

 Ben Tyers
Practical GameMaker: StudioLanguage Projects
[image: A433334_1_En_BookFrontmatter_Figa_HTML.png]

Ben TyersWorthing, West Sussex, UK

 Any source code or other supplementary materials referenced by the author in this text are available to readers at

 www.apress.com

 . For detailed information about how to locate your book’s source code, go to

 www.apress.com/source-code/

 . Readers can also access source code at SpringerLink in the Supplementary Material section for each chapter.

					ISBN 978-1-4842-2372-7e-ISBN 978-1-4842-2373-4
DOI 10.1007/978-1-4842-2373-4
Library of Congress Control Number: 2016962191
© Ben Tyers 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
Printed on acid-free paper
Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

Introduction
This book serves as an introduction to using GML (GameMaker Language) for creating games using the popular software, GameMaker: Studio. GameMaker: Studio is a software package created by YoYo Games that allows the creation of software for different platforms including Windows, HTML5, Android, iOS, and Mac OS X. The software allows for quick prototyping of games. Its IDE allows for the creation of games using its D&D (Drag & Drop) system, which allows the creation of games with minimal programming experience, and the more versatile scripting language, GML. It allows you to export to various platforms with only minor changes to code. According to their website, their software allows faster coding than native languages, and rapid prototyping.
Using this book you’ll learn 24 programming elements that are important when creating a game. Each section includes an introduction to a new programming element, some examples, a worksheet with answer key, mini projects to apply your to new knowledge (with example GMZ project file for each), and after each element there is information on how this learned code will be applied in a final end of book game. After completing all sections, you will put into action what you have learned to create an arcade style shooting game.
There are then a number of assignments, from which you may choose, to create a final project. If you are teaching in schools you may include this as part of your students’ coursework.
This book is suitable for home study or in a classroom.
GML code is provided in the following style:

 GML code in this style.
Comments in this style.

 Assets in the resources tree are in this style.

 Health, lives, score,
 are in this style.

 Events are in this style. User interface elements (e.g., buttons) are also shown in this style.

For example:

 draw_self(); //draws sprite assigned to this object
draw_set_font(font_hud); //set font
draw_text(100,100, "Hello World"); //draw text

This book assumes some basic knowledge of using GameMaker: Studio. This introduction covers the basics needed to attempt the exercises in this book. If you’re using this book in a school, it’s recommended that you either cover this first, or photocopy it and hand out before the first class.

 By following this introduction you’ll create a basic click-the-object game. You’ll learn the basics of how to set up and use the following:
 	Rooms
	Sounds
	Sprites

	Fonts
	Objects
	Drawing

	GUI
	Alarms
	INI Files

	Randomization
	Create Events
	Mouse Events

	Step Events
	 	

All the above will be introduced as you create a simple click-the-object game. There will be an object that appears at random positions and the aim of the game is to click it before the timer runs out. Each time you successfully click the object the timer will get faster. If you don’t click the object before the time runs out, the game ends.

 Resources

 The resources for this book can be downloaded via the Download Source Code link at

 http://www.apress.com/us/book/9781484223727

 . These include all resources broken down by chapter, all GML in the book, and all resources and GML for the final game. Example answers for each project are also included. The resources for this introduction are in the folder:
 Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Introduction.
 There is a project file for this introduction.

Sprites

 Sprites are images that will be used in your game. You’ll use them to display the player, enemy, and other graphics in your game. They are in the downloadable resource folder:
 Assets Used In Book ➤ Introduction
 . Sprites will be drawn by referencing or assigning them to objects. Next, load in the sprites for this game. There are five of them,
 spr_logo
 ,
 spr_start_game
 ,
 spr_target
 ,
 spr_exit
 , and
 spr_lives
 .

 You can create a new sprite by clicking the
 Create a sprite
 button as shown in Figure
 i-1
 :
 [image: A433334_1_En_BookFrontmatter_Fig1_HTML.jpg]
Figure i-1.Create sprite button

 Name the sprite
 spr_logo
 and click
 Load Sprite,
 select the file shown below, then
 Open
 , set the
 Origin
 to the
 Center
 and click
 OK
 . This process is shown in Figure
 i-2
 :
 [image: A433334_1_En_BookFrontmatter_Fig2_HTML.jpg]
Figure i-2.Naming and loading a sprite – step 1

 Repeat this for the remaining sprites, naming them
 spr_exit
 ,
 spr_health
 ,
 spr_start
 , and
 spr_target
 . Set the origin of all sprites to center. The origin is point in the sprite where it will be positioned in the room. More information is provided in the sprite section. For example, using the sprite in Figure
 i-2
 , the origin is 112,112.

 If you’ve followed along correctly so far, your resources tree will look like Figure
 i-3
 .
 [image: A433334_1_En_BookFrontmatter_Fig3_HTML.jpg]
Figure i-3.The sprite section will look like this

Rooms
Rooms are where the action takes place and where you put your objects. You’ll use these objects to display graphics, process user input, play sounds, and make other things happen.

 We will create two rooms. The first will be a splash screen that shows some information about the game, while the second room will be where the actual gameplay takes place. First create two rooms; name them
 room_menu
 and
 room_game.
 Set the room size for each as 800 by 400.

 You can do this by clicking the
 Create a room
 button as shown circled in Figure
 i-4
 :
 [image: A433334_1_En_BookFrontmatter_Fig4_HTML.jpg]
Figure i-4.Create room button

 Follow these actions to create a new room:
 	1.
 Click the Create a room button as shown in Figure
 i-4
 .

	2.
 Name the room and set the dimensions as shown in Figure
 i-5
 .
 [image: A433334_1_En_BookFrontmatter_Fig5_HTML.jpg]
Figure i-5.Name room and set dimensions – step 2

	3.
 Save the room by clicking the green tick in the top left as in Figure
 i-5
 .

Now that you’ve created a room, you have a place for objects to be added to.

 Repeat this process for
 room_game
 , again setting the dimensions to 800 by 400.

Sounds
Sounds can be music or sound effects. You name each one and use code later to play the sound when you want to hear it. We will load them now, so we can simply refer to them later.

 The example uses two sounds:
 snd_yeah
 and
 snd_you_are_dead
 .

 You can do this by clicking the
 Create a sound
 button as shown in Figure
 i-6
 :
 [image: A433334_1_En_BookFrontmatter_Fig6_HTML.jpg]
Figure i-6.Create a new sound

 Then navigate to where the resource file is stored. Give the sound a name –
 snd_yeah –
 you can use the default settings, and then click
 OK
 . This step is shown in Figure
 i-7
 :
 [image: A433334_1_En_BookFrontmatter_Fig7_HTML.jpg]
Figure i-7.Name a sound and load it from the resources folder – step 3

 Select the appropriate sound from the resources folder as shown in Figure
 i-8
 :
 [image: A433334_1_En_BookFrontmatter_Fig8_HTML.jpg]
Figure i-8.Choosing a sound file to load

 Repeat this with the sound file
 snd_you_are_dead
 .

Fonts

 If you want to display text or variables on screen in your game, you’re going to need to define and name some fonts. You can then set drawing to this font when you want it displayed. A font can be created by clicking the
 Create a font
 button as shown in Figure
 i-9
 :
 [image: A433334_1_En_BookFrontmatter_Fig9_HTML.jpg]
Figure i-9.Creating a font

 Set the font name as
 font_hud
 and the size as 20
 Arial
 as shown in Figure
 i-10
 :
 [image: A433334_1_En_BookFrontmatter_Fig10_HTML.jpg]
Figure i-10.Naming and setting a font – step 4

Objects
Objects are the life blood of GameMaker: Studio. Objects will be used for displaying sprites, playing sounds, drawing text, detecting movement, processing functions, performing math calculations, and more.

 Next we’ll create the objects. There are five of them:
 obj_logo
 ,
 obj_start_game
 ,
 obj_target
 ,
 obj_exit
 , and
 obj_hud
 .

 First create the object
 obj_logo
 and assign the sprite to it.

 This can be done by clicking the
 Create Object
 button shown in Figure
 i-11
 :
 [image: A433334_1_En_BookFrontmatter_Fig11_HTML.jpg]
Figure i-11.Creating a new object

 Next is to assign a sprite to this object, assign the sprite
 spr_logo
 as shown in Figure
 i-12
 :
 [image: A433334_1_En_BookFrontmatter_Fig12_HTML.jpg]
Figure i-12.Assigning a sprite to an object – step 5

Then click ok.

 Next create a new object,
 obj_start_game
 and assign the sprite
 spr_start_game
 .

 The next step is to program some
 Events
 . Events are things that happen. The events you’ll use most are the
 Create Event
 ,
 Step Event
 ,
 Alarm Event
 , and
 Draw Event
 . These can be set up using GameMaker: Studio’s built-in GUI.

 Do this by clicking
 Add Event
 then
 Create Event
 , as shown in Figure
 i-13
 :
 [image: A433334_1_En_BookFrontmatter_Fig13_HTML.jpg]
Figure i-13.Making a create event

 Click on the control tab, and click and drag
 Execute Code
 to the actions window, shown below in Figure
 i-14
 :
 [image: A433334_1_En_BookFrontmatter_Fig14_HTML.jpg]
Figure i-14.Adding a code action – step 5

In the open window, enter the following code:

 //see if ini file exists and load saved score
ini-open("savedata.ini"); //open file savedata.ini
global.highscore = ini-read_real("score", "highscore", 0); //set global.highscore to value or set as 0 if no value present
ini-close(); //close ini file - always do this after loading or saving data
//set starting values for game:
score=0;
lives=5;

 This code will load any high score from a previous play of the game to the variable
 global.highscore
 , set current
 score
 to
 0
 , and
 lives
 to
 5
 . It is not important at this stage to understand this code. The purpose of this exercise is to learn how to add GML code to an event. When you’ve added the code, the open window will look as shown in Figure
 i-15
 .
 [image: A433334_1_En_BookFrontmatter_Fig15_HTML.jpg]
Figure i-15.Adding code to action – step 6

 Next create a new event, a
 Mouse Left Button Released Event
 as shown in Figure
 i-16
 :
 [image: A433334_1_En_BookFrontmatter_Fig16_HTML.jpg]
Figure i-16.Creating a mouse left button released event – step 7

 Again drag over the
 Execute Code
 action and add the following code, as shown in Figure
 i-17
 , to this action:
 [image: A433334_1_En_BookFrontmatter_Fig17_HTML.jpg]
Figure i-17.Adding code to the left mouse button released event – step 8

 room_goto(room_game); //goto the room room_game

 Next add a
 Draw Event
 by clicking
 Add Event
 followed by
 Draw Event
 , then drag across the
 Execute Code
 . Add the following GML to this:

 draw_self(); //draws sprite assigned to this object
draw_set_font(font_hud); //set font
draw_set_halign(fa_center); //set horizontal alignment for drawn text
draw_set_colour(c_black); //sets drawing colour as black
draw_text(250,280, "Highscore: "+ string(global.highscore)); //draw Highscore: plus value of global.highscore

 A
 Draw Event
 is where you place your code, or D&D, to place text and images on the screen. Drawing functions, such as
 draw_text
 and
 draw_self
 ,
 must
 be placed in
 Draw Event
 . Figure
 i-18
 shows this setup with code added.
 [image: A433334_1_En_BookFrontmatter_Fig18_HTML.jpg]
Figure i-18.Adding code to a draw event – step 9

Click OK to save all changes.
Explanation of the code above:

 draw_text(250,280, "Highscore: "+ string(global.highscore)); //draw Highscore: plus value of global.highscore

This draws the text at position 250 across the screen and 280 down, in pixels.

 global.highscore
 has a numerical value. Because we are drawing it with a string, "
 Highscore:
 ", we need to convert it also to a string. The code
 string(global.highscore)
 does this conversion. A more in-depth explanation of variable types is provided in Chapter
 1
 .

 Next create a new object
 obj_exit
 and assign the sprite
 spr_exit
 .

 Create a
 Left Mouse Button Released Event
 and add this code:

 game_end(); //closes game and returns to windows

 That is all for this object. You should now know some of the basics of using
 Objects
 , such as creating a new object and setting a sprite.

 Create a new object
 obj_target
 and set the sprite
 spr_target
 .

 Next we’ll use a
 Create Event
 to set up some initial variables. A
 Create Event
 is only run once when the object is created, or when a room starts if the object is already placed in it.

We’ll use this event to create at a random position across the screen, X, and down the screen Y between 100 and 700.
We’ll then start an Alarm with a value of 100 minus the score. This makes the alarm quicker as the score increases, making it get progressively harder to click in time.

 In a
 Create Event
 put this code, which will choose a whole integer between 100 and 700, sets timer to 100 less the score, with a minimum value of 5, and then sets an alarm with the timer:

 x=irandom_range(100,700); //sets x position at random between 100 & 700
y=irandom_range(100,300); //sets y position at random between 100 & 300
timer=100-score; //set timer as 100 less score - so it gets faster
if timer<=5 timer=5; //check if less than 5, set as 5 if it is
alarm[0]=timer;

 Next create an
 Alarm Event0
 as shown in Figure
 i-19
 . This will activate if the player hasn’t clicked the object in time. The GML will play a sound first, reduce the player’s
 lives
 by 1, and create a new object, then destroy itself.
 [image: A433334_1_En_BookFrontmatter_Fig19_HTML.jpg]
Figure i-19.Creating an alarm event for alarm[0] – step 10

 Drag across
 Execute Code
 and add the following code:

 audio_play_sound(snd_you_are_dead,1,false);//plays a sound
lives-=1; //reduce lives
instance_create(50,50,obj_target); // create a target
instance_destroy(); //destroy self

 Create a
 Left Mouse Button Released Event
 into the same object,
 obj_target
 and put the following code in it:

 score+=1; //add 1 to score
audio_play_sound(snd_yeah,1,false); //play sound yeah
instance_create(50,50,obj_target); //create new skull
instance_destroy(); //removes self from screen

 In a
 Draw Event
 of
 obj_target
 put:

 draw_self(); // draws assigned sprite
draw_set_colour(c_red); //sets drawing colour
draw_rectangle(x-(alarm[0]/2), y-30, x+(alarm[0]/2), y-25,0); //draws a rectangle that reduces size based on alarm[0] value

 The above code will draw the sprite for the object, set the drawing colour to red, and then draw a rectangle based on the current value of the
 alarm
 – this will serve as visual so the player knows how long they have to click the object. Save this object by clicking OK. You’ll learn more about drawing geometric shapes in section 3.

 Next create an object
 obj_hud
 . There is no sprite for this object. This object will be used as a control object that will be used to draw a HUD of the player’s
 lives
 and
 score
 . It will also monitor how many lives the player has, and if the player has lost all of their lives it will update the high score if the player has a new high score and then restart the game. You do not need to create this file; it will be created automatically upon saving if it doesn’t already exist. Click
 Add Event
 and then
 Step Event
 . Add the following code to the
 Step Event
 :

 if (lives<0)
{
 if (score>global.highscore)
 {
 ini-open("savedata.ini");
 ini-write_real("score", "highscore", score);
 ini-close(); //closes ini file
 }
 game_restart(); //restarts game
}

 This is shown added in Figure
 i-20
 . This code will update the saved value in the INI file if the current
 score
 is bigger than
 global.highscore
 .
 [image: A433334_1_En_BookFrontmatter_Fig20_HTML.jpg]
Figure i-20.Step event code for obj_hud – step 11

 Create a
 Draw GUI Event
 , under the draw tab. This code sets up the font, alignment, and drawing colour. Then it draws the
 score
 and as a high score if bigger than previous
 global.highscore
 .

 draw_set_font(font_hud); //sets the font
draw_set_halign(fa_left); //sets alignment
draw_set_colour(c_blue); //sets drawing colour
draw_text(25, 25, "Score: "+string(score)); //draws score: + score
if (score <= global.highscore) { draw_set_colour(c_red); } draw_text(300, 25, " (Highscore: " + string(global.highscore));

 This makes use of a
 Draw GUI Event
 . This type of event will draw above any other objects in the room and is independent of any views. This type of event is commonly used to display health stats, scores, player info, weapon info, etc.

 Next is to draw the
 lives
 as images. There is a Drag & Drop action for this in the
 Score
 section. Drag this across and set to draw at 500,25 using the sprite
 spr_lives
 as shown in Figure
 i-21
 :
 [image: A433334_1_En_BookFrontmatter_Fig21_HTML.jpg]
Figure i-21.Drawing lives on screen as images – step 12

Click OK twice to close open windows.

 Open room
 room_menu
 for editing by clicking on it in the resource tree.

 Use the object tab to select objects and then place one each of
 obj_logo
 ,
 obj_start
 and
 obj_exit
 . Select the object then click in the room to place it. This step is shown in Figure
 i-22
 :
 [image: A433334_1_En_BookFrontmatter_Fig22_HTML.jpg]
Figure i-22.Placing objects in room – step 13

Click the green tick in the top left of the window to save these settings.

 Next open
 room_game
 .

 Place one instance of
 obj_target
 and one of
 obj_hud
 in the room. It doesn’t matter where you place them.

Click the green tick in the top left to apply changes.

 Now click
 File
 and
 Save As
 . Give your game a name and save it.

 Click the green triangle, shown in Figure
 i-23
 , at the top left to play your game.
 [image: A433334_1_En_BookFrontmatter_Fig23_HTML.jpg]
Figure i-23.Testing the game – step 14

Comments
Although well-formatted code with appropriately named assets can be easy to read, it’s always worth adding comments to any code. When you come back or share the code with someone, you don’t have to waste time trying to figure out or explaining what a certain code does.

 In GameMaker: Studio there are three type of comments you can use. The first type is using the double
 //

An example in code would look like this:

 //This is my comment

 In your game, this would look like this as shown in Figure
 i-24
 . Anything written after the
 //
 is commented out and will not be processed. This can be a line on its own, or after code. Figure
 i-24
 shows both being used.
 [image: A433334_1_En_BookFrontmatter_Fig24_HTML.jpg]
Figure i-24.Showing a comment

 The next type uses the triple
 ///
 . When placed at the top of code block it changes the default
 Execute a piece of code
 to the comment. This can also be used at the beginning of a piece of script to make it appear in Auto-Complete.

An example of this code would be:

 ///Detect Mouse Movement

 In game this would look like as shown in Figure
 i-25
 . This is a great to keep track of your code blocks, especially if you break them down into smaller sections.
 [image: A433334_1_En_BookFrontmatter_Fig25_HTML.jpg]
Figure i-25.Naming a code block

 You can also use separate code blocks together while making use of the triple
 ///,
 for example, as shown in Figure i-26.
 [image: A433334_1_En_BookFrontmatter_Fig26_HTML.jpg]
Figure i-26.Using multiple named code blocks

The third type allows you to comment out multiple lines. Any lines commented out will not be executed when the game is run.

 You start this section with
 /*
 and end with
 */
 .

For example:

 /*
//weapon 2
ini-open("save.ini");
global.cash=ini-read_real("main", "cash", 10000);
health=ini-read_real("main", "health", 100);
lives=ini-read_real("main", "lives", 8);
global.hits=ini-read_real("main", "hits", 0);
global.shots=ini-read_real("main", "shots", 0);
global.level=ini-read_real("main", "level", 1);global.weapon_info[3,2]=ini-read_real("weapon2", "bullets", 10000);
global.weapon_info[6,2]=ini-read_real("weapon2", "shots", 0);
ini-close();
*/

 This would look like that shown in Figure
 i-27
 :
 [image: A433334_1_En_BookFrontmatter_Fig27_HTML.jpg]
Figure i-27.Commenting out multiple lines

As before, any commented out code will not be executed.
You should now be aware of the basic elements that make up a game, and how to add GML.

 The original version of this book was revised. An erratum to this book can be found at DOI
 10.​1007/​978-1-4842-2373-4_​41

Acknowledgments
Yellow Afterlife – Thanks for your help
Thanks to the following for your support:
Nathan Brown
Loukas Bozikis
Alesia Buonomo
Kehran Carr
Arik Chadima
Rom Haviv
Zachary Helm
Credit also to the following for permission to reuse their assets:
Kenney.nl– Playing card sprites
Cover Art:
Phaelax – Asteroid
JM.Atencia – Enemy Spaceship
Napoleon – Missile Sprite
KennyLand – Explosion

 http://millionthvector.blogspot.de

 – Spaceship Sprites

Napoleon – Missile Sprite
New_Regime by Nuclear_Spring – Backing Music
JM.Atencia- Enemy Spaceship Sprite

Contents

 Chapter 1:​ Variables
 1

 Worksheet – Variables
 4

 Worksheet – Variables – Answer Sheet
 6

 Basic Projects
 7

 Advanced Project
 7

 End of Book Game Variables
 8

 Chapter 2:​ Conditionals
 9

 Worksheet – Conditionals
 11

 Worksheet – Conditionals – Answer Sheet
 12

 Basic Projects
 12

 Advanced Projects
 13

 End of Book Game Conditionals
 13

 Chapter 3:​ Drawing
 15

 Worksheet – Drawing
 19

 Worksheet – Drawing – Answer Sheet
 20

 Basic Projects
 21

 Advanced Project
 21

 End of Book Game Drawing
 23

 Chapter 4:​ Drawing Continued
 25

 Worksheet – Drawing Continued
 30

 Worksheet – Drawing Continued – Answer Sheet
 31

 Basic Projects
 32

 Advanced Projects
 32

 End of Book Game Drawing Continued
 33

 Chapter 5:​ Keyboard Input and Simple Movement
 35

 Worksheet – Key Presses and Simple Movement
 37

 Worksheet – Key Presses and Simple Movement – Answer Sheet
 37

 Basic Projects
 38

 Advanced Project
 38

 End of Book Game Keypresses and Simple Movement
 38

 Chapter 6:​ Objects and Events
 39

 Worksheet – Objects
 43

 Worksheet – Objects – Answer Sheet
 44

 Basic Projects
 45

 Advanced Project
 45

 End of Book Game Objects
 45

 Chapter 7:​ Sprites
 47

 Worksheet – Sprites
 51

 Worksheet – Sprites – Answer Sheet
 52

 Basic Projects
 52

 Advanced Project
 53

 End of Book Game Sprites
 53

 Chapter 8:​ Health, Lives, and Score
 55

 Worksheet – Lives, Health, &​ Score
 59

 Worksheet – Lives, Health, Lives, &​ Score – Answer Sheet
 60

 Basic Projects
 60

 Advanced Projects
 61

 End of Book Game Health, Lives, &​ Score
 61

 Chapter 9:​ Mouse
 63

 Worksheet – Mouse Movement
 66

 Worksheet – Mouse Movement – Answer Sheet
 66

 Basic Projects
 67

 Advanced Projects
 67

 End of Book Game Mouse Movement
 67

 Chapter 10:​ Alarms
 69

 Worksheet – Alarms
 71

 Worksheet – Alarms – Answer Sheet
 71

 Basic Projects
 72

 Advanced Projects
 73

 End of Book Game – Ten Alarms
 73

 Chapter 11:​ Collisions
 75

 Worksheet – Collision Events
 81

 Worksheet – Collision Events – Answer Sheet
 82

 Basic Projects
 82

 Advanced Projects
 83

 End of Book Game Collisions
 83

 Chapter 12:​ Rooms
 85

 Worksheet – Rooms
 90

 Worksheet – Rooms – Answer Sheet
 90

 Basic Projects
 91

 Advanced Project
 91

 End of Book Game Rooms
 92

 Chapter 13:​ Backgrounds
 93

 Worksheet - Backgrounds
 96

 Worksheet – Backgrounds – Answer Sheet
 96

 Basic Projects
 97

 Advanced Projects
 97

 End of Book Game Backgrounds
 97

 Chapter 14:​ Sounds and Music
 99

 Worksheet – Sounds &​ Music
 102

 Worksheet – Sounds &​ Music – Answer Sheet
 102

 Basic Projects
 103

 Advanced Projects
 103

 End of Book Game Sounds &​ Music
 103

 Chapter 15:​ Splash Screens and Menu
 105

 Worksheet – Splash Screens &​ Menu
 109

 Worksheet – Splash Screens &​ Menu – Answer Sheet
 110

 Basic Projects
 111

 Advanced Project
 112

 End of Book Game Splash Screens &​ Menu
 112

 Chapter 16:​ Random
 113

 Worksheet – Random
 114

 Worksheet – Random – Answer Sheet
 115

 Basic Projects
 116

 Advanced Project
 116

 End of Book Game Random
 116

 Chapter 17:​ More Movement (Basic AI)
 117

 Worksheet – More Movement
 122

 Worksheet – More Movement – Answer Sheet
 123

 Basic Projects
 124

 Advanced Projects
 124

 End of Book Game
 124

 Chapter 18:​ INI Files
 125

 Worksheet – INI Files
 126

 Worksheet – INI Files – Answer Sheet
 127

 Basic Projects
 127

 Advanced Project
 128

 End of Book Game INI files
 128

 Chapter 19:​ Effects
 129

 Worksheet – Effects
 130

 Worksheet – Effects – Answer Sheet
 131

 Basic Projects
 132

 Advanced Projects
 132

 End of Book Game Effects
 132

 Chapter 20:​ Loops
 133

 Worksheet – Loops
 134

 Worksheet – Loops – Answer Sheet
 134

 Basic Projects
 135

 Advanced Projects
 135

 End of Book Game Loops
 136

 Chapter 21:​ Arrays
 137

 Worksheet – Array
 142

 Worksheet – Array – Answer Sheet
 142

 Basic Projects
 145

 Advanced Projects
 145

 End of Book Game Arrays
 145

 Chapter 22:​ ds_​lists
 147

 Worksheet – ds_​lists
 150

 Worksheet – ds_​lists – Answer Sheet
 150

 Basic Projects
 151

 Advanced Project
 151

 End of Book Game ds_​list
 152

 Chapter 23:​ Paths
 153

 Worksheet – Paths
 156

 Worksheet – Paths – Answer Sheet
 157

 Basic Projects
 157

 Advanced Projects
 157

 End of Book Game Paths
 157

 Chapter 24:​ Scripts
 159

 Worksheet – Scripts
 161

 Worksheet – Scripts – Answer Sheet
 162

 Basic Projects
 163

 Advanced Projects
 163

 End of Book Game Scripts
 163

 Chapter 25:​ Hints and Tips
 165

 Scripts Tricks
 165

 Testing
 167

 Assets Handling
 167

 Projects
 169

 Chapter 26:​ Creating a Game – Outline
 171

 Chapter 27:​ Creating a Game – Sprites
 173

 Chapter 28:​ Creating a Game – Sounds
 179

 Chapter 29:​ Creating a Game – Backgrounds
 181

 Chapter 30:​ Creating a Game – Paths
 183

 Chapter 31:​ Creating a Game – Fonts
 185

 Chapter 32:​ Creating a Game – Scripts
 187

 Chapter 33:​ Creating a Game – Parent Objects
 193

 Chapter 34:​ Creating a Game – Objects
 199

 Chapter 35:​ Creating a Game – Rooms
 277

 Chapter 36:​ Creating a Game – Progress Sheet
 285

 Chapter 37:​ Creating a Game – Marking Guide
 287

 Chapter 38:​ Creating a Game – End of Projects Assignments
 289

 Endless Runner
 289

 Shoot The Ducks
 290

 Pontoon
 291

 Side-Scrolling Shooter
 292

 End of Project Marking Guide
 293

 Chapter 39:​ End of Project Test
 295

 Test Paper Answers
 299

 Chapter 40:​ Summary
 307

 Erratum
 E1

Index309

Contents at a Glance

About the Authorxiii

About the Technical Reviewerxv

Acknowledgmentsxvii

Introductionxix

 Chapter 1:​ Variables
 1

 Chapter 2:​ Conditionals
 9

 Chapter 3:​ Drawing
 15

 Chapter 4:​ Drawing Continued
 25

 Chapter 5:​ Keyboard Input and Simple Movement
 35

 Chapter 6:​ Objects and Events
 39

 Chapter 7:​ Sprites
 47

 Chapter 8:​ Health, Lives, and Score
 55

 Chapter 9:​ Mouse
 63

 Chapter 10:​ Alarms
 69

 Chapter 11:​ Collisions
 75

 Chapter 12:​ Rooms
 85

 Chapter 13:​ Backgrounds
 93

 Chapter 14:​ Sounds and Music
 99

 Chapter 15:​ Splash Screens and Menu
 105

 Chapter 16:​ Random
 113

 Chapter 17:​ More Movement (Basic AI)
 117

 Chapter 18:​ INI Files
 125

 Chapter 19:​ Effects
 129

 Chapter 20:​ Loops
 133

 Chapter 21:​ Arrays
 137

 Chapter 22:​ ds_​lists
 147

 Chapter 23:​ Paths
 153

 Chapter 24:​ Scripts
 159

 Chapter 25:​ Hints and Tips
 165

 Chapter 26:​ Creating a Game – Outline
 171

 Chapter 27:​ Creating a Game – Sprites
 173

 Chapter 28:​ Creating a Game – Sounds
 179

 Chapter 29:​ Creating a Game – Backgrounds
 181

 Chapter 30:​ Creating a Game – Paths
 183

 Chapter 31:​ Creating a Game – Fonts
 185

 Chapter 32:​ Creating a Game – Scripts
 187

 Chapter 33:​ Creating a Game – Parent Objects
 193

 Chapter 34:​ Creating a Game – Objects
 199

 Chapter 35:​ Creating a Game – Rooms
 277

 Chapter 36:​ Creating a Game – Progress Sheet
 285

 Chapter 37:​ Creating a Game – Marking Guide
 287

 Chapter 38:​ Creating a Game – End of Projects Assignments
 289

 Chapter 39:​ End of Project Test
 295

 Chapter 40:​ Summary
 307

 Erratum
 E1

Index309

About the Author and About the Technical Reviewer

About the Author

Ben Tyersis a freelance programmer and technical writer by day, and a sci-fi horror novel writer by night. He made his first computer game way back in 1984, on a ZX Spectrum 48K computer, when he was eight years old. His passion for creation has continued since then. He holds a number of computer-related qualifications. When relaxing, Ben has an infatuation for old-school horror and sci-fi films, particularly 1960s B-movies.

About the Technical Reviewer

Dickson Lawis a GameMaker hobbyist, commentator, and extension developer with six years of community experience. In his spare time, he enjoys writing general-purpose libraries, tools, and articles covering basic techniques for GameMaker: Studio. As a web programmer by day, his main areas of interest include integration with server-side scripting and API design. He lives in Toronto, Canada.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_1

1. Variables

Ben Tyers1
(1)Worthing, West Sussex, UK

Electronic supplementary material
The online version of this chapter (doi:10.​1007/​978-1-4842-2373-4_​1) contains supplementary material, which is available to authorized users.

This section deals with the two main variable types: strings and numbers

 (also known as real values). You need to learn the different types, what you can do with them, how to combine them, and how to draw them on the screen.
Variables are an important part of every game. You can use variables for things such as the following:
	Keeping track of score, health, and lives

	Processing data

	Performing math’s functions

	Moving objects

	Drawing data / text on screen

	Keeping track of a player’s progress

	Making a game easier / harder

Note
There are a number of variable types. The ones focused on in this book are built-in, instance, and global.

Built-in variables include health, score, and lives. These are automatically global in nature and can be accessed by any other object. User-defined global variables start with global: for example, global.weapon, which can also be accessed by any other object. You’ll learn more about instance and global variables, and how to use them as you work through this book.
Instance variables relate only to the instance using it: for example x and y, and size.
The basic code for drawing text is:

 draw_text(x_position, y_position, text);

An example would be:
To draw text:

 draw_text(100, 100, "Hello World");

To draw a variable with a number (real value), for example:

 weight=250;
draw_text(100, 120, weight);

Create an object, obj_example_1, add a Create Event by clicking Add Event, followed by Create Event.
Add the following GML to the Create Event, and drag it across the Execute Code action entering the following with your own name:

 example_text="My Name Is Ben";

Create a Draw Event and add the following code. To do this, select the Draw Event, then draw, and then drag across the Execute Code action.

 draw_text(200,200,example_text);

Click the OK button in the bottom left to apply changes. This will draw the value of example_text at the screen position 200,200, with 0,0 being at the top left. An example is shown in Figure 1-1:[image: A433334_1_En_1_Fig1_HTML.jpg]
Figure 1-1.Showing various locations in a room

Create a room and place one instance of this object in the room. Do this by clicking the Create a Room button at the top of the screen. In the room editor, in the settings tab, set the name as room_1, click the object tab, and then click in the room to create an instance. Close the room, click File and Save As, and then give the project the name example 1.
Real numbers can be whole integers: for example, 20; or include decimals, for example, 3.14.
Double-click on obj_example_1 in the resource tree. In the Create Event, double-click on the code icon and add the following code on the next page to the bottom, then click the green tick on the top left:

 my_age=21;

Then add the following to the Draw Event:

 draw_text(100, 120, my_age);

Save and test.
You can add strings together using concatenation:

 first_name="Samuel";
last_name="Raven";
my_name=first_name+" "+last_name;

You can add strings together, like in the example above.
You can do mathematical operations on numbers:

 cakes=8;
cost=5;
total_cost=cakes*cost;

You can perform mathematical calculations on real numbers, for example, +, -, * and /.
GameMaker also allows use of other operators such as mod and div.
For example:

 a=20;
b=7;

Where:

 c=a mod b; would set c as 6; (b goes into a twice with a remainder of 6).

 c=a div b; would set c as 2 (b goes into c 2 times).
You can generate random numbers using a number of functions:

 number=irandom(20);

The above would give an integer (a whole number) between 0 and 20 inclusive (any number in the given range can be used).
To make testing easier, GameMaker: Studio will create the same sequence of numbers. You can override this setting by using the following code:

 randomize();

This only needs to be performed once, for example, in the room creation code.
You cannot add together numbers and strings directly. For example, this would create an error:

 example_text="My age is:";
my_age=17;
name_and_age=example_text+my_age; //This Line Creates an Error

You can convert a number to a string using this:

 name_and_age=example_text+string(my_age);

This works, as it converts the number to a string and adds to the other string.

 draw_text(50,50,name_and_age);

 "My age is: 17" at position 50,50.

Equally, you can change a string to a variable; however it will cause an error only when it doesn’t correspond to a number. For example “-5” and “2.45” consist of more than just numbers, but real() can process them fine.

 a="3.14 ben";
b=real(a);

Would set a b as 3.14.

 Extra Useful Code:

You can get a user to enter integer/string with this:

 age=get_integer("Age? ", 1);
name=get_string("Name? ", "Enter Your Name Here");

Note
These functions above should really be only used for testing purposes and are fine for beginners. As you advance, you should use get_integer_async and get_string_async. There is an example for each of these in the manual.

Variables can also be set to true or false (which also return as 1 or 0, respectively, but you should really always try to use the built-in constants, true and false).
There are also built-in constants and you can also define your own as macros.
You should now be aware of the two main types of variables: first, numbers, such as these:

 age=10;
pay_per_hour=2.17;
bonus=5000;

And second, strings, such as these:

 name="Ben";
level_name="Dungeon";
food="Cheese";
date="Twentieth";

Worksheet – Variables

 	1.Circle the correct definitions of these strings and numbers:

 "Ben" string / number

 "thirty-two" string / number

 32 string / number

 "56.5" string / number

 39.4 string / number

 "Ben is 21" string / number

 "London" string / number

 "First" string / number

 "nine plus 4" string / number
Using the following values:

 a=5;
b=10;
c=20;

Work out answers to the following, and then check them in GameMaker.

 a+b+c
c div a
(a*b)+c
b mod a
(b+c) div a

	2.Given the following variables:

 age=21;
month="April";
year="2006";
money=2716;
place=“London”;
time="2:30";
book="Harry Potter";
dollars=98.55;
day="Tuesday";

Which of the following is allowed? Write the correct code if wrong.

 details=book+" is "+string(age);
location=place+" at "+time;
date=year+month;
cash=age+money;
payment=day+dollars;
birthday=day+" "+month+" "+year;
celebrate_at=place+" "+string(age);
something=real(year)+money;
total=age*(money/real(year));

Worksheet – Variables – Answer Sheet

 	1.Circle the correct definitions of these strings and numbers:
	
 "Ben"
 string

	
 "thirty-two"
 string

	
 32
 number

	
 "56.5"
 string

	
 39.4
 number

	
 "Ben is 21"
 string

	
 "London"
 string

	
 "First"
 string

	
 "nine plus 4"
 string

Using the following values:

 a=5;
b=10;
c=20;

Work out answers to the following, and then check them in GameMaker.
	
 a+b+c
 35

	
 c div a
 4

	
 (a*b)+c
 70

	
 b mod a
 0

	
 (b+c) div a
 6

	2.Given the following variables:

 age=21;
month="April";
year="2006";
money=2716;
place="London";
time="2:30";
book="Harry Potter";
dollars=98.55;
day="Tuesday";

Which of the following is allowed? Write the correct code if wrong.
Note
In some cases, more than one answer is possible; for example, you could turn a string into a real and add to a real, or convert the real to a string and add to a string.

 details=book+" is "+string(age); correct

location=place+" at "+time; correct

date=year+month; correct

cash=age+money; correct

payment=day+dollars; incorrect – day+string(dollars);

birthday=day+" "+month+" "+year; correct

celebrate_at=place+" "+string(age); correct

something=real(year)+money; correct

total=age*(money/real(year)); correct

 Basic Projects

 	A) Make a program that takes in name, age, and date of birth and displays it on the screen.
1 Point for attempting this question - 1 Point for making a working example
1 Point for using good variable names and tidy GML formatting

	B) Make a program that takes in five numbers and calculates the average.
1 Point for attempting this question - 1 Point for using good variable descriptions

 Advanced Project

 	C) Make a program where you enter the date and the program displays correct tag, like 1st, or 23rd.
1 Point for attempting this question
1 Point for good formatting
2 Points for using their own data input system - 1 Point for displaying output nicely on screen

Projects Notes

 if (number mod 2==0)
{
 // will draw if number is even
 draw_text(50, 50, string(number)+ " is even");
}
 if (age==20)
{
 // will draw “You Are Twenty” if age is equal to 20
 draw_text(50,50, "You Are Twenty");
}

Conditional statements are used to check and compare variables (and other values such as instance ids, if sounds are playing, keypresses, mouse position and more).

End of Book Game Variables

The game that you’ll create at the end of the book will use a fair amount of global and instance variables.
They’ll be global variables for things such as the current level, score, cash, lives, health, and current weapon; and for weapon info such as the name of the weapon, its power, cost, and current quantity.
The asteroids and enemy will have their own custom health that will reduce when hit by a player’s bullet.
The player will control a ship and be able to use a keypress to fire the currently selected weapon, if that weapon has ammo available. If there is, it will create a bullet and reduce the weapon count.
Asteroids will have instance variables for its hp, speed, and direction.
When the game starts it will look for saved data from the last time the game was played. If there is data to be read, the game will load all of the variables into memory to be used.
Upon running the game, the player will be briefly presented with a loading splash screen, and then be taken to the level select screen. There will be a number of buttons to play levels 1 to 4. Each button will check what the current value of the global level is, in order to allow the player to only play levels that have been unlocked. When the player runs the game the first time, only level 1 will be unlocked, level 2 will only unlock once the player has successfully completed level 1, and so on with levels 3 and 4. When a player successfully completes a level, all the variables relating to the player and weapons will be saved, so upon running the game again the player can continue from where they left off.
A control object

 will display the vital variables at the top of the screen, using a combination of graphics and text. It will also monitor the values of health and lives; if the player runs out of health, having crashed into to many asteroids, the player will lose a life. If the player loses all lives, the game is over.
Think about what variables will be needed to accomplish this. Think of suitable names for the variables, and whether they should be instance or global variables.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_2

2. Conditionals

Ben Tyers1
(1)Worthing, West Sussex, UK

Conditional statements are used to check and compare variables (and other values such as instance ids, if sounds are playing, keypresses, functions, mouse position, and more).
Therefore, conditional statements will be used often. Having a strong understanding of them is very important. Conditionals can combine with other functions. Conditionals, or combinations of them, can be used to make things happen (or not happen). For example:
	Make a ball bounce when it hits a wall

	Make an enemy fire a bullet if it can see the player

	Play sound effects when an object loses some of its health

	Unlock a level if a score is met

	Make a player move if a mouse button or key is pressed

	Detect the middle mouse button to change a weapon

	See if a player has enough cash to buy an upgrade

	Check if a player is jumping or not

	Create an effect if a weapon is fired, etc.

Explained in the most basic sense, conditionals evaluate expressions, and will execute and perform actions accordingly. For example, taking the following values:

 a=3;
b=2;
c=5;

Would give the following results:
	
 (a+b)==c returns true.

	
 (a==b) returns false.

Note
Use == when using conditionals, rather than a single =.
Actual code will look like this:

 if (a+b)==c
{
 //do something if true
 show_message("true");
}
else
{
 // do something if false
 show_message("false");
}

You can add !, which means not. So ! is an expression that negates a logic sentence. So a true sentence turns into a false sentence

 , and a false sentence turns into a true sentence:
	
 !(a==b) returns true if a is not equal to b.

You can test if a sound is playing or not:

 if audio_is_playing(snd_background_music)
{
 //do something
}

You can test the pressing of a mouse button:

 if (mouse_check_button_pressed(mb_left))
{
 //do something
}

You can also check for keyboard presses, for example:

 if keyboard_check_pressed(ord('Q'))
{
 //Do something here
}

 ord

 is a function that identifies a keypress of letters and numbers in a way that GameMaker: Studio can understand. This is known as virtual keycodes

 , and also includes a series of constants starting with vk_.
Variables can also be set to true or false:

 answer=true;
alive=false;

so:

 if (answer)
{
 //Do Something
}

would perform any code between { and }.

 if (alive)
{
 //do something first part
}
else
{
 //do something second part
}

would not execute the first part, but it would execute the second part.
You can also use operands and mathematical comparisons when checking a conditional:

 a=3;
b=2;
c=5;

 (a < b) returns false
 , (c > b) returns true.
You can also use <= to check if a value is equal to or less than, and >= to check if a value is equal to or greater than.
You can use the following logic operators, && and and for and, || and or for or. For example, the following will execute code if A and the right arrow are pressed:

 if (keyboard_check(ord('A'))&& keyboard_check(vk_right))
{
 //do something if A and right arrow is pressed
}

The following will check either, so it will execute any code if A is pressed or the right arrow is pressed or both are pressed:

 if (keyboard_check(ord('A'))|| keyboard_check(vk_right))
{
 //do something if A or right arrow is pressed (or both)
}

 Worksheet

 – Conditionals
Given the following variables:

 first_name="Bob";
age=24;
city="London";
surname="Scott";
distance=48
seconds=50;
friend=true;
enemy=false;
time=7;
full_name="Bob Scott";
xx=50;

Determine if the following are true or false:

 (age>20) true / false

!(first_name=="Bob") true / false

 (distance<time) true / false

 (!friend) true / false

 (enemy) true / false

 ((first_name+" "+surname)==full_name) true / false

 (city=="Paris") true / false

 (time<seconds) true / false

Worksheet – Conditionals – Answer Sheet
Given the following variables:

 first_name="Bob";
age=24;
city="London";
surname="Scott";
distance=48
seconds=50;
friend=true;
enemy=false;
time=7;
full_name="Bob Scott";
xx=5;

Determine if the following are true or false:

 (age>20) true

!(first_name=="Bob") false

(distance<time) false

(!friend) false

(enemy) false

((first_name+" "+surname)==full_name) true

(city=="Paris") false

(time<seconds) true

 Basic Projects

 	A) Create a password system where the user has to enter a correct password to continue.

1 Point for a working example
	B) Display an object at a random position on the screen for one second. Player must then click where the object appeared. Award points depending on how close the player clicked.

2 Points for a working example

 Advanced Projects

 	C) Create a simple text input system using keypresses. Allow the user to enter their name. Then store as global.name when enter is pressed.

Project Note: Look up usage of keyboard_string

3 Points for a working example
	D) Make a game where the player selects a number at random from 1 to 100. Player enters a value (for example 25) and the game will tell you if you are too high, too low, or correct.

2 Points for a working example
2 Points for good code formatting

End of Book Game Conditionals
The game you’ll make at the end of the book will contain lots of conditionals, and they’ll be used for such things as the following:
	Detecting presses of arrow keys to move the player’s ship

	Selecting and firing weapons through keypresses

	Checking whether the player has enough ammo to fire a bullet

	Checking a player’s health and lives

	Allowing the purchase of a weapon in the shop if the player has enough money

	Checking if a level is unlocked and clickable

	Checking if an asteroid exists for the homing missile weapon to lock on to

	Checking asteroids and enemy health

	Reducing the alpha (transparency) of a sprite to make the weapon fade away

	Detecting mouse clicks on buttons, such as play game from the shop

	Deleting a save file if present

	Destroying a cloud object if it’s finished moving

	Allowing something to happen/not happen while something is true or false

Have a go at trying to plan out what some of the code for the above conditionals may look like.
All conditionals follow the same premise: if something is true, do something or don’t do something. Or if something is not true, do something or do not do something else.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_3

3. Drawing

Ben Tyers1
(1)Worthing, West Sussex, UK

GameMaker: Studio has a number of built-in functions for drawing. These include setting drawing colours, setting text fonts, and drawing geometric shapes.
In the most basic terms, drawing items uses an X Y positional system. X relates to pixels across from the top left, Y the number of pixels down from the to. Drawing can be relative to the room position or a view. This and the next section assume drawing in a standard room using default room settings without the use of views. See Figure 1-1 in Chapter 1 for an explanation of coordinates.
This section serves as an introduction to drawing basic shapes on the screen and familiarization with using X and Y coordinates.
Basic geometric shapes

 are useful for the following:
	Drawing a room border

	Creating pop-up boxes

	Creating room transitions

	Creating effects

	Drawing shadows of objects

Note
Due to YYG being a British company, the spelling used is colour, though color can also be used.

Drawing code must be placed in a Draw Event. There are several options available, but for now we’ll just use the main Draw Event. Figure 3-1 shows how to select this, and the options available.[image: A433334_1_En_3_Fig1_HTML.jpg]
Figure 3-1.Showing how to select draw event

 Colour constants

 have built-in values:	Colour
	Appearance
	RGB Value

	c_aqua
	
 [image: A433334_1_En_3_Figa_HTML.jpg]

	
 0,255,255

	c_black
	
 [image: A433334_1_En_3_Figb_HTML.jpg]

	
 0,0,0

	c_blue
	
 [image: A433334_1_En_3_Figc_HTML.jpg]

	
 0,0,255

	c_dkgray
	
 [image: A433334_1_En_3_Figd_HTML.jpg]

	
 64,64,64

	c_fuchsia
	
 [image: A433334_1_En_3_Fige_HTML.jpg]

	
 255,0,255

	c_gray
	
 [image: A433334_1_En_3_Figf_HTML.jpg]

	
 128,128,128

	c_green
	
 [image: A433334_1_En_3_Figg_HTML.jpg]

	
 0,128,0

	c_lime
	
 [image: A433334_1_En_3_Figh_HTML.jpg]

	
 0,255,0

	c_ltgray
	
 [image: A433334_1_En_3_Figi_HTML.jpg]

	
 192,192,192

	c_maroon
	
 [image: A433334_1_En_3_Figj_HTML.jpg]

	
 128,0,0

	c_navy
	
 [image: A433334_1_En_3_Figk_HTML.jpg]

	
 0,0,128

	c_olive
	
 [image: A433334_1_En_3_Figl_HTML.jpg]

	
 128,128,0

	c_orange
	
 [image: A433334_1_En_3_Figm_HTML.jpg]

	
 255,160,64

	c_purple
	
 [image: A433334_1_En_3_Fign_HTML.jpg]

	
 128,0,128

	c_red
	
 [image: A433334_1_En_3_Figo_HTML.jpg]

	
 255,0,0

	c_silver
	
 [image: A433334_1_En_3_Figp_HTML.jpg]

	
 192,192,192

	c_teal
	
 [image: A433334_1_En_3_Figq_HTML.jpg]

	
 0,128,128

	c_white
	 	
 255,255,255

	c_yellow
	
 [image: A433334_1_En_3_Figr_HTML.jpg]

	
 255,255,0

The following code can be used to set a drawing colour:

 draw_set_colour(c_blue);

Colour can also be set using hexadecimal values prefixed with a '$' character, which in GameMaker: Studio is in the format BBGGRR:

 draw_set_colour($2391FF);

Or you can set the colour by setting each colour channel:

 colour=make_colour_rgb(25,120,98);

You can also set the colour using RGB and saving this as a user-defined variable. Obviously, any value for make_colour_rgb should be in the range of 0 to 255. For example:

 my_colour=make_colour_rgb(240, 90, 100);
draw_set_colour(my_colour);
draw_circle(50, 50, 25, false);

The above example would draw the following on screen as shown in Figure 3-2, when the object is placed into a room; note the drawing code needs to be in a Drawing Event.[image: A433334_1_En_3_Fig2_HTML.jpg]
Figure 3-2.Showing circle having been drawn

Which will draw a red circle at position 50,50 with a radius of 25 and using false draws as a solid circle. If you were to use true it would only draw the outline.
This code would draw a line from position 100,100 to 200,200 in blue:

 draw_set_colour(c_blue);
draw_line(100, 100, 200, 200);

The following will draw a solid gray rectangle from 5,5 to 110,110. The last false sets the rectangle to be filled in. Using true would draw the outline only.

 draw_set_colour(c_gray);
draw_rectangle(5, 5, 110, 110, false);

Other drawing functions that you can use include (again true or false draws filled or border only), for example:

 draw_ellipse(x1, y1, x2, y2, true); //draw an ellipse with outline
draw_point(x, y); // draws a single pixel
draw_roundrect(x1, y1, x2, y2, false); //draws a solid rounded rectangle
draw_line_width(x1, y1, x2, y2, width);//draws a line of given width
draw_triangle(x1, y1, x2, y2, x3, y3, false); //draws a solid triangle

If you're looking for something more advanced, you can look up primitives in the manual. You can open the manual by pressing F1 in GameMaker: Studio.
Worksheet – Drawing

 	1.Draw each of the following on graph paper, and then write what the picture is. Then enter the GML code into a Draw Event of an object and see if you drew it correctly.

Picture 1:

 c_face_colour=make_colour_rgb(204, 153, 0);
draw_set_colour(c_face_colour);
draw_circle(50, 50, 40, 0);
draw_set_colour(c_white);
draw_circle(40, 40, 5, 0);
draw_circle(60, 40, 5, 0);
draw_set_colour(c_red);
draw_ellipse(30, 70, 70, 80, 0);

Picture 2:

 draw_set_colour(c_red);
draw_rectangle(30, 30, 90, 70, 1);
draw_rectangle(35, 40, 45, 50, 1);
draw_rectangle(75, 40, 85, 50, 1);
draw_rectangle(50, 50, 70, 70, 1);
draw_line(30, 30, 40, 10);
draw_line(40, 10, 80, 10);
draw_line(80, 10, 90, 30);

Worksheet – Drawing – Answer Sheet

 	1.Draw each of the following on graph paper, and then write what the picture is. Then enter the GML code into a Draw Event of an object and see if you drew it correctly.

Picture 1 is a smiling face as shown in Figure 3-3:[image: A433334_1_En_3_Fig3_HTML.jpg]
Figure 3-3.Showing face made with picture 1 code

Picture 2 is a house as shown in Figure 3-4:[image: A433334_1_En_3_Fig4_HTML.jpg]
Figure 3-4.Showing face made with picture 2 code

 Basic Projects

 	A) Draw a grid of black and white squares, suitable for playing chess or checkers on.

3 Points
	B) Create a floor plan of the classroom; include furniture, windows, and doors (use different colour for each).

3 Points

 Advanced Project

 	C) Draw a picture of the Mona Lisa or one of Piet Mondrian’s paintings using basic drawing.

4 Points
Note on projects for chapter 3:
It’s also possible to draw a sequence of connected lines using primitives.
For example:

 draw_primitive_begin(pr_linestrip);
draw_vertex(50,50);
draw_vertex(150,50);
draw_vertex(50,150);
draw_vertex(250,50);
draw_vertex(50,250);
draw_primitive_end();

 [image: A433334_1_En_3_Fig5_HTML.jpg]
Figure 3-5.Graph sheet for drawing on

Scale: 1 Square=___ Pixels

End of Book Game Drawing
The game will utilize some basic drawing for the HUD. There’ll be a space at the top of the screen for displaying current weapon, stats, and lives. The HUD will consist of a solid rectangle at the top, with another rectangle to display health. Lives will be drawn as images using the D&D Draw lives action. Text will be used to draw the weapon type, weapon strength, current ammo, total weapon fired (both current and all weapons), and cash.
In the bottom corner of the screen will be radar. The radar’s scope will be drawn using circles and lines.
There will also be a room border.
The advantage of using the drawing functions is that while testing, it allows you to quickly change the colour, size, and shape of the area being drawn. If you were to use a sprite or background, you’d have to constantly edit the graphics file.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_4

4. Drawing Continued

Ben Tyers1
(1)Worthing, West Sussex, UK

There are a number of other functions for drawing images and variables. These can be used separately or combined to create a number of effects. In any game, you’re likely to have a number of sprites and information you want to display on the screen.
For example, images

 can be used for drawing:
	The player

	Missiles and bombs

	Menu buttons

	Walls and platforms

Text can be used for:
	Scores and health

	Player names

	Game information

	Pop-up text

	Game timer

Note
Only try to draw the value of a variable if it has already been declared in the Create Event or prior to drawing it; failing to do so may cause an error. Built-in variables are OK to draw without being declared.

Create a new project in GameMaker: Studio, along with a new object.
To use drawing functions, they need to be placed within a Drawing Event. Create a Draw Event for the object you just created.

 draw_text(100, 100, "Hello World! ");

This will draw the Hello World! sentence in the room at position 100,100 – where this position is the top-left corner of this drawn text.
You can also include strings and reals, by converting the real to a string:

 age=20;
draw_text(100, 100, "I am "+string(age)+ " years old");

This will draw the text I am 20 years old sentence on the screen.
You can format text too:
	Use a different font

	Use a colour

	Have different horizontal and vertical alignment

Save the code you just wrote, and close the object. Create a new font using the Resources menu at the top of the screen. Give the font a name, something like font_Myfont, and select a better-looking typeface, for example, Calibri.
Resize the font to about 30 pixels, and make it bold, so the user can see it better. Now, save the font and return to your object’s Draw Event.

 Formatting functions

 need to be applied before drawing text, and they can be applied in any event; however, the best practice is to set drawing directly before drawing any text. This can be in code or by calling a script you’ve set up. For example you can set font, colour, and alignment:

 draw_set_font(font_Myfont); //Use this font for drawing text
draw_set_colour(c_blue); //Make the text blue
draw_set_halign(fa_center); //Center the text to the x position
draw_set_valign(fa_middle); // Center the text vertically to the y position

Note
When you apply formatting, it will remain in place for all objects; ideally you should set the formatting right before any drawing code.

Now, the text will be significantly bigger, since you created a bigger font. It will also appear blue, and its position will be changed because of the horizontal and vertical alignment settings

 .
Here are some more arguments that you can use with the alignment functions.
	For horizontal alignment: fa_left, fa_center, fa_right

	For vertical alignment: fa_top, fa_middle, fa_bottom

Notes:
	You can insert a new line using the # symbol.

	If you need an actual # symbol, you can do \#.

	If you want to draw a value of a variable that is not a string, use the string() function before the variable name, and this will convert it into a string. This will allow you to combine strings and real. If you are drawing just a real, you do not need to convert to a string, though it’s best practice to always convert reals to strings for drawing.

	When you apply drawing formatting, like font, colour, or alignment, it will apply to all drawing, including other objects, until you change to something else. For this reason it is a good idea to apply formatting right before you do any drawing.

For example, you do the following code in the Create Event of an object, obj_example:

 name="Ben";
age=28;
country="England";
food="Pizza";

Which would look like Figure 4-1:[image: A433334_1_En_4_Fig1_HTML.jpg]
Figure 4-1.Showing create event

You can then set a font, for example, as shown in Figure 4-2:[image: A433334_1_En_4_Fig2_HTML.jpg]
Figure 4-2.Setting a font

You can then apply the settings and draw the text on screen, by putting the following code in the Draw Event of obj_example:

 draw_set_font(font_example);
draw_set_halign(fa_center);
draw_set_valign(fa_middle);
draw_set_colour(c_red);
draw_text(300,200,"His name is "+name+".#He is "+string(age)+" years old.#He lives in "+country+".#His favourite food is "+food+".");

Create a room, room_example, and place one instance of obj_example in it. When run, you will see that shown in Figure 4-3:[image: A433334_1_En_4_Fig3_HTML.jpg]
Figure 4-3.Showing example output

There is a GMZ for this example in the resources: Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter
 4

 ➤ example 1

Create a new project. Load a sprite into the same project as before, and give it a practical name, something short like
 spr_test.

Our goal is to draw this sprite in a few different ways, so open up the Draw Event inside your object, and use this code to draw a normal sprite on the screen.

 draw_sprite(spr_test, 0, 100, 200);

This will draw the sprite spr_test, using sub image 0 and position 100, 200.
Sub image refers to which frame of the sprite to use. A sprite can have 0 (which can be useful tool in certain circumstances), 1, or multiple sub images. They can be used for animations, or to show a different image when facing different directions or performing an action like shooting or climbing a ladder.
If you run the game now, you will see your sprite at the 100,200 position, but what if we want to make the sprite look different? For extra formatting options, use the draw_sprite_ext function:

 draw_sprite_ext(sprite, sub image, x, y, xscale, yscale,
rotation, colour, 1);

The above is used when you want more flexibility in drawing the sprite. It may also be used to draw the default sprite. It will draw the sub image frame, at the given x and y location, while xscale and yscale set its size, 1 is 100% size, 0.5 would be half size, 2 would be double size. Rotation changes the angle of the image counterclockwise. Colour blends the image colour. An example using draw_sprite_ext(); would be the following, which would draw the sprite spr_enemy, sub image 0, at position 180,120, 50% larger, rotated 25’ counterclockwise with a reddened colour:

 draw_sprite_ext(spr_enemy, 0, 180, 120, 1.5, 1.5,
25, c_red, 1);

The colour blending

 can be used to great effect to give a visual reference of something happening. For example, blending with red can visualize that the enemy has been hit by a bullet.
If your sprite has just one sub image, and no other drawing actions, you don't need to add anything in the Draw Event as the sprite will be automatically drawn. If you are drawing text or want to draw multiple sprites from a single object and your object has a sprite, you can add this:

 draw_self();

If using draw_self(); you may want to manually set which sub image (if you have multiple sub images). You can do this using:

 image_index=1;
image_speed=0;

Which would set the sub image 1 as the sub image to be drawn. Sub images start with an index of 0. Setting the image speed to 0 prevents it from automatically animating.
You can also set the speed the sub images will play at using, for example:

 image_speed=2;

Which would set the animation speed at 2. The speed is a scalar value, so 0.5 will draw the same sub image for two steps, 0.25 for four steps, and that larger values like 2 will “skip” a sub image and only show every second sub image per step.
You can also set the angle of an image (its rotation). This can be a value between 0 and 359. For example:

 image_angle=45;

You can set an object moving, for example the following will make the object move to the right at a speed of 2:

 motion_set(0,2);

 draw_self()

 is the same as draw_sprite_ext() using only all the default image variables, which is the same as letting GM default draw (i.e., no draw event defined, so GM draws the given sprite). You can use draw_sprite_ext() with the default settings, for example:

 draw_sprite_ext(sprite_index, image_index, x, y, image_xscale, image_yscale, image_angle, image_blend, image_alpha);

You can change the variables to change how the image is drawn.
Note
Image blending works better with lighter sprites, and best with ones that are white.

For example, the following will stretch the sprite 80% on the length and by 120% on its height; rotate by 45 degrees and blend with the colour c_blue:

 draw_sprite_ext(spr_example, 0, 200, 200, 0.8, 1.2, 45, c_blue,1);

Figure 4-4 shows a sprite drawn normally, and with the code above:[image: A433334_1_En_4_Fig4_HTML.jpg]
Figure 4-4.Showing sprite drawn normally, and with draw_sprite_ext

Worksheet – Drawing Continued

 	1.True or False
	A)You can draw a value of a variable when using the draw_text function. T / F

	B)You should apply formatting changes before drawing the text. T / F

	C)Only the horizontal alignment of the text can be changed. T / F

	D)You can change the size and rotation of drawn sprites. T / F

	E)You cannot change the colour of drawn sprites. T / F

	2.What is the name of the function for advanced sprite drawing?

	3.Look up each of the following in the help manual, and write an example for each:

 draw_sprite_general
draw_sprite_tile
draw_text_transformed

	4.How would you do each of the following in GML:
	A)Draw the 4th sub image of a sprite

	B)Set the animation speed to 5

	C)Rotate the sprite 180 degrees

	D)Draw text in red size 20 in Arial.

	E)Draw text right justified at position 140,80

Worksheet – Drawing Continued – Answer Sheet

 	1.True or False
	A)You can draw a value of a variable when using the draw_text function. T

	B)You should apply formatting changes before drawing the text. T

	C)Only the horizontal alignment of the text can be changed. F

	D)You can change the size and rotation of drawn sprites. T

	E)You cannot change the colour of drawn sprites. F

	2.What is the name of the function for advanced sprite drawing? draw_sprite_ext();

	3.Look up each of the following in the help manual, and write an example for each:

 draw_sprite_general(spr_example, 1, 10, 10, 50, 100, 120, 150, 1, -1, 45, c_white, c_white, c_red, c_red, 0.5);
draw_sprite_tiled(spr_brick, 0, 25, 25);
draw_text_transformed(200, 200, "Hello World", 3, 0.8, 270);

	4.How would you do each of the following in GML:
	A)Draw the 4th sub image sprite image_index=3; draw_self(); or equally draw_sprite(sprite_index, 3, x, y);

	B)Set the animation speed to 5 image_speed=5;

	C)Rotate the sprite 180 degrees draw_sprite_ext(spr_example, 0, 100, 100, 1, 1, -90, c_white, 1); or equally image_angle=180; draw_sprite();

	D)Draw text in red size 20 in Arial Create a font font_example,

 draw_set_font(font_example);
draw_set_colour=c_red;

	E)Draw text right justified at position 140,80 draw_set_halign(fa_right); draw_text(140,90, "example");

Any other suitable code is also a valid answer

 Basic Projects

 	A) Make a program that draws a rotating sprite.
2 Points

	B) Make a program that writes a formatted message on the screen. Set a font type, colour, and alignment.
2 Points

 Advanced Projects

 	C) Make a program that draws randomly positioned cloud sprites moving to the left at various speeds, with varying size and opacity (alpha).
2 Points

	D) Get user to enter their name. Draw this on the screen, formatted, moving from the top of screen to the bottom. Destroy the object when it reaches the bottom
4 Points

End of Book Game Drawing Continued
The game will involve drawing various graphics and text.
Using text, for example:
	Basic stats on the level select screen

	Info on weapons in the shop

	A HUD in game to display stats and weapon info

	Displaying various variables for testing purposes

	Testing purposes

We’ll use a selection of different fonts and font sizes for the text.
Sprites will be used for:
	Buttons that the player clicks to start levels

	Buttons to quit and restart game

	Buttons

	Asteroids

	Ship

	Bonus items

	Lives image

	Radar blips

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_5

5. Keyboard Input and Simple Movement

Ben Tyers1
(1)Worthing, West Sussex, UK

When playing your game, players will need some method of interaction with the sprites on the computer screen. The main types you’re likely to use are keypress, mouse movement, and mouse buttons. This section deals with keyboard and mouse input.
You can use this input to make things happen, for example:
	Make a player move

	Fire a weapon

	Add text to string

	Create an effect

	Execute other GML code

Keypresses can be detected using GML in the
 Step Event

 . In its basic form, GML uses an expression and performs accordingly.
A very basic example that would perform while X is being pressed down:

 if (keyboard_check(ord('X')))
{
 //do something
}

Note
Keyboard letters, that is, 'X' must be in capital when used with ord.

In addition to keyboard_check, you can also use keyboard_check_pressed.
Note that there is a
 strong distinction

 between these two:
	
 keyboard_check checks whether the key is currently being pressed.

	
 keyboard_check_pressed checks whether the key has just been pressed.

Another option is detecting when a key is released:

 keyboard_check_released

As well as keypresses, you can detect mouse button presses, also in the Step Event for example. As with key_check, there is a difference between mouse_check_button, mouse_check_button_pressed and mouse_check_button_released :

 if (mouse_check_button(mb_left)) // Checks if left mouse button is being held down.
{
 // do something
}

You can move an object by changing its x and y positions. x is the position in pixels across the screen, and y is how many down.
For example, you could put the following into a Step Event:

 if (keyboard_check(ord('A'))) {x-=5;}
if (keyboard_check(ord('D'))) {x+=5;}
if (keyboard_check(ord('W'))) {y-=5;}
if (keyboard_check(ord('S'))) {y+=5;}

or

 if (keyboard_check(vk_left)) {x-=5;}
if (keyboard_check(vk_right)) {x+=5;}
if (keyboard_check(vk_up)) {y-=5;}
if (keyboard_check(vk_down)) {y+=5;}

You can also use Boolean values

 as multipliers, since a value of false will return 0, and a value of 1 will return true, but this can be a bit confusing at first. The following allows you to move an object with key presses. vk_right is the built-in constant for the right-arrow key; it will return as true when the right-arrow key is pressed. The same applies for the other arrow keys:

 x+=5*(keyboard_check(vk_right)-keyboard_check(vk_left));
y+=5*(keyboard_check(vk_down)-keyboard_check(vk_up));

See Reference ➤ Mouse, Keyboard and Other Controls ➤ Keyboard Input in the GameMaker: Studio manual for more keycodes.
You can also get the value of the last key that has been pressed with

 keyboard_lastkey

Using keyboard_lastchar example, you make a string of what has been typed.
In the Create Event of an object, obj_example put:

 typed="";

In the Step Event place:

 typed=typed+keyboard_lastchar;
keyboard_lastchar="";

And in a
 Draw Event

 put:

 draw_text(100,100,typed);

Put this object in a room and then test it.
There is an example for the above in the resources folder:

 Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter

 5

Worksheet – Key Presses and Simple Movement
Which of the following are correct? Write a correct version if incorrect.

 if (keyboard_check(vk_left))
if (keyboard_check(right))
if (keyboard_check(shift)&&keyboard_check(ord('X')))
if (keyboard_check(spacebar)||keyboard_check(vk_enter))
if (keyboard_check(ord('1'))
if (keyboard_check(ord('p')))
if (keyboard_check_released(vk_up))
if (keyboard_ pressed_check ('vk_backspace'))
if (keyboard_check('vk_right') || keyboard_check(ord('d')))

 Write code for the following:
 	If J is being pressed:

	If Left arrow is released:

	If Shift and U are being pressed:

	If 1 and 8 are being pressed:

	Enter has just been pressed:

Worksheet – Key Presses and Simple Movement – Answer Sheet
Which of the following are correct? Write a correct version if incorrect.

 if (keyboard_check(vk_left)) correct

if (keyboard_check(right)) incorrect if (keyboard_check(vk_right))
if (keyboard_check(shift)&& keyboard_check(ord('X'))) incorrect if (keyboard_check(vk_shift) && keyboard_check(ord('X')))
if (keyboard_check(spacebar)||keyboard_check(vk_enter)) incorrect if (keyboard_check(vk_space) || keyboard_check(vk_enter))
if (keyboard_check(ord('1')) correct

if (keyboard_check(ord('p'))) incorrect (keyboard_check(ord('P'))
if (keyboard_check_released(vk_up)) correct

if (keyboard_pressed_check('vk_backspace')) incorrect if (keyboard_check_pressed(vk_backspace))
if (keyboard_check('vk_right') || keyboard_check(ord('d'))) incorrect if (keyboard_check(vk_right) || keyboard_check(ord('D')))

 Write code for the following:
 	If J is being pressed: if (keyboard_check(ord('J')))

	If Left arrow is released: if (keyboard_check_released(vk_left))

	If Shift and U are being pressed: if (keyboard_check(vk_shift) && keyboard_check(ord('U')))

	If 1 and 8 are being pressed: if (keyboard_check(ord('1'))) && (keyboard_check(ord('8')))

	Enter has just been pressed: if (keyboard_check_pressed(vk_enter))

 Basic Projects

 	A) Make a movable object that can wrap around the screen, so if it goes off of the screen it appears on the opposite side.
2 Points

	B) Create a simple two-player game, one player using WSAD and the other with arrow keys. One player must chase the other player around the room.
4 Points

 Advanced Project

 	C) Create a maze that the player should navigate.
4 Points
Note: You can check for the presence of another object at a location using, for example:

 if place_meeting(x,y+4,obj_wall)
{
 //do something
}

End of Book Game Keypresses and Simple Movement
The game will use a combination of mouse and keyboard input.
Mouse input will be used solely to detect button presses.
The player will control their ship and select weapon type using the keyboard.
Keypresses will also be used for testing purposes, that is, changing a variable’s value such as global.level or health.
The arrow keys will be used for movement and number keys 1 through 4 for weapon selection.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_6

6. Objects and Events

Ben Tyers1
(1)Worthing, West Sussex, UK

This chapter describes using objects and reflects what has been learned in previous chapters.
Objects are the lifeblood of GameMaker

 : Studio. You use objects to do the following:
	Make moving sprites

	Insert code blocks of GML

	Combine with events to make things happen

	Detect collisions with other objects

	Detect keypresses and mouse input

Objects consist of events. You put your code (or Drag & Drop) in these events to create, change, detect, draw, or make things happen.
The main events you will use most often:

 Create Event

This event is executed when the object is created or at start of the room if already present. This event is only executed once. It is useful for defining variables, and for any other sort of setup associated with new instances of the object, for example:

 my_health=50;
lives=5;

 Mouse Events

These are great for things such as creating an object when the mouse button is clicked, or changing the sub image of a sprite when mouse is over it. This can be used to execute code/actions if the mouse condition is true. This can be done using GML code
 Mous

 e Events.
Also note: global mouse allows actions to be done if the mouse button is clicked anywhere on the screen, not just over the sprite of the object.
Figure 6-1 shows the
 Mouse Event options
 available:[image: A433334_1_En_6_Fig1_HTML.jpg]
Figure 6-1.Showing available mouse events

Mouse interaction can also be done in GML in a Step Event: for example, the following will play a sound when the left mouse button is released over the objects sprite:

 if position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left)
{
 audio_play_sound(snd_bounce,1,false);
}

The equivalent event

 for the above code would be Mouse Left released, and the code would be:

 audio_play_sound(snd_bounce,1,false);

 Destroy Event

Code/actions in this event will be executed when the object is destroyed. It's great for changing global variables or playing a sound when it's destroyed. For example, when an enemy object loses all its health and you destroy the object, this can also be achieved in code:

 instance_destroy();

In the Destroy Event you could put:

 score+=10;

It is worth noting that Destroy Events don't run upon changing rooms. This has several knock-on effects involving on-death effects and cleanup.

 Alarm Event

Code / actions here will be executed when the chosen alarm reaches 0.
Alarms lose 1 for each step of the game. The default room speed is 30 frames per second. So an alarm set for 60 will trigger after 2 seconds. You can set an alarm using GML and then use an
 Alarm Event

 to execute code when the alarm triggers.
For example, you could use this as controller for a splash_screen to show a sprite for 5 seconds:
In the Create Event:

 alarm[0]=room_speed*5;
score=0;
lives=5;
global.level=1;

And in an Alarm0 Event:

 room_goto(room_menu);

Alarm Events must be present for the corresponding alarm[] to count down.

 Draw Event

Your code / D&D actions for drawing should be put here, drawing text, shapes, or sprites.
It should be noted that wherever possible, only drawing code should be placed in a Draw Event.
If you have any code in a
 Draw

 Event you will also have to force the object draw the sprite, for example, using it in the simplest form:

 draw_self();

You could add to this, for example, which would draw the score at the top of the screen with the caption Score :

 draw_text(10,10,"Score "+string(score));
draw_self();

 Step Event

Code/actions here are executed every step (frame). At the default room speed this will be 30 frames per second. This is most likely where you’ll use the most code. An example would be check the value of health and reduce lives accordingly:

 if health<0
{
 lives-=1;
 health=100;
 if lives==0 room_goto(room_game_over);
}

There may times that you want to execute code before or after a main Step Event. For this you can use Begin Step or End Step accordingly.

 Key Events

Will execute code/actions if a Key Press Event executes code or actions if the specified key is being pressed / released. In this book keypress events will be mostly checked using GML code. However you could use Key Press Events. An example would be creating moving an object 4 pixels left each time the left arrow is pressed, as shown in Figure 6-2.[image: A433334_1_En_6_Fig2_HTML.jpg]
Figure 6-2.Showing an example using a keyboard event

Note
The one-time nature of Key Press and Key Release Events: they will not execute each step, instead only when the key is pressed or released.

If you want to make code execute while the key is being held done, use the Keyboard Event. Similarly for key releases, use the
 Key Release Event

 .
Detecting keypress and releases using GML code offers much more flexibility, and is the preferred method.
It’s important to note that the Key Press Event will only execute once, when the key is pressed.

 Collision Event

Code in this section is executed if two instances (or their masks) collide. For this purpose of this book the
 Collision Event

 will be used rather than GML.
You select which object to test a collision with, and any code or D&D inside that event will be executed if a collision is taking place.
An example would be setting up a collision between
 obj_player

 and obj_enemy, as shown in Figure 6-3.[image: A433334_1_En_6_Fig3_HTML.jpg]
Figure 6-3.Setting up a collision event

In this event only, other can refer to the colliding instance.
For example, based on Figure 6-3 above, the code could be:

 with (other) hp-=1;

Then take one point off of the colliding instance's hp value for each frame (step).

 Draw GUI Event

This event allows you to draw relative to the screen. It is mainly used for HUD elements, such as displaying the score, lives, bonuses, etc.
This draws independent of any view, so if the view moves, the GUI will not.
In most uses the GUI draws elements that cannot interact with the player.
Worksheet – Objects
Which event would you place the following:
(some have more than one method)
	Drawing the string "Score: "

	To do something when two objects touch each other.

	To change the background music when score is over 100.

	When your health is 0 (or below), lose a life.

	Destroy an object if it leaves the room.

	To check on left mouse button pressed anywhere in the room.

	To check for a keypress of "X."

	Do something when alarm5 reaches 0.

	To force an object to draw the object's sprite image.

	Change a variables value when health is less than 50.

	Some GML you want to run every step.

	When the mouse cursor leaves an object.

	Execute code when an objects is destroyed

Worksheet – Objects – Answer Sheet
Which event would you place the following:
(some have more than one method)
	Drawing the string "Score: " In a Draw Event.

	To do something when two objects touch each other. In a Collision Event, or using GML in a Step Event.

	To change the background music when score is over 100. In a Step Event.

	When your health is 0 (or below), lose a life. In a No More Health Event, or using GML in a Step Event.

	Destroy an object if it leaves the room. In an Intersect Room Boundary Event, or using GML in a Step Event.

	To check on left mouse button pressed anywhere in the room. In Global Left Mouse Button Event, or using GML in a Step Event.

	To check for a keypress of "X." Using a Key Press Event, or using GML in a Step Event.

	Do something when alarm5 reaches 0. Using Alarm5 Event. Assumes that an alarm[5] has been set and started.

	To force an object to draw the object's sprite image. In a Draw Event put draw_self().

	Change a variable’s value when health is less than 50. In a Step Event.

	Some GML you want to run every step. In a Step Event.

	When the mouse cursor leaves an object. Using a Mouse Leave Event or using GML in a Step Event.

	Execute code when an object is destroyed. Using a Destroy Event or using GML in a Step Event.

 Basic Projects

 	A) Draw the health of a player as text in red above a player when health is less than 20. Set it up so P and L change the value of health.
2 Points

	B) Make some text change colour, at random, each time the space bar is pressed.
2 Points

	C) Create an object that changes colour when the mouse is over and when clicked on the object. Use a different sub image for each colour.
2 Points

 Advanced Project

 	D) Create a mini game that randomly displays three objects that move in random directions when created and when clicked by the player. If objects go off side of screen, wrap around screen. Player is to click objects to get points and display points onscreen.
4 Points

End of Book Game Objects
A number of objects will be used in the end game, and they will be for this:
	A splash screen object to load / define variables

	Menu and shop buttons

	Player’s ship

	Bullets

	Asteroids

	Bonus objects

	Control objects for spawning asteroids

	Control object for a messaging system

	Parent objects for asteroids and bullets (makes coding easier)

Each of these objects will serve a different purpose, and as such will be programmed accordingly.
Think about a few of these objects. Try to work out some variables that each of these objects will need. What will they do; and importantly, when and how will these objects interact with each other and the player?

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_7

7. Sprites

Ben Tyers1
(1)Worthing, West Sussex, UK

Sprites are images or sets of images that are assigned to objects. Sprites are images or multiple images. Multiple images can be used, for example, to create animations, or a change of image when a mouse cursor is over it. An example animation would be a character running. An example of a single image would be a menu button. Sprites are the graphic element of an object, which are displayed in game. There are lots of ways you can change how a sprite is drawn, which can be used to create various effects. Sprites can be used for the following such things:
	Displaying player and enemies

	Missiles and weapons

	Walls and platforms

	Menu buttons

	Upgrade buttons

	Lives

	Moving objects

	Collectibles

You set an origin

 for a sprite. It is this point that will be used for displaying onscreen at an X and Y location. It is also worth noting that this point is also where transformations such as scaling and rotation are based around. It should be chosen carefully according to what the sprite will be used for. Figure 7-1 shows the sprite origin set as center.[image: A433334_1_En_7_Fig1_HTML.jpg]
Figure 7-1.Showing sprite origin set
 at center

Create a new object, obj_coin, and click New as shown in Figure 7-2.[image: A433334_1_En_7_Fig2_HTML.jpg]
Figure 7-2.Creating a new object and loading

 sprite

Next, name this sprite spr_coin and click Load Sprite. This step is shown in Figure 7-3:[image: A433334_1_En_7_Fig3_HTML.jpg]
Figure 7-3.Naming spri

 te and loading images

Next load all the coins sprites. These can be found in the resources Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter
 7
 . Click the first image, then scroll down to the last image and click this while holding shift. This will select all images as shown in Figure 7-4. Click Open to load them.[image: A433334_1_En_7_Fig4_HTML.jpg]
Figure 7-4.Loading in coin strip

This coin is provided as a strip that contains all sub images in a single image. To load this create a sprite, spr_coin, click Edit ➤ File and the Create From Strip. Load in as shown in Figure 7-4:
Set the origin to center, and click OK twice to close all windows.
Sprites with multiple sub images may also be in a strip format. To load a strip, create a new sprite, click Edit, File, and Create From Strip, select the appropriate sprite strip, and apply settings as needed.
Note that all sprites have an origin point; this can be considered the point where the sprite will be “pinned” to the instance in the room. The origin point of the selected sprite will match with the chosen position.
Next create an object, obj_player, and assign the player sprite from the resource folder.
Create a
 Step Event

 , and put in the following code. This code will detect keypresses of A, W, S, and D and change the X and Y location of the instance in the room. This will make the sprite appear to move.

 if keyboard_check(ord("W")){y-=3;}
if keyboard_check(ord("A")){x-=3;}
if keyboard_check(ord("S")){y+=3;}
if keyboard_check(ord("D")){x+=3;}

Open
 obj_coin

 again, and put the following code into a Collision Event with obj_player, as shown in Figure 7-5.[image: A433334_1_En_7_Fig5_HTML.jpg]
Figure 7-5.Adding code to a collision event

 x=irandom_range(16,room_width-16);
y=irandom_range(16,room_height-16);

The above code will chose a random value with the given range. 16 is used so that the coin does not appear over the room’s border.
Create a room,
 room_game

 , set the dimensions as 800 by 400. Place one of each object in the room. Now test this game.
An example GMZ for this available in the resources at: Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter
 7

For other useful code, see the manual for usage; the first three are useful for checking a value as well as setting it.
	
 image_angle – Can be used to set the direction (rotation of a sprite).

	
 image_speed – How quickly a sprite’s sub images animate.

	
 image_index – Set a specific sub image.

	
 sprite_get_number(index) – Returns how many sub images a sprite has.

	
 draw_sprite_ext(); - Allows drawing with additional settings.

For example, you may a have a different sprite for the character moving left and moving right. These could be sub images 0 and 1. You can set the sub image that is being shown by using image_index, for example, when the player is moving left:

 image_index=0;

And when it’s moving right:

 image_index=1;

Remember you can set image_speed to 0 to set the frame so it doesn't animate away on its own; do this in the object’s Format for Event or change the above code to:

 image_speed=0;
image_index=0;

And when it’s moving right:

 image_speed=0;
image_index=1;

 Worksheet – Sprites

 	1.Cross out the wrong answers.
	Sprites are images that can be used inside a game.

	The only way to create a sprite is to draw it using GameMaker: Studio.

	Sprites must be manually drawn.

	Sprites can be animated using more than one frame/sub image.

	All sprites have an origin point.

	All sprites must have precise collision checking enabled.

	You can assign a sprite to any object in the game.

	New sprites can be created from inside the game.

	2.What is an origin point in a sprite?

	3.Correct the mistakes in the f

 ollowing GML.

 instance_destroy;
imageIndex=2;
image_speed=five;

Worksheet – Sprites – Answer Sheet

 	1.Cross out the wrong answers.
Sprites are images that can be used inside a game. True
The only way to create a sprite is to draw it using GML. False
Sprites must be manually drawn. False
Sprites can be animated using more than one frame/sub image. True
All sprites have an origin point. True
All sprites must have precise collision checking enabled. False
You can assign a sprite to any object in the game. True
New sprites can be created from inside the game. True

	2.What is an origin point in a sprite?
The point where a sprite will be drawn

	3.Correct the mistakes in the following GML.

 instance_destroy; instance_destroy();

imageIndex=2; image_index=2;

image_speed=five; image_speed=5;

Basic Projects

 	A) Draw an animated character sprite that animates when moving right.
2 Points

	B) Set it so the coin animates through its cycle 4 times, then jumps to a new position and starts the cycle again.
2 Points

	C) Make simple top-down maze game with a character that points in the direction the player is moving.
3 Points

Advanced Project

 	D) Draw a sprite that changes perspective (size) depending on the y location.
3 Points

End of Book Game Sprites
Sprites will be used for:
	Asteroids, one for each size

	Menu button showing locked or unlocked

	Various game buttons

	Player ship

	Bullets

	Bonus objects

	Radar blips

Sprites required for the game are included in the resources download, but have a go at making your own. There are several graphics programs for creating sprites and images. A selection:
	GIMP

	Draw Plus Starter

	InkScape

	Paint.net

	Pyxel Edit – Although $9, some consider this the best program for sprite creation

There’s also a few programs designed for sprite editing / generation, which are worth a mention:

 http://www.piskelapp.com/
 (online)

 http://esotericsoftware.com/
 (download)

 http://gaurav.munjal.us/Universal-LPC-Spritesheet-Character-Generator/
 (online)

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_8

8. Health, Lives, and Score

Ben Tyers1
(1)Worthing, West Sussex, UK

Most casual games will have some sort of health, lives, or score system. Players usually start off with full health and lose some of it when they get hit by an enemy bullet, land on spikes, or collide with something they shouldn’t. Once a player loses all their health, they usually lose a life and are transported back in the level to a re-spawn site. Different games have different goals, though with a lot of them the aim is to achieve the highest score possible. Fortunately GameMaker: Studio makes it really easy to set up such a system described above.

 health, lives, and score are built-in global variables. However, you don’t need to put “global.” before them.
You would use global. when using your own variables that you want multiple objects to be able to use, for example: global.level, global.hp.
Note: health, lives, and score are basically global variables

 ; as such it should only be used for one instance, usually the player. If you need to monitor health, lives, or score from more than one object, you’ll need to create your own instance or global variables, for example, my_health or global.enemy_1_health.
Most games you create are likely to have a number of lives and / or health, and a score to keep track of. You’re not obliged to use the built in variables. Lots of casual games have an aim of trying to get the highest score.

 health, lives, and score can be drawn on the screen in text or graphically.
At the start of the game you’ll want to set the initial values for these (or load them as saved from a previous play). An example is shown below.

 score=0;
health=100;
lives=5;

Note

 health starts with a default value of 100; however, I prefer to set it so I may change it later, depending on what’s required for the game.

 Health

You can treat all of these: health, lives, and score the same as you would any variable; you can test, change, and draw these variables.
Some examples:
In the
 Collision Event

 of enemy bullet with the player.
Note
it is very important to destroy the bullet at this point, to prevent health being reduced by 1 each step / frame.

For example, in a bullets Collision Event with a player object:

 health-=1;
instance_destroy();

Or if you are doing the
 Collision Event

 within the player object:

 health-=1;
with (other) instance_destroy();

In the
 Collision Event

 with a health bonus object. As before, destroy the health bonus straightaway to prevent it being added every step:

 health+=5;
with (other) instance_destroy();

Note

 health is not capped at 100. You can make use of this depending on what your game requires. For example, you could test if it’s greater than 100 and cap at 100, or create an extra life if it reaches a determined value.

In a
 Step Event

 you may want to constantly check the health and lives variables:

 if health<=0
{
 lives-=1;
 health=100;
}
if lives<=-1
{
 room_goto(room_game_over);
}

You can draw the value health just as you would any other real variable.
There is also a built-in Drag & Drop action for drawing a health bar, Draw the
 health bar.

 Figure 8-1 shows an example setup.[image: A433334_1_En_8_Fig1_HTML.jpg]
Figure 8-1.Drawing health bar as an image

x1 is the X location at the top left of the health bar
y1 is the Y location at the top left of the health bar
x2 is the X location at the bottom right of the health bar
y2 is the Y location bottom right of the health bar
Note
The example in Figure 8-1 uses the Draw GUI Event, not the Draw Event. As mentioned in a previous chapter, this event draws independently of the view and is generally used for HUD elements such as the score, health, lives, etc.

 Lives

As with other variables, you can test, change, and draw the lives variable. Draw score:

 draw_text(50,50,lives);

You can also draw lives graphically using the in-built Drag & Drop action. There is no single function to do this in GML. This example assumes sprite spr_lives has been loaded in, and this is available at Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter
 8
 .
It’s OK to use D&D if you need to, as shown in Figure 8-2.[image: A433334_1_En_8_Fig2_HTML.jpg]
Figure 8-2.Drawing lives as separate images

If you wanted to draw lives as images manually you could use the following, where
 spr_lives

 is the image you’ve created. This will draw the sprite at 50 pixel spacing. This assumes that the variable lives has already been set, though not essential as it is a built in variable:

 for (var i = 0; i < lives; i += 1)
{
 draw_sprite(spr_lives,0,50+(50*i),50);
}

This will space out the lives at 50 pixel intervals; this will look like what is shown in Figure 8-3.[image: A433334_1_En_8_Fig3_HTML.jpg]
Figure 8-3.Showing lives drawn using code

 Score

You can draw the score using GML, for example:

 draw_text(30,30, "Score "+string(score));

You may also wish to display this graphically, for example, to indicate how many points are needed until you reach the next level. This will depend on the style of game you’re creating.
For example, you have a game that levels up after every 1000 points. The following code would draw a bar at the top of the room, visually displaying how many points the player needs for the next level and their current level. This example assumes a room width of 800 and a font
 font_score

 set up an Arial size 20.

 Step Event

 level=(score div 1000)+1; //calculate level
bar_width=(score mod 1000)*.8; //make bar fit room width of 800

 Draw Event or Draw GUI Event

 //draw background of bar
draw_set_colour(c_red);
draw_rectangle(1,1,800,40,false);
//Draw Current Level
draw_set_colour(c_green);
draw_rectangle(1,1,bar_width,40,false);
//Draw Over Hud
draw_set_colour(c_blue);
draw_rectangle(1,1,800,40,true);
//Draw Current Level in Text
draw_set_font(font_score);
draw_set_colour(c_white);
draw_set_halign(fa_center);
draw_set_valign(fa_middle);
draw_text(400,25, "Level="+string(level));

 Worksheet

 – Lives, Health, & Score
True or False?
	A)
 lives can be set to a maximum of 10. T / F

	B)When health == 0, lives will automatically decrement by 1. T / F

	C)Health bar can be drawn in any colour. T / F

	D)
 lives can be drawn as integer or sprites. T / F

	E)
 health can have a negative value. T / F

	F)
 score can be saved and loaded from an INI file. T / F

Correct any mistakes in the following:
	A)
 lives=+1;

	B)
 if (global.score>1000)

	C)
 if score>1000 room_goto(room_level_2);

	D)
 draw_healthbar(50, 50, 550, 100, 50, c_blue, c_red, c_yellow, 1, yes, no);

Worksheet – Lives, Health, Lives, & Score – Answer Sheet
True or False?
	A)
 lives can set to a maximum of 10. F

	B)When health == 0, lives will automatically decrement by 1. T / F – If you want something to happen when health runs out (reaches 0) you’ll need to program it in

	C)Health bar can be drawn in any colour. T

	D)
 lives can be drawn as integers or sprites. T

	E)
 health can have a negative value. T

	F)
 score can be saved and loaded from an INI file. T

Correct any mistakes in the following:
	A)
 lives=+1; Though technically correct, this will reset lives to a value of 1. To increment lives you would use lives+=1;

	B)
 if (global.score>1000) score is already a globally accessible variable, using the prefix global is not required and could cause confusion.

	C)
 if (score>1000) room_goto(room_level_2); This will work fine, though it’s good practice to use { code } after a conditional for example:

 if score>1000
{
 room_goto(room_level_2);
}

	D)
 draw_healthbar(50, 50, 550, 100, 50, c_blue, c_red, c_yellow, 1, yes, no); Use true and false instead of yes and no

 Basic Projects

 	A) Draw a health bar across the whole of the top of the game window, draw lives under this as images. Allows keys Q and W to change health value, and A and S to change lives.
2 Points

	B) Use GML that draws lives as images, using an animated sprite. Use GML, not the built-in Draw Lives action.
2 Points

 Advanced Projects

 	C) Draw a bar at the top of the screen that draws the current score mod 1000. For each 1000 score increase the level by 1. Also draw score and level as text.
3 Points

	D) Create 4 level buttons that each become clickable for every 1000 score points. Show they are clickable using different sub images. Also change sub image when mouse over and when clicked.
3 Points

End of Book Game Health, Lives, & Score
The main player object will make use of the built-in variables health and lives. A global variable global.cash will be used to assess the players progress, which will also allow the use of this variable in a shop where the player can buy weapons.
A control object will be used to monitor player stats and draw this at the top of the screen.

 health and lives will be drawn graphically at the top of the game window.
Each asteroid and enemy ship will use instance variables for its health.
Think about what code will be needed to draw, monitor, and change these variables. What have you learned in previous sections that you can apply here?

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_9

9. Mouse

Ben Tyers1
(1)Worthing, West Sussex, UK

Mouse interaction is valuable in quickly providing inputs into a game. Object movement and selection is more intuitive and doesn’t require memorization that may be required with keyboard interaction. This section serves as an introduction to using the mouse.
Mouse input

 can be used for:
	Clicking on menu buttons

	Creating a location to move an object to

	Making an object move

	Using the middle button to change weapons

	Making an object point in the direction of the mouse

	Detecting screen presses (in iOS / Android)

	Displaying mouse cursor

	Display stats of a clicked object

About 99% of the time you'll want to constantly check the position of the mouse or mouse button interaction. This is achieved by placing your code at the
 Step Event

 .
As with keyboard interaction, you can test the mouse just being clicked, being held down, and being released, for example:

 if mouse_check_button(mb_left) // check for being held down

 {

 //do something

 }

 if mouse_check_button_pressed(mb_left) //activates one time only when button is pressed

 {

 //do something

 }

 if mouse_check_button_released(mb_left) // activates one time only when button is released

 {

 //do something

 }

The same logic applies

 when using Mouse Events.
The position of the mouse can be found using:
	
 mouse_x the x position of the mouse in the room.

	
 mouse_y the y position of the mouse in the room.

For mouse buttons actions you can use, for example:

 if (mouse_check_button(button))

Where button can be any of the following: mb_left, mb_right, mb_middle, mb_none, mb_any
	
 mb_middle means middle button

	
 mb_none means no button

	
 mb_any means any mouse button

You can also use the Mouse Events instead of GML, though using GML will provide you with more flexibility.
Using GML you can make things happen when a mouse button is pressed. So the following, when placed in the
 Step Event

 , would make the object move slowly to the mouse’s position when the left button is pressed:

 if (mouse_check_button(mb_left))

 {

 movement_speed=25; //Higher Number Makes Slower Speed

 target_x=mouse_x; //or other target position

 target_y=mouse_y; //or other target position

 x +=(target_x-x)/ movement_speed; //target position-current

 position

 y +=(target_y-y)/ movement_speed; //target position-current

 position

 }

An example GMZ for the above is available in the resources at: Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter
 9

You can also detect movement of the mouse wheel (if present):

 if (mouse_wheel_up())

 {

 weapon+=1;

 }

You can detect scroll down in a similar manner:

 if (mouse_wheel_down())

 {

 weapon-=1;

 }

You can also set the cursor to a sprite of your choice:

 cursor_sprite=spr_name;

when
 spr_name

 is a sprite that exists.
You can hide the default windows cursor using:

 window_set_cursor(cr_none);

There are a number of built-in cursor types, see window_set_cursor in the manual for more info. This can be used (as with cursor_sprite above) with great effect in a game. Changing the cursor depending what the player is doing or what objects are at the cursor can give your player extra info, that is, making it clear an instance can be interacted with.
The following code will detect if the mouse is over an object and add to the score, which would increment by 1 every step if placed in a Step Event:

 if (position_meeting(mouse_x, mouse_y, object_name))

 {

 score+=1;

 }

The following code would check that the mouse is over the object’s sprite and the left mouse button is released. The code will then play a sound
 snd_bounce

 , with a priority of 1 with looping set as false.

 if position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left)

 {

 audio_play_sound(snd_bounce,1,false);

 }

There are also a number of
 Mouse Events

 that can be used instead of code, which are perfectly viable options; these are shown back in Figure 6-1. As with GML code, you can check for a button being held down, just pressed, or released (and you should understand the difference by now):

 Worksheet

 – Mouse Movement
Explain what each of the following code blocks do, when placed in the Step Event:

 1)
if (mouse_check_button_pressed(mb_left))
{
 audio_play_sound(snd_beep, 10, false);
}
2)
if position_meeting(mouse_x, mouse_y, obj_button)
{
 show="mouse over";
}
else
{
 show="not over";
}
3) x = mouse_x
 y = mouse_y
 repeat (10)
 {
 instance_create(x, y, obj_smoke);
 }
repeat (3)
 {
 instance_create(x, y, obj_fire);
}

Worksheet – Mouse Movement – Answer Sheet
Explain what each of the following code blocks do, when placed in the Step Event:
	1)This will check for the left mouse button; when pressed it will play the sound snd_beep

	2)This will set the variable show to mouse over when mouse cursor is over object, or not over otherwise

	3)This would create 10 instances of obj_smoke and 3 instances of obj_fire at the mouse location

 Basic Projects

 	A) Create an object that follows only the mouse’s x position.
2 Points

	B) Make the mouse cursor change when it’s over an object.
2 Points

	C) Draw the mouse’s x and y positions in the bottom left of the screen. Remember to use the font and drawing colour and formatting.
2 Points

 Advanced Projects

 	D) Create a sound board (lots of buttons each of which plays a sound when clicked with the mouse). Draw text over each button, explaining what sound it plays.
2 Points

	E) Create an object that can be moved around the room with the mouse.
2 Points

End of Book Game Mouse Movement
Although there’s minimal mouse interaction with the game made in this book, other games that you make may be mouse intensive. Mouse interaction in this game is only used for button presses.
However, games made for the Android platform will mostly likely be wholly mouse based (a screen press on a tablet device is the equivalent of a mouse click). GameMaker: Studio allows you to detect taps, double taps, and screen swipes. It’s also possible to create virtual buttons for different parts of the screen, which can, with a bit of coding, allow the taps to be recorded as Keyboard Pressed Events. Virtual keys map to regular Keyboard and Keyboard Released Events as well. This is an awesome method, especially if you’re porting a game that was originally designed to run on a desktop platform.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_10

10. Alarms

Ben Tyers1
(1)Worthing, West Sussex, UK

Alarms are useful for many timed activities or abilities that are temporarily available. Timers can enhance gameplay by creating urgency in completing an action before an ability disappears. This section covers the basics of alarms. Alarms can be used to make something happen (or stop happening) when an alarm triggers. Alarms are set to a starting value when the alarm is created.
Alarms can be used for the following:
	Displaying a splash screen for a while

	Making a bomb explode an amount of time after firing

	Changing the player to invincible and then back again

	Display a bonus object for a set amount of time

	Create or move objects after an amount of time

	Create basic AI systems

	Limiting how quickly a player can shoot

An alarm can be set, for example, using, using the default room_speed of 30:

 alarm[0]=60; //set alarm at 2 seconds

As you may wish to change the default room speed, a better code would be to use the following approach in all your alarms:

 alarm[0]=2*room_speed; //set alarm at 2 seconds

By using the above method you can change the
 room_speed
 as needed without messing up your timings.
In total you can have 12 alarms for each object:

 alarm[0]

 alarm[1]

....

 alarm[10]

 alarm[11]

When an alarm activates (alarm goes off / runs out of time) you can detect this using an
 Alarm Event

 , which can be selected as shown in Figure 10-1:[image: A433334_1_En_10_Fig1_HTML.jpg]
Figure 10-1.Showing alarm events

You can add to an existing alarm, for example, adding 1 second:

 alarm[0]+=1*room_speed;

Alarms run until they reach 0, and then count one more to -1, so you can stop an alarm by setting it to -1.
Here are some examples:
Moving to another room, room_menu after 5 seconds. You could use this in a room set up as a splash screen. For example, this could be used to display your company's logo or a graphic of some description.

 Create Event

 :

 alarm[0]=5*room_speed

 Alarm[0] Event:

 room_goto(room_menu);

Delaying how quickly a player can shoot, the code below would limit the rate of fire to once every 2 seconds:

 Create Event

 :

 can_shoot=true;

When player shoots, by pressing the Z key:

 if can_shoot && keyboard_check(ord('Z'))
{
 //bullet creation code here
 can_fire=false;
 alarm[1]=2*room_speed;
}

 Alarm [1] Event:

 can_shoot=true;

As you can see, Alarm Events are a very useful commodity allowing us to set how often something can happen or how long something lasts.
Note
Be careful about holding alarms open by constantly setting them. Use a flag to prevent this, as was done with can_shoot in the example above.

 Worksheet

 – Alarms

 	1.What are alarms?

	2.How do you start an alarm?

	3.What event would you use to execute code when alarm[4] goes off?

	4.How many steps for an alarm set to 7 seconds with a room speed of 30?

	5.How many alarms can a single object have?

	6.How would you decrease an alarm by 45 steps?

	7.How would you make a player invincible for 10 seconds?

	8.How would you spawn an enemy every 15 seconds, then every 14 seconds, then every 13 seconds…? You should set a minimum for this so that the time doesn't go to 0.

Worksheet – Alarms – Answer Sheet

 	1.What are alarms?

 Alarms are timers that can be programmed to allow something to happen.

	2.How do you start an alarm?

 In GML, alarm[number]=time;

	3.What event would you use to execute code alarm[4] goes off?
The Alarm4 Event.

	4.How many steps for an alarm set to 7 seconds with a room speed of 30?
210 steps

	5.How many alarms can a single object have? Up to 12. They go from 0 through to 11.

	6.How would you decrease an alarm by 45 steps?

 alarm[0]-=45;

	7.How would you make a player invincible for 10 seconds?
Set invincible to true: invincibility=true, create an alarm: alarm[0]=10*room_speed, reset invincible back to false when alarm triggers: invincibility=false;

	8.How would you spawn an enemy every 15 seconds, then every 14 seconds, then every 13 seconds…?

 Create Event:

 time=14;
alarm[0]=time*room_speed;

 Alarm 0 Event:

 instance_create(50,50,obj_enemy);
if time>1 alarm[0]=time*room_speed else alarm[0]=room_speed;

 Basic Projects

 	A) Create a program that changes the drawn text every 5 seconds, and use a list of 10 strings.
2 Points

	B) Create a program with an object that moves with a speed of 1 and increases the speed of the object every 5 seconds. Also make the object wrap around the screen.
2 Points

	C) Create a program that plays a random sound every 4 seconds.
2 Points

 Advanced Projects

 	D) Create a simple system that allows the player to shoot bullets at a maximum rate of 1 bullet every 2 seconds.
2 Points

	E) Create an enemy AI that changes direction randomly every 5 seconds. Make the enemy object’s sprite point in the direction that it is traveling. Also make the enemy object wrap around the screen. Set the object to shoot a bullet in the direction it is traveling every 8 seconds.
Note: You can assign an instance’s value to a variable when you create it, and then set other variables for that instance. For example:

 ball=instance_create(x,y,obj_ball);
ball.speed=2;
ball.heatlh=50;

End of Book Game – Ten Alarms
The game will use a few alarms. They’ll be used for:
	Limiting how quickly a player can shoot bullets

	Showing the splash screen

	Showing message on screen

	Start fading bullets after a set amount of time

Alarms are great for changing a value from true to false. By combining two alarms you can change from true to false and then back again. This type of system will be used to display important messages on the screen. There will be an object for monitoring these messages. When the object receives a message, it will display it onscreen. If the object receives more than one message at a time, it will cue the messages and display them with a gap in between. This is achieved by using two different alarms in the one object.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_11

11. Collisions

Ben Tyers1
(1)Worthing, West Sussex, UK

When planning on motions or deciding actions

 , it is often critical to see if collisions occurred with other instances within the game world. Put simply, collisions are what happens when two instances (with sprites or masks assigned) collide (their sprite or mask overlaps) with each other.
You use this to check if an instance is in collision with another, for example, a character walking on a platform in a platformer game or an enemy being hit by a player’s bullet.
For example, here are things that can be made to happen when a collision occurs:
	destroy an object

	create an effect

	play a sound

	change score, health, or lives

	make something start or stop moving

	create a new object

Most of the time it’s sufficient to use the Collision
 Event

 . You can create a Collision Event as shown in Figure 11-1; just select the object you want to check a collision with.[image: A433334_1_En_11_Fig1_HTML.jpg]
Figure 11-1.Setting up a collision event

There are a number of different ways to use GML to check

 for a collision.
For example, check whether it does not collide with another object, returning true or false:

 place_empty(x, y);

As above, but checks for solid objects only:

 place_free(x, y);

You can check for a specific object, which uses the sprite as base to check for overlap:

 place_meeting(x, y, object);

You can check a single pixel location to see if an object is in that position, for example to check for a specific instance:

 position_meeting(mouse_x,mouse_y,id);

You can destroy all objects at a location:

 position_destroy(x, y);

Or the following, which finds the instance ID:

 instance_position(x, y, obj);

For the purpose of this level 1 book we’ll mainly be using the in-built Collision Event for all object collisions (except for buttons that detect a mouse click), but feel free to experiment with GML. Project files and resources are available in the download resources folder.

 Coding examples: Example 1: Bouncing ball

Create a solid wall obj_wall, as a 32x32 pixels sprite-coloured solid blue, and a player object obj_ball as a smiley face also 32x32:
Set the origin

 at the center for each sprite shown in Figure 11-2:[image: A433334_1_En_11_Fig2_HTML.jpg]
Figure 11-2.Creating two objects, assigning sprite, and setting as solid – step 1

In Create Event of obj_ball object put:

 direction=(irandom(360));
speed=5;
image_speed=0;

This will make the object start moving in a random direction at a speed of 5.
Open up object obj_ball, make a Collision Event with obj_wall and put:

 move_bounce_all(true);

This step is shown in Figure 11-3:[image: A433334_1_En_11_Fig3_HTML.jpg]
Figure 11-3.
 Adding GML

 to a collision event – step 2

Create a room and line the border with obj_wall and place one of obj_ball in the middle, as demonstrated in Figure 11-4.[image: A433334_1_En_11_Fig4_HTML.jpg]
Figure 11-4.
 Adding objects

 to a room – step 3

If you now play this game, the ball will bounce around the room.
An example GMZ for the above is available at: Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter 11

 Example 2 Mouse Over

There will be lots of occasions that you may want to check that the mouse cursor is over an object before performing any additional code. This is a simple example.
Create a new sprite, spr_button. Add two sub images, one blue and one red, with a size of 32x32, as shown in Figure 11-5:[image: A433334_1_En_11_Fig5_HTML.jpg]
Figure 11-5.Showing sprite with two sub images set

Create an object obj_button and assign this sprite you've just made.
For the Create Event use this code:

 image_speed=0;
image_index=0;

For the Step Event use:

 if (position_meeting(mouse_x, mouse_y, id))
{
 image_index=0;
}
else
{
 image_index=1;
}

The above code will set a different image index

 depending whether the mouse cursor is over its sprite or not.
A GMZ example for the above is available in the resources at: Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter
 11.

 Example 3 Collision

 Line

For this example you'll need three sprites, spr_yellow_face and spr_red_face and spr_wall. A size of 32x32 with origin set as center will be fine.
Create a wall object obj_wall with a solid blue sprite, set as solid.
Create an object, obj_player, set the sprite spr_yellow_face.
In the Step Event of obj_player put the following; this will allow you to move the player object using the arrow keys:

 x+=4*(keyboard_check(vk_right)-keyboard_check(vk_left));
y+=4*(keyboard_check(vk_down)-keyboard_check(vk_up));

Create an object, obj_target. Set the sprite spr_red_face.
In the Draw Event of obj_target put the following code, which will draw a line between obj_target and obj_player if there is a direct line of sight (i.e., no walls in the way):

 draw_self();
if (collision_line(x,y,obj_player.x,obj_player.y,obj_wall, false,true)) == noone
{
 draw_line(x,y,obj_player.x,obj_player.y);
}

Place one instance of obj_player, and a few each of obj_target and obj_wall into a new room. An example layout is shown in Figure 11-6.[image: A433334_1_En_11_Fig6_HTML.jpg]
Figure 11-6.Showing example room with objects added

When the obj_target can ‘see’ obj_player it will draw a line between the two, as shown in Figure 11-7:[image: A433334_1_En_11_Fig7_HTML.jpg]
Figure 11-7.Showing lines being draw to player if enemy can see it

A GMZ for the above is available at: Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter
 11
 .
You could use something like this as the basis for an AI system.

 Worksheet

 – Collision Events
Correct the following code, if there is an error:

 if place_meeting(obj_car, 65, 80)
if (position_meeting(mouse_x, mouse_y, obj_tree))
if (!place_free(x+5, y))
if (position_meeting(x, y, spr_bonus))
if (collision_line(x+100, y, obj_player.x, obj_player.y, obj_wall, true, true))

Explain what the following code does:

 if (position_meeting(x, y, obj_bomb)){audio_play_sound(snd_bomb, 10 ,false); health-=1;}

if (place_free(x+5, y)) {x+=5;}

if (place_empty(x, y)){instance_create(x, y, obj_enemy);}

How would you do the following using events / GML:
	A)Set player variable can_see to true if it can be seen by an instance of obj_enemy_1 and obj_enemy_2? For this question, assume that there is only one of each instance.

	B)Move an object to the right unless it collides with obj_wall?

Worksheet – Collision Events – Answer Sheet

Correct the following code, if there is an error:

 if place_meeting(obj_car, 65, 80) if place_meeting(65,80,obj_car)

if (position_meeting(mouse_x, mouse_y, obj_tree)) correct

if (!place_free(x+5, y)) correct

if (position_meeting(x, y, spr_bonus)) Should be obj_bonus

if (collision_line(x+100, y, obj_player.x, obj_player.y, obj_wall, true, true))Should be (collision_line(x+100, y, obj_player.x, obj_player.y, obj_wall, true, true)!=noone

Explain what the following code does:
	A)Will play sound snd_bomb and reduce health by 1 if obj_bomb is at a position.

	B)Will move right 5 pixels if no solid object present 5 pixels to the right.

	C)Checks if any instance exists at position; if not create obj_enemy at position.

How would you do the following using events / GML:
	A)Set player variable can_see to true if it can be seen by an instance of obj_enemy_1 and obj_enemy_2?

	B)if (collision_line(x,y,obj_target.x,obj_target.y,obj_wall,false,true)) == noone or (collision_line(x,y,obj_target_2.x,obj_target_2.y,obj_wall,false,true)) == noone

 {
 can_see=true;
}
 else
{
 can_see=false;
}

	C)Move an object to the right unless it collides with obj_wall?

 if !place_meeting(x+(sprite_width/2), y, obj_wall) x+=4;

 Basic Projects

 	A) Make the player change colour when it can see one or more of obj_enemy.
2 Points

	B) Create a new object, obj_target, and assign a pink sprite to it. If player collides with it, play a sound and make it destroy itself.
2 Points

	C) Create a clickable object with four sub images. When the mouse button is released when over the object change the sub image. On the forth click destroy the object.
2 Points

 Advanced Projects

 	D) Make the player change direction at random if the mouse gets within 100 pixels in any direction, but only check this once every 5 seconds. Also make the object wrap around the screen. See distance_to_point(x, y); in the manual.
2 Points

	E) Surround the outside of a room with walls. Create a ball that bounces around the room. Have some objects in the room that require four hits of the ball to be destroyed, changing the sub image each time it’s hit. Note: You can use the D&D Bounce in the jump section of the Move tab.

End of Book Game

 Collisions

 	Player with asteroid

	Player with enemy bullet

	Player with enemy ship

	Asteroid with bullet

	Enemy with bullet

	Player with bonus item

Try and work out what you want to happen when these objects collide. Choose from:

 Collisions
	Change a variable

	Play a sound effect

	Play a voice

	Create a graphical effect

	Create / destroy an object

	Make something move or stop moving

Player with asteroid - When this happens we’ll want to reduce the player’s health and also create a visual effect and a sound effect or voice.
Asteroid with bullet - When this happens we’ll want to reduce the asteroid’s health, play a sound effect and create a visual effect, then destroy the bullet.
Player with bonus item - Add the value of the bonus to the player, and destroy the bonus object.
Player with enemy ship or bullet - Reduce player’s health and create a sound effect and graphical effect. If collision with an enemy's bullet occurs, destroy the enemy bullet upon collision with the player.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_12

12. Rooms

Ben Tyers1
(1)Worthing, West Sussex, UK

Rooms are where you place your instances

 and where the action happens. A simple room may have an enemy instance and player instance – and maybe a few platforms to jump on – where the player and enemy try to shoot each other.
Instances are placed in the room, which then interact with other instances, keypresses, and mouse events.
The room editor

 is a very powerful visual layout tool, and has many useful features like views, creation codes, and tile settings.
It allows you to place objects

 in the room where you want them. You can also do the following:
	Set room creation code (GML that runs on room start, which happens after the
 Create Event

 of instances already in the room)

	Set backgrounds

	Set views

	Turn physics on or off

	Set the room size and name

	Set and add tiles

Most games

 have one than one room. You can use different rooms, for example:
	Splash Screen – Defining variables and showing your company’s logo

	Menu – Where a player selects a level to play

	Shop – Where weapons and upgrades can be purchased

	Game Levels – Where the main game action takes place

	Boss Levels – Special level between levels – usually harder than standard levels

	Game Over – When a player completes the game

 or loses all lives

Most rooms will have some form of background, from the basic static background to moving parallax backgrounds.
Create a new GameMaker

 : Studio project, and load in a new background. This can be done by clicking the Create Background icon, as shown in Figure 12-1 below:[image: A433334_1_En_12_Fig1_HTML.jpg]
Figure 12-1.Creating a new background

Click the Create a background button on the top menu bar, and load in a background from the resources; this step is shown in Figure 12-2. The background to load is supplied in the resources for Chapter 12.[image: A433334_1_En_12_Fig2_HTML.jpg]
Figure 12-2.Loading in a background

You can set this background in a room. Create a new room, room_example, and set the room dimensions as 800 by 400; you can do this from the settings tab, as shown in Figure 12-3:[image: A433334_1_En_12_Fig3_HTML.jpg]
Figure 12-3.Setting room dimensions

Set the background by clicking on the background tab, unchecking draw background color, checking visible when it starts, and choosing bg_1 that you just loaded. This process is shown in Figure 12-4.[image: A433334_1_En_12_Fig4_HTML.jpg]
Figure 12-4.Setting a background

Rooms are dealt with in more detail in Chapter 13.
Next we’ll look at the views tab. You set a view so it only shows part of the room at any one time. This is useful if you have a large room and only want to show the part where the player is, for example.

 Create a new project.

Create new object, obj_player and create and assign a red sprite (32x32 is fine) for it. In a Step Event put:

 x+=4*(keyboard_check(vk_right)-keyboard_check(vk_left));
y+=4*(keyboard_check(vk_down)-keyboard_check(vk_up));

Create another object, obj_wall, and create and assign a blue sprite for it. No code is needed for this. Create a room, set the name as room_example and the room width and height to 2000 each. Place one instance of obj_player and multiple of obj_wall. It doesn’t matter too much where you place them. An example is shown in Figure 12-5.[image: A433334_1_En_12_Fig5_HTML.jpg]
Figure 12-5.Showing objects

 added to room – step 3

Set up a view, as shown in Figure 12-6. This will create a view that keeps the player visible on the screen

 .[image: A433334_1_En_12_Fig6_HTML.jpg]
Figure 12-6.Setting up view to follow an object

Note: If the view and the viewport have different aspect ratios, this will cause unwanted stretching.
An example for this is in the resources folder

 at: Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter

 12

A view can be used to show part of the room. For example you may have a huge level that’s 2000 by 2000 pixels – a view can be used just show a part, maybe 800 by 400 at any one time.
There is a number of built-in functions for backgrounds and views

 . If you’re feeling adventurous, look these up in the manual, by pressed F1.
There’s a ton of GML for using with rooms. The main ones are these:
This one will take you to a named room: room_goto(room_name);

This GML will take you to the next room (as shown in the resource tree): room_goto_next();

This GML will take you to the previous room (as shown in the resource tree): room_goto_previous();

You can restart the room using: room_restart();

 Worksheet

 – Rooms

 	1.Check your understanding
	A)What are rooms?

	B)How do you add objects to an existing room?

	C)Can you draw sprites to a room using the room editor?

	D)How do you add backgrounds to existing rooms?

	E)How do you set room size?

	F)How do you create a view of 200 by 200?

Correct the code in the following:

 goto_room(room_level_2);
goto_room_next;
restart_room(room_level_1);
if (room_exists(room_boss)) room_boss;

True or False
	A)There is a limit of 20 rooms. T / F

	B)
 room_goto_next();will take you to the next room in the resource tree. T / F

	C)You can change views without restarting the room. T / F

	D)Rooms can have more than one background. T / F

Worksheet – Rooms – Answer Sheet

 	1.
 	A)What are rooms?
Rooms are places where you show backgrounds, place objects, place tiles, and set views.

	B)How do you add objects to an existing room?
Go to the object tab, select object, and place in the room by clicking.

	C)Can you draw sprites to a room using the room editor?
Not directly, but you can place an object that can draw a sprite.

	D)How do you add backgrounds to existing rooms?
Load in and name the background, go to the room editor, and apply it under backgrounds tab.

	E)How do you set room size?
You can set this in the settings tab.

	F)How do you create a view of 200 by 200?

Go to view tabs and set width and height of view.
Correct the code in the following:
	A)goto_room(room_level_2); room_goto(room_level_2);

	B)goto_room_next; room_goto_next();

	C)restart_room(room_level_1); room_restart();

	D)if (room_exists(room_boss)) room_boss;

 if (room_exists(room_boss)) room_goto(room_boss);

True or False
	A)There is a limit of 20 rooms T / F

	B)
 room_goto_next();will take you to the next room in the resource tree. T / F

	C)You can change views without restarting the room. T / F

	D)Rooms can have more than one background. T / F

 Basic Projects

 	A) Make a splash screen with a background that shows for 5 seconds, plays a sound, and then goes to a new room.
3 Points

	B) Create a level select screen that has 5 buttons that each go to a different room. Make the buttons change colour when a mouse is over them. Draw the level as text in the middle of each button. Remember to set up text drawing correctly.
3 Points

 Advanced Project

 	C) Create 2 rooms, A B. Visualize them as:
	A
	B

Make the player wrap up and down in each room.
Make it so a player object can move from one room to the next. So if the player moves off the right of room A, the player will appear at the same Y location in room B, but on the left of the room; and, if the player moves off the right of room B, the player will appear at the same Y location in room A, but on the left of the room. Do this for moving left also.
4 Points

End of Book Game Rooms
This game

 consists of a number of rooms. All rooms will have the same dimensions, 800 by 400.
They are:
	Splash screen – displays logo and initiates global game variables

	Menu – shows unlocked level and buttons to restart / quit

	Shop – allows player to buy weapons

	Game Level – this the game level the player controls

	Game over – player goes here if they lose all their lives

	Game complete – player goes here if they successfully complete the game

Think about what objects

 would need to go in each room and what they do.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_13

13. Backgrounds

Ben Tyers1
(1)Worthing, West Sussex, UK

Backgrounds are one of the basic resources that are used for rooms

 in which the game takes place. Backgrounds can be made of one large image or tiles

 of a smaller image. Additionally, you can have static and moving backgrounds in GameMaker: Studio. These backgrounds can be set using the room editor

 , or in GML. You can also set and change backgrounds using GML.
Backgrounds are images

 that show in the room but do not have any direct interaction with objects.
You can combine two or more backgrounds to create a parallax scrolling effect.
Some uses

 of backgrounds include:
	Splash screens

	Backgrounds for levels

	Moving backgrounds for infinite runner type games

Let’s make an example by creating

 a new project. We are going to create a moving background. This is useful as it creates a more professional look to the game, and it is useful for scrolling type games. Load in a background from the resources, and name it as bg_wire. Set it as shown in Figure 13-1.[image: A433334_1_En_13_Fig1_HTML.jpg]
Figure 13-1.
 Setting

 up a background

Now create a new room

 , room_example, and set the dimensions as 800 by 400.
Set the background as shown below in Figure 13-2:[image: A433334_1_En_13_Fig2_HTML.jpg]
Figure 13-2.
 Setting

 background for the room

Now test your game; you should now see a room with background showing.
Now create an object obj_view_control.
In a
 Step Event

 put in the following code; this will move the background horizontally 5 pixels each step:

 background_x[0]+=5;

Place one instance of obj_view_control in the room. Now test your game again, and the background will now move. Similarly you can set the vertical movement:

 background_y[0]+=5;

You can set horizontal and vertical movement in the background tab of an open room. Also you set a constant speed for a background, for example, as shown below:
Note
These don't have to be in the Step Event.

 background_hspeed[4] = 2;
background_vspeed[4] = 1;

There are a heap of other background functions; see the manual if you’re interested. A room’s background colour

 can be set:

 background_colour= c_blue;

You can make a background move vertically using:

 background_vspeed[0] = speed;

and horizontally using:

 background_hspeed[0] = speed;

You can have up to eight backgrounds, for example background_index[0] or background_index[7].
You can set a loaded background using:

 background_index[5] = bg_trees;

You can set a background to visible, for example:

 background_visible[2]=true;

If you have another background visible, you can set it to invisible using:

 background_visible[1]=false;

You can also check if a background is visible:

 if background_visible[0]
{
 //do something
}

Worksheet - Backgrounds

 	1.True or False:
Backgrounds can be animated. T / F Backgrounds can be scrolled using GML code. T / F Backgrounds can be tiled a limited number of times. T / F

	2.Use the manual (docs.yoyogames.com) to look up the following:
	A)
 background_vtiled[1]

	B)
 background_yscale[4]

Explain what each of the above does:
	A)

	B)

Worksheet – Backgrounds – Answer Sheet

 	1.True or False:
Backgrounds can be animated. False Note: It can if you change it every frame, but not on its own. But this is correct to some point at the beginner level.
Backgrounds can be scrolled using GML code. True

Backgrounds can be tiled a limited number of times. False Note: It can be tiled up to eight times by setting eight backgrounds, each with their horizontal and vertical repeating disabled. But this is correct to some point at the beginner level.
Comment

	2.Use the manual to look up the following:
	A)
 background_vtiled[1]

	B)
 background_yscale[4]

Explain what each of the above does:
	A)Sets vertical tiling of background

	B)Can be used to stretch the background

 Basic Projects

 	A) Make a program sets whether backgrounds are visible when keys 1 to 5 are pressed.
2 Points

	B) Make a background that scrolls left after 5 seconds.
2 Points

 Advanced Projects

 	C) Create two horizontal views, one which follows obj_player and one which follows obj_enemy (make both objects movable using key presses).
2 Points

	D) Create a parallax system using at least four backgrounds. Have the backgrounds move to the left, with the top layer moving the fastest. Change the Y location of the background proportionate to player objects y location.
4 Points
Background assets are available for this in the downloadable resources, in the folder Assets Used In Book ➤ 13.

End of Book Game Backgrounds
This game consists of a number of rooms, and each room will need some form of background to make the game look better.
The splash, menu, shop, game level, game over, and game complete rooms.
For the level

 , we’ll change the background that’s being show by changing the background_index[0] to a different background that has been loaded in.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_14

14. Sounds and Music

Ben Tyers1
(1)Worthing, West Sussex, UK

Sounds and music are very important in games. The correct style

 of music can set the scene for the game: a horror-themed game would require different music than an RPG

 . Sound effects and voices

 can provide feedback too. For example when you buy an item in a shop, you want audio confirmation the purchase has gone through. When you fire a weapon or swipe a sword you want to hear a reassuring sound. This section serves as an introduction to playing sounds and music in GameMaker

 .
A few sound resources

 are included in the resources download for you to play with.
Sounds can be used for the following:
	Explosions effects

	Button clicks

	Giving player feedback using voices

	Playing background music

	Jumping and landing effects

	Collision sounds

You can create a new sound by clicking the Create a sound button on the title bar as shown in Figure 14-1.[image: A433334_1_En_14_Fig1_HTML.jpg]
Figure 14-1.
 Creating

 a new sound

Load in the sound effect, snd_tank, and name the sound snd_tank; this step is shown in Figure 14-2.[image: A433334_1_En_14_Fig2_HTML.jpg]
Figure 14-2.Loading a sound file

 using default settings

Create an object, obj_example, and put the following code in the Step Event:

 if keyboard_check(ord('X'))
{
 audio_play_sound(snd_tank,1,false);
}

The snd_tank is the sound file to play, 1 is the channel priority

 , and false stops the sound from looping.
Then create a room, room_example, and place one instance of obj_example in the room.
Test this game, when you press the X key, the sound effect will play.
Add a new sound, snd_music_1 and load Retro.mp3 from the resources. Put the following code in to a Create Event of object obj_example.

 audio_play_sound(snd_music_1,1,true);

 Test

 again, and a background track

 will play. Check that you can hear the tank sound over the background music.
You can lower the volume of the background music

 , and make the sound effect easier to hear:

 bg_music=audio_play_sound(snd_music_1,1,true);
audio_sound_gain(bg_music, 0.2, 0);

You can check if a sound is playing, and stop it if it is:

 if (audio_is_playing(snd_music_1))
{
 audio_stop_sound(snd_music_1);
}

An example for this, including pause and resume

 , is in the resources: Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter
 14

Some additional functions include:

 audio_pause_sound
audio_resume_sound

An example using the pause and resume functions

 could look like the following, which would pause the sound on keypress P and resume on keypress R:

 Create Event:

 audio_play_sound(snd_music_1,1,true);

 Step Event:

 if keyboard_check_pressed(ord('P'))
{
 if audio_is_playing(snd_music_1)
 {
 audio_pause_sound(snd_music_1);
 }
}
if keyboard_check_pressed(ord('R'))
{
 if audio_is_playing(snd_music_1)
 {
 audio_resume_sound(snd_music_1);
 }
}

You can also stop all sounds. Stopped sounds cannot be resumed

 .

 audio_stop_all

Here is an example of this being used, which would stop any and all audio when X is pressed:

 Create Event:

 audio_play_sound(snd_music,1,true);

 Step Event:

 if (keyboard_check_pressed(ord('X')))
{
 audio_stop_all();
}

Worksheet – Sounds & Music

 	1.Cross out the audio function that doesn’t exist in GameMaker: Studio:

 -audio_exists
-audio_play_sound
-audio_play_all
-audio_pause_sound
-audio_pause_all
-audio_resume_sound
-audio_resume_all
-audio_stop_sound
-audio_stop_all
-audio_is_playing
-audio_is_paused

	2.How would you do each of the following in GML:
	a.Play a sound effect when a ball bounces off of a wall.

	b.Play a sound when X is pressed, for example shooting a bullet.

	c.Go to a room when a music track stops playing, for example, when splash screen music has finished.

Worksheet – Sounds & Music – Answer Sheet

 	1.Cross out the audio function that doesn’t exist in GameMaker: Studio:

 -audio_play_all – This doesn’t exist

	2.How would you do each of the following in GML:
There are few possible ways to achieve any tidy code that does what’s required or would be suitable.
	a.Play a sound effect when a ball bounces off of a wall.
In a Collision Event put:

 audio_play_sound(snd_bounce,1,false);

	b.Play a sound when X is pressed, for example, shooting a bullet.
This can be placed in the Step Event:

 if (keyboard_check_pressed(ord('X')))
{
 audio_play_sound(snd_effect,1,false);
 instance_create(x,y,obj_bullet);
}

	c.Go to a room when a music track stops playing.
Placed in a Step Event:

 if !audio_is_playing(snd_music);
{
 room_goto(room_menu);
}

 Basic Projects

 	A) Make a program that can play, pause, and stop a song.
3 Points

	B) Play one of four sound effects at random when a ball collides with a wall.
3 Points

 Advanced Projects

 	C) Create a Juke Box program with five of your favorite songs.
2 Points

	D) Create a movable player object, and a target object. If the player object is less than 200 pixels from the target object play a sound effect. Increase the sound volume the closer the mouse gets to it.
(see audio_sound_gain)
2 Points

End of Book Game Sounds & Music
The game will include sounds and music.
The music will be single track

 that plays repeatedly in the background.
Sounds will include sound effects and voices

 , which will be triggered to play upon various conditions.
For example, when a bullet is fired, an appropriate sound effect will be played.
When a bullet collides with an asteroid

 an explosion sound effect will be played.
The game will also use a number of voices, which will provide information to the player, such as:
	A successful or unsuccessful purchase in the shop

	That the player has changed weapon

	Alert the player to no ammo

	Warn the player when health is getting low

	Notify the player that level has started

	Play a selection of different voices if player collides with an asteroid

To make it easier to call these sound effects

 , a couple of simple scripts will be written so you can call a sound effect using, for example:

 scr_play_effect(snd_explosion_double_gun);

and similar for calling voices:

 scr_voice(snd_voice_low_ammo);

Think about what sounds should be available, and write a list of voices that could provide informative feedback

 to the player.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_15

15. Splash Screens and Menu

Ben Tyers1
(1)Worthing, West Sussex, UK

A splash screen is usually shown when a game starts up. It’s an ideal time to initialize variables and load external resources. It’s also a great way to show your company logo or a sponsor’s message

 . You can create a splash screen in the Global Game Settings; however, normally GameMaker: Studio loads the game very fast and so the user will hardly have time to see it, which is another good reason to create your own. A good way to show a splash screen is to create

 a new room, assign a background, and then move it to the top of the room’s resources tree, for example, as shown in Figure 15-1.[image: A433334_1_En_15_Fig1_HTML.jpg]
Figure 15-1.Showing an example of room order in resource tree

Menus are great ways to allow the player to select a difficulty, turn sound

 on or off, or visit an unlocked level.
A completed game rooms tree may look something like this:
As you will see above, in Figure 15-1, each room has a distinct name.
The room at the top of the tree will be loaded first.

 Start a new project within GameMaker: Studio.

Create a new object, obj_splash_screen.

 Create Event code:

 global.level=1;
lives=5; //Set initial lives to 5
score=0; //Start with a score of 0
global.bonus_score=0; //Set with a value of 0
health=100; //Start with full health
alarm[0]=7*room_speed; //Set alarm for 7 seconds

 Alarm[0] Event code:

 room_goto_next();

Load in the background from the resources folder, Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter
 14
 .

Create a new room, room_splash_screen, and set this new background to the room, making it visible on room start.
Then place one instance of obj_splash_screen in room_splash_screen.
Next we’ll look and the menu room. Create a new room, room_menu, and place it under the room room_splash_screen as shown in Figure 15-2:[image: A433334_1_En_15_Fig2_HTML.jpg]
Figure 15-2.Showing room order

Next create a new sprite, spr_locked_or_not, and set up as shown in Figure 15-3, with two sub images loaded in:[image: A433334_1_En_15_Fig3_HTML.jpg]
Figure 15-3.
 Loading in sub images

 and assigning to a sprite

Create an object, obj_button_parent, and assign the sprite you have just created.
In a
 Step Event

 put:

 if global.level>=my_id locked=false else locked=true
if locked image_index=0 else image_index=1
if (!locked && position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left))
{
 if my_id==1 room_goto(room_level_1);
 if my_id==2 room_goto(room_level_2);
 if my_id==3 room_goto(room_level_3);
 if my_id==4 room_goto(room_level_4);
}

and in
 Draw Event

 put:

 draw_self();
draw_set_font(font_lock);
draw_set_valign(fa_middle);
draw_set_halign(fa_center);
draw_set_colour(c_black); // These two lines create
draw_text(x-1,y-1,my_id); // a shadow effect
draw_set_colour(c_white);
draw_text(x,y,my_id);

That is all for this object. Create a new object, obj_button_1, and set the parent object as obj_button_parent, as shown in Figure 15-4:[image: A433334_1_En_15_Fig4_HTML.jpg]
Figure 15-4.Setting a parent object

Now add a Create Event to this object, obj_button_1, and put the following code

 my_id=1;

Repeat this for obj_button_2, obj_button_3, and obj_button_4, setting the parent object, but changing the Create Event code as:
For obj_button_2:

 my_id=2;

and obj_button_3:

 my_id=3;

and obj_button_4:

 my_id=4;

accordingly.
Now create four new rooms:

 room_level_1, room_level_2, room_level_3, room_level_4

Next create a new object, obj_control, but no sprite is needed. This is used so we can check it all works as planned.
In a Step Event place:

 if keyboard_check_released(ord('Q'))
{
 global.level+=1;
}
if keyboard_check_released(ord('A'))
{
 global.level-=1;
}

And in a Draw Event:

 draw_text(10,10,global.level); //for testing only

Open room room_menu, place one instance of obj_control in the top left, and one of each of the button objects, in order, from left to right: obj_button_1, obj_button_2, obj_button_3, and obj_button_4. So it looks Figure 15-5:[image: A433334_1_En_15_Fig5_HTML.jpg]
Figure 15-5.Showing room setup with objects

 placed

You can now save and test this.
An example project in GMZ is available at: Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter
 15

Worksheet – Splash Screens & Menu
Correct the following if there is a mistake:

 if (room_exist(room_level_20))
{goto_room, "room_level_20";}

True or False:
	A.All rooms must be the same size. T / F

	B.You can restart a room using GML. T / F

	C.The room at the bottom in the resource tree is the first room when a game starts. T / F

	D.You can’t have two rooms with the same name. T / F

	E.If a room is set as persistent it will ‘remember’ where instances are. T / F

How would you code the following using GML

 ?
	A.A button that changes its image index on mouse over? (both sub images are same size and shape)

	B.A bonus level button that becomes clickable when score exceeds 5000?

	C.A new button for a boss level becomes visible when levels 1 to 4 are completed?

	D.A button that rotates left and right slowly to 45’.

Worksheet – Splash Screens & Menu – Answer Sheet
Correct the following if there is a mistake:

 if (room_exists(room_level_20))
{
 room_goto(room_level_20));
}

True or False:
	A.All rooms must be the same size. F

	B.You can restart a room using GML. T

	C.The room at the bottom in the resource tree is the first room when a game starts. F

	D.You can’t have two rooms with the same name. F

	E.If a room is set as persistent it will ‘remember’ where instances are. T

How would you code the following using GML?
	A.A button that changes its image index on mouse over? (both sub images are same size and shape).

	B.One approach is to have an object with a sprite that has two images

 and uses the following code:

 Create Event:

 image_speed=0;

 Step Event:

 if position_meeting(mouse_x, mouse_y, id)
{
 image_index=0;
}
else
{
 image_index=1;
}

 	A.A bonus level button that becomes clickable when score exceeds 5000?

 if position_meeting(mouse_x, mouse_y, id) && mouse_check_button_pressed(mb_left) && score>5000
{
 //do something
}

	B.A new button for a boss level becomes visible when levels 1 to 4 are completed? In Draw Event:

 if global.level==5
{
 draw_self();
}

	C.A button that rotates left and right slowly to 45’.

 Create Event:

 clockwise=true;

 Step Event:

 if clockwise
{
 image_angle-=1;
 if image_angle<=-45 clockwise=false;
}
else
{
 image_angle+=1;
 if image_angle>=45 clockwise=true;
}

 Basic Projects

 	A) Create a splash screen and place an object with a sprite animation. Set it to go to the next room 5 seconds after the animation has ended.
2 Points

	B) Create a menu room with background music with a button for it to go to an instructions room (with button to return to menu room), and a game room. Change the music for instruction screen and playing the game.
4 Points

 Advanced Project

 	D) Create an object that becomes unlocked only if user types in a password on the keyboard. Make the password “xbacon.” Display visibly whether the object is locked or unlocked.
4 Points

End of Book Game Splash Screens & Menu
The game will make use of a splash screen and menu.
The main purpose

 of the splash screen will be to define the initial data and load any saved INI file (if it exists).
The splash screen will use an alarm to take the player to the menu after a few seconds.
The game will need to store a number of variables so the player can return to the game and continue on their current level with the same stats as when they left.
The game will need to know the player’s current level, health, amount of cash, and total bullets fired. It also needs to know weapon stats such as how many bullets they have left and how many shots have been taken of each weapon.
The level

 select screen will allow the player to play any unlocked level, quit the game, or restart it (deleting all data). Upon loading, the menu select screen will store all player data to the INI file. This is so when the player returns, they can continue with the next level.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_16

16. Random

Ben Tyers1
(1)Worthing, West Sussex, UK

A static game with the exact same pattern of movement doesn’t have much replay value. This type of game can be memorized. Using randomness in your games to create variety in game play

 greatly increases the game replay value

 .
Strictly speaking there is no such thing as a true random number

 on a regular PC, but it can be simulated and approximated for game play.
For the purposes of making games easier to create and test, GameMaker: Studio

 will always generate the same random numbers each time a game is played. For example, if in your game you rolled a dice 5 times and got 5 3 1 6 3 2, the next time you played from the Studio IDE you’d also get 5 3 1 6 3 2. Depending on your game you may want different numbers each time when testing

 , so remember that a final executable will not display this behavior. To do this, use
 randomize()

 , which only needs to be called once at the start of the game.
For example, in the Needs event formatting of an object in your splash screen you may have:

 randomize();

Then in your game you may have:

 starting_x=irandom(800);
starting_y=irandom(400);

Now each time the game is run, starting_x and starting_y will have different random values

 .

 Randomness

 can be used for such things as the following:
	Selecting an effect to use

	Making AI move / change direction

	Choose an attack from a selection

	Choose a random sound effect / backing music

	Move an object to a new location

An example of a random function

 :

 attack=choose(1, 1, 1, 2, 2, 3);

This will choose a number at random. There will be a 50%(3/6) chance of getting a '1,' a 33%(2/6) chance of getting a '2,' and a 17%(1/6) chance of getting a '3.'
You can also use other things as well as numbers: for example, objects, sounds, colours:

 music_track=choose(snd_track_1, snd_track_2, snd_track_3);
text_colour=choose(c_green, c_red, c_blue);
spawn_enemy=choose(obj_enemy_1, obj_enemy_2);

You can create a real random number:

 number=random(50);

This will choose a random number between 0 and 50 exclusive, with decimal places.
An example of a value returned by the random() function: 44.7768221937 (which may contain more digits than this).
If you are generating real numbers with decimals, the following is useful; however floor is generally used for randomized values

 :
	
 floor(4.2) would return 4

	
 ceil(4.2) would return 5

	
 round (4.2) would return 4

A method more suited to most applications

 , as it creates whole integers is:

 number=irandom(50);

This will choose a whole number integer between 0 and 50 inclusive.
An example of this value is 38.
You can also choose a whole random integer number between values, for example, between 40 and 50 inclusive:

 irandom_range(40, 50);

There may be times that you want the randomization to be the same each time, even when the game has been compiled to the final executable for distribution: for example, when you have a randomly generated level. To achieve this, you can use the following function:

 random_set_seed(number);

or

 randomize();

If you want a random outcome each time.
Note
This should be placed just before any deterministic results are generated.

Worksheet – Random

 	A.With this code:

 my_colour=choose(c_blue, c_blue, c_olive, c_orange);

What is the chance of each colour being chosen?

	B.How would you choose an integer number

 between 0 and 75?

	C.How would you move the object to a random x position between 150 and 450?

	D.What value would floor(19.8) return?

	E.What value would floor(11.2) return?

	F.What value would ceil(0.06) return?

	G.What value would round(53.487) return?

	H.What value would round(1076.882) return?
You have five objects, obj_bonus_1, through to obj_bonus_5.

	I.How would you program it so each has an equal chance of being selected?

	J.How would you program it so that object obj_bonus_1 has a 50% chance of being selected and the rest an equal chance?

Worksheet – Random – Answer Sheet

 	A.With this code:

 my_colour=choose(c_blue, c_blue, c_olive, c_orange);

What is the chance of each colour being chosen? Blue 50%, 25% for both olive and orange

	B.How would you choose an integer number between 0 and 75? irandom_range(0,75);

Or equally:

 irandom(75);

	C.How would you move the object to a random x position between 150 and 450? x=irandom_range(150,450);

	D.What value would floor(19.8) return? 19

	E.What value would floor(11.2) return? 11

	F.What value would ceil(0.06) return? 1

	G.What value would round(53.487) return? 53

	H.What value would round(1076.882) return? 1077

You have five objects, obj_bonus_1, through to obj_bonus_5.

	I.How would you program it so each has an equal chance of being selected?

 selected=choose(obj_bonus_1, obj_bonus_2, obj_bonus_3, obj_bonus_4, obj_bonus_5);

	J.How would you program it so that object obj_bonus_1 has a 50% chance of being selected and the rest an equal chance?

 selected=choose(obj_bonus_1, obj_bonus_1, obj_bonus_1, obj_bonus_1, obj_bonus_2, obj_bonus_3, obj_bonus_4, obj_bonus_5);

 Basic Projects

 	A) Play a random sound every time the player presses the spacebar.
2 Points

	B) Make an object jump to a random position, no closer than 50 pixels near the edge of the window, when clicked with the mouse. Use a sprite with multiple sub images. Stop the animation on the last sub image.
2 Points

	C) Make an object move randomly around the room without going off of the edges. Make it change direction every 5 seconds. If it gets within 10 pixels of the edge of the screen, make it change direction away from the edge

 .
2 Points

 Advanced Project

 	D) Create a lottery game that chooses six different numbers between 1 and 49. Display them in ascending order, inside a circle. If the number is between 1 and 9 make the circle white, 10-19 blue, 20-29 green, 30-39 red, 40-49 yellow.
4 Points

End of Book Game Random
Randomization will only be used a few times in the game.
It will be used to randomly set the direction and rotational speed

 of asteroids, within a given range.
It will also be used to play random voices, again from a selection, at various points in the game.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_17

17. More Movement (Basic AI)

Ben Tyers1
(1)Worthing, West Sussex, UK

Most casual games involve a player and some form of computer AI (Artificial Intelligence). Basically an AI object will interact with what’s onscreen and what the player does. For example, in a top-down game the AI object may move toward the player avoiding other objects and shoot a bullet toward the player if they’re within a certain range. Usually in the first few levels of a game the AI object will be more forgiving to the player, but higher levels may make the AI more aggressive.
Some of the functions

 the AI may have:
	Move toward player

	Fire a bullet / missile toward player

	Decide which card to play next

	Punch the player if they’re not blocking

In most cases you’ll be checking whether a variable equals some number, or if a function is true or false – and use this to create the illusion of AI.
This starts with a very basic AI and progressively makes it more intelligent.
We’ll create a basic AI system that makes an enemy move toward the player, if there is a direct line of sight

 .

 Start a new project.

Create three new objects, obj_wall, obj_player, and obj_enemy.
Load in the appropriate sprites from the resources at: Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter
 17

Place the following code in the Step Event of obj_player. This code will allow the player to move so long as it does not collide in the direction it is traveling with an obj_wall instance:

 hor=4*(keyboard_check(vk_right)-keyboard_check(vk_left));
vert=4*(keyboard_check(vk_down)-keyboard_check(vk_up));
if place_free(x+hor,y)
{
 x+=hor;
}
if place_free(x,y+vert)
{
 y+=vert;
}

That is all for this object.

Open up object
 obj_enemy

 and put the following code in a Create Event. This will create a flag that can be changed and tested upon, with true if it has a direct line of sight to the player, or false otherwise:

 can_see=false;

In the Step Event of this object put:

 //if there is a direct line of sight between the player and the enemy then set can_see to true, otherwise false
if (collision_line(x, y, obj_player.x, obj_player.y,
obj_wall, true,false))!=noone
{
 can_see=false;
}
else
{
 can_see=true;
}

if can_see
{
 mp_potential_step(obj_player.x, obj_player.y, 2, true);
}

 collision_line returns whether an imaginary line between it and the player instance collides with an instance of obj_wall. It returns false if it collides with obj_wall.

 mp_potential_step(obj_player.x, obj_player.y, 2, true); moves the object 2 pixels towards the player for each frame.
Finally create a Draw Event for this object with the following code:

 draw_self();
if can_see
{
 draw_line(x, y, obj_player.x, obj_player.y);
}

This will draw its own sprite, and a line between itself and player if can_see it true.
Set the room up as shown in Figure 17-1:[image: A433334_1_En_17_Fig1_HTML.jpg]
Figure 17-1.Showing example room layout

This project is available in the resources at: Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter
 17
 ➤ example17a

This next part continues adding to the example created above. Do not start a new project.
First load in and assign the sound file, snd_ouch, from the resources.
Next create a new object, obj_

 bullet

 and load in assign the spr_bullet from the resource.
In the Create Event of obj_bullet put:

 direction=point_direction(x,y,obj_player.x, obj_player.y);
speed=3;

In a Collision Event with obj_player put:

 audio_play_sound(snd_ouch,1,false);
instance_destroy();

The above code will play the sound on collision with the player instance, then destroy itself.
Instead of playing a sound you could do things such as removing a life or making a graphical effect.
Finally for this part, we'll set the obj_bullet to destroy itself when outside the room, using the Outside Room Event, as shown in Figure 17-2:[image: A433334_1_En_17_Fig2_HTML.jpg]
Figure 17-2.Setting an outside room event

Put this code in this event:

 instance_destroy();

That is all for this object.
Open up object obj_enemy, and change the Create Event code to:

 can_see=false;
timer=0;

This will initialize the variable timer to 0.
And change the Step Event for obj_enemy to:

 //if there is a direct line of sight between the player and the enemy then set can_see to true, otherwise false
if (collision_line(x, y, obj_player.x, obj_player.y,
obj_wall, true,false))!=noone
{
 can_see=false;
}
else
{
 can_see=true;
}

if can_see
{
 mp_potential_step(obj_player.x, obj_player.y, 2, true);
 timer++;
}
else
{
 timer=0;
}

if timer==10
{
 instance_create(x,y,obj_bullet);
 timer=0;
}

This change will make the variable timer count up if it can see the player instance. If it reaches 10 it will create a bullet instance and reset the timer. If the player is hidden, the timer will be set to 0.
You can now save and test the game. An example project is available at:

 Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter

 17

 ➤ example17b

This next part continues on from the previous example; do not start a new project.
Create a new room,
 room_splash

 . Ensure this sits above the room room_example in the resources tree. You can change its position by clicking and holding the left mouse button, then move it by dragging it.
Set the room size to 800 by 400.
Create a new object obj_splash and place the following in its Create Event:

 global.enemy=0;
global.player=0;
room_goto_next();

Place one instance of this object in the room room_splash.
 room_splash

That is all for this object.
You can delete the object obj_bullet and sprite spr_bullet as they are not required.
To delete a resource from the resource tree you can right-click on it and select delete.
Create a new object,
 obj_star

 and load in and set the appropriate sprite from the resources folder.
In a Create Event put:

 move=false;

In the Step Event of this object, put the following code:

 if move
{
 while(!place_free(x,y))
 {
 x=irandom(800);
 y=irandom(400);
 }
 move=false;
}

In a Collision Event with obj_enemy put:

 global.enemy+=1;
move=true;

In a Collision Event with obj_player put:

 global.player+=1;
move=true;

This will find a random empty position in the room.
If it collides with the player or enemy it will award a point and then seek a new empty position.
Place one instance of this object into room_example.
Next change the Create Event code of object obj_enemy to:

 can_see=false;

And its Step Event code to:

 if instance_exists(obj_star)
{
 mp_potential_step(obj_star.x, obj_star.y, 2, false);
}

This code above will move towards the
 obj_star instance

 , avoiding objects.
The Draw Event is no longer required, as a default drawing will be used. You can remove it by right-clicking and choosing delete.
Finally create an object
 obj_score

 , and place the following in the Draw Event (or Draw GUI Event):

 draw_text(100,50,"Player:"+string(global.player));
draw_text(200,50,"Computer:"+string(global.enemy));

Place one instance of this object in room room_example.
You can now save and test.
An example project is available at:

 Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter

 17

 ➤ example17c

Worksheet – More Movement
Using the game created previously:
	A.How would you change the game to make the bullets move faster when the player reaches a score of 10 or more?

	B.How would you add a sound effect when the bullet is fired?

	C.How would you make an enemy only follow the player's X position?

	D.How would you add a sound effect when a bullet is created?

Correct the mistakes in the following code:
	A.
 alarm[7]=roomspeed*10; (roomspeed is not a declared variable)

	B.
 instance_create(obj_star, x, 10);

	C.
 draw_self;

	D.
 draw_text(lives, 50, 100);

	E.
 if (keyboard_check(ord('d))){x+=5;}

Worksheet – More Movement – Answer Sheet
Using the game created previously:
	A.How would you change the game to make the bullets move faster when the player reaches a score of 10 or more? One method is:

 Create Event

 global.faster=false;

 Step Event

 if (score>=10)
{
global.faster=true
}

	B.Bullet object Create Event:

	C.
 direction=point_direction(x,y,obj_player.x,obj_player.y);

 speed=4;
if (score >= 10) { speed *= 2; }

	D.How would you make an enemy only follow the player's X position?

 x=obj_player.x;

	E.How would you add a sound effect when a bullet is created?
In Create Event of bullet object:

 audio_play_sound(snd_fire,0,false);

	F.How would you make an enemy only follow the player's x or y position?
In enemy’s Step Event:

 x=obj_player.x

Correct the mistakes in the following code:
	A.
 alarm[7]=roomspeed*10;
 alarm[7]=room_speed*10;

	B.
 instance_create(obj_star, x, 10);
 instance_create(x,10,obj_star);

	C.
 draw_self;
 draw_self();

	D.
 draw_text(lives, 50, 100);
 draw_text(50,100,lives);

	E.
 if (keyboard_check(ord('d))) {x+=5;}
 if (keyboard_check(ord('D'))) {x+=5;}

 Basic Projects

 	A) Create a control object that creates a star every 5 seconds at a random position at the top of the screen that then falls toward the bottom. Player gets a point for every one collected. Player can only move left and right at the bottom of the screen, without being able to leave the window. Use the control object to draw the score in the top left of the window, remembering to set a font, drawing style, and colour.
2 Points

	B) Make a movable player object (using arrow keys) and a static enemy object. Make the enemy shoot at the player, getting faster as the player gets closer. Prevent the player from leaving the window. Ensure the bullet gets destroyed when leaving the room; use room_width & room_height for this.

	(See distance_to_object in the help file).
4 Points

 Advanced Projects

 	C) Create an enemy that changes direction every 5 seconds to move away from the player, and wraps around the room if it goes off of the edge. Also add the bullet function from project 17 B, but make the firing speed no more than two seconds between shots.
4 Points

End of Book Game
This game will only have one AI object, a spaceship that will hunt down the player object.
It will be set up to spawn when a large asteroid is created. It will slowly move toward the player and fire bullets at the player as it does so.
This is only very basic AI, but it adds an extra dimension to the game.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_18

18. INI Files

Ben Tyers1
(1)Worthing, West Sussex, UK

With casual games that people may only play for a few minutes at a time, the ability to store the player’s progress is a required feature. Initialization or INI files provide an easy way to save and load data

 .
With INI files you can pretty much save any data, but the main ones you’re most likely to save are these:
	Player’s name

	Health

	Score

	Lives

	High Score

	Distance traveled

	Enemies killed

INI files involve two main elements

 :

 [section]

and

 key=data

A simple ini file would look like this:

 [player]
top_score=100
name="Bob"

You can save this as an INI file (use a text editor and save as savedata.ini) and add it to the included files on the project tree

 . You can do this by right-clicking on Included Files and selecting Create Included File
 . Note: On most exports it is not required to include an INI as an included file. This is not the case in HTML5, in which you must include one.
To load data from this file you can use:

 ini_open("savedata.ini");
global.top_score=ini_read_real("player","top_score",0);
global.player_name=ini_read_string("player","name","");
ini_close();

What the above code does:
Looks for a file named savedata.ini

Sets the variable global.top_score to the value stored in the INI file. If the file or section and key do not exist it sets global.top_score to a default value, in this case 0 (the value after the last ,).
Sets the variable global.player_name to the value stored in the INI file. If the file or section and key do not exist it sets global.player_name to a default value, in this case "" (the value after the last ,).
It then closes the open INI file. When you are done reading / writing

 with INI files, it’s a good practice to close it immediately after you’re done.
You can also write variables

 to an INI file. For example:

 ini_open("savedata.ini");
ini_write_real("level_section", "level", global.level);
ini_write_real("distance_section" , "distance", global.distance);
ini_close();

This will store the current values

 of global.level and global.distance. If the values were 3 and 287, then the created INI file would look like this:

 [level_section]
level=3
[distance_section]
distance=287

 ini_read_real() and ini_write_real() work with real numbers.

 ini_read_string() and ini_write_string() work with strings.
Worksheet – INI Files
Given the Following INI file,
 game_data.ini

 :

 [level_info]
current_level=5
enemies_destroyed=2056
[player_info]
player_name=Bob
player_score=12768
player_best_score=17456
player_health=45
player_lives=2
[game_info]
total_games_played=11
total_enemies_destroyed=167328

What code would you use (including opening and closing the INI file) to:
Load player_name, player_score, player_health, player_lives on game start and store each as a global variable?
At the end of the level add the value of the enemies destroyed in that level to value of total_enemies_destroyed?
At the end of game, increment the value of total_games_played?
At end of game, if the player’s score is greater than player_best_score, update the value?

Worksheet – INI Files – Answer Sheet
Load player_name, player_score, player_health, player_lives on game start and store each as a global variable

 ?

 ini_open("game_data.ini");
global.player_name = ini_read_string("player_info", "player_name", "");
global.player_health = ini_read_real("player_info", "player_health", 100);
global.player_lives = ini_read_real("player_info", "player_lives", 5);
ini_close();

At the end of the level

 add the value of the enemies destroyed in that level to value of total_enemies_destroyed?

 ini_open("game_data.ini");
current=ini_read_real("game_info", "total_enemies_destroyed", 0);
to_save=current+total_destroyed;
ini_write_real("game_info", "total_enemies_destroyed", to_save);
ini_close();

At the end of game, increment the value of total_games_played?

 ini_open("game_data.ini");
total_played=ini_read_real("game_info", "total_games_played", 0);
total_played+=1;
ini_write_real("game_info", "total_games_played", total_played);
ini_close();

At end of game, if the player’s score is greater than player_best_score, update the value?

 ini_open("game_data.ini");
best_score=ini_read_real("player_info", "player_best_score", 0);
if score>best_score
{
 ini_write_real("player_info", "player_best_score", score);
}
ini_close();

 Basic Projects

 	A) Create two rooms, room_splash and room_game. Create an object for room_splash that loads any data from an INI file to two global variables. If no INI file is present, set the starting location the value of each to 100. Make this object clickable to go to room_game. Create a movable object for room_game, which starts in the position stored in the INI file. Pressing X saves the location to the INI file and restarts the game.
3 Points

	B) Create a counter that keeps track of how many keypresses the player makes in total, and save/load the value of this counter to keep track of presses over multiple games. Use a splash screen with an object to load from the INI file. Use a separate object for detecting space presses.
3 Points

 Advanced Project

 	C) Create an object that takes in five people’s names, ages, and favorite food. Display this data on screen. When the game is restarted, and an INI file exists, give the option to display the current INI file or enter new data. Create a splash and main room as required. This example should use arrays, which haven’t been taught yet; this project is for the more adventurous.
4 Points

End of Book Game INI files
The game at the end of the book will use INI files to store various game

 and player stats

 .
Upon loading

 , the game will load any saved data (if it exists) or use default values otherwise.
When that player enters the menu screen, all player data

 will be saved to the INI file.
The INI file will store the variables

 needed for health, lives, and cash. It will also store the current unlocked level, total shots taken in game, and how many bullets are left for each weapon.
Think about what would be suitable sections and keys for the INI file to keep the data organized nicely.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_19

19. Effects

Ben Tyers1
(1)Worthing, West Sussex, UK

Eye candy is quite important in modern graphical games. Your backgrounds, sprites, and buttons need to be of high quality in a finished game. You can also create an assortment of graphical

 effects using the built-in effects function. The advantage

 of using effects is they’re easy to program and update if required.
In its most basic form you can create

 an effect using (“ef” designates effect):

 effect_create_above(ef_cloud, 100, 150, 2, c_green);

This would create an effect above the current object. The effect will be a cloud at position x 100 and y 150 in the colour green. The 2 denotes the size of the effect, which is large.
You can also create an effect below the current object using

 effect_create_below(type, x, y, size, colour);

You can try out these effects. Create an object, obj_example, and put this in the Step Event:

 if (mouse_check_button(mb_left))
{
 effect_create_above(ef_cloud,mouse_x, mouse_y, 2, c_green);
}

Create a room and place one instance of this of object in it. You can test the effect using the left mouse button.
You can use the following types

 of effects:
	
 ef_cloud, ef_ellipse, ef_explosion, ef_firework, ef_flare, ef_rain, ef_ring, ef_smoke, ef_smokeup, ef_snow, ef_spark, ef_star.

You can introduce some randomness

 into it, for example, change the code to:

 if (mouse_check_button_pressed(mb_left))
{
 effect_create_above(ef_firework,mouse_x, mouse_y, 2, choose(c_green,c_red,c_white,c_yellow));
}

Now test

 again.
Try the following code:

 if (mouse_check_button_pressed(mb_left))
{
 effect_create_above(choose(ef_smoke,ef_ring, ef_explosion, ef_firework),mouse_x, mouse_y, 2, choose(c_green,c_red,c_white,c_yellow));
}

You can also create a mouse trail

 using effects. Create a new object obj_trail, and put in the following code in the Step Event:

 repeat 2
{
 effect_create_above(ef_star ,mouse_x, mouse_y, 2, choose(c_green,c_red,c_white,c_yellow));
}

Now test the game again. You will see an effect like that shown in Figure 19-1:[image: A433334_1_En_19_Fig1_HTML.jpg]
Figure 19-1.Showing effect trail

Worksheet – Effects

 	A.What would the following code do?

 effect_create_above(ef_ring,x, y+40, 2, c_white);

	B.Which effect type would you use to make snow?

	C.Correct the mistakes in the following code:

 effect_create_above(ef_smoke, 92, 80, c_blue);
effect_create_below(ef_flare, 80,56, 2, c_yellow, c_green);

	D.If you wanted to create

 an effect 50 pixels above the current mouse position, what would be the Y value to create the effect at? Y-50

	E.Why would you use effects instead of a sprite animation? Quicker and easier to update.

	F.What does the GML effect_clear(); do?

	G.How many effects can be on the screen at once?

	H.Can you create custom colours to use in effects?

Worksheet – Effects – Answer Sheet

 	A.What would the following code do?

 effect_create_above(ef_ring,x, y+40, 2, c_white);

Create a ring 40 pixels below object in white

	B.Which effect type would you use to make snow? ef_snow

	C.Correct the mistakes in the following code:

 effect_create_above(ef_smoke, 92, 80, c_blue);

Needs a size defined, like: effect_create_above(ef_smoke, 92, 80, 2, c_blue);

 effect_create_below(ef_flare, 80,56, 2, c_yellow, c_green);
effect_create_below(ef_flare, 80,56, 2, choose(c_yellow, c_green));

	D.If you wanted to create an effect 50 pixels above the current mouse position, what would be the Y value to create the effect at?

 mouse_y-50

	E.Why would you use effects instead of a sprite animation?
Easy to use, takes up less space.

	F.What does the GML effect_clear(); do? Clears / removes any active effects

	G.How many effects can be on the screen at once?
No real limit, though too many will cause the game to slow down.

	H.Can you create custom colours to use in effects?
Yes, just as you’d create any other custom colour.

 Basic Projects

 	A) Allow the user to change the weather by pressing W. Change between a snow and rain effect.
2 Points

	B) Create a menu button that creates firework effects of different colours in the middle when pressed with the mouse button.
2 Points

 Advanced Projects

 	C) Create a line of effects, 20 pixels apart, which start at the top of the screen and fall down to the bottom, then start from the top again.
3 Points

	D) Create an effect that spreads out from a location when the mouse is clicked. Make the effect move out every 10 degrees from the starting point. Destroy any effects after 3 seconds.
3 Points

End of Book Game Effects
The game will use a combination

 of effects to visually show weapons exploding and collisions.
Some effects will happen straight off of a
 Collision Event

 , while some will utilize an alarm system to limit the time between effects.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_20

20. Loops

Ben Tyers1
(1)Worthing, West Sussex, UK

A common need in programming is to repeat the same code multiple times. This functionality is available through using loops. There are four main loop functions

 in the GameMaker Language

 : do, while, for, and repeat. Each of these has its own strengths and weaknesses.
A loop can result in many similar actions being executed in a very short notice.
Note: It is important to make certain that loops run the correct number of times and then stop. It is possible through a coding mistake to create an infinite

 loop that runs forever. This will cause the game to stop working. Care needs to be taken to avoid this from happening.

 repeat Loop:

 repeat

 is a very simple control structure, which will repeat an assigned action for a specified number of times. The following code creates five enemies in a single step, all at random positions in the room.

 repeat(5) //Repeat the following code block 5 times
{
 instance_create(irandom(room_width),
 irandom(room_height), obj_enemy);
}

 while Loop

The
 while

 loop will repeat an action as long as the expression assigned to it is true or until you call a break. For example the following checks for an empty space randomly, and when it finds a free space the loop stops.

 while (!place_free(x, y))
{
 x = random(room_width);
 y = random(room_height);
}

 for Loop:

The
 for loop

 will execute different actions, and after each one it will check if its expression is true. If the expression is not true, the loop will end, and none of the following functions will be executed. Like before, we’ll use it to create a 50-point array in a matter of milliseconds. In almost all cases, you’d want to use var i here, as the loop counter generally has no need to be used outside of the block scope.

 for(var i=0; i<50; i++)
{
 array[i]=i;
}

The first statement (i=0) initializes the loop and sets a starting value. After initialization, the loop will check if i is smaller than 50, and if it is, it will increase the value of i using the i+=1; statement; this can also be written as i++;. After each step, the array’s length will increase by 1 and add i to that array’s position.
Note
Alternatively you can reduce a value by 1 using i--;.

To iterate n times with a for loop:
	If you start with i=0, check i<n.

	If you start with i=1, check i<=n.

 do Loop

 :

This will repeat until an expression is true. For example, the following will repeat until it finds an empty position:

 do
 {
 x = random(room_width);
 y = random(room_height);
 }
until (place_free(x, y));

Not too hard to understand, right? It can be used in many ways and it’s one of the most practical functions in the GameMaker Language, so don’t forget about it.
Notes: Some of these functions can loop forever, so be careful how you use them.
The do loop will always execute at least one time, but in for or while, it can be skipped.
Worksheet – Loops

 	A.True or False
	Loops are used to perform many tasks in a very short time. T / F

	It’s impossible for them to loop forever. T / F

	The DO function will loop until its expression is true. T / F

	B.How do we use the DO, FOR, and WHILE loops? Write an example for each:

	C.Write a For loop that initializes a 100-index array, with values 1 through to 100.

	D.You have a 2D array 5 by 5 in size. Write the appropriate code to draw all data onscreen:

Worksheet – Loops – Answer Sheet

 	A.True or False
	-Loops are used to perform many tasks in a very short time. T

	-It’s impossible for them to loop forever. F

	-The DO function

 will loop until its expression is true. T

	B.How do we use the DO, FOR, and WHILE loops? Write an example for each:

 Any suitable answer is OK here.

	C.Write a WHILE

 loop that initializes a 100-index array, with values 1 through to 100.

 for(var i=0; i<100; i++)
{
 array[i]=i+1;
}

	D.You have a 2D array 5 by 5 in size. Write the appropriate code to draw all data onscreen. One suitable approach is this:

 var loop1,loop2;
for (loop1 = 0; loop1 < 5; loop1 += 1)
{
 for (loop2 = 0; loop2 < 5; loop2 += 1)
 draw_text(loop1*100,loop2*50,array[loop1,loop2]);

}

 Basic Projects

 	A) Place an object in a room at a random position. Create another object that finds a random location within 100 pixels of the first object. Use a while loop for this.
2 Points

	B) Add 100 random numbers between 1 and 1000 to a ds_list, then sort them into order, highest value first. Display onscreen in 4 columns of 25. Use for loops for this.
2 Points

 Advanced Projects

 	C) Create four random points in the room. Get an object to visit each point in order. Display a message when all the have been visited.
3 Points

	D) Store the names of students in your class in an appropriate way. Display names in alphabetical in order, one at a time on the screen for 5 seconds, with a gap with no name for 2 seconds.
3 Points

End of Book Game Loops
The game includes two examples of a loop.
A
 repeat

 loop used for creating multiple explosions for the nuke when it collides with an asteroid or enemy ship.
And a
 for loop

 for displaying the total number of shots for each weapon and the total of all weapons combined.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_21

21. Arrays

Ben Tyers1
(1)Worthing, West Sussex, UK

Arrays are a useful way of storing data

 in an organized format. They allow similar information to be stored together. This allows for easy access, manipulation, and displaying of data.
You can store real numbers, integers, strings; and the indexes of sounds, sprites, and objects in a single array.
Some use applications

 for arrays include the following:
	Storing weapon information for multiweapon games

	Keeping lists of data

	Storing data in order created

	Storing facts and information

There are both one-dimensional

 arrays and two-dimensional arrays in GameMaker.
An example of setting a 1D array:

 name[0]= "Bob";
name[1]= "Claire";
name[2]= "Steve";
name[3]= "Nigel";
name[4]= "Sue";

A visualization of this would look something like this:	Location
	
	0
	Bob

	1
	Claire

	2
	Steve

	3
	Nigel

	4
	Sue

The following would draw the string stored in the array "name" at index 2, "Steve," at position 100, 100.

 draw_text(100, 100, name[2]);

An example of a 2D

 array, storing name, age, and country of residence.

 //names
info[0, 0]= "Bob";
info[0, 1]= "Claire";
info[0, 2]= "Steve";
info[0, 3]= "Nigel";
info[0, 4]= "Sue";
//ages
info[1, 0]=27;
info[1, 1]=19;
info[1, 2]=52;
info[1, 3]=40;
info[1, 4]=102;
//country
info[2, 0]= "America";
info[2, 1]= "Spain";
info[2, 2]= "Brazil";
info[2, 3]= "Canada";
info[2, 4]= "France";

A visualization of this in table form would look like this:	 	0
	1
	2

	0
	Bob
	27
	America

	1
	Claire
	19
	Spain

	2
	Steve
	52
	Brazil

	3
	Nigel
	40
	Canada

	4
	Sue
	102
	France

So the value at cell [1, 3
] would be 40.
You can use and change the values

 of an array as you would with any variable.
Arrays come into their own when processing data

 , especially with 2D arrays, as each array entry can be different lengths. Put the code shown previously into the
 Create Event of an object

 .
For loops are great ways to sequentially process data. The example below will repeat i three times and each time repeat j five times each time for i; this is known as a nested loop. It will then draw the value of the array cell at that position.
In a
 Draw Event

 put:

 for (i=0; i < 3; i++)
{
 for (j= 0; j < 5; j++)
 {
 draw_text(i*70, j*80, info[i, j]);
 }
}

This code will draw the values of information onscreen in a table format, as shown in Figure 21-1.[image: A433334_1_En_21_Fig1_HTML.jpg]
Figure 21-1.Showing output

 of data

An example GMZ is available in the resources at: Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter
 21
 ➤ examplea

You can add to an array variable

 just like a regular variable. For example:

 info[1, 3]+=1;

Which would increase Nigel's age by 1.
You can compare array values:

 if (info[1 ,0]>info[1, 1])
{
 text_to_show=(info[0, 0]+ " is older than "+info[0, 1]);
}

Which sets text_to_show to Bob is older than Claire
 .

 That is all for this example.
An application

 of this in GameMaker: Studio as an example; arrays are very useful for holding data for multiple weapons, as shown:	Weapon Name
	Strength
	Cost
	Current Ammo
	Sound Effect
	Image
	Bullet Object

	Gun
	1
	1
	200
	snd_gun
	spr_gun
	obj_bullet_gun

	Machine Gun
	5
	10
	400
	snd_mach_gun
	spr_mach_gun
	obj_bullet_mach_gun

	Rocket Grenade
	250
	300
	8
	snd_rocket
	spr_rocket
	obj_bullet_rocket

	Nuke
	1000
	5000
	2
	snd_nuke
	spr_nuke
	obj_bullet_nuke

You can create

 a data array for the previous code using:

 //declare other variables needed
global.cash=100000;
global.selected_weapon=0;
//declare array
//weapon name
weapon_info[0,0]= "Gun";
weapon_info[0,1]= "Machine Gun";
weapon_info[0,2]= "Rocket Grenade";
weapon_info[0,3]= "Nuke";

//weapon strength
weapon_info[1,0]=1;
weapon_info[1,1]=5;
weapon_info[1,2]=250;
weapon_info[1,3]=1000;

//weapon cost
weapon_info[2,0]=1;
weapon_info[2,1]=10;
weapon_info[2,2]=300;
weapon_info[2,3]=5000;

//weapon ammo
weapon_info[3,0]=200;
weapon_info[3,1]=400;
weapon_info[3,2]=8;
weapon_info[3,3]=2;

//weapon sound effect
weapon_info[4,0]=snd_gun;
weapon_info[4,1]=snd_mach_gun;
weapon_info[4,2]=snd_rocket;
weapon_info[4,3]=snd_nuke;

//weapon sprite
weapon_info[5,0]=spr_gun;
weapon_info[5,1]=spr_mach_gun;
weapon_info[5,2]=spr_rocket;
weapon_info[5,3]=spr_nuke;

//weapon bullet object
weapon_info[6,0]=obj_bullet_gun;
weapon_info[6,1]=obj_bullet_mach_gun;
weapon_info[6,2]=obj_bullet_rocket;
weapon_info[6,3]=obj_bullet_nuke;

Create an object, obj_example, and place the above code in a Create Event.

The resources

 needed for this example are in the downloadable resources.
You can set up an easy weapon select system using the following in a Step Event.

 if (keyboard_check_pressed (ord('0')))
{
 global.selected_weapon=0;
}
if (keyboard_check_pressed(ord('1')))
{
 global.selected_weapon=1;
}
if (keyboard_check_pressed(ord('2')))
{
 global.selected_weapon=2;
}
if (keyboard_check_pressed(ord('3')))
{
 global.selected_weapon=3;
}

Then you can do something like the following to fire the gun, also in the Step Event:

 if (mouse_check_button_pressed(mb_left)) && weapon_info[3, global.selected_weapon]>=1
{
 audio_play_sound(weapon_info[4, global.selected_weapon], 10, false); //play firing sound
 weapon_info[3, global.selected_weapon]-=1; //reduce ammo
 instance_create(mouse_x, mouse_y, weapon_info[6, global.selected_weapon=0]); //create bullet
}
x=mouse_x;
y=mouse_y;

In a Draw Event put:

 draw_sprite(weapon_info[5,global.selected_weapon],0,x,y);
//draw info
draw_text(10,20, "Strength: " +string(weapon_info[1,global.selected_weapon]));
draw_text(10,40, "Cost: "+ string(weapon_info[2,global.selected_weapon]));
draw_text(10,60, "Current Ammo: " +string(weapon_info[3,global.selected_weapon]));

If you wanted to take this further, then you could add sprites to the bullets and use this as a basis for a game. For instance if you had a constant, w_strength set to a value of 1, you could replace this code:

 draw_text(10,20, "Strength: " +string(weapon_info[1,global.selected_weapon]));

with:

 draw_text(10,20, "Strength: " +string(weapon_info[w_strength,global.selected_weapon]));

Which is easier to understand.
Using a macros constant this way keeps the code VERY tidy and makes changing the value later if required easy, as it only need changed in one place.
An example is available at Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter
 21
 ➤
 exampleb

Worksheet – Array
Put the following data into an array, called
 car_array

 :	Car Type
	Miles
	Seats
	Colour
	Image
	Cost

	Rover
	52000
	5
	Red
	spr_rover
	2800

	Ford
	28000
	5
	Yellow
	spr_ford
	4200

	Bugatti
	800
	2
	Black
	spr_bugatti
	156000

	Nissan
	14500
	4
	Blue
	spr_nissan
	1400

	Kia
	0
	6
	Silver
	spr_kia
	18995

	Mini
	126500
	4
	Green
	spr_mini
	1100

	Limousine
	3500
	8
	White
	spr_limo
	36000

Create code to:
	A.Draw all of the values and legends on screen in a grid format, including the sprite image.

	B.Reduce all costs by 10%.

	C.Add an additional element for damage, and set a value of 1 (low damage) to 10 for each car.

Worksheet – Array – Answer Sheet
Put the following data into an array, called
 car_array:

The following will populate the array with initial data:

 //Car Names
car_array[0,0]= "Rover";
car_array[0,1]= "Ford";
car_array[0,2]= "Bugatti";
car_array[0,3]= "Nissan";
car_array[0,4]= "Kia";
car_array[0,5]= "Mini";
car_array[0,6]= "Limousine";
//Car Mileage
car_array[1,0]=52000;
car_array[1,1]=28000;
car_array[1,2]=800;
car_array[1,3]=14500;
car_array[1,4]=0;
car_array[1,5]=126500;
car_array[1,6]=3500;
//Car Seats
car_array[2,0]=5;
car_array[2,1]=5;
car_array[2,2]=2;
car_array[2,3]=4;
car_array[2,4]=6;
car_array[2,5]=4;
car_array[2,6]=8;
//Car Colour
car_array[3,0]= "Red";
car_array[3,1]= "Yellow";
car_array[3,2]= "Black";
car_array[3,3]= "Blue";
car_array[3,4]= "Silver";
car_array[3,5]= "Green";
car_array[3,6]= "White";
//Car Image
car_array[4,0]=spr_rover
car_array[4,1]=spr_ford;
car_array[4,2]=spr_bugatti;
car_array[4,3]=spr_nissan;
car_array[4,4]=spr_kia;
car_array[4,5]=spr_mini;
car_array[4,6]=spr_limo;
//Car Cost
car_array[5,0]=2800;
car_array[5,1]=4200;
car_array[5,2]=156000;
car_array[5,3]=1400;
car_array[5,4]=18995;
car_array[5,5]=1100;
car_array[5,6]=36000;

 Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter

 21

Create code to:
	A.This is one approach, there are several other valid ways to program this:

 var loop;
for (loop = 0; loop < 7; loop += 1)
{
 draw_text(20,70+(loop*50),car_array[0,loop]); //Draw Car Type
 draw_text(120,70+(loop*50),car_array[1,loop]); //Draw Miles
 draw_text(220,70+(loop*50),car_array[2,loop]); //Draw Seats
 draw_text(320,70+(loop*50),car_array[3,loop]); //Draw Car Type
 draw_sprite(car_array[4,loop],0,420,70+(loop*50)); //Draw Sprite
 draw_text(520,70+(loop*50),car_array[5,loop]); //Draw Price
}

draw_text(20,20, "Car Type: "); //Draw Legend
draw_text(120,20, "Miles: "); //Draw Legend
draw_text(220,20, "Seats: "); //Draw Legend
draw_text(320,20, "Colour: "); //Draw Legend
draw_text(420,20, "Image: "); //Draw Legend
draw_text(520,20, "Price: "); //Draw Legend

	B.Reduce all costs by 10%. The following code will do this, when executed once:

 //reduce costs by 10%
var loop;
for (loop = 0; loop < 7; loop += 1)
{
 car_array[5,loop]*=0.9;
}

	C.Add an additional element for damage, and set a random value of 1 (low damage) to 10 for each car.

 //add damage
var loop;
for (loop = 0; loop < 7; loop += 1)
{
 car_array[6,loop]=irandom_range(1,10); :

}

And update the Draw Event accordingly, by adding the following within the loop of the Draw Event

 :

 draw_text(620,70+(loop*50),car_array[6,loop]);//Draw Damage

And the following below:

 draw_text(620,20, "Damage: ");//Draw Legend

An example for this worksheet projects is in the downloadable assets folder:
	
 Project Assets & GMZ Files ➤ Assets Used In Main Chapters ➤ Chapter

 21

 Basic Projects

 	A) Create a 2D array with data relating to four students in your group. Include variables name, age, height, eye colour, and favourite food. Display this data onscreen.
2 Points

	B) Make a 1D array with the values of 10 types of food. Display one at random each time the spacebar is pressed.
2 Points

 Advanced Projects

 	C) Create and populate a two-dimensional array with the 12 times table. Draw the contents on the screen.
3 Points

	D) Create an array to store the starting positions in a game of chess, use letters to represent each piece, that is, K for King, Q for Queen, N for knight, B for bishop, and C for castle; all other squares to have a value of 0. Use UPPER CASE for black and lowercase for white. Represent this board on the screen. Try to use one or more loops to populate the array. Draw a chessboard with the correct value in the middle of each square.
3 Points

End of Book Game Arrays
Arrays will be used in the game to store data for the weapons

 .
An example section for weapon with the index 1 will look like this:

 //name of weapon
global.weapon_info[0,1]= "Gun";
//strength of weapon
global.weapon_info[2,1]=1;
//number of bullets
global.weapon_info[3,1]=200;
//sprite of ship when weapon selected
global.weapon_info[4,1]=spr_ship_gun;
//weapon firing sound
global.weapon_info[5,1]=snd_gun;
//weapon explosion sound
global.weapon_info[6,1]=snd_explosion_gun;

In total there will be four types of weapons. By placing the data in an array we can quickly and easily access any weapon data.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_22

22. ds_lists

Ben Tyers1
(1)Worthing, West Sussex, UK

DS Lists (Data Structure) are effectively one-dimensional arrays

 that allow you to add data sequentially. However, they are much more flexible than a one-dimensional array, and you can perform lots of cool functions with them. They are great for the following:
	Sorting data alphabetically

	An inventory system

	Shuffling items

	Card games

	Music management

	Message management

	Sort the contents

	Delete contents, which will shift the remaining contents

	Add content at the start, anywhere in the middle, or at the end, which again can shift contents

	Find where something occurs in the list

Note

 ds_lists start with an index of 0, so if you wanted to insert at position 5, the actual index would be 4.

 ds_lists are awesome for making an inventory system

 . You can easily add items and remove them. So in an RPG type game

 you may pick up a key, then remove it when you collide with a door.
To start you need to declare a ds_list, for example:

 example_list = ds_list_create();

Then add something to the list:

 ds_list_add(example_list, "cheese");
ds_list_add(example_list, "bacon");
ds_list_add(example_list, "mushroom");
ds_list_add(example_list, "ham");
ds_list_add(example_list, "tomato");

Note
It’s also possible to add many values within one line of code. For example:

 ds_list_add(example_list, "cheese", "bacon", "mushroom, "ham", "tomato");

This would give the following result

 :	Index
	value

	0
	"cheese"

	1
	"bacon"

	2
	"mushroom"

	3
	"ham"

	4
	"tomato"

You can sort

 the list:

 ds_list_sort(example_list, true);

Where true will be ascending or false for descending. Strings are sorted alphabetically, lowest to highest for values.
This would then look like:	Index
	value

	0
	"bacon"

	1
	"cheese"

	2
	"ham"

	3
	"mushroom"

	4
	"tomato"

You can remove a value

 :

 ds_list_delete(example_list, 2);

Would remove the value at position 3 (index 2).
The list will then look like:	Index
	value

	0
	"bacon"

	1
	"cheese"

	2
	"mushroom"

	3
	"tomato"

You can insert a new value:

 ds_list_insert(example_list, 1, "egg");

Would insert "egg" at position 2 (index 1).
The list will then look like:	Index
	value

	0
	"bacon"

	1
	"egg"

	2
	"cheese"

	3
	"mushroom"

	4
	"tomato"

After adding an element you may want to sort

 your list again.
Other things you may want to do, such as finding where in the list something appears:

 position = ds_list_find_index(example_list, "cheese");

You can return a value to a variable, for example, the following, which would set word to "mushroom":

 word=ds_list_find_value(example_list, 3);

You may need to find the size of a list, for example:

 list_size=ds_list_size(example_list);

Note
The first position is at 0. So if the size is 5, its indexes will be 0,1,2,3,4

Which is great to use before you try and find a value at a position.
You can shuffle (randomize) the values

 with:

 ds_list_shuffle(example_list);

You can also use the accessor | that will allow you treat the ds_list as an array, for example, the following code would draw the value in index 3 at 100,100 on the screen:

 draw_text(100,100,example_list[| 3]);

You can look up how to use:

 ds_list_clear()
ds_list_empty()
ds_list_replace()
ds_list_copy()
ds_list_read()
ds_list_write()

When you have finished using a ds_list it's essential to destroy

 it. This helps prevent memory leaks. For example:

 ds_list_destroy(example_list);

Worksheet – ds_lists
Write the GML code to perform the following:
	A.Add the following values to a ds_list, list_example.
232, 6, 34, 989, 42, 56

	B.What does the list look like?	0
	
	1
	
	2
	
	3
	
	4
	
	5
	

	C.Sort the values in ascending order; what does it look like now?

	D.Remove value at index 3…what does it look like now?

	E.Add the following values: 12, 388, 191, 17

	F.Sort descending; what does it look like?

	G.What code would you use to find out how many elements are in the ds_list?

	H.What code would you use to remove one index at random?

	I.What code would you use to shuffle the list and find the value of index 0?

Worksheet – ds_lists – Answer Sheet
Write the GML code to perform the following:
	A.Add the following values to a ds_list called list_example
232, 6, 34, 989, 42, 56

	B.What does the list look like?	0
	232

	1
	6

	2
	34

	3
	989

	4
	42

	5
	56

	C.Sort the values in ascending order; what does it look like now? 6,34,42,56,232,989

	D.Remove value at index 3…what does it look like now? 6,34,42,232,989

	E.Add the following values: 12, 388, 191, 17: Will look like:
6,34,42,232,989,12,388,191,17

	F.Sort descending; what does it look like? 989,388,232,191,42,34,17,12,6

	G.What code would you use to find out how many elements are in the ds_list?

 ds_list_size(list_example);

	H.What code would you use to remove one index at random?

 ds_list_delete(list_example, irandom(ds_list_size(list_example) – 1));

	I.What code would you use to shuffle the list and find the value of index 0?

 ds_list_shuffle(list_example);
example=ds_list_find_value(list_example, 0);

 Basic Projects

 	A) Create an inventory system for five objects. If you add an additional item, add it to the end of the list, then remove the top item. Draw this onscreen.
2 Points

	B) Create a ds_list with five fruits. Player enters a fruit; if it matches a value in the ds_list, remove it, and tell player they made a correct guess. Player wins when all five fruits are guessed.
2 Points

	C) Create a list with the names of students in the class. Sort them in ascending order and draw on the screen.
2 Points

 Advanced Project

 	D) Add the names of all playing cards to a list. Shuffle them. Create four new ds_lists to represent player’s hands. Deal and remove the top card from the main list and deal to each player until each has five cards. Draw the values of each player's hand on the screen. Represent value and suit like: AS, 9H, 2D etc.
4 Points

End of Book Game ds_list
This game will use a DS list to store and process messages

 . We can add a message to the list anytime we want to, then use a control object to process them in the order they arrived.
We can take the message from position 0 and assign it to another variable. We can then delete the message at position 0 and allow the next one to take its place (if there is another message).
Taking this new variables string we can do what we want with it. In this instance we’ll display it as a message on the screen in a big font and give the player time to read it. We’ll then remove it, wait a short amount, and then display the next message if there is one.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_23

23. Paths

Ben Tyers1
(1)Worthing, West Sussex, UK

Sometimes you want to have repeated object motion similar to how code is repeated with scripts. Paths are a useful way to make objects move in a set way. You can create paths using the built-in path editor or using GML. This section covers both.
You can create

 a new path by clicking the Create a path button at the top as shown in Figure 23-1.[image: A433334_1_En_23_Fig1_HTML.jpg]
Figure 23-1.Creating a new path

You can then create the path, and add points by clicking. Figure 23-2 shows a path with four points added, with Closed and Smooth curve checked. sp means the speed.[image: A433334_1_En_23_Fig2_HTML.jpg]
Figure 23-2.Showing an example path closed and smooth curve

If you were to create the same path using GML

 , you would use the code below:

 path_example=path_add();
path_add_point(path_example,10,10,5);
path_add_point(path_example,100,10,5);
path_add_point(path_example,100,100,5);
path_add_point(path_example,10,100,5);

This creates the path and stores it in instance scope, not global scope as the path editor

 would have. This would create a memory leak if the instance is destroyed later without calling path_

 delete()

 .
The 5 at the end relates to the objects speed, though this is usually superseded when starting the path. The above example could be used to make a sentry move around and protect a building.
You can then set whether the path is straight or curved

 : use 0 for straight, 1 for curved. So in this example we’ll use:

 path_set_kind(path_example, 1);

Then set that the path is closed

 with:

 path_set_closed(path_example, true);

Then start the path with:

 path_start(path_example,50, path_action_restart, false);

 path_example is the name of the path you created in the editor.

 50 relates to the speed.

 path_action_restart tells what should happen when the last path location (end) is reached.
The last part can be true or false. false places the path at the absolute position within the room (i.e., where you defined it in the path editor) and true positions it relative to the instance (i.e., the start position will be at the current instance x/y position).
There are several end path actions

 . They are:	Action name
	Path Action Value
	What It Does

	
 path_action_stop

	
 0

	
 Stops at the end of the path

	
 path_action_restart

	
 1

	
 Restarts path from first position

	
 path_action_continue

	
 2

	
 Continues the current path

	
 path_action_reverse

	
 3

	
 Reverses along current path

A neat feature that should be pointed out is that using the inbuilt path editor, you can show a room’s object setup, enabling you to create a path avoiding objects you’ve already placed. To use this feature, click as shown in Figure 23-3.[image: A433334_1_En_23_Fig3_HTML.jpg]
Figure 23-3.Showing a room in the path editor

Some other useful codes for dealing with paths include the following:
Note
These should not be used for paths currently being followed.

You can insert a new point in a path using the following, which would add a new point to the path path_example at position 3 with the X and Y at with a speed of 5:

 path_insert_point(path_example,3, 50,50, 5);

You can change a point’s location

 , or speed using the following, which would change the path’s point at position 4 to an X and Y of 25 with a speed of 5:

 path_change_point(path_example, 4, 25, 25, 5);

You can get the X or Y point of a path’s position using, for example, the following, which give the point of X location at position 2:

 xpoint=path_get_point_x(path_example, 2);

You can set how precise a curved path is using 1(low) to 8(high):

 path_set_precision(path_example, 4);

Worksheet – Paths
Correct mistakes in the following:

 path_get_point_x(3, path_example);
path_point_insert(path_example,2, 100,45, 15);
path_start(path_example, 5, path_action_restart, 2);
path_example=path_add(new);

True or False:
	1.Paths can be straight lines. T / F

	2.At the end of the path it will automatically start from the beginning again. T / F

	3.You can only add 5 new points to a path. T / F

	4.You can reverse the direction of a path at any time. T / F

	5.You can calculate the X and Y location of the object at any time. T / F

	6.You can calculate the X and Y location of the next point in the path. T / F

	7.You can delete or change any point in a path. T / F

Worksheet – Paths – Answer Sheet
Correct mistakes in the following:

 path_get_point_x(3, path_example);

 path_get_point_x(path_example,3);

path_point_insert(path_example,2, 100,45, 15); path_insert_point(path_example,2, 100,45, 15);

path_start(path_example, 5, path_action_restart , 2);

 path_start(path_example, 5, path_action_restart, true);

path_example=path_add(new);

 path_example=path_add();

True or False:
	1.Paths can be straight lines. T

	2.At the end of the path it will automatically start from the beginning again. T

	3.You can only add 5 new points to a path. F

	4.You can reverse the direction of a path at any time. T

	5.You can calculate the X and Y location of the object at any time. T

	6.You can calculate the X and Y location of the next point in the path. T

	7.You can delete or change any Y point in a path. T

 Basic Projects

 	A) Create a path for an object, and make it move in a circle.

1 Point
	B) When the player left-clicks the mouse add the location as a new point on the path. Use project 23 A as a basis.

2 Points

 Advanced Projects

 	C) Make an object point in the direction of movement when following a path. Use project 23 B as a basis.
3 Points

	D) Create a random path of 10 points, and save the points to an INI file.
3 Points

End of Book Game Paths
The game includes two examples of paths.
Paths are used for moving the bonus coin object and the cloud object.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_24

24. Scripts

Ben Tyers1
(1)Worthing, West Sussex, UK

Reusable code makes it easy to update program objects at the same time. Additionally, it makes it easier to organize and understand how code works. GML

 scripts are useful in processing data

 , especially if you will be doing the same calculation again and again. This can include sending data to the script and then returning a value if required. If you are using the same code twice or more anywhere in your program, then you should consider using a script. This allows you to make just one change to update your code. Imagine a game that had over 100 enemy monsters with their own code; changing the code for each would take many hours, and be prone to errors. Using a script you could do this in a few minutes. It also allows for nice and tidy code.
Also, scripts allow the possibility of sharing code

 between multiple projects.
Some examples for scripts:
	Doing a math calculation and returning the answer, even if only used once; it means that your code is easier to read through and understand.

	Setting a drawing or font type, formatting, and colour – makes code easier to read.

	Playing sound effects and voices.

	Sending through an object and returning the closest instance.

	Drawing text that’s used multiple times.

	Recording bullet hits against multiple different objects.

	Adding things to a DS list.

	Any other GML that’s used more than once.

You can create

 a new script by clicking the Create a script button at the top of the window in the location shown in Figure 24-1.[image: A433334_1_En_24_Fig1_HTML.jpg]
Figure 24-1.
 Creating

 a new script

Name the script scr_example. Put in the following code:

 ///scr_example(value1,value2,value3)
//this script adds 3 numbers
var total=argument0+argument1+argument2;
return total;

Save this by pressing the green tick.
Create an object obj_example.
In its
 Create Event

 put (so we don't try and draw a nonexistent variable):

 answer=scr_example(12,18,7);

In the
 Draw Event

 put:

 draw_text(100,100,answer);

This will send the values

 12, 18, and 7 to the script. The script will perform its GML and then return the value of total.
You can return strings, integers, real numbers, Boolean (true or false) and indexes of sounds, objects, rooms etc.
For example you can send through some objects:
Create a script and name it scr_pos:

 /// scr_pos(obj1, obj2)
//compares heights on y axis
if (instance_exists(argument0) && instance_exists(argument1))
{
 if argument0.y < argument1.y
 {
 return true;
 }
}
return false;

This will return true if obj_1 is higher up the room than obj_2, by checking the Y location of each, or false otherwise.
Note that when you call return you are exiting the script, and no further code will be run from it.
You do not have to return a value

 , as shown in the following example. Another example, this script will use views to keep two objects

 in view, and set the border size. It takes the X and Y locations of two objects and adjusts the view so that both can be seen at the same time.

 scr_view_control(obj1,obj2,border)

 var o1,o2,x1,x2,y1,y2,vw,vh,vb,vscale;
o1=argument0; x1=o1.x; y1=o1.y;
o2=argument1; x2=o2.x; y2=o2.y;
vb=argument2; vw=view_wport[0]; vh=view_hport[0];
vscale=max(1,abs(x2-x1)/(vw-(vb*2)),abs(y2-y1)/(vh-(vb*2)));
view_wview[0]=vscale*vw;
view_hview[0]=vscale*vh;
view_xview[0]=(x1+x2-view_wview)/2;
view_yview[0]=(y1+y2-view_hview)/2;

For example scr_view_control(obj_player1, obj_player2, 150);

You can send through positions of an instance or of the mouse, for example, without returning. The following would draw a laser between two endpoints.

 scr_laser(start_x,start_y,end_x,end_y)

 draw_set_color(make_color_rgb(irandom(255),irandom(255),irandom(255)));
draw_line_width(argument0, argument1, argument2, argument3, 5);
draw_set_color(c_lime);
draw_line(argument0+1,argument1+1,argument2,argument3);
draw_line(argument0+1,argument1-1,argument2,argument3);
draw_line(argument0-1,argument1+1,argument2,argument3);
draw_line(argument0-1,argument1-1,argument2,argument3);
draw_line(argument0,argument1,argument2,argument3);
effect_create_above(ef_spark, argument2, argument3, 1,
choose(c_red,c_orange));

An example of using this script, which would draw

 a laser effect from the object to the mouse position:

 scr_laser(x, y, mouse_x, mouse_y);

Arguments can be accessed in two ways, for example:

 name=argument0;

Or

 name=argument[0];

Note
You cannot mix the two types above in a script.

Worksheet – Scripts
Describe what each of the following scripts would do:
	1.
 number=floor((argument0+argument1+argument2)/3);
return number;

	2.
 if argument0 mod 2==0
{
 return true;
}
else
{
 return false;
}

	3.
 if position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left)
{
 if global.total<global.max_total
 {
 global.total+=1;
 }
}

Worksheet – Scripts – Answer Sheet
Describe what each of the following scripts would do:
	1.
 Will add three numbers and return the average

 number=floor((argument0+argument1+argument2)/3);
return number;

	2.
 Will return true if number is even or false if it is odd

 if argument0 mod 2==0
{
 return true;
}
else
{
 return false;
}

	3.
 If mouse is left, button released over object will add 1 to global.total if it is less than global.max_total

 if position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left)
{
 if global.total<global.max_total
 {
 global.total+=1;
 }
}

 Basic Projects

Create a script to do each of following, and display any result onscreen visually, as required, remembering to set up any text drawing.
	A) Find the average of five numerical values and round to the nearest whole number.
1 Point

	B) Work out if the player is within 200 pixels of an enemy object, and return true or false.
1 Point

	C) Draw given text, in black with a red shadow, at given position.
1 Point

	D) Create three different fonts. Create a script that allows you to quickly draw text, using font, alignment, colour, and position.
1 Points

 Advanced Projects

 	E) Create a script that finds an average point between two objects, and draws a star effect at that position.
2 Points

	F) Create a script that takes and calculates an angle between two objects and draws that direction as text as the angle were on a compass needle, that is, North or South West. The direction is that from the first object to the second. North is up.
4 points

End of Book Game Scripts
The game makes use of a lot of scripts. They are used when code is used in more than one place; this makes code

 easier to understand and for performing some math calculations.
The scripts used are:
	
 scr_angle_rotate – for rotating player and enemy ships

	
 scr_bullet_hit – reducing asteroid or enemy health when hit by a bullet

	
 scr_buy – buys a bullet in shop if player has enough cash

	
 scr_create_bullet – creating bullet(s) if player has enough

	
 scr_cycle – performing a math calculation

	
 scr_draw_shop – draws data for a weapon in the shop

	
 scr_fading – used for fading a bullet if alarm is reached

	
 scr_locked_or_unlocked – works out if level is unlocked and displays appropriate sprite

	
 scr_msg – a message to a DS list

	
 scr_play_effect – plays a given sound effect

	
 scr_set_menu_text – sets font drawing properties for menu

	
 scr_shop_set_text – sets font drawing properties for shop

	
 scr_target – works out nearest enemy or asteroid for missile weapon, and for enemy to find player

	
 scr_voice – plays a voice sound effect

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_25

25. Hints and Tips

Ben Tyers1
(1)Worthing, West Sussex, UK

Scripts Tricks
When you’ve finished your game, or while making it, you may want to make changes to your code. Here are some tips for code handling

 .
You can search

 in scripts by clicking Scripts ➤ Search in scripts. This is shown below in Figure 25-1.[image: A433334_1_En_25_Fig1_HTML.jpg]
Figure 25-1.Starting a search

 in scripts

For example, you could search everything for global.selected_weapon; this search and result is shown in Figure 25-2 and the result in Figure 25-3.[image: A433334_1_En_25_Fig2_HTML.jpg]
Figure 25-2.An example search

 [image: A433334_1_En_25_Fig3_HTML.jpg]
Figure 25-3.Showing search results

You can then click on each result to be taken directly to where that search is found.

Testing
When testing
 , you don’t want to spend hours repeating the same sections of your game to get to the bit you want to test. For example, if your game had four levels, you wouldn’t want to have to spend time repeatedly going through levels 1 to 3 just to test the fourth level.
What you can do is create shortcuts in your game to allow you to do things like change the level: health, lives, etc. Sometimes programmers leave these in the final game – these are known as easter-eggs. You’ve probably played a console game where you enter a certain button combination used to unlock things; most of these were put in for the benefit of testers (and sometimes for the player).
An example would be:

 if keyboard_check_released(ord('Q'))

 {

 global.level+=1;

 }

 if keyboard_check_released(ord('A'))

 {

 global.level-=1;

 }

Placed in an object on a level select screen would allow you to change/unlock levels.
You can easily do other key combinations to change other variables as needed.

 Assets Handling

It’s important to keep your assets well named and tidy.
You can right-click on a folder or section and select Sort by Name, as shown in Figure 25-4.[image: A433334_1_En_25_Fig4_HTML.jpg]
Figure 25-4.Sorting assets by name

Alternatively you can click on individual assets and drag them to a new location, as there may be times where you want assets in a non-alphabetical order.
Similarly, you can Create a Group (a folder) and divide assets into sections; this is a great way to organize your assets and find them quickly. This is shown in Figure 25-5.

 [image: A433334_1_En_25_Fig5_HTML.jpg]
Figure 25-5.Sorting assets into groups

After creating a group, you can click and drag an asset to that group as needed, and sort the contents of the group.

 Projects

The final project combines what you have learned previously. Each is 1 point.
	A) Create a background and control object that makes the background change direction every 5 seconds. Make it move up, down, left, right, and diagonally.

	B) Create a movable player object and an enemy object that moves towards the player every 5 seconds. Only an enemy can wrap around the screen. Make both point in the direction traveling.

	C) Make the enemy shoot in the direction every time it changes direction, in the direction it’s moving. Player can also shoot in direction that it’s moving, no quicker than once that every 4 seconds.

	D) Create a small health bar above player and enemy objects. Set it so being hit by a bullet reduces health.

	E) Allow player to place a bomb anywhere onscreen using the mouse. Bomb detonates after 3 seconds. If player or enemy are in range, they lose health.

	F) Make it rain if player has more health, snow if the enemy has more.

	G) Create visual and audio effects if a bullet hits player or enemy, or when bomb explodes.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_26

26. Creating a Game – Outline

Ben Tyers1
(1)Worthing, West Sussex, UK

First up, note that the process of making a game is never as shown in the following chapters. The purpose of these chapters is to demonstrate how you can apply what has been learned in the book in the context of a game. If you were creating a game from scratch, you would generally make some design notes prior to starting to program. You would then start off with a single object, that is, obj_ship, and build the game up from there, adding new elements and constantly testing.
We’ll create an arcade style shooting game.
At this point you now should be able to understand what all the GML code in this example game does. Explanations are still given, so you can understand how the code is combined and actually applied to the making of the game.
This will also give you extra insight into programming and game implementation that you can apply in the final book projects.
As before, all assets for this game are in the downloadable resource at:

 Project Assets & GMZ Files ➤ Final Game Assets

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_27

27. Creating a Game – Sprites

Ben Tyers1
(1)Worthing, West Sussex, UK

All assets for the game are included; you just need to load them in, and they are as shown in Figure 27-1:[image: A433334_1_En_27_Fig1_HTML.jpg]
Figure 27-1.All sprites used in game

Sprites are named as the asset that you’ll be naming them, except for spr_coin and spr_cloud which make use of an image strip. To create a strip create a new sprite, name it and click edit, followed by File then Edit, File then Create From Strip, then click the image to load and apply the settings needed.
Note
You can drag these assets into the resource tree from the folder and rename as required.

The settings for
 spr_coin

 is shown in Figure 27-2:[image: A433334_1_En_27_Fig2_HTML.jpg]
Figure 27-2.Showing strip settings for spr_coin_strip31

When saved, by clicking OK, you can click and preview to check it all loaded OK: for example, as shown in Figure 27-3:[image: A433334_1_En_27_Fig3_HTML.jpg]
Figure 27-3.Showing sprite with sub images

Settings for spr_cloud

 are shown in Figure 27-4:[image: A433334_1_En_27_Fig4_HTML.jpg]
Figure 27-4.Showing strip settings for spr_cloud

The sprite origin is center, unless otherwise indicated.
Once loaded and organized

 , your resource tree for the sprites will look like Figure 27-5.[image: A433334_1_En_27_Fig5_HTML.jpg]
Figure 27-5.Showing sprites loaded and organized

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_28

28. Creating a Game – Sounds

Ben Tyers1
(1)Worthing, West Sussex, UK

Next is to load in the sounds. They are all ready to use from the assets folder. Each file is named the same as the resource; you just need to load them in. It’s fine to use the default sound settings for each of them. Your resource folder will appear as shown in Figure 28-1.[image: A433334_1_En_28_Fig1_HTML.jpg]
Figure 28-1.Showing sound assets folders

Note
You can drag these assets into the resources tree and rename as needed.

Once loaded in and organized

 , you resource tree will look like Figure 28-2.[image: A433334_1_En_28_Fig2_HTML.jpg]
Figure 28-2.Showing sounds loaded and organized

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_29

29. Creating a Game – Backgrounds

Ben Tyers1
(1)Worthing, West Sussex, UK

The backgrounds are ready to load, and again have been the same as the assets. Your background folder will look like the one as shown in Figure 29-1:[image: A433334_1_En_29_Fig1_HTML.jpg]
Figure 29-1.Showing background files in folder

After loading into the game, the resource tree

 will be as shown in Figure 29-2.[image: A433334_1_En_29_Fig2_HTML.jpg]
Figure 29-2.Showing assets added to game

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_30

30. Creating a Game – Paths

Ben Tyers1
(1)Worthing, West Sussex, UK

The game makes use of two paths: one for the cloud bonus and one for the coin bonus.
Set the paths up as shown in Figure 30-1 and Figure 30-2; you don’t need to be 100% accurate.[image: A433334_1_En_30_Fig1_HTML.jpg]
Figure 30-1.Showing path path_cloud

 [image: A433334_1_En_30_Fig2_HTML.jpg]
Figure 30-2.Showing path_coin_bonus

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_31

31. Creating a Game – Fonts

Ben Tyers1
(1)Worthing, West Sussex, UK

This game makes use of seven fonts
 :
	
 font_asteroid_text – Arial size 12

	
 font_lock – Arial size 25

	
 font_menu_stats – Garamond size 22

	
 font_message – Arial size 50

	
 font_mini_message – Arial size 15

	
 font_restart – Arial size 14

	
 font_shop – Arial size 18

Create the fonts as listed above.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_32

32. Creating a Game – Scripts

Ben Tyers1
(1)Worthing, West Sussex, UK

This game uses a lot of scripts. The script file is available in the resources at:

 Project Assets & GMZ Files ➤ Final Game Assets ➤ Scripts

To add these scripts to your project, just drag the file across to your resource tree

 , as shown in Figure 32-1 below:[image: A433334_1_En_32_Fig1_HTML.jpg]
Figure 32-1.Importing script file

Once added, your resource tree

 will look like Figure 32-2 on next page.[image: A433334_1_En_32_Fig2_HTML.jpg]
Figure 32-2.Showing all scripts added

 scr_angle_rotate

 //find rotation angle

 return argument0 + max(min(scr_cycle(argument1 - argument0, -180, 180), argument2), -argument2);

This script finds the shortest was to rotate to a given angle: for example if it’s at 350’ and the target is at 10’, it will work out that it needs to rotate 20’ clockwise.

 scr_bullet_hit

 //do if hit by bullet
my_health-=other.strength;
global.hits+=1;
with (other) instance_destroy();

This script reduces the my_health value by the strength of the colliding bullet, makes note of this increasing global.hits, and then destroys the bullet.

 scr_buy

 //check if player can buy
if position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left)
{
 if global.cash>=global.weapon_info[2,button_id] //check if enough cash
 {
 global.cash-=global.weapon_info[2,button_id]; //take cash away
 global.weapon_info[3,button_id]+=1; //add ammo
 scr_voice(snd_voice_purchase_complete);
 }
 else scr_voice(snd_voice_not_enough_cash);
}

The previous script checks for a mouse button released over itself. It then checks if the player has enough cash; if it does it takes the cash away, increases the ammo of that bullet, and plays the voice purchase complete. If there is not enough cash to purchase it, it plays the voice not enough cash.

 scr_cycle

 // cycle - works with scr_angle_rotate
argument0 = (argument0 - argument1) mod (argument2 - argument1)
if (argument0 < 0) return argument0 + argument2
return argument0 + argument1;

 scr_draw_shop

 //draw button and text
draw_self();
scr_shop_set_text();
draw_text(50,y, global.weapon_info[0,button_id]); //draw name
draw_text(250,y, global.weapon_info[1,button_id]); //strength
draw_text(350,y, global.weapon_info[2,button_id]); //cost
draw_text(450,y, global.weapon_info[3,button_id]); //current ammo

This script draws a button for the object, sets text to the font for the shop, then draws the values of the weapon in a line, with the y relative to where the button has been placed.

 scr_fading

 //reduce alpha when not live
if (!live) image_alpha-=0.05;
if image_alpha<0 instance_destroy();

If live has been set to false (after an alarm has triggered), it will fade the object by 0.05 per step and then destroy it when alpha is below 0.

 scr_locked_or_unlocked

 ///Check If Unlocked - Goto Shop If OK
if global.level>=my_id
{
 locked=false;
}
else
{
 locked=true;
}
if locked
{
 image_index=0;
}
else
{
 image_index=1;
}
if (!locked && position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left))
{
 global.my_level=my_id;
 room_goto(room_shop);

}

Displays locked or unlocked image depending on current level. If unlocked, player can click it to start level.

 scr_msg

 //add message to a ds list
ds_list_add(global.message,argument0);

Cues up a message to be used by the message object.

 scr_play_effect

 //plays a sound effect
audio_play_sound(argument0,2,0);

This script plays a given sound effect.

 scr_set_menu_text

 //this script sets drawing font, alignment and colour
draw_set_font(font_shop);
draw_set_colour(c_white);
draw_set_halign(fa_left);
draw_set_valign(fa_middle);

The above script sets the drawing text style. Although a script isn’t really required, it does make the code in the calling object a bit tidier.

 scr_shop_set_text

 //this script sets drawing font, alignment and colour
draw_set_font(font_shop);
draw_set_colour(c_red);
draw_set_halign(fa_left);
draw_set_valign(fa_middle);

Used to set drawing text style. Used to make calling object code tidier.

 scr_spawn

 var asteroid=instance_create(argument0,argument1,argument2);
asteroid.my_health=argument3;
asteroid.my_starting_health=argument4;
i=irandom_range(argument5,argument6);
asteroid.rotate=choose(i,-i);
asteroid.direction=argument7;
asteroid.speed=irandom_range(argument8,argument9);

The previous script spawns asteroids with the give attributes.

 scr_target

 //Find a nearest object
return instance_nearest(argument0,argument1,argument2);

Although only one line, it’s used a few times, so it justifies having a script.

 scr_voice

 //play a voice sound effect]
audio_play_sound(argument0,1,0);

Used to play a voice sound effect. Voices are used a lot, and this script makes the calling object’s code easier to read.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_33

33. Creating a Game – Parent Objects

Ben Tyers1
(1)Worthing, West Sussex, UK

In order to allow you to create the objects in a progressive, organized manner, first we’re going to create objects that are used as parent objects.
You assign parents from other objects. Put basically, a child object
 will perform events implemented by its parent, except those that have been explicitly specified in the child.
For example, assigning obj_lock_parent as a parent of obj_button_1, as shown in Figure 33-1:[image: A433334_1_En_33_Fig1_HTML.jpg]
Figure 33-1.Assigning a parent object

The following objects are parent objects:

 obj_bullet_parent

 obj_asteroid_parent

 obj_lock_parent

 obj_shop_button_parent

The information for each of these objects is in the resource folder

 :
	
 Project Assets & GMZ Files ➤ Final Game Assets ➤ Parent Objects

Each file can opened in a text editor such as Notepad.
You can then use the information to create the object.
Start with
 obj_bullet_parent

 .
The contents of this file looks like this:

 Information about object: obj_bullet_parent

 Sprite:

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent:

 Children

 obj_double_gun_bullet

 obj_gun_bullet

 obj_missile_bullet

 obj_nuke_bullet

 Mask:

 No Physics Object

 Alarm Event for alarm 0:

 execute code:

///Alarm trigger - start fading
live=false;

 Step Event:

 execute code:

///Create fading if enabled
scr_fading();

wrap in both directions when an instance moves outside the room

The header tells you basic info:

 Information about object: obj_bullet_parent
Sprite:
Solid: false
Visible: true
Depth: 0
Persistent:

The object name is:
 obj_bullet_parent

 , it has no sprite, isn’t set to solid and has a depth of 0 and is not persistent.
This provides all information required to re-create this object. For example, this part:

 Alarm Event for alarm 0:

 execute code:

///Alarm trigger - start fading
live=false;

Tells you to create an Alarm[0] Event with the code:

 ///Alarm trigger - start fading
live=false;

The following tells you it has a Step Event that calls scr_fading(); :

 Step Event:

 execute code:

///Create fading if enabled
scr_fading();

This part:

 wrap in both directions when an instance moves outside the room

Indicates that a D&D action has been used, in this case the Wrap Room In Both Direction, which can be found in the Move Tab. This is in the Step Event.
Complete for the remaining objects in this resource folder.
The rest of the information for the other parent objects is below.

 obj_asteroid_parent

 Information about object: obj_asteroid_parent

 Sprite:

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent:

 Children

 obj_asteroid_big

 obj_asteroid_medium

 obj_asteroid_small

 obj_enemy

 Mask:

 No Physics Object

 Collision Event with object obj_bullet_parent:

 execute code:

scr_bullet_hit();

 Draw Event:

 execute code:

///draw self and a healthbar

draw_self();
if health>0
{
 draw_set_colour(c_blue);
 draw_rectangle(x-50,y-50,x+50,y-40,0)
 draw_set_colour(c_red);
 draw_rectangle(x-50,y-50,x-50+((100/my_starting_health)*my_health),y-40,0);
 draw_set_colour(c_black);
 draw_rectangle(x-50,y-50,x+50,y-40,1)
}

 obj_lock_parent

Information about object: obj_lock_parent
Sprite:
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent:

Children
obj_button_1
obj_button_2
obj_button_3
obj_button_4

Mask:

No Physics Object

 Step Event:

 execute code:

///Check If Unlocked - Goto Shop If OK
if global.level>=my_id
{
 locked=false;
}
else
{
 locked=true;
}
if locked
{
 image_index=0;
}
else
{
 image_index=1

}
if (!locked && position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left))
{
 //level check
 if global.level=my_id
 {
 global.current=true;
 }
 else
 {
 global.current=false;
 }
 global.my_level=my_id;
 room_goto(room_shop);
}

 Draw Event:

 execute code:

///Draw Locked / Unlocked & ID
draw_self();
draw_set_font(font_lock);
draw_set_valign(fa_middle);
draw_set_halign(fa_center);
draw_set_colour(c_black); //These two lines create
draw_text(x-1,y-1,my_id); //a shadow effect
draw_set_colour(c_white);
draw_text(x,y,my_id); //Draw Over Black Text

 obj_shop_button_parent

 Information about object: obj_shop_button_parent

 Sprite:

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent:

 Children

 obj_shop_button_1

 obj_shop_button_2

 obj_shop_button_3

 obj_shop_button_4

 Mask:

 No Physics Object

 Step Event:

 execute code:

/// Buy If Enough && voices
scr_buy(button_id);

 Draw Event:

 execute code:

//Draw Button & Data
scr_draw_shop();
draw_self();

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_34

34. Creating a Game – Objects

Ben Tyers1
(1)Worthing, West Sussex, UK

As before, the text files for these objects are available in the resources, at: Project Assets & GMZ Files ➤ Final Game Assets ➤ Object

In the object information

 below, where this is more than one execute code: within an event, each is a separate code block.
Next repeat the process

 with the remaining object; the suggested order

 is below:

 obj_asteroid_big

 Information about object: obj_asteroid_big

 Sprite: spr_asteroid_big

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent: obj_asteroid_parent

 Children:

 Mask:

 No Physics Object

 Step Event:

 execute code:

///Rotate & Health Check
image_angle+=rotate;

if my_health<1
{
 scr_msg("Large##Asteroid##Destroyed");
 //Add cash
 global.cash+=my_starting_health;
 //create a medium first

 scr_spawn(x,y,obj_asteroid_medium,my_starting_health/2,my_starting_health/2,rotate*-1,rotate*-1,direction-30,speed,speed);
 scr_spawn(x,y,obj_asteroid_medium,my_starting_health/2,my_starting_health/2,rotate*-1,rotate*-1,direction+30,speed,speed)

 ;

 //create enemy
 enemy=instance_create(x,y,obj_enemy);
 enemy.my_health=20*global.level*global.level;
 enemy.my_starting_health=20*global.level*global.level;

 instance_destroy();
}

wrap in both directions when an instance moves outside the room

 obj_asteroid_medium

 Information about object: obj_asteroid_medium

 Sprite: spr_asteroid_medium

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent: obj_asteroid_parent

 Children:

 Mask:

 No Physics Object

 Step Event:

 execute

 code

 :

///Rotate & Health Check
image_angle+=rotate

if my_health<1
{
 //Add cash
 global.cash+=my_starting_health;
 scr_spawn(x,y,obj_asteroid_small,my_starting_health/2,my_starting_health/2,rotate*-1,rotate*-1,direction-50,speed*1.5,speed*1.5);
 scr_spawn(x,y,obj_asteroid_small,my_starting_health/2,my_starting_health/2,rotate*-1,rotate*-1,direction+50,speed*1.5,speed*1.5);
 scr_spawn(x,y,obj_asteroid_small,my_starting_health/2,my_starting_health/2,rotate*-1,rotate*-1,direction-180,speed*1.5,speed*1.5);

 instance_destroy()

 ;
}

wrap in both directions when an instance moves outside the room

 obj_asteroid_small

 Information about object: obj_asteroid_small

 Sprite: spr_asteroid_small

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent: obj_asteroid_parent

 Children:

 Mask:

 No Physics Object

 Step Event:

 execute code:

///Rotate & Health Check
image_angle+=rotate;

if my_health<1
{
 global.cash+=my_starting_health;
 instance_destroy();
}

wrap in both directions when an instance moves outside the room

 obj_cloud

 Information about object: obj_cloud

 Sprite: spr_cloud

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent:

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

///Set image and start path & play voice
image_index=0;
image_speed=0;
y=irandom_range(100,700);
path_start(path_cloud,irandom_range(2,10),path_action_continue,false);
scr_voice(snd_voice_weather_warning);

 Alarm Event for alarm 0:

 execute code:

instance_destroy();

 Collision Event

 with object obj_bullet_parent:

 execute code:

///Change Image When Hit By Bullet
if image_index==0
{
 global.cash+=1000;
 image_index=1;
}
alarm[0]=room_speed*3;

 obj_coin

 Information about object: obj_coin

 Sprite: spr_coin

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent:

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

///start path & play voice
y=irandom_range(200,600);
path_start(path_coin_bonus, 5, path_action_continue, false);
scr_voice(snd_voice_bonus);

 Collision Event with object obj_ship:

 execute code:

///Increase Cash & Destroy
global.cash+=10000;
scr_voice(snd_voice_cash_boost);
scr_msg("Bonus Cash");
effect_create_above(ef_star,x,y,2,c_orange);
instance_destroy();

 obj_double_gun_bullet

 Information about object: obj_double_gun_bullet

 Sprite: spr_double_gun_bullet

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent: obj_bullet_parent

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

///Set up
live=true;
alarm[0]=room_speed;
strength=global.weapon_info[1,2];
global.weapon_info[6,2]+=1;

 Collision Event

 with object obj_asteroid_parent:

 execute code:

///explosion and sound effect
scr_play_effect(snd_explosion_double_gun);
effect_create_above(ef_explosion,x,y,5,c_orange);

 obj_gun_bullet

 Information about object: obj_gun_bullet

 Sprite: spr_gun_bullet

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent: obj_bullet_parent

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

///Set up
live=true;
alarm[0]=room_speed;
strength=global.weapon_info[1,1];
global.weapon_info[6,1]+=1;

 Collision Event with object

 obj_asteroid_parent

 :

 execute code:

///explosion and sound effect
scr_play_effect(snd_explosion_gun);
effect_create_above(ef_explosion,x,y,2,c_red);

 obj_missile_bullet

 Information about object: obj_missile_bullet
Sprite: spr_missile_bullet
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_bullet_parent
Children:
Mask:
No Physics Object

 Create Event:

 execute code:

///Set Up
live=true;
active=true;
alarm[0]=room_speed*5;
strength=global.weapon_info[1,3];
global.weapon_info[6,3]+=1;

 execute code:

///Find a Target
if instance_exists(obj_asteroid_parent)
{
 target=scr_target(x,y,obj_asteroid_parent);
}

 Step Event:

 execute code:

///Look For Target - if destroyed find another
if instance_exists(target) && instance_exists(obj_asteroid_parent)
{
 target=scr_target(x,y,obj_asteroid_parent);
}
else//if no target available (ie all asteroids destroyed)
{
 active=false;
}

 execute code

 :

///Set Moving Direction Angle

if active
{
 tx = target.x;
 ty = target.y;
 direction = scr_angle_rotate(direction, point_direction(x, y, tx, ty), 5);
 image_angle = direction;
}

 execute code:

///Create Fading if enabled
scr_fading();

 Collision Event with object

 obj_asteroid_parent:

 execute code:

///Explosion Sound and Effects
scr_play_effect(snd_explosion_missile);
effect_create_above(ef_explosion,x,y,2,c_white);

 obj_nuke_bullet

 Information about object: obj_nuke_bullet

 Sprite: spr_nuke_bullet

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent: obj_bullet_parent

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

///Set up
live=true;
alarm[0]=room_speed;
strength=global.weapon_info[1,4];
global.weapon_info[6,4]+=1;

 Collision

 Event

 with object obj_asteroid_parent:

 execute code:

///explosion sound and effects
scr_play_effect(snd_explosion_nuke);
repeat 20
{
 effect_create_above(ef_explosion,x+50-irandom(100),y+50-irandom(100),2,c_red);
}

 obj_level_control_and_hud

 Information about object: obj_level_control_and_hud

 Sprite:

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent:

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

///Set Background

if global.my_level==1 background_index[0]=bg_level_1;
if global.my_level==2 background_index[0]=bg_level_2;
if global.my_level==3 background_index[0]=bg_level_3;
if global.my_level==4 background_index[0]=bg_level_4;

 execute code:

///Create Ship & Set Variables
instance_create(400,400,obj_ship);
//create message system
instance_create(10,10,obj_message);
//Show some user messages:
scr_msg("Get Ready");
scr_msg("Move With#Arrow Keys");
scr_msg("Fire With#Z");
scr_msg("Select Weapon#With# 1 2 3 4");
//set other variables
low_health=false;
//start timer
timer=0;
alarm[1]=room_speed;
//set flag for low health warning
health_alarm=false;

 execute code:

/// Play Voice

if global.my_level==1 scr_voice(snd_voice_level_1);
if global.my_level==2 scr_voice(snd_voice_level_2);
if global.my_level==3 scr_voice(snd_voice_level_3);
if global.my_level==4 scr_voice(snd_voice_level_4);

 execute code

 :

///Set Count to 0
count=0;

 execute code:

/// Spawn Asteroids
//scr_spawn = Create an asteroid, x,y,asteroid,my_health,my_starting_health,min rotate, max rotate,
//direction,speed min, speed max
//level 1 Spawn
if global.my_level==1
{
 //asteroid no 1
 scr_spawn(200,200,obj_asteroid_big,20,20,1,6,25,2,5);

 //asteroid no 2
 scr_spawn(600,600,obj_asteroid_big,20,20,1,6,180,2,5);

 //asteroid no 3
 scr_spawn(800,200,obj_asteroid_big,20,20,1,6,230,2,5);
}

//level 2 Spawn
if global.my_level==2
{
 //asteroid no 1
 scr_spawn(200,200,obj_asteroid_big,200,290,1,6,75,2,5);

 //asteroid no 2
 scr_spawn(600,600,obj_asteroid_big,200,200,1,6,300,2,5);

 //asteroid no 3
 scr_spawn(800,200,obj_asteroid_big,200,200,1,6,45,2,5);

 //asteroid no 4
 scr_spawn(800,200,obj_asteroid_big,200,200,1,6,130,2,5);
}

//level 3 Spawn

if global.my_level==3
{
 //asteroid no 1
 scr_spawn(200,200,obj_asteroid_big,200,290,1,6,75,2,5);

 //asteroid no 2
 scr_spawn(100,500,obj_asteroid_big,2000,2000,1,6,300,2,5);

 //asteroid no 3
 scr_spawn(800,200,obj_asteroid_big,2000,2000,1,6,45,2,5);

 //asteroid no 4
 scr_spawn(800,200,obj_asteroid_big,2000,2000,1,6,130,2,5);

 //asteroid no 5
 scr_spawn(800,200,obj_asteroid_small,2000,2000,1,6,130,2,5);

 //asteroid no 6
 scr_spawn(0,0,obj_asteroid_small,2000,2000,1,6,130,2,5);
}

//level 4 Spawn
if global.my_level==4
{
 //asteroid no 1
 scr_spawn(200,200,obj_asteroid_big,8000,8000,1,6,75,2,5);

 //asteroid no 2
 scr_spawn(100,500,obj_asteroid_big,2000,2000,1,6,300,2,5);

 //asteroid no 3
 scr_spawn(800,200,obj_asteroid_big,6000,6000,1,6,45,2,5);

 //asteroid no 4
 scr_spawn(800,200,obj_asteroid_big,20000,20000,1,6,130,2,5);

 //asteroid no 5
 scr_spawn(800,200,obj_asteroid_small,2000,2000,1,6,130,2,5);

 //asteroid no 6
 scr_spawn(0,0,obj_asteroid_small,4000,4000,1,6,130,2,5);
}

 Alarm Event for

 alarm

 0:

 execute code:

///Alarm for Health warning
alarm[0]=room_speed*4; // set alarm at 4 seconds
scr_voice(snd_voice_low_health);
scr_msg("Low#Health");

 Alarm Event for alarm 1:

 execute code:

///Increase & Reset Timer
timer+=1;
alarm[1]=5;

 Step Event:

 execute code:

///Monitor Player
if health<=0
{
 health=100;
 lives-=1;
 scr_voice(snd_voice_you_are_dead);
 health_alarm=false;
 alarm[0]=-1;
}
if lives<0 room_goto(room_game_over);
//count shots of all weapons
global.total_shots=global.weapon_info[6,1]+global.weapon_info[6,2]+global.weapon_info[6,3]+global.weapon_info[6,4];
if !object_exists(obj_asteroid_parent)
{
 global.level+=global.level;
 room_goto(room_menu);
}

//check if low health, if it is play warning and set a new alarm

if (health<25) && (!health_alarm=false)
{
 health_alarm=true;
 alarm[0]=1;
}

 execute code:

///Timer Events
if timer==5
{
 // prevent activating twice
 timer+=1;
 //perform action
 instance_create(0,0,obj_cloud);
}
if timer==10
{
 // prevent activating twice
 timer+=1;
 //perform action
 instance_create(0,0,obj_coin);
}
if timer==100
{
 // prevent activating twice
 timer+=1;
 //perform action
 instance_create(0,0,obj_coin);
}
if timer==200
{
 // prevent activating twice
 timer+=1;
 //perform action
 instance_create(0,0,obj_cloud);
}

if timer==500 timer=0;

 execute code:

///Instance Count
count=instance_number(obj_asteroid_parent);

 execute code:

///Check If Level Complete
if (instance_number(obj_asteroid_parent) == 0)
{
 if global.current==true global.level+=1;
 room_goto(room_menu);
}

 Draw GUI Event:

 execute code:

///Draw Hud

scr_shop_set_text();//draw HUD background
//top bar
draw_set_colour(c_blue);
draw_rectangle(0,0,800,90,0);
//border
draw_rectangle(1,1,799,799,1);
//draw weapon and ammo info
draw_set_font(font_shop);
draw_set_colour(c_white);
draw_text(10,40,"Type: "+global.weapon_info[0,global.selected_weapon]);
draw_text(320,40,"Ammo: "+string(global.weapon_info[3,global.selected_weapon]));
draw_text(10,70,"Stength: "+string(global.weapon_info[1,global.selected_weapon]));
draw_text(160,70,"Fired: "+string(global.weapon_info[6,global.selected_weapon]));
draw_text(300,70 ,"Fired All: "+string(global.total_shots));
draw_text(450,70 ,"Total Hits: "+string(global.hits));
draw_text(620,70 ,"Cash: "+string(global.cash));

draw the lives at (500,40) with sprite spr_lives
draw the health bar with size (2,2,798,28) with back color blue and bar color green to red

 execute code

 :

///Draw Radar
draw_set_alpha(0.2);
draw_circle(75,500,75,0);
draw_set_alpha(1);
draw_set_colour(c_green);
draw_circle(75,500,75,1);
draw_circle(75,500,10,1);
draw_line(75,425,75,575);
draw_line(0,500,150,500);

//set internal radar coords to Ship.x and Ship.y
if (!instance_exists(obj_ship))
{
 exit;
}

var d,a,radarX,radarY;

radarX = obj_ship.x;
radarY = obj_ship.y;

with(obj_asteroid_parent)
{
 //how far
 d = point_distance(radarX,radarY,x,y);
 //in range
 if(d < 800 && d > 600) // This will set the blips to the outside edge, creating a lingering effect
 {
 //convert radar range to radar display radius
 d = 75;
 //angle to target
 a = point_direction(radarX,radarY,x,y)
 //draw relative to center of radar using simplified lengthdir function
 draw_sprite(spr_blip, 0, 75 + lengthdir_x(d,a), 700 + lengthdir_y(d,a));
 }
 else if(d <= 600) // This is the standard distance conversion on the radaar screen.
 {
 d = d/600*75;
 a = point_direction(radarX,radarY,x,y)
 draw_sprite(spr_blip, 0, 75 + lengthdir_x(d,a), 500 + lengthdir_y(d,a));
 }
}

For reference, Figure 34-1 shows how the Draw Life as Images D&D

 looks:[image: A433334_1_En_34_Fig1_HTML.jpg]
Figure 34-1.Showing draw lives as image

Figure 34-2 below shows how the Draw Health Bar D&D

 will look:[image: A433334_1_En_34_Fig2_HTML.jpg]
Figure 34-2.Drawing health bar D&D

 obj_ship

 Information about object: obj_ship

 Sprite: spr_ship_gun

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent:

 Children:

 Mask:

No Physics Object

 Create Event:

 execute code:

///Set Variables
can_be_hit=true;
can_shoot=true;
low_ammo=false;
ship_speed=0;
direction=0;
rotation=0;
turning_speed=2;
acc_speed=0.3;
max_speed=7;
friction=0.1;
slowing_speed=0.1;

 Alarm Event

 for alarm 0:

 execute code:

///Set Shooting to True
can_shoot=true;

 Alarm Event for alarm 1:

 execute code:

///Can Be Hit (can lose health)
can_be_hit=true;

 execute code:

//Low Ammo Set
low_ammo=false;

 Step Event

 :

 execute code:

///Weapon Keyboard Control

//change weapon / ship type
if keyboard_check_pressed(ord('1'))
{
 global.selected_weapon=1;
 scr_voice(snd_voice_weapon_selected);
}
if keyboard_check_pressed(ord('2'))
{
 global.selected_weapon=2;
 scr_voice(snd_voice_weapon_selected);
}
if keyboard_check_pressed(ord('3'))
{
 global.selected_weapon=3;
 scr_voice(snd_voice_weapon_selected);
}
if keyboard_check_pressed(ord('4'))
{
 global.selected_weapon=4;
 scr_voice(snd_voice_weapon_selected);
}

 execute code

 :

///Spawn Bullets
if (global.weapon_info[3,global.selected_weapon]==0 && keyboard_check(ord('Z')) && can_shoot)
{
scr_voice(choose(snd_voice_weapon_empty,snd_voice_no_ammo,snd_voice_number_keys_to_select_weapons));
 can_shoot=false;
 alarm[0]=room_speed; // Stops constant playing on keypress
}
//create weapon 1 bullet
if (keyboard_check(ord('Z')) && global.selected_weapon==1 && global.weapon_info[3,global.selected_weapon]>0 && can_shoot)

{
 global.weapon_info[6,global.selected_weapon]+=1;
 bullet_id = instance_create(x,y,obj_gun_bullet);
 bullet_id.direction = image_angle;
 bullet_id.speed = 6+speed;
 global.weapon_info[3,global.selected_weapon]-=1;
 alarm[0]=global.selected_weapon*8;
 can_shoot=false;
 scr_play_effect(global.weapon_info[5,global.selected_weapon]);

}

//create weapon 2 bullets
if (keyboard_check(ord('Z')) && global.selected_weapon==2 && global.weapon_info[3,global.selected_weapon]>0 && can_shoot)

{
 //This Weapon Only Has Two Bullets
 //one
 global.weapon_info[6,global.selected_weapon]+=1;
 bullet_id = instance_create(x,y,obj_double_gun_bullet);
 bullet_id.direction = image_angle-12;
 bullet_id.speed = 8+speed;

 //two
 global.weapon_info[6,global.selected_weapon]+=1;
 bullet_id = instance_create(x,y,obj_double_gun_bullet);
 bullet_id.direction = image_angle+12;
 bullet_id.speed = 8+speed;

 global.weapon_info[3,global.selected_weapon]-=2;
 alarm[0]=global.selected_weapon*8;
 can_shoot=false;
 scr_play_effect(global.weapon_info[5,global.selected_weapon]);
}

//create weapon 3 bullet

if (keyboard_check(ord('Z')) && global.selected_weapon==3 && global.weapon_info[3,global.selected_weapon]>0 && can_shoot)

{
 global.weapon_info[6,global.selected_weapon]+=1;
 bullet_id = instance_create(x,y,obj_missile_bullet);
 bullet_id.direction = image_angle;
 bullet_id.speed = 5+speed;
 global.weapon_info[3,global.selected_weapon]-=1;
 alarm[0]=global.selected_weapon*4;
 can_shoot=false;
 scr_play_effect(global.weapon_info[5,global.selected_weapon]);

}

//create weapon 4 bullet
if (keyboard_check(ord('Z')) && global.selected_weapon==4 && global.weapon_info[3,global.selected_weapon]>0 && can_shoot)

{
 global.weapon_info[6,global.selected_weapon]+=1;
 bullet_id = instance_create(x,y,obj_nuke_bullet);
 bullet_id.direction = image_angle;
 bullet_id.speed = 10+speed;
 global.weapon_info[3,global.selected_weapon]-=1;
 alarm[0]=global.selected_weapon*4;
 can_shoot=false;
 scr_play_effect(global.weapon_info[5,global.selected_weapon]);

}

 execute code:

///Movement Code
if (image_angle > 360) image_angle -= 360;
if (image_angle < 0) image_angle += 360;
if keyboard_check(vk_up)
{
 if ship_speed<max_speed
 {
 ship_speed=ship_speed+acc_speed+(ship_speed/6);
 }
}
if keyboard_check(vk_down)
{
 if ship_speed>0
 {
 ship_speed-=.5;
 }
 else if ship_speed>-3
 {
 ship_speed-=.05;
 }
}
if ! keyboard_check(vk_down) && ! keyboard_check(vk_up)
{
 if ship_speed<-.5
 {
 ship_speed+=.5;
 }
 else if ship_speed>.5
 {
 ship_speed-=.2;
 }
 else ship_speed=0;
}
if keyboard_check(vk_right)
{
 if rotation>-40
 {
 rotation-=turning_speed;
 }
}
if keyboard_check(vk_left)
{
 if rotation<40
 {
 rotation+=turning_speed;

 }
}
if ! keyboard_check(vk_left) && ! keyboard_check(vk_right)
{
 if rotation<-5
 {
 rotation+=5;
 }
 else if rotation>5
 {
 rotation-=5;
 }
 else rotation=0;
}
if ship_speed>0
{
 image_angle+=ship_speed/30*rotation;
}
else
if ship_speed<0
{
 image_angle+=ship_speed/20*rotation;
}
if image_angle>360
{
 image_angle-=360;
}
if image_angle<0
{
 image_angle+=360;
}
friction=speed/10;
motion_add(image_angle,ship_speed/6);

 execute code:

///Low Ammo Warning

if (global.weapon_info[3,global.selected_weapon]<5 &&global.weapon_info[3,global.selected_weapon]>0 && !low_ammo)
{
 low_ammo=true;
 alarm[2]=room_speed*3;
 scr_voice(snd_voice_low_ammo);
}

 execute code:

///Testing
//////////////////////////////testing buttons
//for testing reset to middle
if keyboard_check(ord('R')) {room_restart();}
if keyboard_check(ord('A')) {health-=1;}
if keyboard_check(ord('S')) {health+=1;}
//////////////////////////////testing buttons
wrap in both directions when an instance moves outside the room

 Collision Event with object

 obj_asteroid_parent:

 execute code:

///If Can Be Hit is true lose health and reset alarm[1]
if can_be_hit
{
 health-=global.level*2;
 can_be_hit=false;
 alarm[1]=room_speed;
 scr_voice(choose(snd_voice_im_bleeding,snd_voice_ouch,snd_voice_ow,snd_voice_thats_got_to_hurt));
 effect_create_above(ef_firework,x,y,2,c_red);
}

 Collision Event with object obj_enemy_bullet:

 execute code:

///Hit by Bullet
health-=global.level*2;
scr_voice(choose(snd_voice_im_bleeding,snd_voice_ouch,snd_voice_ow,snd_voice_thats_got_to_hurt))
effect_create_above(ef_firework,x,y,3,c_red);
with (other) instance_destroy();

 Draw Event:

 execute code:

///Draw Selected Ship
draw_sprite_ext

 (global.weapon_info[4,global.selected_weapon],0,x,y,1,1,image_angle,c_white,1);

 obj_button_1

 Information about object: obj_button_1

 Sprite: spr_locked_or_not

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent: obj_lock_parent

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

//Set a button ID
my_id=1;

 obj_button_2

 Information about object: obj_button_2

 Sprite: spr_locked_or_not

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent: obj_lock_parent

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

//Set a button ID
my_id=2;

 obj_button_3

 Information about object: obj_button_3

 Sprite: spr_locked_or_not

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent: obj_lock_parent

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

//Set a button ID
my_id=3;

 obj_button_4

 Information about object: obj_button_4

 Sprite: spr_locked_or_not

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent: obj_lock_parent

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

//Set a button ID
my_id=4;

 obj_menu_control

 Information about object: obj_menu_control

 Sprite:

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent:

 Children:

 Mask:

 No Physics

 Object

 Create Event:

 execute code

 :

///Save to INI Save File
save=ini_open("save.ini");
ini_write_real("main", "cash", global.cash);
ini_write_real("main", "health", health);
ini_write_real("main", "lives", lives);
ini_write_real("main", "hits", global.hits);
ini_write_real("main", "shots", global.shots);
ini_write_real("main", "level", global.level);

//weapon 1
ini_write_real("weapon1", "bullets", global.weapon_info[3,1]);
ini_write_real("weapon1", "shots", global.weapon_info[6,1]);

//weapon 2
ini_write_real("weapon2", "bullets", global.weapon_info[3,2]);
ini_write_real("weapon2", "shots", global.weapon_info[6,2]);

//weapon 3
ini_write_real("weapon3", "bullets", global.weapon_info[3,3]);
ini_write_real("weapon3", "shots", global.weapon_info[6,3]);

//weapon 4
ini_write_real("weapon4", "bullets", global.weapon_info[3,4]);
ini_write_real("weapon4", "shots", global.weapon_info[6,4]);

ini_close();
execute code:

///Play Music
if !audio_is_playing(snd_music)
{
 audio_play_sound(snd_music,2,true);
}

 Step Event:

 execute code:

///Check If Game Complete

if global.level==5
{
 room_goto(room_game_complete);
}

 execute code

 :

///For testing
if keyboard_check_pressed(ord('Q'))
{
 global.level+=1;
}
if keyboard_check_pressed(ord('A'))
{
 global.level-=1;
}

 Draw GUI Event:

 execute code:

///draw stats and stuff
scr_set_menu_text();
draw_text(20,400,"Lives="+string(lives));
draw_text(400,400,"Health="+string(health));
draw_text(600,400,"Cash="+string(global.cash));
total=0;
for (i = 1; i < 5; i += 1)
{
 draw_text(20,400+(i*40),"Weapon: "+global.weapon_info[0,i]);
 draw_text(400,400+(i*40),"Shots Fired: "+string(global.weapon_info[6,i]));
 total+=global.weapon_info[6,i];
}
draw_text(20,640,"Total Shots Fired: "+string(total));

draw_text(20,700 ,"Total Hits: "+string(global.hits));

 obj_quit

 Information about object: obj_quit

 Sprite: spr_quit

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent:

 Children:

 Mask:

 No Physics Object

 Alarm Event

 for alarm 0:

 execute code:

game_end();

 Step Event:

 execute code:

///End Game If Clicked
if (position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left))
{
 scr_voice(snd_voice_thanks_for_playing);
 alarm[0]=room_speed*3;
}

 obj_restart

 Information about object: obj_restart

 Sprite: spr_restart

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent:

 Children:

 Mask:

 No Physics Object

 Step Event:

 execute code:

if (position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left))
{
 /// delete all stats in ini and restart game
 scr_voice(snd_voice_game_restarted);
 ///Save to INI Save File
 if file_exists("save.ini") file_delete("save.ini");
 game_restart();
}

 Draw Event:

 execute code:

///Draw Self and Message
draw_self();
draw_set_colour(c_white);
draw_set_font(font_mini_message);
draw_set_halign(fa_center);
draw_set_valign(fa_middle);
draw_text(x,y+40,"Clears All#Progress");

 obj_music_controller

 Information about object: obj_music_controller

 Sprite:

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent:

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

if !audio_is_playing(snd_music)
{
 audio_play_sound(snd_music,3,true);
 audio_sound_gain(snd_music, 0.2, 0);
}

 obj_game_over_voice

 Information about object:

 obj_game_over_voice

 Sprite:

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent:

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

///Voice Game Over
scr_voice(snd_voice_game_over);

 obj_message

 Information about object: obj_message

 Sprite:

 Solid: false

 Visible: true

 Depth: -100

 Persistent: false

 Parent:

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

///set up
can_show=true;
to_draw="";

 Alarm Event for alarm 0:

 execute code:

///alarm0 set alarm1
alarm[1]=room_speed;
to_draw="";

 Alarm Event

 for alarm 1:

 execute code:

///set as able to show
can_show=true;

 Step Event:

 execute code:

///check if message waiting
check=ds_list_size(global.message);
if check>0 && can_show
{
 to_draw=ds_list_find_value(global.message,0);
 ds_list_delete(global.message,0);
 can_show=false;
 alarm[0]=room_speed*2;
}

 Draw Event:

 execute code:

///draw a message
draw_set_font(font_message);
draw_set_halign(fa_center);
draw_set_valign(fa_middle);
draw_set_colour(c_black);
draw_text(400-2,400-2,to_draw);
draw_set_colour(c_red);
draw_text(400,400,to_draw);

 obj_shop_button_1

 Information about object: obj_shop_button_1
Sprite: spr_buy
Solid: false
Visible: true
Depth: 0
Persistent: false
Parent: obj_shop_button_parent
Children:
Mask:
No Physics Object

 Create

 Event

 :

 execute code:

///Set ID
button_id=1;

 obj_shop_button_2

 Information about object: obj_shop_button_2

 Sprite: spr_buy

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent: obj_shop_button_parent

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

///Set ID
button_id=2;

 obj_shop_button_3

 Information about object: obj_shop_button_3

 Sprite: spr_buy

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent: obj_shop_button_parent

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

///Set ID
button_id=3;

 obj_shop_button_4

 Information about object: obj_shop_button_41

 Sprite: spr_buy

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent: obj_shop_button_parent

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

///Set ID
button_id=4;

 obj_play_shop_button

 Information about object: obj_play_shop_button

 Sprite: spr_play

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent:

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

///Create Message Object, display message
scr_voice(snd_voice_shop);
instance_create(10,10,obj_message);
scr_msg("Buy Your##Weapons");

 Step Event:

 execute code:

///Goto Level When Clicked
if (position_meeting(mouse_x, mouse_y, id) && mouse_check_button_released(mb_left))
{
 room_goto(room_level);
}

 Draw Event:

 execute code

 :

///Draw Text For Shop
draw_self();
scr_shop_set_text();
draw_text(20,20,"Cash: "+string(global.cash));
draw_text(50,40, "Weapon Type");//draw name
draw_text(250,40, "Strength");//strength
draw_text(350,40, "Cost");//cost
draw_text(450,40, "Current");//current ammo

 obj_splash

 Information about object: obj_splash

 Sprite:

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent:

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

///Set Splash Timer
alarm[0]=1*room_speed;

 execute code:

///Declare Things Needed in Game
randomize();
//declare messaging system
global.message=ds_list_create();
global.selected_weapon=1;

 execute code:

///Load From INI Save File
save=ini_open("save.ini");
global.cash=ini_read_real("main", "cash", 10000);
health=ini_read_real("main", "health", 100);
lives=ini_read_real("main", "lives", 8);
global.hits=ini_read_real("main", "hits", 0);
global.shots=ini_read_real("main", "shots", 0);
global.level=ini_read_real("main", "level", 1);

//weapon 1
global.weapon_info[3,1]=ini_read_real("weapon1", "bullets", 200);
global.weapon_info[6,1]=ini_read_real("weapon1", "shots", 0);

//weapon 2
global.weapon_info[3,2]=ini_read_real("weapon2", "bullets", 250);
global.weapon_info[6,2]=ini_read_real("weapon2", "shots", 0);

//weapon 3
global.weapon_info[3,3]=ini_read_real("weapon3", "bullets", 200);
global.weapon_info[6,3]=ini_read_real("weapon3", "shots", 0);

//weapon 4
global.weapon_info[3,4]=ini_read_real("weapon4", "bullets", 10);
global.weapon_info[6,4]=ini_read_real("weapon4", "shots", 0);

ini_close();

 execute code

 :

///Declare Static Weapon Info

//Ship Type
global.weapon_info[0,1]="Gun";
global.weapon_info[0,2]="Double Gun";
global.weapon_info[0,3]="Missle";
global.weapon_info[0,4]="Nuke";

//Ship Weapon Strength
global.weapon_info[1,1]=1;
global.weapon_info[1,2]=5;
global.weapon_info[1,3]=250;
global.weapon_info[1,4]=1000;

//Weapon Cost Per Bullet
global.weapon_info[2,1]=1;
global.weapon_info[2,2]=10;
global.weapon_info[2,3]=300;
global.weapon_info[2,4]=5000;

//weapon sprite
global.weapon_info[4,1]=spr_ship_gun;
global.weapon_info[4,2]=spr_ship_double_gun;
global.weapon_info[4,3]=spr_ship_missile;
global.weapon_info[4,4]=spr_ship_nuke;

//weapon firing sound
global.weapon_info[5,1]=snd_gun;
global.weapon_info[5,2]=snd_double_gun;
global.weapon_info[5,3]=snd_missile;
global.weapon_info[5,4]=snd_nuke;

 Alarm Event for alarm 0:

 execute code:

///Splash Timer Exp - Goto Menu
room_goto(room_menu);

 obj_enemy_bullet

 Information about object: obj_enemy_bullet

 Sprite: spr_enemy_bullet

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent:

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

///Set Target and start moving
target=scr_target(x,y,obj_ship);
speed=2;

 Alarm Event for alarm 0:

 execute code:

///Destroy
instance_destroy();

 obj_enemy

 Information about object: obj_enemy

 Sprite: spr_enemy

 Solid: false

 Visible: true

 Depth: 0

 Persistent: false

 Parent: obj_asteroid_parent

 Children:

 Mask:

 No Physics Object

 Create Event:

 execute code:

///Start Alarm Bullet
alarm[0]=((room_speed*4)/global.level);

 execute code:

///Set Target and start moving
target=scr_target(x,y,obj_ship);
speed=2;

 Alarm Event for alarm 0:

 execute code:

///Fire Bullet & Reset Alarm
instance_create(x,y,obj_enemy_bullet);
alarm[0]=((room_speed*4)/global.level);

 Step Event:

 execute code

 :

///Target & Destroy

if instance_exists(target)
{
 tx = target.x;
 ty = target.y;
 direction = scr_angle_rotate(direction, point_direction(x, y, tx, ty), 5);
 image_angle = direction;
 if my_health<0
 {
 scr_voice(snd_voice_enemy_killed);
 effect_create_above(ef_firework,x,y,2,c_red);
 effect_create_above(ef_flare,x,y,2,c_yellow);
 instance_destroy();
 }
}

 Collision Event with object obj_bullet_parent:

 execute code:

///Hit By Player
effect_create_above(ef_ring,x,y,2,c_white);
scr_bullet_hit();

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_35

35. Creating a Game – Rooms

Ben Tyers1
(1)Worthing, West Sussex, UK

The game consists of the following six rooms, with the following order in the resource tree

 :
	room_splash_screen

	room_menu

	room_shop

	room_level

	room_game_over

	room_game_complete

All rooms have the same dimensions, with a width of 800 and a height of 720.
Room room_splash_screen has a single object, obj_splash in it and the background bg_splash, as shown in Figure 35-1:[image: A433334_1_En_35_Fig1_HTML.jpg]
Figure 35-1.Showing obj_splash (circled) placed in room

The next room is
 room_menu

 , as shown in Figure 35-2. It contains one each of (from left to right) of obj_button_1, obj_button_2, obj_button_3, obj_button_4. It also has one instance each of obj_restart and obj_quit. The three circled instances are: obj_menu_control, obj_message, and obj_music_controller. The background image set is
 bg_menu

 .[image: A433334_1_En_35_Fig2_HTML.jpg]
Figure 35-2.Showing object placement in room_menu

Figure 35-3 shows the object placement for room_shop. It consists (top to bottom) of obj_shop_button_1, obj_shop_button_2, obj_shop_button_3, obj_shop_button_4 and below them obj_play_shop_button. The background is bg_shop.[image: A433334_1_En_35_Fig3_HTML.jpg]
Figure 35-3.Showing room_shop setup

The room room_level has a single object, obj_level_control_and_hud and the background bg_level set. This is shown in Figure 35-4 below:[image: A433334_1_En_35_Fig4_HTML.jpg]
Figure 35-4.Room room_level with an instance of obj_level_control_and_hud (circled)

The next room is
 room_game_over

 . This has the background bg_game_over set. It has one instance of obj_restart and one of obj_game_over_voice. This is shown in Figure 35-5.[image: A433334_1_En_35_Fig5_HTML.jpg]
Figure 35-5.Showing placement in room room_game_over

Finally room room_game_complete

 has the background bg_game_complete and a single instance of obj_restart. This is shown in Figure 35-6:[image: A433334_1_En_35_Fig6_HTML.jpg]
Figure 35-6.Showing setup of room_game_complete

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_36

36. Creating a Game – Progress Sheet

Ben Tyers1
(1)Worthing, West Sussex, UK

Student Progress Sheet

Student Name: _________________________________ Class: ________________________
Project Scores:	Project 1
	Project 2
	Project 3
	Project 4
	Project 5

	Project 6
	Project 7
	Project 8
	Project 9
	Project 10

	Project 11
	Project 12
	Project 13
	Project 14
	Project 15

	Project 16
	Project 17
	Project 18
	Project 19
	Project 20

	Project 21
	Project 22
	Project 23
	Project 24
	Project 25

	 	 	 	 	Total From 250

	Exam Score
	From 100
	 	Assignment
	From 150

	Final Score From 500
	 	 	Grade
	
	
 Comments

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_37

37. Creating a Game – Marking Guide

Ben Tyers1
(1)Worthing, West Sussex, UK

The following is a suggested marking strategy
 ; you can, of course, use your own marking convention.

 Worksheets

 are used to test your understanding but do not carry any marks.
Each section has a number of projects, worth 10 points in total for each, with scoring detailed for each project. These total 250 points across all the topics.
The final assignment is worth 150 points. A marking strategy for this is provided. Only attempt one final assignment. The final exam is worth 100 points, and a marking guide is provided. Therefore, the maximum you can achieve is 500. You can divide this by 5 to reach a percentage. A suggested final mark is this:	400-500
	Grade A+ 350-400
	Grade A 300-350
	Grade B+ 250-300
	Grade B

	200-250
	Grade C+ 150-200
	Grade C 100-150
	Grade D 50-100
	Grade E

	0-50
	Grade F
	 	 	

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_38

38. Creating a Game – End of Projects Assignments

Ben Tyers1
(1)Worthing, West Sussex, UK

Endless Runner
Design and create an endless runner type game

 with the following features:
	Randomly generated objects the player must avoid

	Move player up / down using cursors keys or middle mouse button

	Create coins for player to collect

	Increase score for every 10 pixels traveled

	Create a system using INI files that saves / displays the highest score

	Game gets faster for every 1000 points

	GUI that displays distance traveled and coins collected

	Some graphical effects when colliding or collecting bonuses

	A simple menu system that displays highest score and a start game button

	Background music and sound effect when collecting coins

For each element included in the game you receive 10 points
Extra points

 are awarded for (up to 10 points for each):
	Formatted and commented code, with suitably named variables and assets

	Usage of more advanced GML coding

	Easy player interaction with the game

	Use of graphical effects

	Overall professional finish to the game

In total there are 150 points

 available.

Shoot The Ducks

 	Create duck objects

 that fly across the screen

	Make a gun sight movable using mouse

	Create a menu system with 5 unlockable levels

	Create a save system using INI files that stores the current levels currently unlocked and number of coins

	Give player a choice of 4 weapons to choose from, selectable using 1-4 or middle mouse button

	Player earns coins for each duck shot; the closer to the center of the duck, the more points

	Player must have accuracy of at least 90% to unlock next level

	Create a shop where player can use coins to buy weapons

	Create a graphical effect when a duck has been shot

	Use a different background for each level

For each element

 included in the game you receive 10 points
Extra points are awarded

 for (up to 10 points for each):
	Formatted and commented code, with suitably named variables and assets

	Usage of more advanced GML coding

	Easy player interaction with the game

	Use of graphical effects

	Overall professional finish to the game

In total there are 150 points available.

Pontoon
Create a Pontoon
 (21 or Blackjack) style card where player plays against the banker
	Player starts with 1000 coins and can bet up to 100 per hand

	Create a DS list for the card deck

	Use a separate sprite image for each card

	Deal two cards each to player and banker, showing one of the banker’s cards

	Player can hit, stand, double down, or split if two cards are the same. Aces can be worth 1 or 11; make sure to include this

	Banker must hit if 16 or below

	Player wins if higher than banker without going over 21

	Add winnings to player if they win

	Create a save system to save players coins

	If a player hits pontoon (21) take them to bonus room to play high / low to win extra cash

For each element included in the game you receive 10 points
Extra points are awarded for (up to 10 points for each):
	Formatted and commented code, with suitably named variables and assets

	Usage of more advanced GML coding

	Easy player interaction with the game

	Use of graphical effects

	Overall professional finish to the game

In total there are 150 points available.

 Side-Scrolling Shooter

 	Create a player controllable using arrow keys and space

	Enemy types should each follow a separate path

	Draw player score, lives, and health using GUI

	Create 5 weapon upgrade types (i.e., missile, side-shooting)

	A collectible that makes player invincible for 30 seconds

	Five unlockable levels, each with an end boss

	Sound effects for each weapon type

	A suitable save system to save player values

	A shop between levels where player can use points to purchase extra weapons

	A save system using INI files

For each element included in the game you receive 10 points
Extra points are awarded for (up to 10 points for each):
	Formatted and commented code, with suitably named variables and assets

	Usage of more advanced GML coding

	Easy player interaction with the game

	Use of graphical effects

	Overall professional finish to the game

In total there are 150 points available.

End of Project Marking Guide

Choose one option from the previous as an end-of-term assignment.
For each element included in the game you receive 10 points.
Extra points are awarded for (up to 10 points for each):
	Formatted and commented code, with suitably named variables and assets

	Usage of more advanced GML coding

	Easy player interaction with the game

	Use of graphical effects

	Overall professional finish to the game

In total there are 150 points available.

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_39

39. End of Project Test

Ben Tyers1
(1)Worthing, West Sussex, UK

End of Project Test Paper
Student’s Name:_______________________________ Class:_______________________________
Date:____/____/______

 Instructions

You have one hour (60 minutes) to complete this paper.
Only start when your proctor

 tells you to.
Answers should be given in English.
For multiple choice questions, circle the answer you deem to be correct.
Any coding answers should be written in GML.
If you require extra space, there are blank pages at the end of the test paper for this.
There are 50 questions, and each correct answer is worth 2 points.
Access to a computer

 is allowed, solely for the purpose of accessing GameMaker: Studio’s manual / help system.

 Question 1

What type of variable

 is each of the following?

 name="Benjamin";
height=182;

 Question 2

What will be drawn on the screen

 in the following example?

 name="Benjamin";
height=182;
draw_text(20,20, "His name is "+name+". His height is "+string(height));

 Question 3

In the following example, which block

 will be executed, A or B?

 i=15;
j=5;
k=i mod j;
if k==0
{
 //block A
}
else
{
 //block B
}

 Question 4

Write the code that will execute every step that keys Z and up arrow are held down.

 Question 5

Write the code to draw a solid blue circle

 at position 100,100 with a radius of 50, with a black border.

 Question 6

Correct the mistake in the following example:

 my_colour=rgb_make_colour(40, 80, 70);

 Question 7

Assume a sprite has 3 sub images, 0 1 and 2. Write the code to prevent animation, and set it to show sub image 1.

 Question 8

Write the code to center both the horizontal and vertical alignment

 of text.

 Question 9

Explain what the following code does:

 if (mouse_check_button_pressed(mb_right))
{
 // do something
}

 Question 10

What does this code do:

 key=keyboard_lastkey;

 Question 11

When, and how many times is Create Event of an object executed?

 Question 12

When does the following return as true?

 position_meeting(mouse_x, mouse_y, id)

 Question 13

How would you set an image speed

 of 0.5?

 Question 14

What is the default image angle? Which direction is this (left, right, up, or down)?

 Question 15

Name three variables

 that have global scope (i.e., can be accessed by any object without having to use global. prefix).

 Question 16

What does the following code

 do, in a Draw Event:

 lives=5;
for (var i = 0; i < lives; i += 1)
{
 draw_sprite(spr_lives,0,50,50+(50*i));
}

 Question 17

What code would you use to execute code once when the middle mouse button is pressed down?

 Question 18

What code would you use to set i to mouse’s x position

 and j to the mouse’s y position?

 Question 19

What is default game room speed, in steps per second?

 Question 20

How many alarm events are available per object?

 Question 21

What does place_empty(50, 75) do?

 Question 22

Explain what the function

 collision_line does.

 Question 23

What code would use to go to the next room, below the current room in the resource tree?

 Question 24

Explain the process of setting a 400x400 view that keeps obj_example in the center of the view.

 Question 25

How would you load background bg_splash

 and set it as the background of room room_splash?

 Question 26

How would you make and use a tiled background that scrolls up 2 pixels for each step?

 Question 27

Write the code that would check whether a music sound

 is playing; if it isn’t, start it playing without looping.

 Question 28

What code would you use to pause background music for 5 seconds when X is pressed, and then resume it?

 Question 29

Provide three reasons for using a splash screen

 .

 Question 30

Explain the process to only display a new button for a special level, when 3 other levels have been completed.

 Question 31

What does this code

 do?

 i=irandom_range(10,25);

 Question 32

What does randomize(); do?

 Question 33

Explain what the following code does:

 mp_potential_step(obj_enemy.x, obj_enemy.y, 1, true);

 Question 34

What does the following code do? (assume this is placed in the Step Event of obj_player, and there is one instance each of obj_player and obj_enemy in a room)

 image_angle=(point_direction(x,y,obj_enemy.x, obj_enemy.y)+180) mod 360;

 Question 35

Using this:

 lives=22;

Assume you have a new INI file

 and have just executed the following:

 ini_open("example.ini");
ini_write_string("health", "lives", string(lives));
ini_close();

What would the contents of the INI file look like?

 Question 36

What functions would you use to write and read real values?

 Question 37

Write the code to create a star effect at the mouse’s position

 when the key T is pressed.

 Question 38

What is the difference between effect_create_above and effect_create_below?

 Question 39

How would you make a block of code run 25 times?

 Question 40

Explain an example where you would use a for loop

 :

 Question 41

Given the following:

 size[0]=5;
size[1]=3;
size[2]=9;

Provide an example to double all values, use a loop of some kind.

 Question 42

Write the code required to draw the data from question 41 vertically across the room.

 Question 43

What is the code required to sort a ds_list

 descending?

 Question 44

How would you replace an entry in a ds_list?

 Question 45

Explain what the path end action
 path_action_reverse

 does.

 Question 46

What code would you use to get the Y position of a path’s 2nd position?

 Question 47

Give two reasons for using scripts

 :

 Question 48

Write a script that takes in two real numbers and returns the value of the highest.

 Question 49

How would you search all scripts for references to spr_example?

 Question 50

Explain the difference between // , ///, and /* */ .

Test Paper Answers

 Question 1

What type of variable

 is each of the following?

 name="Benjamin"; This is a string.

height=182; This is a real.

 Question 2

What will be drawn on the screen

 in the following example?

 name="Benjamin";
height=182;
draw_text(20,20, "His name is "+name+". His height is "+string(height));

 His name is Benjamin. His height is 182

 Question 3

In the following example, which block

 will be executed, A or B?

 i=15;
j=5;
k=i mod j;
if k==0
{
 //block A
}
else
{
 //block B
}

 Block A will be executed.

 Question 4

Write the code that will execute every step that keys Z

 and up arrow are held down.

 if (keyboard_check (ord('Z')) && keyboard_check(vk_up))

 Question 5

Write the code to draw a solid blue circle at position 100,100 with a radius of 50, with a black border.

 draw_set_colour(c_blue);

 draw_circle(100,100,50,false);

 draw_set_colour(c_black);

 draw_circle(100,100,50,true);

 Question 6

Correct the mistake

 in the following example:

 my_colour=rgb_make_colour(40, 80, 70);

 Should be my_colour=make_colour_rgb(40, 80, 70);

 Question 7

Assume a sprite has 3 sub images, 0 1 and 2. Write the code to prevent animation, and set it to show sub image 1.

 image_speed=0;

 image_index=1;

 Question 8

Write the code to center both the horizontal and vertical alignment

 of text.

 draw_set_halign(fa_center);

 draw_set_valign(fa_middle);

 Question 9

Explain what the following code does:

 if (mouse_check_button_pressed(mb_right))
{
 // do something
}

 This will execute the code one time only when the right

 mouse button

 is pressed.

 Question 10

What does this code do:

 key=keyboard_lastkey;

 It will set key to hold the last key that was pressed.

 Question 11

When, and how many times is Create Event of an object executed?

 When the object is created in the room.

 Question 12

When does the following return as true?

 position_meeting(mouse_x, mouse_y, id)

 This will return as true if the

 mouse cursor

 is over the object’s sprite (if present), otherwise it will return false.

 Question 13

How would you set an image speed of 0.5?

 image_speed=0.5;

 Question 14

What is the default image angle

 ? Which direction is this (left, right, up, or down)?

 The default image angle is 0, this points to the right.

 Question 15

Name three variables that have global scope (i.e., can be accessed by any object without having to use global. prefix):

 They are health, lives, and score.

 Question 16

What does the following code do, in a
 Draw Event

 :

 lives=5;
for (var i = 0; i < lives; i += 1)
{
 draw_sprite(spr_lives,0,50,50+(50*i));
}

 It will draw the sprite
 spr_lives
 5 times vertically.

 Question 17

What code would you use to execute code once when the middle mouse button is pressed down?

 if mouse_check_button_pressed(mb_middle)

 {

 //do something

 }

 Question 18

What code would you use to set i to mouse’s x position

 and j to the mouse’s y position?

 i=mouse_x;

 j=mouse_y;

 Question 19

What is default game room speed, in steps per second?

 30 frames per second.

 Question 20

How many alarms events

 are available per object?

 There are 12 alarms, 0 through 11.

 Question 21

What does place_empty(50, 75) do?

 Checks whether the instance collides with any other instance at the given position.

 Question 22

Explain what the function collision

 _line does.

 It will check a collision of an object between two points; if a collision is found it will return its instance, otherwise no one.

 Question 23

What code would use to go to the next room, below the current room in the resource tree

 ?

 room_goto_next()

 Question 24

Explain the process of setting a 400x400 view that keeps obj_example in the center of the view.

 In a room, enable the use of views and set as visible on room start. Set the view and port size. Choose the object to follow and set borders as 200.

 Question 25

How would you load background bg_splash

 and set it as the background of room room_splash?

 Load and name the background using the load background icon at the top. Open room room_splash, set visible on room start, and then choose the loaded background.

 Question 26

How would you make and use a tiled background that scrolls up 2 pixels for each step?

 This can be done several ways.

 You can set the

 Vert Speed

 in the room editor’s background tab to -2.

 Or through code on a Step Event of an object that is in the room:

 background_y[0]-=2;

 Question 27

Write the code that would check whether a music sound is playing, if it isn’t, start it playing without looping.

 if !audio_is_playing(snd_music)

 {

 audio_play_sound(snd_music,1,false);

 }

 Question 28

What code would you use to pause background music

 for 5 seconds when X is pressed, and then resume it?

 Create Event:

 audio_play_sound(snd_music,1,true);

 Step Event:

 if (keyboard_check_pressed(ord('X')))

 {

 if audio_is_playing(snd_music)

 {

 audio_pause_sound(snd_music);

 alarm[0]=room_speed*5;

 }

 }

 Alarm 0 Event:

 audio_resume_sound(snd_music);

 Question 29

Provide three reasons for using a splash screen

 .

 To show company logo / graphics.

 To load any saved data.

 Initialize any variables, ds_lists, etc.

 Other answers are possible.

 Question 30

Explain the process to only display a new button for a special level, when 3 other levels have been completed.

 Check if all levels done (i.e., global.level variable is used to check). In the Draw Event only draw if other levels complete.

 Make this object clickable and take player to special level when clicked.

 Question 31

What does this code do?

 i=irandom_range(10,25);

 It will choose a whole

 integer

 between 10 and 25 inclusive.

 Question 32

What does randomize(); do?

 It will allow

 random functions

 to have different results each time the game is played.

 Question 33

Explain what the following code does:

 mp_potential_step(obj_enemy.x, obj_enemy.y, 1, true);

 It will move toward obj_enemy 1 pixel each step, avoiding all objects.

 Question 34

What does the following code do? (assume this is placed in the Step Event of obj_player, and there is one instance

 each of obj_player and obj_enemy in a room)

 image_angle=(point_direction(x,y,obj_enemy.x, obj_enemy.y)+180) mod 360;

 It will make
 obj_player
 point away from
 obj_enemy
 .

 Question 35

Using this:

 lives=22;

Assume you have a new INI file

 and have just executed the following:

 ini_open("example.ini");
ini_write_string("health", "lives", string(lives));
ini_close();

What would the contents of the INI file look like?

 [health]

 lives=22

 Question 36

What functions

 would you use to write and read real values?

 ini_read_real

 ini_write_real

 Question 37

Write the code to create a star effect at the mouse’s position

 when the key T is pressed.

 if (keyboard_check_pressed(ord('T')))

 {

 effect_create_above(ef_star,mouse_x,mouse_y,2,c_yellow);

 }

 Question 38

What is the difference between effect_create_above and effect_create_below?

 effect_create_above will draw above any other drawing the object has, effect_create_below will draw below it.

 Question 39

How would you make a block of code run 25 times?

 repeat (2)

 {

 //code here

 }

 Question 40

Explain an example where you would use a for loop

 .

 For example, for getting and drawing data from an array.

 There are many possible answers to this, so any valid answer is correct.

 Question 41

Given the following:

 size[0]=5;
size[1]=3;
size[2]=9;

Provide an example to double all values, use a loop of some kind.

 for (i = 0; i < 3; i += 1)

 {

 size[i]*=2

 }

 Other valid examples are possible.

 Question 42

Write the code required to draw the data from question 41 vertically across the room.

 for (i = 0; i < 3; i += 1)

 {

 draw_text(100+(100*i),50, size[i]);

 }

 Question 43

What is the code required to sort a ds_list descending

 ?

 ds_list_sort(ds_list_name, false);

 Question 44

How would you replace an entry in a ds_list?
For example:

 ds_list_replace(ds_list_name, 2, new_value);

 Question 45

Explain what the path end action
 path_action_reverse

 does.

 When the object following the path reaches the end of the path, it will reverse and follow the path backwards.

 Question 46

What code would you use to get the Y position of a path’s 2nd position?

 ypoint=path_get_point_y(path_example, 1);

 Question 47

Give two reasons for using scripts:

 For example:

 Great if same code used in more than one place.

 Keeps things tidy.

 Makes changing things quicker and easier,

 Other answers possible.

 Question 48

Write a script that takes in two real numbers

 and returns the value of the highest.

 ///scr_highest

 if argument0 > argument1 return argument0; else return argument1;

 Question 49

How would you search all scripts

 for references to spr_example?

 Go to Scrips ➤ Search In Scripts, or press Shift+CTRL+F, and enter spr_example.

 Question 50

Explain the difference between // , ///, and /* */ .

 // is a general comment

 /// can be used to give preview in actions of

 object’s events

 , and used as auto complete for scripts.

 /* */ can be used to block out multiple lines

© Ben Tyers 2016
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_40

40. Summary

Ben Tyers1
(1)Worthing, West Sussex, UK

Now that you have completed this book, you have the basic knowledge of GameMaker: Studio, its IDE and GML coding language
 .
You can take these skills to start making your own games. When trying GML coding for functions not covered in the book, remember that the GameMaker: Studio help manual
 is your friend – just press F1 – clear explanations and example usage is shown.
If you’re up for a challenge, try the next book in this series, GameMaker: Studio Programming
 Challenges

 . It’s a collection of 100 programming projects to test your GML skills. Each has a challenge outline, useful code to use, and an example solution in GMZ.

© Ben Tyers 2017
Ben TyersPractical GameMaker: Studio10.1007/978-1-4842-2373-4_41

Erratum

Erratum to: Practical GameMaker: Studio

Ben Tyers1
(1)Worthing, West Sussex, UK

The updated online version of the original book can be found under DOI 10.​1007/​978-1-4842-2373-4

The published version of this book included errors in code listings throughout the book. These code listings have been corrected and text has been updated throughout the book.

Index

A

Alarm Event

Alarms
Advanced projects
basic projects
create event
room_speed
worksheet

Arrays
advanced projects
applications
basic projects
car_info
create event of an object
creation, data array
data, weapons
draw event
loop
one-dimensional
output
processing data
resources
storing data
two-dimensional
values
variable

Artificial intelligence (AI)
advanced projects
basic projects
creation
functions
obj_bullet and spr_bullet
obj_enemy
obj_score
obj_star
room layout
room_splash

Assets handling

Available mouse events

B

Background files
advanced projects
assets
basic projects
colour
creation
folder
image or tiles
level
new room creation
resource tree
room editor
rooms
setting
Step Event
uses

C

Child object

coin strip

Collision Event

Collisions
adding GML
adding objects
advanced projects
basic projects
checking
different image index
event
game
line
motions/deciding actions
origin
sprite with two sub images set
worksheet-answer sheet
correction, code

Conditional statements
advanced projects
basic projects
false sentence
ord
virtual keycodes
worksheet

D, E

Draw GUI Event

Drawing
advanced projects
basic projects
colour blending
colour constants
event creation
formatting functions
geometric shapes
horizontal and vertical alignment settings
images
worksheet-drawing

draw_self()

DS lists
advanced project
basic projects
destroy
inventory system
one-dimensional arrays
outcomes
removal, value
RPG type game
sorting
store and process messages
values

F

Fonts

Formatting functions

G

Game effects
advanced projects
advantages
basic projects
Collision Event
combination
creation
graphical
randomness
test
trail
types

Game–end of projects
awarded
duck objects
element
points
runner type game

 GameMaker: Studio Programming Challenges

Game–marking guide

Game–objects
Alarm Event
code execution
Collision Event with object
execute code
health bar D&D
images D&D
information
lives as image
obj_asteroid_medium
obj_asteroid_parent
obj_asteroid_small
obj_button_3
obj_cloud
obj_coin
obj_double_gun_bullet
obj_enemy_bullet
obj_game_over_voice
obj_menu_control
obj_message
obj_missile_bullet
obj_music_controller
obj_play_shop_button
obj_quit
obj_restart
obj_shop_button_1
obj_shop_button_3
process
Step Event
suggested order

Game paths
path_cloud
path_coin_bonus

Game–progress sheet

Game sounds
assets folders
loaded and organized

Game sprites
loaded and organized
spr_cloud
spr_coin
sub images

GML coding language

H

Health, lives, and score
advanced projects
basic projects
Collision Event
font_score
global variables
health bar
score
spr_lives
Step Event
Worksheet

I, J

INI files
add value, levels
advanced project
basic projects
elements
game_data.ini
loading
player data
project tree, included files
reading/writing
save and load data
store various game
values
variables

K

Keyboard input and simple movement
advanced project
basic projects
Boolean values
draw event
Step Event
strong distinction

Key Release Event

L

Loops
advanced projects
basic projects
DO function
do Loop
for loop
functions
GameMaker Language
infinite
WHILE

M, N

Marking strategy

Mouse Event options

Mouse interaction
advanced projects
basic projects
input
logic applies
Step Event
worksheet

O

obj_asteroid_big

obj_asteroid_medium

obj_asteroid_small

obj_cloud

obj_coin

obj_double_gun_bullet

Objects and events
advanced project
Alarm Event
basic projects
Collision Event
Create Event
Destroy Event
Draw Event
equivalent event
GameMaker
Key Events
Mouse Events
Step Event

obj_gun_bullet

obj_level_control_and_hud

obj_missile_bullet

obj_nuke_bullet

obj_player

P, Q

Parent objects
assignment
obj_asteroid_parent
obj_bullet_parent
obj_lock_parent
obj_shop_button_parent
resource folder

Paths
advanced projects
basic projects
closed
closed and smooth curve
creation
delete()
editor
end path actions
GML
location
straight or curved

Pontoon

Project answer paper
alarms events
background bg_splash
background music
block
default image angle
Draw Event
ds_list descending
function collision
horizontal and vertical alignment
INI file
instance
integer
loop
mistake correction
mouse button
mouse cursor
mouse’s position
mouse’s x position
numbers
object’s events
path_action_reverse
random functions
resource tree
screen
scripts
splash screen
variable
Vert Speed
z and up arrow keys

Project marking guide

Projects creation

Project test paper
bg_splash
block
code
computer
ds_list
function
horizontal and vertical alignment
image speed
INI file
loop
mouse’s position
music sound
path_action_reverse
proctor
screen
scripts
solid blue circle
splash screen
variables

R

Random
advanced project
applications
basic projects
direction and rotational speed, asteroids
game play
game replay value
integer number
number
randomize()
randomness
Studio
testing
values

room_game

Rooms
advanced project
backgrounds and views
basic projects
bg_menu
Create Event
creation, GameMaker
editor
games
instances
loading, background
objects
obj_level_control_and_hud (circled)
obj_splash (circled)
player visible on the screen
resources folder
resource tree
room_game_complete
room_game_over
room_menu
room_shop setup
setting
dimensions
setting, background
worksheet

S

Scripts
advanced projects
basic projects
codes
Create Event
creation
draw event
GML
importing
objects
processing data
resource tree
scr_angle_rotate
scr_bullet_hit
scr_buy
scr_cycle
scr_draw_shop
scr_fading
scr_locked_or_unlocked
scr_msg
scr_play_effect
scr_set_menu_text
scr_shop_set_text
scr_spawn
scr_target
scr_voice
sharing code
values

Scripts tricks
code handling
search

Side-scrolling shooter

snd_bounce

Sounds and music
advanced projects
asteroid
background track
basic projects
channel priority
creation, new sound
effects and voices
GameMaker
informative feedback
loading, sound file
pause and resume functions
resources
RPG
single track
style
testing
volume

Splash screens and menu
advanced project
basic projects
company logo or a sponsor’s message
creation
Draw Event
GML
images
level
loading in sub images
purposes
room order
room setup with objects
rooms in resource tree
setting, parent object
sound
Step Event

sprite origin set

Sprites
coin strip
object and loading
origin
Worksheet–Sprites

spr_name

spr_test

Step Event

Student progress sheet

T, U

Testing

V

Variables
advanced project
basic projects
Book Game Variables
control object
strings and numbers

Virtual keycodes

W, X, Y, Z

Worksheets

OEBPS/A433334_1_En_3_Figr_HTML.jpg

OEBPS/A433334_1_En_15_Fig3_HTML.jpg
0. Sprite Properties: spr_locked_or_not =
Ee—

Brecise colison checking

W Sepacae colision masks

Name: spr_locked_or_nat

[Load
& casme

Widh 128 Height 128
Nurberof subinages: 2.

Show o =

OEBPS/A433334_1_En_4_Fig2_HTML.jpg
O\ FontPropertie: fot_cample

Mo en_exsngle

ot T

S

See 10
“HphQusy B e

Inchad i st Bockage

- o

eonasosrs R |

Hello World!!

e

Coaal

I"#$%8c'()*+,-./0 |

< i

v

OEBPS/A433334_1_En_3_Figl_HTML.jpg

OEBPS/A433334_1_En_1_Fig1_HTML.jpg
Room Properies: room_erample.

. o

P
i ey
o 0

Hot w0

Stest 3

oo Dt o G

W csncose

e

soncode

OEBPS/A433334_1_En_7_Fig3_HTML.jpg
O\ SpriteProperties: sprite]

Goen
Gt D

® EdSpie.

Widh 2 Height 22
Nurber of subimages: 0

Colison Checking————
Precis colison checking

I Separae colison mask

Modiy Mask.

Textue Seltings—————
Tie: Horiortal

Tie: Vetical

Usedfor 0.
(Mustbe a power of 2)

Testure Group:

OEBPS/A433334_1_En_BookFrontmatter_Fig19_HTML.jpg
O\ Object Properies: obj arget

Persert
Desth [0

P fropaers |
Wik [cone st] B

M.HE

@ o

Uses Physics

Events

Ackons

O Choose the Event to Add

b3

Date Change

|

wop ea amr pa o e s

OEBPS/A433334_1_En_21_Fig1_HTML.jpg
2} GameMaker: Studio

Bob 27 America
Claire 19 Spain
Steve 52 Brazil
Nigel 40 Canada

Sue 102 France

OEBPS/A433334_1_En_17_Fig2_HTML.jpg
0 Object Propertes ob_bullet

o _
Name: | oby_bulet Events: £ 5 ® g
el S 4
5 = i
== 4
T :
RS
P
T b 3
s . Game end E
ok = = :
o e b
—
L No more health
Ll Animation end
.
e
e

OEBPS/A433334_1_En_3_Figf_HTML.jpg

OEBPS/A433334_1_En_BookFrontmatter_Figa_HTML.png
ApPress

OEBPS/cover.jpg
*‘ﬁ\

*

Practical
GameMaker:
Studio

Language Projects

B en Tyers

\ Apress’

OEBPS/A433334_1_En_35_Fig1_HTML.jpg
O Room popeties oom spo ceen
s A

| o Frce 1o Wit eyt it cremion <ot

OEBPS/A433334_1_En_BookFrontmatter_Fig6_HTML.jpg
Eile Edit

Scrip

count Marketplace Beta Player Beta

PABTIOom

OEBPS/A433334_1_En_29_Fig2_HTML.jpg
= & Backgrounds

= bg_game_complete

= bg_game_over
bg_level_1
bg_level 2
ba_level_3

» bg_level 4

- bg_menu

= ba_shop

- ba_splash

OEBPS/A433334_1_En_BookFrontmatter_Fig22_HTML.jpg

OEBPS/A433334_1_En_25_Fig5_HTML.jpg
File Edit Window Resources Scripts Run Account M

AR 2 %))rBslcoNiPm

= G Sprites
= B Enemy
> spi_enemy
@ spi_enemy_bullet
= B Asteroids
@ spr_asteroid_big
@ spi_asteroid_medum
& spi_asteroid_small
& Bonus
spi_cloud
® pi_con
=G Bullets
spi_gun_bullet
spi_double_gun_bullet
9= spi_missile_bullet
25 spi_nuke_bulet
fa Buttons
e spi_by
@ spi_lives
& sp_locked_or_not
wen spr_play
= spr_quit
= spi_estat
wm spr_shop_button
= Ships
~ spr_ship_double_gun
= spi_ship_gun
= spi_ship_missile
= spi_ship_nuke
&G Radar

B sprblp

OEBPS/A433334_1_En_6_Fig1_HTML.jpg
0 Object Popertes: obj_emple

Hone chnanie Erens

o

Spae
=

=

B
Pomin i

oo

& e
el |

|

® Showlrfomatin
< L

At

0. Choorethe vent 1o Add

LS
Wosi
€
“e
S G
o

X oo

—— ®w
B
—— B
Rghion i
e e
o i
Left pressed. >
Rightpressed K i
— —
Left released X &
o s 1
i i
==
=
e
e
S ol o
e
Eei
e
wpliaed)
=
e
it

ol midderessed

OEBPS/A433334_1_En_11_Fig6_HTML.jpg

OEBPS/A433334_1_En_BookFrontmatter_Fig13_HTML.jpg
0. Object Properties: obj.start

Home: (b tot

Spto——————
= =
oW

7 Visle: Sobd
el

D

st [t |8
ik o] &

i erw>

@ Showromaton
K

Evene

Deie T Chanae

ewe o paw guew Tues e

wep

OEBPS/A433334_1_En_30_Fig1_HTML.jpg

OEBPS/A433334_1_En_12_Fig2_HTML.jpg
TR ¢ > 5

EyeeTe—
@ casionns

Uemisia

OEBPS/A433334_1_En_35_Fig6_HTML.jpg
" Raom Propeies room,gume compete
e e

OEBPS/A433334_1_En_15_Fig2_HTML.jpg
=l = Rooms
Bl room_splash_screen
B room_menu

OEBPS/A433334_1_En_27_Fig4_HTML.jpg
0. Loading a strip image.

umber of mages:

images pe row:

image udc
image height

horizontalcel ofset:
yetical celoffset

hoiizontal givel ofset
vettical piel offset

harizontal separaton
vettical sepaiation:

< K

X Cancel

OEBPS/A433334_1_En_14_Fig1_HTML.jpg
Ba T (%))>»BEa4

OEBPS/A433334_1_En_3_Figm_HTML.jpg

OEBPS/A433334_1_En_12_Fig3_HTML.jpg
bkgo

W oot

IO

OEBPS/A433334_1_En_27_Fig3_HTML.jpg
"0\ Sprie Edtor:sp_coin

O

{im_ngﬂl“!

smeafn |

Tt et et
i
sy

| BckgoniCon |
Bagent
FoBsizond |8

E—
Famesd SwexR Memoy 6K8

OEBPS/A433334_1_En_4_Fig3_HTML.jpg
His name is Ben.

He is 28 years old.
He lives in England.
His favourite food is Pizza.

OEBPS/A433334_1_En_BookFrontmatter_Fig14_HTML.jpg
0. Object Properties: oby start

Hame: o s

Events

OEBPS/A433334_1_En_19_Fig1_HTML.jpg

OEBPS/sidebar.gif

OEBPS/A433334_1_En_11_Fig1_HTML.jpg
o

0. Object Popertes: obj_example. 1

Nome: (ob_evarpe_| Events Acions.

e — "0\ Choosethe Event to Add.
LS
prams ® Creae & Mouse.

v
e = ‘ B ety Other I
Persitent | Uses Physics R0
Depth 0 | ® ey
i
It

IR 4
S« %

% e 2

Wep ome wx pa zuew Tueu ows

i

st [zt 8
v | B

Chiden<Hone>

A
£
]
~Pains
(4
I

& X

@ Show lomaion oolbk I
= Dae Che

OEBPS/A433334_1_En_11_Fig4_HTML.jpg
0. Room Properties: roomd
lelm
backoonds
st
Mo ror)
i o0
Heoht (400

e 0
Pectnt
oDl Bl il Widow Coloe

W Greston code

ance Ot

Pres C o hghlght cbjectswith cresion code

OEBPS/A433334_1_En_BookFrontmatter_Fig2_HTML.jpg
Flosisaie

@ casme

Desttop

Hetwork

spelogo Opng

Monster
Clicker

o

OEBPS/A433334_1_En_32_Fig1_HTML.jpg
Toeton * Quknccas
o5 [S
Mo @onome

Documets

OEBPS/A433334_1_En_30_Fig2_HTML.jpg
]
oo

e 00>(736500

-
o

2888882288
FEEEERRGREE,

OEBPS/A433334_1_En_29_Fig1_HTML.jpg

OEBPS/A433334_1_En_6_Fig2_HTML.jpg
0 Object Properties:ob_ cample

=77
o] |
 —
-rvlm_. = SR IFacaial
- 719 8% | R | [s
 isible: Soi =
Persistent Uses Physics.
] —

T

OEBPS/A433334_1_En_BookFrontmatter_Fig5_HTML.jpg
Room Properties: room_menu
] SnapX: (32

backgounds views physics

objects seftings tles

Namell 1oom_menu

widi (800
Height: 400
Speed: |30

Persistent

Clear Display Buffer with Window Colour

B Creation code

Instance Order

OEBPS/A433334_1_En_35_Fig5_HTML.jpg
O Room Properes wom gume sver =8 %
L T ORI
igond__ge s] .
P [
e o o

o @ | ¥
(O —

L -
Dt oo e %

e s C i ctecs it oo code

OEBPS/A433334_1_En_BookFrontmatter_Fig21_HTML.jpg
0. Object Propertie: objhud

e [o =
e B T [e st
=
W o

0 Draw Life Images
Sbe s

Peisilet | Uses hysics
Desti [0 dh——

ove dms pa g Tues e

Pa foapses | =
BB o m i] W o
T . @
e e = 5
@ Showlriomsion.
YK | I
i

ok

OEBPS/A433334_1_En_3_Figa_HTML.jpg

OEBPS/A433334_1_En_7_Fig2_HTML.jpg
0. Object Propertes: objectd

=

oo | B

I AddEvent.

wep ewo aws pae zwew e o

OEBPS/A433334_1_En_28_Fig1_HTML.jpg
st opios sndgon ndmc ke smdece, nd e
e onnie i e,
an

b b me bl bl sl nwl ml sl
o gamerets honbes mbesny el ewid e Pt

© 6 ¢ 6 ¢ ¢ @ @

i@ji@p@@@].@jj‘jgu@@
° © @

mdvoce, mdece, sndvoce.

Pomns neteneus mumber bt
Nom? rrese

e © @

T v Jouede
g

smdces sndices sndyoicel sndvokel smdvoces ndyoice
© b peedbeet hislor higels ueisime wng
ey i de

I
o ii@
]

OEBPS/A433334_1_En_BookFrontmatter_Fig15_HTML.jpg
O Event objstart Create_1 =
V@2 wa ¥R | Appts To: &5t Other _ Dbject:

cion
1[//see if ini file exists and load saved score
2|in1_open("savedata.ini"); //open file savedata.ini
3 [g1obal.nighscore = ini read real(*score”, "highscore", 0); //set global.highscore to value of
4int_close(): //close ini file - alvays do this after loading or saving data
5|//set starcing valves for game:
6 [score=o;
7 [11ves=s
1
< C »

s 1 s 10t

OEBPS/A433334_1_En_3_Figd_HTML.jpg

OEBPS/A433334_1_En_8_Fig1_HTML.jpg
0. Object Propertes obj_eample

Home: [abt_exonple s
Sate——————

 Visle: Sobd
Persstent Uses Physics
Desth [0
o [
sk e |

Chiden ore>

@ Shoulrein
YK

Delete.

AddEvent

Wi (20

e
2 1
A
back colr: nane £
barcoec breentored LY
Resive

oK X Concel

OEBPS/A433334_1_En_7_Fig4_HTML.jpg
0 Loading a strip image =iy
pumberofinages: |4 ﬁ
images petrow (4

image widl (32
image height: (32

horizonkal cel ofset. (0
yertcal cel offset. 0

hoizonta ivel offset: |0
vetical el offet. 0

hoizorkal separaton: (0
vatcal separaton: [0

< K

OEBPS/A433334_1_En_12_Fig1_HTML.jpg

OEBPS/A433334_1_En_33_Fig1_HTML.jpg
"0\ Object Properties: obj_button_1

Events: Actions:

Mame: ob{ buton,_1|

e —

| ¥ foicted o ng =

 Visible Soid
Persistent | Uses Physice
Depihe [0

Patent 5

<no parent>
Mgk [csame as spite>

@ Show Information
= o D

B objbutton 2

Shop * [obibutton 3

Enemy

== obj_quit
e obj_restart

OEBPS/A433334_1_En_25_Fig4_HTML.jpg
AR T R))Ealcon
[= Sndies
I Create Sprite
Add Existing Sprite
g Duplicate AltsIns
& Create Group Shift+Ins
Sort by Name
R Delete Shift+Del
] Rename (7]
[®) roperties... Alt+Enter
Open in Explorer

OEBPS/A433334_1_En_23_Fig2_HTML.jpg
0. Path Properties: path_example

ICSHRL TSGR S L

Name: |path_example B

(10,10) sp: 100
(100,10) 0
1

Usi 00

OEBPS/A433334_1_En_3_Fig5_HTML.jpg

OEBPS/A433334_1_En_15_Fig5_HTML.jpg

OEBPS/A433334_1_En_BookFrontmatter_Fig12_HTML.jpg
0. Object Propertes: b logo

Hoe
Spte

oo

New £

Sete 5o
Pecsitert | Uses Piy)

Denth 0

Parent. fcno parerts S

Mak coame o spte>

- Iy CY

Even: Actons

@ Shoulriamsion
o

AddEven

Dete Change.

i

Move:
* % X
> & &
5@

-,

CEE
I
2K

~Pat.

> e
I

~Siep

s paws uew uew 0w

wep

OEBPS/A433334_1_En_12_Fig6_HTML.jpg

OEBPS/A433334_1_En_27_Fig1_HTML.jpg
e © ¢

by el sesdmi

° C) L 4

ey bules sprgu bt spres

- »

st g dole. b gn
s

. O S

swbtp ey prcoud o

B8 -

el puldatorse ko
&

spshp e psbp.ke 5 shop buton

€0

or.com

ranemy

OEBPS/A433334_1_En_3_Figk_HTML.jpg

OEBPS/A433334_1_En_3_Figp_HTML.jpg

OEBPS/A433334_1_En_BookFrontmatter_Fig17_HTML.jpg
0 Obyect Propere: o strt.

o x

% T P .
e e i — |
= > & i B
O Event: oby_start Left Released_|

—ox
=

eu ¥XDE

BT s 5 i ok

i1 s

10pt_room gotolnumb)

OEBPS/A433334_1_En_BookFrontmatter_Fig23_HTML.jpg
count Marketplace Beta Player Beta Help

OEBPS/A433334_1_En_35_Fig3_HTML.jpg
O Room roerie oo shop. -a -]
S G SeE R sy @ e ER R

e
il ,
. mm
Wk o0 y B
Hoghe 70 |
Ve ‘ m‘
ot ‘
TR m
e ' m
i |
=
= ‘
= 1 ‘
4

P o C i gt cect s s code

OEBPS/A433334_1_En_BookFrontmatter_Fig7_HTML.jpg
"0\ Sound Properties: snd_yeah

Name: |snd_yeah - b @
Filename: Assets Used In Book\ntrodu
-Attribute:

@ Uncompressed - Not Streamed (In Memory, low CPU)
Compressed - Not Streamed (In Memory, higher CPU)
Compressed (Uncompress on load) - Not Streamed (Higher Memory, low CPU)
Compressed - Streamed (On Disk, higher CPU)

T arget Option:
Sample Rate [TE0 © Edit Sound
e 7z

Audio Group: [Budiogroup_defaul =

OEBPS/A433334_1_En_23_Fig3_HTML.jpg
0 path ropertie:path! =)

[e

Hone: poh.evonge 1

OEBPS/A433334_1_En_3_Figo_HTML.jpg

OEBPS/A433334_1_En_3_Figc_HTML.jpg

OEBPS/A433334_1_En_3_Figi_HTML.jpg

OEBPS/A433334_1_En_12_Fig5_HTML.jpg
"0 Room Propertes room. cample

o Dasioy Bt Vo Cs
W Cesincot

s

Prss C o highight bjct it cestion code

OEBPS/A433334_1_En_34_Fig1_HTML.jpg
'O\ Draw Life Images

x|
L
* (500
v 40
image: spr_lives =
Relative
< 0K > Cancel

OEBPS/A433334_1_En_BookFrontmatter_Fig16_HTML.jpg
0 Object Propertes: objsart

Name: oby_start
.
- [
o me
 Visible Sobd
B i
Depthc 0
= =
sk =

Criden Hone>

@ Showomain
v

Y —

s
* ¥ X
» $ &

- p— =

O Choose the Event to Add x S
s

T S

o=y

By S06 | it tton

s EFGGRE| Msebwen

Zse kb ot

p— = o

< cain T W

keI (O

X Capeel

owe o pa zues Tuew ow

wep

OEBPS/A433334_1_En_13_Fig1_HTML.jpg

OEBPS/A433334_1_En_BookFrontmatter_Fig25_HTML.jpg
0. Object Propertie: o cxample

me H Lol
[—— r_
S 0
Y

[0 o | %% B | [35]] AppiesTa @ Sl Other Obect

1[/77betact a House Button

|Gz ws o5t

OEBPS/A433334_1_En_BookFrontmatter_Fig3_HTML.jpg
= G= Sprites
. spr_logo
e spr_exit
e spr_start
e spr_target
spr_lives

. sprtest

OEBPS/A433334_1_En_35_Fig4_HTML.jpg
O Room Propetes room Jers B
P A

Itoons__som s
me e

o it

e e C o gt ot i rson code

OEBPS/A433334_1_En_25_Fig2_HTML.jpg

OEBPS/A433334_1_En_BookFrontmatter_Fig10_HTML.jpg
O Font Propeties font_hud

None fort b

o N

arsise R |

See (20
“HonGusly B ek

Ickode n Asset Package.

... il

Hello World!!

Eneg

1"#8%&'()*+,-./0123456789:;<=: -

<K

OEBPS/A433334_1_En_3_Fig3_HTML.jpg

OEBPS/A433334_1_En_25_Fig1_HTML.jpg
"0\ end game GMT.project gmsx - Professional Edition (v1.4.1757)

3 Show Built-in Variables
Spiites Show Built-in Eunctions
o) Show Extension Functions
Backgrounds
Paths Show Constants
Seripts.

Shaders

Fonts

dme Lnee Check Resource Names
Objects

Rooms Check Al Scripts:
Included Files =
et Clear All Breakpoints
Macros Clear All Bookmarks

e
B Gt Gane Setrgs H

OEBPS/A433334_1_En_3_Fig2_HTML.jpg
Y GameMaker: Studio

OEBPS/A433334_1_En_BookFrontmatter_Fig26_HTML.jpg
0. Otyect Propetie: oy cample

OEBPS/A433334_1_En_BookFrontmatter_Fig4_HTML.jpg
" introduction_game.project.gmx* - Professional Edition (v1.4.1757)

@ | Taget

OEBPS/A433334_1_En_BookFrontmatter_Fig20_HTML.jpg
O Event:obj hud Step_1 -8 x
(252 | KD B | S [E]] appierTo @et Oher Ot

oo

T[EE (1ives<0) //checks if no more lives 1ft, if O lives execute folling code

20
5| i (score>qicbal.nighscore) //checks if score better than saved score, if it is execute
il ¢
s in1_open("savedata.ini); //opens ini file
6 iniurite real("score?, "highscore?, score); //vrites and replaces current value
3 iniclose(); //closes ini file
sl
5| game_restarc()://restarts game
1))
n
< 3 I

s 105t

OEBPS/contact.gif

OEBPS/A433334_1_En_3_Figb_HTML.jpg

OEBPS/A433334_1_En_3_Fign_HTML.jpg

OEBPS/A433334_1_En_11_Fig3_HTML.jpg
0. Object Properties:obj.bal

None: [ab b
—
L L}

New &

Sibe s
Pesitent | Uses hysics

Depth 0
[I
vk e |

Chiden Hone>

@ Show iomaton.
o

“Move:
Doeopms i ETE
» s 8 i
O Event ob ball ob wall 1
/22w ¥DRE 48] B Appies To: @ Sk Other _ Obect:

“scion

T [pove_bounce_sll(true)s

OEBPS/A433334_1_En_15_Fig1_HTML.jpg
Rooms

B room_splash_screen
B room_menu
room_level 1
room_level_2
room_level_3
room_level_4
100M_game_over

& room_game_complete

OEBPS/A433334_1_En_12_Fig4_HTML.jpg
0 Room Propetes room_erample

. oot s @)

=
st

=0

o

416

%7

o Y Lo

N~ 7 1\
VAT
7

VAR)R

v ZN)

A

-y -

Prss C o highight bject it reationcode

OEBPS/A433334_1_En_BookFrontmatter_Fig9_HTML.jpg

OEBPS/A433334_1_En_8_Fig3_HTML.jpg
2} GameMaker: Studio

OEBPS/A433334_1_En_8_Fig2_HTML.jpg
. Object ropertie: bj_eample

Hane: o cranple
e
New

Svte s
Paident | Uses iy
Depthc 0
P fropuers | B
Wk e s ke | W

Criden ovw>

@ Showromaien
v oK

Events

P

Actons.

1 [omtne s o mage

0 Draw Lite Images

=

0
w0
mage: [sr s

oK

OEBPS/A433334_1_En_10_Fig1_HTML.jpg
. Object ropertie: obj_ecample

Acons.

e s
Paent | Uses iy
Dot [0
L L3
Hask L

Chiden| orm>

@ Show Infomation
Vo LL

AddEvent

"0 Choose the Event to Add.

® cesn © Hows.
& ety 0t
@ A0
£ L
= a2
G a3
akbond | awma
Aams
o
a7
a8
o9
Aam 10

Al 11

x

3

R

ae son pm zue e aww

¥

5 e %

kel
o

£

£

5
S
=
R
=ik
“pate
P

3

& X

wep

OEBPS/A433334_1_En_3_Figh_HTML.jpg

OEBPS/A433334_1_En_11_Fig2_HTML.jpg
0 Object Propetes: b

Hore.

abLwal

e
Pasitert

Deptc
Paen

Mak
Chiden]

0

=

=

@ Showh

<1

Evens

O Sprite Properties: spr_wall

Hame: 5wt

3 LoadSiute

@ Eaispte

VA2 Hegh 2
Nuber of sbimages 1

O\ Object Propertes: obj.ball

Spte——

® foea
New

oL bal

yutle
Pt

Dept
Faent

o

foops:

Coision Checking———
Brecs colionchecking
W Sepontecobienmaks

oy sk
[Tesuae Satings————
—

The Varical

Usedfr 30
Mastboapower o2

Tosas Gy

T —

o

i

0 Spre Properte: bl
Mo oot cobinomtion——) [
B covincheckn
Dot PEE——
@ Easpie

Wik 2 Heght 32
Nrber of sbinsges. |

Testura Setings————
Tie: oo
Tie Veriea

Usediee 0.
Mustbe apomer o1 2)

Tesue Giow:

OEBPS/A433334_1_En_32_Fig2_HTML.jpg
[lx v e e foe pe foe pe o Do e g

scr_angle_rotate
ser_bullet_hit
scr_buy

ser_cycle
sci_draw_shop
scr_fading
scr_locked_or_unlocked
scr_msg
scr_play_effect
scr_set_menu_text
scr_shop_set_text
sCI_spawn
scr_target
sci_voice

OEBPS/A433334_1_En_7_Fig1_HTML.jpg
O Sprite Properties: spr_eample

Mame: [spr_example Colison Checking
Pecise colison checking
W Separae colison masks

2 LoodSpie
@ EdiSpite

Widh 200 Height 100
Number of subimages:

Tign
X0 |yl

Y oK

OEBPS/A433334_1_En_11_Fig7_HTML.jpg
) GameMakes: Studio

OEBPS/A433334_1_En_BookFrontmatter_Fig8_HTML.jpg
Name # Title

snd_yeah.wav
@ snd_you_are_dead.wav

OEBPS/A433334_1_En_14_Fig2_HTML.jpg
'O\ Sound Properties: snd_tank

Name:

tank 9 [DRL

Filename:

(Altibutes

| ‘® Uncompressed - Not Streamed (In Memory, low CPU)
Compressed - Not Streamed (In Memory. higher CPU)

| Compressed (Uncompress on load) - Not Stieamed (Higher Memory, low CPU)
Compressed - Stieamed (On Disk, higher CPU)

~Target Options

m Sample Rate [@100]+] © EditSound

Audio Group: ﬂ

Open

= v A || > ProjectAssets & GMZFiles > Assets Used In Main C
Organize v New folder
- Quick access

[Desktop
3 Downloads

audio - Train Sound Effects.wav

& Retro.mp3

OEBPS/A433334_1_En_35_Fig2_HTML.jpg
"0 Room Propeies oo manu

W s gl
g e e
hdyors e

e o Pghigh by it cesiom o

OEBPS/A433334_1_En_27_Fig5_HTML.jpg
% Enemy
£ spr_eneny
@ sp_enemy_bulet
G Asteroids.
@ spi_asteroid_big
& spi_asteroid_medium
spr_asteroid_small
= G Bonus
pr_cloud

= spi
= spr_shop_bution

& Ships
- spt_ship_double_gun
= spi_ship_gun
= spi_ship_missile

t_ship_nuke.
= Ga Radar

B sor_bip

OEBPS/A433334_1_En_BookFrontmatter_Fig24_HTML.jpg
0 Event:obj_eample Creste 1
V|25 2o KB Ta | [Apptes To: o 5ok

e

Obect

o

1[//Tnis is a coment
|neme="Bob¥: //This is also a comment

223 NS Modfied 10pt

OEBPS/A433334_1_En_3_Fig4_HTML.jpg

OEBPS/A433334_1_En_25_Fig3_HTML.jpg
Searching Scrpts for “global elected_weapon”

Seatch Descipton

Clickon ine to open the st

OEBPS/A433334_1_En_3_Fig1_HTML.jpg
0 Object ropertie: bj_ecample

None: [cbvange
e
L}

New

 Visble: Sobd
Pessistent Uses Physics.
Depihe 0
ra =
- .

Cradon orn>

(@ Show rtomation
$4S

Events: Actions: jibioe
il ® ¥ X
O Chaoe o et A % SOE
L & Mowe | S e
& Oper 1o
LI) | ST
© Aam
£ E
e D Begin
= Drownd
(82 Ko = Draw GUI Begin I
e S e
Predim, —
L a PostDraw

Resi

e aen pam e e v

wop

OEBPS/A433334_1_En_BookFrontmatter_Fig18_HTML.jpg
O\ Object Propetes obi start

Ol Events ob st D |
V22 e %D B O |[EE] B avsies Ta ©5er Other Obct.

.Mm—im‘
®]
» $ 5 i
:.n..i

=

T zav_se1e (17 //aravs sprite assigned to Ehis object
2 [araw_sex_tonc (font_hud): //set font

= //set horizontal alignaeat for dr
4 |dzau_sec_colour (c Black); //sets draving colour as black
S |arau_text (250,260, “Highscore: "+ string(global.highacore)):
6

avn toxt

//dray Highscore: plus value of

e 1 NS 10pt_drow sef)

OEBPS/A433334_1_En_7_Fig5_HTML.jpg
-E—B‘”'”'5
Bl

e o o b Pt
VIR | W | [kT 059 ok bt

I [Firanaoe Tange (16, Tom METE-1017
2[mszandon_tange (16, zoom heige-16);

21w op

OEBPS/A433334_1_En_4_Fig4_HTML.jpg

OEBPS/A433334_1_En_3_Figg_HTML.jpg

OEBPS/A433334_1_En_BookFrontmatter_Fig27_HTML.jpg
0. Object Propertis: obj example =i
e < Quetions —

Mame: |obi_example]
o P LICIO
[s 28
oy —
@52 o a8 | @ |[EE]] Appbes To: @56k (Obher | Object:
=
e
U
P
e e
i Hergroe
B
:
< C | »

1% 1 INS_ Modiied 10pt

OEBPS/A433334_1_En_24_Fig1_HTML.jpg
ources Scripts Run Account |
Help

OEBPS/A433334_1_En_27_Fig2_HTML.jpg
0\ Loading a stip image
=i
rumber of images: (4 ﬁ
images pestow: (4
image widh. 32
image height (32

hoigortal cel offset: (0
veticalcellffset: [0

horizonta e offset [0
vetcal el offset: (0

hoizontal separaton: |0
‘atical separaton: (0

OEBPS/A433334_1_En_17_Fig1_HTML.jpg
0. Roam Properte: oam_csample
C e W (s [y
bekpunt__yows s
s o |
Mo o5 sarge
o o
ot a0
Suont
 Go Drgoy Sl Vi o
Wi

e O

Prs C o highlght et wth raion code

OEBPS/A433334_1_En_34_Fig2_HTML.jpg
0. Draw Health

=1
=

A [2
W [2
%2 (738
y2 (28
back color: [blue L}
bar color: |green to red 2
Relative
< 0K X Cancel

OEBPS/A433334_1_En_13_Fig2_HTML.jpg
>3

w56y

Pres C tohighlht cbjects with crestio code

AR A

AT

OEBPS/A433334_1_En_BookFrontmatter_Fig11_HTML.jpg
ources Scripts Run

=) ma c@llpnsnx@

count Marketplace Beta Pla

OEBPS/A433334_1_En_6_Fig3_HTML.jpg
0. Object Properie: obplayer

AddEvent

Choose the Event to Add

® Creae © Mowse
B Destoy. ~

& Aom 20w

= g % Keyress

=
[E v]
Kebosd
X Canee

eac e pa e Toew swew

uep

OEBPS/A433334_1_En_3_Figq_HTML.jpg

OEBPS/A433334_1_En_4_Fig1_HTML.jpg
pra—

m@!

K | =
—— 1B E o R | o[o o5 Ova Dbt
S ——)

|

551 W5 Wodes topt

OEBPS/A433334_1_En_3_Figj_HTML.jpg
BRRRR

OEBPS/A433334_1_En_BookFrontmatter_Fig1_HTML.jpg
File Edit Window Resources Scripts_Run Account Marketplace Beta

Ee g »l&@@lh’llﬁxo
= e 1

OEBPS/A433334_1_En_15_Fig4_HTML.jpg
0. Object Propertes ob_ button_ 1

None: o buton1 £ Acions e

spe e
T8l foociedond B

N &

[B opoce o

e sod
Pesitent | | Uses hysis

Dept (0

Waik [csamo

Chiden ore>

abi_button_par
@ Show riomaton -

v ob but

obj_button 3

obj_button 4

S v ques Tuew 0w

e

wep

OEBPS/A433334_1_En_3_Fige_HTML.jpg

OEBPS/A433334_1_En_28_Fig2_HTML.jpg
= && Sounds
= G Effects

snd_double_gun

snd_explosion_double_gun

snd_explosion_gun

snd_explosion_issile

snd_explosion_nuke

snd_gun

snd_missile

snd_nuke

snd_voice_ammo
snd_voice_bonus
snd_voice_cash_boost
snd_voice_enemy_killed
snd_voice_game_over
snd_voice_game_testarted
snd_voice_health_boost
snd_voice_im_bleeding
snd_voice_level_1
snd_voice_level 2
snd_voice._level_3
snd_voice_level_4
snd_voice_low_ammo
snd_voice_low_healh
snd_voice_no_ammo
snd_voice_not_enough_cash
snd_voice_number_keys._to_select_weapc
snd_voice_ouch
snd_voice_ow
snd_voice_purchase_complete
snd_voice_shop
snd_voice_speed_boost
snd_voice_thanks._for_playing
snd_voice_thats_got_to_hurt
snd_voice_tutorial_mode
snd_voice_warring
snd_voice_weapon_emply
snd_voice_weapon_selected
snd_voice_weather_waining
snd_voice_you_are_dead

B snd_music

PPN DPEE S D EPEEEEE

OEBPS/A433334_1_En_23_Fig1_HTML.jpg
3

W]

Resources Scripts Rur

R|i>»>rEs|(€0

OEBPS/A433334_1_En_11_Fig5_HTML.jpg
O Sprite Properties: spr_button

Nane: st _bson Cofon Checking
Brecie coon checking
FiLerisems I Separale colision masks

SEasste | "0\ SpriteEditor: spr_button
etk @ e @ M Fie £t Tonsiom Images Anim
Nombe of uieges 2

Y hEwE BN N X e/

alrei ,
== |

|
L _image0 | image 1

Tign
X[(16

v

