

[image:]

[1]

Learning Flask Framework

Build dynamic, data-driven websites and modern

web applications with Flask

Matt Copperwaite

Charles Leifer

BIRMINGHAM - MUMBAI

Learning Flask Framework

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1241115

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-336-0

www.packtpub.com

Credits

Authors Project Coordinator

Matt Copperwaite Shipra Chawhan

Charles Leifer

Proofreaders

Reviewers Stephen Copestake

Abhishek Gahlot Safis Editing

Burhan Khalid

Indexer

Commissioning Editor Mariammal Chettiyar

Ashwin Nair

Production Coordinator

Acquisition Editor Conidon Miranda

Subho Gupta

Cover Work

Content Development Editor Conidon Miranda

Mamata Walkar

Technical Editors

Siddhesh Ghadi

Siddhesh Patil

Copy Editor

Sonia Mathur

About the Authors

Matt Copperwaite graduated from the University of Plymouth in 2008 with a bachelor of science (Hons) degree in computer systems and networks. Since then, he has worked in various private and public sectors in the UK. Matt is currently working as a Python software developer and DevOps engineer for the UK Government, focusing mainly on Django. However, his first love is Flask, with which he has built several products under the General Public License (GPL).

Matt is also a trustee of South London Makerspace, a hackerspace community in South London; a cohost of The Dick Turpin Road Show, a podcast for free and open source software; and LUG Master of Greater London Linux User Group.

He has also been the technical reviewer of the Flask Framework Cookbook.

I would like to thank my new wife Marie who has been so patient throughout the production of this book.

Charles Leifer is a professional software engineer with 6 years of experience using Python. He is the author of several popular open source libraries, including Peewee ORM and Huey, a multithreaded task queue. He is also the cocreator of

https://readthedocs.org, a free documentation hosting platform.

Charles developed a passion for Python while working at the Journal World. His colleagues there patiently answered his endless questions and taught him everything about the Web, Linux, open source, and how to write clean Python.

Charles maintains an active programming blog at http://charlesleifer.com.

I would like to thank my wife, Leslie, and my parents, Anne and John, for their encouragement and support.

About the Reviewers

Abhishek Gahlot is a Computer Engineer and holds a Bachelors degree in Computer Science. He loves programming in Python and Go.

He created two Web Applications Cloudtub (cloudtub.com) and Dynofy

(dynofy.com). Dynofy uses the Flask framework for Web and REST API. Abhishek is very passionate about Algorithms, Artificial Intelligence and Parallel Programming.

He occasionally writes articles related to Web Engineering at blog.abhishek.it. Abhishek can be reached at me@abhishek.it.

Burhan Khalid has always been tinkering with technology from his early days of XT to writing JCL on the ISPF editor, C and C++, Java, Pascal, and COBOL, to his latest favorite, Python. As a lover of technology, he is most comfortable experimenting with the next big technology stack.

By day, he works at a multinational bank in the alternative channels unit, where he gets to hack, develop, and test applications that help execute transactions across all sectors of electronic devices and channels. In addition to his work, he also contributes to open source projects. Burhan has also released a few toolkits for transaction processing.

He is an avid volunteer and has mentored Sirdab Lab (a start-up accelerator). Burhan is a frequent speaker at the local Google Developer Groups, a presenter and volunteer at StartupQ8, a start-up community. He is also actively involved with StackOverflow.

In his free time, you can find him splitting time nurturing his other passions—flight, by scheduling time in flight simulators, and photography, by uploading images to his Flickr feed.

I would like to thank my mother and father for always encouraging me; my wife for putting up with my long days at the keyboard and my ever - growing gadget collection; and my friends and colleagues for providing me with new challenges to sharpen my skills.

Special thanks to Lalith Polepeddi for contributing to the book at a stage

where we needed it the most.

www.PacktPub.com

Support files, eBooks, discount offers,

and more For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF

and ePub files available? You can upgrade to the eBook version at www.PacktPub.

com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

• Fully searchable across every book published by Packt

• Copy and paste, print, and bookmark content

• On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate access.

Table of Contents

Preface vii

Chapter 1: Creating Your First Flask Application 1

What is Flask? 1

With great freedom comes great responsibility 2

Setting up a development environment 2

Supporting Python 3 3

Installing Python packages 3

Installing pip 3

Installing virtualenv 4

Why use virtualenv? 4

Installing virtualenv with pip 4

Creating your first Flask app 5

Installing Flask in your virtualenv 6

Hello, Flask! 6

Understanding the code 7

Routes and requests 9

Reading values from the request 10

Debugging Flask applications 11

Introducing the blog project 14

The spec 15

Creating the blog project 15

A barebones Flask app 17

Zooming out 18

The import flow 19

Summary 20

Chapter 2: Relational Databases with SQLAlchemy 21

Why use a relational database? 22

Introducing SQLAlchemy 23

Installing SQLAlchemy 24

[i]

Table of Contents

Using SQLAlchemy in our Flask app 24

Choosing a database engine 25

Connecting to the database 25

Creating the Entry model 26

Creating the Entry table 29

Working with the Entry model 30

Making changes to an existing entry 32

Deleting an entry 32

Retrieving blog entries 32

Filtering the list of entries 33

Special lookups 34

Combining expressions 35

Negation 36

Operator precedence 37

Building a tagging system 37

Adding and removing tags from entries 41

Using backrefs 42

Making changes to the schema 43

Adding Flask-Migrate to our project 43

Creating the initial migration 44

Adding a status column 45

Summary 46

Chapter 3: Templates and Views 47

Introducing Jinja2 48

Basic template operations 49

Loops, control structures, and template programming 51

Jinja2 built-in filters 55

Creating a base template for the blog 57

Creating a URL scheme 60

Defining the URL routes 62

Building the index view 63

Building the detail view 66

Listing entries matching a given tag 67

Listing all the tags 68

Full-text search 69

Adding pagination links 71

Enhancing the blog app 73

Summary 73

[ii]

Table of Contents

Chapter 4: Forms and Validation 75

Getting started with WTForms 75

Defining a form for the Entry model 76

A form with a view 77

The create.html template 78

Handling form submissions 80

Validating input and displaying error messages 82

Editing existing entries 85

The edit.html template 86

Deleting entries 89

Cleaning up 90

Using flash messages 91

Displaying flash messages in the template 93

Saving and modifying tags on posts 94

Image uploads 96

Processing file uploads 97

The image upload template 99

Serving static files 100

Summary 101

Chapter 5: Authenticating Users 103

Creating a user model 104

Installing Flask-Login 105

Implementing the Flask-Login interface 107

Creating user objects 108

Login and logout views 110

The login template 112

Logging out 113

Accessing the current user 114

Restricting access to views 114

Storing an entry's author 115

Setting the author on blog entries 117

Protecting the edit and delete views 117

Displaying a user's drafts 119

Sessions 120

Summary 121

Chapter 6: Building an Administrative Dashboard 123

Installing Flask-Admin 123

Adding Flask-Admin to our app 125

[iii]

Table of Contents

Exposing models through the Admin 126

Customizing the list views 129

Adding search and filtering to the list view 132

Customizing Admin model forms 134

Enhancing the User form 136

Generating slugs 138

Managing static assets via the Admin 140

Securing the admin website 141

Creating an authentication and authorization mixin 143

Setting up a custom index page 144

Flask-Admin templates 145

Reading more 146

Summary 146

Chapter 7: AJAX and RESTful APIs 147

Creating a comment model 147

Creating a schema migration 149

Installing Flask-Restless 149

Setting up Flask-Restless 150

Making API requests 151

Creating comments using AJAX 154

AJAX form submissions 156

Validating data in the API 159

Preprocessors and postprocessors 160

Loading comments using AJAX 161

Retrieving the list of comments 163

Reading more 166

Summary 166

Chapter 8: Testing Flask Apps 167

Unit testing 167

Python's unit test module 168

A simple math test 169

Flask and unit testing 171

Testing a page 173

Testing an API 175

Test-friendly configuration 176

Mocking objects 177

[iv]

Table of Contents

Logging and error reporting 179

Logging 180

Logging to file 180

Custom log messages 181

Levels 181

Error reporting 182

Read more 182

Summary 182

Chapter 9: Excellent Extensions 183

SeaSurf and CSRF protection of forms 183

Creating Atom feeds 185

Syntax highlighting using Pygments 186

Simple editing with Markdown 190

Caching with Flask-Cache and Redis 192

Creating secure, stable versions of your site by creating

static content 194

Commenting on a static site 195

Synchronizing multiple editors 195

Asynchronous tasks with Celery 196

Creating command line instructions with Flask-script 199

References 200

Summary 201

Chapter 10: Deploying Your Application 203

Running Flask with a WSGI server 203

Apache's httpd 204

Serving static files 206

Nginx 207

Serving static files 209

Gunicorn 210

Securing your site with SSL 210

Getting your certificate 211

Apache httpd 212

Nginx 214

Gunicorn 215

Automating deployment using Ansible 216

Read more 219

Summary 219

Index 221

[v]

Preface

Welcome to Learning Flask, the book that will teach you the necessary skills to build web applications with Flask, a lightweight Python web framework. This book takes an example-driven approach that is designed to get you started quickly. The practical examples are balanced with just the right amount of background information to ensure that you understand not only the how, but also the why of Flask development.

Flask was originally released by Armin Ronacher as part of an elaborate April Fool's Day prank in 2010. The project touted itself as, "The next generation python micro web-framework," and lampooned features made popular by similar microframeworks. Although Flask was intended as a prank, the authors were caught by surprise when many people expressed serious interest in the project.

Flask is a microframework that is built on top of two excellent libraries: the Jinja2 templating engine, and the Werkzeug WSGI toolkit. Despite being a relative new-comer compared to other frameworks, such as Django, and Pylons, Flask has garnered a large and loyal following. Flask provides powerful tools for common web development tasks and encourages a bring-your-own-library approach for everything else, allowing programmers the flexibility to pick and choose the best components for their application. Every Flask app is different, and as the project's documentation states, "Flask is Fun".

The Flask microframework represents a departure in terms of design and API from most other popular Python web frameworks, which has led many developers that are new to Flask to ask, "What is the right way to build an app?" Flask does not offer any strong opinions on how we, the developers, should build our app. Instead, it provides opinions on what you need to build an app. Flask can be thought of as a collection of objects and functions to deal with common web tasks, such as routing URLs to code, processing request data, and rendering templates. While the level of flexibility that Flask provides is liberating, it can also lead to confusion and poor designs.

[vii]

Preface

The purpose of this book is to help you see this flexibility as opportunity. Over the course of this book, we will be building and progressively enhancing a Flask-powered blogging site. New concepts will be introduced through the addition of new features to the site. By the end of the book, we will have created a fully-featured website, and you will have a strong working knowledge of Flask and the ecosystem of its commonly-used extensions and libraries.

What this book covers Chapter 1 , Creating Your First Flask Application , begins with the bold declaration, "Flask is fun", which is one of the first things that you see when you view the official Flask documentation, and in this chapter, you will get to grips with why so many Python developers agree.

Chapter 2, Relational Databases with SQLAlchemy, says that relational databases are the bedrock upon which almost all modern web applications are built. We will use SQLAlchemy, a powerful object-relational mapper that allows us to abstract away the complexities of multiple database engines. In this chapter, you will learn about how the data model that you choose early on will affect almost every facet of the code that follows.

Chapter 3, Templates and Views, covers two of the most recognizable components of the framework: the Jinja2 template language, and the URL routing framework. We will fully immerse ourselves in Flask and see our app finally start to take shape. As we progress through the chapter, our app will start looking like a proper website.

Chapter 4, Forms and Validation, shows you how to use forms to modify content on your blog directly through the site handled by the popular WTForms library. This is a fun chapter because we will add all sorts of new ways to interact with our site. We will create forms to work with our data models and learn how to receive and validate user data.

Chapter 5, Authenticating Users, explains how you can add user authentication to your site. Being able to distinguish one user from another allows us to develop an entirely new class of features. For instance, we will see how to restrict access to the create, edit, and delete views, preventing anonymous users from tampering with site content. We can also display a user's draft posts to them but hide them from everyone else.

[viii]

Preface

Chapter 6, Building an Administrative Dashboard, shows you how you can build an administrative dashboard for your site, using the excellent Flask-Admin. Our admin dashboard will give certain selected users the ability to manage all the content across the entire site. In essence, the admin site will be a graphical frontend for the database, supporting operations to create, edit, and delete rows in our application's tables.

Chapter 7, AJAX and RESTful APIs, uses Flask-Restless to create a RESTful API for the blogging app. A RESTful API is a powerful way of accessing your app programmatically by providing highly-structured data to represent it. Flask-Restless works very well with our SQLAlchemy models, and it also handles complex tasks, such as serialization, and result filtering.

Chapter 8, Testing Flask Apps, covers how you can write unit tests covering all parts of the blogging app. We will utilize Flask's test client to simulate "live" requests. We will also see how the Mock library can simplify testing complex interactions, such as calling third-party services, such as databases.

Chapter 9, Excellent Extensions, teaches you how to enhance your Flask installation with popular third-party extensions. We used extensions throughout the book, but we can now explore the added extra security or functionality with very little effort and can polish off your app nicely.

Chapter 10, Deploying Your Application, teaches you how to deploy your Flask applications securely and in an automated, repeatable manner. We will look at how to configure the commonly-used WSGI capable servers, such as Apache and Nginx, as well as the Python web server Gunicorn, to give you plenty of options. Then, we will see how to secure part or the entire site using SSL before finally wrapping up our application in a configuration management tool to automate our deployment.

What you need for this book While Python is at home on most operating systems, and we have tried to keep an operating system-agnostic approach within the book, it is advisable to use a computer running a Linux distribution or OS X when working with this book, as Python is already installed and running. The Linux distribution can be either installed on the machine or within a virtual machine. Almost any Linux distribution will do, and any recent version of Ubuntu will be fine.

[ix]

Preface

Who this book is for This book is for anyone who wants to develop their knowledge of Python into something that can be used on the Web. Flask follows Python design principles, and it can be easily understood by anyone who knows Python and even by those who do not.

Conventions In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can include other contexts through the use of the include directive."

A block of code is set as follows:

from app import api

from models import Comment

api.create_api(Comment, methods=['GET', 'POST'])

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

{% block content %}

 {{ entry.body }}

<h4 id="comment-form">Submit a comment</h4>

 {% include "entries/includes/comment_form.html" %}

{% endblock %}

Any command-line input or output is written as follows:

(blog) $ python manage.py db upgrade

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.migration] Running upgrade 594ebac9ef0c -> 490b6bc5f73c, empty message

[x]

Preface

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "You should see the message Hello, Flask displayed on a blank white page."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing

or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

Downloading the example code You can download the example code files from your account at http://www.

packtpub.com for all the Packt Publishing books you have purchased. If you

purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

[xi]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this

book. If you find any errata, please report them by visiting http://www.packtpub.

com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/

content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

Piracy Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will do our best to address the problem.

[xii]

Creating Your

First Flask Application

Flask is fun. This bold declaration is one of the first things you see when you view the official Flask documentation and, over the course of this book, you will come to understand why so many Python developers agree.

In this chapter we shall:

• Briefly discuss the features of the Flask framework

• Set up a development environment and install Flask

• Implement a minimal Flask app and analyze how it works

• Experiment with commonly used APIs and the interactive debugger

• Start working on the blog project that will be progressively enhanced over

the course of the book

What is Flask? Flask is a lightweight Web framework written in Python. Flask started out as an April fool's joke that became a highly popular underdog in the Python web framework world. It is now one of the most widely used Python web frameworks for start-ups, and is becoming commonly accepted as the perfect tool for quick and simple solutions in most businesses. At its core, it provides a set of powerful libraries for handling the most common web development tasks, such as:

• URL routing that makes it easy to map URLs to your code

• Template rendering with Jinja2, one of the most powerful Python

template engines

[1]

Creating Your First Flask Application

• Session management and securing cookies

• HTTP request parsing and flexible response handling

• Interactive web-based debugger

• Easy-to-use, flexible application configuration management

This book will teach you how to use these tools through practical, real-world examples. We will also discuss commonly used third-party libraries for things that are not included in Flask, such as database access and form validation. By the end of this book you will be ready to tackle your next big project with Flask.

With great freedom comes great responsibility As the documentation states, Flask is fun , but it can also be challenging, especially when you are building a large application. Unlike other popular Python web frameworks, such as Django, Flask does not enforce ways of structuring your modules or your code. If you have experience with other web frameworks, you may be surprised how writing applications in Flask feels like writing Python as opposed to the framework boilerplate.

This book will teach you to use Flask to write clean, expressive applications. As you progress through this book, you will not only become a proficient Flask developer but you will also become a stronger Python developer.

Setting up a development environment Flask is written in Python, so before we can start writing Flask apps we must ensure that Python is installed. Most Linux distributions and recent versions of OSX come with Python pre-installed. The examples in this book will require Python 2.6 or 2.7.

Instructions for installing Python can be found at http://www.python.org.

If this is your first time using Python, there are a number of excellent resources available for free on the web. I would recommend Learn Python The Hard Way, by Zed

Shaw, available for free online at http://learnpythonthehardway.org. Looking

for more? You can find a large list of free Python resources at http://resrc.io/

list/10/list-of-free-programming-books/#python.

[2]

Chapter 1

You can verify that Python is installed and that you have the correct version by running the Python interactive interpreter from a command prompt:

$ python

Python 2.7.6 (default, Nov 26 2013, 12:52:49)

[GCC 4.8.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

At the prompt (>>>) type exit() and hit Enter to leave the interpreter.

Supporting Python 3 This book will include code that is compatible with both Python 2 and Python 3 where possible. Unfortunately, since Python 3 is still relatively new as compared to Python 2, not all third-party packages used in this book are guaranteed to work seamlessly with Python 3. There is a lot of effort being put into making popular open-source libraries compatible with both versions but, at the time of writing, some libraries have still not been ported. For best results, ensure that the version of Python that you have installed on your system is 2.6 or above.

Installing Python packages Now that you have ensured that Python is installed correctly, we will install some popular Python packages that will be used over the course of this book.

We will be installing these packages system-wide but, once they are installed, we will be working exclusively in virtual environments.

Installing pip The de-facto Python package installer is pip . We will use it throughout the book to install Flask and other third-party libraries.

If you already have setuptools installed, you can install pip by simply running the following command:

$ sudo easy_install pip

[3]

Creating Your First Flask Application

After completing the installation, verify that pip is installed correctly:

$ pip --version

pip 1.2.1 from /usr/lib/python2.7/site-packages/pip-1.2.1-py2.7.egg (python 2.7)

The version numbers are likely to change, so for a definitive guide please consult the

official instructions, which can be found at http://www.pip-

installer.org/en/latest/installing.html.

Installing virtualenv Once pip is installed, we can proceed to install the most important tool in any Python developer's toolkit: virtualenv. Virtualenv makes it easy to produce isolated Python environments, complete with their own copies of system and third-party packages.

Why use virtualenv?

Virtualenv solves a number of problems related to package management. Imagine you have an old application that was built using a very early version of Flask, and you would like to build a new project using the most-recent version of Flask. If Flask was installed system-wide, you was be forced to either upgrade your old project or write your new project against the old Flask. If both projects were using virtualenv, then each could run its own version of Flask, with no conflicts or issues.

Virtualenv makes it easy to control which versions of the third-party package is used by your project.

Another consideration is that installing packages system-wide generally requires elevated privileges (sudo pip install foo). By using virtualenvs, you can create Python environments and install packages as a regular user. This is especially useful if you are deploying to a shared hosting environment or are in a situation where you do not have administrator privileges.

Installing virtualenv with pip

We will use pip to install virtualenv; since it is a standard Python package, it can be installed just like any other Python package. To ensure that virtualenv is installed system-wide, run the following command (it requires elevated privileges):

$ sudo pip install virtualenv

$ virtualenv --version

1.10.1

[4]

Chapter 1

The version numbers are likely to change, so for a definitive guide please consult the

official instructions at http://virtualenv.org.

Creating your first Flask app Now that we have the proper tools installed, we're ready to create our first Flask app. To begin, create a directory somewhere convenient that will hold all of your Python projects. At the command prompt or terminal, navigate to your projects directory; mine is /home/charles/projects, or ~/projects for short on Unix-based systems.

$ mkdir ~/projects

$ cd ~/projects

Now we will create a virtualenv. The commands below will create a new directory named hello_flask inside your projects folder that contains a complete, isolated Python environment.

$ virtualenv hello_flask

New python executable in hello_flask/bin/python2.

Also creating executable in hello_flask/bin/python

Installing setuptools............done.

Installing pip...............done.

$ cd hello_flask

If you list the contents of the hello_flask directory, you will see that it has created several sub-directories, including a bin folder (Scripts on Windows) that contains copies of both Python and pip. The next step is to activate your new virtualenv. The instructions differ depending on whether you are using Windows or Mac OS/Linux. To activate your virtualenv refer to the following screenshot:

[image:]

Creating the hello_flask virtualenv

[5]

Creating Your First Flask Application

When you activate a virtualenv, your PATH environment variable is temporarily modified to ensure that any packages you install or use are restricted to your virtualenv.

Installing Flask in your virtualenv Now that we've verified that our virtualenv is set up correctly, we can install Flask.

When you are inside a virtualenv, you should never install packages with administrator privileges. If you receive a permission error when attempting to install Flask, double-check that you have activated your virtualenv correctly (you should see (hello_flask) in your command prompt).

(hello_flask) $ pip install Flask

You will see some text scroll by as pip downloads the Flask package and the related dependencies before installing it into your virtualenv. Flask depends on a couple of additional third-party libraries, which pip will automatically download and install for you. Let's verify that everything is installed properly:

(hello_flask) $ python

>>> import flask

>>> flask.__version__

'0.10.1'

>>> flask

<module 'flask' from

'/home/charles/projects/hello_flask/lib/python2.7/site- packages/flask/__init__.pyc'>

Congratulations! You've installed Flask and now we are ready to start coding.

Hello, Flask! Create a new file in the hello_flask virtualenv named app.py. Using your favorite text editor or IDE, enter the following code:

from flask import Flask

app = Flask(__name__)

@app.route('/')

def index():

[6]

Chapter 1

return 'Hello, Flask!'

if __name__ == '__main__':

app.run(debug=True)

Save the file and then execute app.py by running it from the command line. You will need to ensure that you have activated the hello_flask virtualenv:

$ cd ~/projects/hello_flask

(hello_flask) $ python app.py

* Running on http://127.0.0.1:5000/

Open your favorite web-browser and navigate to the URL displayed (http://127.0.0.1:5000). You should see the message Hello, Flask! displayed on a blank white page. By default, the Flask development server runs locally on 127.0.0.1, bound to port 5000.

[image:]

Your first Flask app.

Understanding the code We just created a very basic Flask app. To understand what's happening let's take this code apart line-by-line.

from flask import Flask

Our app begins by importing the Flask class. This class represents a single WSGI application and is the central object in any Flask project.

WSGI is the Python standard web server interface, defined in PEP 333. You can think of WSGI as a set of behaviors and methods that, when implemented, allow your web app to just work with a large number of webservers. Flask handles all the implementation details for you, so you can focus on writing you web app.

app = Flask(__name__)

[7]

Creating Your First Flask Application

In this line, we create an application instance in the variable app and pass it the name of our module. The variable app can of course be anything, however app is a common convention for most Flask applications. The application instance is the central registry for things such as views, URL routes, template configuration, and much more. We provide the name of the current module so that the application is able to find resources by looking inside the current folder. This will be important later when we want to render templates or serve static files.

@app.route('/')

def index():

return 'Hello, Flask!'

In the preceding lines, we are instructing our Flask app to route all requests for / (the root URL) to this view function (index). A view is simply a function or a method that returns a response of some kind. Whenever you open a browser and navigate to the root URL of our app, Flask will call this view function and send the return value to the browser.

There are a few things to note about these lines of code:

• @app.route is a Python decorator from the app variable defined above. This

decorator (app.route) wraps the following function, in this case,index, in order to route requests for a particular URL to a particular view. Index is chosen as the name for the function here, as it's the common name for the first page that a web server uses. Other examples could be homepage or main. Decorators are a rich and interesting subject for Python developers, so if you are not familiar with them, I recommend using your favorite search engine to find a good tutorial.

• The index function takes no arguments. This might seem odd if you are

coming from other web-frameworks and were expecting a request object or something similar. We will see in the following examples how to access values from the request.

• The index function returns a plain string object. In later examples, we will

see how to render templates to return HTML.

• The following lines execute our app using the built-in development server in

debug mode. The 'if' statement is a common Python convention that ensures that the app will only be run when we run our script via python app.py, and will not run if we try to import this app from another Python file.

if __name__ == '__main__':

app.run(debug=True)

[8]

Chapter 1

Routes and requests

Right now our Flask app isn't much fun, so let's look at the different ways in which we can add more interesting behavior to our web app. One common way is to add responsive behavior so that our app will look at values in the URL and handle them. Let's add a new route to our Hello Flask app called hello. This new route will display a greeting to the person whose name appears in the URL:

from flask import Flask

app = Flask(__name__)

@app.route('/')

def index():

return 'Hello, Flask!'

@app.route('/hello/')

def hello(name):

return 'Hello, %s' % name

if __name__ == '__main__':

app.run(debug=True)

Again, let's run our app and open it up in a web browser. We can now navigate to a URL such as http://127.0.0.1/hello/Charlie and see our custom message:

[image:]

Our Flask app displaying a custom message

In the preceding example, the route we added specifies a single parameter: name. This parameter also appears in the function declaration as the sole argument. Flask is automatically matching the URL /hello/Charlie to the hello view; this is known as mapping. It then passes the string Charlie into our view function as an argument.

[9]

Creating Your First Flask Application

What happens if we navigate to http://127.0.0.1:5000/hello/ without specifying a name? As you can see, the Flask development server will return a 404 response, indicating that the URL did not match any known routes.

[image:]

Flask 404 page

Reading values from the request

In addition to the URL, values can be passed to your app in the query string. The query string is made up of arbitrary keys and values that are tacked onto the URL, using a question-mark:

URL Argument Values /hello/?name=Charlie name: Charlie /hello/?name=Charlie&favorite_ name: Charlie

color=green favorite_color: green

In order to access these values inside your view functions, Flask provides a request object that encapsulates all sorts of information about the current HTTP request. In the following example, we will modify our hello view to also respond to names passed in via the query string. If no name is specified either on the query-string or in the URL, we will return a 404.

from flask import Flask, abort, request

app = Flask(__name__)

@app.route('/')

def index():

return 'Hello, Flask!'

@app.route('/hello/')

@app.route('/hello/')

def hello(name=None):

[10]

Chapter 1

if name is None:

If no name is specified in the URL, attempt to retrieve it

from the query string.

name = request.args.get('name')

if name:

return 'Hello, %s' % name

else:

No name was specified in the URL or the query string.

abort(404)

if __name__ == '__main__':

app.run(debug=True)

As you can see, we have added another route decorator to our hello view: Flask allows you to map multiple URL routes to the same view. Because our new route does not contain a name parameter, we need to modify the argument signature of our view function to make name an optional parameter, which we accomplish by providing a default value of None.

The function body of our view has also been modified to check for the presence of a name in the URL. If no name is specified, we will abort with a 404 page not found status code.

[image:]

Greet someone using the query string

Debugging Flask applications It is inevitable that, sooner or later, we will introduce a bug into our code. Since bugs are inevitable, the best thing we can hope for as developers is good tools that help us diagnose and fix bugs quickly. Luckily, Flask comes bundled with an extremely powerful web-based debugger. The Flask debugger makes it possible to introspect the state of your application the moment an error occurs, removing the need to sprinkle in print statements or breakpoints.

This can be enabled by telling the Flask app to run in debug mode at run time. We can do this in a few ways but we have actually already done this through the following code:

if __name__ == '__main__':

app.run(debug=True)

[11]

Creating Your First Flask Application

In order to try it out, let's introduce a bug to the hello_flask app by creating a typo. Here I have simply deleted the trailing e from the variable name:

@app.route('/hello/')

@app.route('/hello/')

def hello(name=None):

if nam is None:

No name was specified in the URL or the query string.

abort(404)

When we fire up the development server and attempt to access our view, we are now presented with the debugging page:

[image:]

.

The Flask interactive debugger running in a web browser

[12]

Chapter 1

This list of code is called a Traceback and it is made up of the call stack, the nested list of function calls that preceded the actual error. The traceback usually provides a very good clue as to what may have happened. At the very bottom we see the line of code we intentionally mistyped along with the actual Python error, which is a NameError exception telling us that nam is not defined.

[image:]

Traceback detail showing our typo and a description of the error

The real magic happens when you place your mouse on the highlighted line with the mouse. On the right-hand side you will see two small icons representing a terminal and a source code file. Clicking the Source Code icon will expand the source code surrounding the line that contained the error. This is very useful for establishing some context when interpreting an error.

The terminal icon is the most interesting. When you click the Terminal icon, a small console appears with the standard Python prompt. This prompt allows you to inspect, in real-time, the values of the local variables at the time of the exception. Try typing in name and hitting Enter—it should display the value, if any, that was specified in the URL. We can also introspect the current request arguments as follows:

[image:]

Introspecting variables using the debugging console

As you work through the chapters and experiment on your own, being able to quickly diagnose and correct any bugs will be an extremely valuable skill. We will return to the interactive debugger in Chapter 8, Testing Flask Apps but, for now, be aware that it exists and can be used to introspect your code when and where it breaks.

[13]

Creating Your First Flask Application

Introducing the blog project Over the rest of this book, we will be building, enhancing, and deploying a programmer-friendly blogging site. This project will introduce you to the most common web development tasks, such as working with relational databases, processing and validating form data, and (everyone's favorite), testing. In each chapter, you will learn a new skill through practical, hands-on coding projects. In the following table, I've listed a brief description of the core skills paired with the corresponding features of the blog:

Skill Blog site feature(s)

Relational databases with Store entries and tags in a relational database.

SQLAlchemy Perform a wide variety of queries, including

Flask-SQLAlchemy pagination, date-ranges, full-text search, inner and outer joins, and more.

Form processing and validation Create and edit blog entries using forms. In later

Flask-WTF chapters, we will also use forms for logging users into the site and allowing visitors to post comments.

Template rendering with Jinja2 Create a clean, extensible set of templates, making

Jinja2 use of inheritance and includes, where appropriate.

User authentication and Store user accounts in the database and restrict the

administrative dashboards post management page to registered users. Build

Flask-Login an administrative panel for managing posts, user accounts, and for displaying stats such as page-

views, IP geolocation, and more.

Ajax and RESTful APIs Build an Ajax-powered commenting system that

Flask-API will be displayed on each entry. Expose blog entries using a RESTful API, and build a simple command-

line client for posting entries using the API.

Unit testing We will build a full suite of tests for the blog, and

unittest learn how to simulate real requests and use mocks to simplify complex interactions.

Everything else Cross-Site Request Forgery (CSRF) protection,

Atom feeds, spam detection, asynchronous task

execution, deploying, Secure Socket Layer (SSL), hosting providers, and more.

[14]

Chapter 1

The spec

It's always a good idea when starting a large project to have a functional specification in mind. For the blogging site, our spec will simply be the list of features that we want our blog to have. These features are based on my experience in building my personal blog:

• Entries should be entered using web-based interfaces. For formatting,

the author can use Markdown, a lightweight, visually appealing markup language.

• Images can be uploaded to the site and easily embedded in blog entries.

• Entries can be organized using any number of tags.

• The site should support multiple authors.

• Entries can be displayed in order of publication, but also listed by month,

by tag, or by author. Long lists of entries will be paginated.

• Entries can be saved as drafts and viewed by their author but nobody else

until they are published.

• Visitors to the site can post comments on entries, which will be checked

for spam and then left to the author's discretion as to whether they should remain visible.

• Atom feeds will be made available for all posts, including separate feeds for

each author and tag.

• Entries can be accessed using a RESTful API. Authors will be given an API

token that will allow them to modify entries using the API.

While this list is not exhaustive, it covers the core functionality of our blogging site and you will hopefully find it both fun and challenging to build. At the end of the book, I will present some ideas for additional features that you might add, but first you need to become comfortable working with Flask. I'm sure you're eager to get started, so let's set up our blogging project.

Creating the blog project Let's start by creating a new project within our working directory; on my laptop this is /home/charles/projects, or on a Unix system ~/projects, for short. This is exactly what we did when we created the hello_flask app:

$ cd ~/projects

$ mkdir blog

$ cd blog

[15]

Creating Your First Flask Application

We will then need to set up our virtualenv environment. This differs from what we did earlier as this is a more structured way of using virtualenv:

$ virtualenv blog

The next step will be to install Flask into our virtualenv. To do this, we will activate the virtualenv and use pip to install Flask:

$ source blog/bin/activate

(blog) $ pip install Flask

Up until now, all of this should be somewhat familiar to you. However, instead of creating a single file for our app, which we are definitely allowed to do and that makes sense for very small apps, we can also create a new folder named app that will allow us to make our app modular and more logical. Inside that folder, we will create five empty files named __init__.py, app.py, config.py, main.py, and views.py as follows:

mkdir app

touch app/{__init__,app,config,main,views}.py

This last command uses a little trick of your shell to create multiple files with the names within the brackets. If you use version control, you will want to treat the app directory as the root of your repository. The app directory will contain the source code, templates, and static assets for the blog app. If you haven't used version control, now would be a great time to give it a try. Pro Git is a great resource and is

available for free at http://git-scm.com/book.

What are these files that we just created? As you will see, each file serves an important purpose. Hopefully their names provide a clue as to their purpose, but here is a brief overview of each module's responsibility:

__init__.py Tells Python to use the app/ directory as a python package app.py The Flask app

config.py Configuration variables for our Flask app main.py Entry-point for executing our application views.py URL routes and views for the app

[16]

Chapter 1

A barebones Flask app

Let's fill in these files with the minimum amount of code needed to create a runnable Flask app. This will get our project in good shape for the second chapter, in which we'll start working on the code to store and retrieve blog entries from the database.

We will start with the config.py module. This module will contain a Configuration class that instructs Flask that we want to run our app in the DEBUG mode. Add the following two lines of code to the config.py module as follows:

class Configuration(object):

DEBUG = True

Next we will create our Flask app and instruct it to use the configuration values specified in the config module. Add the following code to the app.py module:

from flask import Flask

from config import Configuration # import our configuration data.

app = Flask(__name__)

app.config.from_object(Configuration) # use values from our

Configuration object.

The views module will contain a single view mapped to the root URL of the site. Add the following code to views.py:

from app import app

@app.route('/')

def homepage():

return 'Home page'

As you probably noticed, we are still missing our call to app.run(). We will put that code in main.py, which we will use as the entry-point into our app. Add the following code to the main.py module:

from app import app # import our Flask app

import views

if __name__ == '__main__':

app.run()

We do not call app.run(debug=True) because we have already instructed Flask to run our app in the debug mode in the Configuration object.

[17]

Creating Your First Flask Application

You can run the app from the command-line by executing the main module as follows:

$ python main.py

 * Running on http://127.0.0.1:5000/

* Restarting with reloader

[image:]

From humble beginnings...

Zooming out

Other than the Configuration class, most of this code should look familiar to you. We have basically taken the code from the hello_flask example and separated it into several modules. It may seem silly to write only two or three lines of code per file, but as our project grows you will see how this early commitment to organization pays off.

You may have noticed that there is an internal prioritization to these files, based on the order in which they are imported—this is to mitigate the possibility of a circular import. A circular import occurs when two modules mutually import each other and, hence, cannot be imported at all. When using the Flask framework, it is very easy to create circular imports because so many different things depend on the central app object. To avoid problems, some people just put everything into a single module. This works fine for smaller apps, but is not maintainable beyond a certain size or complexity. That is why we have broken our app into several modules and created a single entry-point that controls the ordering of imports.

[18]

Chapter 1

The import flow

Execution starts when you run python main.py from the command line. The first line of code that the Python interpreter runs into imports the app object from the app module. Now we're inside app.py, which imports Flask and our Configuration object. The rest of the app.py module is read and interpreted, and we're back into main.py again. The second line of main.py imports the views module. Now we're in views.py, which depends on app.py for @app.route and is, in fact, already available from main.py. The URL route and view are registered as the views module is interpreted, and we're back into main.py again. Since we are running main.py directly, the 'if' check will evaluate to True and our app will run.

[image:]

Import flow when executing main.py

[19]

Creating Your First Flask Application

Summary By now you should be familiar with the process of setting up a new virtualenv for your Python project, be able to install Flask, and have created a simple app. In this chapter,we discussed how to create virtualenvs for your projects and install third-party packages using pip. We also learnt how to write a basic Flask app, route requests to views, and to read request arguments. We familiarized ourselves with the interactive debugger and with how the Python interpreter processes the import statements.

If you were already familiar with most of the subject-matter in this chapter, do not worry; things will soon get more challenging.

In the next chapter, you will discover how to work with a relational database to store and retrieve blog entries. We'll add a new module to our project for storing our database-specific code and create some models to represent blog entries and tags. Once we are able to store the entries, we will learn how to read them back in a variety of ways through filtering, sorting, and aggregation. For more information, you can refer to the following links:

• https://www.python.org/dev/peps/pep-0333/

• https://wiki.python.org/moin/PythonDecorators

• http://charlesleifer.com

[20]

Relational Databases with

SQLAlchemy

Relational databases are the bedrock upon which almost every modern Web application is built. Learning to think about your application in terms of tables and relationships is one of the keys to a clean, well-designed project. As you will see in this chapter, the data model you choose early on will affect almost every facet of the code that follows. We will be using SQLAlchemy, a powerful object relational mapper that allows us to abstract away the complexities of multiple database engines, to work with the database directly from within Python.

In this chapter, we shall:

• Present a brief overview of the benefits of using a relational database

• Introduce SQLAlchemy, the Python SQL Toolkit and Object Relational

Mapper

• Configure our Flask application to use SQLAlchemy

• Write a model class to represent blog entries

• Learn how to save and retrieve blog entries from the database

• Perform queries – sorting, filtering, and aggregation

• Build a tagging system for blog entries

• Create schema migrations using Alembic

[21]

Relational Databases with SQLAlchemy

Why use a relational database? Our application's database is much more than a simple record of things that we need to save for future retrieval. If all we needed to do was save and retrieve data, we could easily use flat text files. The fact is, though, that we want to be able to perform interesting queries on our data. What's more, we want to do this efficiently and without reinventing the wheel. While non-relational databases (sometimes known as NoSQL databases) are very popular and have their place in the world of the web, relational databases long ago solved the common problems of filtering, sorting, aggregating, and joining tabular data. Relational databases allow us to define sets of data in a structured way that maintains the consistency of our data. Using relational databases also gives us, the developers, the freedom to focus on the parts of our app that matter.

In addition to efficiently performing ad hoc queries, a relational database server will also do the following:

• Ensure that our data conforms to the rules set forth in the schema

• Allow multiple people to access the database concurrently, while at the same

time guaranteeing the consistency of the underlying data

• Ensure that data, once saved, is not lost even in the event of an application

crash

Relational databases and SQL, the programming language used with relational databases, are topics worthy of an entire book. Because this book is devoted to teaching you how to build apps with Flask, I will show you how to use a tool that has been widely adopted by the Python community for working with databases, namely, SQLAlchemy.

SQLAlchemy abstracts away many of the complications of writing SQL queries, but there is no substitute for a deep understanding of SQL and the relational model. For that reason, if you are new to SQL, I would recommend that you check out the colorful book Learn SQL

the Hard Way, Zed Shaw available online for free at http://sql.

learncodethehardway.org/ .

[22]

Chapter 2

Introducing SQLAlchemy SQLAlchemy is an extremely powerful library for working with relational databases in Python. Instead of writing SQL queries by hand, we can use normal Python objects to represent database tables and execute queries. There are a number of benefits to this approach, as follows:

• Your application can be developed entirely in Python.

• Subtle differences between database engines are abstracted away. This allows

you to do things just like a lightweight database, for instance, use SQLite for local development and testing, then switch to the databases designed for high loads (such as PostgreSQL) in production.

• Database errors are less common because there are now two layers between

your application and the database server: the Python interpreter itself (this will catch the obvious syntax errors), and SQLAlchemy, which has well-defined APIs and its own layer of error-checking.

• Your database code may become more efficient, thanks to SQLAlchemy's

unit-of-work model that helps reduce unnecessary round-trips to the database. SQLAlchemy also has facilities for efficiently pre-fetching related objects known as eager loading.

• Object Relational Mapping (ORM) makes your code more maintainable,

an aspiration known as don't repeat yourself, (DRY). Suppose you add a column to a model. With SQLAlchemy it will be available whenever you use that model. If, on the other hand, you had hand-written SQL queries strewn throughout your app, you would need to update each query, one at a time, to ensure that you were including the new column.

• SQLAlchemy can help you avoid SQL injection vulnerabilities.

• Excellent library support: As you will see in later chapters, there are a

multitude of useful libraries that can work directly with your SQLAlchemy models to provide things such as maintenance interfaces and RESTful APIs.

I hope you're excited after reading this list. If all the items in this list don't make sense to you right now, don't worry. As you work through this chapter and the subsequent ones, these benefits will become more apparent and meaningful.

Now that we have discussed some of the benefits of using SQLAlchemy, let's install it and start coding.

[23]

Relational Databases with SQLAlchemy

If you'd like to learn more about SQLAlchemy, there is a chapter

devoted entirely to its design in The Architecture of Open-Source

Applications, available online for free at http://aosabook.

org/en/sqlalchemy.html.

Installing SQLAlchemy We will use pip to install SQLAlchemy into the blog app's virtualenv. As you will recall from the previous chapter, to activate your virtualenv, change directories to source the activate script as follows:

$ cd ~/projects/blog

$ source blog/bin/activate

(blog) $ pip install sqlalchemy

Downloading/unpacking sqlalchemy

…

Successfully installed sqlalchemy

Cleaning up...

You can check if your installation succeeded by opening a Python interpreter and checking the SQLAlchemy version; note that your exact version number is likely to differ.

$ python

>>> import sqlalchemy

>>> sqlalchemy.__version__

'0.9.0b2'

Using SQLAlchemy in our Flask app SQLAlchemy works very well with Flask on its own, but the author of Flask has released a special Flask extension named Flask-SQLAlchemy that provides helpers with many common tasks, and can save us from having to re-invent the wheel later on. Let's use pip to install this extension:

(blog) $ pip install flask-sqlalchemy

…

Successfully installed flask-sqlalchemy

[24]

Chapter 2

Flask provides a standard interface for the developers who are interested in building extensions. As the framework has grown in popularity, the number of high-quality extensions has increased. If you'd like to take a look at some of the more popular

extensions, there is a curated list available on the Flask project website at http://

flask.pocoo.org/extensions/.

Choosing a database engine

SQLAlchemy supports a multitude of popular database dialects, including SQLite, MySQL, and PostgreSQL. Depending on the database you would like to use, you may need to install an additional Python package containing a database driver. Listed next are several popular databases supported by SQLAlchemy and the corresponding pip-installable driver. Some databases have multiple driver options, so I have listed the most popular one first.

Database Driver Package(s)

SQLite Not needed, part of the Python standard library

since version 2.5

MySQL MySQL-python, PyMySQL (pure Python), OurSQL

PostgreSQL psycopg2

Firebird fdb

Microsoft SQL Server pymssql, PyODBC

Oracle cx-Oracle

SQLite comes as standard with Python and does not require a separate server process, so it is perfect for getting up-and-running quickly. For simplicity in the examples that follow, I will demonstrate how to configure the blog app for use with SQLite. If you have a different database in mind that you would like to use for the blog project, feel free to use pip to install the necessary driver package at this time.

Connecting to the database Using your favorite text editor, open the config.py module for our blog project (~/projects/blog/app/config.py). We are going to add a SQLAlchemy-specific setting to instruct Flask-SQLAlchemy how to connect to our database. The new lines are highlighted in the following:

import os

class Configuration(object):

APPLICATION_DIR = os.path.dirname(os.path.realpath(__file__))

DEBUG = True

SQLALCHEMY_DATABASE_URI = 'sqlite:///%s/blog.db' % APPLICATION_DIR

[25]

Relational Databases with SQLAlchemy

The SQLALCHEMY_DATABASE_URI comprises the following parts:

dialect+driver://username:password@host:port/database

Because SQLite databases are stored in local files, the only information we need to provide is the path to the database file. On the other hand, if you wanted to connect to PostgreSQL running locally, your URI might look something like this:

postgresql://postgres:secretpassword@localhost:5432/blog_db

If you're having trouble connecting to your database, try consulting

the SQLAlchemy documentation on database URIs: http://docs.

sqlalchemy.org/en/rel_0_9/core/engines.html .

Now that we've specified how to connect to the database, let's create the object responsible for actually managing our database connections. This object is provided by the Flask-SQLAlchemy extension and is conveniently named SQLAlchemy. Open app.py and make the following additions:

from flask import Flask

from flask.ext.sqlalchemy import SQLAlchemy

from config import Configuration

app = Flask(__name__)

app.config.from_object(Configuration)

db = SQLAlchemy(app)

These changes instruct our Flask app, and in turn SQLAlchemy, how to communicate with our application's database. The next step will be to create a table for storing blog entries and, to do so, we will create our first model.

Creating the Entry model A model is the data representation of a table of data that we want to store in the database. These models have attributes called columns that represent the data items in the data. So, if we were creating a Person model, we might have columns for storing the first and last name, date of birth, home address, hair color, and so on. Since we are interested in creating a model to represent blog entries, we will have columns for things like the title and body content.

[26]

Chapter 2

Note that we don't say a People model or Entries model – models are singular even though they commonly represent many different objects.

With SQLAlchemy, creating a model is as easy as defining a class and specifying a number of attributes assigned to that class. Let's start with a very basic model for our blog entries. Create a new file named models.py in the blog project's app/ directory and enter the following code:

import datetime, re

from app import db

def slugify(s):

return re.sub('[^\w]+', '-', s).lower()

class Entry(db.Model):

id = db.Column(db.Integer, primary_key=True)

title = db.Column(db.String(100))

slug = db.Column(db.String(100), unique=True)

body = db.Column(db.Text)

created_timestamp = db.Column(db.DateTime, default=datetime.

datetime.now)

modified_timestamp = db.Column(

db.DateTime,

default=datetime.datetime.now,

onupdate=datetime.datetime.now)

def __init__(self, *args, **kwargs):

super(Entry, self).__init__(*args, **kwargs) # Call parent

constructor.

self.generate_slug()

def generate_slug(self):

self.slug = ''

if self.title:

self.slug = slugify(self.title)

def __repr__(self):

return '' % self.title

[27]

Relational Databases with SQLAlchemy

There is a lot going on, so let's start with the imports and work our way down. We begin by importing the standard library datetime and re modules. We will be using datetime to get the current date and time, and re to do some string manipulation. The next import statement brings in the db object that we created in app.py. As you recall, the db object is an instance of the SQLAlchemy class, which is a part of the Flask-SQLAlchemy extension. The db object provides access to the classes that we need to construct our Entry model, which is just a few lines ahead.

Before the Entry model, we define a helper function slugify, which we will use to give our blog entries some nice URLs (used in Chapter 3, Templates and Views). The slugify function takes a string such as A post about Flask and uses a regular expression to turn a string that is human-readable in to a URL, and so returns a-post-about-flask.

Next is the Entry model. Our Entry model is a normal class that extends db.Model. By extending db.Model, our Entry class will inherit a variety of helpers that we'll use to query the database.

The attributes of the Entry model, are a simple mapping of the names and data that we wish to store in the database and are listed as follows:

• id: This is the primary key for our database table. This value is set for us

automatically by the database when we create a new blog entry, usually an auto-incrementing number for each new entry. While we will not explicitly set this value, a primary key comes in handy when you want to refer one model to another, as you'll see later in the chapter.

• title: The title for a blog entry, stored as a String column with a maximum

length of 100.

• slug: The URL-friendly representation of the title, stored as a String column

with a maximum length of 100. This column also specifies unique=True, so that no two entries can share the same slug.

• body: The actual content of the post, stored in a Text column. This differs

from the String type of the Title and Slug as you can store as much text as you like in this field.

• created_timestamp: The time a blog entry was created, stored in a

DateTime column. We instruct SQLAlchemy to automatically populate this column with the current time by default when an entry is first saved.

• modified_timestamp: The time a blog entry was last updated. SQLAlchemy

will automatically update this column with the current time whenever we save an entry.

[28]

Chapter 2

For short strings such as titles or names of things, the String column is appropriate, but when the text may be especially long it is better to use a Text column, as we did for the entry body.

We've overridden the constructor for the class (__init__) so that, when a new model is created, it automatically sets the slug for us based on the title.

The last piece is the __repr__ method that is used to generate a helpful representation of instances of our Entry class. The specific meaning of __repr__ is not important but allows you to reference the object that the program is working with, when debugging.

A final bit of code needs to be added to main.py, the entry-point to our application, to ensure that the models are imported. Add the highlighted changes to main.py as follows:

from app import app, db

import models

import views

if __name__ == '__main__':

app.run()

Creating the Entry table In order to start working with the Entry model, we first need to create a table for it in our database. Luckily, Flask-SQLAlchemy comes with a nice helper for doing just this. Create a new sub-folder named scripts in the blog project's app directory. Then create a file named create_db.py:

(blog) $ cd app/

(blog) $ mkdir scripts

(blog) $ touch scripts/create_db.py

Add the following code to the create_db.py module. This function will automatically look at all the code that we have written and create a new table in our database for the Entry model based on our models:

import os, sys

sys.path.append(os.getcwd())

from main import db

if __name__ == '__main__':

db.create_all()

[29]

Relational Databases with SQLAlchemy

Execute the script from inside the app/ directory. Make sure the virtualenv is active. If everything goes successfully, you should see no output.

(blog) $ python create_db.py

(blog) $

If you encounter errors while creating the database tables, make

sure you are in the app directory, with the virtualenv activated,

when you run the script. Next, ensure that there are no typos in your SQLALCHEMY_DATABASE_URI setting.

Working with the Entry model Let's experiment with our new Entry model by saving a few blog entries. We will be doing this from the Python interactive shell. At this stage let's install IPython, a sophisticated shell with features such as tab-completion (that the default Python shell lacks).

(blog) $ pip install ipython

Now check whether we are in the app directory and let's start the shell and create a couple of entries as follows:

(blog) $ ipython

In []: from models import * # First things first, import our Entry model and db object.

In []: db # What is db?

Out[]: <SQLAlchemy engine='sqlite:////home/charles/projects/blog/app/ blog.db'>

If you are familiar with the normal Python shell but not IPython, things may look a little different at first. The main thing to be aware of is that In[] refers to the code you type in, and Out[] is the output of the commands you put into the shell.

[30]

Chapter 2

IPython has a neat feature that allows you to print detailed information about an object. This is done by typing in the object's name followed by a question-mark (?). Introspecting the Entry model provides a bit of information, including the argument signature and the string representing that object (known as the docstring) of the constructor.

In []: Entry? # What is Entry and how do we create it? Type: _BoundDeclarativeMeta

String Form:<class 'models.Entry'>

File: /home/charles/projects/blog/app/models.py Docstring: <no docstring>

Constructor information:

 Definition:Entry(self, *args, **kwargs)

We can create Entry objects by passing column values in as the keyword-arguments. In the preceding example, it uses **kwargs; this is a shortcut for taking a dict object and using it as the values for defining the object, as shown next:

In []: first_entry = Entry(title='First entry', body='This is the body of my first entry.')

In order to save our first entry, we will to add it to the database session. The session is simply an object that represents our actions on the database. Even after adding it to the session, it will not be saved to the database yet. In order to save the entry to the database, we need to commit our session:

In []: db.session.add(first_entry)

In []: first_entry.id is None # No primary key, the entry has not been saved.

Out[]: True

In []: db.session.commit()

In []: first_entry.id

Out[]: 1

In []: first_entry.created_timestamp

Out[]: datetime.datetime(2014, 1, 25, 9, 49, 53, 1337)

As you can see from the preceding code examples, once we commit the session, a unique id will be assigned to our first entry and the created_timestamp will be set to the current time. Congratulations, you've created your first blog entry!

Try adding a few more on your own. You can add multiple entry objects to the same session before committing, so give that a try as well.

[31]

Relational Databases with SQLAlchemy

At any point while you are experimenting, feel free to delete the

blog.db file and re-run the create_db.py script to start over with a fresh database.

Making changes to an existing entry In order to make changes to an existing Entry , simply make your edits and then commit. Let's retrieve our Entry using the id that was returned to us earlier, make some changes, and commit it. SQLAlchemy will know that it needs to be updated. Here is how you might make edits to the first entry:

In []: first_entry = Entry.query.get(1)

In []: first_entry.body = 'This is the first entry, and I have made some edits.'

In []: db.session.commit()

And just like that your changes are saved.

Deleting an entry Deleting an entry is just as easy as creating one. Instead of calling db.session. add, we will call db.session.delete and pass in the Entry instance that we wish to remove.

In []: bad_entry = Entry(title='bad entry', body='This is a lousy entry.')

In []: db.session.add(bad_entry)

In []: db.session.commit() # Save the bad entry to the database.

In []: db.session.delete(bad_entry)

In []: db.session.commit() # The bad entry is now deleted from the database.

Retrieving blog entries While creating, updating, and deleting are fairly straightforward operations, the real fun starts when we look at ways to retrieve our entries. We'll start with the basics, and then work our way up to more interesting queries.

We will use a special attribute on our model class to make queries: Entry.query. This attribute exposes a variety of APIs for working with the collection of entries in the database.

[32]

Chapter 2

Let's simply retrieve a list of all the entries in the Entry table:

In []: entries = Entry.query.all()

In []: entries # What are our entries?

Out[]: [<Entry u'First entry'>, <Entry u'Second entry'>, <Entry u'Third entry'>, <Entry u'Fourth entry'>]

As you can see, in this example the query returns a list of Entry instances that we created. When no explicit ordering is specified, the entries are returned to us in an arbitrary order chosen by the database. Let's specify that we want the entries returned to us in an alphabetical order by title:

In []: Entry.query.order_by(Entry.title.asc()).all()

Out []:

[<Entry u'First entry'>,

 <Entry u'Fourth entry'>,

 <Entry u'Second entry'>,

 <Entry u'Third entry'>]

Shown next is how you would list your entries in reverse-chronological order, based on when they were last updated:

In []: oldest_to_newest = Entry.query.order_by(Entry.modified_timestamp. desc()).all()

Out []:

[<Entry: Fourth entry>,

 <Entry: Third entry>,

 <Entry: Second entry>,

 <Entry: First entry>]

Filtering the list of entries It is very useful to be able to retrieve the entire collection of blog entries, but what if we want to filter the list? We could always retrieve the entire collection and then filter it in Python using a loop, but that would be very inefficient. Instead we will rely on the database to do the filtering for us, and simply specify the conditions for which entries should be returned. In the following example, we will specify that we want to filter by entries where the title equals 'First entry'.

In []: Entry.query.filter(Entry.title == 'First entry').all()

Out[]: [<Entry u'First entry'>]

[33]

Relational Databases with SQLAlchemy

If this seems somewhat magical to you, it's because it really is! SQLAlchemy uses operator overloading to convert expressions such as . == value> into an abstracted object called BinaryExpression. When you are ready to execute your query, these data-structures are then translated into SQL.

A BinaryExpression is simply an object that represents the logical comparison and is produced by over riding the

standards methods that are typically called on an object when

comparing values in Python.

In order to retrieve a single entry, you have two options: .first() and .one(). Their differences and similarities are summarized in the following table:

Number of matching rows first() behavior one() behavior

1 Return the object Return the object

0 Return None Raise sqlalchemy.orm.

exc.NoResultFound

2+ Return the first object (based Raise sqlalchemy.

on either explicit ordering or orm.exc. the ordering chosen by the MultipleResultsFound

database)

Let's try the same query as before but, instead of calling .all(), we will call .first() to retrieve a single Entry instance:

In []: Entry.query.filter(Entry.title == 'First entry').first()

Out[]: <Entry u'First entry'>

Notice how previously .all() returned a list containing the object, whereas .first() returned just the object itself.

Special lookups In the previous example we tested for equality, but there are many other types of lookups possible. In the following table, we have listed some that you may find useful. A complete list can be found in the SQLAlchemy documentation.

[34]

Chapter 2

Example Meaning

Entry.title == 'The title' Entries where the title is "The title", case-

sensitive.

Entry.title != 'The title' Entries where the title is not "The title".

Entry.created_timestamp < datetime. Entries created before January 25, 2014. For less

date(2014, 1, 25) than or equal, use <=.

Entry.created_timestamp > datetime. Entries created after January 25, 2014. For

date(2014, 1, 25) greater than or equal, use >=.

Entry.body.contains('Python') Entries where the body contains the word

"Python", case-sensitive.

Entry.title.endswith('Python') Entries where the title ends with the string

"Python", case-sensitive. Note that this will also

match titles that end with the word "CPython", for example.

Entry.title.startswith('Python') Entries where the title starts with the string

"Python", case-sensitive. Note that this will also

match titles such as "Pythonistas".

Entry.body.ilike('%python%') Entries where the body contains the word

"python" anywhere in the text, case-insensitive.

The "%" character is a wild card.

Entry.title.in_(['Title one', 'Title two']) Entries where the title is in the given list, either

'Title one' or 'Title two'.

Combining expressions The expressions listed in the preceding table can be combined using bitwise operators to produce arbitrarily complex expressions. Let's say we want to retrieve all blog entries that have the word Python or Flask in the title. To accomplish this, we will create two contains expressions, then combine them using Python's bitwise OR operator, which is a pipe | character, unlike a lot of other languages that use a double pipe || character:

Entry.query.filter(Entry.title.contains('Python') |

Entry.title.contains('Flask'))

Using bitwise operators, we can come up with some pretty complex expressions. Try to figure out what the following example is asking for:

Entry.query.filter(

(Entry.title.contains('Python') |

Entry.title.contains('Flask')) &

[35]

Relational Databases with SQLAlchemy

(Entry.created_timestamp > (datetime.date.today() -

datetime.timedelta(days=30)))

)

As you probably guessed, this query returns all entries where the title contains either Python or Flask, and that were created within the last 30 days. We are using Python's bitwise OR and AND operators to combine the sub-expressions. For any query you produce, you can view the generated SQL by printing the query as follows:

In []: query = Entry.query.filter(

(Entry.title.contains('Python') | Entry.title.contains('Flask')) &

(Entry.created_timestamp > (datetime.date.today() - datetime.timedelta(days=30)))

)

In []: print str(query)

SELECT entry.id AS entry_id, ...

FROM entry

WHERE (

(entry.title LIKE '%%' || :title_1 || '%%') OR (entry.title LIKE '%%' || :title_2 || '%%')

) AND entry.created_timestamp > :created_timestamp_1

Negation

There is one more piece to discuss, which is negation. If we wanted to get a list of all blog entries that did not contain Python or Flask in the title, how would we do that? SQLAlchemy provides two ways to create these types of expressions, using either Python's unary negation operator (~) or by calling db.not_(). This is how you would construct this query with SQLAlchemy:

Using unary negation:

In []: Entry.query.filter(~(Entry.title.contains('Python') | Entry.title.contains('Flask')))

Using db.not_():

In []: Entry.query.filter(db.not_(Entry.title.contains('Python') | Entry.title.contains('Flask')))

[36]

Chapter 2

Operator precedence

Not all operations are considered equal to the Python interpreter. This is like in math class, where we learned that expressions such as 2 + 3 * 4 are equal to 14 and not 20, because the multiplication operation occurs first. In Python, bitwise operators all have a higher precedence than things such as equality tests, so this means that, when you are building your query expression, you have to pay attention to the parentheses. Let's look at some example Python expressions and see the corresponding query:

Expression Result

(Entry.title == 'Python' | Entry.title == Wrong! SQLAlchemy throws an error

'Flask') because the first thing to be evaluated is

actually the 'Python' | Entry.title!

(Entry.title == 'Python') | (Entry.title == Right. Returns entries where the title is

'Flask') either "Python" or "Flask".

~Entry.title == 'Python' Wrong! SQLAlchemy will turn this into a

valid SQL query, but the results will not be

meaningful.

~(Entry.title == 'Python') Right. Returns entries where the title is not

equal to "Python".

If you find yourself struggling with operator precedence, it's a safe bet to put parentheses around any comparison that uses ==, !=, <, <=, >, and >=.

Building a tagging system Tags are a lightweight taxonomy system that is perfect for blogs. Tags allow you to apply multiple categories to a blog post and allow multiple posts to be related to one another outside their category. On my own blog I use tags to organize the posts, so that people interested in reading my posts about Flask need only look under the "Flask" tag and find all the relevant posts. As per the spec that we discussed in Chapter 1, Creating Your First Flask Application, each blog entry can have as few or as many tags as you want, so a post about Flask might be tagged with both Flask and Python. Similarly, each tag (for example, Python) can have multiple entries associated with it. In database parlance, this is called a many-to-many relationship.

[37]

Relational Databases with SQLAlchemy

In order to model this, we must first create a model to store tags. This model will store the names of tags we use, so after we've added a few tags the table might look something like the following one:

id tag 1 Python 2 Flask

3 Django 4 random-thoughts

Let's open models.py and add a definition for the Tag model. Add the following class at the end of the file, below the Entry class:

class Tag(db.Model):

id = db.Column(db.Integer, primary_key=True)

name = db.Column(db.String(64))

slug = db.Column(db.String(64), unique=True)

def __init__(self, *args, **kwargs):

super(Tag, self).__init__(*args, **kwargs)

self.slug = slugify(self.name)

def __repr__(self):

return '' % self.name

You've seen all of this before. We've added a primary key, which will be managed by the database, and a single column to store the name of the tag. The name column is marked as unique, so each tag will only be represented by a single row in this table, regardless of how many blog entries it appears on.

Now that we have models for both blog entries and tags, we need a third model to store the relationships between the two. When we wish to signify that a blog entry is tagged with a particular tag, we will store a reference in this table. The following is a diagram of what is happening at the database table level:

[38]

Chapter 2

entry_tags

tag_id entry_id

1 1

TAGS 2 2 ENTRIES

id name 1 2 id title etc

2 3

1 Python 1 Python Post 1 3 2 Flask 2 Flask Post 3 4 3 Django 3 More Flask 1 4 4 Random 4 Django

Since we will never be accessing this intermediary table directly (SQLAlchemy will handle it for us transparently), we will not create a model for it but will simply specify a table to store the mapping. Open models.py and add the following highlighted code:

import datetime, re

from app import db

def slugify(s):

return re.sub('[^\w]+', '-', s).lower()

entry_tags = db.Table('entry_tags',

db.Column('tag_id', db.Integer, db.ForeignKey('tag.id')),

db.Column('entry_id', db.Integer, db.ForeignKey('entry.id'))

)

class Entry(db.Model):

id = db.Column(db.Integer, primary_key=True)

title = db.Column(db.String(100))

slug = db.Column(db.String(100), unique=True)

body = db.Column(db.Text)

created_timestamp = db.Column(db.DateTime,

default=datetime.datetime.now)

modified_timestamp = db.Column(

db.DateTime,

default=datetime.datetime.now,

onupdate=datetime.datetime.now)

tags = db.relationship('Tag', secondary=entry_tags,

backref=db.backref('entries', lazy='dynamic'))

def __init__(self, *args, **kwargs):

[39]

Relational Databases with SQLAlchemy

super(Entry, self).__init__(*args, **kwargs)

self.generate_slug()

def generate_slug(self):

self.slug = ''

if self.title:

self.slug = slugify(self.title)

def __repr__(self):

return '' % self.title

class Tag(db.Model):

id = db.Column(db.Integer, primary_key=True)

name = db.Column(db.String(64))

slug = db.Column(db.String(64), unique=True)

def __init__(self, *args, **kwargs):

super(Tag, self).__init__(*args, **kwargs)

self.slug = slugify(self.name)

def __repr__(self):

return '' % self.name

By creating the entry_tags table, we have established a link between the Entry and Tag models. SQLAlchemy provides a high-level API for working with this relationship, the aptly-named db.relationship function. This function creates a new property on the Entry model that allows us to easily read and write the tags for a given blog entry. There is a lot going on in these two lines of code so let's take a closer look:

tags = db.relationship('Tag', secondary=entry_tags,

backref=db.backref('entries', lazy='dynamic'))

We are setting the tags attribute of the Entry class equal to the return value of the db.relationship function. The first two arguments, 'Tag' and secondary=entry_ tags, instruct SQLAlchemy that we are going to be querying the Tag model via the entry_tags table. The third argument creates a back-reference, allowing us to go from the Tag model back to the associated list of blog entries. By specifying lazy='dynamic', we instruct SQLAlchemy that, instead of it loading all the associated entries for us, we want a Query object instead.

[40]

Chapter 2

Adding and removing tags from entries Let's use the IPython shell to see how this works. Close your current shell and re-run the scripts/create_db.py script. This step is necessary since we added two new tables. Now re-open IPython:

(blog) $ python scripts/create_db.py

(blog) $ ipython

In []: from models import *

In []: Tag.query.all()

Out[]: []

There are currently no tags in the database, so let's create a couple of them:

In []: python = Tag(name='python')

In []: flask = Tag(name='flask')

In []: db.session.add_all([python, flask])

In []: db.session.commit()

Now let's load up some example entries. In my database there are four:

In []: Entry.query.all()

Out[]:

[<Entry Python entry>,

 <Entry Flask entry>,

 <Entry More flask>,

 <Entry Django entry>]

In []: python_entry, flask_entry, more_flask, django_entry = _

In IPython, you can use an underscore (_) to reference the return-value of the previous line.

To add tags to an entry, simply assign them to the entry's tags attribute. It's that easy!

In []: python_entry.tags = [python]

In []: flask_entry.tags = [python, flask]

In []: db.session.commit()

[41]

Relational Databases with SQLAlchemy

We can work with an entry's list of tags just like a normal Python list, so the usual .append() and .remove() methods will also work:

In []: kittens = Tag(name='kittens')

In []: python_entry.tags.append(kittens)

In []: db.session.commit()

In []: python_entry.tags

Out[]: [<Tag python>, <Tag kittens>]

In []: python_entry.tags.remove(kittens)

In []: db.session.commit()

In []: python_entry.tags

Out[]: [<Tag python>]

Using backrefs When we created the tags attribute on the Entry model, you will recall we passed in a backref argument. Let's use IPython to see how the back-reference is used.

In []: python # The python variable is just a tag.

Out[]: <Tag python>

In []: python.entries

Out[]: <sqlalchemy.orm.dynamic.AppenderBaseQuery at 0x332ff90>

In []: python.entries.all()

Out[]: [<Entry Flask entry>, <Entry Python entry>]

Unlike the Entry.tags reference, the back-reference is specified as lazy='dynamic'. This means that, unlike entry.tags, which gives us a list of tags, we will not receive a list of entries every time we access tag.entries. Why is this? Typically, when the result-set is larger than a few items, it is more useful to treat the backref argument as a query, which can be filtered, ordered, and so on. For example, what if we wanted to show the latest entry tagged with python?

In []: python.entries.order_by(Entry.created_timestamp.desc()).first()

Out[]: <Entry Flask entry>

The SQLAlchemy documentation contains an excellent overview

of the various values that you can use for the lazy argument. You

can find them online at http://docs.sqlalchemy.org/en/

rel_0_9/orm/relationships.html#sqlalchemy.orm.

relationship.params.lazy

[42]

Chapter 2

Making changes to the schema The final topic we will discuss in this chapter is how to make modifications to an existing Model definition. From the project specification, we know we would like to be able to save drafts of our blog entries. Right now we don't have any way to tell whether an entry is a draft or not, so we will need to add a column that lets us store the status of our entry. Unfortunately, while db.create_all() works perfectly for creating tables, it will not automatically modify an existing table; to do this we need to use migrations.

Adding Flask-Migrate to our project We will use Flask-Migrate to help us automatically update our database whenever we change the schema. In the blog virtualenv, install Flask-Migrate using pip:

(blog) $ pip install flask-migrate

The author of SQLAlchemy has a project called alembic; Flask-

Migrate makes use of this and integrates it with Flask directly,

making things easier.

Next we will add a Migrate helper to our app. We will also create a script manager for our app. The script manager allows us to execute special commands within the context of our app, directly from the command-line. We will be using the script manager to execute the migrate command. Open app.py and make the following additions:

from flask import Flask

from flask.ext.migrate import Migrate, MigrateCommand

from flask.ext.script import Manager

from flask.ext.sqlalchemy import SQLAlchemy

from config import Configuration

app = Flask(__name__)

app.config.from_object(Configuration)

db = SQLAlchemy(app)

migrate = Migrate(app, db)

manager = Manager(app)

manager.add_command('db', MigrateCommand)

[43]

Relational Databases with SQLAlchemy

In order to use the manager, we will add a new file named manage.py along with app.py. Add the following code to manage.py:

from app import manager

from main import *

if __name__ == '__main__':

manager.run()

This looks very similar to main.py, the key difference being, instead of calling app. run(), we are calling manager.run().

Django has a similar, although auto-generated, manage.py file that serves a similar function.

Creating the initial migration Before we can start changing our schema, we need to create a record of its current state. To do this, run the following commands from inside your blog's app directory. The first command will create a migrations directory inside the app folder that will track the changes we make to our schema. The second command db migrate will create a snapshot of our current schema so that future changes can be compared to it.

(blog) $ python manage.py db init

 Creating directory /home/charles/projects/blog/app/migrations ... done ...

(blog) $ python manage.py db migrate

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

 Generating /home/charles/projects/blog/app/migrations/ versions/535133f91f00_.py ... done

Finally, we will run db upgrade to run the migration that will indicate to the migration system that everything is up-to-date:

(blog) $ python manage.py db upgrade

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.migration] Running upgrade None -> 535133f91f00, empty message

[44]

Chapter 2

Adding a status column Now that we have a snapshot of our current schema, we can start making changes. We will be adding a new column, named status, that will store an integer value corresponding to a particular status. Although there are only two statuses at the moment (PUBLIC and DRAFT), using an integer instead of a Boolean gives us the option to easily add more statuses in the future. Open models.py and make the following additions to the Entry model:

class Entry(db.Model):

STATUS_PUBLIC = 0

STATUS_DRAFT = 1

id = db.Column(db.Integer, primary_key=True)

title = db.Column(db.String(100))

slug = db.Column(db.String(100), unique=True)

body = db.Column(db.Text)

status = db.Column(db.SmallInteger, default=STATUS_PUBLIC)

created_timestamp = db.Column(db.DateTime,

default=datetime.datetime.now)

...

From the command-line, we will once again be running db migrate to generate the migration script. You can see from the command's output that it found our new column!

(blog) $ python manage.py db migrate

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL.

INFO [alembic.autogenerate.compare] Detected added column 'entry.status'

 Generating /home/charles/projects/blog/app/migrations/ versions/2c8e81936cad_.py ... done

Because we have blog entries in the database, we need to make a small modification to the auto-generated migration to ensure the statuses for the existing entries are initialized to the proper value. To do this, open up the migration file (mine is migrations/versions/2c8e81936cad_.py) and change the following line:

op.add_column('entry', sa.Column('status', sa.SmallInteger(),

nullable=True))

[45]

Relational Databases with SQLAlchemy

Replacing nullable=True with server_default='0' tells the migration script to not set the column to null by default, but instead to use 0.

op.add_column('entry', sa.Column('status', sa.SmallInteger(), server_

default='0'))

Finally, run db upgrade to run the migration and create the status column.

(blog) $ python manage.py db upgrade

INFO [alembic.migration] Context impl SQLiteImpl.

INFO [alembic.migration] Will assume non-transactional DDL. INFO [alembic.migration] Running upgrade 535133f91f00 -> 2c8e81936cad, empty message

Congratulations, your Entry model now has a status field!

Summary By now you should be familiar with using SQLAlchemy to work with a relational database. We covered the benefits of using a relational database and an ORM, configured a Flask application to connect to a relational database, and created SQLAlchemy models. All this allowed us to create relationships between our data and perform queries. To top it off, we also used a migration tool to handle future database schema changes.

In Chapter 3, Templates and Views we will set aside the interactive interpreter and start creating views to display blog entries in the web browser. We will put all our SQLAlchemy knowledge to work by creating interesting lists of blog entries, as well as a simple search feature. We will build a set of templates to make the blogging site visually appealing, and learn how to use the Jinja2 templating language to eliminate repetitive HTML coding. It will be a fun chapter!

[46]

Templates and Views

This chapter could alternatively be titled The Flask Chapter, because we will cover two of the most recognizable components of the framework: the Jinja2 template language, and the URL routing framework. Up to this point, we have been laying the foundation for the blog app, but we have barely scratched the surface of actual Flask development. In this chapter, we will dive into Flask and see our app finally start taking shape. We will turn our drab database models into dynamically rendered HTML pages, using templates. We will come up with a URL scheme that reflects the ways we wish to organize our blog entries. As we progress through the chapter, our blog app will start looking like a proper website.

In this chapter we shall:

• Learn how to render HTML templates using Jinja2

• Learn how to use loops, control structures, and the filters provided by the

Jinja2 template language

• Use template inheritance to eliminate repetitive coding

• Create a clean URL scheme for our blog app and set up the routing from

URLs to views

• Render lists of blog entries using Jinja2 templates

• Add full-text search to the site

[47]

Templates and Views

Introducing Jinja2 Jinja2 is a fast, flexible, and secure templating engine. It allows you to define your website in small blocks that are pieced together to form complete pages. On our blog, for instance, we will have blocks for the header, the sidebar, the footer, as well as templates, for rendering blog posts. This approach is DRY (Don't Repeat Yourself), which means that the markup contained in each block should not be copied or pasted elsewhere. Since the HTML for each part of the site exists in only one place, making changes and fixing bugs is much easier. Jinja2 also allows you to embed display logic in the template. For instance, we may wish to display a log out button to users who are logged in, but display a log in form to users browsing anonymously. As you will see, it is very easy to accomplish these types of things with a bit of template logic.

From the beginning, Flask was built with Jinja2 in mind, so working with templates in your Flask app is extremely easy. Since Jinja2 is a requirement of the Flask framework, it is already installed in our virtualenv, so we're able to get started immediately.

Create a new folder named templates in the blog project's app directory. Create a single file inside the template folder named homepage.html and add the following HTML code:

Welcome to my blog

Now open views.py in the blog project's app directory. We are going to modify our homepage view to render the new homepage.html template. To do this, we will use Flask's render_template() function, passing in the name of our template as the first argument. Rendering a template is an extremely common action, so Flask makes this part as easy as possible:

from flask import render_template

from app import app

@app.route('/')

[48]

Chapter 3

def homepage():

return render_template('homepage.html')

Using the manage.py helper that we created in the previous chapter, start the development server and navigate to http://127.0.0.1:5000/ to view the rendered template, as shown in the following screenshot:

(blog) $ python manage.py runserver

* Running on http://127.0.0.1:5000/

* Restarting with reloader

[image:]

Basic template operations The previous example may not seem very impressive, since we are doing little more than serving a plain HTML document. To make things interesting, we need to give our templates context. Let's modify our homepage to display a simple greeting to illustrate the point. Open views.py and make the following modifications:

from flask import render_template, request

from app import app

@app.route('/')

def homepage():

name = request.args.get('name')

if not name:

name = '<unknown>'

return render_template('homepage.html', name=name)

[49]

Templates and Views

In the view code, we are passing name into the template context. The next step is to do something with that name inside the actual template. In this example, we will simply print the value of name. Open homepage.html and make the following addition:

Welcome to my blog

<p>Your name is {{ name }}.</p>

Start the development server and navigate to the root URL. You should see something like the following image:

[image:]

Any keyword arguments passed to the render_template function are available in the template context. In the template language of Jinja2, double brackets are analogous to a print statement. We use the {{ name }} operation to output the value of name, which is set to .

The security-minded reader may have noticed that, when we

viewed our template in the browser, the brackets were escaped.

Ordinarily, brackets are treated by the browser as HTML markup, but, as you can see, Jinja2 has escaped the brackets automatically, replacing them with < and >.

[50]

Chapter 3

Try navigating to a URL such as http://127.0.0.1:5000/?name=Charlie. Whatever value you specify will appear, rendered for us automatically by Jinja2, as seen in the following image

[image:]

Suppose someone malicious visits your site and wants to cause some trouble. Noticing that values from the query-string are passed directly into the template, this person decides to have some fun by attempting to inject a script tag. Thankfully for us, Jinja2 automatically escapes values before inserting them into the rendered page.

[image:]

Loops, control structures, and template

programming Jinja2 supports a miniature programming language that can be used to perform operations on data within the context. If all we could do was print values to the context, there honestly wouldn't be too much to be excited about. Things get interesting when we combine contextual data with things such as loops and control structures.

[51]

Templates and Views

Let's modify our homepage view once more. This time we will accept a number, in addition to a name, from request.args and display all the even numbers between 0 and that number. The neat part is that we will do almost all of this in the template. Make the following changes to views.py:

from flask import render_template, request

from app import app

@app.route('/')

def homepage():

name = request.args.get('name')

number = request.args.get('number')

return render_template('homepage.html', name=name, number=number)

Now open the hompage.html template and add the following code. If it seems odd, don't worry. We will go through it line by line.

Welcome to my blog

{% if number %}

<p>Your number is {{ number|int }}</p>

{% for i in range(number|int) %}

{% if i is divisibleby 2 %}

{{ i }}

{% endif %}

{% endfor %}

{% else %}

<p>No number specified.</p>

{% endif %}

Your name is {{ name|default('<unknown>', True) }}.

[52]

Chapter 3

Start a runserver and experiment by passing some values in using the query-string. Also, take note of what happens when you pass a non-numeric value or a negative value.

[image:]

Let's go through our new template code line by line, starting with the {% if number %} statement. Unlike the print tags that use double curly brackets, logical tags use {% and %}. We are simply checking whether or not a number was passed into the context. If the number is None or an empty string, this test will fail, just as it would in Python.

The next line prints the integer representation of our number and uses a new syntax, |int. The pipe symbol (|) is used in Jinja2 to indicate a call to a filter. A filter performs some type of operation on the value to the left side of the pipe symbol, and returns a new value. In this case, we are using the built-in int filter that converts a string to an integer, defaulting to 0 when a number cannot be determined. There are many filters built into Jinja2; we will discuss them later in the chapter.

[53]

Templates and Views

The {% for %} statement is used to create a for loop and looks remarkably close to Python. We are using the Jinja2 range helper to generate a series of numbers with [0, number). Note that we are again piping the number context value through the int filter in the call to range. Also note that we are assigning a value to a new context variable i. Inside the loop body, we can use i just like any other context variable.

Of course, just like in regular Python, we can also use an {% else %} statement on a for-loop that can be used to run some code in the eventuality that there is nothing for the loop to do.

Now that we are looping through the numbers, we need to check whether i is even, and if so, print it. Jinja2 provides several ways we could do this, but I have chosen to show the use of a Jinja2 feature called tests. Like filters and control structures, Jinja2 also comes with a number of useful tools for testing the attributes of a context value. Tests are used in conjunction with {% if %} statements and are denoted by the use of the keyword is. So we have {% if i is divisibleby 2 %}, which is very easy to read. If the if statement evaluates to True then we will print the value of i using double braces: {{ i }}.

Jinja2 provides a number of useful tests; to learn more check the

project documentation at http://jinja.pocoo.org/docs/

templates/#tests .

Since Jinja2 is not aware of significant whitespace, we need to explicitly close all our logical tags. That is why you see an {% endif %} tag, signifying the closing of the divisibleby 2 check, and an {% endfor %}, signifying the closing of the for i in range loop. After the for loop, we are now in the outermost if statement, which tests whether a number was passed into the context. In the event no number is present, we want to print a message to the user so, before calling {% endif %}, we will use an {% else %} tag to display this message.

Finally, we have changed the line that prints a greeting to the user to read {{ name|default('', True) }} . In the view code, we removed the logic that set it to a default value of . Instead, we have moved that logic into the template. Here we see the default filter (denoted by the | character) but, unlike int, we are passing multiple arguments. In Jinja2, a filter can take multiple arguments. By convention, the first argument appears to the left of the pipe symbol, since filters frequently operate on single values. In the event there are multiple arguments, these are specified in parentheses after the filter name. In the case of the default filter, we have specified the value to use in the event no name is specified.

[54]

Chapter 3

Jinja2 built-in filters

In the previous example, we saw how to use the int filter to coerce a context value to an integer. Along with int, Jinja2 provides a large array of useful built-in filters. For reasons of space (the list is very long), I will only include the most frequently-used

filters from my experience, but the entire list can be found online at http://jinja.

pocoo.org/docs/templates/#list-of-builtin-filters.

In the following examples, the first argument in the argument list would appear to the left-hand side of the pipe symbol. So, even though I have written abs(number), the filter used would be number|abs. When the filter accepts more than one parameter, the remaining parameters appear in parentheses after the filter name.

Filter and parameter(s) Description and return value

abs(number) Returns the absolute value of the number.

default(value, default_value='', In the event value is undefined (i.e., the name does

boolean=False) not exist in the context) use the provided default_

value instead. In the event you simply want to test whether value evaluates to a boolean True (i.e., not an empty string, the number zero, None, and so

on.), then pass True as the third argument:

{{ not_in_context|default:"The

value was not in the context"

}}

{{ ''|default('An empty string.',

True) }}

dictsort(value, case_ Sorts a dictionary by key, yielding (key, value)

sensitive=False, by='key') pairs. You can also, however, sort by value.

Alphabetically by name.

{% for name, age in people|dictsort %}

{{ name }} is {{ age }}

years old.

{% endfor %}

Youngest to oldest.

{% for name, age in

people|dictsort(by='value') %}

{{ name }} is {{ age }}

years old.

{% endfor %}

[55]

Templates and Views

Filter and parameter(s) Description and return value

int(value, default=0) Converts value to an integer. In the event the

value cannot be converted, use the specified default.

length(object) Returns the number of items in the collection.

reverse(sequence) Reverses the sequence.

safe(value) Outputs the value unescaped. This filter is useful

when you have trusted HTML that you wish to

print. For instance, if value = "":

{{ value }} --> outputs

{{ value|safe }} --> outputs

sort(value, reverse=False, case_ Sorts an iterable value. If reverse is specified,

sensitive=False, attribute=None) the items will be sorted in reverse order. If the

attribute parameter is used, that attribute will be treated as the value to sort by.

striptags(value) Removes any HTML tags, useful for cleaning up

and outputting untrusted user input.

truncate(value, length=255, Returns a truncated copy of the string. The length

killwords=False, end='...') parameter specifies how many characters to keep.

If killwords is False, then a word may be chopped in half; if True then Jinja2 will truncate at the previous word boundary. In the event the value

exceeds the length and needs to be truncated, the

value in end will be appended automatically.

urlize(value, trim_url_limit=None, Converts URLs in plain text into clickable links.

nofollow=False, target=None)

Filters can be chained together, so {{ number|int|abs }} would first convert the number variable to an integer, then return its absolute value.

[56]

Chapter 3

Creating a base template for the blog Jinja2's inheritance and include features make it is very easy to define a base template that serves as the architectural foundation for each page on your site. The base template contains basic structural things that should never change, such as the ,
, and tags, as well as the basic structure of the body. It can also be used to include style sheets or scripts that will be served on every page. Most importantly, the base template is responsible for defining overrideable blocks, into which we will place page-specific content such as the page title and body content.

In order to get up-and-running quickly, we will be using Twitter's Bootstrap library (version 3). This will allow us to focus on how templates are structured and have a decent-looking site with minimal extra work. You are, of course, welcome to use your own CSS if you prefer, but the example code will use bootstrap-specific constructs.

Create a new file in the directory named , and add the following content:

role="navigation">

[57]

Templates and Views

data-toggle="collapse" data-target=".navbar-collapse">

Toggle navigation

{% block branding %}My

Blog{% endblock %}

	Home

{% block extra_nav %}{% endblock %}

{% block content_title %}{% endblock %}

{% block content %}

{% endblock %}

{% block sidebar %}

	Sidebar item

{% endblock %}

© your name

[58]

Chapter 3

Interspersed alongside the markup is a new Jinja2 tag, block. The block tags are used to indicate overrideable areas of the page.

You may have noticed that we are serving jQuery and Bootstrap from publicly-available URLs. In the next chapter, we will discuss how to serve static files that are stored locally on disk. Now we can modify our homepage template and take advantage of the new base template. We can do this by extending the base template and overriding certain blocks. This works very similar to class inheritance that you find in most languages. As long as the sections of the inherited page are split up into blocks nicely, we can override only the bits we need to change. Let's open homepage. html and replace some of the current contents with the following:

{% extends "base.html" %}

{% block content_title %}Welcome to my blog{% endblock %}

{% block content %}

 {% if number %}

Your number is {{ number|int }}

{% for i in range(number|int) %}

{% if i is divisibleby 2 %}

	{{ i }}

{% endif %}

{% endfor %}

 {% else %}

No number specified.

 {% endif %}

Your name is {{ name|default('', True) }}.

{% endblock %}

[59]

Templates and Views

By extending the original page, we have removed all the HTML boilerplate and a lot of complexity, focusing only on what makes this page, our homepage view, unique. Start up the server and navigate to http://127.0.0.1:5000/, you will see that our homepage has been transformed.

[image:]

Congratulations! You have now learned some of the most commonly-used features of Jinja2. There are many more advanced features that we have not covered in the interests of time, and I would recommend reading the project's documentation to see the full range of possibilities with Jinja2. The documentation can be found at

http://jinja.pocoo.org/docs/.

We still need to build templates to display our blog entries. Before continuing to build out templates, though, we first must create some view functions that will generate the lists of blog entries. We will then pass the entries into the context, just as we did with the homepage.

Creating a URL scheme URLs are for people, therefore they should be easy to remember. A good URL scheme is easy to remember when it accurately reflects the implicit structure of the website. Our goal is to create a URL scheme that makes it easy for the visitors on our site to find blog entries on topics that interest them.

[60]

Chapter 3

Referring back to the spec we created in Chapter 1, Creating Your First Flask Application, we know that we want our blog entries to be organized by tag and by date. Entries organized by tag and date will necessarily be a subset of the collection of all entries, so that gives us a structure like this:

URL Purpose

/entries/ This displays all of our blog entries, ordered

most-recent first

/entries/tags/ This contains all the tags used to organize

our blog entries

/entries/tags/python/ This contains all the entries tagged with

python

/entries/learning-the-flask- This is a detail page showing the body

framework/ content for a blog entry titled Learning the

Flask Framework

Since a single blog entry may be associated with multiple tags, how do we decide what to use as its canonical URL? If I wrote a blog entry titled Learning the Flask framework, I could conceivably nest it under /entries/, /entries/tags/python/, /entries/tags/flask/, and so on. That would violate one of the rules about good URLs, which is that a unique resource should have one, and only one, URL. For that reason, I am going to advocate putting individual blog entries at the top of the hierarchy:

/entries/learning-the-flask-framework/

News sites and blogs with a large amount of time-sensitive content will typically nest individual pieces of content using the publication date. This prevents collisions when two articles might share the same title, but have been written at different times. When a lot of content is produced each day, this scheme often makes more sense:

/entries/2014/jan/18/learning-the-flask-framework/

Although we will not be covering this type of URL scheme in this chapter, the code

can be found online at http://www.packtpub.com/support.

[61]

Templates and Views

Defining the URL routes

Let's convert the structure described previously into some URL routes that Flask will understand. Create a new directory named entries in the blog project's app directory. Inside the entries directory, create two files, __init__.py and blueprint.py as follows:

(blog) $ mkdir entries

(blog) $ touch entries/{__init__,blueprint}.py

Blueprints provide a nice API for encapsulating a group of related routes and templates. In smaller applications, typically everything gets registered on the app object (that is, app.route). When an application has distinct components, as ours does, blueprints can be used to separate the various moving parts. Since the / entries/ URL is going to be devoted entirely to our blog entries, we will create a blueprint and then define views to handle the routes that we described previously. Open blueprint.py and add the following code:

from flask import Blueprint

from models import Entry, Tag

entries = Blueprint('entries', __name__,

template_folder='templates')

@entries.route('/')

def index():

return 'Entries index'

@entries.route('/tags/')

def tag_index():

pass

@entries.route('/tags//')

def tag_detail(slug):

pass

@entries.route('//')

def detail(slug):

pass

These URL routes are placeholders that we will fill in shortly, but I wanted to show you how clean and simple it is to translate a set of URL patterns into a set of routes and views.

[62]

Chapter 3

In order to access these new views, we need to register our blueprint with our main Flask app object. We will also instruct our app that we want our entries' URLs to live at the prefix /entries. Open main.py and make the following additions:

from app import app, db

import models

import views

from entries.blueprint import entries

app.register_blueprint(entries, url_prefix='/entries')

if __name__ == '__main__':

app.run()

If you want to test it out, start the debug server (python manage.py runserver) and navigate to http://127.0.0.1:5000/entries/. You should see the following message:

[image:]

Building the index view The index view is the top-most URL in our /entries/ hierarchy, and as such will contain all the entries. After a time we might have tens or even hundreds of blog entries, so we will want to paginate this list so as not to overwhelm our visitors (or our server!). Because we will frequently be displaying lists of objects, let's create a helpers module that will make it easy to display paginated lists of objects. In the app directory, create a new module named helpers.py and add the following code:

from flask import render_template, request

def object_list(template_name, query, paginate_by=20, **context):

page = request.args.get('page')

if page and page.isdigit():

page = int(page)

else:

page = 1

[63]

Templates and Views

object_list = query.paginate(page, paginate_by)

return render_template(template_name, object_list=object_list,

**context)

Now, we will open entries/blueprint.py and modify the index view to return a paginated list of entries:

from flask import Blueprint

from helpers import object_list

from models import Entry, Tag

entries = Blueprint('entries', __name__,

template_folder='templates')

@entries.route('/')

def index():

entries = Entry.query.order_by(Entry.created_timestamp.desc())

return object_list('entries/index.html', entries)

We are importing the object_list helper function and passing it the name of a template and the query representing the entries we wish to display. As we build out the rest of these views, you will see how little helper functions such as object_list make Flask development quite easy.

The final piece is the entries/index.html template. In the entries directory, create a directory named templates, and a sub-directory named entries. Create index. html such that the full path from the app directory is entries/templates/entries/ index.html and add the following code:

{% extends "base.html" %}

{% block title %}Entries{% endblock %}

{% block content_title %}Entries{% endblock %}

{% block content %}

 {% include "includes/list.html" %}

{% endblock %}

This template is very minimal, all the work will happen in includes/list.html. The {% include %} tag is new, and is useful for reusable template fragments. Create the file includes/list.html and add the following code:

{% for entry in object_list.items %}

[64]

Chapter 3

{{

entry.title }}

{% endfor %}

The url_for function is extremely useful. url_for() allows us to provide the name of a view function or any arguments, and then generates the URL. Since the URL we wish to reference is the detail view of the entries blueprint, the name of the view is entries.detail. The detail view accepts a single argument, the slug of the entry's title.

Before building out the detail view, re-open the base template and add a link to the entries in the navigation section:

	{{ url_for('homepage') }}">Home

Blog

 {% block extra_nav %}{% endblock %}

The following screenshot shows the updated navigation header, along with a list of blog entries:

[image:]

[65]

Templates and Views

Building the detail view

Let's create a simple view that will render the contents of a single blog entry. The slug of the entry will be passed in as a part of the URL. We will attempt to match that to an existing Entry, returning a 404 response if none matches. Update the following code to the detail view in the entries blueprint:

from flask import render_template

@entries.route('//')

def detail(slug):

entry = Entry.query.filter(Entry.slug == slug).first_or_404()

return render_template('entries/detail.html', entry=entry)

Create a template in the entries template directory named detail.html and add the following code. We will display the title and body of the entry in the main content area, but in the sidebar we will display a list of tags and the date the entry was created:

{% extends "base.html" %}

{% block title %}{{ entry.title }}{% endblock %}

{% block content_title %}{{ entry.title }}{% endblock %}

{% block sidebar %}

	Tags

{% for tag in entry.tags %}

	}}">{{ tag.name }}

{% endfor %}

Published {{ entry.created_timestamp.strftime('%m/%d/%Y')

}}

{% endblock %}

{% block content %}

 {{ entry.body }}

{% endblock %}

It should now be possible to view entries on the index page and follow the link to the details view. As you probably guessed, the next thing we need to tackle is the tag detail page.

[66]

Chapter 3

[image:]

Listing entries matching a given tag Listing the entries that match a given tag will combine the logic from the two previous views. First we will need to look up the Tag using the tag slug provided in the URL, and then we will display an object_list of Entry objects that are tagged with the specified tag. In the tag_detail view, add the following code:

@entries.route('/tags//')

def tag_detail(slug):

tag = Tag.query.filter(Tag.slug == slug).first_or_404()

entries = tag.entries.order_by(Entry.created_timestamp.desc())

return object_list('entries/tag_detail.html', entries,

tag=tag)

The entries query will get all the entries associated with the tag, then return them ordered most-recent first. We are also passing the tag into the context so we can display it in the template. Create the tag_detail.html template and add the following code. Since we are going to display a list of entries, we will re-use our list.html include:

{% extends "base.html" %}

{% block title %}{{ tag.name }} entries{% endblock %}

{% block content_title %}{{ tag.name }} entries{% endblock %}

{% block content %}

 {% include "includes/list.html" %}

{% endblock %}

[67]

Templates and Views

In the following screenshot, I have navigated to /entries/tags/python/. This page only contains entries that have been tagged with Python:

[image:]

Listing all the tags The final missing piece is the view that will display a list of all the tags. This view will be very similar to the index entry, except that, instead of Entry objects, we will be querying the Tag model. Update the following code to the tag_index view:

@entries.route('/tags/')

def tag_index():

tags = Tag.query.order_by(Tag.name)

return object_list('entries/tag_index.html', tags)

In the template, we will display each tag as a link to the corresponding tag detail page. Create the file entries/tag_index.html and add the following code:

{% extends "base.html" %}

{% block title %}Tags{% endblock %}

{% block content_title %}Tags{% endblock %}

{% block content %}

{% for tag in object_list.items %}

	}}">{{ tag.name }}

[68]

Chapter 3

{% endfor %}

{% endblock %}

If you like, you can add a link to the tag list in the base template's navigation.

Full-text search In order to allow users to find posts containing certain words or phrases, we will add simple full-text search to the pages that contain lists of blog entries. To accomplish this, we will do some refactoring. We will be adding a search form to the sidebar of all pages containing lists of blog entries. While we could copy and paste the same code into both entries/index.html and entries/tag_detail.html, we will, instead, create another base template that contains the search widget. Create a new template named entries/base_entries.html and add the following code:

{% extends "base.html" %}

{% block sidebar %}

placeholder="Search..." value="{{ request.args.get('q', '') }}" />

Go

{% endblock %}

{% block content %}

 {% include "includes/list.html" %}

{% endblock %}

Even though we will not explicitly pass request into the context, Flask will make it accessible. You can find the list of standard context variables

in the Flask documentation at http://flask.pocoo.org/docs/

templating/#standard-context.

[69]

Templates and Views

Now we will update the entries/index.html and entries/tag_detail.html to utilize this new base template. Since the content block contains the list of entries, we can remove that from both templates:

{% extends "entries/base_entries.html" %}

{% block title %}Entries{% endblock %}

{% block content_title %}Entries{% endblock %}

This is how entries/index.html looks after changing the base template and removing the context block. Do the same to entries/tag_detail.html.

{% extends "entries/base_entries.html" %}

{% block title %}Tags{% endblock %}

{% block content_title %}Tags{% endblock %}

Now we need to update our view code to actually perform the search. To do this, we will create a new helper function in the blueprint named entry_list. This helper will be much like the object_list helper, but will perform extra logic to filter results based on our search inquiry. Add the entry_list function to the blueprint. py. Note how it checks the request query-string for a parameter named q. If q is present, we will return only the entries that contain the search phrase in either the title or the body:

from flask import request

def entry_list(template, query, **context):

search = request.args.get('q')

if search:

query = query.filter(

(Entry.body.contains(search)) |

(Entry.title.contains(search)))

return object_list(template, query, **context)

In order to utilize this functionality, modify the index and tag_detail views to call entry_list instead of object_list. The updated index view looks as follows:

@entries.route('/')

def index():

entries = Entry.query.order_by(Entry.created_timestamp.desc())

return entry_list('entries/index.html', entries)

Congratulations! You can now navigate to the entries list and perform searches using the search form.

[70]

Chapter 3

[image:]

Adding pagination links As we discussed earlier, we would like to paginate long lists of entries so that users are not overwhelmed with extremely long lists. We have actually done all the work in the object_list function; the only remaining task is to add links allowing users to travel from one page of entries to the next.

Because pagination links are a feature we will use in several places, we will create the pagination include in our app's template directory (as opposed to the entries template directory). Create a new directory in app/templates/ named includes and create a file named page_links.html. Since object_list returns us a PaginatedQuery object, we can utilize this object to determine, in the template, what page we are on and how many pages there are in total. In order to make the pagination links look nice, we will be using CSS classes provided by Bootstrap. Add the following content to page_links.html:

%}>

{% if not object_list.has_prev %}

«

{% else %}

«

{% endif %}

 {% for page in object_list.iter_pages() %}

	

{% if page %}

endif %}href="./?page={{ page }}">{{ page }}

{% else %}

...

{% endif %}

[71]

Templates and Views

 {% endfor %}

%}>

{% if object_list.has_next %}

»

{% else %}

»

{% endif %}

Now, wherever we are displaying an object list, let's include the page_links.html template at the bottom of the page. Currently, the only templates we will need to update are entries/base_entries.html and entries/tag_index.html. The content block of base_entries.html looks as follows:

{% block content %}

 {% include "includes/list.html" %}

{% include "includes/page_links.html" %}

{% endblock %}

[image:]

[72]

Chapter 3

Enhancing the blog app Before continuing on to the next chapter, I recommend spending some time experimenting with the views and templates we created in this chapter. Here are a few ideas you might consider:

• Sort the list of tags on the entry detail view (hint: use the sort filter on the

tag's name attribute).

• Remove the example code from the homepage template and add your

own content.

• You may have noticed that we are displaying all entries regardless of their

status. Modify the entry_list function and the entry detail view to only display Entry objects whose status is STATUS_PUBLIC.

• Experiment with different Bootstrap themes- http://bootswatch.com has

many available for free.

• Advanced: allow multiple tags to be specified. For example, /entries/tags/

flask+python/ would only display entries that are tagged with both flask and python.

Summary We covered a lot of information in this chapter, and by now you should be familiar with the process of creating views and templates. We learned how to render Jinja2 templates and how to pass data from the view into the template context. We also learned how to modify context data within the template, using Jinja2 tags and filters. In the second half of the chapter, we designed a URL structure for our site and translated it into Flask views. We added a simple full-text search feature to the site, and wrapped up by adding pagination links to our lists of entries and tags.

In the next chapter, we will learn how to create and edit blog entries through the website using Forms. We will learn how to process and validate user input, then save the changes to the database. We will also add a photo-uploading feature so we can embed images in our blog entries.

[73]

Forms and Validation

In this chapter, we will learn how to use forms to modify the content on our blog directly through the site. This will be a fun chapter because we will be adding all sorts of new ways to interact with our site. We will create forms for working with the Entry model, learn how to receive and validate user data, and finally update the values in the database. Form processing and validation will be handled by the popular WTForms library. We will continue building out views and templates to support these new forms, learning a few new Jinja2 tricks along the way.

In this chapter we shall:

• Install WTForms and create a form for working with the Entry model

• Write views to validate and process form data, and persist changes to

the database

• Create templates to display forms and validation errors

• Use Jinja2 macros to encapsulate complex template logic

• Display flash messages to the user

• Create an image uploader and learn how to securely handle file uploads

• Learn how to store and serve static assets, such as JavaScript, stylesheets

and image uploads

Getting started with WTForms WTForms is a popular choice for form processing and validation in the Flask community. It uses a declarative approach to building forms (similar to how we defined our SQLAlchemy models), and supports a variety of different field types and validators.

[75]

Forms and Validation

At the time of writing this book, WTForms 2.0 is still a development release, but should be the official release shortly. For that reason we will be using version 2.0 in this book.

Let's get started by installing WTForms into our blog project virtualenv:

(blog) $ pip install "wtforms>=2.0"

Successfully installed wtforms

Cleaning up...

We can verify that the installation succeeded by opening up a shell and checking the project version:

(blog) $./manage.py shell

In [1]: import wtforms

In [2]: wtforms.__version__

Out[2]: '2.0dev'

My version shows the development release since 2.0 has not been officially released yet.

Defining a form for the Entry model Our goal is to be able to create and edit blog entries directly through our site, so the first question we need to answer is—How will we input the data for our new entries? The answer, of course, is by using forms. Forms are a part of the HTML standard, which allows us to use free-form text inputs, large multi-line text boxes, drop-down selects, checkboxes, radio buttons, and more. When a user submits a form, the form specifies a URL that will receive the form data. That URL can then process the data and then respond in any way it likes.

For blog entries, let's keep it simple with three fields:

• Title, displayed as a simple text input

• Body, displayed as a large free-form textbox

• Status, which will be displayed as drop-down select

[76]

Chapter 4

Inside the entries directory, create a new Python file named forms.py. We will be defining a simple form class that will contain these fields. Open forms.py and add the following code:

import wtforms

from models import Entry

class EntryForm(wtforms.Form):

title = wtforms.StringField('Title')

body = wtforms.TextAreaField('Body')

status = wtforms.SelectField(

'Entry status',

choices=(

(Entry.STATUS_PUBLIC, 'Public'),

(Entry.STATUS_DRAFT, 'Draft')),

coerce=int)

This should look pretty similar to our model definition. Note that we're using the names of the columns in our model as the names for the fields in our form: this will allow WTForms to automatically copy data between the Entry model fields and the form fields.

The first two fields, title and body, both specify a single argument: the label that will be displayed when the form is rendered. The status field contains a label as well as two additional parameters: choices and coerce. The choices parameter consists of a list of 2-tuples where the first value is the actual value we are interested in storing and the second value is a user-friendly representation. The second parameter, coerce, will convert the value from the form to an integer (by default, it would be treated as a string, which we do not want).

A form with a view

In order to start using this form, we need to create a view that will display the form and accept data when it is submitted. To do this, let's open the entries blueprint module and define a new URL route to handle entry creation. At the top of the blueprint.py file, we need to import the EntryForm class from the forms module:

from app import db

from helpers import object_list

from models import Entry, Tag

from entries.forms import EntryForm

[77]

Forms and Validation

Then, above the definition for the detail view, we will add a new view named create that will be accessed by navigating to /entries/create/. The reason we must put it above the detail view is because Flask will search your URL routes in the order in which they are defined. Since /entries/create/ looks very much like an entry detail URL (imagine the title of the entry was create), if the detail route is defined first, Flask will stop there and never reach the create route.

In our create view, we will simply instantiate the form and pass it into the template context. Add the following view definition:

@entries.route('/create/')

def create():

form = EntryForm()

return render_template('entries/create.html', form=form)

Before we add code to save the new entries to the database, let's build a template and see what our form looks like. We will then circle back and add the code to validate the form data and create the new entry.

The create.html template Let's build a basic template for our new form. Create a new template named create. html alongside the other entry templates. The path to this file, relative to the app directory, should be entries/templates/entries/create.html. We will extend the base template and override the content block to display our form. Since we are using bootstrap, we will use special CSS classes to make our form look nice. Add the following HTML code:

{% extends "base.html" %}

{% block title %}Create new entry{% endblock %}

{% block content_title %}Create new entry{% endblock %}

{% block content %}

horizontal" method="post">

{% for field in form %}

{{ field.label(class='col-sm-3 control-label') }}

{{ field(class='form-control') }}

[78]

Chapter 4

{% endfor %}

default">Create

}}">Cancel

{% endblock %}

By iterating over the form, which we passed into the context, we can render each individual field. To render the field, we first render the field's label by simply calling field.label() and passing in the desired CSS class. Similarly, to render the field, we call field(), again passing in the CSS class. Also note that, in addition to a submit button, we've added a Cancel link that will return the user to the entries list.

Start the development server and navigate to http://127.0.0.1:5000/entries/ create/ to view the following form:

[image:]

[79]

Forms and Validation

Try submitting the form. When you click the Create button, you should see the following error message:

[image:]

The reason you are seeing this message is because, by default, Flask views will only respond to HTTP GET requests. When we submit our form, the browser sends a POST request, which our view does not currently accept. Let's return to the create view and add the code to correctly handle the POST requests.

Whenever a form makes changes to the data (creates, edits, or deletes something), that form should specify the POST method. Other forms, such as our search form, which do not make any changes, should use the GET method. Additionally, when a form is submitted using the GET method, the form data is submitted as part of the query-string.

Handling form submissions Before we modify our view, let's add a helper method to our EntryForm that we will use to copy data from the form into our Entry object. Open forms.py and make the following additions:

class EntryForm(wtforms.Form):

...

def save_entry(self, entry):

self.populate_obj(entry)

entry.generate_slug()

return entry

This helper method will populate the entry we pass in with the form data, re-generate the entry's slug based on the title, and then return the entry object.

[80]

Chapter 4

Now that the form is configured to populate our Entry models, we can modify the view to accept and handle the POST requests. We will be using two new Flask helpers, so modify the imports at the top of blueprint.py, adding redirect and url_for:

from flask import Blueprint, redirect, render_template, request,

url_for

Once you've added the imports, update the following changes to the create view in blueprint.py:

from app import db

@entries.route('/create/', methods=['GET', 'POST'])

def create():

if request.method == 'POST':

form = EntryForm(request.form)

if form.validate():

entry = form.save_entry(Entry())

db.session.add(entry)

db.session.commit()

return redirect(url_for('entries.detail', slug=entry.

slug))

else:

form = EntryForm()

return render_template('entries/create.html', form=form)

This is quite a bit of new code, so let's take a closer look at what's happening. To begin with, we've added a parameter to the route decorator indicating that this view accepts both GET and POST requests. This will get rid of the Method Not Allowed error when we submit the form.

In the body of the view, we are now checking the request method and based on that we do one of two things. Let's look at the 'else' clause first. This branch of code will execute when we receive a GET request, such as when someone opens their browser and navigates to the /entries/create/ page. When this happens, we simply want to display an HTML page containing the form, so we will instantiate a form and pass it into the template context.

In the event this is a POST request, which will happen when someone submits the form, we want to instantiate the EntryForm and pass in the raw form data. Flask stores the raw POST data in the special attribute request.form, which is a dictionary-like object. WTForms knows how to interpret the raw form data and map it to the fields we defined.

[81]

Forms and Validation

After instantiating our form with the raw form data, we then need to check and ensure that the form is valid by calling form.validate(). If the form fails to validate for some reason, we will simply pass the invalid form into the context and render the template. A bit later you will see how we can display error messages to the user when there is a problem with their form submission.

If the form validates, we can finally proceed with saving the entry. To do this, we will call our save_entry helper method, passing in a fresh entry instance. WTForms will populate the Entry object with form data, then return it back to us, where we add it to the database session, commit, and redirect. The redirect helper will issue an HTTP 302 redirect, sending the user's browser from /entries/create/ to the detail page of the newly-created blog post.

Open up your browser and give it a try.

[image:]

Validating input and displaying error

messages There is one glaring problem with our form: right now there is nothing to prevent us from accidentally submitting an empty blog entry. To ensure that we have a title and content when saving, we need to use a WTForm object called a validator. Validators are rules that are applied to the form data, and WTForms ships with a number of useful validators. Some of the more commonly-used validators are listed as follows:

• DataRequired: this field cannot be blank

• Length(min=?, max=?): verify that the length of the data entered either

exceeds the minimum, or does not exceed the maximum

[82]

Chapter 4

• NumberRange(min=?, max=?): verify that the number entered is within the

given range

• Email: verify that the data is a valid email address

• URL: verify that the data entered is a valid URL

• AnyOf(values=?): verify that the data entered is equal to one of the

provided values

• NoneOf(values=?): verify that the data entered is not equal to any of the

provided values

For the blog entry form, we will just be using the DataRequired validator to ensure that Entries cannot be created without a title or body content. Let's open forms.py and add the validators to our form definition. Altogether, our forms module should look a follows:

import wtforms

from wtforms.validators import DataRequired

from models import Entry

class EntryForm(wtforms.Form):

title = wtforms.StringField(

'Title',

validators=[DataRequired()])

body = wtforms.TextAreaField(

'Body',

validators=[DataRequired()])

status = wtforms.SelectField(

'Entry status',

choices=(

(Entry.STATUS_PUBLIC, 'Public'),

(Entry.STATUS_DRAFT, 'Draft')),

coerce=int)

def save_entry(self, entry):

self.populate_obj(entry)

entry.generate_slug()

return entry

[83]

Forms and Validation

Start the development server and now try to submit an empty form. As you might expect, it will fail to save since the call to form.validate() returns False. Unfortunately, there is no indication on the front-end why our form is not getting saved. Luckily, WTForms will make the validation errors available to us in the template, and all we need to do is modify our template to display them.

To display validation errors we will be using several bootstrap CSS classes and constructions, but the end result will look very nice, as seen in the following screenshot:

[image:]

Make the following changes to the field display code in the create.html template:

{% for field in form %}

endif %}">

{{ field.label(class='col-sm-3 control-label') }}

{{ field(class='form-control') }}

{% if field.errors %}

feedback">

{% endif %}

{% for error in field.errors %}{{ error

}}{% endfor %}

[84]

Chapter 4

{% endfor %}

We are checking whether the field has any errors by looking at the field.errors attribute. If there are any errors, then we do the following things:

• Add a CSS class to the form-group div

• Add a special icon indicating there is an error

• Display each error in a beneath the form field. Since field.errors

is a list and may contain multiple validation errors, we will iterate through these using a for loop

You are now able to create valid blog entries using a form, which also performs a little validation to ensure that you do not submit blank forms. In the next section, we will describe how to re-use this same form for editing existing entries.

Editing existing entries Believe it or not, we can actually use the same form we used for creating entries to edit existing ones. We will only need to make some slight changes to the view and template logic, so let's get started.

In order to edit entries, we will need a view, so we will need a URL. Because the view needs to know which entry we are editing, it will be important to convey that as part of the URL structure, and for that reason we will set up the edit view at / entries//edit/. Open entries/blueprint.py and, below the detail view, add the following code for the edit view. Note the similarities to the create view:

@entries.route('//edit/', methods=['GET', 'POST'])

def edit(slug):

entry = Entry.query.filter(Entry.slug == slug).first_or_404()

if request.method == 'POST':

form = EntryForm(request.form, obj=entry)

if form.validate():

entry = form.save_entry(entry)

db.session.add(entry)

db.session.commit()

return redirect(url_for('entries.detail',

slug=entry.slug))

else:

[85]

Forms and Validation

form = EntryForm(obj=entry)

return render_template('entries/edit.html', entry=entry,

form=form)

Just as we did with the create view, we check the request method and, based on that, we will either validate and process the form, or simply instantiate it and pass it to the template.

The biggest difference is in how we are instantiating the EntryForm. We pass it an additional parameter, obj=entry. When WTForms receives an obj parameter, it will attempt to pre-populate the form fields with values taken from obj (in this case, our blog entry).

We are also passing an additional value into the template context, the entry that we are editing. We will do this so we can display the title of the entry to the user; in this way, we can make the Cancel button of the form link back to the entry detail view.

The edit.html template

As you might guess, the edit.html template will be almost identical to create. html. Due to the complexity of the field rendering logic, it seems like a bad idea to copy-and-paste all that code. If we ever decided to change the display of the form fields, we would find ourselves touching multiple files, which should always be a big red flag.

To avoid this, we will be using a powerful Jinja2 feature called macros to render our fields. The field rendering code will be defined in a macro and then, wherever we wish to render a field, we will just call our macro instead. This makes it really easy to make changes to the way our fields are styled.

Macros are a feature of Jinja2 that allow you to treat a section of a template like a function so it can be called multiple times with different arguments and produce largely similar HTML. You can view more on

the Jinja documentation site: http://jinja.pocoo.org/docs/dev/

templates/

[86]

Chapter 4

Since this macro is going to be useful for any form field we might wish to display, we will put it in our app's template directory. Inside the app's template directory, create a new directory named macros and add a field form_field.html. Relative to the app directory, the path to this file is templates/macros/form_field.html. Add the following code:

{% macro form_field(field) %}

feedback{% endif %}">

{{ field.label(class='col-sm-3 control-label') }}

{{ field(class='form-control', **kwargs) }}

{% if field.errors %}warning-sign form-control-feedback">{% endif %}

{% for error in field.errors %}{{

error }}{% endfor %}

{% endmacro %}

For the most part, we have simply copied and pasted the field rendering code from our create template but there are a couple of differences I'd like to point out:

• The template begins with a macro template tag that defines the name of the

macro and any arguments that it accepts.

• When we render the field, we are passing in **kwargs. WTForms fields

can accept arbitrary keyword arguments, which are then translated into attributes on the HTML tag. While we are not currently going to make use of this, we will be using it in later chapters.

• We indicate the end of a macro with the endmacro tag.

Now let's update create.html to make use of the new macro. In order to use the macro, we must first import it. Then we can replace all the field markup with a simple call to the macro. With the changes, the create.html template should look like this:

{% extends "base.html" %}

{% from "macros/form_field.html" import form_field %}

{% block title %}Create new entry{% endblock %}

{% block content_title %}Create new entry{% endblock %}

{% block content %}

[87]

Forms and Validation

horizontal" method="post">

{% for field in form %}

{{ form_field(field) }}

{% endfor %}

default">Create

}}">Cancel

{% endblock %}

With that out of the way, we can proceed to creating our edit.html template. It will look almost identical to the create template, except we will display text in the app/ entries/templates/entries directory to indicate to the user that they are editing an existing entry:

{% extends "base.html" %}

{% from "macros/form_field.html" import form_field %}

{% block title %}Edit {{ entry.title }}{% endblock %}

{% block content_title %}Edit {{ entry.title }}{% endblock %}

{% block content %}

class="form form-horizontal" method="post">

{% for field in form %}

{{ form_field(field) }}

{% endfor %}

Save

slug) }}">Cancel

{% endblock %}

[88]

Chapter 4

To wrap things up, on the entry detail page let's add a link in the sidebar that will take us to the Edit page. Add the following link to the sidebar in detail.html:

Edit

Deleting entries

To round out this section, we will add a view for deleting entries. We will design this view so that, when the user goes to delete an entry, they are taken to a confirmation page. Only by submitting the confirmation form (a POST request) will they actually be able to delete the entry. Because this form does not require any fields, we do not need a special WTForms class and can just create it using HTML.

Create a template named delete.html alongside the create.html and edit.html templates, and add the following HTML:

{% extends "base.html" %}

{% block title %}{{ entry.title }}{% endblock %}

{% block content_title %}{{ entry.title }}{% endblock %}

{% block content %}

{% endblock %}

Now we need to define the entries.delete view. Like the edit view, the URL for deleting an entry needs the entry slug as part of the URL structure. For that reason, we will be using /entries//delete/.

[89]

Forms and Validation

When the form is submitted, we could simply remove the entry from the database but in my experience I have usually come to regret deleting content permanently. Instead of actually deleting the entry from the database, we will be giving it a _ DELETED status; we will change its status to STATUS_DELETED. We will then modify our views so that entries with this status never appear on any part of the site. For all intents and purposes, the entry is gone but, should we ever need it again, we can retrieve it from the database. Add the following view code below the edit view:

@entries.route('//delete/', methods=['GET', 'POST'])

def delete(slug):

entry = Entry.query.filter(Entry.slug == slug).first_or_404()

if request.method == 'POST':

entry.status = Entry.STATUS_DELETED

db.session.add(entry)

db.session.commit()

return redirect(url_for('entries.index'))

return render_template('entries/delete.html', entry=entry)

We will also need to add STATUS_DELETED to the Entries model in model.py:

class Entry(db.Model):

STATUS_PUBLIC = 0

STATUS_DRAFT = 1

STATUS_DELETED = 2

As we did with the Edit link, take a moment and add a delete link to the detail view sidebar as well.

Cleaning up Let's take a moment to refactor our blueprint. Since we do not want to display deleted entries on the site, we will need to make sure we filter our Entries by status. Additionally, looking at the detail, edit and delete views, I see three instances where we have copied and pasted the code to query an entry by slug. Let's move that into a helper function as well.

To start with, let's update the entry_list helper to filter for Entries that are either public or drafts.

In the next chapter, we will be adding log-in functionality to the site. Once we have that, we will add logic to display draft entries only to the users who created them.

[90]

Chapter 4

def entry_list(template, query, **context):

valid_statuses = (Entry.STATUS_PUBLIC, Entry.STATUS_DRAFT)

query = query.filter(Entry.status.in_(valid_statuses))

if request.args.get('q'):

search = request.args['q']

query = query.filter(

(Entry.body.contains(search)) |

(Entry.title.contains(search)))

return object_list(template, query, **context)

We can now be confident that anywhere we display lists of entries, no deleted entries will show up.

Now let's add a new helper to retrieve an Entry by its slug. If the entry cannot be found, we will return a 404. Add the following code below entry_list:

def get_entry_or_404(slug):

 valid_statuses = (Entry.STATUS_PUBLIC, Entry.STATUS_DRAFT) (Entry.

query

.filter(

(Entry.slug == slug) &

(Entry.status.in_(valid_statuses)))

.first_or_404())

Replace the call to Entry.query.filter() in the detail, edit, and delete views with a call to get_entry_or_404. The following is the updated detail view:

@entries.route('//')

def detail(slug):

entry = get_entry_or_404(slug)

return render_template('entries/detail.html', entry=entry)

Using flash messages When a user performs an action on a site, it is common to display a one-time message on the subsequent page-load indicating that their action has succeeded. These are called flash messages and Flask comes with a helper for displaying them. In order to get started using flash messages, we need to take a brief detour to our config module where we will be adding a secret key. The secret key is necessary because flash messages are stored in the session, which in turn is stored as an encrypted cookie. To securely encrypt this data, Flask needs a key.

[91]

Forms and Validation

Open config.py and add a secret key. It can be a phrase, random characters, whatever you like:

class Configuration(object):

APPLICATION_DIR = current_directory

DEBUG = True

SECRET_KEY = 'flask is fun!' # Create a unique key for your app.

SQLALCHEMY_DATABASE_URI = 'sqlite:///%s/blog.db' %

APPLICATION_DIR

Now, wherever we have the user performing an action, we want to flash them a message indicating that their action succeeded. This means we will be adding a message to the create, edit, and delete views. Open up the entries blueprint and add the flash function to the list of flask imports at the top of the module:

from flask import Blueprint, flash, redirect, render_template,

request, url_for

Then, in each of the appropriate views, let's call flash with a helpful message. The call should occur right before we redirect:

def create():

...

db.session.commit()

flash('Entry "%s" created successfully.' % entry.title,

'success')

return redirect(url_for('entries.detail', slug=entry.

slug))

...

def edit(slug):

...

db.session.commit()

flash('Entry "%s" has been saved.' % entry.title, 'success')

return redirect(url_for('entries.detail', slug=entry.slug))

...

def delete(slug):

...

db.session.commit()

flash('Entry "%s" has been deleted.' % entry.title, 'success')

return redirect(url_for('entries.index'))

...

[92]

Chapter 4

Displaying flash messages in the template Because we do not always know which page we will be on when we need to display a flash message, it is a standard practice to add the display logic to the base template. Flask provides a Jinja2 function get_flashed_messages that will return us a list of any pending messages to display.

Open base.html and add the following code. I have placed mine between the content_title block and the content block:

{% block content_title %}{% endblock %}

{% for category, message in get_flashed_messages(with_categories=true)

%}

 <div class="alert alert-dismissable alert-{{ category }}">

<button type="button" class="close" data-dismiss="alert">×</

button>

{{ message }}

 </div>

{% endfor %}

{% block content %}{% endblock %}

Let's give it a try! Start the development server and try adding a new entry. Upon saving, you should be redirected to your new entry and see a helpful message as seen in the following screenshot:

[image:]

[93]

Forms and Validation

Saving and modifying tags on posts We have covered how to save and modify tags on our entries. One of the most common approaches to managing tags is to use a comma-separated text input, so we might list the tags as Python, Flask, Web-development. With WTForms this seems pretty straightforward, since we would just use a StringField. The fact that we are dealing with a database relationship, though, means that at some point we need to do some processing to convert between Tag models and a comma-separated string.

While there are many ways we could accomplish this, we will implement a custom field class TagField, which will encapsulate all the logic for translating between comma-separated tag names and Tag model instances.

Another option would be to create a property on the Entry model. A property looks like a normal object attribute, but it is actually a combination of getter and (sometimes) setter methods. Since WTForms can automatically work with our model attributes, this means that, if we implement our translation logic in the getter and setter, WTForms will just work.

Let's start by defining our tag field class. There are two important methods we need to override:

• _value(): converts the list of Tag instances into a comma-separated list of

tag names

• process_formdata(valuelist): accepts the comma-separated tag list and

converts it into a list of Tag instances

Following is the implementation for the TagField. Note how we take special care when processing user input to not create duplicate rows in the Tag table. We are also using Python's set() data-type to eliminate possible duplicates in the user input. Add the following class to forms.py above the EntryForm:

from models import Tag

class TagField(wtforms.StringField):

def _value(self):

if self.data:

Display tags as a comma-separated list.

return ', '.join([tag.name for tag in self.data])

return ''

def get_tags_from_string(self, tag_string):

[94]

Chapter 4

raw_tags = tag_string.split(',')

Filter out any empty tag names.

tag_names = [name.strip() for name in raw_tags if name.

strip()]

Query the database and retrieve any tags we have already

saved.

existing_tags = Tag.query.filter(Tag.name.in_(tag_names))

Determine which tag names are new.

new_names = set(tag_names) - set([tag.name for tag in

existing_tags])

Create a list of unsaved Tag instances for the new tags.

new_tags = [Tag(name=name) for name in new_names]

Return all the existing tags + all the new, unsaved tags.

return list(existing_tags) + new_tags

def process_formdata(self, valuelist):

if valuelist:

self.data = self.get_tags_from_string(valuelist[0])

else:

self.data = []

Now all that is left is to add the field to the EntryForm. Add the following field below the status field. Note the use of the description keyword argument:

class EntryForm(wtforms.Form):

...

tags = TagField(

'Tags',

description='Separate multiple tags with commas.')

In order to display this helpful description text, let's make a quick modification to the form_field macro:

{% macro form_field(field) %}

endif %}">

{{ field.label(class='col-sm-3 control-label') }}

{{ field(class='form-control', **kwargs) }}

[95]

Forms and Validation

{% if field.errors %}sign form-control-feedback">{% endif %}

{% if field.description %}{{ field.

description|safe }}{% endif %}

{% for error in field.errors %}{{ error

}}{% endfor %}

{% endmacro %}

Start the development server and experiment by saving a few tags. Your form should look something like the following screenshot:

[image:]

Image uploads

We'll round out the chapter on form processing by adding an image-uploading feature to the site. This feature will be a simple view that accepts an image file and stores it on the server in an uploads directory. This will make it easy to display images on our blog entries.

[96]

Chapter 4

The first step will be to create a form for handling our image uploads. Alongside EntryForm, let's add a new form called ImageForm. This form will be very simple and contain a single file input. We will use a custom validator to ensure that the uploaded file is a valid image. Add the following code to forms.py:

class ImageForm(wtforms.Form):

file = wtforms.FileField('Image file')

Before we add a view to save the form, we need to know where we are going to save the file. Typically, resources for an app—such as images, JavaScript, and stylesheets—are served out of a single directory called static. Common practice is to then over-ride the path to this directory in your web server so it can transfer this file without having to go through a Python intermediary, making access much faster. We make use of this usage of the static directory to store our image uploads. In the blog project's app directory, let's create a new directory named static and a subdirectory images:

(blog) $ cd ~/projects/blog/blog/app

(blog) $ mkdir -p static/images

Now let's add a new value to our configuration file so we can easily reference the path to our images on-disk. This simplifies our code in the long run should we ever choose to change this location. Open config.py and add the following value:

class Configuration(object):

...

STATIC_DIR = os.path.join(APPLICATION_DIR, 'static')

IMAGES_DIR = os.path.join(STATIC_DIR, 'images')

Processing file uploads We are now ready to create a view for processing the image upload. The logic will be very similar to our other form processing views with the exception that, after validating the form, we will save the uploaded file to disk. Since these images are intended for use in our blog entries, I am adding the view to the entries blueprint, accessible at /entries/image-upload/.

[97]

Forms and Validation

We need to import our new form along with other helpers. Open blueprint.py and add the following imports to the top of the module:

import os

from flask import Blueprint, flash, redirect, render_template,

request, url_for

from werkzeug import secure_filename

from app import app, db

from helpers import object_list

from models import Entry, Tag

from entries.forms import EntryForm, ImageForm

At the top of the list of views, let's add the new image-upload view. It is important that it appears before the detail view, otherwise Flask will incorrectly treat /image-upload/ as the slug of a blog entry. Add the following view definition:

@entries.route('/image-upload/', methods=['GET', 'POST'])

def image_upload():

if request.method == 'POST':

form = ImageForm(request.form)

if form.validate():

image_file = request.files['file']

filename = os.path.join(app.config['IMAGES_DIR'],

secure_filename(image_file.

filename))

image_file.save(filename)

flash('Saved %s' % os.path.basename(filename), 'success')

return redirect(url_for('entries.index'))

else:

form = ImageForm()

return render_template('entries/image_upload.html', form=form)

Most of the code here probably looks familiar to you, the notable exception being the use of request.files and secure_filename. When a file is uploaded, Flask will store it in request.files, which is a special dictionary keyed by the name of the form field. We do some path joining using secure_filename to prevent malicious filenames and to generate the correct path to the static/images directory, and then save the uploaded file to disk. It is that easy.

[98]

Chapter 4

The image upload template

Let's create a simple template for our image upload form. Create a file in the entries template directory named image_upload.html and add the following code:

{% extends "base.html" %}

{% from "macros/form_field.html" import form_field %}

{% block title %}Upload an image{% endblock %}

{% block content_title %}Upload an image{% endblock %}

{% block content %}

enctype="multipart/form-data" method="post">

{% for field in form %}

{{ form_field(field) }}

{% endfor %}

default">Upload

}}">Cancel

{% endblock %}

In order for Flask to process our uploaded file, we must specify enctype="multipart/form-data" when defining our
 element. This is a very common mistake, so I will repeat again: whenever you are accepting file uploads, your form element must specify enctype="multipart/form-data".

Go ahead and try out the image uploader. You should see your uploaded files appear in the static/images/directory in your app. You can also view the image in your browser by navigating to http://127.0.0.1:5000/static/images/the-file-name.jpg.

[99]

Forms and Validation

Serving static files Flask will automatically serve up files from our /static/ directory. When we deploy our site in Chapter 10, Deploying Your Application, we will use the Nginx web server to serve static assets but, for local development, Flask makes things really easy.

In addition to our image uploads, let's also serve our site's JavaScript and stylesheets from /static/. Download jQuery and Bootstrap and place the JavaScript files (jquery-.min.js and boostrap.min.js) in static/js. Place the minified bootstrap CSS file (bootstrap.min.css) in static/css. Bootstrap also comes with some special fonts that are used for icons. Copy the bootstrap fonts directory into the static directory as well. You should now have four directories inside your application's static directory: css, fonts, images and js, each containing the relevant files:

(blog) $ cd static/ && find . -type f

./fonts/glyphicons-halflings-regular.woff

./fonts/glyphicons-halflings-regular.ttf

./fonts/glyphicons-halflings-regular.eot

./fonts/glyphicons-halflings-regular.svg

./images/2012-07-17_16.18.18.jpg

./js/jquery-1.10.2.min.js

./js/bootstrap.min.js

./css/bootstrap.min.css

In order to point our base template at the local versions of these files, we will use the url_for helper to generate the correct URL. Open base.html and remove the old stylesheet and JavaScript tags, replacing them with the local version:

If you like, you can create a site.css file in the static/css directory and replace the

index-117_1.png
Edit Flask entry

Title Flask entry
Body This is an entry about Flask. I'm testing ot the tag field
4
Entry status Public v
Tags Python, Flask

Separate multiple tags with commas

Save | Cancel

index-114_1.png
Flask entry

Entry "Flask entry" has been saved

This is an entry about Flask. I'm editing and saving it to test alerts.

Tags
Python
Flask

Actions
Edit

Delete

index-34_2.png
File "/home/charles/projects/hello_flask/app.py", line 12, in hello

if nam is None:

[console ready]
>>> name

u'Charlie’

>>> request.args

werkzeug. datastructures. InnutableMul tibict ({})

>>>

index-34_1.png
File "/home/charles/projects/hello_flask/app.py", line 12, in hello
if nam is None:

NameError: global name 'nam'’ is not defined

-

index-40_1.png
Main.py

import app
import views
app.run() app.py
import config N
o config
ccurs
after app.py K/
+ views.py
are loaded
views.py |, m
import app app.py is
@app.route ... already in
memory

gy

index-39_1.png
< o [h127.001

Home page

index-71_1.png
4 » 9 [3127.00.1:5000

(S84

Welcome to my blog

Your name is <unknown>.

index-70_1.png
4 » O [1127.00.1:5000

(S84

Welcome to my blog

cover.jpg
Learning Flask
Framework

index-103_1.png
< o [)127.001 L L

Awesome new entry

This is an awesome new entry I'm creating.

index-101_1.png
< 9 [3127.0.0.1:5000/enfries/create;

Method Not Allowed

The method POST is not allowed for the requested URL.

index-105_1.png
Create new entry

Title ‘ A ‘
This field s required
Body A
4
This field s required
Entry status Public v

Create Cancel

nav.xhtml

 		Chapter 2, Relational Databases with SQLAlchemy, says that relational databases are the bedrock upon which almost all modern web applications are built. We will use SQLAlchemy, a powerful object-relational mapper that allows us to abstract away the complexities of multiple database engines. In this chapter, you will learn about how the data model that you choose early on will affect almost every facet of the code that follows.

 		Chapter 3, Templates and Views, covers two of the most recognizable components of the framework: the Jinja2 template language, and the URL routing framework. We will fully immerse ourselves in Flask and see our app finally start to take shape. As we progress through the chapter, our app will start looking like a proper website.

 		Chapter 4, Forms and Validation, shows you how to use forms to modify content on your blog directly through the site handled by the popular WTForms library. This is a fun chapter because we will add all sorts of new ways to interact with our site. We will create forms to work with our data models and learn how to receive and validate user data.

 		Chapter 5, Authenticating Users, explains how you can add user authentication to your site. Being able to distinguish one user from another allows us to develop an entirely new class of features. For instance, we will see how to restrict access to the create, edit, and delete views, preventing anonymous users from tampering with site content. We can also display a user's draft posts to them but hide them from everyone else.

 		Chapter 6, Building an Administrative Dashboard, shows you how you can build an administrative dashboard for your site, using the excellent Flask-Admin. Our admin dashboard will give certain selected users the ability to manage all the content across the entire site. In essence, the admin site will be a graphical frontend for the database, supporting operations to create, edit, and delete rows in our application's tables.

 		Chapter 7, AJAX and RESTful APIs, uses Flask-Restless to create a RESTful API for the blogging app. A RESTful API is a powerful way of accessing your app programmatically by providing highly-structured data to represent it. Flask-Restless works very well with our SQLAlchemy models, and it also handles complex tasks, such as serialization, and result filtering.

 		Chapter 8, Testing Flask Apps, covers how you can write unit tests covering all parts of the blogging app. We will utilize Flask's test client to simulate "live" requests. We will also see how the Mock library can simplify testing complex interactions, such as calling third-party services, such as databases.

 		Chapter 9, Excellent Extensions, teaches you how to enhance your Flask installation with popular third-party extensions. We used extensions throughout the book, but we can now explore the added extra security or functionality with very little effort and can polish off your app nicely.

 		Chapter 10, Deploying Your Application, teaches you how to deploy your Flask applications securely and in an automated, repeatable manner. We will look at how to configure the commonly-used WSGI capable servers, such as Apache and Nginx, as well as the Python web server Gunicorn, to give you plenty of options. Then, we will see how to secure part or the entire site using SSL before finally wrapping up our application in a configuration management tool to automate our deployment.

 		Chapter 1

 		Chapter 1

 		Chapter 1

 		Chapter 1

 		Chapter 1

 		Chapter 1

 		Chapter 1

 		Chapter 1

 		Chapter 1

 		Chapter 2

 		Chapter 2

 		Chapter 2

 		Chapter 2

 		Chapter 2

 		Chapter 2

 		Chapter 2

 		Chapter 2

 		Chapter 2

 		Chapter 2

 		Chapter 2

 		Chapter 2

 		Chapter 3

 		Chapter 3

 		Chapter 3

 		Chapter 3

 		Chapter 3

 		Chapter 3

 		Chapter 3

 		Chapter 3

 		Chapter 3

 		Chapter 3

 		Chapter 3

 		Chapter 3

 		Chapter 3

 		Chapter 4

 		Chapter 4

 		Chapter 4

 		Chapter 4

 		Chapter 4

 		Chapter 4

 		Chapter 4

 		Chapter 4

 		Chapter 4

 		Chapter 4

 		Chapter 4

 		Chapter 4

index-84_1.png
< 9 [)127.0.0.1:5000/enfries

Entries index

(S84

index-88_1.png
4 > O [)127.0.0.1:5000/entres/flask-entry ~OR® 2

Flask entry Tags

This is an entry about Flask Python

Flask

Published 02/15/2014

index-86_1.png
< 9 [127.0.0.1:5000/entri

Entries

Flask entry
Python entry
Django entry

An entry about my cat Huey

index-92_1.png
4 o [H127.00

Entries

OB @

flask

Go

index-89_1.png
< © [127.0.0.1:5000/enfres/togs/pyhon

Python entries

Flask entry
Python entry

Django entry

index-100_1.png
< 9 [3127.0.0.1:5000/enfries/create;

Create new entry

Title

Body

Entry status Public v

Create | Cancel

index-93_1.png
4 > O [)127.0.0.1:5000/entries/Zpog ~OR® 2

Search.. | Go

Entries

Flask entry
Python entry
Django entry

An entry about my cat Huey

« |1]»

index-72_2.png
4 P O [)127.0.0.1:5000/2name = <script>aler(%27hacked%27); </script> @ T

Welcome to my blog

Your name is <script>alert(hacked'),</script>.

index-72_1.png
4 P O [127.0.0.1:5000/2name~Charlie

(S84

Welcome to my blog

Your name is Charlie.

index-81_1.png
< © [127.0.01:5000 OB @ %

Welcome to my blog Sicebar e

No number specified

Your name is <unknown>.

©your name

index-74_1.png
< © [127.0.0.1:5000/2number=10

Welcome to my blog

Your number is 10

« o o o o
[N NN

Your name is <unknown>.

(S84

index-26_1.png
@lpha ~ $ cd projects

@alpha projects $ virtualenv hello_flask

New python executable in hello_flask/bin/python2
Also creating executable in hello_flask/bin/python
Installing Setuptools

@alpha projects $ cd hello flask
@alpha hello flask $ source bin/activate
(hello flask)@alpha hello_flask $ D

index-1_1.jpg
Learning Flask
Framework

Build dynamic, data-driven websites and modern web applications
with Flask

index-30_1.png
< > Q[127.0.0.1:5000/helo/Charle

Q 7]

Hello, Charlie

index-28_1.png
4 F 9 | [127.0.0.1:5000

@ 3¢

Hello, Flask!

index-32_1.png
< > @ [[)127.0.0.1:5000/hello/Znome=Huey

Q 7]

Hello, Huey

index-31_1.png
Q [[127.00.1 b

Not Found

The requested URL was not found on the server.

Ifyou entered the URL manually please check your spelling and try again.

index-33_1.png
< @ [127.0.0.1:5000 hello/Charii Y OB @ @

NameError

NameError: global name 'nam' is not defined

File */home /charles/checkouts, flask/flask/app.py", line 1834, in __call__
return self.wsgi_app(environ, start_response)

File */home /charles/checkouts) flask/flask/app.py", line 1818, in wsgi_app
response = self.make_response (self.handle_exception(e))

File */home/charles/checkouts/flask/flask/app.py", line 1401, in handle_exception
reraise(exc_type, exc_value, tb)

File */home /charles/checkouts, flask/flask/app.py", line 1815, in wsgi_app
response = self.full_dispatch_request()

File */home /charles/checkouts,flask/flasl/app.py", line 1475, in full_dispatch_request
rv = self.handle_user_exception(e)

File */home/charles/checkouts/fask/Aask/app.py", line 1379, in handle_user_exception
reraise(exc_type, exc_value, tb)

File */home charles/checkouts,flask/flasl/app.py", line 1473, in full_dispatch_request
rv = self.dispatch_request()

File "/home/charles/checkouts/flask/flask/app.py", line 1459, in dispatch_request
return self.view_functions[rule.endpoint] (**req.view_args)

File */home/charles projects/hello_flask/app.py", line 12, in hello
Aif nam is None:

NameError: global name 'nam'’ is not defined

