Game Development
	PyInstaller, PyInstaller
	PyNaCl, PyNaCl and libnacl
	pyOpenSSL, pyOpenSSL
	PyPA (Python Packaging Authority), Shipping Great Code
	PyPI	for downloads/installations, PyPI-VCS support for pip
	for proprietary packages, Personal PyPI
	for testing, PyPI
	pip vs. easy_install, Use pip, not easy_install
	Pypiserver, Pypiserver
	S3-hosted, S3-hosted PyPI
	sample project, Sample project
	VCS support for pip, VCS support for pip


	Pypiserver, Pypiserver
	PyPy, PyPy
	Pyramid, Pyramid
	PySDL2, Game Development
	Python (generally), The State of Python 2 Versus Python 3-MicroPython	community, Python’s Community-Python user groups
	documentation, Documentation
	implementations, Implementations-MicroPython
	installation (see installation, Python)
	news sites, News
	Python 2 vs. Python 3, The State of Python 2 Versus Python 3-So…3?
	references for learning, Learning Python-References


	Python 2	Python 3 vs., The State of Python 2 Versus Python 3-So…3?
	reasons for staying with, Recommendations


	Python 2.7, new-style classes, Mixins (also one honking great idea)
	Python 3	new-style classes and object, Mixins (also one honking great idea)
	Python 2 vs., The State of Python 2 Versus Python 3-So…3?
	reasons for adopting, Recommendations


	Python Cryptographic Authority (PyCA), Cryptography
	Python Enhancement Proposals (PEPs), PEPs-Python user groups
	Python Packaging Authority (PyPA), Shipping Great Code
	Python Software Foundation, Upstream Licenses, Python Software Foundation
	Python Tools for Visual Studio, IronPython
	Python-mode (Vim), Python-mode
	python.el, Emacs
	PythonAnywhere, Hosting
	PythonNet (Python for .NET), PythonNet
	PyZMQ, PyZMQ


Q
	Qt, Qt


R
	RabbitMQ, RabbitMQ
	race conditions, Object-Oriented Programming
	random library, decimal, fractions, and numbers
	ravioli code, Importing modules
	reading great code, Reading Great Code-Modularity (also one honking great idea)	common features among example projects, Common Features
	Diamond project, Diamond-Example use of a closure (when the gotcha isn’t a gotcha)	(see also Diamond)


	Flask project, Flask-Modularity (also one honking great idea)	(see also Flask)


	HowDoI project, HowDoI-Pythonic choices (beautiful is better than ugly)	(see also HowDoI)


	Requests project, Requests-Status codes (readability counts)	(see also Requests library)


	Tablib project, Tablib-Operator overloading (beautiful is better than ugly)	(see also Tablib)


	Werkzeug project, Werkzeug-Mixins (also one honking great idea)	(see also Werkzeug)




	Records (SQL library), Records
	Redis, NoSQL database libraries
	regular expressions, Regular expressions (readability counts)
	Reitz, Kenneth, Tablib, Requests
	Requests library, Requests-Status codes (readability counts)	HTTP and, Web Clients
	reading code, Read Requests’s code-Read Requests’s code
	reading documentation, Read Requests’s documentation
	Request and PreparedRequest objects, The Request and PreparedRequest objects (we’re all responsible users)-The Request and PreparedRequest objects (we’re all responsible users)
	sets and set arithmetic, Sets and set arithmetic (a nice, Pythonic idiom)
	Sphinx-compatible docstrings, Read Requests’s code
	status codes, Status codes (readability counts)-Status codes (readability counts)
	structure examples, Structure Examples from Requests-The Request and PreparedRequest objects (we’re all responsible users)
	style examples from, Style Examples from Requests-Status codes (readability counts)
	testing your code in, Example: Testing in Requests
	top-level API, Top-level API (preferably only one obvious way to do it)-Top-level API (preferably only one obvious way to do it)
	using, Use Requests


	requirements.txt, Add libraries to the virtual environment
	Response class, with __call__ () method, Response.__call__
	RESTful APIs, Web APIs
	reStructured Text, reStructured Text
	return values, Return values from one place
	Ronacher, Armin, Werkzeug, Flask
	routing decorators, Flask’s routing decorators (beautiful is better than ugly)
	Rpy2, Rpy2


S
	S3 (see Amazon S3)
	SageMath, decimal, fractions, and numbers
	Salt, Salt
	sane defaults, Application specific defaults (simple is better than complex)
	Schäfer, Jorgen, Emacs
	scientific applications, libraries for, Scientific Applications-SymPy	decimal, fractions, and numbers, decimal, fractions, and numbers
	IPython, IPython
	matplotlib, Matplotlib
	NumPy, NumPy
	Pandas, Pandas
	Rpy2, Rpy2
	Scikit-Learn, Scikit-Learn
	SciPy, SciPy
	SymPy, SymPy


	Scikit-Image, Scikit-Image
	Scikit-Learn, Scikit-Learn
	SciPy, SciPy
	secrets library, ssl, hashlib, and secrets
	separation of concerns, Web Template Engines
	serialization (see data serialization)
	server automation, Server Automation-CFEngine	Ansible, Ansible
	CFEngine, CFEngine
	Chef, Chef
	Puppet, Puppet-Puppet
	Salt, Salt


	sets, Sets and set arithmetic (a nice, Pythonic idiom)
	Setuptools	Python installation on Linux, Setuptools and pip
	Python installation on Mac OS X, Setuptools and pip
	Python installation on Windows, Setuptools and pip


	shim, pyenv
	shipping great code, Shipping Great Code-Executable ZIP Files	executable ZIP files, Executable ZIP Files
	freezing code, Freezing Your Code-bbFreeze
	packaging, Packaging Your Code-VCS support for pip
	packaging for Linux built distributions, Packaging for Linux-Built Distributions
	vocabulary and concepts, Useful Vocabulary and Concepts


	side effects, Object-Oriented Programming
	Simple Storage Service (S3) (see Amazon S3)
	simplejson, JSON parsing
	Simplified Wrapper Interface Generator (SWIG), SWIG
	Skinner, Jon, Sublime Text
	Skulpt, Skulpt
	__slots__, Saving memory with __slots__ (optimize judiciously)
	software interfaces, Software Interfaces-bcrypt	cryptography, Cryptography-bcrypt
	data serialization, Data Serialization-The buffer protocol
	for distributed systems, Distributed Systems-RabbitMQ	(see also distributed systems)


	web APIs, Web APIs-lxml
	web clients, Web Clients-lxml


	software toolkit, Reading Code in a Toolkit-Read Werkzeug’s code
	spaghetti code, Importing modules
	speed optimization, Speed-Boost.Python	Boost.Python, Boost.Python
	CFFI (C Foreign Function Interface), C Foreign Function Interface
	ctypes, ctypes
	Cython, Cython-Cython
	F2PY, F2PY
	GPU libraries, GPU libraries
	interfacing with C/C++ or FORTRAN libraries, Interfacing with C/C++/FORTRAN Libraries-Boost.Python
	multiprocessing, Multiprocessing-Multiprocessing
	Numba, Numba
	PyPy, PyPy
	subprocess library, Subprocess
	SWIG, SWIG
	threading, Threading


	speed, code testing, Speed counts
	Sphinx	and docstrings in Requests project, Read Requests’s code
	for documentation, Sphinx
	reStructured Text, reStructured Text
	Tablib documentation, Read Tablib’s code


	Spyder, Spyder
	SQLAlchemy, SQLAlchemy-SQLAlchemy
	sqlite3, sqlite3
	SQLObject, SQLObject
	ssl module, ssl, hashlib, and secrets
	Stackless Python, Stackless
	Stallman, Richard, Emacs
	status codes, Status codes (readability counts)-Status codes (readability counts)
	Steele, Guy L., Jr., Emacs
	string tools, String Tools in Python’s Standard Library-SyntaxNet	nltk, nltk-nltk
	SyntaxNet, SyntaxNet


	structured files, Structured Files
	structuring your project, Structuring Your Project-Vendorizing Dependencies	decorators, Decorators
	Diamond examples, Structure Examples from Diamond-The more complex internal code
	dynamic typing, Dynamic Typing
	Flask examples, Structure Examples from Flask-Modularity (also one honking great idea)
	modules, Modules-Importing modules
	object-oriented programming, Object-Oriented Programming-Object-Oriented Programming
	packages, Packages
	Requests examples, Structure Examples from Requests-The Request and PreparedRequest objects (we’re all responsible users)
	signs of poor structure, Importing modules
	Tablib examples, Structure Examples from Tablib-Saving memory with __slots__ (optimize judiciously)
	vendorizing dependencies, Vendorizing Dependencies
	Werkzeug examples, Structure Examples from Werkzeug-Mixins (also one honking great idea)


	Strunk, Jan, nltk
	style, code (see code style)
	Sublime Text, Sublime Text
	subprocess library, Subprocess
	SWIG (Simplified Wrapper Interface Generator), SWIG
	SymPy, SymPy
	SyntaxNet, SyntaxNet
	system administration	code management/improvement, System Administration-Luigi
	Jenkins, Jenkins
	server automation, Server Automation-CFEngine
	system/task monitoring, System and Task Monitoring-Luigi
	Travis-CI, Travis-CI


	system/task monitoring, System and Task Monitoring-Luigi	Fabric, Fabric
	Luigi, Luigi
	Psutil, Psutil




T
	Tablib, Tablib-Operator overloading (beautiful is better than ugly)	descriptors and property decorator, Descriptors and the property decorator (engineer immutability when the API would benefit)-Descriptors and the property decorator (engineer immutability when the API would benefit)
	namespaces for grouping functions, No needless object-oriented code in formats (use namespaces for grouping functions)
	operator overloading, Operator overloading (beautiful is better than ugly)-Operator overloading (beautiful is better than ugly)
	programmatically registered file formats, Programmatically registered file formats (don’t repeat yourself)-Programmatically registered file formats (don’t repeat yourself)
	reading code, Read Tablib’s code-Read Tablib’s code
	reading documentation, Read Tablib’s documentation
	saving memory with __slots__, Saving memory with __slots__ (optimize judiciously)
	Sphinx documentation, Read Tablib’s code
	structure examples from, Structure Examples from Tablib-Saving memory with __slots__ (optimize judiciously)
	style examples from, Style Examples from Tablib-Operator overloading (beautiful is better than ugly)
	testing your code in, Example: Testing in Tablib-Example: Testing in Tablib
	using, Use Tablib
	vendorized dependencies in packages directory, Vendorized dependencies in packages (an example of how to vendorize)


	TCP/IP, Software Interfaces
	TDD (test-driven development), Testing Your Code
	template engines (see web template engines)
	test-driven development (TDD), Testing Your Code
	testing your code, Testing Your Code-Lettuce and Behave	basics, Testing Basics-doctest
	Behave, Lettuce and Behave
	doctest, doctest
	examples, Examples-Example: Testing in Requests
	fixture, fixture
	in Requests, Example: Testing in Requests
	in Tablib, Example: Testing in Tablib-Example: Testing in Tablib
	Lettuce, Lettuce and Behave
	Mock, Mock (in unittest), Mock
	Nose, Nose
	options for older versions of Python, Options for older versions of Python
	py.test, pytest
	tips, Tips for testing
	tox, tox
	Travis-CI for, Travis-CI
	unittest, unittest
	Unittest 2, unittest2


	testPyPI, PyPI
	text editors, Text Editors-Code	Atom, Atom
	Code, Code
	Emacs, Emacs
	Sublime Text, Sublime Text
	TextMate, TextMate
	Vim, Vim-Python-mode


	text manipulation/mining, Text Manipulation and Text Mining-SyntaxNet	nltk, nltk-nltk
	string tools in Python’s standard library, String Tools in Python’s Standard Library-SyntaxNet
	SyntaxNet, SyntaxNet


	TextMate, TextMate
	threading, Threading
	Tk, Tk
	toolkit (see software toolkit)
	Tornado, Tornado
	Totic, Aleks, Aptana Studio 3/Eclipse + LiClipse + PyDev
	tox	CI and, Tox
	testing your code with, tox
	Werkzeug and, Read Werkzeug’s code


	Travis-CI, Travis-CI
	TweetNaCL, PyNaCl and libnacl
	Twisted, Twisted
	types	dynamic, Dynamic Typing
	guessing (Werkzeug project example), Elegant way to guess type (if the implementation is easy to explain, it may be a good idea)
	mutable/immutable, Mutable and Immutable Types-Mutable and Immutable Types




U
	underscore-prefixed function names, Underscore-prefixed function names (we are all responsible users)
	underscores, throwaway variables and, Ignoring a value
	unittest, unittest, Mock (in unittest), Mock
	Unittest 2, unittest2
	unpacking, Unpacking
	untangle, XML parsing
	upstream licenses, Upstream Licenses
	user interaction, User Interaction-WSGI servers	command-line applications, Command-Line Applications-cliff	(see also command-line applications)


	GUI applications, GUI Applications-Game Development	(see also GUI applications)


	Jupyter notebooks, Jupyter Notebooks
	web application development, Web Applications-WSGI servers	(see also web application development)




	user interface, Diamond, The simple user interface
	uWSGI, WSGI servers


V
	value, ignoring, Ignoring a value
	van Rossum, Guido, IDLE, BDFL
	variables	dynamic typing, Dynamic Typing
	late binding closures, Late binding closures


	VCS (version control system), VCS support for pip
	vendorizing/vendorized dependencies, Vendorizing Dependencies, Vendorized dependencies in packages (an example of how to vendorize), Executable ZIP Files
	version control automation hooks, Version control automation hooks are fantastic
	Vi, Vim
	Vim, Vim-Python-mode
	virtual environments, Virtual Environments-Deactivate the virtual environment	adding libraries to, Add libraries to the virtual environment
	creating/activating, Create and activate the virtual environment
	deactivating, Deactivate the virtual environment


	virtualenv command, Virtual Environments	Python installation on Linux, virtualenv
	Python installation on Mac OS X, virtualenv
	Python installation on Windows, virtualenv


	virtualenvwrapper, virtualenvwrapper
	Visual Studio, Visual Studio


W
	Waitress, WSGI servers
	Walsh, Ciarán, TextMate
	"we are all responsible users", We are all responsible users, Programmatically registered file formats (don’t repeat yourself)
	web APIs, Web APIs-lxml	JSON parsing, JSON parsing
	lxml, lxml
	web scraping, Web scraping
	XML parsing, XML parsing


	web application development, Web Applications-WSGI servers	deployment, Web Deployment-WSGI servers
	frameworks/microframeworks, Web Frameworks/Microframeworks-Pyramid
	template engines, Web Template Engines-Mako


	web clients, software interfaces for, Web Clients-lxml
	web deployment, Web Deployment-WSGI servers	hosting, Hosting
	web servers, Web servers
	WSGI servers, WSGI servers


	web frameworks/microframeworks, Web Frameworks/Microframeworks-Pyramid	Django, Django
	Flask, Flask
	Pyramid, Pyramid
	Tornado, Tornado


	web scraping, Web scraping
	Web Server Gateway Interface (WSGI) servers, WSGI servers
	web servers, Web servers
	web template engines, Web Template Engines-Mako	Chameleon, Chameleon
	Jinja2, Jinja2-Jinja2
	Mako, Mako


	Werkzeug, Werkzeug-Mixins (also one honking great idea)	class based decorators, Class-based decorators (a Pythonic use of dynamic typing)
	Flask and, Flask
	guessing types, Elegant way to guess type (if the implementation is easy to explain, it may be a good idea)
	mixins, Mixins (also one honking great idea)
	reading code, Read Werkzeug’s code-Read Werkzeug’s code
	reading documentation, Read Werkzeug’s documentation
	regular expressions in, Regular expressions (readability counts)
	Response.__call__, Response.__call__
	structure examples from, Structure Examples from Werkzeug-Mixins (also one honking great idea)
	style examples from, Style Examples from Werkzeug
	tox in, Read Werkzeug’s code
	using, Use Werkzeug-Use Werkzeug


	wheels, Useful Vocabulary and Concepts
	widget libraries, Widget Libraries-Objective-C	GTK+, GTK+
	Kivy, Kivy
	Objective-C, Objective-C
	Qt, Qt
	Tk, Tk
	wxWidgets, wxWidgets


	Windows	C++ licensing issues, Freezing Your Code
	Python installation on, Installing Python on Windows-virtualenv
	virtual environment creation/activation on, On Windows


	WingIDE, WingIDE
	writing great code, Writing Great Code-Licensing Resources	code style, Code Style-Late binding closures	(see also code style)


	documentation, Documentation
	license selection, Choosing a License-Licensing Resources
	logging, Logging-Example configuration directly in code
	structuring your project, Structuring Your Project-Vendorizing Dependencies
	testing your code, Testing Your Code-Lettuce and Behave


	WSGI (Web Server Gateway Interface) servers, WSGI servers
	wxWidgets, wxWidgets


X
	XML, parsing for web APIs, XML parsing
	xmltodict, XML parsing


Z
	Zadrozny, Fabio, Aptana Studio 3/Eclipse + LiClipse + PyDev
	Zen of Python (PEP 20), PEP 20 (a.k.a. The Zen of Python)
	ZeroMQ, PyZMQ and, PyZMQ
	ZIP files, for packaging pure Python apps, Executable ZIP Files





  About the Authors

   Kenneth Reitz is the product owner of Python at Heroku and a Fellow at the Python Software Foundation. He is well known for his many open source projects, specifically Requests: HTTP for Humans.

  Tanya Schlusser is her mom’s primary Alzheimer’s caregiver, and an independent consultant who uses data to drive strategic decisions. She’s delivered over 1,000 hours of data science training to individual students and corporate teams.



  Colophon


  The animal on the cover of The Hitchhiker’s Guide to Python is the Indian brown mongoose (Herpestes fuscus), a small mammal native to the forests of Sri Lanka and southwest India. It is very similar to the short-tailed mongoose (Herpestes brachyurus) of southeast Asia, of which it may be a subspecies.

  The Indian brown mongoose is slightly larger than other species of mongoose, and is distinguished by its pointed tail and furry hind legs.  Their fur varies from dark brown on their bodies to black on their legs. They are rarely seen by humans, suggesting that they are nocturnal or crepuscular (active at dawn and dusk).

  Until recently, data on the Indian brown mongoose was sparse and their population was thought to be vulnerable. Improved scientific monitoring has discovered a fairly large population, especially in southern India, so their status has been upgraded to Least Concern. Another population of the Indian brown mongoose was also recently discovered on the island of Viti Levu in Fiji.


  Many of the animals on O’Reilly covers are endangered; all of them are important to the world. To learn more about how you can help, go to animals.oreilly.com.


  The cover image is from Lydekker’s Royal Natural History. The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.



OEBPS/assets/8.png





OEBPS/assets/hgtp_aa01.png
Draft

A

A 4

Deferred

P Accepted > Final
i i
[} |
A 4 \ 4
»| Rejected Replaced
Withdrawn Active






OEBPS/assets/6.png





OEBPS/assets/cover.jpg
Kenneth Reitz & Tanya Schlusser






OEBPS/UbuntuMono-BoldItalic.otf


OEBPS/UbuntuMono-Italic.otf


OEBPS/UbuntuMono-Regular.otf


OEBPS/assets/1.png





OEBPS/assets/5.png





OEBPS/assets/7.png





OEBPS/DejaVuSans-Bold.otf


OEBPS/DejaVuSerif.otf


OEBPS/UbuntuMono-Bold.otf


OEBPS/assets/3.png





OEBPS/assets/hgtp_1001.png
Entry Point

1
howdoi
\4
command_line_runner
1 calls: 1
1 1
howdoi get_parser _enable_cache
calls: 1 calls: 1 calls: 1
1
v
_get_instructions
calls: 1
1 1
2
v
_get_answer _get_links
calls: 1 1 calls: 1
1 1
1 1
get_link_at_pos _format_output _get_result
calls: 1 calls: 1 calls: 2
1 2
<listcomp>
calls: 4
10
_is_question
calls: 10






OEBPS/assets/4.png





OEBPS/toc01.html
		Preface
















		Conventions Used in This Book















		Safari® Books Online















		How to Contact Us















		Acknowledgments













		I. Getting Started

		1. Picking an Interpreter








		The State of Python 2 Versus Python 3















		Recommendations















		So…3?















		Implementations














		CPython















		Stackless















		PyPy















		Jython















		IronPython















		PythonNet















		Skulpt















		MicroPython























		2. Properly Installing Python













		Installing Python on Mac OS X






































		Setuptools and pip















		virtualenv

























		Installing Python on Linux















		Setuptools and pip















		Development Tools















		virtualenv

























		Installing Python on Windows











































		Setuptools and pip















		virtualenv

























		Commercial Python Redistributions













		3. Your Development Environment


















		Text Editors














		Sublime Text















		Vim















		Emacs















		TextMate















		Atom















		Code

























		IDEs
















		PyCharm/IntelliJ IDEA















		Aptana Studio 3/Eclipse + LiClipse + PyDev















		WingIDE















		Spyder















		NINJA-IDE















		Komodo IDE















		Eric (the Eric Python IDE)















		Visual Studio

























		Enhanced Interactive Tools











		IDLE















		IPython















		bpython

























		Isolation Tools













		Virtual Environments















		pyenv















		Autoenv















		virtualenvwrapper















		Buildout















		Conda















		Docker























		II. Getting Down to Business

		4. Writing Great Code










		Code Style













		PEP 8















		PEP 20 (a.k.a. The Zen of Python)















		General Advice















		Conventions















		Idioms















		Common Gotchas

























		Structuring Your Project

















		Modules















		Packages















		Object-Oriented Programming















		Decorators















		Dynamic Typing















		Mutable and Immutable Types















		Vendorizing Dependencies

























		Testing Your Code



























		Testing Basics















		Examples















		Other Popular Tools

























		Documentation











		Project Documentation















		Project Publication















		Docstring Versus Block Comments

























		Logging















		Logging in a Library















		Logging in an Application

























		Choosing a License











		Upstream Licenses















		Options















		Licensing Resources























		5. Reading Great Code


















		Common Features















		HowDoI











		Reading a Single-File Script















		Structure Examples from HowDoI















		Style Examples from HowDoI

























		Diamond











		Reading a Larger Application















		Structure Examples from Diamond















		Style Examples from Diamond

























		Tablib











		Reading a Small Library















		Structure Examples from Tablib















		Style Examples from Tablib

























		Requests











		Reading a Larger Library















		Structure Examples from Requests















		Style Examples from Requests

























		Werkzeug





















		Reading Code in a Toolkit















		Style Examples from Werkzeug















		Structure Examples from Werkzeug

























		Flask











		Reading Code in a Framework















		Style Examples from Flask















		Structure Examples from Flask























		6. Shipping Great Code


















		Useful Vocabulary and Concepts















		Packaging Your Code












		Conda















		PyPI

























		Freezing Your Code























		PyInstaller















		cx_Freeze















		py2app















		py2exe















		bbFreeze

























		Packaging for Linux-Built Distributions















		Executable ZIP Files













		III. Scenario Guide

		7. User Interaction










		Jupyter Notebooks















		Command-Line Applications















		GUI Applications











		Widget Libraries















		Game Development

























		Web Applications













		Web Frameworks/Microframeworks















		Web Template Engines















		Web Deployment























		8. Code Management and Improvement










		Continuous Integration















		System Administration





















































		Server Automation















		System and Task Monitoring

























		Speed
























































































































		Interfacing with C/C++/FORTRAN Libraries























		9. Software Interfaces
















		Web Clients



















		Web APIs

























		Data Serialization















		Distributed Systems











		Networking

























		Cryptography













		10. Data Manipulation
















		Scientific Applications















		Text Manipulation and Text Mining











		String Tools in Python’s Standard Library















		Image Manipulation























		11. Data Persistence












		Structured Files















		Database Libraries













		A. Additional Notes








		Python’s Community











		BDFL















		Python Software Foundation















		PEPs

























		Learning Python











		Beginners















		Intermediate















		Advanced















		For Engineers and Scientists















		Miscellaneous Topics















		References

























		Documentation















		News













		Index





OEBPS/assets/2.png





OEBPS/assets/hgtp_1002.png
version

i

handler

o |

server

~ Handler_
implementations

" collector |

metric

scheduler
signals






