

 Sloan Kelly
BlitzMax for Absolute BeginnersGames Programming for the Absolute Beginner
[image: A435551_1_En_BookFrontmatter_Figa_HTML.png]

Sloan KellyNiagara Falls, Ontario, Canada

 Any source code or other supplementary materials referenced by the author in this text are available to readers at

 www.apress.com

 . For detailed information about how to locate your book’s source code, go to

 www.apress.com/source-code/

 . Readers can also access source code at SpringerLink in the Supplementary Material section for each chapter.

					ISBN 978-1-4842-2522-6e-ISBN 978-1-4842-2523-3
DOI 10.1007/978-1-4842-2523-3
Library of Congress Control Number: 2016961342
© Sloan Kelly 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the author nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
Printed on acid-free paper
Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science+Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

Contents

 Chapter 1:​ Computer System
 1

 Input
 2

 Process
 2

 Output
 2

 The Computer System
 2

 Computer Memory
 3

 Disk
 3

 Random Access Memory
 4

 Read-Only Memory
 4

 Cache
 4

 The Hardware/​Software Stack
 4

 Keyboard
 5

 Mouse
 5

 Screen
 5

 Resolution
 6

 Number Systems
 7

 The Decimal System
 7

 The Binary System
 8

 Binary Numbering
 8

 Groups of Binary Digits
 9

 Groups of Bytes
 9

 Hexadecimal
 9

 Larger Numbers
 11

 Chapter 2:​ How BlitzMax Works
 13

 Computers Can’t Read English
 13

 Translating English to Computerese (Machine Code)
 13

 Compilation Process
 14

 Application/​Game/​Program
 16

 Chapter 3:​ The BlitzMax IDE
 17

 Launching the IDE
 17

 Menu Bar
 18

 Toolbar
 18

 The Tab Panel
 18

 Editing
 18

 Insert
 19

 File Operations
 19

 Save
 20

 Close
 20

 Open
 20

 Clipboard
 20

 Cut
 21

 Undo
 22

 Getting Help
 23

 Chapter 4:​ Literals, Constants, and Variables
 25

 Variables
 25

 Data Types
 26

 Variable Names
 26

 Variable Types
 26

 Variable Values
 27

 Why Do We Use Variables?​
 27

 Variable Scope
 28

 Local
 28

 Global
 28

 Field
 29

 Literals
 29

 Constants
 29

 Changing Variables
 30

 Arithmetic Operators
 30

 The Plus Operator
 30

 String Concatenation
 31

 The Minus Operator
 31

 The Multiplication Operator
 31

 The Divide Operator
 31

 The Modulo Operator
 31

 Using the Colon
 32

 Boolean Mathematics
 32

 The AND Operator
 33

 The OR Operator
 33

 The NOT Operator
 33

 The Exclusive OR Operator
 34

 String Methods
 34

 Find
 35

 FindLast
 35

 Trim
 35

 Replace
 36

 StartsWith
 36

 EndsWith
 36

 Contains
 36

 Join
 36

 Split
 37

 ToLower
 37

 ToUpper
 37

 ToInt, ToLong, ToFloat, ToDouble
 37

 ToCString
 37

 ToWString
 38

 FromInt, FromLong, FromFloat, FromDouble,
 38

 FromBytes
 38

 FromCString
 38

 FromShorts
 39

 FromWString
 39

 Length of String
 39

 Going with the Flow
 39

 Simple Decisions
 39

 IF Conditions Always Equate to One of Two Values:​ TRUE or FALSE
 40

 Testing for Equality
 40

 Using Boolean Logic
 42

 Nesting IFs
 43

 Select Case
 44

 Iteration—Making the Computer Repeat Itself
 45

 The for Loop
 45

 For EachIn…Next
 46

 While/​Wend
 47

 Repeat…Until
 48

 Repeat…Forever
 49

 Exit
 49

 Continue
 50

 A Note on Exit and Continue
 50

 Chapter 5:​ The Great Escape
 51

 Game Elements
 51

 Creating the Graphic Elements
 51

 Windows
 51

 Mac
 52

 All Platforms
 52

 Splitting Up the Tasks
 52

 Initial Setup
 52

 The Main Loop
 53

 Starting the Game
 56

 Giving the Player Feedback
 57

 The Linear Gradient
 57

 Debugging Your Code
 59

 Stopping Execution
 60

 Printing Output
 61

 Other Debug Methods
 62

 Chapter 6:​ Reusing Code with Functions
 63

 Where Would I Use a Function?​
 63

 Declaring a Simple Function
 63

 Drawing a Line
 63

 Specifying Parameters
 64

 Optional Parameters
 64

 Extending Existing Keywords
 65

 Returning Values from Functions
 66

 Recursion
 66

 Returning Multiple Values
 67

 Chapter 7:​ Using the File System
 71

 Reading a Directory
 71

 CurrentDir
 72

 ChangeDir
 72

 ReadDir, NextFile, and CloseDir
 72

 LoadDir
 72

 FileType
 73

 CreateDir
 74

 DeleteDir
 74

 File Manipulation with OpenFile
 74

 ReadLine
 75

 Eof
 75

 CloseStream
 75

 WriteLine
 75

 Chapter 8:​ Tank Attack:​ The Second Game
 77

 Information/​Splash Screen
 79

 Main Game Loop
 79

 Reset Game
 79

 Draw Endgame
 79

 Remaining Functions
 79

 The Graphics
 79

 The Data
 82

 The Stub Code
 83

 The Splash Screen
 85

 PrintMessage
 85

 DrawSplash
 85

 Loading and Drawing the Map
 86

 The Brick Graphic
 86

 Map Positions
 87

 Getting the Map Data
 87

 The Main Game Loop
 89

 Adding Combat
 89

 Updating the Tanks
 92

 Collision Detection
 94

 Drawing the Tanks
 94

 Main Game Loop
 95

 Adding Tension
 95

 Drawing Information
 96

 Resetting the Game
 96

 Decrementing the Counter
 97

 The End Screen
 98

 The Endgame State
 98

 Chapter 9:​ Object-Oriented Programming
 101

 What Is an Object?​
 101

 What Is a Class?​
 101

 What Is an Attribute?​
 101

 What Is a Method?​
 101

 What Is the Difference Between an Object and a Class?​
 102

 What Is Inheritance?​
 102

 What Is an Interface?​
 102

 Classes in BlitzMax
 102

 Defining a User-Defined Type
 102

 A Simple Class
 103

 Fields
 104

 Methods
 104

 Functions
 104

 Consts and Globals or Static Attributes
 104

 Inheritance and Polymorphism
 106

 A Simple Object
 106

 Polymorphism
 108

 Self and Super
 110

 New and Delete
 111

 Abstract and Final
 112

 Differences Between Abstract and Inheritance
 113

 And Finally…
 114

 Summary
 114

 Chapter 10:​ Project File Management
 115

 Include
 115

 IncBin
 116

 Chapter 11:​ Graphics
 117

 Graphics Modes
 118

 CountGraphicsMod​es
 118

 GraphicsModeExis​ts(width, height, depth=​0, hertz=​0)
 118

 Graphics
 119

 EndGraphics
 119

 GraphicsWidth and GraphicsHeight
 119

 GetGraphics
 120

 Some Advice
 120

 Flip
 120

 Cls
 122

 SetClsColor
 123

 GetClsColor
 123

 Drawing Simple Objects
 124

 Plot
 124

 DrawRect
 125

 DrawLine
 125

 DrawOval
 125

 DrawPoly
 126

 DrawText
 126

 Images
 126

 Images and BlitzMax
 127

 LoadImage
 127

 LoadAnimImage
 127

 DrawImage
 128

 TileImage
 128

 SetViewport
 129

 GetViewport
 130

 Fonts
 131

 LoadImageFont
 131

 SetImageFont
 131

 GetImageFont
 131

 Example of Font Use in BlitzMax
 132

 Chapter 12:​ User Input
 135

 MouseX and MouseY
 135

 Showing and Hiding the System Mouse
 136

 MouseZ
 136

 MouseDown
 137

 MouseHit
 139

 WaitMouse
 140

 MoveMouse
 140

 Chapter 13:​ Keyboard Input
 143

 KeyDown
 143

 KeyHit
 144

 WaitKey
 145

 WaitChar
 146

 GetChar
 147

 Chapter 14:​ Joystick
 149

 Joystick Information
 150

 JoyCount
 150

 JoyName
 150

 JoyAxisCaps
 150

 JoyButtonCaps
 152

 Getting Direction
 152

 Chapter 15:​ Common Input Routine
 155

 The Classes
 155

 IController
 155

 Name
 156

 FireMethods
 156

 AddFire
 156

 Fire
 156

 ButtonCount
 156

 TStick and TKeyboard
 156

 TStickFire and TKeyFire
 156

 Sample Application Using Controller.​bmx
 157

 Chapter 16:​ Collision Detection
 161

 Simple Collisions
 161

 The First Rule—Collision Detection
 161

 A Simple Game
 164

 Chapter 17:​ OpenGL Special Effects
 171

 Rotating Images
 171

 SetRotation
 171

 Scaling Images
 173

 Collisions Revisited
 174

 Blending Modes
 176

 Blend Mode Effects
 176

 Chapter 18:​ Paratrooper:​ Retro Involved
 179

 Project Management
 180

 Game Dynamics
 180

 Lots of Options
 180

 Graphics
 180

 The Paratrooper
 180

 The Gun Emplacement
 181

 Joystick vs.​ Keyboard?​
 183

 Sound FX
 183

 On with the Game
 183

 Paratroops.​bmx
 183

 TMenuScreen.​bmx
 188

 Controller.​bmx
 190

 TParatroopGame.​bmx
 190

 Create
 191

 CheckCollisions
 191

 DrawScore
 191

 DrawLanded
 191

 Draw
 191

 Update
 191

 DoQuit
 191

 DoGameOver
 191

 DrawOutline
 191

 GameLoop
 192

 TGameBackdrop.​bmx
 196

 TParatrooper.​bmx
 197

 TParatrooper
 197

 TTroops
 199

 Create
 199

 Draw
 199

 Update
 199

 Landed
 199

 TDome.​bmx
 201

 TBullet
 201

 Create
 201

 Draw
 201

 Update
 201

 TDome
 202

 Chapter 19:​ Sound Effects and Audio
 207

 WAV
 207

 OGG
 207

 BlitzMax and Sound
 207

 LoadSound
 208

 PlaySound
 208

 SetChannelVolume​
 208

 PauseChannel
 208

 ResumeChannel
 208

 BlitzMax Sound Example
 208

 Installing Audacity
 210

 Music.​Ogg
 210

 Argh.​Ogg and Ugh.​Ogg
 210

 Altering the Paratrooper Game
 212

 Collisions
 212

 Playing the Music
 213

 Chapter 20:​ Putting It All Together
 215

 Chapter 21:​ Game Design
 217

 What’s the Big Idea?​
 217

 High Concept
 217

 Low Concept
 217

 So What Is Flood?​
 217

 Chapter 22:​ Storyboarding
 219

 Writing a Specification for a Game
 220

 Flood Game Specification
 220

 Introduction
 220

 The Screen
 220

 Main Actor—“Jasper”
 221

 Enemies
 223

 The Wave
 223

 The Orchids
 223

 Entities
 224

 Next Steps
 225

 Object-Oriented Design
 225

 Introduction
 225

 Use Cases
 225

 What Is a Use Case?​
 225

 Sample Use Case
 226

 What Is the Purpose of Use Cases?​
 230

 Class Diagrams
 230

 Class Relationships
 233

 Aggregation and Composition
 233

 Aggregation
 234

 Composition
 234

 Multiplicity
 234

 Naming the Attribute
 235

 Inheritance
 237

 Summary
 238

 Implementing OOP in BlitzMax
 238

 Were Do We Get the Methods From?​
 239

 Player
 239

 Enemy
 239

 Platform
 240

 Orchid
 240

 Wave
 241

 Putting It All Together
 241

 TFloodGame
 242

 Converting Class Diagrams to UDTs
 242

 Stub Code for TFloodGame
 243

 Testing Modules
 245

 Testing the Code
 248

 Creating Stub Code
 248

 Chapter 23:​ Project Management
 251

 Using the Include Keyword
 251

 Advantages of Using the Include Keyword
 252

 Embedding Binary Resources
 252

 The IncBin Keyword
 252

Appendix A: Web Site Addresses255
Appendix B: BlitzMax Key Codes257
Appendix C: ASCII Table259
Appendix D: Controller Abstraction Classes263
Appendix E: Compiler Directives269
Strict269
Operating-System-Specific Code270
Processor-Specific Code270
Endian-Specific Code270
Debug Mode Code271
Index273

Contents at a Glance

About the Authorxix

About the Technical Reviewerxxi

 Chapter 1:​ Computer System
 1

 Chapter 2:​ How BlitzMax Works
 13

 Chapter 3:​ The BlitzMax IDE
 17

 Chapter 4:​ Literals, Constants, and Variables
 25

 Chapter 5:​ The Great Escape
 51

 Chapter 6:​ Reusing Code with Functions
 63

 Chapter 7:​ Using the File System
 71

 Chapter 8:​ Tank Attack:​ The Second Game
 77

 Chapter 9:​ Object-Oriented Programming
 101

 Chapter 10:​ Project File Management
 115

 Chapter 11:​ Graphics
 117

 Chapter 12:​ User Input
 135

 Chapter 13:​ Keyboard Input
 143

 Chapter 14:​ Joystick
 149

 Chapter 15:​ Common Input Routine
 155

 Chapter 16:​ Collision Detection
 161

 Chapter 17:​ OpenGL Special Effects
 171

 Chapter 18:​ Paratrooper:​ Retro Involved
 179

 Chapter 19:​ Sound Effects and Audio
 207

 Chapter 20:​ Putting It All Together
 215

 Chapter 21:​ Game Design
 217

 Chapter 22:​ Storyboarding
 219

 Chapter 23:​ Project Management
 251

Appendix A: Web Site Addresses255

Appendix B: BlitzMax Key Codes257

Appendix C: ASCII Table259

Appendix D: Controller Abstraction Classes263

Appendix E: Compiler Directives269

Index273

About the Author and About the Technical Reviewer

About the Author

Sloan Kellyhas been programming computers since 1982. His first computer was a ZX Spectrum 16K where he learned Sinclair BASIC and soon moved onto Z80 machine code. At the end of the 8-bit era he progressed to the Commodore Amiga where he coded some small games in a language called Blitz.
After graduating college and spending nine years in traditional IT working in senior or lead positions, Sloan went back to school and was awarded a Masters in Informatics (Game Technology) to allow him to pursue a career in the games industry where he has remained for almost ten years. He is currently working for PixelNAUTS Games in the beautiful Niagara Region of Canada as senior programmer. Their debut game, LOST ORBIT, was released in 2015 to critical acclaim.

About the Technical Reviewer

Massimo Nardone[image: A435551_1_En_BookFrontmatter_Figb_HTML.jpg]

has more than 22 years of experience in security, web/mobile development, cloud, and IT architecture. His true IT passions are security and Android.
He has been programming and teaching how to program with Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL for more than 20 years.
He holds a master of science degree in computer science from the University of Salerno, Italy.
He has worked as a project manager, software engineer, research engineer, chief security architect, information security manager, PCI/SCADA auditor, and senior lead IT security/cloud/SCADA architect for many years.
He has technical proficiency in security, Android, cloud, Java, MySQL, Drupal, Cobol, Perl, web and mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll, Scratch, among others.
He currently works as chief information security officer for Cargotec Oyj.
He was a visiting lecturer and supervisor for exercises at the Networking Laboratory of Helsinki University of Technology (Aalto University). He holds four international patents (in PKI, SIP, SAML, and Proxy areas).

 Massimo has reviewed more than 40 IT books for various publishing companies, and he is the coauthor of
 Pro Android Games
 (Apress, 2015).

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_1

1. Computer System

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

Electronic supplementary material
The online version of this chapter (doi:10.​1007/​978-1-4842-2523-3_​1) contains supplementary material, which is available to authorized users.

A “modern” computer system is a bit of a misnomer, as not much has really changed in more than 20 years! The basics of the system are described in this section.
As far as aesthetics

 are concerned, the machine in the following diagram (Figure 1-1) may look nothing like yours! Be assured, however, that the items described in the diagram are contained within your system. At the heart of any computer is the central processing unit, or CPU. This is sometimes referred to as the brains of the computer. It is, in actual fact, more like a mill spinning raw data into solutions, as there is no intrinsic intelligence in the machine. If you provided the computer with garbage, it would process it to garbage (Garbage In, Garbage Out—GIGO).[image: A435551_1_En_1_Fig1_HTML.jpg]
Figure 1-1.Diagram of a basic computer

In its simplest form, a computer takes input from some device, processes it, and generates output. This is shown in the following block diagram (Figure 1-2):[image: A435551_1_En_1_Fig2_HTML.jpg]
Figure 1-2.A computer takes input

 from some device, processes it, and generates output

Input
When you think of an input device, you usually think of the keyboard or mouse. These are generally the two traditional means of accessing a computer. In addition, joysticks and game pads can be used to provide input and move player characters, such as Mario, around the screen.
Disk drive, CD-ROM, light pen, joystick, game pad, keyboard, mouse, and track ball are all types of input devices.

 Process

Even when a computer screen is staring blankly back at you, it is, in fact, doing something. It is actually waiting for you to perform some kind of input task. When you press the A key, for example, the computer takes the key stroke and, through a number of operations, processes this to display the character “A” onscreen.
Processes depend on what application you have running on your machine when you decide, for instance, to press the A key. If you have a game, it might arm a weapon’s array, or if you are in a word-processing package, it will just display the character “A” onscreen.

 Output

Once the user has issued a command, such as obtaining a listing of the current directory or clicking an on-screen button, the operating system (OS) processes this information and displays the resulting data to the user. The most common device is the monitor (cathode ray tube [CRT] or liquid crystal display [LCD]). Although I will not cover its usage, the printer is the second most common output device attached to a computer.

The Computer System
Independent of what computer system you are using—this book is aimed at anyone who has either a Mac, PC, or Linux box, after all—they all follow certain rules. This section covers briefly how the computer system works and how the hardware/software stack is organized.
Inside each and every computer is a large sheet covered in electronics

 . This is called the motherboard. All the parts, apart from the fan attached to the CPU, are stationary. A motherboard looks like the following (Figure 1-3):[image: A435551_1_En_1_Fig3_HTML.jpg]
Figure 1-3.A motherboard

 and its components

The socket for the CPU

 is the large white square at the middle left on the motherboard. The main memory fits into the sockets directly above—the long black lines running left to right. The ROM-BIOS is located at the top right of the motherboard. There are additional connectors to external systems, such as keyboard, mouse, floppy, and hard disks. The IDE (Integrated Drive Electronics) connectors to the top allow DVD-ROM, CD-ROM, and hard drives to be connected.

Computer Memory
When a computer is running, it stores its data and programs in memory. There are four types of computer memory: disk, random access memory (RAM), read-only memory (ROM), and cache.

 Disk

The hard disk stores the operating system of all your major applications (such as word processors, spreadsheets, Internet browsers, and, of course, BlitzMax), even when the computer is turned off. This type of memory is sometimes referred to as permanent storage, because no matter how many times you power down/power up, the programs remain on disk.
CD-ROMs and DVDs are becoming more and more popular to store large amounts of data that can be transported easily from one system to another. For the most part, these types of disks are Write Once, Read Many, or WORM
 , for short. If you want to rewrite to them, you will have to purchase a device that has RW in the title, such as CD-ROM (RW) or DVD-RW.

Random Access Memory

Programs and data are not accessed directly from disk. They are, in fact, read into random access memory (RAM) and manipulated in there. Think of RAM as a dry marker board. You can store lots of ideas on a dry marker board, but sooner or later, the information can be erased, and new data can be placed on the board.

 Read-Only Memory

The basic input/output system (BIOS) is stored in a chip on the motherboard and cannot be overwritten. This is read-only memory. The programs and data are encoded at a chip fabrication plant and placed on the motherboard. The chip allows data to be read from it but not written to it. It can, therefore, not be used to store programs or data.

 Cache

There are two types of cache memory: Level 1 (L1) and Level 2 (L2). Both act as scratchpads for the CPU during computations. They differ in physical location, because the L1 cache is located on the same physical silicon chip as the CPU, whereas the L2 cache is located beside the CPU on the motherboard.

The Hardware/Software Stack

Modern computer system design has not changed since Gary Kildall created the ROM BIOS chip and changed computing forever. He created a chip called the Basic Input/Output System, or BIOS, that allowed his operating system to be ported to many different computers, without him requiring him to do much work. The problem is that as you move farther up the stack, the more difficult it is to port (copy) applications from one system to another. The full software stack is shown here (Figure 1-4):[image: A435551_1_En_1_Fig4_HTML.jpg]
Figure 1-4.Diagram of the software stack

The hardware can read and write single bytes of data at a time to and from external devices. In a computer system, an external device is anything not attached to the motherboard. This includes the disk drives, CD-ROM, DVD, monitor, keyboard, and mouse.
The BIOS
 acts as an interface between the operating system’s kernel and the hardware. The BIOS does this by exposing a number of functions to the kernel that call hardware functions multiple times. This allows for more complex actions to be undertaken, such as reading in large files from a disk drive with a single call.
The kernel is the core of the operating system. It handles all input/output requests and memory management. The kernel code is specific to the operating system that you are using. For example, a Windows kernel is not compatible with the Linux operating system. The kernel exposes a number of functions to the application’s layer. These functions are collectively known as the application programming interface, or API, for short.
The shell is the interface to the operating system, from a user’s perspective. It allows users to load and execute applications as well as perform file operations. All this is achieved using the function exposed by the kernel’s API.
An application is any executable that is invoked by the shell or some call to the kernel. This means that the shell is also an application! For example, Explorer.exe is the shell for Windows. It is also the file manager application. The application uses the kernel’s API to create windows, load files, and perform all the other input/output functions.
It should be noted that in the early days—not so much now—many application developers bypassed the kernel to call the BIOS, to make their programs run faster. This is because the kernel contains a lot of error trapping code that can slow down operations. Thankfully, modern kernel designs mean that the code is fully optimized and is just as fast as a call to the BIOS.

 Keyboard

The keyboard is the main input device in a modern computer system. It is basically an alphanumeric keyboard with special and function keys. To the right are three examples of keyboards through the ages—the lower model is the one that most systems will have. It is an AT-style keyboard with approximately 102 keys. There may also be keys marked z, ?, q, or ?. These keys have special functions, depending on the operating system you are using.

 Mouse

The mouse has been used in computers since the early 1980s. It took a while for the IBM PC and compatibles to get the device adopted, but with the advent of windowed operating systems, the mouse became the second input device for most PCs.
On a PC system, the mouse has a minimum of two buttons, sometimes more. Mac users are still getting frustrated because their new machines come with a single button mouse, although multiple mouse buttons are supported by the OS.

 Screen

The screen or monitor is the primary output device for the computer system. As mentioned previously, there are two different types of screens: cathode ray tube (CRT) and liquid crystal display (LCD). The latter is becoming cheaper and, therefore, more popular, or is it cheaper because it is popular?
The computer outputs to the monitor at a given resolution. Resolution means “How many pixels along? How many pixels down?”
Physical screen resolution is measured in pixels. The word pixel is a shortened form of “Picture Element1.” There are a variety of resolutions available on your PC, from 320×240 pixels (PC only) to 2560×1600 (Mac only).
A graphics card inside the computer works with the CPU to produce images on the monitor. With newer graphic cards, a graphics processing unit (GPU) is placed on the card to improve the 3D capabilities of the system, such as make games more realistic, by providing higher resolutions, special effects, and a better frame rate.

 Resolution

Resolution defines how detailed your images will look on screen. The number of columns—the horizontal axis and the number of rows—the vertical axis define the number of pixels available to the application. In the following example, a 640×480 resolution screen map is shown (Figure 1-5). No matter what resolution your monitor is running at, the top-left corner will always have the coordinate (0,0).[image: A435551_1_En_1_Fig5_HTML.jpg]
Figure 1-5.A 640×480 pixel resolution screen map

Coordinate numbers start from 0 (zero). Resolution works independently of the physical size of your monitor. So, if you have a large monitor and a low-resolution screen, you will easily see pixels, and the screen image will appear blocky (Figure 1-6).[image: A435551_1_En_1_Fig6_HTML.jpg]
Figure 1-6.Diminishing resolution, from higher to lower (left to right)

Essentially, the design of a modern computer system has not changed in more than 20 years. The system still has a keyboard, mouse, and monitor. It still has a CPU and some way to power the monitor, using either built-in graphics or a second-party graphics card.

 Computers
 operate on a simple premise: input, process, and, finally, output. Information is gathered from sources such as the disk drive, network, keyboard, and mouse and run through a series of commands—processed, so to speak—resulting in changes to the visual display.

 Number Systems

Computers cannot count in the same way that we can. We use the decimal system to perform calculations. This involves ten numbers: zero through nine, inclusive. Computers are built using electronics, which can be either on or off. This is a binary system—a system that can be in one of two states. This means that computers are, in fact, restricted to two numerical values: zero and one.

The Decimal System

In the decimal system, we count numbers from 0 to 9, then in 10s, 100s, 1000s, and so on. For example, the number 1,225 could be understood as the following (Table 1-1):Table 1-1.The Decimal System

	1000’s
	100’s
	10’s
	1’s

	1
	2
	2
	5

which is (1 * 1000) + (2 * 100) + (2 * 10) + (5 * 1) = 1,225.
The boldface numbers in the preceding table are actually powers of 10. So, we could rewrite the table as in Table 1-2, that is, (1 * 103) + (2 * 102) + (2 * 101) + (5 * 100).Table 1-2.Powers of Ten

	103

	102

	101

	100

	1
	2
	2
	5

You should note that anything to the power 0 is 1.
The binary system follows a similar pattern, but instead of having ten numbers, binary systems must make do with only two.

The Binary System

As we have discovered, any numerical system can be represented in powers. The binary system uses two digits, and so the system uses powers of two to represent numbers (Table 1-3).Table 1-3.Powers of Two

	
 Powers of Two

	27

	26

	25

	24

	23

	22

	21

	20

	
 Decimal Value

	128
	64
	32
	16
	8
	4
	2
	1

	 	Most significant bit
	Least significant bit

Bits are numbered from the right to the left, from 0 to 7. The “most significant bit” is the leftmost bit. So, the “most significant bit” is bit 7. The “least significant bit” is the rightmost bit. Bit 0 is the “least significant bit.”
To represent numbers
 in this restrictive numbering system, we place a zero or a one in the appropriate box. Some examples follow:
The decimal 5 in binary can be expressed as in Table 1-4.Table 1-4.Decimal 5 in Binary

	Powers of Two
	27

	26

	25

	24

	23

	22

	21

	20

	Decimal Value
	128
	64
	32
	16
	8
	4
	2
	1

	 	0
	0
	0
	0
	0
	1
	0
	1

Because: 4 + 1 = 5, the decimal 26 in binary can be expressed as in Table 1-5.Table 1-5.Decimal 26 in Binary

	
 Powers of Two

	27

	26

	25

	24

	23

	22

	21

	20

	
 Decimal Value

	128
	64
	32
	16
	8
	4
	2
	1

	 	0
	0
	0
	1
	1
	0
	1
	0

This is because 16 + 8 + 2 = 26.
Note that for even-numbered values, the least-significant bit is zero.

 Binary Numbering

To convert from decimal to binary, find the largest number equal to or below the one you are looking for. Then, if needed, add lower numbers to get that figure. For example, let’s take the number 23. How would it be represented in binary?
The highest number before 23 is 16, so we remember 16. Now we have to see what number we have to add to 16 to get 23. The number below 16 is 8, but adding 16 to 8 would give us 24, so we ignore that and go to the next lowest number, 4. This gives us 20, which is perfect. So far, so good. Adding the next lowest number (2) gives us 22, and, finally, adding the last number (1) gives us the 23 we are looking for.
So, 23 in binary is 10011. Note that you can ignore the leading zeros in binary.

Groups of Binary Digits

To make things easier for the programmer, computers group binary digits together. The groups of digits are shown following.
	
 1—Bit: A binary digit. Either a zero or a one. This is the lowest “grouping.” There are two reasons why it’s called “bit.” The first is that it is a contraction of BInary and digIT to give you BIT. However, the one I am most fond of is when a dollar could be split into eight pieces. Each piece was called a “bit.” Remember that old rhyme? Shave and a haircut—two bits? Well, two bits is 2 8ths, which is a quarter.

	
 4—Nybble (also, nibble, nyble): This term is hardly ever used anymore, but it is included here on behalf of 8-bit programmers. A nybble is half a byte. As we’ll see, it makes counting in hexedecimal a little easier.

	
 8—Byte: This is the most common grouping of bits in a computer system. It represents a single memory location in the computer.

	
 16—Word (also, halfword): In older machines, this represented an integer value. This is the equivalent of two bytes.

	
 32—Long word (also, doubleword): Most modern machines use this as their current representation of an integer value. This is the equivalent of four bytes.

Groups of Bytes

When bits are too small to count, bytes are used and are represented by the following groupings:
	
 1—Byte (B): This is the most common grouping of bits in a computer system. It represents a single memory location in the computer.

	
 1,024—Kilobyte (KB) (roughly): One thousand bytes

	
 1,048,576—Megabyte (MB) (roughly): One thousand kilobytes, or (roughly) one million bytes

	
 1,073,741,824—Gigabyte (GB) (roughly): One thousand megabytes

	
 1 Terabyte = 1,099,511,627,776 Bytes

 Hexadecimal

Computer scientists—programmers—can also count in another numeric base: hexadecimal. As the name might suggest, this system uses 16 digits instead of just 10. So, where do we get the extra digits from? We use letters, of course! Table 1-6 shows the decimal, binary, hexadecimal, and English equivalents for each number.Table 1-6.Numerical Equivalents in Decimal, Hexadecimal, and Binary Systems

	Decimal
	Hexadecimal
	Binary

	0
	0
	0000

	1
	1
	0001

	2
	2
	0010

	3
	3
	0011

	4
	4
	0100

	5
	5
	0101

	6
	6
	0110

	7
	7
	0111

	8
	8
	1000

	9
	9
	1001

	10
	A
	1010

	11
	B
	1011

	12
	C
	1100

	13
	D
	1101

	14
	E
	1110

	15
	F
	1111

Let’s look at some examples of hexadecimal numbers. The number 255 in base 10 in hexadecimal is FF. The binary number is 1111 1111.
Look at the binary and hexadecimal numbers closely? Do you see a pattern? In binary, the hexadecimal number F is written as 1111.
So, each hexadecimal
 digit from 0 to F can be represented by four bits. Knowing this can make calculations easier!
In the preceding example, the two 4-bit binary numbers are 1111 and 1111. To convert this to a hexadecimal number, we look up the preceding hexadecimal table to find the corresponding hex-digit. In this case, it is F. Both numbers are the same, so 255 is represented by FF. But how can we know for sure that FF16 equals 25510?
As we did before with decimal and binary numbers, we can apply powers to our hexadecimal numbers, this time, in powers of 16.
So, our hexadecimal number is FF (Table 1-7).Table 1-7.Hexadecimal Number

	163

	162

	161

	160

	0
	0
	F
	F

F is 15 in decimal, which means (15 * 161) + (15 * 160) = 240 + 15 = 255.
Now that we can use hexadecimal, binary addition can be so much easier. Let’s try something else.
The number 17 in decimal in hexadecimal is 11.
In binary it is 00010001.
Again, this means: (1 * 16) + (1 * 1) = 16 + 1 = 17.
The number 38 in decimal. In hexadecimal it is 26; in binary it is 0010 0110.
This means that the first 4-bit binary number
 is 0010, which is 2 in decimal. Because that’s in our 16s column, we have to multiply it by 16. The second 4-bit binary number is 0110, which is 6, because it’s in our 1s column: (2 * 16) + (6 * 1) = 32 + 3 = 38.

Larger Numbers
You will probably only encounter hexadecimal values with larger numbers, such as memory locations and colors. Those of you familiar with designing web pages may recognize the color red when you see #FF0000. Larger numbers
 are handled in the same way as smaller numbers. Take the number 8,000 in hexadecimal, for example.
When calculated out, it is as follows: 8 * 4096 + 0 * 256 + 0 * 16 + 0 * 1 = 32768.
For the curious, how would this be represented in binary? Answer: 1000000000000000. If we were to split that into 4-bit binary numbers, it would be as follows:
1000
0000
0000
0000
In summary, then, computers can only count using base 2 or binary. This consists of two digits, 0 and 1, to represent all numbers.

 Hexadecimal
 can be used to group binary digits together, to make them easier for humans to read. Converting between hexadecimal and binary is relatively easy when you break down the hex number into 4-bit nybbles.

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_2

2. How BlitzMax Works

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

When computers first began to be used, the only way to program them was to manually pull switches and rotate dials on the front. Nothing much improved in 30 years, and in 1975, when the world got its first personal computer, the MITS Altair, one still had to use switches to program the box.
And that was all it was—a box. There was no keyboard, no monitor, and no mouse. The only thing it had was a series of switches and small light-emitting diodes (LEDs)
 . All this changed when third parties began supporting this new machine. Soon, teletypes—a keyboard-like device—were attached, along with displays, printers, etc. But still there was no actual way to program the machine until two Harvard men, Bill Gates and Paul Allen, created a version of the popular BASIC programming language
 for the new machine.
Computers Can’t Read English
Computers can only understand binary data, and as I have previously discussed, this means that, as electronic devices, each binary digit can have a state of off or on.
The computer’s central processing unit (CPU)
 is hard-coded with a list of commands. These commands are fired whenever the correct instruction is sent. This is part of what is called the fetch-execute cycle
 .

Translating English to Computerese (Machine Code)

The solution is to have some conversion between our language (I’ll assume English) and the computer. Two professors, at Dartmouth College, John Kemeny and Thomas Kurtz, created the BASIC language. BASIC, or Basic, is an acronym that stands for “Beginner’s All-purpose Symbolic Instruction Code.” The two professors created Basic to include many English words, to ensure that those new to programming a computer would pick up the new language quickly. BlitzMax is an updated object-oriented version of this popular language.
The programs we write are called source code. Source code
 is translated by a program called a compiler. A compiler
 works like a translator at the United Nations. It takes source code written in one language and converts it to another. In this case, our BlitzMax code
 is converted to machine code. BlitzMax is even cleverer! If we take our source code from one system (say, Windows) to another (say, Mac OS X), we can re-compile the source code on that machine to generate Mac machine code. This means that BlitzMax is portable.

 Portability
 is important in the games industry. In its basic sense, you are increasing your possible market by 200%, because you can write-once and compile-many on multiple systems. For example, so long as you have access to a Linux, Windows, and a Mac OS X box
 , you can write programs for all three systems! Think of the user base! And fixes to all three versions are simple: write it on one, and re-compile on the other two.

Compilation Process
The following is a very simple program

 :

 Print "This is a small program"

This will display the message “This is a small program” onscreen. When we run it, the output in the BlitzMax IDE will be:

 Building SimpleProg
Compiling:SimpleProg.bmx
flat assembler version 1.51
3 passes, 2285 bytes.
Linking:SimpleProg.debug.exe
Executing:SimpleProg.debug.exe
This is a small program
Process Complete

Notice the size of the file is 2285 bytes. When we look at our source code, it only contains 31 characters. How did it get so big? The problem is that the operating system needs some code to initialize itself. Remember portability? Well, on the PC, the source code is compiled to Intel assembly language—the machine code equivalent of source code—and is then converted to machine code—zeros and ones. The assembly language

 is shown. Please note that it has been chopped for brevity:

 format MS COFF
 extrn ___bb_basic_basic
 extrn ___bb_blitz_blitz
 : :
 public __bb_main
 section "code" code
__bb_main:
 push ebp
 mov ebp,esp
 push ebx
 cmp dword [_19],0
 je _20
 mov eax,0
 pop ebx
 pop ebp
 ret
 : :
 call ___bb_blitz_blitz
 call ___bb_appstub_appstub
 call ___bb_basic_basic
 : :
 push _12
 call _brl_standardio_Print
 : :
_12:
 dd _bbStringClass
 dd 2147483647
 dd 23
 dw 84,104,105,115,32,105,115,32
 dw 97,32,115,109,97,108,108,32
 dw 112,114,111,103,114,97,109

You can see why it compiles to more than 2K worth of a program! There are several interesting lines in all of this, though.

 push _12
call _brl_standardio_Print

This pushes the address of Label _12 onto the stack and calls the
 Print() function

 . Label _12 points to the memory location of our text ("This is a small program"). So, what this function does is print the text on the screen, using a standard function created by Blitz Research. Notice that it’s kind of backwards, because the actual parameter comes first, before the command. This is a standard way of calling something in machine code. I only mention it to give you a greater understanding of what the compiler does! Now, when we look at Label _12, it contains the following information:

 _12:
 dd _bbStringClass
 dd 2147483647
 dd 23
 dw 84,104,105,115,32,105,115,32
 dw 97,32,115,109,97,108,108,32
 dw 112,114,111,103,114,97,109

What is interesting about this is that it defines the type of data (_bbStringClass), the length of the string (23), and the actual data. There are 23 characters in the string, and they are shown in Table 2-1.Table 2-1.The 23 Characters in the String

	T
	H
	I
	S

	84
	104
	105
	115

	 	
 I

	
 S

	
	32
	105
	115
	32

	
 A

	 	
 S

	
 M

	97
	32
	115
	109

	
 A

	
 L

	
 L

	
	97
	108
	108
	32

	
 P

	
 R

	
 O

	
 G

	112
	114
	111
	103

	
 R

	
 A

	
 M

	
	114
	97
	109
	

The values stored are actually ASCII (American Standard Code for Information Interchange)

 codes. See the appendixes of this book for a list of ASCII codes. I’ve included the ASCII byte values below each of the letters above them.

 Q. What does all this mean?

 A. We don’t have to learn complex machine code to program a computer! We can do it all with one line and let the compiler do the hard work.

 Application/Game/Program

These terms are all effectively interchangeable, and as you will see from this book, I interchange them all the time. The difference, if there is any, is that application is a new word for program, and a game is a type of application. I hope that clears things up!
But Why BlitzMax?
There are other frameworks out there like MonoGame and Gamemaker Studio to help you create games. But for someone just starting out coding though, BlitzMax is an excellent choice. BlitzMax is born from a long line of tools created by Blitz Research. I started using BlitzBASIC on an Amiga about twenty-odd years ago. There have been other iterations of the language through the years including Blitz3D and BlitzPlus. The key though is the simplicity of the language. It has that easy-to-get into quality of BASIC, but the power required for modern games.
The IDE, which was open sourced, is available on Windows, Mac and Linux distributions. So no matter what machine or OS you are running you’re sure to find a version of BlitzMax for it. Not only that but because the language is hardware and Operating System agnostic, a simple recompile on a target platform means that your game can be shipped cross-platform. The program; the IDE and the compiler, tools and examples can be downloaded from
 http://www.blitzmax.com/
 .

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_3

3. The BlitzMax IDE

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

BlitzMax (Figure 3-1) provides an out-of-the-box Integrated Development Environment, or IDE. This application
 offers the following components:
	
 The
 Editor

 : Edits source code

	
 The
 Compiler

 : Translates source code to machine language

	
 The
 Debugger

 : Helps to fix your program when things go wrong

 [image: A435551_1_En_3_Fig1_HTML.jpg]
Figure 3-1.BlitzMax screen

 Launching

 the IDE
Depending on your operating system, locate the BlitzMax program icon and launch it (in Windows, it’s a single click from the start menu, on Mac and Linux, you will have to locate the icon in your Applications folder and double-click it). The IDE will launch.
The IDE is split into a number of parts.
	
 Menu bar: File, Edit…Help, as you would expect

	
 Toolbar: Quick access to common functions, such as Open a file, Compile, etc.

	
 Tab panel: For each help window source file open, a new tab is created.

	
 Tree panel: This, too, is tabbed, to allow access to Help/Projects, Debug symbols, and code files.

Menu Bar
The menu bar

 contains four items:
	
 File: Access to file operations (open, close, save, etc.)

	
 Edit: Access to clipboard operations (copy, delete, paste, etc.)

	
 Program: Access to compilation operations (build, debug, etc.)

	
 Help: Access to online help

 Toolbar

The toolbar allows quick access to common functions. These functions are available within the menu bar, but Blitz Research (the authors of BlitzMax) thought that these items would be of particular interest to their users. The diagram above indicates each icon’s use. Note that some icons are grayed out. This is because those particular actions could not be made in the context in which the screen grab

 was taken.

The Tab Panel

The main tab panel contains the help pages and any source code windows you have open. To create a new source file, press Ctrl+N (Mac: Command+N). You will notice that the source code editor has a dark green color.

 Editing

Source code is entered in the dark green area. Using the alphanumeric keyboard, cursor keys, and Insert/Delete/Home/End/Page Up/Page Down keys, the coder (you) build the program. Basically, this is where the fun begins!
Create a new source file by pressing Ctrl+N.
Enter the following code in the new source code editor (the dark green editor), exactly as written following:

 Graphics 640, 480, 16
While Not KeyHit(KEY_ESCAPE)
 Cls
Flip
Wend

Make sure you have checked the code and that it matches exactly that preceding.
To run the program, press the F5 key or, on the Mac, Command+R. The output panel will appear and contain text similar to the following:

 Building untitlied1
Compiling:untitlied1.bmx
flat assembler version 1.51
3 passes, 2719 bytes.
Linking:untitlied1.debug.exe
Executing:untitlied1.debug.exe

The screen will then go black and…nothing. Our program doesn’t do anything. Well, it’s actually doing quite a lot, but we can’t see it! To quit the application, press the Escape key.

 Insert

We have already inserted text into the source code editor one line at a time, but as with word processing packages, we can go back and re-edit the code to change its meaning or, perhaps, fix a bug.
With the previous program still in the source code editor, use the cursor keys to position the cursor on the flashing (|) character after the CLS, as shown following:

 ...
While Not KeyHit(KEY_ESCAPE)
Cls |
...

The ... represents the rest of the program. I’ve used it here for brevity. Press the Return key. (Notice how the line stays indented? This is a nice feature of the BlitzMax editor.) Enter the following text, again, exactly as written:

 DrawText("BlitzMax!", 284, 240)
Our program now looks like this:
Graphics 640, 480, 16

While Not KeyHit(KEY_ESCAPE)
 Cls
 DrawText("BlitzMax!", 284, 240)
 Flip
Wend

Run the program again (F5/Command+R) and see what happens. Did it work? If it did, the screen should go blank, and the exclamation BlitzMax! appears at the center.

 File Operations

As this is a relatively small program, we could stand to lose it. After all, we could type it in again. But to save us the time and effort required, we can save the file to our disk.
In your operating system

 of choice (please consult relevant manuals, etc.), create a subfolder in your Documents folder called BlitzSource

 . This will be our root folder for all the sample code that will be written throughout this book. Within this folder, create another subfolder called IDE.

 Save

To save our source file, we can press the Save toolbar button, press Ctrl/Apple+S, or Choose File ➤ Save from the menu bar.
Save the source file by pressing Ctrl/Command+S and locate the BlitzSource/IDE folder. Save the file in this folder, using the name FirstProgram. BlitzMax will add the .bmx extension automatically when you click the OK/Save button.

 Close

When we have finished with a file, we can close the panel associated with its editor. To do this, select the panel by clicking it, as follows:
Press Ctrl/Command+W to close the window, or press the Close Window tool bar button.
Close the FirstProgram.bmx editor panel.

 Open

Now that we have safely stored our next gaming masterpiece, it’s time to bring it back, so that we can do some more editing. To do this, we use the File ➤ Open menu item or Ctrl/Command+O, or click the Open File toolbar button.
Open the FirstProgram.bmx file. BlitzMax remembers where you last performed a file open/save and displays the folder. For the paranoid among us, feel free to run it, to ensure that it still works.

 Clipboard

The edit functions allow us to copy one or more lines of source code from one area to another. The lines we copy do not have to be in the same source file.
We are going to copy the line DrawText... in this example. Position the cursor at the start of the DrawText line.

 |DrawText("BlitzMax!", 284, 240)

Hold down the Shift key and click after the) character on the same line. The whole line should be highlighted, as follows:

 DrawText("BlitzMax!", 284, 240)

Press Ctrl/Command+C. This copies the selected text to the clipboard. We can then paste this information to another location. With the mouse, click just after the) character on the same line and press Return. This inserts a blank line. The cursor moves to this new line and waits for us to type something. In this case, we are going to insert text from the clipboard. Press Ctrl/Command+V to insert. The source code will now look like this:

 While Not KeyHit(KEY_ESCAPE)
 Cls
 DrawText("BlitzMax!", 284, 240)
 DrawText("BlitzMax!", 284, 240)
 Flip
Wend

On running the program, you will, of course, notice that it does not make any difference
 to the previous code. This is because the new text is drawn on top of the other. To rectify this situation, we’ll offset the first line.
Change the first DrawText line to

 DrawText("BlitzMax!", 285, 241)

Save and run the program.
It must be noted at this time that BlitzMax draws from the back of the monitor to the front. So, anything that is drawn first is drawn at the back, and subsequent items are drawn on top. This will become apparent when we add some color. To add color to our program, we use the SetColor() function.
Change the preceding program to the following:

 Graphics 640, 480, 16
While Not KeyHit(KEY_ESCAPE)
 Cls
 SetColor(128, 128, 128)
 DrawText("BlitzMax!", 285, 241)
 SetColor(255, 255, 255)
 DrawText("BlitzMax!", 284, 240)
 Flip
Wend

Save and run the program. You will now see a small shadow behind the text. You can make it more pronounced if you want, by changing the values for SetColor(). The three numbers represent the strength of the red, green, and blue colors in a pixel. Each number can be between 0 and 255, inclusive.
Change the shadow color to bright red (255, 0, 0) and the text color to blue (0, 0, 192). Save and run the application. Now try green or yellow (yellow is a mix of green and red) or purple (red/blue).
Cut
Occasionally, we have to completely remove code from one section and put it into another. We can achieve this goal by using the clipboard Cut operation.
We are going to invert the colors in this code:

 Graphics 640, 480, 16

While Not KeyHit(KEY_ESCAPE)
 Cls
 SetColor(192, 0, 0)
 DrawText("BlitzMax!", 285, 241)
 SetColor(0, 0, 192)
 DrawText("BlitzMax!", 284, 240)
 Flip
Wend
Highlight the "SetColor(192..." line:
Graphics 640, 480, 16

While Not KeyHit(KEY_ESCAPE)
 Cls
 SetColor(192, 0, 0)
 DrawText("BlitzMax!", 285, 241)
 SetColor(0, 0, 192)
 DrawText("BlitzMax!", 284, 240)
 Flip
Wend

Press Ctrl/Command+X
 . This cuts the line from the editor and places it on the clipboard. Now, position the cursor at the end of the DrawText(... 285, 244) line and press Return. This creates a blank line. Press Ctrl/Command+V to paste the new line into position. You will now have the following code:

 While Not KeyHit(KEY_ESCAPE)
 Cls

 DrawText("BlitzMax!", 285, 241)
 SetColor(192, 0, 0)
SetColor(0, 0, 192)
 DrawText("BlitzMax!", 284, 240)
 Flip
Wend

Cut the SetColor(0, 0, 192) line and paste this into the blank line under the Cls keyword and tidy up the code, as follows:

 While Not KeyHit(KEY_ESCAPE)
 Cls
SetColor(0, 0, 192)
 DrawText("BlitzMax!", 285, 241)
 SetColor(192, 0, 0)
 DrawText("BlitzMax!", 284, 240)
 Flip
Wend

Save and run the program
 . We now have red text on a blue shadow.

 Undo

Occasionally, we will make a mistake and have to put back the code we broke. In this case, we used the Undo function. This allows us to retrace our steps to where we were before everything went wrong. To undo, press Ctrl/Command+Z. If we make a mistake undoing (!), we can press Shift+Ctrl/Command+Z to redo.
Use the Undo function (Ctrl/Command+Z) to return the red/blue text to blue/red.
Now, perform the reverse, change the blue/red text to the red/blue text, using the Redo function (Shift+Ctrl/Command+Z).

Getting Help
BlitzMax contains an online reference to all its keywords. To access this help, click the Help tab in the editor panels. This shows a welcome screen and a tree view. Expanding the nodes on the tree view shows more detail for a particular topic.
Using the tree view, access help on SetColor(). Hint: Expand Help, Modules, and Index. Then scan down the alphabetic list for SetColor(). Now try the same for DrawText().
If you are stuck on a problem, head over to the BlitzMax forums. The beginners forum
 http://www.blitzbasic.com/Community/topics.php?forum=101
 contains lots of tips for people just starting BlitzMax programming. If you are looking for tutorials,
 http://www.blitzbasic.com/Community/topics.php?forum=112
 contains advise from seasoned BlitzMax coders.

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_4

4. Literals, Constants, and Variables

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

There are three different ways to store data in BlitzMax: Literals, Constants and Variables. After a quick visit to dictionary.com, I came up with the following descriptions:
	
 Literal: Word for word; verbatim

	
 Constant: Unchanging in nature, value, or extent; invariable

	
 Variable: Likely to change or vary; subject to variation; changeable. Inconstant; fickle

In terms of computer programming

	A literal is a string of characters enclosed in quotation marks or a number placed in the source code.

	A constant is declared at the start of the source code and is not changed.

	A variable is a temporary storage area used by the program at runtime.

When BlitzMax
 compiles the source code into an executable, the only values it is sure of are the literals and constants. The variables will change during the execution of the program, depending on input from the user or other random events.
Literals and constants are hard-coded values in the source code of your program and cannot be changed. However, there is a very subtle difference between the two that will be discussed later.
Variables
A variable is like a box inside your computer that holds some item. That item can be a whole number, a real number, a line of text, pretty much anything. You can define as many variables as you require, because BlitzMax does not restrict you in any way. But don’t forget that you are restricted by the amount of memory that you have available to you.
It is good practice to declare your variables before using them. You can enforce this in all your programs by placing the keyword
 Strict

 at the top of the source code, before any other line. When defining a variable, it is possible to give it an initial value.
There are a number of phrases

 associated with variables.
	
 Declaration: When you first write about a variable in the source code of your program

	
 Assignment: When you give a value to a variable

	
 Type: The type of data that can be stored inside the variable

You can declare variables in a number of ways. Here are three examples:

 Local x
Local y:Int = 5
Global radius:Float

Variables declared without a type identifier are defaulted to Integer, or Int, for short. Any variable not assigned an initial value is assigned the value Null at runtime.
Multiple variables can be declared in one statement, using commas to separate each variable declaration. For example:

 Local x:Int, y:Int, score:Int
Local energy:Int=100, lives:Int=5

 Data Types

The following data types (Table 4-1) are used in BlitzMax. Your variables should be assigned a data type. This tells the compiler what information you’re going to use your variable to store. If you don’t specify a data type, Int (integer) will be assumed.Table 4-1.Data Types Used in BlitzMax

	Description
	Keyword
	Minimum Value
	Maximum Value

	8-bit unsigned integer
	
 Byte

	0
	255

	16-bit unsigned integer
	
 Short

	0
	65535

	32-bit signed integer
	
 Int

	-231

	+231-1

	64-bit signed integer
	
 Long

	-263

	-263-1

	32-bit floating point
	
 Float

	???
	???

	64-bit floating point
	
 Double

	???
	???

	16-bit Unicode string
	
 String

	n/a
	n/a

 Variables

 have certain attributes associated with them. These are:
	Each variable has a name.

	Each variable has a type associated with it.

	Each variable contains a value.

Variable Names

Each variable must be given a unique name that can be referenced later in the code.

Variable Types

All variables are associated with a type. This data type describes the kind of information that can be assigned to the variable. By default, variables are declared as type Int—or Integer—if they are not explicitly defined as any other variable type.

Variable Values

Variables can be assigned values at declaration or later by assignment. When declaring variables, it is best to give them a default value. If an initial value is not specified, the variable

 is assigned a null value. Null is a special computer word that means “no value.”

Why Do We Use Variables?
We use variables to keep track or monitor the changes of objects in our program. For example, the location

 of the player onscreen, how many lives they have, or how many bullets they have left. Take the following one-line program as an example:

 Print "Total cost for a bundle of apples is " + 8
* 12 + "c"

Create a new blank editor window, then enter the program and run it.

 Print "Total cost for a bundle of apples is " + 8
* 12 + "c"

You will see the following message in the Output tab of the IDE:

 Total cost for a bundle of applies is 96c

The answer is correct, but the method of achieving this result is incorrect. The problem we have is that the values 8 and 12 are literal values. A literal is a string of text enclosed in quotation marks or a number placed within the source code. This method is called hard-coding values. Because the 8 and 12 values don’t have labels, we don’t know what is what. Is it 8 apples per bundle at 12c?
The next example replaces the literal values with variables.

 Local apple:Int = 8 ' eight cents per apple
Local bundle:Int = 12 ' twelve apples in a bundle
Local totalcost:Int = apple * bundle ' total cost for a bundle
Print "Total cost for a bundle of apples is " + totalcost + "c"

Three variables are declared: apple, bundle, and totalcost. Each is assigned a value. Remember that at declaration, the programmer can add an optional initial value. The first two variables (apple and bundle) are assigned literal integer values: 8 and 12. The totalcost variable is assigned an initial value of apple * bundle.
When the program is run, the output is not too dissimilar to the previous one-liner. However, the underlying code

 is a better design. Whereas we used literal values in the first example, the second uses variables that can be changed with program flow. For example:

 Local apple:Int = 8 ' eight cents per apple
Local bundle:Int = 12 ' twelve apples in a bundle Local totalcost:Int = apple * bundle ' total cost for a bundle
Print "Total cost for a bundle of apples is " + totalcost + "c"

apple = 9 ' new cost for an applie is nine cents
totalcost = apple * bundle ' re-calculate cost of bundle
Print "New cost for a bundle of apples is " + totalcost + "c"

The preceding code builds on the second example. Now, we add an additional three lines that change the cost of one apple to nine (cents). We then recalculate the cost of a bundle of apples and display the information to the user.

Variable Scope
There are three kinds of variables: local, global, and field or type level. This is commonly referred to as variable scope. Think of variable scope as putting your variables (boxes) in different rooms in your house. Although you may have two identical boxes in separate rooms, they may or may not contain the same items.
Local

 Local

 variables are available only within the current block of code. A block of code is defined as
	The body of a function or loop

	The body of an if…then…else statement

	The body of a case or default statement

The following example shows the difference between local and global variables:

 Global x:Int = 5
Function PrintX()
 Local x:Int = 10
 Print "Local x = " + x
End Function
PrintX()
Print "Global x = " + x

As I have not yet discussed functions, I will briefly explain that a function is a block of code that allows you to extend the built-in functions of the BlitzMax language. In the preceding example, we are creating a command called PrintX. Enter the program exactly as written and run it. The output will be as follows:

 "C:/BlitzMax/tmp/localglobal.debug"
Local x = 10
Global x = 5
Process complete

Global

 Global variables

 are available to any program block, following its declaration. The caveat to this is that if a local variable has been declared, the local variable is used, and not the global, as shown in the preceding local variable example.
Global variables cannot be declared after they are first used. Take this example:

 Print integer
Global integer:Int = 5
Print integer

This will result in an error, specifically “Duplicate Identifier,” because we effectively created the variable integer on the fly (remember, we can do this) and then tried to re-declare it as a global.
There is also a further complication when global variables are used, as we can see in the next example:

 Function PrintInteger()
Print integer
End Function

PrintInteger()
Global integer:Int = 5
Print integer

This is where it gets complicated! You might possibly expect that the local variable inside the function would be used, resulting in 0 (zero) being displayed. This is not the case!
When compiling, BlitzMax does multiple passes to get all the declarations and calls organized. In the preceding example, the global variables are processed before any functions, resulting in two 5’s being drawn on screen.

Field
The third type of variable is called field

 . I will discuss field variables in detail in Chapter 9, on object-oriented programming.

 Literals

When you take something literally, you take it at face value. In BlitzMax terms, anything that is hard-coded in the source file is a literal value. For example:

 Print "Game Over"

The string Game Over is a literal value, because it cannot be changed and cannot be reused. This means, that if we wanted to print the string Game Over anywhere else in the code, we would have to type in this line again. This means that at compile time, the game will contain multiple versions of the string Game Over.

 Constants

A constant is declared in the same fashion as a variable and cannot be altered, as with a literal. However, because it is a variable, it can be reused anywhere in the program. This means that unlike a literal value, a constant is defined once and is referenced throughout the code. Therefore, at compile time, the game only contains one instance of the value. For example:

 Const C_GAMEOVER:String = "Game Over"
Print C_GAMEOVER
Print C_GAMEOVER + " Press Any Key"

Changing Variables
A developer uses operators

 on the contents of variables to manipulate the outcome of the game. The following mathematical operators (Table 4-2) are available in BlitzMax.Table 4-2.Mathematical Operators

	 	Plus
	Minus
	Multiply
	Divide
	Modulo

	Operator
	
 +

	
 -

	
 *

	
 /

	
 Mod

In addition to mathematic operators, BlitzMax also allows Boolean bitwise operators (Table 4-3).Table 4-3.
 Booleaan Bitwise Operators

	 	And
	Or
	Xor
	Shift Left
	Shift Right
	Arithmetic Shift Right

	Operator
	
 &

	
 |

	
 ∼

	
 Shl

	
 Shr

	
 Sar

 Arithmetic Operators

The standard arithmetic operators are used in the same way as you would on a calculator. In fact, with BlitzMax, you can create a very powerful calculator, if you so wish.
I will use variables in the following example (Table 4-4). Remember: When you are using variables, it is the contents of the variable that you are using. The name is merely a nice label that the programmer uses. In the first example (the plus operator), I use three variables: x, y, and total. The contents of these variables is used.Table 4-4.Provide Table Caption

	Source Code
	Mathematically

	
 x = 5

	The value 5 is stored in x.

	
 y = 5

	The value 5 is stored in y.

	
 Total = 0

	The value 0 is stored in Total.

	
 Total = x + y

	The value 5 + 5 is stored in Total; therefore, 10 is stored in Total.

The Plus Operator

The plus operator (+) adds two numbers together. For example:

 Local x:Int = 5
Local y:Int = 5
Local total:Int = 0
Total = x + y
Print "Total is " + total

The answer shown will be "Total is 10". Did you notice that the plus symbol is used in the print statement? The plus symbol is an example of an overridden operator. There is only one in BlitzMax.
The plus symbol can also be used to add two strings together. This is called string concatenation.

 String Concatenation

In the preceding example, the variable Total is converted to a string before the concatenation takes place. No arithmetic addition can occur after a string concatenation has been performed on the same line of source code.

The Minus Operator

The minus operator (-) subtracts the second number from the first. For example:

 Local x:Int = 15
Local y:Int = 5
Local total:Int = 0
Total = x - y
Print "Total is " + total

The answer shown will be "Total is 10".

The Multiplication Operator

The multiplication operator (*) multiplies two numbers together. For example:

 Local x:Int = 5
Local y:Int = 5
Local total:Int = 0
Total = x * y
Print "Total is " + total

The answer shown will be "Total is 25".

The Divide Operator
The divide operator
 (/) divides the first number by the second number. For example:

 Local x:Int = 10
Local y:Int = 5
Local total:Int = 0
Total = x / y
Print "Total is " + total

The answer shown will be "Total is 2".

The Modulo Operator

The modulo operator (Mod) returns the remainder of the first number, divided by the second. For example:

 Local x:Int = 7
Local y:Int = 5
Local modval:Int = 0
Total = x Mod y
Print "Mod is " + modval

The answer shown will be "Mod is 2", because 7 / 5 = 1 r 2, that is, five goes into seven once, with a remainder of two.

Using the Colon

It is possible to shorthand some of the mathematical operators using the colon (:). The following pairs (Table 4-5) are shown as an example.Table 4-5.Examples of Some Mathematical Operators Using the Colon

	
 n = n + 1

	
 n:+1

	
 y = y / 2

	
 y:/2

	
 p = p * 5

	
 p:*5

	
 i = i – 1

	
 i:-1

The following program will prompt the user for a weight in pounds and return the value in stones and pounds. Type in the code exactly as written.

 Rem
 Pounds -> Stone and Pounds
End Rem
Local pounds:Int = Input("Enter a value in pounds ?:").ToInt()
Local stone:Int = pounds / 14
Local poundout = pounds Mod 14
Print "Answer is " + stone + "st. " + poundout + "lbs"

Run the program and type in a number. There are 14 pounds in 1 stone. The Input line is a little tricky, in that there is a .ToInt() at the end. BlitzMax is an object-oriented language, and, as such, strings are handled as objects. This method converts whatever is in the string that the user gives to an integer value. I cover object-oriented programming in a later chapter.

Boolean Mathematics
This branch of mathematics derives its name from George Boole, a mathematician from Lincoln, England. He discovered a branch of mathematics using binary (two) states, on and off, and the ability to combine the two states using a number of operations, namely, AND, OR, and NOT. There is also a fourth: exclusive OR (XOR).
Boolean logic has had a profound impact on the world, mostly because computers wouldn’t be here without it. Remember, from the “Computer Memory” section in Chapter 1, that memory is stored in collections of bits? Because bits have two states, set or not set, they are ideal candidates to use with Boolean logic.
The AND Operator

The AND operator (&) is obtained by pressing Shift+7 on most keyboards. The output from this is 1 only when both A and B are 1. All other combinations result in an output of 0 (Table 4-6).Table 4-6.Output of the AND Operator for Hypothetical A and B

	A
	B
	Output

	
 0

	0
	0

	
 0

	1
	0

	
 1

	0
	0

	
 1

	1
	1

The OR Operator

The OR operator is a single pipe (|). This symbol is located to the left of the Z key on most keyboards. The output from this is 1 when either A is 1, B is 1, or both are 1. Only when A=0 and B=0 does the output equal zero (Table 4-7).Table 4-7.Output from the OR Operator for Hypothetical A and B

	A
	B
	Output

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	
 1

The NOT Operator

The NOT operator (!) is obtained by pressing Shift+1 on most keyboards. This is a unary operator in that it only requires one input. This is used to reverse the contents of A. For example, if A=0, then the output would be 1 (Table 4-8).Table 4-8.Output of the NOT Operator If A Equals 0

	A
	Output

	
 0

	1

	
 1

	0

The Exclusive OR Operator
The exclusive OR operator

 (∼, to the left of the Enter key on most keyboards) produces an output of 1 only when A=1, B=“0” OR when A=0, B=“1.” The output is 0 in all other instances (Table 4-9).Table 4-9.Output of OR Operator for Hypothetical A and B

	A
	B
	Output

	
 0

	0
	0

	
 0

	1
	1

	
 1

	0
	1

	
 1

	1
	0

String Methods
Strings in BlitzMax are more complex than characters, integers, and floating point numbers. They are a collection of printable characters and are actually complex objects. As an object, they can have methods associated with them. The
 String object

 has the following methods:
	
 Find

	
 FindLast

	
 Trim

	
 Replace

	
 StartsWith

	
 EndsWith

	
 Contains

	
 Join

	
 Split

	
 ToLower

	
 ToUpper

	
 ToInt

	
 ToLong

	
 ToFloat

	
 ToDouble

	
 ToCString

	
 ToWString

	
 FromInt

	
 FromLong

	
 FromFloat

	
 FromDouble

	
 FromCString

	

 FromWString

	
 FromBytes

	

 FromShorts

These methods operate on the contents of string literals, constants, and variables. They allow programmers to search through and find the first occurrence of a phrase or convert a string to a different type.
Strings are arrays of characters, and BlitzMax supports both ASCII (8 bits per character) and Unicode (16 bits per character).
Find

 Find

 returns the index of the first occurrence of the substring. The method will return -1 if no matching occurrence is found. You can pass in a starting index value as well. The following program displays a list of index values where the character "i" is located in the string:

 blitzMax:String = "This is BlitzMax!"
pos:Int = blitzMax.Find("i")
While(pos > 0)
Print pos
pos = blitzMax.Find("i", pos + 1)
Wend

 FindLast

 FindLast returns the index of the last occurrence of the substring. The method will return -1 if no matching occurrence is found. Like Find(), a starting index value can be passed in. The following program displays the index value of the "Max" word in the string:

 blitzMax:String = "This is BlitzMax!"
pos:Int = blitzMax.Find("Max")
Print "Max is located at element " + pos

 Trim

Trim removes all nonprintable characters from the string. In the following example, the text is bloated with space characters that are removed using Trim:

 bloatedString:String = " TOO MANY SPACES"
Print "<" + bloatedString + ">"
Print "<" + bloatedString.Trim() + ">"
Print "<" + bloatedString + ">"

Note that bloatedString is not altered. Trim() returns the altered string but keeps the original intact.

Replace

 Replace

 replaces all the occurrences in a string. For example, if you wanted to replace all the occurrences of “ca” with “dog,” you would do the following:

 animals:String = "Cats are much smarter pets. Cats are so loving"
Print animals.Replace("Cat", "Dog")
Print animals

Again, the original text is not altered. Replace() returns the altered text.

StartsWith

 StartsWith

 returns true if the string starts with the given value.

 author:String = "Wells, Herbert George"
Print author.StartsWith("Wells")
Print author.StartsWith("WELLS")

Note that WELLS is not the same as Wells. Strings are case-sensitive.

 EndsWith

 EndsWith returns true if the string ends with the given value.

 bookTitle:String = "BlitzMax"
Print bookTitle.EndsWith("Max")

Contains

 Contains

 works in a similar way to Find but does not allow for a starting offset and will only return true if the substring is contained within the larger string.

 simplePhrase:String = "Bill Gates is a founder member of Microsoft"
Print simplePhrase.Contains("founder member")

Join

 Join

 concatenates arrays of strings together. If you are coming from another language such as Java or C#, you will be familiar with this construct, but it has been slightly tipped on its head, as you will see from the example. This is handy, if you want to output data to a CSV or JSON, for example.

 Local listOfNames:String[] = ["Fred", "Barney", "Wilma", "Betty"]
Print ",".Join(listOfNames)

 Split

 Split is the opposite of Join. It takes a list of strings and separates them, using the given character delimiter. In this example, we will reuse our join from before:

 Local listOfNames:String[] = ["Fred", "Barney", "Wilma", "Betty"]
Local joinedNames:String = ",".Join(listOfNames)

Local namesArray:String[] = joinedNames.Split(",")
For s:String = EachIn namesArray
 Print s
Next

 ToLower

 ToLower converts all the alphabetic characters in the string to lowercase. In this example, we are running the method on a string constant:

 Print "THIS IS SHOUTY TEXT".ToLower()

 ToUpper

 ToUpper converts all the alphabetic characters in the string to uppercase:

 Print "Apples! 6 for $2!".ToUpper()

 ToInt

 , ToLong

 , ToFloat

 , ToDouble

These methods all convert strings to their respective data types:

 one:Int = "1".ToInt()
two:Long = "2".ToLong()
three:Float = "3".ToFloat()
four:Double = "4".ToDouble()
Print one
Print two
Print three
Print four

 ToCString

The ToCString method converts the string to a zero- (null-) terminated string that can be used by C programs. This method is outside the scope of this book, because we are not going to be doing any low-level operating system calls, for example. However, for completeness, here is an example:

 Local memLoc:Byte Ptr = "This is a string".ToCString()
Local i:Int = 0
While memLoc[i] <> 0
 Print Chr$(memLoc[i])
 i:+1
Wend

ToWString
The
 ToWString method

 converts the string to a zero- (null-) terminated Unicode string. This method is outside the scope of the book, because we are not going to be doing any low-level operating system calls, for example. However, for completeness, here is an example:

 Local memLoc:Byte Ptr = "This is a string".ToWString()
Local i:Int = 0
While memLoc[i] <> 0
 Print Chr$(memLoc[i])
 i:+2
Wend
MemFree(memLoc)

Note that because the Unicode character set is represented by two bytes per character, we must increment the index value by two.
When using ToCString and ToWString, always free your memory using MemFree().

 FromInt

 , FromLong

 , FromFloat

 , FromDouble

 ,
As with their corresponding ToXXX methods, these convert from a given data type to a string. For example:

 one:Int = "1".ToInt()
two:Long = "2".ToLong()
three:Float = "3".ToFloat()
four:Double = "4".ToDouble()

Print String.FromInt(one).Length
Print String.FromLong(two).Length
Print String.FromFloat(three).Length
Print String.FromDouble(four).Length

 FromBytes

 FromBytes takes a zero- (null-) terminated string and its length and converts it to a BlitzMax-compatible string. This is the opposite of ToCString() but allows greater control, in that you can specify the number of bytes to return.

 Local stream:Byte Ptr = "The cake is a lie.".ToCString()
Local cake:String = String.FromBytes(stream, 4) Print cake

FromCString

 FromCString

 takes a zero- (null-) terminated string, and its length and converts it to a BlitzMax-compatible string. This is the opposite of ToCString() and returns the entire string.

 Local stream:Byte Ptr = "The cake is a lie.".ToCString()
Local cake:String = String.FromCString(stream) Print cake

 FromShorts

 FromShorts takes a zero- (null-) terminated Unicode string and its length and converts it to a BlitzMax-compatible string. This is the opposite of ToWString() but allows greater control, in that you can specify the number of bytes to return.

 Local stream:Short Ptr = "The cake is a lie.".ToWString()
Local cake:String = String.FromShorts(stream, 4) Print cake

FromWString

 FromWString

 takes a zero- (null-) terminated Unicode string and its length and converts it to a BlitzMax-compatible string. This is the opposite of ToWString() but allows greater control, in that you can specify the number of bytes to return.

 Local stream:Short Ptr = "The cake is a lie.".ToWString()
Local cake:String = String.FromWString(stream) Print cake

Length of String

You can also get the length of a string, using the read-only Length field.

 cat:String = "Cat"
Print cat + " is " + cat.Length + " characters long"

To summarize what we have looked at so far, in addition to standard arithmetic operators

 such as add, subtract, multiply, and divide, BlitzMax also offers the F and Boolean operators AND, OR, and NOT. Strings can be added (concatenated) together using the plus operator (+). The product of arithmetic operations can be reassigned to the same or other variables. Boolean operators can be used as part of IF and WHILE statements. You will see more of that in following section, “Going with the Flow.”

Going with the Flow
Computers step through each program line by line until there are no more lines to run. In this chapter, we discover that we can control what lines the computer reads and, more important, the order in which we want them read.

Simple Decisions
We can make simple decisions

 in computing, as we do in life, such as: If it’s raining, I will take my umbrella to work. In computing terms this can be written as follows:

 Local isRaining:Int = True
If isRaining
 Print "I will take my umbrella to work today."
End If

Line 1 declares an integer value, isRaining, which we give an initial value of True. Line 3 causes the program to make a decision based on the contents of the isRaining variable.
IF Conditions Always Equate to One of Two Values: TRUE or FALSE

The equals character (=) is used to test for equality. Previously, we used the equals character to assign values. In the preceding example, we are not assigning the value; we are determining if the isRaining variable contains that value. Line 4 will only execute if isRaining is true. Line 5 ends the IF block.
We can also place more than one line between the IF and END IF lines, as shown in the following example:

 Local isSunny:Int = True
If isSunny
 Print "It is sunny outside"
 Print "I won't need my umbrella"
End If

Both lines inside the IF...END IF block are executed only if isSunny is True.
What if we wanted to display something if isRaining wasn’t true? Could we do the following?

 Local isRaining:Int = True

If isRaining
 Print "I will take my umbrella to work today."
End If
Print "It is nice and sunny"

If we ran this code, we would get the following output:

 I will take my umbrella to work today.
It is nice and sunny

This is not an ideal situation, because we were only looking for one line to be output. The second line is always going to be executed, because, as we know, programs run blindly step-by-step through a program until they get to the end, and there are no more lines to process. What we need to do is the following:

 Local isRaining:Int = True
If isRaining
 Print "I will take my umbrella to work today."
Else
 Print "It is nice and sunny"
End If

Note the extra keyword Else. This allows us to better control what we expect to do if isRaining turns out to be false. The Else portion is optional.

Testing for Equality

As with previous versions of BASIC, BlitzMax allows the programmer to test for equality. We have seen this in so far as we were testing that a particular variable is equal to true. We know that IF conditions have to equate to one of two values: TRUE or Y, so how can we test for equality? We use one of the following operators (Table 4-10).Table 4-10.Operators That Can Test for Equality

	Operator
	Description

	
 =

	Equals

	
 <

	Less than

	
 >

	Greater than

	
 <=

	Less than or equal to

	
 >=

	Greater than or equal to

	
 <>

	Not equal to

These are mathematical symbols. For those of you unfamiliar with them, especially the less than and greater than symbols, the small end is the lesser. You cannot use these operators against variables that contain Boolean True or False. Equality operators
 can only work against numbers or character strings.
The following program prompts the user to enter two string values and then checks which string is greater. I’ll cover the finer details in just a second, but the program does have some shortcomings. Can you see what they are?

 Print "This program takes in two strings and decides which one is greater"
Local first$ = Input("Enter the first string : ")
Local second$ = Input("Enter the second string : ")

If first$ > second$
 Print "The first string was greater than the second string"
Else
 Print "The second string was greater than the first string"
End If

The first line displays a message indicating what the program will do. The next two lines prompt the user to enter two separate string values and place them in first$ and second$ variables. The IF statement condition is

 If first$ > second$

This checks to see if the first string is greater than the second. If it is, the message “The first string was greater than the second string” is displayed. On ANY OTHER EVENT the ELSE block is executed.
Type in the preceding program and run it. Enter the following values (Table 4-11).Table 4-11.Values to Enter to Run the Preceding Program

	Run # of Program
	First$
	Second$

	
 1

	Lowercase “a”
	Uppercase “A”

	
 2

	Aaa
	Zzz

	
 3

	9
	100

What do you notice about the results? Were you expecting that?
The problem with our little example is that unless first$ is absolutely greater than second$, the ELSE block is executed. We can remedy this by changing the program to the following:

 Print "This program takes in two strings and decides which one is greater"

Local first$ = Input("Enter the first string : ")
Local second$ = Input("Enter the second string : ")

If first$ > second$
 Print "The first string was greater than the second string"
Else If first$ < second$
 Print "The second string was greater than the first string"
Else
 Print "The two strings were equal"
End If

Change the preceding program
 to use an equals sign in the second IF. Will you have to change the text of the PRINT statements? If so, what would you change them to?
More commonly, you will be testing for equality with numbers. Say, for example, we wanted to check whether the player’s character was within a certain boundary on the screen. We could use this code:

 Local playerX:Int = 50
Local playerY:Int = 50

If playerX > 0 And playerX < 250
 Print "Player is within the boundary"
End If

Using Boolean Logic

As we saw in Chapter 3, computers use Boolean logic for any question, as long as it warrants a TRUE or FALSE answer. The following Boolean keywords can be used to make more complex IF conditions:
	
 And

	
 Or

	

 Not

For example:

 Local isRaining:Int = True
Local isSunny:Int = True

If isRaining And isSunny
 Print "Sun showers"
End If

In the context of a game, you might have a condition to test whether the player has a key, then hits a door, and opens the door.

 If playerHasKey And playerHitDoor
 OpenTheDoor()
 RemoveKeyFromInventory()
End If

The two methods OpenTheDoor() and RemoveKeyFromInventory() are programmer-made; they’re not part of BlitzMax. We’ll learn about how to make user-defined functions in a later chapter.

 Nesting IFs

When we have to make complex decisions based on a number of facts, we can do what is called “nesting.” This means placing a block of code inside another block of code, for example:

 Local isRaining:Int = True
Local isCloudy:Int = True

If isRaining
 Print "I will take my umbrella to work today."
Else If isCloudy
 Print "It looks like it will rain, I'll take my umbrella incase."
Else
 Print "It is sunny. I will wear jeans and a T-shirt."
End If

The truth table for this (Table 4-12) is shown below to make the above example clearer.Table 4-12.Truth Table for Our Nesting Example

	IsRaining
	IsCloudy
	Output

	
 True

	
 True

	
 I will take my umbrella to work today

	
 True

	
 False

	
 I will take my umbrella to work today

	
 False

	
 True

	
 It looks like it will rain, I'll take my umbrella in case

	
 False

	
 False

	
 It is sunny. I will read jeans and a T-shirt

The format of an IF statement is shown in the following:

 IF condition [THEN]

 Action
[ELSE
 Action]
[ELSE IF condition
Action]
END IF

 Select Case

There are a number of occasions on which the humble and yet powerful IF statement is a little simplistic for our needs. For example, if we had a menu-driven application, we could write code as shown following:

 If menuSelected = 1
 Print "Menu 1"
Else If menuSelected = 2
 Print "Menu 2"
Else If menuSelected = 3
 Print "Menu 3"
Else If menuSelected = 4
 Print "Menu 4"
Else
 Print "No such option"
End If

This is a perfectly valid code block, but it has two downsides. First of all, it takes longer to write. Second, it will be difficult to maintain or read later. Don’t forget that one of a programmer’s goals is to be able to reuse her code. How can we reuse code if we can’t read it? What we need is some kind of in-built menu command. The SELECT CASE block is a perfect replacement.

 Local menuSelected:Int = 3
Select menuSelected
 Case 1
 Print "Menu 1"
 Case 2
 Print "Menu 2"
 Case 3
 Print "Menu 3"
 Case 4
 Print "Menu 4"
 Default
 Print "Sorry - I did not understand that menu item"
End Select

Line 1 declares
 the menuSelected variable that we are using in this example. Line 3 starts the SELECT block. The select statement starts with the SELECT keyword and the variable we want to test. This is not the same as the IF statement, in that what follows the SELECT keyword is not conditional. So, the following is not a valid SELECT line:

 Select menuSelected = 5

The last line marks the end of the SELECT block with the keywords END SELECT. The Case keyword is used to check the value of the control variable.

 Print "This program will prompt the user " + ..
 "For a letter of the alphabet" + ..
 "and then convert that to the number " + ..
 "it would appear on a mobile" + ..
 "phone. It's case-insensitive -- A = a...
 " Local letter$ = Input("Enter a letter : ") letter$ = Upper(letter$)
Select letter$
 Case "A", "B", "C"
 Print "2"
 Case "D", "E", "F"
 Print "3"
 Case "G", "H", "I"
 Print "4"
 Case "J", "K", "L"
 Print "5"
 Case "M", "N", "O"
 Print "6"
 Case "P", "Q", "R", "S"
 Print "7"
 Case "T", "U", "V"
 Print "8"
 Case "W", "X", "Y"
 Print "9"
 Default
 Print "Not a valid letter"
End Select

The .. at the end of the line means “continue this line on the next line.”

 Iteration
 —Making the Computer Repeat Itself
A video game repeats the action until all the player’s lives have gone or the end of the game has been reached. So far, we have only written programs that run through a sequence of commands and then terminate. With the use of certain BlitzMax keywords, we can get the computer to repeat a block of code, when required, either using conditions or for a set number of times.

The for Loop

The for loop is the simplest type of iteration in computing. The computer is told how many times the block of code is repeated. The format of a For...Next loop is shown following:

 FOR control_variable = start TO end [STEP interval]
 {block}
NEXT

For example:

 For n:Int = 1 To 5
 Print “This message will be displayed five times"
Next

will display

 This message will be displayed five times
This message will be displayed five times
This message will be displayed five times
This message will be displayed five times
This message will be displayed five times

Note two things: first, you can assign the variable type to the control variable, and second, the step keyword is not used. We could have written the program as

 For n:Int = 1 To 5 Step 1
 Print "This message will be displayed five times"
Next

This would have had the same effect. What would happen if we changed the line so that it ends in Step 2? It is also possible to count down, as follows:

 For countdown:Int = 10 to 0 Step –1
 Print countdown
Next
Print "Blast-off!"

This produces the following output:

 10
9
8
7
6
5
4
3
2
1
Blast-off!

If the Step –1 is removed, the only thing written would be

 Blast-off!

Why would this be the only thing written
 ?

 For EachIn…Next

There is an extension to the For...Next loop that is used to cycle through a collection of objects. The format of this form of the For...Next loop is

 For temp_variable = EachIn collection_variable
...
Next

For example:

 list:TList = CreateList()

list.AddLast("New Game")
list.AddLast("Options")
list.AddLast("Controls")
list.AddLast("Help")
list.AddLast("Exit")

For b:String = EachIn list
 Print b
Next

This displays the title menu of a game. You can put anything in TList. It’s a system type that is more powerful than traditional arrays in a lot of ways. For example, it’s easier to iterate (loop) through the values in TList.

 While/Wend

Although For...Next loops are powerful and can be used for all sorts of reasons detailed above, they fall short in a number of ways. Some of which lead to spaghetti code and bad programming—The Dark Side, if you will. This is where the While...Wend block comes into play.
The format of a While...Wend block is

 While boolean_condition
 ...
Wend

For example:

 i:Int = 0
While i < 5
 i = i + 1
 Print i
Wend

will display

 1
2
3
4
5

 i is incremented with each iteration (every time the code within the block is looped) and is displayed. When I is incremented to 6, the While...Wend block exits. This is the loop that the majority of developers use when looping through a block based on a Boolean condition, for example, to detect if a player has any lives/energy left. It should be noted that a While...Wend block does not guarantee that it will execute. Let’s look again at the previous example.

 i:Int = 5
While i < 5
 i = i + 1
 Print i
Wend

This will display nothing, because the value held in I as it enters the loop is not less than 5. This is a good property of the While...Wend loop, because it means that the loop will only be entered when the Boolean condition is true.
Let’s take a look at another example.

 answer:String = ""
While answer<>"Y" And answer<>"y"
 answer = Input("Do you want to exit?")
Wend

The initial value of answer is a blank string. So, answer contains neither "Y" or "y". This means that the loop will execute. When this program is run, you are presented with a prompt Do you want to exit? A sample session might be

 Compiling:untitled2.bmx
Linking:untitled2.debug
Executing:untitled2.debug
Do you want to exit?no
Do you want to exit?no
Do you want to exit?y
Done.

 Repeat…Until

 Repeat...Until is very similar to the While...Wend block. The format of Repeat...Until is as follows:

 Repeat
 ...
Until boolean_condition

Take our earlier example of counting to 5.

 i:Int = 0
Repeat
 i = i + 1
 Print i
Until i >= 5

The Boolean condition in the preceding Until line is “greater than OR equal to.” Running the preceding code produces the following output:

 1
2
3
4
5

But, what if we changed the initial value of i, as we did in the While...Wend example?

 i:Int = 5
Repeat
 i = i + 1
 Print i
Until i >= 5

The following will be displayed when the program is run:

 6

Why? This is because the Repeat...Until loop executes the block at least once. This can be necessary if you know
 that you will be performing an action at least once. For example, in a game loop you know that the player will take control of the spaceship, say, at least once…then lose a life and start again. This is a good situation in which the Repeat...Until loop can be used.

 Repeat…Forever

 Repeat...Forever is a variation on Repeat...Until. The format is

 Repeat
 ...
Forever

This is the same as the following Repeat...Until loop:

 Repeat
 ...
Until False

A sample usage of this (in this author’s opinion) useless construct would be the following:

 Repeat
 Print i+" Ctrl-C to End!"
 i = i+1
Forever

I believe that this construct is a little redundant, because, as previously noted, the Repeat...Until False construct would work just as well!

Exit
The
 Exit keyword
 is used to step out of a Repeat, While, or Select block. For example:

 Repeat
 Print n
 n = n+1
 If n="5" Exit
Forever

Continue
The
 Continue keyword
 is used to step out of a For...Next loop. For example,

 For i:Int="0" To 50
 If i > 30
 Continue
 Else
 Print i
 End If
Next
Print "Out at 30!"

would display:

 1
2
:
:
29
30
Out at 30!

A Note on Exit and Continue

 Exit and Continue are used to short-circuit your code and perform what’s called an “early out.” For example, say you have a list of 10,000 items. To search for a particular item, you use a for loop. You test each value, in turn, to see if there is a match. On the 1,000th item, you find your match. At that point, you should exit the for loop and continue execution. There is little point in checking the other 9,000 entries on the list, if you’ve found your match.

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_5

5. The Great Escape

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

For our first project, we are going to build a simple bat-and-ball game. I think that everyone should be familiar with the concept of this game. Basically, we are going to create a play area with a bat and a ball. The ball hits off our bat and the sidewalls, until we drop it. At that point, we lose a life. Every time we successfully defect the bat, we score 1 point.

The game is loosely based upon a scene in The Great Escape with Steve McQueen. He’s sent to the cooler and passes the time by throwing his baseball at the wall—a kind of one-player catch. This is the game we are re-creating in our world. Let’s get started then!
Create within BlitzMaxSource a folder called Escape.

 Game Elements

Every game has to define the world in which it is played. In our game, we have certain elements that define a bat-and-ball game:
	A bat

	A ball

There are some elements that we could do without but that make the screen look nice—not to mention better define our gaming world to the player:
	Scorecard

	Lives remaining

	Amiga-style gradient

For those of you not in the know, Amiga was a home computer from the 1980s to 1990 that employed a number of techniques to prettify games. One of these was to create a gradient fill as the background.

Creating the Graphic Elements
You will need a graphics package to create the game elements for The Great Escape. There are a number of good programs out there.

 Windows

 	Paint.Net (
 www.getpaint.net/
)

	Photoshop Elements (
 www.adobe.com/products/photoshopel/
)

 Mac

 	iPaint (
 http://ipaint.sourceforge.net/
)

	Photoshop Elements (
 www.adobe.com/products/photoshopel/
)

	Seashore (
 http://seashore.sourceforge.net/The_Seashore_Project/About.html
)

	Pixen (
 http://opensword.org/pixen/
)

All Platforms

 	The GIMP (
 www.gimp.org/
)

Photoshop Elements isn’t free; it’s about US$100 and probably overkill, if you want to have it just for sprite work. If you’re using Windows, I recommend Paint.Net. For all other OSs, I’d go with GIMP.
Once you choose your art package of choice, you’ll have to create the images for the bat and the ball.
[image: A435551_1_En_5_Figa_HTML.jpg]

The bat image is 128×24 pixels in size. Save the image as bat.png.
[image: A435551_1_En_5_Figb_HTML.jpg]

The ball image is 24×24 pixels in size. Save the image as ball.png. The images should be saved in the Escape folder.

Splitting Up the Tasks
Our game will be split into three sections. It’s always a good idea to break down the problem into lots of smaller, more manageable problems. We’ll see this done in greater detail later in the book. For now, though, we’ll split our game into the following:
	Initial setup

	Main loop

	Gradient fill

 Initial Setup

The purpose of the initial setup is to
	Put the computer into graphics mode

	Load the images we will use

	Initialize any variables we have to use

Don’t worry if you don’t understand this in detail just now. I will cover these topics in a later section. Our code to set up The Great Escape is shown following. The sections below all the code sections explain the steps. Code sections are set in a distinctive font.

 Graphics 640, 480

The Graphics keyword puts the computer into graphics mode. In this case, we are asking the computer to give us a resolution of 640×480. This will show our game in a window. If you want to show the game in full-screen mode, you will have to add an additional ,16 to the end of that line, to put the display into full-screen 16-bit color mode.

 bat:TImage = LoadImage("bat.png")
ball:TImage = LoadImage("ball.png")

There are two images in our program (see above for how to create them). The images are loaded into variables called bat and ball, respectively. Variables are temporary locations inside the computer’s memory that we use to store information that we need during program execution.

 px:Int = (640 - 128) / 2
py:Int = 400
lives:Int = 3

These three variables will set the player’s position (px and py) and the number of lives. Notice that the width of the bat is taken into consideration when we set the x coordinate of the player. The player’s x coordinate will be determined by the position of the mouse.

 bx:Int = 0
by:Int = 0
sx:Int = 0
sy:Int = 0

The four variables bx, by, sx, and sy control the ball’s position and speed. These variables will be updated by code that we write later.

 HideMouse

This keyword hides the mouse pointer. After all, we don’t have mouse pointers in our world!
If you haven’t already, enter the code written in this font exactly as written above, and save it to your BlitzMaxSource\Escape folder as GreatEscape.bmx.

The Main Loop

Every game contains a main loop. Computer programs run through each command until they run out of commands. When they run out of commands, they return to the operating system. To stop that from happening, and to keep people in our game, we loop around.
Much like a racing car circuit, a computer program contains a loop. A computer program performs certain tasks specified by the programmer (you) and then repeats those tasks until some event occurs.
Our loop will follow these steps:
	1.Clear the screen

	2.Draw the gradient (this will be covered later)

	3.Draw the ball

	4.Draw the bat

	5.Update the player

	6.Update the ball

	7.Flip the screen

BlitzMax, as you will discover later, uses a technique known as double buffering. Basically, nothing is drawn to the screen. In effect, what happens is all the images are drawn to an area of memory that the player is not viewing, and the graphics card then points to this new screen when BlitzMax flips the screen. It’s explained in the Graphics section later.
Our main loop is the following:

 While Not KeyHit(KEY_ESCAPE)

This line, coupled with the Wend at the end, is the key to the main loop. This says “do everything between While...Wend, until the user hits the Escape key.”

 Cls
DrawImage(ball, bx, by)
DrawImage(bat, px, py)

This section draws all the graphics on the screen. Note that we don’t have a gradient yet. The screen is cleared, and the ball is drawn, then the bat is drawn.

 px = MouseX()

The variable px is updated to contain the x coordinate of the mouse. So, when the user moves the mouse, the information is stored in the px variable. We then have to check that the user’s bat is within the boundaries of our world—our 640×480 screen.

 If px < 0
 px = 0
End If

This checks to see if the player’s bat is off the leftmost edge of the screen, and if it is, it sets the position to the leftmost pixel position: zero.

 If px > 640 - 128
 px = 640 - 128
End If

This checks to see if the player’s bat is off the rightmost edge of the screen. Note that the width of the bat (128 pixels) is used again here. We could have allowed the user to move the bat outside our world, but we want the screen boundary to be our world’s boundary.

 bx = bx + sx
by = by + sy

The player’s position is determined by user input, but for the ball’s movement, we code is required. This is done in the preceding lines. The x coordinate of the ball is incremented by the speed along the x axis, and the y coordinate of the ball is incremented by the speed along the y axis.

 If bx < 0 Or bx > 640 - 24
 sx = sx * -1
End If
If by < 0 Then
 by = 0
 sy = sy * -1
End If

Again, our world is contained within a 640×480 screen, and this means that when the ball hits the edges of the screen, it should bounce back. This task is achieved by reversing the speed of either the x or y axis—x axis if the left or right edges have been hit, the y axis if the top of the world has been hit.

 If by > py
 lives = lives - 1
 bx = 0
 by = 0
 sx = 0
 sy = 0
End If

This section deals with what happens when the player misses the ball and it goes past her. One life is removed, and the ball’s position and speed are reset to 0.

 If ImagesCollide(bat, px, py, 0, ball, bx, by,
0)
 by = by - 1
 sy = sy * -1
 score = score + 1
End If

It’s not a bat-and-ball game if the ball can’t collide with the bat. We have to test if the ball image touches the bat image, and if so, reflect the ball back up the playing field. To do this, we use the built-in ImageCollide function. When the player successfully hits the ball with his bat, we add one to his score.

 Flip

The Flip keyword tells the graphics card which screen to look at. Remember: We have two areas we can work with. The graphics card only flicks a switch to show the next scene. It works kind of like a ViewMaster.

 Wend

This keyword matches with the While line at the top. This will loop back to the stop and perform all the lines in between this and the While again, until the condition is met, i.e., when the user presses the Escape key.

 ShowMouse

The final keyword in our program shows the mouse again. Remember that we hid it earlier on using HideMouse?

Add the previous code, exactly as written, to the GreatEscape.bmx file. Save the file and run the application. You should have a screenshot similar to that shown in Figure 5-1.[image: A435551_1_En_5_Fig1_HTML.jpg]
Figure 5-1.Provide a caption

But the ball is not moving. We have to get the ball in motion for this game to be any kind of fun. To do this, we must add a little bit more code. To add more code, we have to go back to the editor. Press the Escape key and click the “GreatEscape.bmx” tab.

 Starting the Game

To start the game, we’ll get the player to press the spacebar. This has the effect of serving the ball. To achieve this, we will add the following lines of code after the px = MouseX() line:

 If KeyHit(KEY_SPACE) And sx = 0
 sx = 4
 sy = 4
End If

This code checks to see if the user has pressed the spacebar, but it also checks whether the ball is stationary. If both conditions are met, the ball’s x axis and y axis speeds are set.
Now our game is starting to take shape, but we have no feedback information for the user. We’ll fix that next.
If you haven’t already, add to the GreatEscape.bmx file the code after the px = MouseX() line, exactly as written previously. Save the file and run the application. Hit the spacebar when you want to serve and play. Don’t forget to hit Escape when you’re finished. There is still work to be done! Did you miss the ball three times? If you did, what happened?
Clearly, that’s a bug, and we should fix it. Change the While statement at the top to

 While lives > 0

The game ends a bit abruptly now, but at least we won’t have negative lives left. What could you add to make the end of the game a little more pleasant for the player?

Giving the Player Feedback

As with every other game, we have to inform the user as to what is happening in the world. We do this by showing the user graphics representing the player and the objects in the game world, but we can also aid the users by showing them information (attributes) about their game-world player, such as lives left and score. To achieve this, we’re going to add a few more lines to the game.

 m:String = ""

This line is added between the While and Cls lines. It creates a variable called m. This variable will be used to display all the messages. I’ve created this variable because we are going to use a function called TextWidth() to center the text on the screen.

 If sx = 0
 m = "Press SPACE to serve ball"
 DrawText(m, (640 - TextWidth(m))/2, 240)
 m = "You have " + lives + " lives left!"
 DrawText(m, (640 - TextWidth(m))/2,
254)
End If

m:String = "Score <" + score + "> Lives <" + lives
+ ">"
DrawText(m, (640 - TextWidth(m))/2, 0)

Add these lines after the DrawImage() lines.
And now our game is done. Congratulations! You have just taken the first step into a larger world!
Add all the lines as shown in the areas described. Save and run the game.

 You should now have some feedback!

The Linear Gradient

Add the following function, exactly as written, just below the sy:Int = 0 line. Remember to give yourself a couple of blank lines, by hitting Enter a couple of times.

 Function DrawGradient(increment:Int)
 y:Int = 0

 While y < 480
 blueshade:Float = Float(y) / 480
 blue = (192 * blueshade)
 SetColor(0, 0, blue)
 DrawRect(0, y, 640, increment)
 y = y + increment
 Wend
' reset to white for next operation
SetColor(255, 255, 255)
End Function

Next, add the following line in the main loop, just before the image of the ball is drawn:

 DrawGradient(24)

Save the program and run. You should now have a lovely Amiga-style gradient (Figure 5-2).[image: A435551_1_En_5_Fig2_HTML.jpg]
Figure 5-2.Provide a caption

Remember that the game ends a bit abruptly when you lose all your lives? When the player dies, it would be nice to let her have another chance to play. To allow players to play again, add the following line just before the While line:

 #mainloop

This is a label that we will use later to “jump” to it. Now, between the Wend and the HideMouse lines add

 While Not KeyHit(KEY_ESCAPE)

This works the same way as the previous While line. We’re going to keep doing what’s between the While and Wend lines until the condition has been met.

 If KeyHit(KEY_P)
 lives = 3
 bx = 0
 by = 0
 sx = 0
 sy = 0
 score = 0
 Goto mainloop
End If

This is the interesting bit. If the user presses the P key, the game resets itself and jumps back to our main loop. Goto can lead to what is called “spaghetti code” and should be used in moderation. At this stage, all we want is a simple callback to our first loop, so this is a fairly acceptable use.

 Cls
m = "Game Over"
DrawText(m, (640 - TextWidth(m))/2, 240)
m = "Press ESCAPE to return to OS"
DrawText(m, (640 - TextWidth(m))/2, 254)
m = "Press 'P' to play again"
DrawText(m, (640 - TextWidth(m))/2, 272)

The user is informed that his game is over, and he can return to the OS, if he wishes, by pressing the Escape key, or he can play again by pressing the P key.

 Flip
Wend

What things do you think could improve this game? Don’t forget, games programming is not just about hacking code. It’s about being creative! You can revisit this game later, when more topics have been covered, to flesh it out and make it better.
As we have discovered, variables are used to store information employed by your game at runtime. Variables are only used for one thing: to monitor change. And who exacts change on the objects within the game? The user interacts with the application, some random number generator or pattern decides how an alien will move, but, really, it comes down to the developer. Write down as many things as you can think of that would change the contents of a variable. For example, moving a player would require some additional arithmetic.

Debugging Your Code

During the course of writing a program, it may be required to stop the execution, to view the contents of variables at a particular point. If we have a calculation that is wrong, and we can’t immediately see from just looking at the code what is wrong, we can step through it line-by-line. This is called debugging. A bug is a small glitch in a program’s code that is unintentionally put there—usually owing to lack of sleep! The following built-in commands are available to help us debug our code; DebugStop, DebugLog, RuntimeError, Assert. For now we will explore DebugStop and DebugLog in detail.

 Stopping Execution

To stop the execution of a program in mid-flow, we use the DebugStop keyword. This returns control to the integrated development environment (IDE), where the developer can step through the code, examine the contents of variables, and such. DebugStop is ignored when no debugger is present, i.e. when you package up your game for final distribution.
Enter the following code into a new editor panel:

 Local i:Float = 30
Local k:Float = 15

Local b:Float = i - k
Local t:Float = 5 / b
DebugStop
Print t

Run the program. The IDE will pop up after execution, and the DebugStop line is highlighted. Click the Debug panel on the right-hand pane. There is a tree view with the name of your program, for example, untitled3.bmx (see Figure 5-3). Expand that node, and you will see all your variables.[image: A435551_1_En_5_Fig3_HTML.jpg]
Figure 5-3.Provide a caption

Press Alt ➤ Option+X to stop the program.

Move the DebugStop between the Local b... and the Local t... lines. Run the program. Now what do you see when you debug? Why do you think this is the case?
You should probably have noticed that the variable t contains 0.00000. This is because it has not been initialized. BlitzMax knows that it exists, it just has not had a value assigned to it. Remember: Non-initialized variables are assigned a default value. In the case of numeric types, that value is zero.
Now that we have stopped the execution of the program, we can step through line-by-line to see the path of execution.
You should have the following program in the editor:

 Local i:Float = 30
Local k:Float = 15

Local b:Float = i - k
DebugStop
Local t:Float = 5 / b
Print t

Run the program, and the control will return to the IDE. At this point, we can step line-by-line through what each part of the code does. To do this, press the F9 key. Keep looking at the variable t in the Debug panel. Note when we execute that line that its value changes from 0 to 0.33333343.

 Printing Output

Sometimes, all we want to do is display the contents of a variable, but allow the program to keep running. This is most true in graphic applications such as games, in which we don’t want to keep flicking in and out of graphics mode. To capture information and display it on the console window and not the screen, we use DebugLog. As with DebugStop, DebugLog is not executed when there is no debugger present.
Type the following program into a new editor panel. Run the program and observe the dot moving about the screen. Press the Escape key when you are finished. Look at the output window.

 Graphics 640, 480

Local x:Int = 0
Local y:Int = 0

Local xs:Int = 8
Local ys:Int = 8

While Not KeyHit(KEY_ESCAPE)
 Cls
 Plot x, y

 x:+xs
 'y:+ys
 y:+(ys * Sin(x))
 If x <= 0 Or x >= 640
 xs:*-1
 DebugLog "Ouch! Hit the sides!"
 End If
 If y <= 0 Or y >= 480
 ys:*-1
 DebugLog "Ouch! Hit the top / bottom"
 End If
 Flip
Wend

When you run the program, you should get an output similar to the one shown following:

 Building 001_DebugLog
Compiling:001_DebugLog.bmx
flat assembler version 1.51
3 passes, 4066 bytes.
Linking:001_DebugLog.debug.exe
Executing:001_DebugLog.debug.exe
Ouch! Hit the top / bottom
Ouch! Hit the top / bottom
Ouch! Hit the sides!
Ouch! Hit the top / bottom
Ouch! Hit the top / bottom
Ouch! Hit the top / bottom
Ouch! Hit the top / bottom
Ouch! Hit the sides!
Ouch! Hit the sides!
Ouch! Hit the top / bottom
Ouch! Hit the top / bottom

Other Debug Methods

As previously mentioned, if you are working in graphics mode, it is difficult to display debug information without flicking to the standard output of the console. However, there is an alternative way that I have used as a temporary measure: DrawText.
Rewrite the preceding program with the bouncing pixel and remove the DebugLog lines. Add the following lines after Plot():

 DrawText("X = " + x, 0, 0)
DrawText("Y = " + y, 0, 12)

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_6

6. Reusing Code with Functions

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

Games programmers are no different than normal computer programmers, in that they strive to reuse code wherever possible. So far, we have looked at linear programs that cannot be reused in their current state. The programs perform a specific number of tasks and end. What we have to do is create almost mini-programs that are independent of the main code. These mini-programs are called functions.
Functions allow you, the programmer, to virtually extend the keywords in BlitzMax with your own routines. These routines can then be shared with your other programs or, indeed, other programmers. Functions also allow multiple programmers to work on the same larger project without tripping over each other.
Where Would I Use a Function?
Any task that is repetitive in nature, such as displaying the lives a player has left, his or her score, drawing the characters onscreen… I think you will agree, pretty much anything can be declared repetitive in a computer game!

Declaring a Simple Function
The general format for a function declaration is:

 Function function_name : ReturnType (Parameters)
 {block}
End Function

 {block} represents where you will put your code, to perform each time the function name is called. We use function names in BlitzMax just as we would a registered keyword.

Drawing a Line
To draw a line

 in BlitzMax, we use the Line keyword. The following function draws a line from the top left of the window to the bottom right.

 Graphics 640, 480

Function Line()

 DrawLine(0, 0, 640, 480)
End Function

While Not KeyHit(KEY_ESCAPE)
 Cls
 Line()
 Flip
Wend

The is achieved by calling our new function, Line, which draws a line across the top of the screen.
Write another routine, called OppositeLine, that draws a vertical line down the other diagonal. Hint: The DrawLine keyword requires four parameters: start-x, start-y, end-x, and end-y. To draw a diagonal line, you must pass 640, 0, 0, 480 to the DrawLine keyword.
But what if we wanted to specify how far along the line is drawn? How could we do that? Much like the built-in keywords in BlitzMax, you can specify parameters.

Specifying Parameters

To allow people to pass parameters to your functions, you must specify what parameters are required when you declare that function. The format of a function that requires parameters is

 Function function_name(param1:ParamType [,
param2:ParamType ...])
 {block}
End Function

You can have as many parameters as you like, but good sense says that anything more than 10 is a little on the excessive side. For example:

 Graphics 640, 480

Function Line(;
While Not KeyHit(KEY_ESCAPE)
 Cls
 Line(640)
 Flip
Wend

Change the value passed to the Line function. Choose any value between 0 and 640. Run the program and see what happens. What happens when you choose a value greater than 640? What did you expect to happen?
Optional Parameters

Sometimes an optional parameter is required to pass in default information to a function. This can be achieved by using the following function declaration:

 Function function_name(param1:ParamType = value [,
param2:ParamType ...])
 {block}
End Function

 ParamType is any valid BlitzMax data type, class, or UDP-based Data Transfer Protocol (UDT). See the “Object Oriented Programming” section for more details on classes and UDTs.
In the following example, there are two optional parameters, x and c. Only the middle parameter is a required input to the function.

 Function Defaults(x:Int = 24, y:Int, c:Int = 3)
 Print x
 Print y
 Print c
End Function

Print "Specifying X:"
Defaults(0, 4, 10)
Print "Missing out X:"
Defaults(, 4, 10)

To omit passing a parameter, enter a single comma in its place, as in the preceding example. If the last parameter is optional and you want to miss that out, do not add the additional comma. So, for example, to miss out the c parameter, use the following:

 Defaults(1, 2)

It is valid because we have omitted the last comma. However,

 Defaults(1, 2,)

is invalid because the last comma is still there. It is not possible to miss out the middle parameter, y, because it has no default value.
So, the following code is invalid:

 Defaults(0, , 5)

Change the preceding line program to default the width parameter to 640, if no width is specified.

Extending Existing Keywords
As I have mentioned before, it is possible to extend existing keywords

 . For example, although BlitzMax has a DrawRect keyword to draw a filled-in box, it does not have one to draw an outlined box. We have to write our own. The following code does just that. It allows us to draw a box anywhere onscreen, based on the parameters passed to the function.

 Rem
 Program to demonstrate the DrawBox function
 The program draws an outline using DrawBox
 and then a filled rectangle using DrawRect
End Rem

Graphics 640, 480

Function DrawBox(x:Int, y:Int, ;
While Not KeyHit(KEY_ESCAPE)
 DrawBox(50, 50, 100, 50)
 DrawRect(52, 52, 97, 47)
 Flip
 Cls
Wend

This example employs extended use of the DrawLine keyword to draw an outlined box in the declaration for the DrawBox function. It takes in parameters similar to the DrawRect function’s start x and y coordinates, the width and height, and uses these to draw lines on the screen. The lines are drawn, and a box forms.
Place a WaitKey keyword between each of the DrawLine lines, to see the rectangle slowly build up. Now re-read the code and see what the comments on each line say.

Returning Values from Functions
For the most part, functions are used to return values

 to the calling routine, which can be the main program or, indeed, another function. To return an integer value from a function, the programmer need not do anything; however, it is good practice to specify the return value data type in the function declaration. In the following example, a function GetSquare is declared. It requires one parameter, x, and returns an integer based on the product of x multiplied by x.

 Function GetSquare:Int(x:Int)
 Return x * x
End Function
Print GetSquare(5)

Notice the :Int after the function name? This is the return data type. If none is specified, BlitzMax assumes that the return type is an Int. The Return keyword is used to send information back to the calling routine. Without the Return keyword, nothing is sent back—that’s literally nothing. It could be a 0 or an empty string or a null object, depending on what data type is to be returned.

 Recursion

There is a mathematical function called Factorial, and its formula is shown following:

 n! = n * (n-1) * (n-2) * ... * 1

Basically, any number is multiplied by that number and all integers down to 1. So, for 5, it would be 5 * 4 * 3 * 2 * 1 = 120.
This is called recursion, and it is when you have a routine calling itself. Think of it as a snake eating its tail. The thing with recursion is that you have to be able to have an “out,” or else the program loses control, gobbles up all the memory/processor, and crashes your machine, thereby causing the loss of hours of work!
The program below contains a function for factorial called Factorial. Pass in any integer value to it.

 Rem
 Factorial example. This returns n!
End Rem
Function Factorial(x:Int)
 If x > 1
 x = x * Factorial(x-1)
 End If
 Return x
End Function
Print Factorial(5)

The “out” in the Factorial function is the If clause, which checks to make sure that x is greater than 1. It is only when x is greater than 1 that the Factorial function calls itself again.
Change the function call to Factorial to pass in 6, 10, 20.
Change the Factorial function to divide by each number instead of multiply. To make this change, you must change the parameters and output to Float.

 Returning Multiple Values

When a value is passed to a function, only a copy of it is passed.
This type of parameter passing is known as by value. The example that follows best illustrates this point. When you pass in a parameter by value, it is unchanged.

 Rem
 Passing By Value
End Rem
Function ByValue(x:Int)
 x = 5
End Function

Local x:Int = 10

ByValue(x)
Print x

The x:Int in the ByValue function is a local variable to the function that represents the variable passed to it by the calling routine. As soon as a variable goes out of scope, all information about it is lost.
We could change the preceding program to read:

 Rem
 Passing By Value
End Rem
Function ByValue(x:Int)
 x = 5
 Return x
End Function

Local x:Int = 10
x = ByValue(x)
Print x

This change would allow us to capture the change in x. It is fairly straightforward and is suitable for returning one value. But what if we want to return more than one value? If we want to return multiple values from a single function, we must pass the parameters by reference.
To change a variable passed to a function, we add the keyword Var.

 Rem
 Passing By Reference
End Rem
Function ByValue(x:Int)
 x = 5
End Function

Function ByReference(x:Int Var)
 x = 5
End Function

Local x:Int = 10
Print "x = " + x
ByValue(x)
Print "x after ByValue = " + x
ByReference(x)
Print "x after ByReference = " + x

In this example, the keyword Var has been added to the x:Int parameter of the ByReference function. This tells BlitzMax to pass the variable in by reference. This means that the variable is altered by the function. Here is an example of multiple values being returned. The SumProductDiv function takes five parameters, and x and y are two integers that will be manipulated by the function. The function performs three calculations: summation, product, and division on the two numbers and returns them to the user into the specified parameters, as follows:

 Rem
 Multiple Values returned

End Rem
Function SumProductDiv(x:Int, y:Int, sum:Int Var,
..
 prod:Int Var, div:Int Var)
 sum = x + y
 prod = x * y
 If y > 0
 div = x / y
Else
 div = -1
End If
End Function

Local x:Int = 5
Local y:Int = 5
Local sum:Int = 0
Local prod:Int = 0
Local div:Int = 0

SumProductDiv(x, y, sum, prod, div)
Print "Sum=" + sum
Print "Product=" + prod
Print "Divide=" + div

In this example, the first two parameters (x and y) are passed by value. This means that they will remain unaltered, and, indeed, the code within the SumProductDiv function does not alter them.
Write a function called IsGreaterThan that takes in two floats. It returns a third parameter containing the larger of the two.
Write a function called Pythagoras that takes in one parameter called angle. It has to return three values for sine, cosine, and tangent. Hint: Use the Sin, Cos, and Tan functions to return these float values.
This activity shows how you can combine functions by getting them to call others. The following function draws a rectangle and a piece of text on the screen at a given location. Change the code to show a yellow outline, as follows:

 Graphics 640, 480
Function DrawBoxText(x:Int, y:Int, text:String)

 SetColor(255, 255, 255)
 DrawRect(x, y, TextWidth(text) + 1,
TextHeight(text) + 1)
 SetColor(0, 0, 0)
 DrawText(text, x + 1, y + 1)
End Function

While Not KeyHit(KEY_ESCAPE)
 DrawBoxText(50, 50, "Hello BlitzMax!")

 Flip
 Cls
Wend

Hint: You can use the function we created earlier (DrawBox) to draw an outline. Also, SetColor(255, 255, 0) changes the drawing color to yellow.

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_7

7. Using the File System

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

BlitzMax allows almost unfettered access to the operating system, to read files and folders (directories) and their contents, as follows:
	
 ChangeDir

	
 CloseDir

	
 CloseFile

	
 CreateDir

	
 CreateFile

	
 CurrentDir

	
 DeleteDir

	
 DeleteFile

	
 Eof

	
 FileType

	
 LoadDir

	
 NextFile

	
 OpenFile

	
 ReadDir

	
 ReadLine

	
 WriteLine

In any application you will have to manipulate some files on the hard disk or CD-ROM drive. Your games hi-score table can be stored in a file and manipulated by your program, or you could load a cut-scene. But let’s start with some basics first.
Reading a Directory
There are nine keywords used to manipulate directories:
	
 CurrentDir

	
 ChangeDir

	
 ReadDir

	
 NextFile

	
 CloseDir

	
 LoadDir

	
 FileType

	
 CreateDir

	
 DeleteDir

 CurrentDir

This keyword returns the current directory:
Print CurrentDir()

 ChangeDir

This keyword changes the current directory. It returns a Boolean True, if successful.

 If ChangeDir("C:\BlitzMax")
 Print "There is a BlitzMax folder"
Else
 Print "There is not a BlitzMax folder!"
End If

 ReadDir, NextFile, and CloseDir

These three commands allow us to open a directory for reading, to traverse through the files contained within the directory, and to close it afterwards, as this example shows:

 dir = ReadDir("C:\")
If Not dir
 Print "Can't open directory"
Else
 f:String = NextFile(dir)
 While f <> ""
 Print f
 f = NextFile(dir)
 Wend
End If
CloseDir(dir)

 LoadDir

This is slightly more elegant than the ReadDir, NextFile, and CloseDir example above. It basically does the same thing but in one step: it reads all the names of the files and folders in the given directory. You can also pass in an optional Boolean parameter (true/false) to skip the current and parent directories (. and ..), respectively.

 Local files:String[]
files = LoadDir("C:\")
For f:String = EachIn files
 Print f
Next

 FileType

We can also examine the files that we find, to determine what type they are.
	
 0: File does not exist

	
 1: Standard file

	
 2: Directory

In the following example, the root directory of the C: drive is examined, and any directories are surrounded in angle brackets.

 Local files:String[]
files = LoadDir("C:\")
For f:String = EachIn files
 If(FileType("C:\" + f))="2"
 Print "<" + f + ">"
 Else
 Print f
 End If
Next

 Graphical Representations

 of Directories
You can represent files and folders easily as graphics. After all, Windows/Finder/Gnome can do it! You will have to get two 16×16 pixel images to represent files and folders. You can download them from the web site (
 www.blitzmaxbook.com
). Here is a simple GUI to list the files and folders in BlitzMax:

 Graphics 800, 600

imgfile:TImage = LoadImage("file.png")
imgfolder:TImage = LoadImage("folder.png")
Local files:String[]
Local y:Int = 0
files = LoadDir("C:\")

While Not KeyHit(KEY_ESCAPE)
 Cls
 For f:String = EachIn files
 If FileType("C:\" + f) = 2
 DrawImage(imgfolder, 0, y)
 Else
 DrawImage(imgfile, 0, y)
 End If
 DrawText(f, 24, y+1)
 y = y + 20
 Next

 y = 0
 Flip
Wend

Rewrite the preceding code to show only the folders first and then the files second. Hint: Use two for loops.

 CreateDir

 CreateDir creates a folder. It returns Boolean True, if folder creation is successful.

 If CreateDir("C:\BlitzMax")
 Print "Created BlitzMax folder"
Else
 Print "Couldn't create the BlitzMax folder!"
End If

 CreateDir() will return true even if the folder exists. It only fails when it can’t access a path or drive.

 DeleteDir

 DeleteDir removes a directory from the file system.

 If DeleteDir("C:\BlitzMaxTestFolder")
 Print "The BlitzMaxTestFolder folder is
gone!"
Else
 Print "Something stopped me from killing the
folder!"
End If

File Manipulation with OpenFile

 OpenFile

 creates a handle to the file stored on the hard disk/CD-ROM/DVD. It is always a good idea to check to make sure that the file can be opened. After all, you don’t want to start reading from something that doesn’t exist!

 OpenFile has three parameters:
	
 Filename: The path to the file you want to open. This can be any valid URL.

	
 Readable (optional): Whether you want to read from the file; True by default

	
 Writable (optional): Whether you want to write to the file; True by default

The following displays the contents of a file:

 file=OpenFile("http::www.blitzmaxbook.com/")
If Not file
 Print "could not open web page"
Else
 While Not Eof(file)
 Print ReadLine(file)
 Wend
 CloseStream file
End If

You will need an open Internet connection for this to work. If you don’t have one, create a simple text file in the C:\ drive and change the text within OpenFile(). In the preceding example, we are opening a URL to a web page (http::

 www.blitzmaxbook.com
 , for example). Note that to do this, you prefix the web address with http::. This is the format that BlitzMax uses to reference external files.
Think about the possibilities. You could have online hi-score tables for your games, or check for updates automatically…The sky is the limit!
ReadLine

 ReadLine reads in one line of the chosen file at a time. As in the previous example, a single line is printed onto the screen. The format of ReadLine is:

 s:String = ReadLine(file)

Eof

 Eof stands for “end-of-file” and is used in While statements to check that the end of the file has not been reached. If we were to go over the length of the file, an error would occur, so this is a good check to make!

CloseStream

 CloseStream closes the file and allows it to be used by other programs and processes. This is an important keyword and must be used each time you are finished with a file, especially if writing to it—which brings us neatly to WriteLine.

WriteLine

 WriteLine is used in conjunction with WriteFile. WriteFile works in much the same way as OpenFile, but allows us to write to the file, as follows:

 file = WriteFile("C:\test.txt")

If Not file
 Print "Can't create file!"
Else
 WriteLine(file, "Line 1")
 WriteLine(file, "Line 2")
 CloseStream(file)
End If

file = OpenFile("C:\test.txt")
If Not file
 Print "Can't open file!"
Else
 While Not Eof(file)
 Print ReadLine(file)
 Wend
 CloseStream(file)
End If

The preceding program writes two lines of text to a file and then reads the file back in, to display the lines onscreen.
The file system can be accessed with a few simple keywords. Files and directories and their contents can be easily examined. A file can be opened and written to in a few lines of code. Similar code can be used to read back those lines.

Just remember to close the file as soon as you can. It can cause all sorts of problems if you don’t. This is especially true if you are writing to it. It can cause the file to be locked. This means that to unlock it, you’ll have to reboot your computer.

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_8

8. Tank Attack: The Second Game

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

Tank Attack is a game for two players that is loosely based on the Combat game found on the Atari 2600 console. The tanks can rotate and fire a single shot at a time. When a bullet hits another tank, the tank positions are reset, and the player who destroyed the tank gets a point (Figure 8-1). The round lasts for 99 seconds, with the player with the most hits after that time winning.[image: A435551_1_En_8_Fig1_HTML.jpg]
Figure 8-1.Tank Attack

The game features

 three maps that we will load from disk. We’ll be creating them in a somewhat unique way, with Google Docs spreadsheets, although you could use any spreadsheet program you want. Full graphics and source code are available on the web site
 www.blitzmaxbook.com
 .
The finished game code, including comments, comes in at more than 600 lines. That might seem like a lot, but we’ll break the program into smaller chunks, to make things easier. Our smaller chunks, or functions, will make the program easier to read and to follow what’s going on. To make it even easier, we’re going to look at the structure chart of the program (Figure 8-2). It will show us where the information flows to and comes from within our program.[image: A435551_1_En_8_Fig2_HTML.jpg]
Figure 8-2.
 Structure chart

 of the Tank Attack program

The main entry point to the application is the “Tank Attack” block. It sets up the game state and starts the outer loop. The loop repeats until the player elects to quit the game. The game has three states:
	1.Information/splash screen

	2.Main game loop

	3.Quit

 Information/Splash Screen

The initial screen shown to the user is the splash screen. This page allows players to choose which map they want to play. The chosen map is returned to the main loop, and the state is changed to “play game.” If players decide that they don’t want to play, no map data is returned (we’ll see how following), and the state is changed to “quit.”

Main Game Loop
The main game loop

 handles all the updates and drawing of the items. It does it in a linear way. Updates are performed, then the screen is cleared, and the player, map, and information panel are drawn next.

Reset Game
The reset game method

 is called when a player’s bullet connects with the tank of the opposing player. This function resets the players’ positions to their starting locations and rotation.

Draw Endgame
The endgame screen

 shows which of the two players has won. The players are given a choice to play again or quit to the OS. This choice response is returned to the main game loop, which, in turn, passes it back to the main program, to alter the game state accordingly.

Remaining Functions
I will cover the remaining functions one at a time in due course, but first, we must generate some graphics and some data for our maps.

The Graphics
Our graphics

 are very simple, and there are only three of them. We reuse the graphics for each player, because we can recolor them when we draw them, so the first player is red, and the second is blue. The tank graphic looks like this (Figure 8-3):[image: A435551_1_En_8_Fig3_HTML.jpg]
Figure 8-3.The tank graphic

The bullet is a 5×5 square (also white) with the corner pixels removed (Figure 8-4).[image: A435551_1_En_8_Fig4_HTML.jpg]
Figure 8-4.Tank Attack bullet

The block can be any color you want, but please ensure that it’s 32×24 pixels. I made it a gray bas-relief brick (Figure 8-5).[image: A435551_1_En_8_Fig5_HTML.jpg]
Figure 8-5.Tank Attack game block

Create a folder called TankAttack in your BlitzMax working folder and save the images there as the following names:
	
 tank.png

	
 bullet.png

	
 brick.png

The Data

The data is created in a spreadsheet that can save files as tab-separated values. This isn’t that important, but our code is assuming that it’s in that format. If you’re using another format, you’ll have to change the GetMapData() function in the code listing. I suggest using Google Docs Spreadsheet. It’s free to create a Google account, and, most important, it’s free.
The files can be downloaded to your local hard drive as tab-separated value files (.tsv). These are just text files with each column’s data separated by a tab character. The
 GetMapData() function
 shows how we parse that to get our game data.

Create a new blank spreadsheet and design your maps. Wherever an uppercase X is, we’ll place a block in the game. The spreadsheet is 25 rows and has 25 columns (A–Y). This is how MapA looks in the web browser as a Google Docs spreadsheet (Figure 8-6):[image: A435551_1_En_8_Fig6_HTML.jpg]
Figure 8-6.How MapA looks in the web browser as a Google Docs spreadsheet

You can make your own maps. There are three included with the source code on the web site. Make sure that they are named as follows:
	
 MapA.tsv

	
 MapB.tsv

	
 MapC.tsv

In addition, ensure that they have columns A–Y and rows 1–25. If you wanted to add more objects, you could add other letters/numbers, to create the map. For example, G for grass or W for water.

The Stub Code

If it isn’t open already, start up BlitzMax and create a new file. Save this file in the same folder as the images, as TankAttack.bmx. The outline code is shown following. We will be filling this in as we go through this chapter. The outline will run, but it will not produce any output.
Graphics 800, 600 Type TVector2

 Graphics 800, 600
Type TVector2
End Type
Type TBullet
End Type
Type TTank
End Type
Function DrawNumber(x:Int, number:Int, offsetLeft:Int)
End Function
Function LoadMap:TList(mapID:Int)
 Local mapChar:String = Chr(65 + (mapID - 1))
 Local mapFilename:String = "Map" + mapChar +
".tsv"
 Return GetMapData(mapFilename)
End Function
Function GetMapData:TList(filename:String)
 Return Null
End Function
Function DrawInformation(tankList:TList,
countDown:Int)
End Function
Function PrintMessage(s:String, x:Int, y:Int, centre:Int = False)
End Function
Function UpdateCountDown:Int(roundTime:Int Var, countDown:Int)
 Local ms:Int = MilliSecs()
 If ms > roundTime + 1000
 roundTime = MilliSecs()
 countDown:-1
 End If
 Return countDown
End Function
Function DrawTanks(tankList:TList)
End Function
Function IsCrashWithBricks:Int(mapData:TList,
img:TImage, x:Float, y:Float)
 Return False
End Function
Function UpdateBullets:Int(mapData:TList, tankList:TList)
 Local currentTank:Int = 0
 Local tankVictor:Int = -1

 Return tankVictor
End Function
Function UpdateTanks(mapData:TList, tankList:TList)
End Function
Function DrawMap(mapData:TList)
End Function
Function ResetGame(tankList:TList, tankVictor:Int)
End Function
Function MainGameLoop:Int(currentLevel:Int)
 Return 2
End Function

Function DrawSplash:Int()
 Return 99
End Function
Function DrawEndGame:Int(p1:TTank, p2:TTank)
 Return 2
End Function
Local state:Int = 0
Local quit:Int = 0
Local currentLevel:Int = 0
While Not quit
 Select state
 Case 0
 currentLevel = DrawSplash()
 If currentLevel = 99
 quit = True
 Else
 state = 1
 End If
 Case 1
 state = MainGameLoop(currentLevel)
 If state = 2
 quit = True
 End If
 End Select
End While

There are a couple of new constructs that I’m introducing here that I’ll explain in much more depth in the next chapter. The Type .. End Types at the start of the program listing are BlitzMax’s interpretation of object-oriented programming and are called user-defined types, or UDTs. They allow data and algorithms (code) to exist together in a neat package. UDTs can be reused in any number of projects, not just this one.
Save and run the program. It won’t do anything, but just make sure you don’t get any errors when running it. We’re going to start fleshing out the details now.

The Splash Screen
The splash screen introduces us to the game and gives the players a choice as to what map they want to play on. We will be updating the following functions in this section:
	
 PrintMessage

	
 DrawSplash

 PrintMessage

BlitzMax allows us to draw text to the screen using DrawText. However, it is somewhat limited in its functionality. For this game, we want to center the text on a particular line, given the length of text. For our text, we’ll write our own draw text method called PrintMessage. This will provide our functionality wrapped around the existing DrawText command. The PrintMessage looks like the following:

 Function PrintMessage(s:String, x:Int, y:Int, centre:Int = False)
 If centre Then
 x = x - TextWidth(s) / 2
 End If
 DrawText s, x, y
End Function

We’ve kept the same format as the DrawText command, but we’ve added an optional parameter called centre. When you pass in True for that value, the text will be centered on the screen, on the specified y coordinate line, effectively ignoring the x coordinate specified.

DrawSplash
For the most part, there is nothing complicated in
 DrawSplash

 . It merely draws a series of text strings to the screen—using the PrintMessage function we just created—but it also contains some code to retrieve information from users, in particular, what map they want to play or whether they want to quit the game back to the OS. The DrawSplash function is shown following. Delete the Return 99 line and change the function to look like this:

 Function DrawSplash:Int()
 Local retVal:Int = 0
 While retVal = 0
 Cls
 SetColor 255, 255, 255
 PrintMessage "Tank Attack", 400,
32, True
 SetColor 255, 192, 0
 PrintMessage "A GAME FOR TWO
PLAYERS", 400, 96, True
 SetColor 255, 255, 255
 PrintMessage "FIGHT TO THE DEATH
IN", 400, 228, True
 PrintMessage "NINETY-NINE
SECONDS", 400, 260, True
 SetColor 0, 255, 192
 PrintMessage "PLAYER WITH

HIGHEST", 400, 292, True
 PrintMessage "SCORE WINS", 400,
324, True
 SetColor 255, 0, 0
 PrintMessage "PRESS A B OR C FOR
MAP", 400, 492, True
 PrintMessage "ESCAPE TO QUIT TO
OS", 400, 524, True
 Flip
 If KeyDown(KEY_A)
 retVal = 1
 Else If KeyDown(KEY_B)
 retVal = 2
 Else If KeyDown(KEY_C)
 retVal = 3
 Else If KeyDown(KEY_ESCAPE)
 retVal = 99
 End If
 Wend
 FlushKeys
 Return retVal
End Function

Save and run the program. Now we have a splash screen! The game won’t do anything beyond that. In fact, pressing a key will exit the program.

Loading and Drawing the Map
The main playing area is cell-based; that is each map clock represents one 32×24 area filling an 800×600 screen. In our map files, an X represents a block, and anything else is ignored. If you want to change that (please feel free), you will have to alter the GetMapData function. In this section, we will be updating the following:
	Loading images just under the Graphics command

	Adding fields to the TVector2 type

	
 GetMapData

	
 DrawMapData

	
 MainGameLoop

The Brick Graphic
To load the brick graphic

 , add the following line after the Graphics command:

 Global brick:TImage = LoadImage("brick.png")

This will get used in the DrawMapData function.

 Map Positions

The block positions are stored using the TVector2 type. T just means “type,” and Vector is a position in space. See
 http://en.wikipedia.org/wiki/Vector_space
 for more details. The 2 just represents how many coordinates we have. Because this is a 2D (flat) game, we have two coordinates: x and y.
Change the TVector2 definition to

 Type TVector2
 Field X:Float
 Field Y:Float
End Type

 Type is short for “User Defined Type” and allows us to create a single record of information that we can pass around, rather than multiple variables. A trivial reason is that it makes parameter lists easier to read.
We’ll see how types get created when we get the map data. It returns a list of positions in which each of the bricks is located onscreen.

Getting the Map Data
The map data

 is stored in a text file that contains blank spaces in which there are no blocks onscreen and an X wherein a block is to be placed. The spreadsheet this came from was 25 columns across by 25 rows. Our bricks are 32×24 pixels. This means that our playing field is 25 * 32 by 25 * 24 pixels, which is 800×600 pixels, which just so happens to be our screen size!
For this method, I’ve kept the comments in the code to make what’s happening a little clearer. Breaking the code down, it does the following:
	Initializes some local variables used in the loop

	Opens the file

	Reads the file line by line

	Parses each line by splitting it up by tab character, and, if it’s an X, it adds a cell to the list

When all lines have been parsed, the collection of brick positions are returned to the calling function.
The list of positions is actually made up of lists of TVector2 instances. The screen position is determined by multiplying the local x coordinate by 32 and the local y coordinate by 24, as follows:

 Local vec:TVector2 = New TVector2
vec.X = x * 32
vec.Y = y * 24

Note that to create a user-defined type is slightly different than creating an instance of a simple type such as an integer or a floating point number. You must tell the BlitzMax complier that you are wanting to reserve some new memory for your type.
The full listing for
 GetMapData

 is shown following:

 Function GetMapData:TList(filename:String)
 Local list:TList = CreateList()
 Local y:Int = 0
 Local x:Int = 0
 Local file:TStream = OpenFile(filename, True, False)

 While Not Eof(file)
 Rem
 When we read in the string from the file, we need
 to parse out the tab characters that are put in
 by Google docs.
 EndRem
 Local line:String = ReadLine(file)
 Local cells:String[] = line.Split(Chr(9))

 Rem
 Once that is done, it's a trivial matter of going
 through each of the characters in turn and deciding
 to put a block if the character contains an upper
 case X.
 EndRem

 For Local x:Int = 0 To cells.Length - 1
 Local c:String = cells[x]
 If c = "X"
 Local vec:TVector2 = New TVector2
 vec.X = x * 32
 vec.Y = y * 24
 ListAddLast(list, vec)
 End If
 Next
 y = y + 1
 Wend
 CloseFile(file)

 Return list
End Function

That was the hard part, now for the easy part. We’ve successfully transported the data in our file to an in-memory representation of the layout of the bricks. How do we display them? Well, we only have one brick shape, so displaying them is just a matter of going through each one and displaying it at the correct position onscreen. That’s what the DrawMap function does.

 Function DrawMap(mapData:TList)
 SetColor 255, 255, 255
 For Local vec:TVector2 = EachIn mapData
 DrawImage brick, vec.X, vec.Y
 Next
End Function

Because we only have one block, we need only store the position information. We can let the DrawMap decide how that block is drawn. In this case, we use the brick image that we loaded earlier and is available globally.
We’re still not out of the woods yet. We still can’t see the map when we choose it from the splash screen. To at least see something, we must add some code to MainGameLoop.

The Main Game Loop
The main game loop

 , as you remember from the structure diagram at the start of the chapter, calls LoadMap. It returns the loaded map data to the caller, in this case, the MainGameLoop. We’ll add code that (for now) will at least get us to see the loaded map.

 Function MainGameLoop:Int(currentLevel:Int)
 Local mapData:TList = LoadMap(currentLevel)
 While Not KeyHit(KEY_ESCAPE)
 Cls
 DrawMap(mapData)
 Flip
 Wend
 Return 2
End Function

You can now save and run the game. When you select a map, it will now appear onscreen. Pressing the Escape key will quit the game.
Let’s add some combat to the game, by adding another player and a way to update fired bullets.

Adding Combat
Now that we have our world, we have to add conflict to it, and nothing says conflict more than red vs. blue. We are going to create two tanks: one colored red that starts on the left-hand side of the screen and a blue tank that starts on the right-hand side of the screen. The tanks are controlled by players, and their keys are listed in Table 8-1.Table 8-1.
 Keys Controlling Tank Movements

 and Their Meaning

	Key
	Meaning

	
 W

	Move red tank forward

	
 A

	Rotate red tank left

	
 D

	Rotate red tank right

	
 S

	Fire red tank’s gun

	
 Up-Arrow

	Move blue tank forward

	
 Left-Arrow

	Rotate blue tank left

	
 Right-Arrow

	Rotate blue tank right

	
 M

	Fire blue tank’s gun

Because we are going to color the tanks when we draw them, we only have to bring in two new images: one for the tank shape and one for the bullet. Locate the following line in the source code

 :

 Global brick:TImage = LoadImage("brick.png")

Add the following lines underneath:

 Global tankImage:TImage = LoadImage("tank.png")
Global bulletImage:TImage =
LoadImage("bullet.png")

The tanks must rotate. If we left them as default, they would turn around the top-left corner of the image. Instead, we instruct BlitzMax to rotate and place them in the world using their center.
The bullets must align with the center of the tank, so we mid-handle that image too. So, after those two new lines to load the images, add these lines just underneath:

 MidHandleImage(tankImage)
MidHandleImage(bulletImage)

We’re going to use UDTs again, to store data. Our bullet class will hold the location, speed, and the “aliveness” (that’s not a word!) of the bullet. Any “dead” bullet will be removed from the game. A “dead” bullet is one that hits a wall but misses a player. You could also add a time-out to that too, just to make the game a little harder. For now, though, our bullet UDT

 looks like this:

 Type TBullet
 Field Location:TVector2
 Field Speed:TVector2
 Field IsAlive:Int

 Rem
 The init method sets the initial values for the bullet.
 EndRem
 Method Init(x:Float, y:Float, sx:Float, sy:Float)
 Location.X = x
 Location.Y = y
 Speed.X = sx
 Speed.Y = sy
 IsAlive = True
 End Method
End Type

The
 Init() method

 is used just to make our lives easier when we have to create bullets in the game. It sets up the fields of the bullet and sets its aliveness to True.
The tank is our most (at first glance, anyway) complex UDT. It contains lots of fields (values that will change when we run the program) and a Create function that is attached to the TTank UDT. This is a quick way for us to create a tank

 with some parameters, rather than setting each individual field itself.

 Type TTank

 Field X:Float
 Field Y:Float

 Field R:Int
 Field G:Int
 Field B:Int

 Field Rotation:Float

 Field rotRightKey:Int

 Field rotLeftKey:Int
 Field forwardKey:Int
 Field fireKey:Int

 Field Bullet:TBullet

 Field Score:Int
 Function Create:TTank(x:Int, y:Int, r:Int,
g:Int, b:Int, rotLeft:Int, rotRight:Int,
forward:Int, fire:Int)
 Local tank:TTank = New TTank
 tank.X = x
 tank.Y = y

 tank.R = r
 tank.G = g
 tank.B = b

 tank.rotRightKey = rotRight
 tank.rotLeftKey = rotLeft
 tank.forwardKey = forward
 tank.fireKey = fire

 tank.Bullet = New TBullet
 tank.Bullet.IsAlive = False
 tank.Bullet.Location = New TVector2
 tank.Bullet.Speed = New TVector2
 tank.Bullet.Location.X = 0
 tank.Bullet.Location.Y = 0
 tank.Bullet.Speed.X = 0
 tank.Bullet.Speed.Y = 0

 Return tank

 End Function

End Type

I will get to the difference between a function and a method, with respect to UDTs, in the next chapter. For now, I’ll just say that a method is run on an instance of a UDT, and a function runs on the UDT name itself, meaning that you don’t have to create an instance of the type to run the code in the function.
Now that we have our images and data types set up, we must update the following functions in our bare-bones code:
	
 UpdateTanks

	
 UpdateBullets

	
 IsCrashWithBricks

	
 DrawTanks

	
 MainGameLoop

Updating the Tanks
The
 UpdateTanks method

 is the longest in the whole program listing. Don’t let that put you off. The method doesn’t contain any trick code and is straightforward enough:

 For Each Tank:
 Update the tank's rotation based upon player input
 If the Fire button is down and no bullet is alive, create a bullet
 If the forward key is pressed
 If the tank's new position would not crash into a wall
 Update the tank's position
 End For
 End If
 End If
End If

The full function is laid out next. It has some additional tests (for screen bounds), but those are not required, unless the map has no outside blocks. Note that at the end of the function, the rotation is set to 0 degrees, just to be on the safe side. It’s good practice to tidy up the settings, such as rotation, coloring, and blending, when you’ve finished using them.

 Function UpdateTanks(mapData:TList, tankList:TList)
 For Local t:TTank = EachIn tankList
 If KeyDown(t.rotLeftKey)
 t.Rotation = t.Rotation - 2.0
 If t.Rotation < 0
 t.Rotation = 360 - t.Rotation
 End If
 Else If KeyDown(t.rotRightKey)
 t.Rotation = t.Rotation + 2.0
 If t.Rotation > 360
 t.Rotation = t.Rotation - 360
 End If
 End If

 If KeyDown(t.fireKey) And Not
t.Bullet.IsAlive
 Local x:Float = t.X
 Local y:Float = t.Y

 x = x + (3.14/2.0 * Sin(t.Rotation))
 y = y - (3.14/2.0 * Cos(t.Rotation))
 Local dx:Float = x - t.X
 Local dy:Float = y - t.Y
 t.Bullet.Init(t.X, t.Y, dx * 2, dy * 2)

 End If
 If KeyDown(t.forwardKey)
 Local x:Float = t.X
 Local y:Float = t.Y
 x = x + (3.14/2.0 * Sin(t.Rotation))
 y = y - (3.14/2.0 * Cos(t.Rotation))
 If IsCrashWithBricks(mapData, tankImage, x, y)
 Continue
 End If
 If x >= 32 And x <= 768
 t.X = x
 End If
 If y >= 32 And y <= 568
 t.Y = y
 End If
 End If
 Next
 SetRotation 0.0
End Function

At first glance, the bullet update function is also complex, but only because of its length. The function updates each tank’s “alive” bullet in turn. Each time the function goes around, it remembers the “other” tank. We then use the IsCrashWithBricks and ImagesCollide functions (see under “Collision Detection”), to determine if the bullet has hit a wall or a tank.
If the bullet has hit a wall, it is marked as dead, by setting the IsAlive field to False. We use the Continue keyword to skip all the other instructions that follow and move on to the next tank. If a tank’s bullet hits the other player, his index value (red is 0, blue is 1) is returned to the calling function. If no bullet hits a tank, -1 is returned. The tank that wins is stored locally in the function as tankVictor.
The full
 UpdateBullets function

 is shown following:

 Function UpdateBullets:Int(mapData:TList, tankList:TList)
 Local currentTank:Int = 0
 Local tankVictor:Int = -1
 For Local t:TTank = EachIn tankList
 Local otherTank:TTank = Null
 If currentTank = 0
 otherTank = TTank(tankList.Last())
 Else
 otherTank = TTank(tankList.First())
 End If
 If t.Bullet.IsAlive
 Local nx:Float = t.Bullet.Location.X + t.Bullet.Speed.X
 Local ny:Float = t.Bullet.Location.Y + t.Bullet.Speed.Y
 If IsCrashWithBricks(mapData, bulletImage, nx, ny)
 t.Bullet.IsAlive = False

 Continue
 End If
 If ImagesCollide(bulletImage, nx, ny, 0, tankImage, otherTank.X, otherTank.Y, 0)
 tankVictor = currentTank
 End If
 t.Bullet.Location.X = nx
 t.Bullet.Location.Y = ny
 If t.Bullet.Location.X < 0 Or t.Bullet.Location.X > 800 Or t.Bullet.Location.Y <
0 Or t.Bullet.Location.Y > 600
 t.Bullet.IsAlive = False
 End If
 End If
 currentTank:+1
 Next
 Return tankVictor
End Function

Collision Detection

 Collision detection

 for 2D graphics in BlitzMax is handled by the ImagesCollide function. It returns a true if the images overlap in any way. It’s very accurate, as it uses per-pixel matching to determine collisions. Our IsCrashWithBricks uses the ImagesCollide function for both tank against wall and bullet against tank and bullet against wall. It does a very lazy check by looping through each brick in the map and testing the brick image against the supplied image and its coordinates.
There are a couple of drawbacks with this function that you can put right later. The first is that it does not take rotation into consideration. The second is that it loops through all the bricks in the level. You could partition the level into quadrants, for example, to reduce the amount of checks required. Here is the full listing for the IsCrashWithBricks as it stands now:

 Function IsCrashWithBricks:Int(mapData:TList,
img:TImage, x:Float, y:Float)
 For Local vec:TVector2 = EachIn mapData
 If ImagesCollide(brick, vec.X, vec.Y,
0, img, x, y, 0)
 Return True
 End If
 Next
Return False
End Function

Drawing the Tanks

The tanks use the same shape. As you’ve seen, we use this technique a lot in the code. Basically, we cycle through all the tanks in the given list and then set the appropriate color and rotation and then draw them. If they have an “alive” bullet, we draw that too. This means that if you have three, four, or four hundred tanks, all you would have to do is add them to the tankList and call the DrawTanks function, as follows:

 Function DrawTanks(tankList:TList)
 For Local t:TTank = EachIn tankList
 SetColor t.R, t.G, t.B
 SetRotation t.Rotation
 DrawImage tankImage, t.X, t.Y
 SetRotation 0.0
 If t.Bullet.IsAlive
 DrawImage bulletImage, t.Bullet.Location.X, t.Bullet.Location.Y
 End If
 Next
End Function

Main Game Loop
Our main game loop

 has to be rewritten. We want to add code that will
	Update the tanks

	Update the bullets

	Draw the map

	Draw the tanks

Our new main game loop now looks like this:

 Function MainGameLoop:Int(currentLevel:Int)
 Local roundTime:Int = MilliSecs()
 Local countDown:Int = 99
 Local mapData:TList = LoadMap(currentLevel)
 Local tankList:TList = CreateList()
 Local player1:TTank = TTank.Create(64, 300, 255, 0, 0, KEY_A, KEY_D, KEY_W, KEY_S)
 Local player2:TTank = TTank.Create(704, 300, 0, 0, 255, KEY_LEFT, KEY_RIGHT, KEY_UP, KEY_M)
 ListAddLast(tankList, player1)
 ListAddLast(tankList, player2)
 While Not KeyHit(KEY_ESCAPE) And countDown > 0
 UpdateTanks(mapData, tankList)
 Local tankVictor:Int = UpdateBullets(mapData, tankList)
 If tankVictor > -1
 ResetGame(tankList, tankVictor)
 End If
 Cls
 DrawMap(mapData)
 DrawTanks(tankList)
 Flip
 Wend
 Return 2
End Function

We use the Create function of the TTank UDT to create our two player tanks. We use the UpdateTanks function to get the user input to determine the new location and rotation of the tanks. And, who could forget, to fire the bullet, we use the tankList again to DrawTanks.
Save and run the game. The tanks can now roll about the screen firing at each other. The next step is to build tension by adding a countdown and a heads-up display, to let players know what their scores are.

Adding Tension
We have a world, we have combat, but we also must build tension in our game. In this next section, we will add the following:
	Countdown timer

	Players’ scores

	Reset function

But first, we’ll add methods that will draw information onto the screen:
	
 DrawNumber

	
 DrawInformation

Drawing Information
Drawing numbers onscreen is done using the DrawText built-in function. I have wrapped it in its own function, to allow an offset to the left to be set. This allows better positioning for the number on the screen. The
 DrawNumber function

 is in the code as a skeleton. Locate it in code and change it to the following:

 Function DrawNumber(x:Int, number:Int, offsetLeft:Int)
 Local s:String = "" + number
 x = x - TextWidth(s) / 2
 x = x - offsetLeft
 DrawText s, x, 48
End Function

The heads-up display, or HUD for short (see
 http://en.wikipedia.org/wiki/HUD_(video_gaming

)), allows players to see at a glance their status in the game. Our HUD will consist of three numbers. The red number is the number of times that the red player has hit the blue tank. The orange number is the countdown number for the round, and the blue number is the number of times the blue tank’s bullets have hit the red tank.
Locate the
 DrawInformation function

 in the code and change it look like this:

 Function DrawInformation(tankList:TList,

countDown:Int)
 Local firstTank:TTank =
TTank(tankList.First())
 Local secondTank:TTank =
TTank(tankList.Last())

 SetColor 255, 0, 0
 DrawNumber 200, firstTank.Score, True

 SetColor 255, 192, 0
 DrawNumber 366, countDown, False

 SetColor 0, 0, 255
 DrawNumber 600, secondTank.Score, False
End Function

Resetting the Game
When a player hits the other with a bullet, the game is reset. This means that we’re going to return the players to their original starting positions and rotations. We remove all bullets from the game and increase the winning player’s score.
Locate the
 ResetGame function

 in the code and change it as follows:

 Function ResetGame(tankList:TList, tankVictor:Int)
 Local winningTank:TTank = Null
 If tankVictor = 0
 winningTank = TTank(tankList.First())
 Else
 winningTank = TTank(tankList.Last())
 End If
 winningTank.Score:+1
 Local i:Int = 0
 For Local t:TTank = EachIn tankList
 t.Bullet.IsAlive = False
 t.Rotation = 0
 If i = 0
 t.X = 64
 t.Y = 300
 Else
 t.X = 704

 t.Y = 300
 End If
 i:+1
 Next
End Function

Again, we’re using the For..EachIn loop to reset the tanks. If i = 0 .. Else .. End If is used to reset the player to the right position. If it’s the red player (i = 0), then its location is reset to the left-hand side of the screen, the opposite side from the blue player.

Decrementing the Counter
We already have code to decrement our counter. It’s the
 UpdateCountDown function

 . We’ve just never called it. Until now. Locate the MainGameLoop function in the code and scroll down to the following line:

 While Not KeyHit(KEY_ESCAPE) And countDown > 0

Below that line, enter the following text:

 countDown = UpdateCountDown(roundTime, countdown)

Now locate the DrawInformation line in the same While..Wend block. Below that line add:

 DrawInformation(tankList, countDown)

Save and run the game. We’re almost there! We have tank movement and firing, the scores update, and the countdown…counts down.

The End Screen

Our final piece to the Tank Attack puzzle is the end screen. This screen tells the players who won and gives them an opportunity to cool down before the next round. They’re given a choice to play again or return to the OS. There’s also some housekeeping we want to perform here. Up until now, the game could be quit by pressing the Escape key at any time, to return to the OS, or, in our case, the BlitzMax IDE. We have to stop that from happening. So, locate the
 MainGameLoop function

 and this line within it:

 While Not KeyHit(KEY_ESCAPE) And countDown > 0
Change that to:
While countDown > 0

This will stop the player from being able to hit the Escape key to break out of the game. After the Wend inside the MainGameLoop, add the following code. This will display the endgame and wait for the user to press the P key to play again, or escape to quit to the OS.

 Local result:Int = 0
While result = 0
 result = DrawEndGame(player1, player2)
Wend
Return result

The result is returned to the loop at the bottom of the source code that uses the return value to determine the state of the application. Play again or quit to the OS.
The Endgame State
The endgame code doesn’t exist yet. It currently looks like this:

 Function DrawEndGame:Int(p1:TTank, p2:TTank)
 Return 2
End Function

This means that the game will always quit to the OS. If the user were to choose to play, this would return 1. In our endgame screen, we’re going to establish what player won, or if both players drew, and tell the user what can happen next. We use
 FlushKeys
 because both players will probably be pressing the keyboard. This command resets all the keys and removes any pending characters in the queue.
The updated DrawEndGame is shown following:

 Function DrawEndGame:Int(p1:TTank, p2:TTank)
 Local retVal:Int = 0
 FlushKeys
 While retVal = 0
 Cls
 SetColor 255, 255, 255
 PrintMessage "Tank Attack", 400, 32, True
 SetColor 255, 255, 255
 If p1.Score = p2.Score
 PrintMessage "IT WAS A DRAW", 400, 228, True
 Else If p1.Score > p2.Score
 PrintMessage "PLAYER ONE IS THE WINNER", 400, 228, True
 Else
 PrintMessage "PLAYER TWO IS THE WINNER", 400, 228, True
 End If
 SetColor 255, 0, 0
 PrintMessage "PRESS P TO PLAY AGAIN", 400, 492, True
 PrintMessage "ESCAPE TO QUIT TO OS", 400, 524, True
 Flip
 If KeyDown(KEY_P)

 retVal = 1
 Else If KeyDown(KEY_ESCAPE)
 retVal = 2
 End If
 Wend
 FlushKeys
 Return retVal
End Function

And that’s it! Our tank game is complete. Now it’s time to move on to learning more about UDTs and how they can help with your games.

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_9

9. Object-Oriented Programming

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

Object-oriented programming (OOP) has been with us since the 1970s, but it has only really taken the software engineering world by storm in the last 20 years, even fewer for the games industry. There are a number of buzzwords associated with OOP that I have to clarify.
This is an introductory chapter to OOP. I will delve into it in more detail for our last project—Flood.
If you have never used an object-oriented language, you should understand the underlying concepts before you begin. By the end of this section, you should be able to answer the following questions:
	What is an object? What is a class? What is an attribute? What is a method?

	What is the difference between an object and a class? What is inheritance?

	What is an interface?

What Is an Object

 ?
An object is a software bundle of related variables and methods.
Software objects are often used to model real-world objects that you find in everyday life, such as a car, a person, or an animal.

What Is a Class

 ?
A class is a blueprint or prototype that defines the attribute and the methods common to all objects of a certain kind.

What Is an Attribute

 ?
An attribute describes an object, for example, its width, height, lives, power, gas level, etc.

What Is a Method

 ?
A method is a special function that is only available to an object and performs some kind of action: move, draw, die, etc.

What Is the Difference Between an Object and a Class?
A class is the abstract of a physical object, a description. An object is an implementation or instance of that class. Much like the data type Int and the BlitzMax statement i:Int = 5. Int is an abstract concept, a whole number, whereas i:Int = 5 creates an instance of an Int and assigns a whole number value (in this case, 5) to it.

What Is Inheritance

 ?
A class inherits state and behavior from its parent. Inheritance provides a powerful and natural mechanism for organizing and structuring software programs. For example, if you have a Player object, you could derive two new objects from it: OurHero and Baddie. Both would share common code (such as Move(), Draw(), Die()) but could be enhanced too. For example, Baddie could have a method SeekOurHero(). Inheritance is used to extend a parent class’s attributes and methods.

What Is an Interface

 ?
An interface is a contract in the form of a collection of method and constant declarations. When a class implements an interface, it promises to implement all of the methods declared in that interface.

Classes in BlitzMax

 BlitzMax

 bases its implementation of OOP on its previous Type ... End Type construct. To this end, there is no “Class” keyword in BlitzMax. BlitzMax prefers to call classes “user-defined types” (UDTs).

Defining a User-Defined Type

The format to define a UDT

 is shown following:

 Type type_name [Extends parent_type]
 [Fields]
 [Methods]
 [Functions]
End Type

The format of a Field is

 Field attribute_name[:Type]

The format of Method is

 Method method_name[:Type]([param-1[:Type], param-
2[:Type], ..., param-n[:Type]]) [Abstract]
 ...
End Method

The format of Function is

 Function function_name[:Type]([param-1[:Type],
param-2[:Type], ..., param-n[:Type]])
 ...
End Function

As you can see, methods and functions are declared in almost the same way. The difference is in when and how each are called. I will discuss this at length below.

A Simple Class
The following is a simple class

 that contains three fields: X, Y, and Lives:

 Type TSimplePlayer
 Field X:Int
 Field Y:Int
 Field Lives:Int
End Type

This is the BlitzMax version of a class. To create an object of this class, we have to create an instance.

 Local simplePlayer:TSimplePlayer = New

TSimplePlayer

You can create instances of such types using the New operator. New takes one parameter—a user-defined type—and returns an instance of that type. Such instances are known as objects.
The preceding code line declares a variable simplePlayer to be of type TSimplePlayer. We then assign it a value New TSimplePlayer. Because it is an object, we must assign it an object. We cannot assign it a class, so we do the following:

 Local simplePlayer:TSimplePlayer = TSimplePlayer

This line would result in a compilation error. This tries to set simplePlayer to be a class. The New keyword is used to create a new instance of the TSimplePlayer UDT.
Now that we have an instance of TSimplePlayer, we can assign values to its attributes or call its methods and functions.

 simplePlayer.X = 320
simplePlayer.Y = 240
Print simplePlayer.X
Print simplePlayer.Y
Print simplePlayer.X / 2

It should be noted that the period character (.) is used to separate the instance of the UDT and its attribute/method/function. This is a standard that has been adopted throughout the OOP world. The general format is:

 object_instance.[Attribute | Method | Function]

Within a user-defined type, you can declare the following:
	Fields

	Methods

	Functions

Fields

 Fields

 are variables associated with each instance of a user-defined type. Fields are declared in the same way as local or global variables using the Field keyword. To access the fields of an object, use the . operator.

Methods

 Methods

 are function-like operations associated with each instance of a user-defined type. Methods are declared in the same way as functions, only using the Method keyword instead of Function. To access the methods of an object, use the . operator. Program code within a method can access other fields, methods, functions, consts, and globals within the same object, simply by referring to them by name.

 Functions

These are declared in the same way as “normal” functions and can be accessed using the . operator. Unlike methods, functions within a type are not associated with instances of the type but with the type itself. This means such functions can be used regardless of whether any instances of the type have been created yet. Functions within a type can access other functions, consts, or globals within the same type, by referring to them by name. In OOP parlance, a function is the same as a static method.

Consts and Globals or Static Attributes
These are declared in the same way as “normal” consts and globals

 and can be accessed using the . operator. As with type functions, these are not associated with instances of the type but with the type itself.
Here is another example of a user-defined type:

 Type TStar
 Global Count:Int
 Field X:Int
 Field Y:Int
 Field R:Int
 Field G:Int
 Field B:Int
 Method Draw()
 SetColor(R, G, B)
 Plot(X, Y)
 SetColor(255, 255, 255)
 End Method
 Function Create:TStar(nx:Int, ny:Int, nr:Int, ng:Int, nb:Int)
 TStar.Count:+1
 star:TStar = New TStar
 star.X = nx
 star.Y = ny
 star.R = nr
 star.G = ng
 star.B = nb
 Return star
 End Function
End Type

In this example, the following attributes and functions

 are available to the class:
	
 Count
 attribute

	
 Create() function

The following attributes and methods are available to the object:
	
 X attribute

	
 Y attribute

	
 R attribute

	
 G attribute

	
 B attribute

	
 Draw() method

In object-oriented terms an attribute is something that describes an object. For example the colour of a pen would be an attribute. In BlitzMax, the keyword Field is used to denote an attribute. A field is like a variable but it can only be accessed from a class instance using the dot (.) operator. The following sample code is correct. It is assumed that star is an instance (object) of the TStar class and that BlitzMax is in graphics mode (using the Graphics keyword).

 Local star:TStar = TStar.Create(50, 50, 255, 255,
255)
While Not KeyHit(KEY_ESCAPE)
 Cls
 star.Draw()
 Flip
Wend

The following sample code is incorrect. It is assumed that star is an instance (object) of the
 TStar class

 :

 TStar.X
star.Create()

The full program listing follows:

 Graphics 640, 480

Type TStar
 Global Count:Int
 Field X:Int
 Field Y:Int
 Field R:Int
 Field G:Int
 Field B:Int
 Method Draw()
 SetColor(R, G, B)
 Plot(X, Y)
 SetColor(255, 255, 255)
 End Method
 Function Create:TStar(nx:Int, ny:Int, nr:Int, ng:Int, nb:Int)
 TStar.Count:+1
 star:TStar = New TStar

 star.X = nx
 star.Y = ny
 star.R = nr
 star.G = ng
 star.B = nb
 Return star
 End Function

End Type
Local starfield:TList = CreateList()
While Not KeyHit(KEY_ESCAPE)
 If TStar.Count < 250
 star:TStar = TStar.Create(Rnd(640), Rnd(480), Rnd(255),Rnd(255), Rnd(255))
 starfield.AddLast(star)
 End If
 Cls
 For s:TStar = EachIn starfield
 s.Draw()
 Next
 DrawText("Star Count = " + TStar.Count, 0, 0)
 Flip
Wend

The object is created indirectly using the Create() function. This static method, if you will, creates a new instance of the class TStar, initializes the fields, increments the count of stars, and passes a reference back to the calling routine.
The Create() function is a technique that is used by the majority of BlitzMax programmers and will be employed within this book. It allows for complex initializations of an object before returning it to the calling routine.

 Inheritance and Polymorphism

User-defined types can extend other user-defined types, using the Extends keyword. Extending a type means adding more functionality to an existing type. The type being extended is often referred to as the base type, and the resulting, extended type is often referred to as the derived type.

A Simple Object
In a game, we have a number of objects that share common features, such as player objects. In our game world, these objects inhabit a physical screen with x and y coordinates. These objects can be described using the following UDT declaration

 :

 Type TSimplePlayer
 Field x:Int = 0
 Field y:Int = 0
End Type

Perhaps we want to create a player object that has additional attributes: Lives and Score. We could create an entirely new object, but because we are developers, we are into recycling and believe in reuse. So, we dust off our TSimplePlayer to create a new derived class, as follows:

 Type TOurHero Extends TSimplePlayer
 Field lives:Int = 0
 Field score:Int = 0
End Type

This is called inheritance, because, like humans, we gain some of our attributes from our parents—our mother’s eyes and our father’s nose (but the rest belongs to you), for example. Likewise, the TOurHero UDT inherits the fields x and y, so the following is a perfectly valid program:

 Type TSimplePlayer
 Field x:Int = 0
 Field y:Int = 0
End Type
Type TOurHero Extends TSimplePlayer
 Field lives:Int = 0
 Field score:Int = 0
End Type
hero:TOurHero = New TOurHero
hero.x = 5
hero.y = 50
hero.lives = 10

But the following is invalid:

 Type TSimplePlayer
 Field x:Int = 0
 Field y:Int = 0

End Type

Type TOurHero Extends TSimplePlayer
 Field lives:Int = 0
 Field score:Int = 0
End Type

hero:TSimplePlayer = New TSimplePlayer
hero.x = 5
hero.y = 50
hero.lives = 10

This will fail because TSimplePlayer does not contain a definition of lives. But that is not all that inheritance can be used for. BlitzMax allows you to use a derived type anywhere a base-type object is expected. This is because a derived-type object is a base-type object with additional fields and methods. For example, you can assign a derived-type object to a base-type variable or pass a derived-type object to a function expecting a base-type parameter.
The following program is perfectly valid. Type it in and run it.

 Type TSimplePlayer
 Field x:Int = 0
 Field y:Int = 0
End Type
Type TOurHero Extends TSimplePlayer
 Field lives:Int = 0
 Field score:Int = 0
End Type

simple:TSimplePlayer = New TSimplePlayer
hero:TOurHero = New TOurHero
simple.x = 5
hero.x = 10
list:TList = CreateList()
list.AddLast(simple)
list.AddLast(hero)
For so:TSimplePlayer = EachIn list
 Print so.x
Next

So, you can see that all derived classes can be assumed to be base classes, but with extra attributes/methods/functions. In fact, we can take this one step forward with a new word: polymorphism.

 Polymorphism

Dictionary.com defines polymorphism

 as “The occurrence of different forms, stages, or types in individual organisms or in organisms of the same species.” In OOP, polymorphism allows us to rewrite methods, to adapt to our derived class’s needs. This is often referred to as overriding.
Type in the following program and run it. You should see a circle and a rectangle on the screen. Press Escape to continue. The program code is broken up into sections. Each section is followed by a description.

 Graphics 640, 480
Type TShape
 Field x:Int
 Field y:Int
 Method Draw()
 Plot x, y
 Plot x+1, y
 Plot x+1, y+1
 Plot x, y+1
 End Method
End Type

This is our base class. It contains the declaration of the x and y variables that define where the shape will be drawn onscreen. It also contains a rudimentary Draw() method that we will override in each of our derived classes.

 Type TCircle Extends TShape
 Field r:Int
 Method Draw()
 DrawOval(x, y, r, r)
 End Method
End Type

The TCircle derived class contains an additional field, r, to allow a circle to be drawn—we need a radius. The Draw() method has been updated to draw an oval, as BlitzMax can only draw ellipses.

 Type TRectangle Extends TShape
 Field w:Int
 Field h:Int
 Method Draw()
 DrawRect(x, y, w, h)
 End Method
End Type

As with TCircle, TRectangle extends the TShape class and provides two new fields, w and h, for the width of the rectangle and its height. The Draw method is overridden again to draw a rectangle.

 s:TShape = New TShape
c:TCircle = New TCircle
r:TRectangle = New TRectangle
s.x = 50
s.y = 240
c.x = 200
c.y = 240
c.r = 50
r.x = 500
r.y = 240
r.w = 100
r.h = 50

Instances of the variables are created, and their fields are assigned values.

 shapes:TList = CreateList()
shapes.AddLast(s)
shapes.AddLast(c)
shapes.AddLast(r)
All the shapes are added to the ‘shapes’ list.
While Not KeyHit(KEY_ESCAPE)
 Cls
 For shp:TShape = EachIn shapes
 shp.Draw()
 Next
 Flip
Wend

We use the same technique as before to loop through each of the contents of the list and, this time, call the Draw() method of each object. Because each object is either a TShape or derived from TShape, we can use this construct.
Save the program in your BlitzMaxSource\Objects folder. Remove the Draw() method from the TRectangle class. What happens?
When a method is not redefined in a derived class, the parent method is used. It’s kind of like a biological throwback to an earlier time. After all, we didn’t invent vision!
All the declarations for Draw have the same signature. This is required by the language. And, indeed, this definition for TCircle would be wrong.

 Type TCircle Extends TShape
 Method Draw(r:Int)
 DrawOval(x, y, r, r)
 End Method
End Type

Self and Super
Code inside a method can access two special variables called Self and
 Super

 . These variables refer to the current class and its base class that it was derived from, respectively.
Enter the following program in a new editor panel and run it.

 Graphics 640, 480, 16

Type TText
 Field x:Int
 Field y:Int
 Field txt:String
 Method Draw()
 DrawText(txt, x, y)
 DebugLog "TText"
 End Method
End Type
Type TBold Extends TText
 Method Draw()
 Super.Draw()
 DrawText(txt, x + 1, y)
 DebugLog "TBold"
 End Method
End Type
b:TBold = New TBold
b.x = 280
b.y = 234
b.txt = "BlitzMax Super!"
While Not KeyHit(KEY_ESCAPE)
 Cls
 b.Draw()
 Flip
Wend

When you run the program, wait a few seconds, then press Escape. The output from the DebugLog() lines will be shown, as follows:

 Building 001_SuperSelf
Compiling:001_SuperSelf.bmx
flat assembler version 1.51
3 passes, 6207 bytes.
Linking:001_SuperSelf.debug.exe
Executing:001_SuperSelf.debug.exe
TText
TBold
TText
TBold
TText
TBold
: :
TText
TBold
Process complete

Note that because we call the Draw() method of the derived class, it in turn calls the Draw() method of its base class, using the Super keyword.

New and Delete
User-defined types can optionally declare two special methods named New and
 Delete

 . Both methods must take no arguments, and any returned value is ignored.
The New method is called when an object is first created with the New operator. This allows you to perform extra initialization code.
The Delete method is called when an object is discarded by the memory manager—when you make an explicit call to Flushmem (see following code). Note that critical shutdown operations such as closing files, etc., should not be placed in the Delete method, as you are not always sure when Delete will be called.
The New and Delete methods are illustrated in the following code. Enter the code in a new editor panel.

 Type TSimple
 Method New()
 DebugLog "New object created!"
 End Method
 Method Delete()
 DebugLog "Object deleted!"
 End Method
End Type
s = New TSimple
Release s
FlushMem

Note that Release only works with integer variables. Try changing the line s = New TSimple to s:TSimple = new TSimple, to see what happens. The compiler doesn’t like it! This is because we have defined s as an instance of TSimple and not an integer pointer. Don’t worry too much about this. We will always use strong type conventions in this book.

Abstract and Final

 Abstraction

 allows us to create a user defined type that exposes an interface that acts as a contract for other UDTs. You cannot create an abstract class directly, but you can derive child classes from it. This contract, for example, stipulates that certain methods must be provided. Take the following class as an example:

 Type IBurgerPlace Abstract
 Method MakeFries() Abstract
 Method MakeBurgers() Abstract
 Method MakeShake() Abstract
End Type

Much like a fast food franchisee signs a contract to deliver quality fast food, so, too, does our class. Using a drawing known as a class diagram, this class is represented by the diagram below.[image: A435551_1_En_9_Fig1_HTML.jpg]
Figure 9-1.Class diagram

The rectangle is split into two areas. The top part is the name of the interface class. The capital I is used instead of capital T for the type name, because we are declaring an interface and not a type (as such). The bottom part lists the methods within the class that each derived object must expose.
The arrows represent the direction of the abstraction and should be read as “is a.”
In BlitzMax, we would implement—code—the preceding diagram as

 Type IBurgerPlace Abstract
 Method MakeFries() Abstract
 Method MakeBurgers() Abstract
 Method MakeShakes() Abstract
End Type
Type GlasgowBranch Extends IBurgerPlace
 Method MakeFries()
 End Method
 Method MakeBurgers()
 End Method
 Method MakeShakes()
 End Method
End Type
Type ErskineBranch Extends IBurgerPlace
 Method MakeFries()
 End Method
 Method MakeBurgers()
 End Method
 Method MakeShakes()
 End Method
End Type

We could create an object based on the GlasgowBranch class, using the following code:

 gb:GlasgowBranch = New GlasgowBranch

Or we can use the abstract class.

 gb:IBurgerPlace = New GlasgowBranch

This is much like the inheritance we have previously seen. Indeed, we can even add fully implemented methods, for example:

 Type IBurgerPlace Abstract
 Method MakeFries() Abstract
 Method MakeBurgers() Abstract
 Method MakeShakes() Abstract
 Method CheeseFries()
 Print "Cheese Fries!"
 End Method
End Type

The CheeseFries() method can be overridden by developers who require more control over the making of cheese fries.
Differences Between Abstract and Inheritance
When an object is inherited, it obtains all the methods of the base class. The programmer can then override these methods, as he or she sees fit. The base class can be instantiated as an object. With abstraction, this is not the case.
When a class is defined as abstract, it can never be instantiated. It is designed to provide its child classes with a contract—methods they must provide. Not all methods in an abstract class need themselves be abstract. Indeed, as we have seen, it is possible to create an abstract class that contains implemented methods.
Inheritance always implements the base class’s methods. Abstraction must implement the base class’s methods.

And Finally…
If a user-defined type is declared as Final, it cannot be extended. If a method is declared as Final, it cannot be overridden. In our previous example, we had an implemented method in IBurgerPlace for
 CheeseFries()

 . GlasgowBranch could easily change this to the following:

 Method CheeseFries()
 Print "Glasgow's Cheese Fries - Made from
Girders!"
End Method

But if we were to change the declaration of the CheeseFries() method in IBurgerPlace to Final, the following would result:

 Method CheeseFries() Final

 Print "Cheese Fries!"
End Method

With the keyword Final after the method declaration, the following compilation error occurs:

BlitzMax Application

Compile Error
 Final methods cannot be overridden

OK

Use Final when you don’t want people to change the code in a class or method.
Abstract types and methods are mostly used to create “template” types and methods that leave implementation details up to derived types. Final types and methods are mostly used to prevent modification to a type’s behavior.

Summary
Object-oriented programming has been with us for a long time, but it was initially slow to take hold with developers. Whereas functions allowed us to reuse small bits of code, objects, or user-defined types, as they are called in BlitzMax, allow us to reuse entire data structures, or make component-based models, with ease.

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_10

10. Project File Management

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

 Correct file management
 is important in any project, but especially in game development

 , where it is not always possible to release patches to end users. Without correct file management, teams would not be able to function. We are going to look at two keywords that help:
	
 Include

	
 IncBin

 Include

 Include allows the developer or a group of developers to split the tasks and avoid having all their code in one file. Let’s take the Burger Place example from Chapter 9 (Figure 10-1).[image: A435551_1_En_10_Fig1_HTML.jpg]
Figure 10-1.
 Class diagram

We are going to create a separate file for each of the classes, as follows:

 IBurgerPlace.bmx:

 Type IBurgerPlace Abstract
 Method MakeFries() Abstract
 Method MakeBurgers() Abstract
 Method MakeShakes() Abstract
End Type

 GlasgowBranch.bmx:

 Type GlasgowBranch Extends IBurgerPlace

 Method MakeFries()
 End Method
 Method MakeBurgers()
 End Method
 Method MakeShakes()
 End Method
End Type

 ErskineBranch.bmx:

 Type ErskineBranch Extends IBurgerPlace
 Method MakeFries()
 End Method
 Method MakeBurgers()
 End Method
 Method MakeShakes()
 End Method
End Type

And now we create our main file, called
 BurgerPlace.bmx

 .

 Include "IBurgerPlace.bmx"
Include "GlasgowBranch.bmx"
Include "ErskineBranch.bmx"
gb:GlasgowBranch = New GlasgowBranch
eb:ErskineBranch = New ErskineBranch

Why use Includes? They de-clutter the main program and allow teams of developers to work on a larger project, because they are not editing the same file.

 IncBin

Most professional programs include the majority of their binary data (sounds, images, etc.) within the main executable. BlitzMax allows you to do this too, with one small quirk, the use of the incbin:: URL prefix.

 Incbin "images/tiger.png"
tiger = LoadImage("incbin::images/tiger.png")

We will see Include and IncBin used extensively from now on. Indeed, we started with the Tank Attack project.

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_11

11. Graphics

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

The following built-in commands

 are available in BlitzMax, to allow us to display graphics on the screen:	
 AutoImageFlags

	
 AutoMidHandle

	
 Cls

	
 CollideImage

	
 CollideRect

	
 CountGraphicsModes

	
 CreateImage

	
 DrawImage

	
 DrawImageRect

	
 DrawLine

	
 DrawOval

	
 DrawPixmap

	
 DrawPoly

	
 DrawRect

	
 DrawText

	
 EndGraphics

	
 Flip

	
 GetAlpha

	
 GetBlend

	
 GetClsColor

	
 GetColor

	
 GetGraphics

	
 GetGraphicsMode

	
 GetHandle

	
 GetImageFont

	
 GetLineWidth

	
 GetMaskColor

	
 GetOrigin

	
 GetRotation

	
 GetScale

	
 GetViewport

	
 GrabImage

	
 GrabPixmap

	
 Graphics

	
 GraphicsHeight

	
 GraphicsModeExists

	
 GraphicsWidth

	
 HideMouse

	
 ImageHeight

	
 ImagesCollide

	
 ImagesCollide2

	
 ImageWidth

	
 LoadAnimImage

	
 LoadImage

	
 LoadImageFont

	
 LockImage

	
 MidHandleImage

	
 Plot

	
 ResetCollisions

	
 SetAlpha

	
 SetBlend

	
 SetClsColor

	
 SetColor

	
 SetHandle

	
 SetImageHandle

	
 SetLineWidth

	
 SetMaskColor

	
 SetOrigin

	
 SetRotation

	
 SetScale

	
 SetTransform

	
 SetViewport

	
 ShowMouse

	

 TextHeight

	
 TextWidth

	
 TileImage

	
 UnlockImage

	 	

BlitzMax uses the OpenGL (
 www.opengl.org
) API to draw graphics. Although OpenGL

 is known for producing 3D worlds, in this book, we only look at the production of 2D images. Blitz Research has called this Max2D, and although not three-dimensional, it allows us to use some special effects, such as blending and rotation.
Graphics Modes
For each graphics card, there are a number of modes that it supports. Before we put the computer into graphics mode, we have to know that the mode exists. To access the list, BlitzMax has a number of commands.
	
 CountGraphicsModes

	
 GetGraphicsMode

	
 GraphicsModeExists

	
 Graphics

	
 EndGraphics

	
 GraphicsWidth

	
 GraphicsHeight

	
 GetGraphics

 CountGraphicsModes

Used in conjunction with the GetGraphicsMode will list the modes available to the system.

 Local ;
For i:Int = 0 To modes -1
 GetGraphicsMode(i, width, height, depth, hertz)
 Print width + "x" + height + " " + depth + "bit " + hertz + "hz"
Next

GraphicsModeExists(width, height, depth=0, hertz=0)

 GraphicsModeExists returns Boolean True, if the graphics mode specified exists.

 If GraphicsModeExists(640, 480)
 Print "680x480 exists!"
Else
 Print "Can't find 640x480 graphics mode"
End If
If GraphicsModeExists(640, 480, 48)
 Print "48bit color exists at 640x480"
Else
 Print "Don't be daft - 48bit color?!?"
End If

Graphics
Once we have our graphics mode, we can put the video card into graphics mode. We do this using the Graphics keyword, as follows:

 Graphics 640, 480, 16, 75

While Not KeyHit(KEY_ESCAPE)
 DrawText("Hello, BlitzMax!", 0, 0)
 Flip
 Cls
Wend

The last two parameters—color depth and frequency

 —are optional and are defaulted to 16 and 60, respectively. However, as you have noticed, this Graphics keyword puts the video card in full-screen mode. What is we wanted to put it into windowed mode? Easy: just change the preceding Graphics line to

 Graphics 640, 480

This creates a window with a 640×480 viewing area! Quite handy if a video mode is not available!

 EndGraphics

Although not necessary, it is still good programming practice to end the graphics mode using the EndGraphics keyword. Note, though, that EndGraphics invalidates all images and image fonts. If you want to reuse these objects later, you will have to re-create them.

 GraphicsWidth and GraphicsHeight

 GraphicsWidth returns the width of the current graphics mode, and, likewise, GraphicsHeight returns the height of the current graphics mode. As in this example, it should be noted that it will also happily return the metrics of a windowed graphics mode.

 Graphics 640, 480

While Not KeyHit(KEY_ESCAPE)
 DrawText("; + GraphicsWidth(), 0, 0)
 DrawText("Height: " + GraphicsHeight(), 0, 10)
 Flip
 Cls
Wend

 GetGraphics

 GetGraphics returns the metrics for the current graphics mode.

 Graphics 800, 600, 16, 75
While Not KeyHit(KEY_ESCAPE)

 Local ;x" + height + ", " + depth + "bit color, " + hertz + "Hz", 0, 0)
 Flip
 Cls
Wend

If we ran similar code before putting the video card into graphics mode, we would get an entirely different answer. This is because although we are in a windowed environment, BlitzMax compiles to a shell window, in other words, a command line interpreter (such as Terminal/DOS prompt, bash).

 Local ;
Print width + "x" + height + ", " + depth + "bit
color, " + hertz + "Hz"

Some Advice
Use a low-resolution (640×480) graphics mode to start your game to allow the user to choose the graphics mode they want to play the game at. Remember to check that the low-mode works before entering it!

 Flip

Most modern video cards have two areas of memory. Both are used to display images to the user, but only one is shown at a time. This technique is called double buffering
 and is shown in the following diagram (Figure 11-1).[image: A435551_1_En_11_Fig1_HTML.jpg]
Figure 11-1.Provide caption

From the user’s viewpoint, they see the items

 visible on the monitor, but behind the scenes, the program is drawing to the back buffer. With the flick of an electronic finger, the user is shown the images on the back buffer. The following diagram (Figure 11-2) shows what happens.[image: A435551_1_En_11_Fig2_HTML.jpg]
Figure 11-2.Provide caption

This technique has been used in the theater for years. While the actors are out on stage, behind the curtain, a new scene

 is being dressed. When the actors’ scene is finished, the curtain opens, and the new scene is revealed.
All this happens in BlitzMax using two keywords: Cls and Flip.

 Cls

The Cls keyword clears the back buffer of the video card, making it ready to draw on again. We have used this in all our graphic mode examples so far. Note that, for the most part, it is paired with the Flip command.

 Flip
Cls

This means that all drawings on the back buffer are now on the front buffer, and the back buffer is once again ready to be drawn on.
Another common technique is to put the
 Cls

 after the update code in your main loop and then Flip just before the end—usually just before the Wend keyword. See the Tank Attack code for details. Either way will work.

 SetClsColor

This sets the color Cls clears the screen to. In this example, pressing 1 will clear the screen to red, 2 to green, and 3 to blue. Key 0 will return the Cls color to black.

 Graphics 640, 480

While Not KeyHit(KEY_ESCAPE)

 If KeyHit(KEY_1)
 SetClsColor(255, 0, 0)
 End If

 If KeyHit(KEY_2)
 SetClsColor(0, 255, 0)
 End If

 If KeyHit(KEY_3)
 SetClsColor(0, 0, 255)
 End If

 If KeyHit(KEY_0)
 SetClsColor(0, 0, 0)
 End If

 Flip
 Cls
Wend

 GetClsColor

This returns the current color used to clear the screen with, as follows:

 Graphics 640, 480

While Not KeyHit(KEY_ESCAPE)

 If KeyHit(KEY_1)
 SetClsColor(255, 0, 0)
 End If

 If KeyHit(KEY_2)
 SetClsColor(0, 255, 0)
 End If

 If KeyHit(KEY_3)
 SetClsColor(0, 0, 255)
 End If

 If KeyHit(KEY_0)
 SetClsColor(0, 0, 0)
 End If

 Local red:Int=0
 Local green:Int = 0
 Local blue:Int = 0

 GetClsColor(red, green, blue)
 DrawText("SetClsColor(" + red + "," + green + "," + blue + ")", 0, 0)

 Flip
 Cls
Wend

Drawing Simple Objects
BlitzMax allows the programmer to use some graphics primitives as well as more complex images. The primitives are
	
 Plot

	
 DrawRect

	
 DrawLine

	
 DrawOval

	
 DrawPoly

	
 DrawText

 Plot

 Plot draws a point on the graphics display.

 Graphics 640, 480

While Not KeyHit(KEY_ESCAPE)

 Local red:Int = Rnd(255)
 Local green:Int = Rnd(255)
 Local blue:Int = Rnd(255)

 SetColor(red, green, blue)
 Plot Rnd(640), Rnd(480)

 Flip
Wend

 DrawRect

 DrawRect draws a rectangle at a given (x, y) coordinate with width and height.

 Graphics 640, 480
While Not KeyHit(KEY_ESCAPE)

 Local red:Int = Rnd(255)
 Local green:Int = Rnd(255)
 Local blue:Int = Rnd(255)

 SetColor(red, green, blue)
 DrawRect (Rnd(640), Rnd(480), Rnd(640), Rnd(480))
 Flip
Wend

 DrawLine

This draws a line from one (x, y) coordinate to another.

 Graphics 640, 480
Local lastx:Int = 0
Local lasyy:Int = 0

While Not KeyHit(KEY_ESCAPE)
 Local red:Int = Rnd(255)
 Local green:Int = Rnd(255)
 Local blue:Int = Rnd(255)

 SetColor(red, green, blue)

 x = Rnd(640)
 y = Rnd(640)

 DrawLine(lastx, lasty, x, y)
 lastx = x
 lasty = y

 Flip
Wend

 DrawOval

 DrawOval draws an ellipse at the specified coordinates with two radii: one for the x axis and one for the y axis.

 Graphics 640, 480
Local r:Int = 100
While Not KeyHit(KEY_ESCAPE)
 Cls
 DrawOval(320 - (r/2), 240 - (r/2), r, r)
 r = r - 1

 If r = 0
 r = 100
 End If

 Flip
Wend

 DrawPoly

 DrawPoly is slightly more complex than previous graphics, in that it requires an array of floats representing the coordinate groups. In this case, we are plotting the following points onscreen.
(50, 0), (100, 100), (0, 100)
This will draw a triangle at the top left of the screen.

 Graphics 640,480
Local triangle#[]=[50.0,0.0,100.0,100.0,0.0,100.0]

While Not KeyHit(KEY_ESCAPE)
 Cls
 DrawPoly triangle
 Flip
Wend

 DrawText

 DrawText prints text in the current font at the specified x and y coordinates.

 Graphics 640, 480
While Not KeyHit(KEY_ESCAPE)
 SetColor(Rnd(255),Rnd(255),Rnd(255))
 DrawText("BlitzMax", Rnd(640), Rnd(480))
 Flip
Wend

Images
Computer games need sprites to represent characters in the game world. A sprite is a small image manipulated by either the player directly or some logic programmed in. With BlitzMax, we have a wide range of commands to help us deal with images.
	
 LoadImage

	
 LoadAnimImage

	
 DrawImage

	
 DrawImageRect

	
 TileImage

	
 SetColor

As you can see from the list, that is quite a lot to get on with! Let’s break this down into easy chunks of information. First, let’s look at the image drawing.

Images and BlitzMax
For the most part, you will want to create images in a third-party product, such as the open source GIMP (GNU Image Manipulation Program)

 at
 www.gimp.org
 . GIMP is a professional-level graphics program on a par with Photoshop. If, like me, you have spent most of your professional life using Photoshop, you might find GIMP a bit frustrating to use at first. This is no fault of the application! Just relax, find your way around, and you’ll be creating images like you did in Photoshop!
Any image creation program that allows you to generate BMP, PNG, and JPG images is fine. There is a list of these in the appendixes. If you are stuck with images, there are some (badly) drawn ones located on this book’s web site (blitzmax.sloankelly.co.uk) to help you.

 LoadImage

Before we can draw an image on the screen, we have to load it into memory. As we have seen in the Tank Attack project, this is done using the LoadImage keyword. The only required parameter is the path to the image file. In the following example, we are going to load a 16×16 picture with alternating 4-pixel wide blocks of yellow and blue. This will be displayed in the middle of the screen.

 Graphics 640, 480
block:TImage = LoadImage("block.png")
While Not KeyHit(KEY_ESCAPE)
 DrawImage(block, 312, 232)
 Flip
 Cls
Wend

 LoadAnimImage

An animated image is a block of images loaded as one graphic, and BlitzMax does all the hard work of splitting each individual block out into separate images. This can be used to load animated graphics or tiles for a platform game. The parameters for LoadAnimImage are:
	
 LoadAnimImage(path, width, height, first_index, image_count)

	
 path: Path to the image

	
 width: Width of the individual graphics

	
 height: Height of the individual graphics

	
 first_index: Always a zero

	
 image_count: Number of images in the larger block

In the following example, we load in a 32×16 image that has two 16×16 images on it.

 Graphics 640, 480
Local block:TImage = LoadAnimImage("blockani.png",
16, 16, 0, 2)
Local tmr:Int = MilliSecs()
Local frame:Int=0

While Not KeyHit(KEY_ESCAPE)
 DrawImage(block, 312, 232, frame)
 If MilliSecs() > tmr + 450
 tmr = MilliSecs()
 frame:∼1
 End If
 Flip
 Cls
Wend

 DrawImage

As we have seen in the preceding two examples, DrawImage can be used to draw both static and animated images. The parameters for DrawImage are

 DrawImage(image, x, y [, frame])

Note that the frame part is optional and must only be specified when you want to split up an image. Take a look at the following example:

 Graphics 640, 480
Local block:TImage = LoadAnimImage("blockani.png",
16, 16, 0, 2)
Local tmr:Int = MilliSecs()
Local frame:Int=0

While Not KeyHit(KEY_ESCAPE)
 Cls
 DrawImage(block, 0, 0)
 DrawImage(block, 312, 232, frame)
 If MilliSecs() > tmr + 450
 tmr = MilliSecs()
 frame:∼1
 End If
 Flip

 Wend

What did you expect to see? Because BlitzMax defaults the frame parameter to zero, only the first image is shown.

 TileImage

With DrawImage, we can display a single image on the screen once.
When we are working with a large area, we sometimes like to flood, that is, fill a backdrop with a single image. We can do this with TileImage.
The format for TileImage is: TileImage(image, x, y [, frame])

Again, the frame parameter is optional.

 Graphics 640, 480
block:TImage = LoadImage("block.png")

While Not KeyHit(KEY_ESCAPE)
 TileImage(block, 0, 0)
 Flip
 Cls
Wend

 SetViewport

 SetViewport masks off an area of the screen that can be drawn to. Anything outside this area is not displayed. The format of SetViewport is

 SetViewport(x, y, width, height)

In the following example, we use our animated image in the previous examples to simulate a ZX Spectrum loading

 :

 Graphics 640, 480
Local block:TImage = LoadAnimImage("blockani.png",
16, 16, 0, 2)
Local tmr:Int = MilliSecs()
Local frame:Int=0

Local SPECTRUM_WIDTH = 256 * 2
Local SPECTRUM_HEIGHT = 192 * 2

Local SPECTRUM_LEFT = ((640 - SPECTRUM_WIDTH) / 2)
Local SPECTRUM_TOP = ((480 - SPECTRUM_HEIGHT) / 2)
Local msgx:Int = 640

While Not KeyHit(KEY_ESCAPE)

 If MilliSecs() > tmr + 450
 tmr = MilliSecs()
 frame:∼1
 End If
 TileImage(block, 0, 0, frame)
 SetViewport(SPECTRUM_LEFT, SPECTRUM_TOP, SPECTRUM_WIDTH, SPECTRUM_HEIGHT)
 SetColor(0, 0, 0)
 DrawRect(SPECTRUM_LEFT, SPECTRUM_TOP, SPECTRUM_WIDTH, SPECTRUM_HEIGHT)

 SetColor(255, 255, 255)

 DrawText("BlitzMax!", msgx, 240)
 msgx:-2
 If msgx <= 0
 msgx = 640
 End If

 SetViewport(0, 0, 640, 480)

 Flip
 Cls
Wend

Those of you familiar with this wonderful machine will appreciate the retro ambience! For those of you who have never heard of a ZX Spectrum, it was an 8-bit computer from the early 1980s that (pretty much) kick-started bedroom coding in the United Kingdom.

 GetViewport

 GetViewport returns the metrics for the current viewport. The format of the command is

 GetViewport(x, y, width, height)

See, for example, the following. Note that this is the same as the previous example, with a few extra lines to grab the viewport information.

 Graphics 640, 480

Local block:TImage = LoadAnimImage("blockani.png",
16, 16, 0, 2)

Local tmr:Int = MilliSecs()
Local frame:Int=0
Local SPECTRUM_WIDTH = 256 * 2
Local SPECTRUM_HEIGHT = 192 * 2

Local SPECTRUM_LEFT = ((640 - SPECTRUM_WIDTH) / 2)
Local SPECTRUM_TOP = ((480 - SPECTRUM_HEIGHT) / 2)

Local msgx:Int = 640

While Not KeyHit(KEY_ESCAPE)
 If MilliSecs() > tmr + 450
 tmr = MilliSecs()
 frame:∼1
 End If
 TileImage(block, 0, 0, frame)

 SetViewport(SPECTRUM_LEFT, SPECTRUM_TOP, SPECTRUM_WIDTH, SPECTRUM_HEIGHT)
 SetColor(0, 0, 0)
 DrawRect(SPECTRUM_LEFT, SPECTRUM_TOP,

 SPECTRUM_WIDTH, SPECTRUM_HEIGHT)

 SetColor(255, 255, 255)

 Local x:Int
 Local y:Int
 Local ;Current viewport is at " + x + "," + y + " with dimensions " + width + " by " + height, SPECTRUM_LEFT, SPECTRUM_TOP)

 DrawText("BlitzMax!", msgx, 240)
 msgx:-2
 If msgx <= 0
 msgx = 640
 End If
 SetViewport(0, 0, 640, 480)
 Flip
 Cls
Wend

Fonts
The BlitzMax system font is quite boring and can be livened up by loading your own fonts at runtime. BlitzMax can load TTF (TrueType Font)

 and FON files. TTF is standard across all three platforms now—Windows, Mac OS X, and Linux—and you should be able to locate some free distributable fonts for use in your applications. In the examples that follow, I will be using the Tahoma font, which is distributed with Windows and Office for Mac OS X. If you don’t have this font, feel free to substitute it for another.
The following commands allow us to manipulate the fonts that can be used in our programs:
	
 LoadImageFont

	
 SetImageFont

	
 GetImageFont

 LoadImageFont

 LoadImageFont requires two parameters and an optional third. The format of the keyword is shown following:
	
 LoadImageFont:TImageFont(url:Object, size:Int, style:Int=SMOOTHFONT)

	
 BOLDFONT = 1

	
 ITALICFONT = 2

	
 SMOOTHFONT = 4

 SetImageFont

 SetImageFont requires one parameter: the image font to use in subsequent DrawText() operations. If null is passed, the default font is used. The format of the keyword is shown following:

 SetImageFont(font:TImageFont)

If null is passed, the default font is used.

 GetImageFont

 GetImageFont returns the current image font as an instance of TImageFont. It requires no parameters.

Example of Font Use in BlitzMax
For the example, to work, you will have to copy the Tahoma font to the same folder as your program. The example then loads in the font from size 8 to 48 in 8-pixel increments. It places all the fonts into a TList.
In the main loop, the fonts inside the TList fonts variable are cycled through, and the
 SetImageFont

 keyword is called. A message is displayed on the screen using the desired font. Notice that the y coordinate is incremented by the height of the letter X and 4 pixels. This gives a nice space between the last line and the next.

 Graphics 800, 600
fonts:TList = CreateList()
For i = 8 To 48 Step 8
 font:TImageFont = LoadImageFont("tahoma.ttf", i, SMOOTHFONT)
 fonts.AddLast(font)
Next

While Not KeyHit(KEY_ESCAPE)

 y:Int = 0
 For f:TImageFont = EachIn fonts
 SetImageFont(f)
 DrawText("BlitzMax font handling!", 0, y)

 y = y + TextHeight("X") + 4
 Next
 Flip
 Cls
Wend

You can also be a little more adventurous. In the next example, I downloaded a font from dafont.com and placed it in the same folder as my .bmx file. I then used the
 incbin keyword

 to embed the font right into the executable, as follows:

 Rem
 The font used in this program is called
 "PROMISES BROKEN DREAM" and was designed by Gersan Borge.
 It was retrieved from dafont.com on the 23rd May 2011
 http://www.dafont.com/promises-brokendream.font
 Gersan Borge's daFont page is:
 http://www.dafont.com/gersan-borge.d3068
EndRem

SuperStrict
Graphics 800, 600

Incbin "Promses Broken Dream1.ttf"
Local promises:TImageFont =
LoadImageFont("incbin::Promses Broken Dream1.ttf", 64)
SetImageFont promises
SetClsColor 0, 0, 192

While Not KeyHit(KEY_ESCAPE)
 Cls
 SetColor 0, 0, 0
 DrawText "1234567890ABCXYZ", 20, 50
 SetColor 255, 255, 0
 DrawText "1234567890ABCXYZ", 18, 48
 Flip
Wend

This displays the following on the screen (Figure 11-3).[image: A435551_1_En_11_Fig3_HTML.jpg]
Figure 11-3.Provide figure caption

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_12

12. User Input

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

Because the operating systems that we are using are graphical in nature, the input method of choice is the mouse. There are several keywords available to the BlitzMax developer, including the following:
	
 MouseX

	
 MouseY

	
 MouseZ

	
 ShowMouse

	
 HideMouse

	
 MouseDown

	
 MouseHit

	
 MoveMouse

 MouseX and MouseY

 MouseX and MouseY return the current x and y coordinates of the mouse.

 Graphics 640, 480
pointer:TImage = LoadImage("pointer.png")

While Not KeyHit(KEY_ESCAPE)

 Local x:Int = MouseX()
 Local y:Int = MouseY()

 DrawImage(pointer, x, y)

 Flip
 Cls

Wend

Showing and Hiding the System Mouse

There is a problem, because, as you will have noticed after running the preceding code (you’ll need a suitable image to use as a cursor), the operating system mouse is shown. We can get around this by executing the HideMouse keyword.

 Graphics 640, 480

pointer:TImage = LoadImage("pointer.png")

While Not KeyHit(KEY_ESCAPE)

 If KeyHit(KEY_1)
 HideMouse()
 End If

 If KeyHit(KEY_2)
 ShowMouse()
 End If

 Local x:Int = MouseX()
 Local y:Int = MouseY()

 DrawImage(pointer, x, y)
 Flip
 Cls
Wend

By pressing 1 on the keyboard, you can hide the pointer. Pressing 2 will show the mouse pointer. At all times, the image is shown at the current mouse coordinates.

 MouseZ

If your computer is suitably equipped with a scroll wheel, BlitzMax can use this to enhance the user experience.

 Graphics 640, 480

pointer:TImage = LoadImage("pointer.png")

While Not KeyHit(KEY_ESCAPE)

 If KeyHit(KEY_1)
 HideMouse()
 End If

 If KeyHit(KEY_2)
 ShowMouse()
 End If

 Local x:Int = MouseX()
 Local y:Int = MouseY()
 Local z:Int = MouseZ()

 DrawText("Mouse Z= " + z, 0, 0)
 DrawImage(pointer, x, y)
 Flip
 Cls

Wend

On my system (IBM Thinkpad with a Microsoft Optical Trackball), a click on the mouse wheel represents an increment of 1 on the mouse z axis each time the mouse is scrolled away from me and a decrement of 1 each time the mouse is scrolled toward me.

 MouseDown

In this example, I created a mouse image with four layers. The main layer has the mouse shape on it; the other layers have highlight colors (see Figure 12-1).[image: A435551_1_En_12_Fig1_HTML.jpg]
Figure 12-1.Provide a caption

When you press the mouse buttons, the corresponding

 images highlight which buttons were pressed.
The output of the program with the left mouse button down is shown following (Figure 12-2).[image: A435551_1_En_12_Fig2_HTML.jpg]
Figure 12-2.Provide caption

The MouseDown function takes one parameter: which mouse button

 to check.	Value
	Mouse Button

	
 1

	Left

	
 2

	Right

	
 3

	Middle

The full program listing follows. Note that we set the Cls color to a more neutral tone, to fit in with the mouse image. We also set the blend mode to ALPHABLEND, because we want to show the opacity of the red overlays. Try taking the
 SetBlend line

 out to see what happens.

 Graphics 640, 480

SetClsColor 224, 224, 224
SetBlend ALPHABLEND

mouse:TImage = LoadImage("mouse.png")
lmb:TImage = LoadImage("lmb.png")
rmb:TImage = LoadImage("rmb.png")
mmb:TImage = LoadImage("mmb.png")

x:Int = (640 - ImageWidth(mouse)) / 2
y:Int = (480 - ImageHeight(mouse)) / 2

While Not KeyHit(KEY_ESCAPE)
 Cls
 DrawImage(mouse, x, y)

 If MouseDown(1)
 DrawImage(lmb, x, y)
 End If

 If MouseDown(2)
 DrawImage(rmb, x, y)
 End If

 If MouseDown(3)
 DrawImage(mmb, x, y)
 End If

 Flip
Wend

 MouseHit

 MouseHit is slightly different, in that it only records if the mouse has been hit. It does not care if the mouse button is being held down.
This could be ideal for a click event on a button. The following example illustrates this best:

 Graphics 640, 480
SetClsColor 224, 224, 224
SetBlend ALPHABLEND

mouse:TImage = LoadImage("mouse.png")
lmb:TImage = LoadImage("lmb.png")
rmb:TImage = LoadImage("rmb.png")
mmb:TImage = LoadImage("mmb.png")

x:Int = (640 - ImageWidth(mouse)) / 2
y:Int = (480 - ImageHeight(mouse)) / 2

While Not KeyHit(KEY_ESCAPE)
 Cls

 DrawImage(mouse, x, y)

 If MouseHit(1)
 DrawImage(lmb, x, y)
 End If

 If MouseHit(2)
 DrawImage(rmb, x, y)
 End If

 If MouseHit(3)
 DrawImage(mmb, x, y)

 End If

 Flip
Wend

 WaitMouse

 WaitMouse pauses the program and then returns which mouse button was clicked.

 Graphics 640, 480
DrawText("Press any mouse button to exit", 0, 0)
Flip
WaitMouse()

 MoveMouse

We can also move the mouse! The following example uses mathematical functions to move the cursor up and down the screen, plotting a nice ellipse:

 Graphics 640, 480

Local angle:Float = 0
Local y:Int
Local x:Int
Local tmr:Int = MilliSecs()

While Not KeyHit(KEY_ESCAPE)

 y = Sin(angle) * 240
 x = Cos(angle) * 320

 If MilliSecs() > tmr + 150
 tmr = MilliSecs()
 angle = angle + 2
 If angle = 360
 angle = 0
 End If
 End If
 MoveMouse(320 + x, 240 + y)

 SetColor(255, 255, 255)
 Plot(320 + x, 240 + y)
 Flip

Wend

Adapt the preceding program to fill in the dots

 . Now add spokes to the wheel. Hint: The center is always 320, 240. And now, add random color each revolution.

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_13

13. Keyboard Input

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

The second input device on a modern computer system is the keyboard. This is the most common keyboard input device and one that most people will use approximately 80% of the time. There are a number of ways to get information from the keyboard.
	
 KeyDown

	
 KeyHit

	
 WaitKey

	
 WaitChar

	
 GetChar

 KeyDown, KeyHit, and WaitKey all use the BlitzMax key code

 constants, listed in the appendixes. WaitChar and GetChar use the ASCII character set, again listed in the appendixes.

 KeyDown

This is the simplest keyboard method and returns true if a key is being held down. In the following example, a rocket ship is taking off. Holding down the space bar will pump more fuel into the rocket. You will require a 64×64 pixel image of a rocket loaded as an animated image (128×4).

 Graphics 640, 480

Const GRAVITY_VALUE:Float = .01

Local y:Float = GraphicsHeight() – 64
Local gravity:Float = GRAVITY_VALUE
Local frame:Int = 0
Local velocity:Float = 0

Local rocket:TImage = LoadAnimImage("spaceship.png", 64, 64, 0, 2)
SetBlend(ALPHABLEND)

HideMouse
While Not KeyHit(KEY_ESCAPE)

 If KeyDown(KEY_SPACE)
 velocity = velocity + (GRAVITY_VALUE/2)

 frame = 1
 gravity=gravity-GRAVITY_VALUE
 If gravity <=0
 gravity = 0
 End If
 End If
 If Not KeyDown(KEY_SPACE)
 velo city = 0
 gravity = gravity + GRAVITY_VALUE
 If gravity > 9.81
 gravity = 9.81
 End If
 frame = 0
 End If

 y = y + gravity – velocity

 If y>= GraphicsHeight() - 64
 y = GraphicsHeight() - 64
 End If

 DrawImage(rocket, 320 - 32, y, frame)

 DrawText("Velocity:" + velocity + "m/s", 0, 0)
 DrawText("Gravity:" + gravity + "m/s", 0, 10)
 DrawText("Height: " + ((480-64) - y) + "m",0, 20)
 Flip
 Cls
Wend

 KeyHit

We have used the KeyHit keyword on just about every example in this book to trap the Escape key being pressed. KeyHit is a one-off hit of a key and returns a Boolean True if the key has been hit.

 Graphics 640, 480

While Not KeyHit(KEY_ESCAPE)

 If KeyHit(KEY_SPACE)

 SetColor(Rnd(255), Rnd(255), Rnd(255))
 End If

 DrawText("BlitzMax", Rnd(640), Rnd(480))
 Flip

Wend

Rewrite the rocket example with KeyHit and see how far you get up the screen! Rewrite the KeyHit example with KeyDown trapping the space bar being hit. What happens
 ?

 WaitKey

 WaitKey halts all operations and waits until a key has been pressed. The following example shows an example of WaitKey, a retro text adventure input. But please be aware that this is not the perfect implementation. I’m getting to that!

 Graphics 640, 480

Type TKeyInput

 Method GetMemo:String()

 memo:String = ""

 DrawText(">_", 0, 0)
 Flip
 ch:Int = WaitKey()

 While ch <> KEY_ENTER
 Select ch
 Case KEY_SPACE, KEY_A, KEY_B, KEY_C, KEY_D, KEY_E, KEY_F, KEY_G, KEY_H, KEY_I, KEY_J, KEY_K, KEY_L, KEY_M, KEY_N, KEY_O, KEY_P, KEY_Q, KEY_R, KEY_S, KEY_T, KEY_U, KEY_V, KEY_W, KEY_X, KEY_Y, KEY_Z
 memo = memo + Chr(ch)
 Case KEY_DELETE, KEY_BACKSPACE

 If memo <> ""
 memo = Left(memo, Len(memo)-1)

 End If
 End Select

 Cls
 DrawText(">" + memo + "_", 0, 0)
 Flip

 ch = WaitKey()
 Wend
 Return memo
 End Method
 Function Create:TKeyInput()
 o:TKeyInput = New TKeyInput
 Return o
 End Function
End Type

keyinput:TKeyInput = TKeyInput.Create()

s:String = keyinput.GetMemo()

Cls
Flip

FlushKeys()
DrawText("Input text:" + s, 0, 0)
Flip
WaitKey()

At the moment, only A–Z and space characters are allowed. Allow the user to enter numbers too.

 WaitChar

Much like WaitKey, WaitChar pauses until a key is pressed. When it has been pressed, its ASCII representation is returned to the user. So, the preceding example can be rewritten as follows:

 Graphics 640, 480

Type TKeyInput

 Method GetMemo:String()

 memo:String = ""

 DrawText(">_", 0, 0)
 Flip
 ch:Int = WaitChar()

 While ch <> 13
 If ch >="32" And ch <=127
 memo = memo + Chr(ch)
 End If
If ch = 8 And memo <> "" memo = Left(memo, Len(memo)-1)
 End If
 Cls
 DrawText(">" + memo + "_", 0, 0)
 Flip
 ch = WaitChar()
 Wend
 Return memo

 End Method

 Function Create:TKeyInput()
 o:TKeyInput = New TkeyInput
 Return o
 End Function
End Type
keyinput:TKeyInput = TKeyInput.Create()

s:String = keyinput.GetMemo()
Cls
Flip
FlushKeys()
DrawText("Input text:" + s, 0, 0)
Flip
WaitKey()

It is slightly more elegant
 , and it allows for a larger number of characters to be entered. For example, you can use a mixture of upper- and lowercase letters.
Don’t allow the user to enter symbol characters. For a list of ASCII characters and codes, see the appendixes. Hint: The keyword Asc can be used to determine the ASCII value of any given character, for example, ASC(“A”) returns 65.

 GetChar

Pausing a live game is a little severe, and BlitzMax addresses that by using the GetChar keyword. This means that we can have a flashing cursor! Rewriting the preceding examples, I have included a flashing cursor to show the user we are expecting input. Remember: This would not be possible if we were using WaitChar/WaitKey, because ALL PROCESSING is stopped for WaitChar/WaitKey.

 Graphics 640, 480
Type TKeyInput
 Method GetMemo:String()

 memo:String = ""
 tmr:Int = MilliSecs()
 cursor:Int = 1

 DrawText(">_", 0, 0)
 Flip
 ch:Int = GetChar()

 While ch <> 13

 If ch >="32" And ch <=127
 memo = memo + Chr(ch)
 End If

 If ch = 8 And memo <> ""
 memo = Left(memo, Len(memo)-1)
 End If
 Cls
 If MilliSecs()>tmr+500
 tmr = MilliSecs()
 cursor:∼1
 End If

 If cursor
 DrawText(">" + memo + "_", 0, 0)

 Else
 DrawText(">" + memo, 0, 0)
 End If

 Flip

 ch = GetChar()

 Wend
 Return memo

 End Method
 Function Create:TKeyInput()
 o:TKeyInput = New TkeyInput
 Return o
 End Function
End Type

keyinput:TKeyInput = TKeyInput.Create()

s:String = keyinput.GetMemo()

Cls
Flip

FlushKeys()
DrawText("Input text:" + s, 0, 0)
Flip
WaitKey()

Change the cursor to a solid block. Hint: Use the DrawRect and TextWidth keywords
 .

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_14

14. Joystick

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

We’ve seen that BlitzMax can get input from keyboard and mouse, but the final piece of the puzzle is the joystick, or, as it’s more commonly called now, the controller. BlitzMax

 offers a wide variety of functions to get input from this device.	
 JoyAxisCaps

	
 JoyButtonCaps

	
 JoyCount

	
 JoyDown

	
 JoyHat

	
 JoyName

	
 JoyPitch

	
 JoyR

	
 JoyRoll

	
 JoyU

	
 JoyV

	
 JoyWheel

	
 JoyX

	
 JoyY

	
 JoyYaw

	
 JoyZ

	 	

The joystick took a long time to be adopted by computer users

 who preferred the keyboard and mouse to move their onscreen avatar. This has all changed, and most gamers have either a joystick or a joypad with an easy-to-plug-in USB connection. I only have an inexpensive joypad to play with (Figure 14-1).[image: A435551_1_En_14_Fig1_HTML.jpg]
Figure 14-1.Joypad

It’s in the style of the PlayStation controller

 , with eight—count ’em—buttons. This will be my reference controller.
Joystick Information
We can get information

 on the various joysticks that are plugged into the system using the following keywords:
	
 JoyCount

	
 JoyName

	
 JoyAxisCaps

	
 JoyButtonCaps

JoyCount

 JoyCount

 counts the number of game controllers you have connected to your system.

 If Not JoyCount()
 Print "No controllers"
Else
 Print "You have " + JoyCount() + " game controllers connected to your system."
End If

 JoyName

 JoyName returns the name of the joystick on the selected port, as follows:

 If Not JoyCount()
 Print "No controllers"
Else
 For i:Int = 0 To JoyCount()-1
 Print "Controller " + (i+1) + " is a " + JoyName(i)
 Next
End If

 JoyAxisCaps

 JoyAxisCaps, short for “Joystick Axis Capabilities,” returns a bit field detailing the capabilities of the connected controller. The following example reads these capabilities and displays them as text:

 If Not JoyCount()
 RuntimeError "Sorry - you need a joystick to run this app!"
End If
Graphics 640, 480

'' find out the capabilities of the controller in port 0
caps:Int = JoyAxisCaps(0)

'' string representing capabilities
capstring:String = "XYZYUVYPOHW"

While Not KeyHit(KEY_ESCAPE)
 '
 ' Loop through each of the capabilities
 '
 s:String = ""
 For i:Int = 0 To 10
 If caps And (2^i)
 s = s + Mid(capstring, i+1, 1)
 Else
 s = s + "-"
 End If
 Next
 '
 ' Draw the standard capabilities flags and the
 ' actuals reported from the controller

 '
 DrawText(capstring, 0, 0)
 DrawText(s, 0, 10)
 Flip
 Cls

Wend

The preceding program displays the axis capabilities of each joystick plugged into your PC. The program checks to see if you have at least one stick attached before proceeding.
The JoyAxisCaps keyword returns a bit-mapped representation of the capabilities of your joystick. This program splits out the bits and displays them as English words. The bitmap for these capabilities is	4
	3
	2
	1
	0

	U
	R
	Z-Axis
	Y-Axis
	X-Axis

 	9
	8
	7
	6
	5

	Hat
	Roll
	Pitch
	Yaw
	V

 	10

	Wheel

 JoyButtonCaps

 JoyButtonCaps, short for “Joystick Button Capabilities,” returns a bit field representing the number of buttons a joystick has. The following example returns this as a more meaningful number to the calling routine:

 If Not JoyCount()
 RuntimeError "No joystick"
End If
Function JoyButtonCount:Int(buttoncaps:Int)
 s:String = Bin(buttoncaps)
 count:Int = 0
 For i:Int = 1 To Len(s)
 If Mid(s, i, 1) = "1"
 count:+1
 End If
 Next

 Return count
End Function

Print "There are " + JoyButtonCount(JoyButtonCaps(0)) + " buttons on the controller"

Getting Direction
Historically, PC joysticks have been analog in nature. This means that the change in direction

 is not a simple switch, as in modern controllers. Because this is the case, the values returned are between -1 and 1 in variable increments. The following example covers each of the values for the available axis:
	
 JoyX

	
 JoyY

	
 JoyZ

	
 JoyR

	
 JoyU

	
 JoyV

	
 JoyRoll

	
 JoyYaw

	

 JoyWheel

 If Not JoyCount()
 RuntimeError "There is no joystick connected"
End If
Graphics 640, 480
Function DrawAxis(x:Int, y:Int, dir:Float, ishoriz:Int=True)

 Local w:Int
 Local h:Int

 SetColor(255, 192, 0)

 If ishoriz
 w = dir * 64
 h = 3
 If w < 0
 DrawRect(x+w-1, y-1, Abs(w), h)
 Else
 DrawRect(x-1, y+h-1, w, Abs(h))
 End If
 Else
 w = 3
 h = dir * 64 If h < 0
 if h < 0
 DrawRect(x-1, y-1, w, h)
 Else

 DrawRect(x-1, y-1, w, h)
 End If
 End If

 SetColor(255, 255, 255)

End Function

Function JoyButtonCount:Int(buttoncaps:Int)
 s:String = Bin(buttoncaps)
 count:Int = 0
 For i:Int = 1 To Len(s)
 If Mid(s, i, 1) = "1"
 count:+1
 End If
 Next
 Return count
End Function
While Not KeyHit(KEY_ESCAPE)

 SetColor(255, 255, 255)
 DrawLine(320, 240, 320+64, 240)
 DrawLine(320, 240, 320-64, 240)
 DrawLine(320, 240, 320, 240+64)
 DrawLine(320, 240, 320, 240-64)
 DrawAxis(320, 240, JoyX(), True)
 DrawAxis(320, 240, JoyY(), False)

 For i:Int = 0 To JoyButtonCount(JoyButtonCaps(0))-1
 If JoyDown(i)
 SetColor(228, 228, 228)
 Else
 SetColor(58, 58, 58)

 End If
 DrawOval(50 + (i * 16), 10, 10, 10)
 Next

 Flip
 Cls

Wend

Add lines for the R and U axis. Now what about Yaw and the Wheel? You will need a suitable joystick with these functions.

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_15

15. Common Input Routine

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

I created a number of classes that allow movement by joystick or keyboard to be abstracted. The listing is in the appendixes and also available on the web site

 . Programs can then use these abstracted routines to move game characters around the screen. From this point, these classes will be used in the book to move playable objects around the screen.
This means that we can reuse these classes in all our projects, and we won’t have to implement them over and over again.
The Classes

There are six classes, as listed following:	
 IController

	An interface class that TStick and TKeyboard extend

	
 IFire

	An interface class that TStickFire and TKeyboardFire extend

	
 TStick

	Inherited from TController; handles joystick input

	
 TKeyboard

	Inherited from TController; handles keyboard input

	
 TStickFire

	Inherited from IFire; handles fire events from the joystick

	
 TKeyFire

	Inherited from IFire; handles fire events from the keyboard

 IController

This is the base class for both TStick and TKeyboard. It contains a number of abstract methods that the child classes must implement. It also contains some fully formed Final methods that the classes will inherit. The abstract methods are as follows:
	
 Dup: Returns Boolean True if the user presses the Up key

	
 DDown: Returns Boolean True if the user presses the Down key

	
 DLeft: Returns Boolean True if the user presses the Left key

	
 DRight: Returns Boolean True if the user presses the Right key

 IController contains two fields:
	
 Name

	
 FireMethods

 Name

The Name field can be used by the application to identify the controller, for example “Player1” or “Keyboard.” This field is not used by the class but can be useful. See the sample application that follows below.

 FireMethods

This is a collection of firing events that expose the IFire interface. At the moment this is just two classes: TkeyFire and TstickFire, for keyboard and joystick, respectively.
The three final methods contained within the abstract IController class are
	
 AddFire

	
 Fire

	

 ButtonCount

 AddFire

 AddFire passes in an IFire class to be added to the FireMethods list.

 Fire

 Fire takes in one integer parameter referencing the index of the button and returns a Boolean True, if the button has been pressed.

 ButtonCount

 ButtonCount returns the number of buttons in the abstract controller. Note that this is not the same as JoyButtonCaps. It is up to the developer to add all the joystick buttons to the class, as shown following:

 For f:Int = 0 To 7
 jfire:TStickFire = TStickFire.Create(f, 0)
 stick.AddFire(jfire)
Next

This code would add eight buttons to the joystick (0 through 7 inclusive).

 TStick
 and TKeyboard

 TStick and TKeyboard abstract the game controller and keyboard, respectively. They both inherit from IController and use the interface that IController has defined to implement their own ways of capturing user input.

 TStickFire

 and TKeyFire

 TStickFire and TKeyFire abstract the firing events for the game controller and keyboard, respectively. They inherit from IFire and use the interface that IFire has defined to implement their own ways of capturing the user pressing a particular fire button.
Create a new class called TMouseFire that extends IFire. In this instance, we need to capture a mouse button

 being hit.

Sample Application Using Controller.bmx

This application is based on the joystick-only version referred to previously in this chapter. The F1 key toggles the input method. Note that the keyboard has one firing method (the spacebar), but that the keyboard has two (space and button zero). This shows that abstracting the controllers is good. We can have any mix of control that we need!

 Include "Controller.bmx"
If Not JoyCount()
 RuntimeError "There is no joystick connected"
End If
Graphics 640, 480

Function DrawAxis(x:Int, y:Int, dir:Int, ishoriz:Int=True, isnegative:Int=True)

 Local w:Int
 Local h:Int

 SetColor(255, 192, 0)

 If ishoriz

 w = dir * 64
 h = 3
 If isnegative
 DrawRect(x-w-1, y-1, Abs(w), h)
 Else
 DrawRect(x-1, y-1, w, h)
 End If
 Else
 w = 3
 h = dir * 64
 If isnegative
 DrawRect(x-1, y-h-1, w, Abs(h))
 Else
 DrawRect(x-1, y-1, w, h)
 End If
 End If

 SetColor(255, 255, 255)

End Function

Function JoyButtonCount:Int(buttoncaps:Int)
 s:String = Bin(buttoncaps)
 count:Int = 0
 For i:Int = 1 To Len(s)
 If Mid(s, i, 1) = "1"
 count:+1
 End If
 Next

 Return count

End Function

stick:TStick = TStick.Create("Joystick", 0) keyboard:TKeyboard = TKeyboard.Create("Keyboard", KEY_UP, KEY_DOWN, KEY_LEFT, KEY_RIGHT)

kfire:TKeyFire = TKeyFire.Create(KEY_SPACE) jfire:TStickFire = TStickFire.Create(0, 0)

keyboard.AddFire(kfire)

stick.AddFire(jfire)
stick.AddFire(kfire)

Local controller:IController = keyboard

While Not KeyHit(KEY_ESCAPE)

 SetColor(255, 255, 255)
 DrawLine(320, 240, 320+64, 240)
 DrawLine(320, 240, 320-64, 240)
 DrawLine(320, 240, 320, 240+64)
 DrawLine(320, 240, 320, 240-64)

 If KeyHit(KEY_F1)
 If controller.Name = "Keyboard"
 controller = stick
 Else
 controller = keyboard
 End If
 End If

 If controller.Name = "Keyboard"
 DrawText("Keyboard", 0, 25)
 Else
 DrawText("Joystick", 0, 25)
 End If

 DrawAxis(320, 240, controller.DLeft(), True, True)
 DrawAxis(320, 240, controller.DRight(), True, False)
 DrawAxis(320, 240, controller.DUp(), False, True)
 DrawAxis(320, 240, controller.DDown(), False, False)

 For i:Int = 0 To controller.ButtonCount()-1
 If controller.Fire(i)
 SetColor(228, 228, 228)
 Else

 SetColor(58, 58, 58)
 End If
 DrawOval(50 + (i * 16), 10, 10, 10)
 Next
 Flip
 Cls

 Wend

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_16

16. Collision Detection

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

Collision detection is the most important part of an action game

 . Without it, you would walk through walls, bullets…Wait! What am I saying? That would be great! Great, if we were cheating. This section takes us through what collision detection is.
Simple Collisions
In our game world, we must respect the laws of physics. We can bend them, if we like, but they should remain intact. To this end, there are some simple laws

 that we can apply.
	No object can occupy the same space and time as another object.

	A body is at rest until a force is applied to it.

	A body will maintain its motion until a force equal to it is applied.

The First Rule

 —Collision Detection
Because two physical objects cannot appear at the same space at the same time, we must be able to build that somehow into our game world. We can do this using the keyword ImagesCollide. For the following example, we will need two different images, both 32×32 pixels. One called a.png and the other called b.png. b.png will be controlled by the mouse, and a.png will remain static in the middle of the screen. When the two come into contact with each other (Figure 16-1), a message will be displayed (“Bang!”).[image: A435551_1_En_16_Fig1_HTML.jpg]
Figure 16-1.Collision of two physical objects

 Graphics 640, 480

AutoMidHandle(True)
a:TImage = LoadImage("a.png")
b:TImage = LoadImage("b.png")
While Not KeyHit(KEY_ESCAPE)
 If ImagesCollide(a, 320, 240, 0, b, MouseX(), MouseY(), 0)
 DrawText("Bang!", 0, 0)
 End If

 DrawImage(a, 320, 240)
 DrawImage(b, MouseX(), MouseY())

 Flip
 Cls

Wend

Notice that, technically, we’ve broken the first rule. We can still move block B over block A (Figure 16-2). We can rewrite the preceding code to allow for solid collisions, as follows:[image: A435551_1_En_16_Fig2_HTML.jpg]
Figure 16-2.Insert caption

 Graphics 640, 480
AutoMidHandle(True)
a:TImage = LoadImage("a.png")
b:TImage = LoadImage("b.png")
lastx:Int = MouseX()
lasty:Int = MouseY()

While Not KeyHit(KEY_ESCAPE)
 x = MouseX()

 y = MouseY()

 If ImagesCollide(a, 320, 240, 0, b, x, y, 0)
 DrawText("Bang!", 0, 0)
 x = lastx
 y = lasty
 Else

 lastx = x
 lasty = y
 End If

 DrawImage(a, 320, 240)
 DrawImage(b, x, y)

 Flip
 Cls

Wend

A Simple Game

In this simple game, you have to traverse the screen, starting at the top left and ending at the bottom right. There are a number of images to create—all at 16×16 pixels.
	Red: Red block will kill you (red.png)

	Blue: Blue block is impenetrable (blue.png)

	Yellow: End block (yellow.png)

You will also have to create a player (16×16 also) image (man.png) (Figure 16-3). Oh, and there is a time limit![image: A435551_1_En_16_Fig3_HTML.jpg]
Figure 16-3.Provide caption

 Rem

 Simple game
 Red - Avoid! They kill you and send you back to the start
 Blue - Can't get around them Yellow - Your goal
End Rem
Graphics 640, 480
Incbin "red.png"
Incbin "blue.png"
Incbin "yellow.png"
Incbin "man.png"

Type TBlock
 Field X:Int
 Field Y:Int
 Field BlockType:Int

 Method Draw()
 Select BlockType
 Case 1
 DrawImage(red, X, Y)
 Case 2
 DrawImage(blue, X, Y)
 End Select
 End Method

 Function Create:TBlock()

 o:TBlock = New TBlock
 o.X = Rnd(600) + 40 ' buffer of 40 pixels around start
 o.Y = Rnd(440) + 40 ' and end markers
 o.BlockType = Rnd(2) + 1
 Return o
 End Function

End Type

Global red:TImage = LoadImage("red.png")
Global blue:TImage = LoadImage("blue.png")
Global yellow:TImage = LoadImage("yellow.png")
Global man:TImage = LoadImage("man.png")

Global blocks:TList = CreateList()

While Not KeyHit(KEY_SPACE)

 DrawText("This is a very simple game. Cursor keys move the man on-screen.", 0, 0)
 DrawText("Avoid the red blocks. The blue blocks just slow you down", 0, 10)
 DrawText("There is a time limit of 60 seconds. Each screen you go through", 0, 20)
 DrawText("your available time decreases by 5 seconds.", 0, 30)
 DrawText("Press SPACE to play", 0, 50)

 Flip
 Cls

Wend

#StartGame

Global counter:Int = 60000
Global blockcounter:Int = 40
exitgame:Int=False

#AnotherRound

tmr:Int = MilliSecs()
x:Int = 0
y:Int = 0
FlushKeys()
Rand(MilliSecs())
ClearList(blocks)

For i = 1 To blockcounter
 b:TBlock = TBlock.Create()

 blocks.AddLast(b)
Next

While MilliSecs() < (tmr + counter+1000) And Not exitgame

 allowmovement:Int = True

 If KeyHit(KEY_ESCAPE)
 exitgame=True
 End If

 If KeyDown(KEY_LEFT) And x > 0
 For b:Tblock = EachIn blocks
 If b.BlockType = 1
 If ImagesCollide(man, x-4, y, 0, red, b.X, b.Y, 0)

 x = 0
 y = 0
 End If
 Else

 If ImagesCollide(man, x-4, y, 0, blue, b.X, b.Y, 0)
 allowmovement = False
 End If
 End If
 Next

 If allowmovement
 x = x -4
 End If
 End If

 allowmovement = True

 If KeyDown(KEY_RIGHT) And x < 640 – 16
 For b:Tblock = EachIn blocks
 If b.BlockType = 1
 If ImagesCollide(man, x+4, y, 0, red, b.X, b.Y, 0)
 x = 0
 y = 0
 allowmovement = False
 End If
 Else
 If ImagesCollide(man, x+4, y, 0, blue, b.X, b.Y, 0)
 allowmovement = False
 Exit
 End If
 End If
 Next

 If allowmovement
 x = x +4 End If
 End If
 End If

 allowmovement = True

 If KeyDown(KEY_UP) And y > 0
 For b:Tblock = EachIn blocks
 If b.BlockType = 1
 If ImagesCollide(man, x, y-4, 0, red, b.X, b.Y, 0)
 x = 0
 y = 0
 allowmovement = False
 End If
 Else
 If ImagesCollide(man, x+4, y, 0, blue, b.X, b.Y, 0)
 allowmovement = False
 Exit
 End If
 End If
 Next
 If allowmovement
 y = y -4
 End If
 End If
 allowmovement = True

 If KeyDown(KEY_DOWN) And y < 480 – 16

 For b:Tblock = EachIn blocks
 If b.BlockType = 1
 If ImagesCollide(man, x, y+4, 0, red, b.X, b.Y, 0)
 x = 0
 y = 0
 allowmovement = False
 End If
 Else
 If ImagesCollide(man, x, y+4, 0, blue, b.X, b.Y, 0)
 allowmovement = False
 Exit
 End If
 End If
 Next

 If allowmovement
 y = y +4
 End If
 End If

 If ImagesCollide(man, x, y, 0, yellow, 640- 16, 480-16, 0)
 Goto EndGame
 End If

 secsleft:Float = (counter/1000) - ((MilliSecs() - tmr) / 1000)
 s:String = Int(secsleft) + " seconds left!" DrawText(s, (640 - TextWidth(s))/2, 0)
 For b:TBlock = EachIn blocks
 b.Draw()
 Next

 DrawImage(yellow, 640-16, 480-16)

 DrawImage(man, x, y)
 Flip
 Cls

 ResetCollisions()
 FlushMem()
Wend

#EndGame

FlushKeys()

If Int(secsleft) > 0 And Not exitgame

 counter = counter - 5000
 If counter < 10000
 counter = 10000
 End If

 While Not KeyHit(KEY_SPACE)
 DrawText("Congratulations you did that with only " + Int(secsleft) + " seconds left!", 0, 10)
 DrawText("Press SPACE to start again -with only " + (Int(counter/1000)) + " on the clock!", 0, 20)
 Flip
 Cls
 Wend
 blockcounter = blockcounter + 5
 Goto AnotherRound
Else If Int(secsleft) = 0
 While Not KeyHit(KEY_SPACE)
 DrawText("Bad luck! You ran out of time", 0, 10)
 DrawText("Press SPACE to start again!", 0, 20)
 Flip
 Cls
 Wend
 Goto AnotherRound
End If

DrawText("Want to play again? Y = Again", 0, 0)
Flip
Cls
kc = WaitKey()

If kc = KEY_Y
 Goto StartGame
End If

Rewrite the preceding simple game to allow the user to choose between a keyboard or joystick as controllers.

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_17

17. OpenGL Special Effects

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

BlitzMax has access to the richness that the OpenGL API exposes. This also includes some neat screen-based effects.
Rotating Images
Images can be rotated in real time using SetRotation before you draw them. Note that unless you specify SetRotation(0), all images will be rotated.
SetRotation

 Set rotation

 requires one parameter—the angle of rotation. BlitzMax then does all the hard calculations behind the scenes (Figure 17-1). The following example also uses GetRotation to obtain the angle of the current rotation:[image: A435551_1_En_17_Fig1_HTML.jpg]
Figure 17-1.BlitzMax rotating application

 Graphics 640, 480

Local stick:TImage = LoadImage("stick.png")

MidHandleImage(stick)

Local angle:Int = 0

While Not KeyHit(KEY_ESCAPE)

 SetRotation(angle)
 DrawImage(stick, 160, 120)
 DrawImage(stick, 460, 120)
 DrawImage(stick, 160, 360)
 DrawImage(stick, 460, 360)
 s:String = "Angle " + GetRotation() SetRotation(0) DrawText(s, (640 - TextWidth(s))/2, 240)

 Flip
 Cls

 angle = angle + 1

 If angle=360
 angle = 0
 End If

Wend

Notice that we have to call SetRotation(0) after we find out the current rotation.
What would happen if we removed SetRotation(0)? Alter the preceding program to only rotate the top-left and bottom-right images. Hint: Use SetRotation(0).

 Scaling Images

Images can be scaled in BlitzMax just as easily as they can be rotated. The SetScale command is used to increase or decrease the scale of any objects drawn after its use, much as with the SetRotation keyword (Figure 17-2). The following program displays growing text, starting off very small and ending up ×3 scale:[image: A435551_1_En_17_Fig2_HTML.jpg]
Figure 17-2.Increasing the scale of text times three

 Graphics 640, 480

Local s:String = "BlitzMax!"
Local scale:Float = 0
Local x:Int = 0
Local y:Int = 0

While Not KeyHit(KEY_ESCAPE)
 SetScale(scale, scale)
 scale = scale + .05
 If scale > 3
 scale = 3
 End If

 x = (320 - TextWidth(s))
 y = (240 - TextHeight(s))

 DrawText(s, x, y)

 SetScale(1, 1)
 DrawText("Scale: " + scale, 0, 0)
 Flip
 Cls
Wend

Note that GetScale is used to display the current scale.

 Collisions Revisited

The simple ImagesCollide keyword cannot be used with scaled or rotated images. There is another keyword that deals with images that have been rotated and/or scaled: the originally titled ImagesCollide2 keyword.
The parameters for ImagesCollide2 are

 ImagesCollide(img1, x1, y1, frame1, angle1, scalex1, scaley1, img2, x2, y2, frame2, angle2, scalex2, scaley2)

The example below shows a rotating Xbox controller with our stick man from the simple game a few pages ago. When he touches the spinning controllers, “Man hits stick!” is displayed on the screen (Figure 17-3).[image: A435551_1_En_17_Fig3_HTML.jpg]
Figure 17-3.Rotating Xbox controller colliding with stick man

 Graphics 640, 480

Local stick:TImage = LoadImage("stick.png")
Local man:TImage = LoadImage("man.png")
MidHandleImage(stick)
MidHandleImage(man)

Local angle:Int = 0

HideMouse
While Not KeyHit(KEY_ESCAPE)

 If ImagesCollide2(stick, 320, 240, 0, angle, 1, 1, man, MouseX(), MouseY(), 0, 0, 1, 1)
 SetRotation(0)
 DrawText("Man hits stick!", 0, 0)
 End If

 SetRotation(angle)

 DrawImage(stick, 320, 240)
 SetRotation(360 - angle)
 DrawImage(man, MouseX(), MouseY())

 Flip
 Cls

 ResetCollisions()
 FlushMem()

 angle = angle + 1

 If angle=360
 angle = 0
 End If

Wend

Scale the stick graphic from .5 to 2 as it rotates.

 Blending Modes

BlitzMax allows you to control how pixels are combined with existing pixels in the back buffer. The two keywords that are used to set the blending modes are
	
 SetBlend

	
 SetAlpha

The SetBlend keyword controls the blend mode of how pixels are combined with the existing pixels in the back buffer. The effect values are shown in Table 17-1.Table 17-1.Blend Modes and Their Effects

	Blend mode
	Effect

	
 SOLIDBLEND

	Pixels overwrite existing back buffer pixels.

	
 MASKBLEND

	Pixels are drawn only if their alpha component is greater than .5.

	
 ALPHABLEND

	Pixels are alpha blended with existing back buffer pixels.

	
 LIGHTBLEND

	Pixel colors are added to back buffer pixel colors, giving a “lightening” effect.

	
 SHADEBLEND

	Pixel colors are multiplied with back buffer pixel colors, giving a “shading” effect.

Blend Mode Effects
The following example uses the rotating
 Xbox controller graphic but adds a twist. By pressing the spacebar, the program toggles between all five modes (Figure 17-4).[image: A435551_1_En_17_Fig4_HTML.jpg]
Figure 17-4.Using the spacebar to toggle between modes

 Graphics 640, 480

Local stick:TImage = LoadImage("stick.png")
Local flowers:TImage = LoadImage("flowers.jpg")
MidHandleImage(stick)

Local angle:Int = 0
Local blendmode:Int = ALPHABLEND
Local blendfordisplay:Int = 0

HideMouse
While Not KeyHit(KEY_ESCAPE)

 SetBlend(1)
 SetRotation(0)
 SetAlpha(1)
 DrawImage(flowers, 0, 0)

 DrawText("SOLID " + SOLIDBLEND + ".", 0, 0)
 DrawText("MASK " + MASKBLEND + ".", 0, 10)
 DrawText("ALPHABLEND " + ALPHABLEND, 0, 20)
 DrawText("LIGHTBLEND" + LIGHTBLEND,0 ,30)

 DrawText("SHADEBLEND" + SHADEBLEND, 0, 40)

 SetRotation(angle)

 If KeyHit(KEY_SPACE)

 blendmode = blendmode + 1
 If blendmode = 6
 blendmode = 1
 End If

 blendfordisplay = GetBlend()

 End If

 SetBlend(blendmode)
 If blendmode = ALPHABLEND
 SetAlpha(.5)
 Else
 SetAlpha(1)
 End If

 DrawImage(stick, 320, 240)
 Flip
 Cls
 angle = angle + 1

 If angle=360
 angle = 0
 End If
Wend

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_18

18. Paratrooper: Retro Involved

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

Paratrooper is a game for one player. You control the gun turret at the bottom center of the screen (Figure 18-1). The idea is to protect your base from the descending paratroopers being flown in. Once 15 paratroopers have landed safely, it is game over.[image: A435551_1_En_18_Fig1_HTML.jpg]
Figure 18-1.The Paratrooper game screen

It’s a simple game concept

 that hides a number of intricate programming routines. For example, there is rotation in the gun barrel that is separate from the main turret block. Then the player fires the gun. We’ll use a little math to send the bullet along the right trajectory.
We also look at some of the special effects covered in Chapter 17. You can, I hope, see the evolution of the games throughout the book and observe that, using BlitzMax, you can create some fantastic 2D games that are every bit as complex and fast as those made with machine code or C++. Not to mention the added bonus that all that is required to get it running across three platforms (PC , Mac, Linux) is a recompile!

 Project Management

The project is split across multiple files. Each file contains either the main program or a supporting UDT definition. I have deliberately split up the files, to show that multiple developers can work on the same project at the same time.
The main paratrooper.bmx file contains all the code to instantiate the objects from the UDTs defined in the supporting files. There is no game code whatsoever in the paratrooper.bmx file! In fact, there is only code to control the menu system that we will employ on this project.

 Game Dynamics

In order to keep the player interested, he or she can choose the level of difficulty before setting off to play the game. From the menu system, a player can choose from four options.

Lots of Options
Speaking of options

 , the player has the option to pause the game by pressing the F9 key. On doing so, the screen darkens, and the game freezes. This is a really simple but effective technique that will be explained in this chapter.

Graphics
There are a number of graphics

 associated with this project, and these are detailed below.
The Paratrooper
The paratrooper image
 is an animated image consisting of two frames. The first frame is a soldier at attention. The second is the paratrooper with his arms raised. This is the frame that is shown when the paratrooper is holding his parachute (Figure 18-2).[image: A435551_1_En_18_Fig2_HTML.jpg]
Figure 18-2.Frame showing the paratrooper holding his parachute

Each frame is 32×48, giving an overall size of 64×48.

The Gun Emplacement
The gun emplacement

 is split into two sections (Figure 18-3). The major part is the dome that measures 48×48 pixels.[image: A435551_1_En_18_Fig3_HTML.jpg]
Figure 18-3.The gun emplacement
 , split in two screens

We cheat with the barrel of the emplacement. We’re going to place the rotation handle for the barrel at the center of the image. This means that we also can make the barrel 48×48 pixels (Figure 18-4).[image: A435551_1_En_18_Fig4_HTML.jpg]
Figure 18-4.The barrel of the gun emplacement

The bullet is a simple 6×6 image (Figure 18-5).[image: A435551_1_En_18_Fig5_HTML.jpg]
Figure 18-5.Image of the bullet

 Joystick vs. Keyboard

 ?
Yes, it’s true! You can use either the keyboard or joystick to play the game. Select the option you want from the main menu. There is no option for mouse—could you code one?

Sound FX
There are spot sound effects

 used throughout the game. I created them by making shooting noises and saying “Arrgh!” and generally making silly noises in Audacity.

On with the Game
As mentioned before, this game is based on the old Apple][game that’s resurfaced on the iPod. It’s always been good fun! Your job is to stop enemy troops from entering the base. When 15 troops have successfully landed, it’s game over! Control the turret using the keyboard or joystick (left-right) and fire when ready. You can also use a joystick by changing the playwithstick variable to True. The control keys are left and right cursors and space fires. Good luck!

Paratroops.bmx
The
 Paratroops.bmx file
 contains the main program for our game. It controls the various options that can be set and how the game is started. The code is commented, so that we don’t have to break up the code with explanatory text. The comment blocks contain the why rather than the how that the code provides.

 Rem
 Paratroops! A game by Sloan Kelly

 This game is based upon the old Apple game that's resurfaced on the iPod. It's always
 good for a wee blast! Your job is to stop enemy troops entering the base. When 15 troops have
 successfully landed, it's game over for you, m'laddy!

 Control the turret using the keyboard or joystick (left - right) and fire when ready. The control
 keys are left and right cursors and space fires. Good luck!

End Rem

Graphics 800, 600

'
' Some include files for classes
'
Include "Controller.bmx" ' this is the joystick /
keyboard abstract classes
Include "TParatroopGame.bmx" ' the actual game
itself is contained in this one file
'
' Include a few images in the executable
'

Incbin "images/dome.png"
Incbin "images/mountain.jpg"
Incbin "images/grass.png"
Incbin "images/bullet.png"
Incbin "images/barrel.png"
Incbin "images/paratrooper.png"
Incbin "images/parachute.png"

'
' some level constants
'
Const MOMMY:Int = 999
Const ADULT:Int = 995
Const FAST:Int = 990
Const DUDE:Int = 985

'
' Boolean: If we're using a game controller this is set to true
'
Global playwithstick:Int = False
'
' This is the percentage chance of another trooper being created in a
' game cycle. This is passed to the game engine
'
Global gamelevel:Int = 997

Rem

 Show the main menu from the list
End Rem
Function ShowMenu:Int()
 menuitems:TList = New Tlist
 menuitems.AddLast("Play Game")
 menuitems.AddLast("Help")
 If playwithstick
 menuitems.AddLast("Playing With Joystick")
 Else

 menuitems.AddLast("Playing With Keyboard")
 End If
 menuitems.AddLast("Set Difficulty")
 menuitems.AddLast("Exit")
 menu:TMenuScreen =TMenuScreen.Create("incbin::images/backdrop.png", "incbin::images/title.png", menuitems)
 item:Int = menu.Show()
 Return item
End Function

Rem

 Set the difficulty level of the game
End Rem
Function SetDifficulty:Int()
 Select gamelevel
 Case MOMMY
 itemsel = 0
 Case ADULT
 itemsel = 1
 Case FAST
 itemsel = 2
 Case DUDE
 itemsel = 3
 End Select

 menuitems:TList = New Tlist
 menuitems.AddLast("Please don't let mummy know I'm playing")
 menuitems.AddLast("It's OK - I'm an adult")
 menuitems.AddLast("2Fast 2Furious was for children!")
 menuitems.AddLast("Dude. That's just wrong...")
 menu:TMenuScreen = TMenuScreen.Create("incbin::images/backdrop.png", "incbin::images/title.png", menuitems, itemsel)
 item:Int = menu.Show()
 lvl:Int = 997
 Select item
 Case 0
 lvl = MOMMY
 Case 1
 lvl = ADULT
 Case 2
 lvl = FAST
 Case 3
 lvl = DUDE
 End Select

 Return lvl
End Function

Function ShowHelp()
 helplines:TList = New TList

 helplines.AddLast("Welcome to Paratroops!")
 helplines.AddLast("")
 helplines.AddLast("Move the cannon at the bottom of the screen to shoot down enemy paratroopers!")
 helplines.AddLast("")
 helplines.AddLast("Make sure you get all of them, because if 15 of them land it's game over!")
 helplines.AddLast("")
 helplines.AddLast("Use joystick or keys to move - cursor left/right and space is fire. F9 - Pause / Un-Pause")
 helplines.AddLast("")
 helplines.AddLast("You can select keyboard or joystick on the front menu.")
 helplines.AddLast("")
 helplines.AddLast("")
 helplines.AddLast("Press SPACE to return to the main menu.")

 help:THelpScreen = THelpScreen.Create("incbin::images/backdrop.png",. "incbin::images/smalltitle.png",..helplines,.. 240)

 help.Show()
End Function

Function DoGame()
 '
 ' We're using the abstract IController from the previous section - see code in appendices
 '
 Local controller:Icontroller
 Local stick:TStick = TStick.Create("Joystick", 0)
 Local keyboard:TKeyboard = TKeyboard.Create("Keyboard", KEY_UP, KEY_DOWN, KEY_LEFT, KEY_RIGHT)
 Local keyfire:TKeyFire = TKeyFire.Create(KEY_SPACE)
 For i:Int="0" To 7
 stickfire:TStickFire = TStickFire.Create(i)
 stick.AddFire(stickfire)
 Next

 keyboard.AddFire(keyfire)

 '
 ' Notice that the 'controller' variable is assigned
 ' a value depending on the 'playwithstick' boolean
 ' The 'controller' variable is then passed to the game
 ' engine. This abstraction means that we should be safe
 ' even If someone invents a New virtual reality glove to
 ' control game objects '
 If playwithstick
 controller = stick
 Else

 controller = keyboard
 End If
 '
 ' Setting up the game engine is a simple call to the create routine
 ' passing in the paths to the image files '
 game:TParatroopGame = TParatroopGame.Create(controller,..

"incbin::images/mountain.jpg",..

 "incbin::images

"incbin::images/dome.png",..

"incbin::images/barrel.png",..

 "incbin::images/bullet.png",..

 "incbin::images/paratrooper.png",..

 "incbin::images/parachute.png",..

gamelevel)
 FlushKeys() '
 ' Start the game loop. This will run until the game is over (player loses)
 ' or the 'Quit' option is taken (player quits)
 '
 game.GameLoop()
 FlushKeys()
End Function

'
' This is the main program from this point.
'The mouse is hidden and the menu is shown.
' When the user selects an option, the respective ' function is called.
'
HideMouse()

#MainMenu
FlushKeys()
Select ShowMenu()
 Case 0
 DoGame() ' Play the game
 Case 1
 ShowHelp() ' Show the help screen
 Case 2
 playwithstick:∼True ' Toggle between using the joystick and the keyboard
 Case 3
 gamelevel = SetDifficulty() ' set the difficulty of the game
 Case 4
 Goto Quitter
End Select
FlushKeys()
' There is an option on the main menu that allows the user to exit the game to the OS
' This functionality is missing in our game, so we're straight out to the OS when the
' user base is over run or they quit
''Goto MainMenu ' this has been commented out because the main menu isn't finished
'
' This is the end of the game. No more code to run, so the program exits
'
#Quitter

 TMenuScreen.bmx

The menu screen gets its own class. Its purpose is to prompt the user with various options: play the game, change the input method, change the difficulty, request help, and quit to the OS. It does all that through the Show() method. It implements its own version of the outline draw. Could you re-code it to use a centrally available function?

 Type TMenuScreen
 Field backdrop:Timage
 Field title:TImage
 Field current_item:Int = 0

 Field items:TList

 Method DrawOutline(str:String, x:Int, y:Int, r:Int, g:Int, b:Int)
 SetColor(0, 0, 0)
 DrawText(str, x, y)
 DrawText(str, x+1, y)
 DrawText(str, x-1, y)
 DrawText(str, x, y+1)
 DrawText(str, x, y-1)
 DrawText(str, x+1, y+1)
 DrawText(str, x+1, y-1)
 DrawText(str, x-1, y+1)
 DrawText(str, x-1, y-1)
 SetColor(r, g, b)
 DrawText(str, x, y)
 SetColor(255, 255, 255)
 End Method

 Rem

 Show Method
 Displays the menu screen and does some basic animation You could spice this up somewhat...
 End Rem
 Method Show:Int()

 Local y:Int = 0
 Local count:Int = 0;
 Local last:Long = MilliSecs()

 SetBlend(ALPHABLEND)

 While Not KeyHit(KEY_SPACE) And Not KeyHit(KEY_ENTER)
 Cls
 DrawImage(backdrop, 0, 0)
 DrawImage(title, 0, 0)

 menu_y:Int = 388
 count:Int = 0;
 For s:String = EachIn items

 If current_item = count DrawOutline(s, (800-
TextWidth(s))/2 , menu_y, 255, 255, 128)
 Else
 DrawOutline(s, (800- TextWidth(s))/2 , menu_y, 128, 128, 128)
 End If
 count = count + 1
 menu_y = menu_y + 25
 Next
 Flip

 If KeyHit(KEY_DOWN)
 current_item = current_item + 1
 End If

 If KeyHit(KEY_UP)
 current_item = current_item - 1
 End If

 If current_item < 0
 current_item = CountList(items)-1
 End If

 If current_item > CountList(items)-1
 current_item = 0
 End If

 Wend
 Return current_item '' return the currently selected item to the calling method

 End Method

 Rem

 Create Function
 Creates a copy of the TMenuScreen UDT and assigns
 two images and a list of menu options to it
 End Rem

 Function Create: TMenuScreen(backimg:String, titleimg:String, list:TList, itemsel:Int=0)
 o:TMenuScreen = New TmenuScreen
 o.backdrop = LoadImage(backimg)
 o.title = LoadImage(titleimg)
 o.items = list
 o.current_item = itemsel

 Return o
 End Function
End Type

 Controller.bmx

 Controller.bmx contains the abstraction for keyboard and joystick events (user turns right, user turns left, etc.) as well as starting the game itself. The code for this is in the appendixes at the end of the book.

 TParatroopGame.bmx

This is the main game engine and controls all the aspects of the game while it is in play:
	User input

	Random trooper creation and placement

	Updating the existing troopers

	Pausing the game

	Quitting the game

It contains one function and nine methods. They are described following.
Create
This function creates an instance of TParatroopGame and assigns some default values before returning the instance to the calling routine (Paratrooper.bmx).

 CheckCollisions

For each bullet fired, a check is made to see if it hits a falling trooper or his chute. If the trooper is hit, both the trooper and the chute are destroyed. If the chute is hit by the bullet, only the chute is destroyed, and the trooper’s speed increases until he splats on the ground and is removed.

DrawScore

 DrawScore

 draws the player’s score onscreen. It uses scaling and a homemade routine to give an outline (see “DrawOutline”).

DrawLanded

 DrawLanded

 is similar to DrawScore in that it give the user feedback on his progress. In this case, a count of how many troops has landed on the ground. If there are ten or more, a further indication flashes, telling the user how many troops are required to overrun the base.

Draw

 Draw cycles
 through all the displayable objects in the game and displays them. Note that objects drawn first are at the back. Later images are superimposed on these images in the back buffer.

Update

 Update updates

 the player and adds more troops, if required. The trigger is set here if ten or more troops have landed to start the flashing sign (see “DrawLanded”).

 DoQuit

The background is dulled by making a call to SetColor. This is an important use of this keyword. You can create great effects just by changing the current drawing color. Try different colors!

 DoGameOver

When all the troops have landed, a “Game Over” message is displayed.

 DrawOutline

 DrawOutline draws text in the system font with a black outline. It reminded me of Super Mario World on the SNES, and I liked the look.

GameLoop
The main game loop cycles
 through all the updates and screen draws in this order:
	Update all the player nonplayer characters

	Draw all the images

	Flip the back buffer

	Clear the back buffer

 Include "TGameBackdrop.bmx"
Include "TDome.bmx"
Include "TParatrooper.bmx"

Type TParatroopGame

 Field back:TGameBackdrop = TGameBackdrop.Create()
 Field dome:TDome
 Field ctrl:Icontroller
 Field paused:Int = False
 Field quitgame:Int = False
 Field ChanceOfNewTrooper:Int = 997
 Field troops:TTroops

 Field flashlanded:Int=False
 Field flashtmr:Int = -1
 Field gametimer:Int = MilliSecs() '' every 10 seconds, your chances of more troops increase!

 Method DrawOutline(str:String, x:Int, y:Int, r:Int, g:Int, b:Int)
 SetColor(0, 0, 0)
 DrawText(str, x, y)
 DrawText(str, x+1, y)
 DrawText(str, x-1, y)
 DrawText(str, x, y+1)
 DrawText(str, x, y-1)
 DrawText(str, x+1, y+1)
 DrawText(str, x+1, y-1)
 DrawText(str, x-1, y+1)
 DrawText(str, x-1, y-1)
 SetColor(r, g, b)
 DrawText(str, x, y)
 SetColor(255, 255, 255)
 End Method

 Method CheckCollisions:Int(bulletlist:TList, trooperlist:TList)

 Local sc:Int = 0

 For b:TBullet = EachIn bulletlist
 For t:TParatrooper = EachIn trooperlist

 If Not t.Landed
 If ImagesCollide(b.Image, b.X, b.Y, 0, t.Image, t.X, t.Y, 1)
 b.Destroy = True
 t.Destroy = True
 sc = sc + 5
 End If

 If ImagesCollide(b.Image, b.X, b.Y, 0, t.ChuteImage, t.X-8, t.Y-48, 0)
 t.haschute = False
 t.YSpeed:*1.5
 sc = sc + 10
 End If
 End If
 Next
 Next
 Return sc
 End Method

 Method DrawScore()
 s :String = "0000000" + dome.Score
 s = "Score " + Right(s, 5)
 SetScale(1.0, 2.0)
 DrawOutline(s, 4, 4, 255, 255, 0)
 SetScale(1.0, 1.0)
 End Method

 Method DrawLanded()
 s:String = "00" + troops.Landed()
 s = Right(s, 2) + " Landed!"
 s1:String = "00" + (15 - troops.Landed())
 s1 = "Watch out - " + Right(s1, 2) + " to go!"
 SetScale(1.0, 2.0)
 '
 ' this little bit of code flashes the "XX Landed!" text
 ' if the number landed >=10
 '
 If troops.Landed()>=10
 If MilliSecs() > flashtmr + 750
 flashtmr = MilliSecs()
 flashlanded = Not flashlanded
 End If
 If flashlanded
 DrawOutline(s, 794 - TextWidth(s), 4, 0, 255, 0)
 SetScale(2.0, 1.0)
 DrawOutline(s1, 400 - TextWidth(s)*2, 576, 0, 255, 0)
 Else
 DrawOutline(s, 794 -TextWidth(s), 4, 255, 0, 0)
 SetScale(2.0, 1.0)
 DrawOutline(s1, 400 - TextWidth(s)*2, 576, 255, 0, 0)
 End If
 Else
 DrawOutline(s, 794 - TextWidth(s), 4, 0, 255, 0)
 End If
 SetScale(1.0, 1.0)
 End Method

 Method Draw()
 back.Draw(True) ' show backdrop scenery items
 dome.Draw()
 troops.Draw()
 back.Draw(False) ' show foreground scenery items
 DrawScore()
 DrawLanded()
 End Method
 Method Update()
 dome.Update(ctrl)
 dome.Score = dome.Score + CheckCollisions(dome.Bullets, troops.Troopers)
 troops.AddTrooper(ChanceOfNewTrooper)
 troops.Update()

 If troops.Landed() >= 10 And flashtmr = -1
 flashtmr = MilliSecs()
 End If

 If MilliSecs() > gametimer + 15000
 gametimer = MilliSecs()
 ChanceOfNewTrooper = ChanceOfNewTrooper - 1
 End If

 End Method

 Method DoQuit()
 SetColor(96, 96, 96)
 Draw()
 SetColor(255, 255, 255)
 DrawOutline("Quit Game? (Y - Quit, Any other key continues)", 400-(TextWidth("Quit Game? (Y - Quit, Any other key continues)")/2), 298, 255, 0, 0)
 Flip
 Cls
 ch = WaitKey()
 If ch = KEY_Y
 quitgame = True
 End If
 End Method

 Method DoGameOver()
 SetColor(96, 96, 96)
 Draw()
 SetColor(255, 255, 255)
 DrawOutline("G A M E O V E R - Y o u r b a s e w a s o v e r r u n !", 400- (TextWidth("G A M E O V E R - Y o u r b a s e w a s o v e r r u n !")/2), 298, 255, 0, 0)
 DrawOutline("Thank you for playing", 400-(TextWidth("Thank you for playing")/2), 340, 255, 255, 255)
 Flip
 Cls
 tmr=MilliSecs()
 While MilliSecs() < tmr + 5000 ' wait five seconds
 Wend
 quitgame = True
 End Method

 Method GameLoop()
 While Not quitgame
 If KeyHit(KEY_ESCAPE) And Not paused

 DoQuit()
 'quitgame = True
 FlushMem()
 ResetCollisions()
 End If

 If troops.Landed() >=15
 DoGameOver()
 End If

 If Not quitgame
 If KeyHit(KEY_F9)
 paused:∼True
 End If

 If Not paused
 Update()
 SetColor(255, 255, 255)
 Else
 SetColor(96, 96, 96) '' make everything 'dark'

 End If

 Draw()

 If paused
 SetColor(255, 255, 255)
 DrawOutline("G A M E P A U S E D", 400-(TextWidth("G A M E P A U S E D")/2), 298, 255, 255, 0)
 End If

 Flip
 Cls
 FlushMem()
 ResetCollisions()
 End If

 Wend
 End Method

 Function Create:TParatroopGame(controller:IController,..

background:String,..

 grass:String,..

domesrc:String,..

gunsrc:String,..

bullet:String,..

trooper:String,..

chute:String,..

chance:Int)
 o:TParatroopGame = New TparatroopGame
 o.ctrl = controller
 s:TScenery = TScenery.Create(background, False, 0, 0)
 g:TScenery = TScenery.Create(grass, True, 0, 568)
 o.back.AddImage(s)
 o.back.AddImage(g)
 o.Troops = TTroops.Create(trooper, chute)
 o.dome = TDome.Create(domesrc, gunsrc, bullet)
 o.ChanceOfNewTrooper = chance
 Return o
 End Function
End Type

 TGameBackdrop.bmx

 TGameBackdrop is a simple class to allow elaborate fore- and background objects to be drawn. I did it especially for this game, and it’s not something that I would use all the time, but it’s nice to have an extra class in there!

 Type TScenery
 Field Image:TImage
 Field IsForeground:Int = False
 Field X:Int
 Field Y:Int

 Method Draw()
 DrawImage(Image, X, Y)
 End Method

 Function Create:TScenery(src:String, isFore:Int=False, x:Int, y:Int)
 o:TScenery = New Tscenery
 o.Image = LoadImage(src)
 o.IsForeground = isFore
 o.X = x
 o.Y = y
 Return o
 End Function
End Type

Type TGameBackdrop

 Field Images:TList = CreateList()
 Method Draw(backgroundOnly:Int=True)
 For s:TScenery = EachIn Images
 If backgroundOnly = Not s.IsForeground
 s.Draw()
 End If
 Next
 End Method

 Method AddImage(s:TScenery)
 Images.AddLast(s)
 End Method

 Function Create:TGameBackdrop()
 o:TGameBackdrop = New TGameBackdrop

 Return o
 End Function

End Type

 TParatrooper.bmx

The TParatrooper file contains two classes: TParatrooper and TTroops. TTroops is the container class for all the TParatrooper instances in the game.
TParatrooper

 TParatrooper contains one function and two methods:
	
 Create

	
 Draw

	
 Update

Create
This creates an instance of the TParatrooper object.

Draw
When the trooper is in flight, his parachute is drawn, if he has landed, then the parachute is not drawn, and the standing trooper image is shown. If he has had his chute destroyed and is still falling, the chute is not displayed.

Update
This updates the position of the trooper, based upon its y axis speed. If the trooper lands without a parachute, he is destroyed—read removed from the game world.

 Type Tparatrooper
 Field X:Float
 Field Y:Float
 Field Image:Timage
 Field ChuteImage:Timage
 Field YSpeed:Float
 Field Landed:Int = False
 Field haschute:Int = True
 Field Destroy:Int = False

 Method Update()
 If Not Landed
 Y = Y + Yspeed
 If Y >= 600-32
 Y = 600-32
 Landed = True
 YSpeed = 0
 If Not haschute ' get rid of the ones who fell to earth!
 Destroy = True
 End If
 End If
 End If
 End Method

 Method Draw()
 If Landed
 DrawImage(Image, X, Y, 0)
 Else
 If haschute
 DrawImage(ChuteImage, X-8, Y- 48)
 End If
 DrawImage(Image, X, Y, 1)
 End If
 End Method

 Function Create:TParatrooper(x:Int,..
 y:Int=-64,..
 ys:Float=0.4,..
 trooper:String,..
 chute:String)
 o:TParatrooper = New TParatrooper
 o.X = x
 o.Y = y
 o.YSpeed = ys
 o.Image = LoadAnimImage(trooper, 32, 48, 0, 2)
 o.ChuteImage = LoadImage(chute)
 Return o
 End Function
End Type

TTroops

 TTroops

 contains one function and three methods.
	
 Create

	
 Draw

	
 Update

	
 Landed

Create
This returns an instance of TTroops.

Draw

 Draw cycles through all the TParatrooper instances within the Troopers field variable and draws them onscreen.

Update
This method cycles through all the TParatrooper instances within the Troopers field variable and updates them. Any that have their Destroy field set to True are removed from the list.

Landed

 Landed returns the number of TParatrooper instances within the Troopers field variable that have their HasLanded flag set to True.

 Type TTroops
 Field Image:String
 Field ChuteImage:String
 Field Troopers:TList = CreateList()

 Method Update()
 For t:TParatrooper = EachIn Troopers
 t.Update()
 If t.Destroy
 ListRemove(Troopers, t)
 End If
 Next
 End Method

 Method Landed:Int()
 c:Int = 0
 For t:TParatrooper = EachIn Troopers
 If t.Landed
 c:+1
 End If
 Next
 Return c
 End Method

 Method Draw()
 For t:TParatrooper = EachIn Troopers
 t.Draw()
 Next
 End Method

 Method AddTrooper(val:Int)

 If Rnd(1000) > val
 x:Int = Rnd(768) + 32
 y:Int = -64
 ys:Float = 2
 ''trooper = LoadAnimImage(Image, 32, 48, 0, 2)
 ''chute = LoadImage(ChuteImage)
 Rand(MilliSecs())
 t:TParatrooper = TParatrooper.Create(x, y, ys, Image, ChuteImage)
 Troopers.AddLast(t)
 End If

 End Method

 Function Create:TTroops(trooper:String, chute:String)
 o:TTroops = New Ttroops
 o.Image = trooper ''LoadAnimImage(trooper, 32, 48, 0, 2)
 o.ChuteImage = chute ''LoadImage(chute)
 Return o
 End Function
End Type

 TDome.bmx

 TDome.bmx contains two UDTs: TDome and TBullet.
TBullet

 TBullet

 is the class containing information and methods about each and every bullet fired by the player. TBullet contains one function and two methods, as follows.

Create

 Create returns an instance of the TBullet class.

Draw

 Draw draws the image of the bullet onto the back buffer.

Update

 Update adds the x and y speeds to move the bullet away from the gun barrel and toward the edges. If the bullet reaches the edges and has not hit a target, then it is destroyed.

 Type TBullet
 Field X:Float
 Field Y:Float
 Field XSpeed:Float
 Field YSpeed:Float
 Field Destroy:Int = False
 Field Image:TImage

 Method Draw()
 DrawImage(Image, X, Y)
 End Method

 Method Update()
 x:+XSpeed
 y:+YSpeed

 If x < 0 Or x > 800
 Destroy = True
 End If

 If y < 0
 Destroy = True
 End If
 End Method

 Function Create:TBullet(x:Int, y:Int, xs:Float, ys:Float, img:TImage)
 o:TBullet = New TBullet
 o.X = x
 o.Y = y
 o.XSpeed = xs
 o.YSpeed = ys
 o.Image = img
 Return o
 End Function
End Type

TDome

 TDome

 is the class that represents the player’s gun installation at the foot of the screen. It contains seven fields, one function, and two methods.
The Fields

 	
 Dome: Shape of the dome

	
 Gun: Shape of the gun

	
 Bullet: Shape of the bullet

	
 Rot: The current rotation (from -90 to +90) in degrees

	
 LastFire: Timer used to count the last time the player fired. Although autofire is permitted, the user cannot fire in rapid succession, because there is a gap of 250ms between each shot.

	
 Score: How well the player is doing

	
 Bullets: List of TBullet instances

Create

 Create returns an instance of the TDome class.

Draw

 Draw cycles through all the bullets and draws them first. It then draws the gun at the current rotation and then draws the dome over the top.

Update

 Update updates the position of the bullets and the rotation of the gun.

 Rem
 Class : TDome
 Author : Sloan Kelly
 Purpose : Player object for Paratroops!
game
End Rem
Type TDome

 Const BULLET_SPEED:Float = 4.5

 Field Dome:TImage
 Field Gun:TImage
 Field Bullet:TImage
 Field Rot:Float = 0.0
 Field lastfire:Int
 Field Score:Int = 0

 Field Bullets:TList = CreateList()

 Method Draw()
 SetRotation(0)
 For b:TBullet = EachIn Bullets
 b.Draw()
 Next
 SetRotation(Rot)
 DrawImage(Gun, 392, 576)
 SetRotation(0)
 DrawImage(Dome, 368, 555)
 End Method

 Method Update(controller:IController)
 For b:TBullet = EachIn Bullets
 b.Update()
 If b.Destroy
 ListRemove(Bullets, b)
 End If
 Next

 If controller.DLeft()
 Rot = Rot - 5.0
 If Rot <= -90.0
 Rot = -90.0
 End If
 End If

 If controller.DRight()
 Rot = Rot + 5.0
 If Rot >= 90.0
 Rot = 90.0
 End If
 End If

 Local fired:Int = False

 If controller.Fire(0) And MilliSecs() > lastfire + 250 ' don't want them to fire too quickly!
 lastfire = MilliSecs()
 bx:Int = 388 + (32 * Sin(Rot))
 by:Int = 574 - (32 * Cos(Rot))
 xs:Float = BULLET_SPEED * Sin(Rot)
 ys:Float = -BULLET_SPEED * Cos(Rot)
 b:TBullet = TBullet.Create(bx, by, xs, ys, Bullet)
 Bullets.AddLast(b)
 End If

 End Method

 Function Create:TDome(domesrc:String, gunsrc:String, bulletsrc:String)

 o:TDome = New TDome
 o.Dome = LoadImage(domesrc)
 o.Gun = LoadImage(gunsrc)
 o.Bullet = LoadImage(bulletsrc)
 MidHandleImage(o.Gun)
 Return o

 End Function
End Type

The image below (Figure 18-6) shows how the speed of the bullet is calculated. To get the bullet to move in the right direction, we have to employ a little bit of math.[image: A435551_1_En_18_Fig6_HTML.jpg]
Figure 18-6.Diagram illustrating how the speed of the bullet is calculated

The x speed of the bullet is calculated by multiplying the radius of the barrel (32 pixels) by the sine of the barrel’s angle.
The y speed of the bullet is calculated by multiplying the radius of the barrel (32 pixels) by the cosine of the barrel’s angle.
This means that the bullet travels along the same path that the barrel is pointing. In the preceding example, the bullet would be fired out toward the top right of the screen.
Enter the code as listed previously in the files indicated. Save them all to the SAME folder. You will have to download images for these files. These images are available at
 www.blitzmaxbook.com

 .

Change the pause screen to show the background in a blue shade. Hint: Use SetColor(r, g, b), where r, g, and b are the red, green and blue elements.

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_19

19. Sound Effects and Audio

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

There are a number of audio tools
 out there that will handle WAV and OGG files. The best I have come across so far, and one that is available on Mac, PC, and Linux, is Audacity. Visit the SourceForge web site for more details and download this great product. Best of all is that it’s free!
Currently, BlitzMax can only play back two sound file formats: WAV and OGG.

 WAV

Developed by IBM and Microsoft, this is a format for storing sound in files. Support for WAV files was built into Windows 95, making it the de facto standard for sound on PCs. WAV sound files end with a .wav extension and can be played by nearly all Windows applications that support sound.

OGG

 Ogg Vorbis

 is an audio compression format, comparable to other MP3 or AAC used to store and play digital music, but differs in that it is free, open, and unpatented. The Ogg Vorbis specification is in the public domain and is freely available for commercial and/or noncommercial use. Ogg refers to the Ogg Project, which is an open source multimedia initiative, while Vorbis is the actual compression format.

BlitzMax and Sound

 BlitzMax

 allows for a high degree of control over what sounds can be heard and where they are heard—left, right, or center to the listener. In this chapter, I will discuss the following keywords:
	
 LoadSound

	
 PlaySound

	
 SetChannelVolume

	
 PauseChannel

	
 ResumeChannel

LoadSound

 LoadSound

 loads a sound into memory to a TSound variable. The format for this keyword is

 Variable:TSound = LoadSound(path:String
[,LoopSound:Int=False])

By default, any sound loaded into BlitzMax is not looped.

PlaySound

 PlaySound

 returns a TChannel variable containing the channel the sound is being played on. We use this TChannel variable to control the sound later.

 Channel:TChannel =
PlaySound(sound_variable:TSound)

 SetChannelVolume

 SetChannelVolume sets the volume for the specified channel. The format of the keyword is

 SetChannelVolume(channel:TChannel, volume:Float)

where volume is between 0 and 1.0.

PauseChannel

 PauseChannel

 pauses the playback of the sound on the specified channel. The format of this keyword is

 PauseChannel(channel:TChannel)

ResumeChannel

 ResumeChannel

 resumes the playback of the sound on the specified channel. The format of this keyword is

 ResumeChannel(channel:TChannel)

 BlitzMax Sound
 Example
The following example loads a sound—imaginatively called “music.ogg”—into memory and starts playing it.

 Rem
 Example sound application
End Rem
Graphics 640, 480, 16, 75 ' put in graphics mode for KeyHit()

sound:TSound = LoadSound("music.ogg", True)
channel:TChannel = PlaySound(sound)
curvol:Float = 1
playing:Int = True

While Not KeyHit(KEY_ESCAPE)
 '
 ' Volume down...
 '
 If KeyHit(KEY_DOWN)
 curvol = curvol - 0.1
 If curvol < 0.0
 curvol = 0.0
 End If
 SetChannelVolume(channel, curvol)
 End If

 '
 ' Volume up...
 '
 If KeyHit(KEY_UP)
 curvol = curvol + 0.1
 If curvol > 1.0
 curvol = 1.0
 End If
 SetChannelVolume(channel, curvol)
 End If

 '
 ' Pause
 '
 If KeyHit(KEY_SPACE)
 If playing
 PauseChannel(channel)
 Else
 ResumeChannel(channel)
 End If
 playing:∼True
 End If

 SetColor(255, 255, 255)
 DrawText("Vol: " + (curvol*10), 0, 0)
 If playing
 SetColor(0, 255, 0)
 DrawText("Play", 0, 10)
 Else
 SetColor(255, 0, 0)
 DrawText("Paused", 0, 10)
 End If
 Flip
 Cls

Wend
StopChannel(channel)

Installing Audacity

 [image: A435551_1_En_19_Figa_HTML.jpg]

Launch a web browser and go to
 http://audacity.sourceforge.net/
 . Click the Download Audacity for Windows link. If you have a Mac or Linux, click Other Downloads.
Follow the links onscreen until you get to the Select a mirror page. Click the location nearest you. The file should download automatically. If you have a firewall or Microsoft Spyware filters, you may not be able to download the file without Ctrl+clicking the link.
When you have downloaded the installer, double-click it and follow the instructions. Audacity will be installed on your machine. Using Audacity, record the following three sounds.

Music.Ogg
Take an MP3 file that you own and load it into Audacity. To do this, click File ➤ Open from the menu bar along the top of the screen. Browse to the location where your file is located. Select it and click Open ➤ OK.
The file will load into Audacity, and the wave form will be displayed in the window. The file can be saved as an OGG file by clicking File ➤ Export as Ogg Vorbis…from the menu. Enter the name “music.ogg” and ensure that the location is the same folder as the Paratroops game. Click Save ➤ OK.

 Argh.Ogg and Ugh.Ogg

For these two sounds, we’re going to have a little fun! From the File menu in Audacity, select File ➤ New. This creates a new blank sound file. We’re now going to populate it with our own voice! You will need a microphone connected to your computer for this to work.
Start recording by clicking the circular red Record button. Then, for the falling sound, say “Arghhhhh.” Click the square yellow Stop button. You should have something like that shown in Figure 19-1.[image: A435551_1_En_19_Fig1_HTML.jpg]
Figure 19-1.What the “Arghhhhh” sound looks like in Audacity

There will be a lot of space at either side of the actual sound. To get rid of this, highlight the quiet area by dragging the mouse over the quiet part of the wave (Figure 19-2).[image: A435551_1_En_19_Fig2_HTML.jpg]
Figure 19-2.Deleting whitespace

With this area selected, press the Delete key. Repeat this process for the other side. Once you have a file you are happy with, export to Ogg Vorbis, as described in the preceding “Music.Ogg” section. Repeat this process for an “Ugh” sound.
You should now have three Ogg files in the Paratroops folder. Now it’s time to load them in and start making some noise!

Altering the Paratrooper Game

Reload the files for the Paratrooper game in the previous section.
Add the following lines to the top of the file (just under Type TParatroopGame):

 Field music:TSound = LoadSound("music.ogg", True)
'' loop the music
Field argh:TSound = LoadSound("argh.ogg", False) '
chute hit
Field ugh:TSound = LoadSound("ugh.ogg", False) '
bullet hit

This loads the sounds into memory. Now, we have to play the sounds. Note that the first sound (music) is looped, and the other two are not. This is important, because while the first sound is to be played throughout the game, the other two are spot effects and must not be looped.

Collisions
Alter the
 CheckCollisions() method
 to play a sound when either the parachute is hit (“Arghhhhh”) or the trooper is hit (“Ugh!”).

 Method CheckCollisions:Int(bulletlist:TList,
trooperlist:TList)
 Local sc:Int = 0
 For b:TBullet = EachIn bulletlist
 For t:TParatrooper = EachIn trooperlist
 If Not t.Landed
 If ImagesCollide(b.Image, b.X, b.Y, 0, t.Image, t.X, t.Y, 1)
 b.Destroy = True
 t.Destroy = True
 sc = sc + 5
 PlaySound(ugh)
 End If
 If ImagesCollide(b.Image, b.X, b.Y, 0, t.ChuteImage, t.X-8, t.Y-48, 0)
 t.haschute = False
 b.Destroy = True
 PlaySound(argh)
 t.YSpeed:*1.5
 sc = sc + 10
 End If
 End If
 Next
 Next
 Return sc
 End Method

Playing the Music
To play the music, add the PlaySound line to the
 GameLoop method
 , as follows:

 Method GameLoop()
channel:TChannel = PlaySound(music)
 While Not quitgame
 : :
And at the bottom:
 : :

Wend
 StopChannel(channel)
End Method

And that’s it! Music and sound added to the game!
The music still plays while the game is paused. Can you stop the music temporarily?
What about shooting? Can you make a suitable sound for the firing gun? Where would you load the sound? What event would play the sound?

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_20

20. Putting It All Together

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

In this final chapter, we are going to look at designing a game from scratch and implementing and testing it. In order to do this, you have need to learn a little about the design process, as well as how to implement testing for each individual module. This chapter is divided into the following five sections:
	Game design

	
 Object-oriented design

	Implementing OOP in BlitzMax

	Testing modules

	Project management

We will be creating a game called Flood
 , starring Jasper, a bear. He has bred orchids on a remote island and must save them from the flood. Unfortunately, the island is inhabited by Badbears, who will stop at nothing to thwart our hero’s quest!
The full code for the game, including the graphics and sound, is available to download from the companion web site:
 www.blitzmaxbook.com/
 .

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_21

21. Game Design

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

In this chapter, I discuss getting a game from an idea to storyboards. Once we have the storyboards, we can move onto taking that information and abstracting it. This is part of the object-oriented process that I will detail later.
What’s the Big Idea?
Before we start to code our game, we have to have an idea. Ideas can be high-concept or low-concept. The definition of each concept depends on who you ask. We are going to use the Hollywood method.
High Concept
A high-concept idea

 can be expressed in one phrase: no more, no less. For example:
It’s Pac-Man meets Doom
It’s The Sims meets Mario with a twist of Ridge Racer
This is very similar to some companies adding radios to other devices, such as frying pans. Sometimes it’s so quirky it might work. The last one in particular…

Low Concept
A low-concept idea

 , on the other hand, cannot be expressed in one phrase. It requires a great deal of text. Examples of these games include SimCity, WarCraft, etc.

So What Is Flood?

 Flood
 is a collect-the-items-and-avoid-the-bad-guys game. This type of game has been popular since Donkey Kong. If you wanted a high-concept tag line,“It’s Donkey Kong in the jungle, with bears and orchids.” That pretty much sums up Flood!

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_22

22. Storyboarding

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

Before we start writing detailed ideas about the game, we should draw up some concepts first. For example, what will the screen look like? Where is the score lives text? Where will the platforms go? What about the bad guys? How will the wave work?
Figure 22-1 illustrates some concepts

 for the game that I roughed out of an evening.[image: A435551_1_En_22_Fig1_HTML.jpg]
Figure 22-1.Some rough concepts for the game

I initially called it “Sinking Ship” and thought about global warming and ice caps…The mind does tend to wander. Once you play Flood, you’ll realize that I changed the concept from sinking ship to flooding jungle. There was a very simple reason for that—graphics. The only graphics

 I could lay my hands on were for a jungle setting. This meant that the game’s setting had to change. Other than that, though, the rough idea for the game remained. The right-hand column contains some notes about gravity and its effect on our main character—Jasper. The name “Baddie” appears later too. I also started to rough out the fields required for the objects.
Writing a Specification for a Game
When you write a specification for a game, you are defining the game world that your characters will inhabit. It should list all the events that can occur and what should be done when the event is triggered. Remember that it is possible that a nonplayer character can trigger an event. The sample specification below is for Flood.

Flood Game Specification
Introduction
Flood is a game for one player, using either the keyboard or joystick for movement. The object of the game is to collect the flashing orchids from around the screen. Two problems confront the player: roaming enemies on the platforms and a rising water level.
The roaming enemies

 cannot be damaged, and their touch sends the player’s character spinning randomly about the screen and to his death. The player starts with five lives. When all five lives are exhausted, the game is over.
The water level rises from the bottom of the screen, and if the player’s character goes beneath the level of the water, he is killed. Likewise, if an orchid falls beneath the level of the water, it is destroyed and cannot be collected.
To complete a level, the player must collect all the orchids on the screen and reach the end marker before the water level rises above the head of his/her character.

The Screen

The game screen is divided by platforms. The ground at the bottom is the main platform. The top platform has a gap, as if the middle platform sank at some point. The two side platforms are between the middle and ground platforms (Figure 22-2).[image: A435551_1_En_22_Fig2_HTML.jpg]
Figure 22-2.Flood game screen

The score will be displayed at the top left of the screen, and, at the top right, the number of lives remaining. It is possible to add branding to the lower right-hand area.

Main Actor—“Jasper”
The player character

 can move in two directions—left and right. He can jump onto platforms and over enemies. The player should not be hindered when jumping through a platform. It is only solid when the player lands on it. See the following diagram (Figure 22-3).[image: A435551_1_En_22_Fig3_HTML.jpg]
Figure 22-3.A platform stops the player character (Jasper) from falling

In this time-lapsed image
 , we see Jasper falling. He must stop when he hits the green-top of the platform. Similarly, he can “jump-through” the platform from below (Figure 22-4).[image: A435551_1_En_22_Fig4_HTML.jpg]
Figure 22-4.The player character
 (Jasper) can jump up through a platform

In this instance, Jasper jumps through the platform to land safely on top.

 Enemies

There is only one enemy type in this game, and it patrols the following four platforms:
	Ground

	Left-bottom

	Right-bottom

	Middle

The patrol area for the enemy is limited to the length of the platform it patrols. The enemy can only move from left or right (Figure 22-5).[image: A435551_1_En_22_Fig5_HTML.jpg]
Figure 22-5.The enemy can only move from left to right

When an enemy touches Jasper, the player loses a life, and Jasper spins and moves around the screen randomly. This is nicknamed the “death rattle.”

The Wave
The wave

 is initially configured by the user when he or she sets the level of difficulty. There are four levels of difficulty, and this equates to the number of milliseconds in which the wave rises up the screen by 1 pixel. The levels are
	250ms

	200ms

	150ms

	50ms

The Orchids

There are six orchids

 onscreen that the player must collect to complete the level. They are located as shown in the following diagram (Figure 22-6).[image: A435551_1_En_22_Fig6_HTML.jpg]
Figure 22-6.Location of the orchids

The player collects 100 points by collecting an orchid. This is achieved by running into it. Once an orchid has been collected, it is removed from the screen.

 Entities

From this specification, we can determine that there are a number of entities. An entity is an element of the game, for example, the player character, enemy, orchid, etc. In Flood, the following entities have been identified:
	Player

	Enemy

	Platform

	Wave

	Orchid

Next Steps
The next step is to translate that specification into an abstract, using processes contained within the Unified Modeling Language (UML
). The entities that are identified in the preceding section will be abstracted within the UML to create class diagrams. We may have to bring in other classes, such as our reusable IController class from before.

Object-Oriented Design
In this section, we will look at the role of object-oriented design in the context of video game development.

 Introduction

In the early days of computing, people pretty much backed together solutions. These programs worked well enough but were virtually unmaintainable. There was no way you could go back to a program to try and fix a bug. It was, in fact, cheaper to scrap the code and start again.
As was mentioned in Chapter 9, reusability is important to software engineers and games programmers especially. With tighter and tighter deadlines being imposed, it is imperative to reuse code. This is where UML comes into play.

 UML

 is the brainchild of the “Three Amigos”: Grady Booch, James Rumbaugh, and Ivar Jacobson. They worked in separate organizations through the 1980s and 1990s, each devising his own methodology for object-oriented analysis and design. By the mid-1990s they decided to get together to create a unified modeling language.
UML is used by every major corporation, from Microsoft to IBM and Rational. In fact, the latter was bought by IBM because of its extensive ties to UML.
There are a number of components within UML, but we will be dealing with just two: use cases and class diagrams.

Use Cases
The specification that you get from a customer or an in-house designer may not be as complete as you would like. In order to go back to them and ask the question “Is this what you want?” we have to refine our ideas with documents called use case. Each use case represents a particular event that can occur within the system. So, for example:
	What happens when the player hits the boundaries of the screen?

	What happens when the player hits a platform?

	What happens when the player hits an enemy?

What Is a Use Case
 ?
A use case document is a collection of scenarios, and each scenario is a sequence of steps. For each scenario, we want to show the following:
	A brief description of the scenario (“Player Boundaries”)

	Assumptions for the scenario (“User can move in two directions and jump”)

	The entity who initiates the use case (“Player”)

	Preconditions for the use case (“The player has moved”)

	Post-conditions for the use case (“Player is barred from moving left”)

The format for a scenario is shown below:
	UC-XXX Title of use case

	Abstract:

	Assumptions:

	Actor:

	Preconditions

	Post-conditions:

	Description:

The “XXX” represents a three-digit number, usually starting from 005 and going up in increments of five (005, 010, 015, etc.). You can group use cases together too, so, for example, all use cases referring to the Player might begin 1XX, the enemy 2XX, and so on.
The Title is fairly straightforward and can be used instead of the Abstract, so long as the Title is unambiguous and performs the same as the abstract.
The Abstract allows the author of the use case to give a brief overview of what is happening in the given scenario.
Assumptions allow the author to detail the items that are assumed to be correct. This is an important section, because assumptions can lead to complications later on. A programmer should read this section carefully!
An Actor in a use case is the same as an entity. It is a real-world object that can refer to the user, a (sub-) system or an external-to-the-system entity, such as a web server. The actor(s) supplied in this section are affected by the use case.
The Preconditions section
 lists all the conditions that must be met before the scenario can be stepped through.
The Post-conditions section lists all the conditions that will be met once the scenario has been stepped through.
The Description tells the programmer what must be done in a sequence of steps.

Sample Use Case
The following is a sample use case for the collision-detection system for the player. There are five scenarios:
	UC-100 Player Movement

	UC-105 Jumping

	UC-110 Falling

	UC-115 Enemy Collision

	UC-120 Orchid Collision

The first (Player Movement) is shown in Figure 22-7.[image: A435551_1_En_22_Fig7_HTML.jpg]
Figure 22-7.My use case for Flood

The actual code in BlitzMax is

 '
' The player can only go left if they haven't hit
the left-edge of the screen and they are
' not jumping or falling
'
If ctrl.DLeft() And x > 0 And Not jumping And Not falling
 x = x - xspeed
 dir = 1
Else
 nohitleft = True
End If
'
' The player can only go right if they haven't hit the right-edge of the screen and they are
' not jumping or falling
'
If ctrl.DRight() And x < GraphicsWidth() - 34 And
Not jumping And Not falling
 x = x + xspeed
 dir = 2
Else
 nohitright = True
End If

Note that the code contains the following preconditions of the use case:
	Player is not jumping

	Player is not falling

The boundaries are also being checked in the
 IF statements
 . The first tests to see if the current X value is greater than zero and, if so, allows the player to move left. The second tests to see if the current X value is less than the width of the screen minus the width of the sprite—in this case, 34 pixels.
None of this information is known to the author of the use case.
They are writing what should happen, but not how it should happen. The use case should be kept clean with respect to technologies and/or implementation language. The same use case can be used equally well within a Java application
 running on a mobile phone or on a desktop computer.
Take a look at the following use case for “Jumping” (Figure 22-8):[image: A435551_1_En_22_Fig8_HTML.jpg]
Figure 22-8.Use case for “Jumping”

Write the use case scenario for platform collision based upon the game specification discussed earlier in this chapter. Remember the following:
	Gravity is a constant, so the player is always being pulled to the ground.

	The player should always land on top of the platform.

	The player can jump through a platform, so colliding a platform at the side should not be counted as hitting the platform.

What Is the Purpose of Use Cases?
Use cases allow the lead developers to tell their staff what has to be handled in the gaming universe the designers created. A class diagram, as we see, shows us what classes must be developed, but a use case tells us what events we have to code for.

 Class Diagrams

A class is an abstraction of a real-world object. By abstraction, we mean that we have removed the physical portions of the entity and kept its attributes (things that define the entity) and actions (things the entity can do). Actions in object-oriented design are called methods.
In UML, a class is represented by a rectangle divided into three sections as shown following (Figure 22-9):[image: A435551_1_En_22_Fig9_HTML.jpg]
Figure 22-9.Representation of a class in UML

The first area is the class name. This is usually written in boldface. The attributes are listed in the next area, and, finally, at the bottom are the methods. The attribute and method boxes are optional and can be omitted. UML allows the author to be flexible in the amount of information that is shown in a diagram. Also, you do not have to show all the attributes and/or methods for a particular class.
The class diagram can be enhanced by describing the attributes and methods in greater detail. So, for example, you may have the following (Figure 22-10):[image: A435551_1_En_22_Fig10_HTML.jpg]
Figure 22-10.
 Enhanced class diagram

Have you noticed that the types are separated from the attributes/methods by a colon? Isn’t that similar to how BlitzMax makes you declare variables/fields/methods/functions? I think that Blitz Research spent a lot of time with these diagrams and decided to use them as a template when it came to defining the BlitzMax language.
The plus (+) and minus (-) signs

 indicate the scope of the attribute/method. A plus sign indicates that the item is exposed to anything outside of the class. A minus sign indicates that the item is internal to the class and is not visible outside. A class diagram is composed of the following:
	
 Entity: A real-world object

	
 Class: An abstraction of a real-world object

	
 Attribute: Something that describes the entity

	
 Method: Something that an action does

A DVD Recorder
A DVD recorder
 has a number of attributes—things that describe it—and a number of actions or methods that it can perform. These can be listed as:
	
 Attributes
 	Is Playing?

	Is Recording?

	Start Time of recording

	End Time of recording

	
 Methods:
	Eject disc

	Play disc

	Stop playback

	Move to the next chapter

	Move to the previous chapter

	Show the menu

	Record

In UML
 , this is drawn as a class diagram. A class diagram is a rectangle split into three areas. The top area is the name of the class (DVDRecorder); the middle area lists the attributes of the class; and the bottom area contains the list of methods. Note in this particular diagram there are plus (+) and minus (-) signs. This indicates the scope of the attributes and methods. A plus indicates that the attribute/method is public, and the minus indicates that the attribute/method is private. In the following diagram (Figure 22-11), all the attributes are private.[image: A435551_1_En_22_Fig11_HTML.jpg]
Figure 22-11.Class diagram for DVDRecorder

What other attributes or methods do you think we could add to our DVD recorder? Should our recorder be able to record on an ad hoc basis too? What other method would be required?
Our Jasper character has the following attributes:
	
 x

	
 y

	
 score

	
 yspeed

	
 xspeed

	
 starty

	
 lives

	
 ctrl

These attributes describe the x and y coordinates, score, vertical speed, horizontal speed, the start y coordinate of the jump, number of lives, and controller used for the player character.
The main character has the following methods:
	
 Reset

	
 Update

	
 Draw

	
 Create

Draw the class diagram for the Jasper character. Call the class TPlayer and add the attributes and methods in the preceding list to it.
A class diagram only indicates a single entity, but in our object-oriented world, classes mix with each other. We need some way to show how each class relates to each other.

Class Relationships
We know that we can encapsulate other classes within each other and inherit classes from a parent class, using inheritance. We have seen this in BlitzMax. To show this in a class diagram, we draw lines between two classes representing the relationship.

 Encapsulate “to contain within.” Encapsulation is a fundamental part of object-oriented design. Attributes should not be accessible outside the method and should provide “getter” and “setter” methods to access them. This is not necessarily true in BlitzMax, however, because fields are by default visible outside the UDP-based Data Transfer (UDT).
Aggregation and Composition

 Aggregation and composition

 occur when an instance of a class contains an attribute that is an instance of another object. The two types are shown following (Figure 22-12):[image: A435551_1_En_22_Fig12_HTML.jpg]
Figure 22-12.Class diagram showing aggregation (left) and composition (right)

On the left is aggregation, with the white diamond representing the class containing the instance of the “partial class.” The partial class, in this case, can be shared with any number of classes. On the right is composition, wherein the partial class can only be part of whole class.

Aggregation
Aggregation is represented by placing an outline diamond beside the aggregate class. Your computer system is an example of aggregation. It can contain a monitor, disk drives, CD-ROM drive, printer, keyboard and/or mouse. But these components can be shared with other computers too. For example, if you have a laptop, you can take your mouse with you on the go, and use it with the laptop. This can be represented in a class diagram, as follows (Figure 22-13):[image: A435551_1_En_22_Fig13_HTML.jpg]
Figure 22-13.Class diagram of mouse aggregation with desktop and laptop

The Mouse class is contained within both the DesktopPC class and the NotebookPC class.
Aggregation is read as “Has a.” So, “DesktopPC has a Mouse” and “NotebookPC has a Mouse” are valid statements. UML diagram relationships are bidirectional, unless arrowheads are used.

Composition
Composition is represented by a black diamond. Composition implies that the main object is only whole when composed of child classes. Take, for example, a shirt. It is comprised of two arms, a body, collar, and cuffs. In an object diagram, “Shirt” could be represented by the following (Figure 22-14):[image: A435551_1_En_22_Fig14_HTML.jpg]
Figure 22-14.Class diagram for a hypothetical Shirt class

The diagram only shows that Shirt has to contain Arm, Collar, and Cuff. It does not show how many items of each are required. This is called multiplicity.

Multiplicity
Not only can we show the relationship between certain classes, but we can also show how many classes can be aggregated or composed with a particular class. This is shown by writing numbers and stars (*) and even two periods (..), to show the multiplicity of an aggregate or composite class. Taking another look at our Shirt example, we can use multiplicity to indicate the required number of each item that makes up our shirt (Figure 22-15).[image: A435551_1_En_22_Fig15_HTML.jpg]
Figure 22-15.Using multiplicity to indicate numbers of items in aggregated classes

It is assumed for the time being that there is only one shirt, although we can explicitly place the value 1 beside the black diamond, if we desired. Other valid multiplicities are as follows (Figure 22-16):[image: A435551_1_En_22_Fig16_HTML.jpg]
Figure 22-16.Class diagram showing additional valid multiplicities

In the preceding examples, I have included the diamond multiplicities, but they need not be included.

Naming the Attribute
It is also possible to name the attribute that the parent class calls the instance of the class it aggregates/composes, as in the following illustration (Figure 22-17):[image: A435551_1_En_22_Fig17_HTML.jpg]
Figure 22-17.Class diagram naming the attributes of the parent class

From the preceding class diagram, we can see that the Shirt class contains three attributes:
	
 itsArms

	
 itsCollar

	
 itsCuffs

We can also see that itsArms and itsCuffs include a list of the classes associated with the attributes, because the multiplicity states that there must be two each of Arm and Cuff.
Take a look at the following class diagram (Figure 22-18). It represents the old proverb “A bird in the hand is worth two in the bush.”[image: A435551_1_En_22_Fig18_HTML.jpg]
Figure 22-18.Class diagram representing the proverb “A bird in the hand…”

Draw a class diagram for each of the following:
	“Every cloud has a silver lining”

	“Cat of Nine Tails”

	“Six of one, half a dozen of the other”

	“Two’s company; three’s a crowd”

 Inheritance

Inheritance is depicted by a triangular arrowhead. This arrowhead points to the base class. One or more lines proceed from the base class to the derived classes, as shown in the following diagram (Figure 22-19).[image: A435551_1_En_22_Fig19_HTML.jpg]
Figure 22-19.Diagram depicting inheritance

Although we do not explicitly place the
 foo() method
 in Class2, it is inherited from base Class1. We can also have detailed inheritance hierarchies, as expressed in the following diagram (Figure 22-20):[image: A435551_1_En_22_Fig20_HTML.jpg]
Figure 22-20.Class diagram of detailed inheritance hierarchies

The base class Animal is inherited by Mammal and Avian. Both classes inherit all the methods of Animal. In this case, the walk() method is inherited, so all their descendants also have this ability. The individual classes can either keep the method as is or redefine it, as required. But: They must implement some form of walk() method.
Draw inheritance diagrams for the following entities: Vehicle, Aircraft, Car, Boeing 747, Ford Fiesta.
Add the following methods, where appropriate: startEngine(), takeOff(), land(), indicateLeft(), indicateRight(), stopEngine().

Summary
Use cases allow us to tell the story for each and every event. These are fed into the class diagrams and become operations.
Class diagrams detail the relationship between each of the classes within our game. We can contain optional data too, such as attributes and operations (methods).
Aggregation is used in a class diagram to show classes that contain instances of generic classes as attributes. These classes are available for reuse within any other class. Aggregation is shown using the outline diamond and can include multiplicity metrics.
Composition is used in a class diagram to show classes that contain instances of classes as attributes. These classes that are contained in the parent cannot be used elsewhere. Composition is shown using the black diamond and can include multiplicity metrics.
Inheritance shows a class that has derived from a base class, using a triangle pointing to the base class and a line extending to the derived class.

Implementing OOP in BlitzMax

As we have discovered, there are only five entities in our game:
	Player

	Enemy

	Platform

	Wave

	Orchid

There are a number of “hidden” entities that we have not discussed—until now. These represent the menus and the actual game engine itself. The following class diagram (Figure 22-21) represents our game so far:[image: A435551_1_En_22_Fig21_HTML.jpg]
Figure 22-21.Class diagram representing our game up to this point

We will now examine these five classes and refine the requirements piece by piece until we are satisfied that we have defined all the classes that we require. Once this process has taken place, we will be in a position to convert the class diagram to UDTs.
Were Do We Get the Methods From?
The methods come from our previous work. Each playable object (either by the user or the computer) must be drawn, updated, reset, and created. I have included these operations in the class diagrams below.

Player
The Player class is fairly straightforward, and we will only be renaming this to fit in with BlitzMax convention. This means that the Player entity will become the TPlayer UDT (Figure 22-22).[image: A435551_1_En_22_Fig22_HTML.jpg]
Figure 22-22.
 Player class diagram

Enemy
The
 Enemy class
 represents a single enemy’s position. We will have several enemies onscreen at any one time, and this means that a single class will not do. We can use the Enemy class as a starting point. I also don’t like the name “Enemy,” so we are going to rename the classes that represent these as “Baddie” (Figure 22-23).[image: A435551_1_En_22_Fig23_HTML.jpg]
Figure 22-23.Class diagrams for the “baddies” (enemies)

Now we have two classes. One represents each individual baddie (TBaddiePos), and the other is a container class, called TBaddies, that handles the creation, update, and drawing of each of the baddies.

Platform
The
 Platform class
 is much like the Enemy class, in that we require lists of these objects, not just single entities. I propose that we create a new class called
 TPlayScreen

 that handles the creation and drawing of these platforms (Figure 22-24).[image: A435551_1_En_22_Fig24_HTML.jpg]
Figure 22-24.Class diagram of the
 TPlayScreen class

This is based on our knowing that the graphic artist has provided us with a bitmap containing a list of blocks. We will have to draw the blocks onscreen individually, one block at a time, to simulate solid platforms. This will be done using the Setup() method.

Orchid
The
 Orchid class
 like the Platform and Enemy classes requires a holding class. There is a distinct pattern forming here (Figure 22-25).[image: A435551_1_En_22_Fig25_HTML.jpg]
Figure 22-25.Diagram of class Orchid and its holding class

Note that some or all of the methods have appeared in previous classes. What could we do to marshal all that effort? There’s a lot of duplication. What if we created a base class? What if we abstracted the positional information? Remember TVector2 from our Tank Attack game?
The TOrchids class contains an attribute called list that contains a list of TOrchidPos.

Wave
The Wave class is fairly simple and other than the name change, to Twave, we will not alter anything else (Figure 22-26).[image: A435551_1_En_22_Fig26_HTML.jpg]
Figure 22-26.

 TWave class diagram

Putting It All Together
Putting all these classes together gives us a new class diagram (Figure 22-27). I have included another object called TFloodGame. This object will control our game.[image: A435551_1_En_22_Fig27_HTML.jpg]
Figure 22-27.Diagram of all the classes in the Flood game

TFloodGame
We know from this diagram that TFloodGame contains the following methods:
	
 Draw

	
 Update

	
 MainLoop

	
 Create

 TFloodGame also contains the following attributes:
	
 Screen

	
 Baddies

	
 Orchids

	
 Wave

	
 Player

Note that we still have five main classes! Isn’t OOP wonderful? Although we have nine classes now, we still only have five main entities!
A main program is required to instantiate the TFloodGame class and to display menus/help screens, as we have done in previous projects.
We can see from this section so far that as we break the problem down into smaller chunks, we are making the program implementation (the coding) easier. This is because we are telling the developer what to code, what objects interact with other objects, etc.

Converting Class Diagrams to UDTs
Now that we have our class diagram for Flood, we have to convert this to UDT. To do this, we should refine the class diagram further, adding parameters and function returns.
Taking
 TPlayScreen

 as an example, we can redraw the diagram as shown in Figure 22-28.[image: A435551_1_En_22_Fig28_HTML.jpg]
Figure 22-28.Class diagram redrawn with new paramaters and functions

The
 Create method
 has been underlined to indicate that it is part of a class definition and not part of an instance. In BlitzMax, this means that this operation is implemented as a function and not as a method.
An underlined operation (SomeOperation()) is implemented in BlitzMax as a function. All other operations (non-underlined) are implemented as methods in BlitzMax.
The parameters can be marked as in, out, or in/out. To implement out and in/out in BlitzMax, we use the Var keyword to indicate that a parameter is being passed by reference. Remember that by default, all parameters are passed by value.
See Chapter 6, on using functions, for details on the Var keyword. Again, I have taken some liberties here with the required parameters. We know that the screen requires blocks to display platforms and that an end marker is needed. We are assuming here that the path to these image files will be passed to the creation method. If we don’t know the exact parameters at design time, we could use the following:
	+Create() : TPlayScreen

This operation could be used if the parameters are unknown.
Stub Code for TFloodGame

I have included empty code for the TFloodGame annotated, to show the various attributes and methods. This is not the full implementation, as only the attributes, methods, and functions definitions are shown. There is no code between the blocks!

 Type TFloodGame
 Field screen:TPlayScreen
 Field player:TPlayer
 Field baddies:TBaddies
 Field orchids:TOrchids
 Field wave:TWave

These are the instances of the classes in our class diagram. Note that there are no initial values set for these fields. We will implement this in the Create function later. Note also that these are the only fields that are listed in the class diagram.

 Field background:TImage

The background field is used to store the jungle backdrop image that is placed behind all the platforms, baddies, orchids, and Jasper. We could have left it with a black background, but I thought that a backdrop would be nice.

 Field wavespeed:Int = 275
Field levelid:Int = 0
Field doDeath:Int = False
Field endoflevel:Int = False
Field flushch:TChannel
Field flushplaying:Int = False

The preceding fields cover some housekeeping for our game engine. For example, we have to keep tabs on the current level (levelid), the speed of the wave rising (wavespeed), and whether the player is in the throws of death (doDeath).

 Field ctrl:IController

The
 ctrl field
 holds an IController derived class for our controller—either joystick or keyboard. The IController class is from Chapter 17.

 Method DrawOutline(str:String, x:Int, y:Int,
r:Int, g:Int, b:Int)
End Method

The
 DrawOutline method
 is used to draw text onscreen. It was used in our Paratrooper game to print text onscreen with a black outline. We have reused it here for the same effect.

 Method DoLevelMessage(levelid:Int, top:Int)
End Method

A simple “Get Ready!” text excites the player and prepares him/her for the next level.

 Method DoGameOver(top:Int)
End Method

 DoGameOver

 displays the “Game Over!” message to the player.

 Method Draw()
End Method

The Draw method is called by the
 MainLoop method
 . Draw calls all the objects’ draw methods.

 Method Update:Int()
End Method

The
 Update method
 is called by the MainLoop method. Update calls all the objects’ update methods.

 Method MainLoop()
End Method

The engine for this game is the MainLoop method. It is called by the main program after creating an instance of the object. Once called, the method initializes the variables and objects for the game and then falls into a loop to update the objects and display the characters and text onscreen.

 Function Create:TFloodGame(flushsound:String,..
 blocks:String, ..
 tree:String, ..
 endmarker:String,..
 background:String,..
 jasper:String, ..
 jumpsound:String,..
 baddies:String, ..
 arghsound:String,..
 orchid:String, ..
 orchidsound:String, ..
 wave:String, ..
 ocean:String, ..
 wavespeed:Int, ..
 ctrl:IController)
End Function

The Create method is called by the main program to instantiate an instance of the TFloodGame class (UDT). The MainLoop method is then called, and the game begins on Level 1.

 End Type

Testing Modules
The other advantage of structured design
 using OOP is that you can test modules on their own, without having to write the entire program first. The first module I wrote was TWave, to see what the flood wave would look like. The code for the module is shown following:

 Rem
 UDT : TWave
 Author : Sloan Kelly
 Date : 2005-08-31
 Description :

UDT for the wave in the game "Flood". The wave moves up the screen at a predetermined rate 'speed'. The crest of the wave moves from left to right. It makes the wave look a little more realistic than a static pointy blue thing moving up the screen.

The start x-coordinate is offset to -64 (the width of the crest is 128). This is because we are using a little trick here. The x co-ordinate is increased until x = 0, we then reset it back to -64.

The user gets the appearance that the wave is moving from left to right.

End Rem
Type TWave
 Field crest:TImage ' Image file containing the crest of the wave
 Field ocean:TImage ' Image file containing the body of the wave
 Field crestx:Int = -64 ' Offset for the x-coordinate of the wave
 Field cresty:Int = GraphicsHeight() ' Top of the wave - initially the bottom of the screen
 Field crestspeed:Int = 25 ' Speed in milliseconds for each increment of x-
 Field speed:Int = 250 ' in millisecs ' Speed of the wave, the increment of y-
 Field crestcount:Int = MilliSecs() ' Counter for the crest movement (x-coord)
 Field speedcount:Int = MilliSecs() ' Counter for the flood movement (y-coord)
 '
 ' Method : Reset
 ' Description : Resets the wave to the starting values. Used when a player dies or when a new level
 ' is reached
 '
 Method Reset(newspeed:Int = 250)
 crestx = 0
 cresty = GraphicsHeight()
 crestspeed = 25
 speed = newspeed
 crestcount:Int = MilliSecs()
 speedcount:Int = MilliSecs()
 End Method

 '
 ' Method : Update
 ' Description : Updates the x- and ycoordinates based upon the speeds above. The wave
can only get to
 ' 48 pixels from the top of the screen. The player would be killed by the wave by then
 '
 Method Update()
 '
 ' Update the crest - move it from left to right
 '
 If MilliSecs() > crestcount + crestspeed
 crestcount = MilliSecs()
 crestx = crestx + 1
 If crestx > 63
 crestx = -64
 End If
 End If
 '
 ' Update the y-coord of the flood
 '
 If MilliSecs() > speedcount + speed And cresty > 48
 speedcount = MilliSecs()
 cresty = cresty - 1
 End If

 End Method

 '
 ' Method : StartFlush
 ' Description : For future expansion
 '
 Method StartFlush()
 ' for future
 ' expansion
 End Method

 '
 ' Method : FlushUpdate
 ' Description : This is the alternative "Update" when the user completes a level, the water is flushed
 ' out of the screen. This updates the position of the water level in the flood.
 '
 Method FlushUpdate:Int()

 If MilliSecs() > crestcount + crestspeed
 crestcount = MilliSecs()
 crestx = crestx + 1
 If crestx > 63
 crestx = -64
 End If
 End If

 cresty = cresty + 1
 If cresty > GraphicsHeight()
 Return 1 ' tell the calling routine we're finished
 Else
 Return 0 ' tell the calling routine we're NOT finished
 End If
 End Method

 '
 ' Method : TileOcean
 ' Description : Fills in the rest of the screen with 'ocean'. I tried to use 'TileImage' (in-built
 ' keyword) with no success.
Wrote this instead, it does exactly what TileImage should
 ' do!
 '
 Method TileOcean()
 For y:Int = cresty+32 To GraphicsHeight() + 32 Step 32 ' Height of crest is 32px, so draw below that on-screen
 For x:Int = 0 To GraphicsWidth() Step 32
 DrawImage(ocean, x, y)
 Next
 Next
 End Method

 '
 ' Method : Draw
 ' Description : Draws the crest and ocean on-screen.
 '
 Method Draw()
 blend:Int = GetBlend() ' capture the blend mode
 SetBlend(ALPHABLEND) ' only want to see a big thru the ocean
 SetAlpha(.6) ' so 60% is ok
 For x:Int = crestx - 64 To GraphicsWidth() + 64 Step 64
 DrawImage(crest, x, cresty)
 Next
 TileOcean()
 SetBlend(blend) ' reset the blend mode
 SetAlpha(1) ' reset the alpha (should always be 1)
 End Method

 '
 ' Function : Create
 ' Description : Creates a TWave object and passes it back to the calling routine
 '
 Function Create:TWave(crest:String, ocean:String, speed:Int)
 o:TWave = New TWave
 o.crest = LoadImage(crest)
 o.ocean = LoadImage(ocean)
 o.speed = speed
 Return o
 End Function

End Type

Enter the code for TWave exactly as written and save it to your BlitzMax project folder Flood. Create Flood if you haven’t done so already. Call the file TWave.bmx. We will use this file in the next section.

Testing the Code
A computer program is a complex machine. There are a number of moving parts in its construction, each of which must be tested before we start bolting them together. Because we have modularized the code by creating different classes (UDTs), we can test each one individually.
The code that we develop to test each module on its own is called stub code. Stub code will not form part of the completed program and is usually thrown away when development is completed.

Creating Stub Code

 Stub code
 is a short program that will allow us to run through the functionality of any class or function, without having to place it into a larger program. This approach to software development leads to fewer headaches later because
	Each module/class can be tested as a single entity. This type of test is called a unit test.

	Small problems—bugs—can be spotted at an earlier stage of production. The earlier you catch a bug, the less it will cost to fix!

	Stub code can be seen as prototyping the main functionality.

The stub code for the TWave UDT is shown below:

 Graphics 640, 480, 16, 75

Incbin "gfx/background.jpg"
Incbin "gfx/wave.png"
Incbin "gfx/ocean.png"

wave:TWave = TWave.Create("incbin::gfx/wave.png",
"incbin::gfx/ocean.png", 100)
background:TImage =
LoadImage("incbin::gfx/background.jpg")

While Not KeyHit(KEY_ESCAPE)
 wave.Update()
 DrawImage(background, 0, 0)
 wave.Draw()
 Flip
 Cls

Wend

I have highlighted the important lines in the code to show that you do not need a large amount of code to test modules/classes.
Open up the
 TWave.bmx file

 and enter the stub code at the bottom of the file. Save the file. When you run the application, you should see the wave traveling up the screen.
Using the
 TPlayScreen.bmx file
 , create stub code to display the play screen. Save the file.

© Sloan Kelly 2016
Sloan KellyBlitzMax for Absolute Beginners10.1007/978-1-4842-2523-3_23

23. Project Management

Sloan Kelly1
(1)Niagara Falls, Ontario, Canada

So far, we have looked at programs that appear as one single file.
While this is suitable for the lone bedroom coder, it is not acceptable from a team-coding point of view. In BlitzMax
 , there is a way to write code in a team environment without everyone working on the same file.
Using the Include Keyword
The Include keyword allows you to bring in other people’s code to be compiled with your project. In our case, we are working on a game called Flood
 that has a number of components (UDTs) that we can quite easily pass out to other developers. To bring the code back into our main program, we use the Include keyword.
Open the
 TWave.bmx file
 with the stub code attached to it. Take a copy of the stub code and create a new file. Paste the stub code into the new file and delete it from the
 TWave.bmx file
 . At the top of the new file, add the following line:

 Include "TWave.bmx"

When including a file make sure you spell the name correctly and include its extension, ".bmx" in this case. You should have the following code in your new file:

 Include "TWave.bmx"
Graphics 640, 480, 16, 75
Incbin "gfx/background.jpg"
Incbin "gfx/wave.png"
Incbin "gfx/ocean.png"
wave:TWave = TWave.Create("incbin::gfx/wave.png",
"incbin::gfx/ocean.png", 100)
background:TImage =
LoadImage("incbin::gfx/background.jpg")

While Not KeyHit(KEY_ESCAPE)
 wave.Update()
 DrawImage(background, 0, 0)
 wave.Draw()
 Flip
 Cls
Wend

Save the file as TWave_Stub.bmx and run the new file. You should get the same output as before: a wave slowly creeping up the screen. In the finished game, the main file is called
 FloodTheGame.bmx

 , and it contains the following lines:

 Include "udts/TBlock.bmx" ' The platform blocks
Include "udts/TWave.bmx" ' The rising tide
Include "udts/TOrchidPos.bmx" ' Orchid position
Include "udts/TOrchids.bmx" ' All the orchids
Include "udts/TBaddiePos.bmx" ' Baddie position
Include "udts/TBaddies.bmx" ' All the baddies
Include "udts/TPlayScreen.bmx" ' The actual screen - displays all the blocks
Include "udts/TPlayer.bmx" ' Jasper - our hero
Include "udts/TFloodGame.bmx" ' The game engine
Include "udts/TMenuScreen.bmx" ' The menu
Include "udts/THelpScreen.bmx" ' Help!
Include "udts/IController.bmx" ' The infamous game controller

When the program is compiled, BlitzMax ensures that these files are compiled as if they were part of the program.
Be aware that if you mistakenly declare two items of the same name in two separate include files, you will have to track the problem down and change one of the item’s names. You will get a compilation error if BlitzMax detects a variable being re-declared.

Advantages of Using the Include Keyword

The obvious advantage is that code can be developed by a number of programmers, and quick empty code can be used when there has yet to be code developed. It also makes your program easier to read, because you won’t have to scroll past page after page of UDT definitions.

Embedding Binary Resources
As a BlitzMax developer, you can also embed binary resources
 , such as sound, image, and font files, to your executable. To do this, you use the IncBin keyword.
The IncBin Keyword

To embed a binary file into your executable, you use the IncBin keyword. The format of this keyword is

 IncBin <path to file>

where <path to file> is a known path. This can be a relative path (using ../images/sprite.png) or an absolute path (such as C:\images\sprites\player1.png). So, for example, you could use the following:

 Incbin "gfx/background.jpg"
Incbin "gfx/wave.png"
Incbin "gfx/ocean.png"
wave:TWave = TWave.Create("incbin::gfx/wave.png",
"incbin::gfx/ocean.png", 100)
background:TImage =
LoadImage("incbin::gfx/background.jpg")

When we reference the file later, we put incbin:: in front of the path to the file. This ensures that we are referencing the copy contained within our executable, as follows:

 background:TImage =
LoadImage("incbin::gfx/background.jpg")

Appendix A: Web Site Addresses

 All code and graphics used within this book are available for download from

 www.blitzmaxbook.com/

 (Figure
 A-1
).
 [image: A435551_1_En_BookBackmatter_Figa_HTML.jpg]
Figure A-1.

 BlitzMax web site

 (Blitz Research Limited © 2011)

 To order a copy of BlitzMax, or to join the BlitzMax development community, visit

 www.blitzmax.com/

 (Figure
 A-2
).
 [image: A435551_1_En_BookBackmatter_Figb_HTML.jpg]
Figure A-2.

 BlitzMax web site

 (Blitz Research Limited © 2011)

Appendix B: BlitzMax Key Codes

 For use with
 KeyHit
 ,
 KeyDown
 , etc.
 Table B-1.

 Key Codes

 in BlitzMax

	Key
	Value
	Key
	Value

	Backspace
	
 KEY_BACKSPACE

	V
	
 KEY_V

	Tab
	
 KEY_TAB

	W
	
 KEY_W

	Clear
	
 KEY_CLEAR

	X
	
 KEY_X

	Return
	
 KEY_RETURN

	Y
	
 KEY_Y

	Enter
	
 KEY_ENTER

	Z
	
 KEY_Z

	Pause
	
 KEY_PAUSE

	Sys key (Left)
	
 KEY_LSYS

	Escape
	
 KEY_ESCAPE

	Sys key (Right)
	
 KEY_RSYS

	Space
	
 KEY_SPACE

	Numpad 0
	
 KEY_NUM0

	Page Up
	
 KEY_PAGEUP

	Numpad 1
	
 KEY_NUM1

	Page Down
	
 KEY_PAGEDOWN

	Numpad 2
	
 KEY_NUM2

	End
	
 KEY_END

	Numpad 3
	
 KEY_NUM3

	Home
	
 KEY_HOME

	Numpad 4
	
 KEY_NUM4

	Cursor (Left)
	
 KEY_LEFT

	Numpad 5
	
 KEY_NUM5

	Cursor (Up)
	
 KEY_UP

	Numpad 6
	
 KEY_NUM6

	Cursor (Right)
	
 KEY_RIGHT

	Numpad 7
	
 KEY_NUM7

	Cursor (Down)
	
 KEY_DOWN

	Numpad 8
	
 KEY_NUM8

	Select
	
 KEY_SELECT

	Numpad 9
	
 KEY_NUM9

	Print
	
 KEY_PRINT

	Numpad *
	
 KEY_NUMMULTIP

	Execute
	
 KEY_EXECUTE

	Numpad +
	
 KEY_NUMADD

	Screen
	
 KEY_SCREEN

	Numpad -
	
 KEY_NUMSUBTRA

	Insert
	
 KEY_INSERT

	Numpad .
	
 KEY_NUMDECIMA

	Delete
	
 KEY_DELETE

	Numpad /
	
 KEY_NUMDIVIDE

	Help
	
 KEY_HELP

	F1
	
 KEY_F1

	0
	
 KEY_0

	F2
	
 KEY_F2

	1
	
 KEY_1

	F3
	
 KEY_F3

	2
	
 KEY_2

	F4
	
 KEY_F4

	3
	
 KEY_3

	F5
	
 KEY_F5

	4
	
 KEY_4

	F6
	
 KEY_F6

	5
	
 KEY_5

	F7
	
 KEY_F7

	6
	
 KEY_6

	F8
	
 KEY_F8

	7
	
 KEY_7

	F9
	
 KEY_F9

	8
	
 KEY_8

	F10
	
 KEY_F10

	9
	
 KEY_9

	F11
	
 KEY_F11

	A
	
 KEY_A

	

 F12

	
 KEY_F12

	B
	
 KEY_B

	Num Lock
	
 KEY_NUMLOCK

	C
	
 KEY_C

	Scroll Lock
	
 KEY_SCROLL

	D
	
 KEY_D

	Shift (Left)
	
 KEY_LSHIFT

	E
	
 KEY_E

	Shift (Right)
	
 KEY_RSHIFT

	F
	
 KEY_F

	Control (Left)
	
 KEY_LCONTROL

	G
	
 KEY_G

	Control (Right)
	
 KEY_RCONTROL

	H
	
 KEY_H

	Alt key (Left)
	
 KEY_LALT

	I
	
 KEY_I

	Alt key (Right)
	
 KEY_RALT

	J
	
 KEY_J

	Tilde
	
 KEY_TILDE

	K
	
 KEY_K

	Minus
	
 KEY_MINUS

	L
	
 KEY_L

	Equals
	
 KEY_EQUALS

	M
	
 KEY_M

	Bracket (Open)
	
 KEY_OPENBRACK

	N
	
 KEY_N

	Bracket (Close)
	
 KEY_CLOSEBRAC

	O
	
 KEY_O

	Backslash
	
 KEY_BACKSLASH

	P
	
 KEY_P

	Semicolon
	
 KEY_SEMICOLON

	Q
	
 KEY_Q

	Quote
	
 KEY_QUOTES

	R
	
 KEY_R

	Comma
	
 KEY_COMMA

	S
	
 KEY_S

	Period
	
 KEY_PERIOD

	T
	
 KEY_T

	

 Slash

	
 KEY_SLASH

	U
	
 KEY_U

	 	

Appendix C: ASCII Table

 Table C-1.

 AACII Table

	Dec.
	Hex.
	Meaning / Symbol
	Dec.
	Hex.
	Meaning/Symbol

	0
	0
	null
	64
	40
	@

	1
	1
	start of heading
	65
	41
	A

	2
	2
	start of text
	66
	42
	B

	3
	3
	end of text
	67
	43
	C

	4
	4
	end of transmission
	68
	44
	D

	5
	5
	enquiry
	69
	45
	E

	6
	6
	acknowledge
	70
	46
	F

	7
	7
	bell
	71
	47
	G

	8
	8
	backspace
	72
	48
	H

	9
	9
	horizontal tab
	73
	49
	I

	10
	A
	new line
	74
	4A
	J

	11
	B
	vertical tab
	75
	4B
	K

	12
	C
	new page
	76
	4C
	L

	13
	D
	carriage return
	77
	4D
	M

	14
	E
	shift out
	78
	4E
	N

	15
	F
	shift in
	79
	4F
	O

	16
	10
	data link escape
	80
	50
	P

	17
	11
	device control 1
	81
	51
	Q

	18
	12
	device control 2
	82
	52
	R

	19
	13
	device control 3
	83
	53
	S

	20
	14
	device control 4
	84
	54
	T

	21
	15
	negative acknowledge
	85
	55
	U

	22
	16
	synchronous idle
	86
	56
	V

	23
	17
	end of trans. block
	87
	57
	W

	24
	18
	cancel
	88
	58
	X

	25
	19
	end of medium
	89
	59
	Y

	26
	1A
	substitute
	90
	5A
	Z

	27
	1B
	escape
	91
	5B
	[

	28
	1C
	file separator
	92
	5C
	\

	29
	1D
	group separator
	93
	5D
]

	30
	1E
	record separator
	94
	5E
	^

	31
	1F
	unit separator
	95
	5F
	_

	32
	20
	

 space

	96
	60
	`

	33
	21
	!
	97
	61
	a

	34
	22
	"
	98
	62
	b

	35
	23
	#
	99
	63
	c

	36
	24
	$
	100
	64
	d

	37
	25
	%
	101
	65
	e

	38
	26
	&
	102
	66
	f

	39
	27
	'
	103
	67
	g

	40
	28
	(
	104
	68
	h

	41
	29
)
	105
	69
	i

	42
	2A
	*
	106
	6A
	j

	43
	2B
	+
	107
	6B
	k

	44
	2C
	,
	108
	6C
	l

	45
	2D
	-
	109
	6D
	m

	46
	2E
	.
	110
	6E
	n

	47
	2F
	/
	111
	6F
	o

	48
	30
	0
	112
	70
	p

	49
	31
	1
	113
	71
	q

	50
	32
	2
	114
	72
	r

	51
	33
	3
	115
	73
	s

	52
	34
	4
	116
	74
	t

	53
	35
	5
	117
	75
	u

	54
	36
	6
	118
	76
	v

	55
	37
	7
	119
	77
	w

	56
	38
	8
	120
	78
	x

	57
	39
	9
	121
	79
	y

	58
	3A
	:
	122
	7A
	z

	59
	3B
	;
	123
	7B
	{

	60
	3C
	<
	124
	7C
	|

	61
	3D
	=
	125
	7D
	}

	62
	3E
	>
	126
	7E
	∼

	63
	3F
	?
	

 127

	7F
	DEL

Appendix D: Controller Abstraction Classes

 Rem
 File : Controller.bmx
 Author : Sloan Kelly
 Purpose : Controller abstraction classes to allow game code to be free from multiple controller code.
Keeping the game engine pure, if you will
End Rem

Rem
 Class : IFire
 Author : Sloan Kelly
 Description : Abstract firing mechanism.
Contained within the IController
 class is a list of firing mechanisms. It's possible to extend
 this list over time to other input devices. For example a mouse button etc.
End Rem

 Type IFire

 Abstract

 Field Item:Int

 Method FireDown:Int() Abstract
 Method FireHit:Int() Abstract

End Type

Rem
 Class : IController
 Author : Sloan Kelly
 Purpose : Abstraction of controller method. Useful if you want your game to be played with people who want to use either keyboard or joysticks.
 Contains a number of abstract methods that are implemented in the child classes that inherit. Contains three final methods that are used by all child-controller classes.
End Rem
Type IController Abstract

 Field FireMethods:TList = CreateList() ' List of ways user can press fire / jump / dash ...
 Field
Name:String ' Name of controller ("Keyboard", "Mouse", "Joystick")

' can be used within the program to identify the controller

' implementation to the coder
 Method DUp:Int()

 Abstract ' User

 presses

Up
 Method DDown:Int()
Abstract ' User
presses Down
 Method DLeft:Int()
Abstract ' User
presses Left
 Method DRight:Int()
Abstract ' User presses Right

 '
 ' Adds an IFire method to the list of available
 ' methods. Notice that this is an INTERFACE that
 ' is required, so any object that inherits this
 ' interface can be used too. This method is built-in
 ' to all classes that inherit IController
 '
 Method AddFire(fire:IFire) Final
 FireMethods.AddLast(fire)
 End Method

 '
 ' Checks to see that fire 'index' has been hit and
 ' returns a boolean True if it has. Like AddFire, this
 ' method is inherited by all children of IController
 '
 Method Fire:Int(index:Int) Final
 rtn:Int = False
 i:Int = 0
 For f:IFire = EachIn FireMethods
 If i = index
 If f.FireDown()
 rtn = True
 End If
 End If
 i = i + 1
 Next
 Return rtn
 End Method

 '
 ' Returns the number of buttons a particular controller has
 '
 Method ButtonCount:Int() Final
 Return CountList(FireMethods)
 End Method

End Type

Rem
 Class : TStick
 Author : Sloan Kelly
 Purpose : Implementation of the

 IController interface. This is the code for a joystick or similar game

 controller

End Rem
Type TStick Extends IController

 Field Port:Int

 Method DUp:Int()
 Return JoyY(Port) = -1
 End Method

 Method DDown:Int()
 Return JoyY(port) = 1
 End Method

 Method DLeft:Int()
 Return JoyX(Port) = -1
 End Method

 Method DRight:Int()
 Return JoyX(Port) = 1
 End Method

 Function Create:TStick(Name:String, Port:Int)
 o:TStick = New TStick
 o.Name = Name
 o.Port = Port
 Return o
 End Function

End Type

Rem
 Class : TKeyboard
 Author : Sloan Kelly
 Purpose : Implementation of the IController interface. This is the code for a keyboard
End Rem
Type TKeyboard Extends IController

 Field kcUp:Int
 Field kcDown:Int
 Field kcLeft:Int
 Field kcRight:Int

 Method DUp:Int()
 Return KeyDown(kcUp)
 End Method

 Method DDown:Int()
 Return KeyDown(kcDown)
 End Method

 Method DLeft:Int()
 Return KeyDown(kcLeft)
 End Method

 Method DRight:Int()

 Return KeyDown(kcRight)

 End Method

 Function Create:TKeyboard(Name:String, up:Int, dwn:Int, lft:Int, rght:Int)
 o:TKeyboard = New TKeyboard
 o.Name = Name
 o.kcUp = up
 o.kcDown = dwn
 o.kcLeft = lft
 o.kcRight = rght
 Return o
 End Function

End Type

Rem
 Class : TKeyFire
 Author : Sloan Kelly
 Purpose : Inherits from the IFire interface. This class traps keyboard
events.
End Rem
Type TKeyFire Extends IFire
 Field Item:Int

 Method FireDown:Int()
 Return KeyDown(Item)
 End Method

 Method FireHit:Int()
 Return KeyHit(Item)
 End Method

 Function Create:TKeyFire(kc:Int)
 o:TKeyFire = New TKeyFire
 o.Item = kc
 Return o
 End Function

End Type

Rem
 Class : TStickFire
 Author : Sloan Kelly
 Purpose : Inherits from the IFire interface. This class traps joystick button events.
End Rem
Type TStickFire Extends IFire
 Field Item:Int
 Field Port:Int

 Method FireDown:Int()
 Return JoyDown(Item, Port)
 End Method

 Method FireHit:Int()
 Return JoyDown(Item, Port)
 End Method

 Function Create:TStickFire(Item:Int, Port:Int)

 o:TStickFire = New

 TStickFire

 o.Item = Item
 o.Port = Port
 Return o
 End Function
End Type

Appendix E: Compiler Directives

 Compiler directives are statements that are not converted into actual code but control the compiler’s operation.

 BlitzMax

 supports the following compiler directives:
 	Strict

	Operating-system-specific code

	Processor-specific code

	Endian-specific code

	Debug mode code

 Strict

Usually, if BlitzMax encounters an identifier (variable name) in your code that has not already been declared, it assumes that it is an integer variable.

 In the following code example, as
 myVar
 has not been declared, the compiler will create a new integer and set its value to 0.

 Print(myVar)

This can cause problems if you misspell a variable name, as instead of giving an error, the compiler will think that the misspelled variable is actually a different variable altogether.

 To avoid this, place the
 Strict
 compiler directive at the top of the code.

 Strict
Local myVar=42
Print(myVar)

 This gives an error, because
 myVaar
 has not been declared.

 Print(myVaar)

 When in
 Strict
 mode, all variables must be declared using the
 Local
 or
 Global
 keywords (unless they are fields inside types or parameters inside a function). You can go one step further and use the
 SuperStrict
 keyword, to ensure that you explicitly set your data types too.

 SuperStrict
Local i:Int = 5
Print i

 By default, BlitzMax

 assumes

 the
 Integer
 (
 Int
) data type. With
 SuperStrict
 mode, you must
 explicitly
 indicate that the variable is an integer.

 Operating-System

 -Specific Code

 In BlitzMax, you can specify that a certain block of code should only be included when the code is compiled on a certain operating system (OS). This is useful if you want a module to have one function that actually runs different code on different operating systems. To start an OS-specific block, use the statement
 ?Linux
 ,
 ?MacOS
 , or
 ?Win32
 . To switch back to non-OS-specific mode, just use a question mark (
 ?
).

 ?Linux
 'this block of code will only be compiled under Linux
?Win32
 'this block of code will only be compiled under Windows.
?MacOS
 'this block of code will only be compiled under Mac.
?
 'this block of code will be compiled on all platforms.

 Processor-Specific Code

Use these if you must know which processor the code is being compiled for. It comes in handy if you are using an assembler.

 ?PPC
 'this block of code will only be compiled on a PowerPC system.
?x86
 'this block of code will only be compiled on a x86 (Intel, AMD etc) system.
?

 'all code from this

 point

 on will be compiled on all systems.

 Endian-Specific Code

Sometimes, you only have to know the endianness of the target platform. The following directives can help.

 ?LittleEndian
 'this block of code will only be compiled on platforms that use the little endian format.
?BigEndian
 'this block of code will only be compiled on platforms that use the big endian format.
?
 'all code from this point on will be compiled on all platforms.

 Debug Mode Code

This works in a similar way to OS-specific code, except that it allows the program to specify that code will only be compiled when the project is built in debug mode.

 ?Debug
 'this block of code will only be compiled in debug mode.
?
 'all code from this point on will be compiled in debug and release modes.

Index

A

American Standard Code for Information Interchange (ASCII)

AND operator

Application/game/program

Argh.Ogg and Ugh.Ogg

Arithmetic operators

Attribute definition

Audacity

Audio tools

B

BASIC programming language

Binary digits

Binary numbering

Binary system

Blending modes

BlitzMax

BlitzMax IDE
editing
file operations
insert
launching
menu bar
screen
toolbar

BlitzMax Sound

BlitzMax web site

BlitzSource

Booleaan Bitwise Operators

Boolean Logic

Boolean mathematics
exclusive OR operator

ButtonCount

Bytes

C

Cache

Central processing unit (CPU)

CheckCollisions() method

Class definition

Class diagrams

Clipboard

Code

Collision detection
action game
first rule
laws
simple game

Collisions revisited

Colon

Compilation process
assembly language
23 characters, string
Print() function
program

Compiler

Compiler drectives
BlitzMax
Endian-Specific Code
strict

Computer programming

Computer system
aesthetics
CPU
in electronics
input
motherboard
output
process

Constants

Continue keyword

Controller abstraction class

Controller.bmx

Correct file management

Create method

ctrl field

D

Debugger

Debug Mode Code

Decimal system

Disk

Divide operator

DoGameOver

DoQuit

Double buffering

Draw cycles

DrawLanded

DrawOutline method

DVD recorder

E

Editor

Embed binary resources

Endian-Specific Code

Enemy class

Enhanced class diagram

Entities

Equality testing

Exit keyword

F

Fetch-execute cycle

File Manipulation, OpenFile

File operations
BlitzSource
close
open
operating system
save

File System
directories
ChangeDir
CreateDir
CurrentDir
DeleteDir
FileType
graphical representations
LoadDir
ReadDir, NextFile, and CloseDir
OpenFile

FindLast

FireMethods

Flood

Flood Game Specification
enemies
orchids
player character
roaming enemies
screen
wave

FloodTheGame.bmx

FlushKeys

foo() method

For EachIn…Next

for Loop

G

Game design
high-concept idea
low-concept idea

GameLoop method

Game loop cycles

GetChar

GetMapData() function

Global variables

GNU Image Manipulation Program (GIMP)

Graphics
built-in commands
Cls
color depth and frequency
CountGraphicsModes
EndGraphics
flip
fonts
GetImageFont
incbin keyword
LoadImageFont
SetImageFont
GetClsColor
GetGraphics
GraphicsModeExists
GraphicsWidth and GraphicsHeight
images
DrawImage
GetViewport
LoadAnimImage
LoadImage
SetViewport
TileImage
ZX Spectrum loading
OpenGL
primitives
DrawLine
DrawOval
DrawPoly
DrawRect
DrawText
Plot
SetClsColor

gun emplacement

H

Hardware/software stack

Hexadecimal

I

IController
AddFire
FireMethods
Name
TKeyFire
TStickFire

IF statements

IncBin Keyword

Include Keyword
advantages

Inheritance

Input routine
classes
IController
web site

Interface

Iteration

J

Java application

JoyAxisCaps

JoyButtonCaps

JoyCount

JoyName

Joystick
BlitzMax
computer users
direction
information
JoyCount
PlayStation controller

K

Keyboard Input
BlitzMax key code

Key Codes

KeyDown

KeyHit

L

Larger numbers

Light-emitting diodes (LEDs)

Literals

LoadSound

Local variables

Low-concept idea

M

Machine code (English to Computerese Translation)

MainLoop method

Method definition

Minus Operator

Modulo operator

Mouse

Multiplication operator

N

Nesting IFs

NOT operator

Number systems

O

Object definition

Object- oriented design
aggregation and composition
Introduction
plus (+) and minus (-) signs
UML

Object-oriented programming (OOP)
abstraction
attributes and functions
BlitzMax clasess
CheeseFries()
class
consts and globals
fields
functions
inheritance and polymorphism
interface
methods
new and delete methods
object
polymorphism
Self and Super variable
simple class
TStar class
UDT declaration
UDT defining

Ogg Vorbis

OOP in BlitzMax

OpenGL special effects
set rotation

Operating-system

Orchid class

Orchids

OR operator

P, Q

Paratrooper
DrawLanded
DrawScore
game concept
game dynamics
graphics
gun emplacement

 Joystick
 vs
 . Keyboard

options
Project Management
sound effects
updates

Paratrooper game

paratrooper image

Paratroops.bmx file

PauseChannel

Platform class

player character

Player class diagram

PlaySound

Plus Operator

Polymorphism

Portability

Preconditions section

Processor-specific code

Project file management
BurgerPlace.bmx
class diagram
game development
IncBin
Include

R

Random Access Memory (RAM)

Read-Only Memory

Recursion

Repeat…Forever

Repeat…Until

Resolution

ResumeChannel

Reusing code with functions
extend existing keywords
line drawing
recursion
returning multiple values
return values
simple function declaration
specify parameters

S

Scaling images

Screen

Select Case

SetChannelVolume

Sound effects and audio
BlitzMax
LoadSound
Ogg Vorbis
PauseChannel
PlaySound
ResumeChannel
SetChannelVolume
WAV

Source code

Storyboarding
concepts
graphics

Strict

String Concatenation

String methods
Contains
decisions
EndsWith
Find
FromBytes
FromCString
FromDouble
FromFloat
FromInt
FromLong
FromShorts
FromWString
Join
length
replace
Split
StartsWith
String object
ToCString
ToDouble
ToFloat
ToInt
ToLong
ToLower
ToUpper
ToWString method
Trim
TRUE/FALSE

structured design

Stub code

T

Tab Panel

Tank attack
brick graphic
bullet
Combat adding
bullet UDT
collision detection
drawing tanks
Init() method
main game loop
source code
tank creation, parameters
UpdateBullets function
UpdateTanks method
data
endgame screen
end screen
features
game block
GetMapData
google docs spreadsheet
graphics
information/splash screen
keys controlling tank movements
main game loop
map data
map positions
reset game method
splash screen
DrawSplash
PrintMessage
structure chart
Stub Code
tension adding
DrawInformation function
DrawNumber function
ResetGame function
UpdateCountDown function

TBullet

TDome.bmx

TFloodGame

TGameBackdrop.bmx

The Great Escape
debugging, code
debug methods
description
game elements
graphic elements
Mac
platforms
Windows
initial setup
linear gradient
main loop
player feedback
printing output
starting game
stopping execution

time-lapsed image

TKeyboard

TMenuScreen.bmx

TParatrooper.bmx

TParatroopGame.bmx

TPlayScreen

TPlayScreen.bmx file

TrueType Font (TTF)

TStick

TTroops

TWave class diagram

TWave.bmx file

U

Undo

Unified Modeling Language (UML)

Update method

Use Case

User-defined type (UDT)

User input
MouseDown
MouseHit
MouseX and MouseY
MouseZ
MoveMouse
SetBlend line
showing and hiding, system mouse
WaitMouse

V

Variables
code
data types
field
global
local
location
names
number of phrases
operators
Strict
types
values

W, X, Y, Z

WaitChar

WaitKey

While/Wend

OEBPS/A435551_1_En_1_Fig2_HTML.jpg
oput -+ Output

=

Input{"Whatis your name?) User's response s stored in memory “Helo there, message s displayed

User types response.

OEBPS/A435551_1_En_22_Fig2_HTML.jpg

OEBPS/A435551_1_En_3_Fig1_HTML.jpg

OEBPS/cover.jpg
BlitzMax for
Absolute
Beginners

Games Programming for the
Absolute Beginner

Sloan Kelly

Apress-

OEBPS/A435551_1_En_22_Fig25_HTML.jpg
TOrchids

+Draw()
+Update()

+5etup()
+Create()

0..6
Hist

TOrchidPos

+x
+y

OEBPS/A435551_1_En_12_Fig1_HTML.jpg
;| -

OEBPS/A435551_1_En_1_Fig1_HTML.jpg

OEBPS/A435551_1_En_18_Fig3_HTML.jpg

OEBPS/A435551_1_En_22_Fig24_HTML.jpg
TPlayScreen

+Draw()
+Update()
+Setup()
+Create()

=

+X

-blocks| +Y

OEBPS/A435551_1_En_5_Figa_HTML.jpg

OEBPS/A435551_1_En_18_Fig2_HTML.jpg

OEBPS/A435551_1_En_17_Fig1_HTML.jpg

OEBPS/sidebar.gif

OEBPS/A435551_1_En_5_Fig1_HTML.jpg

OEBPS/A435551_1_En_22_Fig20_HTML.jpg

OEBPS/A435551_1_En_22_Fig14_HTML.jpg
Collar

OEBPS/A435551_1_En_12_Fig2_HTML.jpg
B ok

OEBPS/A435551_1_En_22_Fig11_HTML.jpg
+StartTime

+IsPlaying
+IsRecording

+Eject()

+5top()
+NextChapter()
+PreviousChapter()

+Record()

OEBPS/A435551_1_En_8_Fig5_HTML.jpg

OEBPS/A435551_1_En_8_Fig2_HTML.jpg

OEBPS/A435551_1_En_22_Fig1_HTML.jpg
e

% iy
SRy
Di-usa,

OEBPS/A435551_1_En_22_Fig16_HTML.jpg
Any rumber of

| ClassA's can belong to Class

0.°

None or 1 of Class8 &5 aggregated
== """ | with Class2

o coposition at al, or any number of

ClassC's can be composited n Class3

1.1

..... n-nmauomﬁ

| ClassS must have at least one ClassE
------ | compomton, but can have more.

OEBPS/A435551_1_En_22_Fig19_HTML.jpg
Class1

Class2

OEBPS/A435551_1_En_22_Fig22_HTML.jpg
Iﬁxt%o
febessn |

OEBPS/A435551_1_En_16_Fig3_HTML.jpg
51 seconds left!

OEBPS/A435551_1_En_14_Fig1_HTML.jpg
X-Roll -Roll

Buton s
Butons
Busion: Button 2

Button7
Buton 6

Button 9
Butons

s Roll and Pitch

OEBPS/A435551_1_En_1_Fig4_HTML.jpg
More Abstract

Application (Game, Spreadsheet...)

Shell (Windows, KDE, Gnome, Mac0s...)

Kernel (Kernel32, Linux Kernel, MACH)

BIOS

More Physical

Hardware

OEBPS/A435551_1_En_BookBackmatter_Figa_HTML.jpg

OEBPS/A435551_1_En_19_Figa_HTML.jpg
MAudacity

OEBPS/A435551_1_En_5_Fig3_HTML.jpg
Local tFloat=0333333343

OEBPS/A435551_1_En_22_Fig3_HTML.jpg
Arrow indicates direction
of fall. Jasper” ends his fall
when he hits the platform

OEBPS/A435551_1_En_BookFrontmatter_Figa_HTML.png
ApPress

OEBPS/A435551_1_En_18_Fig5_HTML.jpg

OEBPS/A435551_1_En_22_Fig8_HTML.jpg
h-eCmtiﬁaus
Player is ot jumping
Player is not falling

!

!

!

!

!

!

!
’lbeplaya‘sx-posiﬁonisupdazed - ﬂ:eycannmdmge :
direction ip mid-jump, /

!

OEBPS/A435551_1_En_11_Fig2_HTML.jpg
Graphics Card

Back buffer

Visible on the Monitor

OEBPS/A435551_1_En_22_Fig5_HTML.jpg
Enemy can only move in
two directions; left and
right. Patrol area determined
by length of platform.

>

OEBPS/A435551_1_En_1_Fig5_HTML.jpg
(o,

(639, 479)

OEBPS/A435551_1_En_22_Fig18_HTML.jpg

OEBPS/A435551_1_En_BookBackmatter_Figb_HTML.jpg

OEBPS/A435551_1_En_17_Fig3_HTML.jpg

OEBPS/A435551_1_En_22_Fig27_HTML.jpg
i

OEBPS/A435551_1_En_16_Fig1_HTML.jpg

OEBPS/A435551_1_En_18_Fig6_HTML.jpg

OEBPS/A435551_1_En_11_Fig1_HTML.jpg
Graphics Card

What the player sees

Objects are being drawn
0n the back buffer

Objects are re-drawn in
new positions on the back
buffer

Buffer

This process is continued
during program execution
All you 106 10 60 is “Fip”
in BitzMax!

Buffer

OEBPS/A435551_1_En_19_Fig2_HTML.jpg
G kudacity

Be £t Yoo Bomct Gowew Eiet bove teb

YPDD)

o)

| — | —
o #|
IR IR

b Lo

* [Mrchona

=l

Gk and v 10 swect wus
pronctrae: 44100

Swecton 091671837 0,04 63741 (662 881905 e sec) [3490-T O

OEBPS/A435551_1_En_5_Figb_HTML.jpg

OEBPS/A435551_1_En_8_Fig3_HTML.jpg

OEBPS/A435551_1_En_22_Fig13_HTML.jpg

OEBPS/A435551_1_En_22_Fig28_HTML.jpg
+x
+

=

TPlayScreen

+Draw()

+Update()

+Setup()

+Create(block: string, tree: string, endmarker: string): TPlaySareen

OEBPS/contact.gif

OEBPS/A435551_1_En_22_Fig6_HTML.jpg
1)

OEBPS/A435551_1_En_8_Fig4_HTML.jpg

OEBPS/A435551_1_En_22_Fig17_HTML.jpg

OEBPS/A435551_1_En_1_Fig6_HTML.jpg

OEBPS/A435551_1_En_22_Fig12_HTML.jpg
ClassA

ClassB

ClassD

OEBPS/A435551_1_En_18_Fig1_HTML.jpg

OEBPS/A435551_1_En_22_Fig26_HTML.jpg
TWave

+Draw()
+Update()
+Reset()
+Create()

OEBPS/A435551_1_En_18_Fig4_HTML.jpg

OEBPS/A435551_1_En_22_Fig23_HTML.jpg
+Draw()
+Update()
+Reset()
+Setup()
+Create()

+X
Y.

+Draw()
+Update()

OEBPS/A435551_1_En_16_Fig2_HTML.jpg

OEBPS/A435551_1_En_BookFrontmatter_Figb_HTML.jpg

OEBPS/A435551_1_En_17_Fig2_HTML.jpg
BlitzMax!

OEBPS/A435551_1_En_22_Fig7_HTML.jpg

OEBPS/A435551_1_En_22_Fig9_HTML.jpg
SimpleClass

+Attribute

+Method()

OEBPS/A435551_1_En_22_Fig4_HTML.jpg
Arrow indicates direction
of jJump. “Jasper”jumps
through the platform

OEBPS/A435551_1_En_8_Fig6_HTML.jpg
Google docs Mapa & e oy iom
File Edt View Inset Format Data Tools Help
Ge AT A % 0y B A 8. O E-

Formula: X

BCOEFONI JKLUNOPORSTUVWXY
X XXX XXXXXKXXKXKXXXKXKKKX

s

2 x x
3 ix| X
X XXXXX XXXXX X
LN X 11
e x X x| %
el | Ix X1 Ik
LM CNBE:
9 X X
o X X
x X
x x
x x
x x
X x
x x
x| X CERE
x| X EWEE
x|l HEBES
»x x £
2 X XXXXX XXXXX X
2 x X
2 x x
2 XXXXXXXXXXXKKXXXXXXKKKXXK

OEBPS/A435551_1_En_19_Fig1_HTML.jpg
e BOX]
e 0 or Bt G e o B
 E— E—

|lofelel WB) QW) B)R) |[§5 5557 pg = wwY
K B) pliere s oo
| [mj@[ne] o[c] p[s]2]2]

7% e A S ¥ S e T,

|Promctrate 44100 | [Curaer 000 000080 misec (SnapTo O

OEBPS/A435551_1_En_11_Fig3_HTML.jpg
BvtsMas Appixcaton e

OEBPS/A435551_1_En_9_Fig1_HTML.jpg

OEBPS/A435551_1_En_5_Fig2_HTML.jpg
Score <8 Lives <3>

Press SPACE to serve ball
You have 3 Lives left!

OEBPS/A435551_1_En_22_Fig10_HTML.jpg
SimpleClass

+Attribute: int

+Method(type: int): string

OEBPS/A435551_1_En_10_Fig1_HTML.jpg

OEBPS/A435551_1_En_22_Fig21_HTML.jpg
Platform

Orchid

Enemy

Wave

OEBPS/A435551_1_En_8_Fig1_HTML.jpg

OEBPS/A435551_1_En_22_Fig15_HTML.jpg
Shirt

Collar

Cuff

OEBPS/A435551_1_En_17_Fig4_HTML.jpg
BitzMax Application

OEBPS/A435551_1_En_1_Fig3_HTML.jpg
Floppy Connector
DMABG/100 IE Gomnector
1DE Gonector

o 168-pin DIMMS.
PG133 SDRAM Supported

K7 Socket A thion/Duron
GPU Supported

SIS 7305 Chipset

ATX Power
Supply Connector

KB PS/2 Ports
Us8 ports

Parallel Port

_ LANModem Wake UP
Connectors

- Two POl Sots

AXAGP Slat

_ Front Panel
MICILine-Out Header

Game port

